WorldWideScience

Sample records for dietary plant protein

  1. Low Proportion of Dietary Plant Protein among Athletes with Premenstrual Syndrome-Related Performance Impairment.

    Science.gov (United States)

    Yamada, Keiko; Takeda, Takashi

    2018-02-01

    Premenstrual syndrome (PMS) is psychosomatic disorder that are limited to the late luteal phase in the menstrual cycle. PMS could impair athletic performance. To investigate associations between proportions of dietary plant and animal protein and PMS-related impairment of athletic performance, we surveyed 135 female athletes aged 18-23 years attending Kindai University. Participants belonged to authorized university clubs, all of which have high rankings in Japanese university sports. Participants completed self-administered questionnaires on diet history, demographics, and PMS-related impairment of athletic performance. Total protein, animal protein, and plant protein intake were examined, and the proportion of dietary plant protein was calculated for each participant. We divided athletes into two groups: those without PMS-related impairment of athletic performance (n = 117) and those with PMS-related performance impairment (n = 18). A t-test was used to compare mean values and multivariable adjusted mean values between groups; adjustment variables were energy intake, body mass index, and daily training duration. Total protein intake was not significantly different between the groups. However, athletes whose performance was affected by PMS reported higher intake of animal protein (mean 50.6 g) than athletes whose performance was unaffected by PMS (mean 34.9 g). Plant protein intake was lower among athletes with PMS-related impairment (mean 25.4 g) than among athletes without impairment (mean 26.9 g). The proportion of dietary plant protein was lower among athletes with PMS-related impairment (39.3%) than those without impairment (45.9%). A low proportion of dietary plant protein may cause PMS-related athletic impairment among athletes.

  2. Dietary Proteins and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Medina

    2014-01-01

    Full Text Available Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  3. Dietary ratio of animal:plant protein is associated with 24-h urinary iodine excretion in healthy school children.

    Science.gov (United States)

    Montenegro-Bethancourt, Gabriela; Johner, Simone A; Stehle, Peter; Remer, Thomas

    2015-07-14

    Adequate dietary iodine intake in children is essential for optimal physical and neurological development. Whether lower dietary animal food and salt intake may adversely affect iodine status is under discussion. We examined the association between dietary animal:plant protein ratio with 24-h urinary iodine excretion (24-h UI, μg/d), and whether this is modified by salt intake. A 24-h UI was measured in 1959 24-h urine samples from 516 6- to 12-year-old participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed Study. Parallel 3 d weighed food records were used to estimate dietary intakes. Protein sources were classified as dairy, animal and plant. A repeated-measures regression model (PROC MIXED) was used to analyse the effect of animal:plant protein ratios on 24-h UI. plant protein ratios ranged from 0.5 (95 % CI 0.4, 0.6) to 1.6 (95 % CI 1.4, 1.9) (lowest and highest quartile). After adjustment for total energy intake, main dietary iodine sources (dairy and salt intake), and further covariates, the inter-individual variation in animal:plant protein ratio was significantly associated with variation in 24-h UI. One unit higher animal:plant protein ratio predicted 6 μg/d higher 24-h UI (P= 0.002) in boys and 5 μg/d (P= 0.03) in girls. This relationship was partially mediated by a higher salt intake at higher animal:plant protein ratios. These results suggest that lower consumption of animal protein is associated with a small decline in iodine excretion, partially mediated by decreased salt intake. Because limited salt and increased intake of plant-based foods are part of a preferable healthy food pattern, effective nutrition political strategies will be required in the future to ensure appropriate iodine nutrition in adherent populations.

  4. Dietary protein and blood pressure : epidemiological studies

    NARCIS (Netherlands)

    Altorf-van der Kuil, W.

    2012-01-01


    Background
    Elevated blood pressure is a major risk factor for cardiovascular diseases. Diet and lifestyle have a substantial impact on blood pressure, but the role of protein intake is not yet clear. This thesis focuses on total dietary protein, types of protein (i.e. plant and

  5. Dietary protein and blood pressure: a systematic review.

    Directory of Open Access Journals (Sweden)

    Wieke Altorf-van der Kuil

    Full Text Available BACKGROUND: Elevated blood pressure (BP, which is a major risk factor for cardiovascular disease, is highly prevalent worldwide. Recently, interest has grown in the role of dietary protein in human BP. We performed a systematic review of all published scientific literature on dietary protein, including protein from various sources, in relation to human BP. METHODOLOGY/PRINCIPAL FINDINGS: We performed a MEDLINE search and a manual search to identify English language studies on the association between protein and blood pressure, published before June 2010. A total of 46 papers met the inclusion criteria. Most observational studies showed no association or an inverse association between total dietary protein and BP or incident hypertension. Results of biomarker studies and randomized controlled trials indicated a beneficial effect of protein on BP. This beneficial effect may be mainly driven by plant protein, according to results in observational studies. Data on protein from specific sources (e.g. from fish, dairy, grain, soy, and nut were scarce. There was some evidence that BP in people with elevated BP and/or older age could be more sensitive to dietary protein. CONCLUSIONS/SIGNIFICANCE: In conclusion, evidence suggests a small beneficial effect of protein on BP, especially for plant protein. A blood pressure lowering effect of protein may have important public health implications. However, this warrants further investigation in randomized controlled trials. Furthermore, more data are needed on protein from specific sources in relation to BP, and on the protein-BP relation in population subgroups.

  6. Sources of dietary protein and risk of hypertension in a general Dutch population

    NARCIS (Netherlands)

    Altorf-van der Kuil, W.; Engberink, M.F.; Geleijnse, J.M.; Boer, J.M.A.; Verschuren, W.M.M.

    2012-01-01

    Evidence suggests a small beneficial effect of dietary protein on blood pressure (BP), especially for plant protein. We examined the relationship between several types of dietary protein (total, plant, animal, dairy, meat and grain) and the risk of hypertension in a general population of 3588 Dutch

  7. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods

    Directory of Open Access Journals (Sweden)

    Kevin B. Comerford

    2016-07-01

    Full Text Available Observational studies provide evidence that a higher intake of protein from plant-based foods and certain animal-based foods is associated with a lower risk for type 2 diabetes. However, there are few distinguishable differences between the glucoregulatory qualities of the proteins in plant-based foods, and it is likely their numerous non-protein components (e.g., fibers and phytochemicals that drive the relationship with type 2 diabetes risk reduction. Conversely, the glucoregulatory qualities of the proteins in animal-based foods are extremely divergent, with a higher intake of certain animal-based protein foods showing negative effects, and others showing neutral or positive effects on type 2 diabetes risk. Among the various types of animal-based protein foods, a higher intake of dairy products (such as milk, yogurt, cheese and whey protein consistently shows a beneficial relationship with glucose regulation and/or type 2 diabetes risk reduction. Intervention studies provide evidence that dairy proteins have more potent effects on insulin and incretin secretion compared to other commonly consumed animal proteins. In addition to their protein components, such as insulinogenic amino acids and bioactive peptides, dairy products also contain a food matrix rich in calcium, magnesium, potassium, trans-palmitoleic fatty acids, and low-glycemic index sugars—all of which have been shown to have beneficial effects on aspects of glucose control, insulin secretion, insulin sensitivity and/or type 2 diabetes risk. Furthermore, fermentation and fortification of dairy products with probiotics and vitamin D may improve a dairy product’s glucoregulatory effects.

  8. Dietary protein content for an optimal diet: a clinical view

    OpenAIRE

    Santarpia, Lidia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-01-01

    Abstract The dietary protein role in different clinical nutritional conditions and some physio?pathological perspectives is a current and hot topic to discuss. Recent Proceedings of the Protein Summit 2, joining more than 60 nutrition scientists, health experts, and nutrition educators, suggest to increase plant but, in particular, animal protein intake because richer in leucine and consequently more effective to influence anabolic protein metabolism. The Panel conclusions are in apparent con...

  9. Dietary protein and risk of hypertension in a Dutch older population: the Rotterdam Study

    NARCIS (Netherlands)

    Altorf-van der Kuil, W.; Engberink, M.F.; Rooij, van F.J.A.; Hofman, A.; Veer, van 't P.; Witteman, J.C.M.; Geleijnse, J.M.

    2010-01-01

    AB Background: Several observational studies suggest an inverse association of protein with blood pressure (BP). However, little is known about the role of dietary protein from specific sources in BP. Method: We examined the relation between several types of dietary protein (total, plant, animal,

  10. Dietary protein considerations to support active aging.

    Science.gov (United States)

    Wall, Benjamin T; Cermak, Naomi M; van Loon, Luc J C

    2014-11-01

    Given our rapidly aging world-wide population, the loss of skeletal muscle mass with healthy aging (sarcopenia) represents an important societal and public health concern. Maintaining or adopting an active lifestyle alleviates age-related muscle loss to a certain extent. Over time, even small losses of muscle tissue can hinder the ability to maintain an active lifestyle and, as such, contribute to the development of frailty and metabolic disease. Considerable research focus has addressed the application of dietary protein supplementation to support exercise-induced gains in muscle mass in younger individuals. In contrast, the role of dietary protein in supporting the maintenance (or gain) of skeletal muscle mass in active older persons has received less attention. Older individuals display a blunted muscle protein synthetic response to dietary protein ingestion. However, this reduced anabolic response can largely be overcome when physical activity is performed in close temporal proximity to protein consumption. Moreover, recent evidence has helped elucidate the optimal type and amount of dietary protein that should be ingested by the older adult throughout the day in order to maximize the skeletal muscle adaptive response to physical activity. Evidence demonstrates that when these principles are adhered to, muscle maintenance or hypertrophy over prolonged periods can be further augmented in active older persons. The present review outlines the current understanding of the role that dietary protein occupies in the lifestyle of active older adults as a means to increase skeletal muscle mass, strength and function, and thus support healthier aging.

  11. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...... specific carbonylated proteins have been identified. Protein carbonylation appears to accumulate at all stages of seed development and germination investigated to date. In some cases, such as seed aging, it is probably simply an accumulation of oxidative damage. However, in other cases protein...

  12. Of piglets, dietary proteins, and pancreatic proteases

    NARCIS (Netherlands)

    Makkink, C.A.

    1993-01-01

    Newly weaned piglets often show digestive disorders, frequently resulting in diarrhoea. These disorders may be related to the dietary protein source, since young piglets are less capable of digesting proteins of vegetable origin than older pigs. This study was undertaken to investigate the

  13. Dietary Protein Intake in Dutch Elderly People: A Focus on Protein Sources

    Directory of Open Access Journals (Sweden)

    Michael Tieland

    2015-11-01

    Full Text Available Introduction: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people. Objectives: to assess the consumption of protein sources as well as the distribution of protein sources over the day in community-dwelling, frail and institutionalized elderly people. Methods: Habitual dietary intake was evaluated using 2- and 3-day food records collected from various studies involving 739 community-dwelling, 321 frail and 219 institutionalized elderly people. Results: Daily protein intake averaged 71 ± 18 g/day in community-dwelling, 71 ± 20 g/day in frail and 58 ± 16 g/day in institutionalized elderly people and accounted for 16% ± 3%, 16% ± 3% and 17% ± 3% of their energy intake, respectively. Dietary protein intake ranged from 10 to 12 g at breakfast, 15 to 23 g at lunch and 24 to 31 g at dinner contributing together over 80% of daily protein intake. The majority of dietary protein consumed originated from animal sources (≥60% with meat and dairy as dominant sources. Thus, 40% of the protein intake in community-dwelling, 37% in frail and 29% in institutionalized elderly originated from plant based protein sources with bread as the principle source. Plant based proteins contributed for >50% of protein intake at breakfast and between 34% and 37% at lunch, with bread as the main source. During dinner, >70% of the protein intake originated from animal protein, with meat as the dominant source. Conclusion: Daily protein intake in these older populations is mainly (>80% provided by the three main meals, with most protein consumed during dinner. More than 60% of daily protein intake consumed is of animal origin, with plant based protein sources representing nearly 40% of total protein consumed. During dinner, >70% of the protein intake originated from

  14. Prehydrolyzed dietary protein reduces gastrocnemial DNA without ...

    African Journals Online (AJOL)

    Prehydrolyzed dietary protein reduces gastrocnemial DNA without impairing physical capacity in the rat. Viviane Costa Silva Zaffani, Carolina Cauduro Bensabath Carneiro-Leão, Giovana Ermetice de Almeida Costa, Pablo Christiano Barboza Lollo, Emilianne Miguel Salomão, Maria Cristina Cintra Gomes-Marcondes, ...

  15. Dietary protein intake and chronic kidney disease.

    Science.gov (United States)

    Ko, Gang Jee; Obi, Yoshitsugu; Tortorici, Amanda R; Kalantar-Zadeh, Kamyar

    2017-01-01

    High-protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low-protein diet (LPD) of 0.6-0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD in the CKD management. Actual dietary protein consumption in CKD patients remains substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the 'Modification of Diet in Renal Disease' (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their ketoanalogs may be used for incremental transition to dialysis especially on nondialysis days. The LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counseling and surveillance to optimize management of CKD, to assure adequate protein and energy intake, and to avoid or correct protein-energy wasting.

  16. Dietary protein content for an optimal diet: a clinical view.

    Science.gov (United States)

    Santarpia, Lidia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-06-01

    The dietary protein role in different clinical nutritional conditions and some physio-pathological perspectives is a current and hot topic to discuss. Recent Proceedings of the Protein Summit 2, joining more than 60 nutrition scientists, health experts, and nutrition educators, suggest to increase plant but, in particular, animal protein intake because richer in leucine and consequently more effective to influence anabolic protein metabolism. The Panel conclusions are in apparent contradiction with the nutritional ecology statements, which strongly sustain the reduction of animal origin foods in the human diet and are currently concerned about the excessive, mainly animal protein intake in western and westernized Countries. In conclusion, it is time to carefully evaluate protein and aminoacid intake accurately considering quality, digestibility, daily distribution and individual characteristics. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  17. Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets

    DEFF Research Database (Denmark)

    Rolland, Marine; Dalsgaard, Anne Johanne Tang; Holm, Jorgen

    2015-01-01

    The effects of dietary level of methionine were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed five plant-based diets containing increasing content of crystalline methionine (Met), in a six week growth trial. Changes in the hepatic expression of genes related to i...

  18. Dietary Protein Intake and Chronic Kidney Disease

    Science.gov (United States)

    Ko, Gang Jee; Obi, Yoshitsugu; Tortoricci, Amanda R.; Kalantar-Zadeh, Kamyar

    2018-01-01

    Purpose of review High protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low protein diet (LPD) of 0.6–0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD the CKD management. Recent findings Actual dietary protein consumption in CKD patients remain substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the Modification of Diet in Renal Disease (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses including secondary analyses of the MDRD data appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their keto-analogs may be used for incremental transition to dialysis especially in non-dialysis days. An LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. Summary A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counselling and surveillance to optimize management of CKD, to assure adequate protein and energy intake and to avoid or correct protein-energy wasting. PMID:27801685

  19. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  20. Role of dietary proteins in sports.

    Science.gov (United States)

    Colombani, Paolo C; Mettler, Samuel

    2011-03-01

    The previously separate dietary protein recommendations for strength and endurance athletes are no longer supported, and the daily intake for adult athletes suggested by most of the entities is about 1.5 g · kg(-1) body mass with a range of perhaps 1.0 to 2.0 g · kg(-1) body mass. This recommendation is a broad landmark that needs to be adapted to the individual circumstances of the athlete. Research of the past decade indicates a beneficial effect with respect to a positive net muscular protein balance if athletes ingest some protein before an exercise bout. The amount of protein to be ingested to elicit the highest benefit is about 10 to 20 g · h(-1), but due to the insufficient amount of available data, it is not possible yet to rank different protein types or sources according to their anabolic potential. A simple way to translate the nutrient-based recommendations is the Swiss Food Pyramid for Athletes, which ensures a sufficient intake of energy, and all macro- and micronutrients in relation to the volume and intensity of the daily exercise.

  1. Dietary Guidelines should reflect new understandings about adult protein needs

    Directory of Open Access Journals (Sweden)

    Layman Donald K

    2009-03-01

    Full Text Available Abstract Dietary Guidelines for Americans provide nutrition advice aimed at promoting healthy dietary choices for life-long health and reducing risk of chronic diseases. With the advancing age of the population, the 2010 Dietary Guidelines confront increasing risks for age-related problems of obesity, osteoporosis, type 2 diabetes, Metabolic Syndrome, heart disease, and sarcopenia. New research demonstrates that the meal distribution and amount of protein are important in maintaining body composition, bone health and glucose homeostasis. This editorial reviews the benefits of dietary protein for adult health, addresses omissions in current nutrition guidelines, and offers concepts for improving the Dietary Guidelines.

  2. Sources of dietary protein in relation to blood pressure in a general Dutch population

    NARCIS (Netherlands)

    Altorf-van der Kuil, W.; Engberink, M.F.; Vedder, M.M.; Boer, J.M.A.; Verschuren, W.M.M.; Geleijnse, J.M.

    2012-01-01

    Background - Little is known about the relation of different dietary protein types with blood pressure (BP). We examined whether intake of total, plant, animal, dairy, meat, and grain protein was related to BP in a cross sectional cohort of 20,820 Dutch adults, aged 20–65 y and not using

  3. Dietary protein is associated with musculoskeletal health independently of dietary pattern: the Framingham Third Generation Study.

    Science.gov (United States)

    Mangano, Kelsey M; Sahni, Shivani; Kiel, Douglas P; Tucker, Katherine L; Dufour, Alyssa B; Hannan, Marian T

    2017-03-01

    Background: Above-average dietary protein, as a single nutrient, improves musculoskeletal health. Evaluating the link between dietary protein and musculoskeletal health from a whole-diet perspective is important, as dietary guidelines focus on dietary patterns. Objective: We examined the prospective association of novel dietary protein food clusters (derived from established dietary pattern techniques) with appendicular lean mass (ALM), quadriceps strength (QS), and bone mineral density (BMD) in 2986 men and women, aged 19-72 y, from the Framingham Third Generation Study. Design: Total protein intake was estimated by food-frequency questionnaire in 2002-2005. A cluster analysis was used to classify participants into mutually exclusive groups, which were determined by using the percentage of contribution of food intake to overall protein intake. General linear modeling was used to 1 ) estimate the association between protein intake (grams per day) and BMD, ALM, appendicular lean mass normalized for height (ALM/ht 2 ), and QS (2008-2011) and to 2 ) calculate adjusted least-squares mean outcomes across quartiles of protein (grams per day) and protein food clusters. Results: The mean ± SD age of subjects was 40 ± 9 y; 82% of participants met the Recommended Daily Allowance (0.8 g · kg body weight -1 · d -1 ). The following 6 dietary protein food clusters were identified: fast food and full-fat dairy, fish, red meat, chicken, low-fat milk, and legumes. BMD was not different across quartiles of protein intake ( P -trend range = 0.32-0.82); but significant positive trends were observed for ALM, ALM/ht 2 ( P dietary protein is associated with ALM and QS but not with BMD. In this study, dietary protein food patterns do not provide further insight into beneficial protein effects on muscle outcomes. © 2017 American Society for Nutrition.

  4. High dietary protein intake, reducing or eliciting insulin resistance?

    NARCIS (Netherlands)

    Rietman, A.; Schwarz, J.; Tome, D.; Kok, F.J.; Mensink, M.R.

    2014-01-01

    Dietary proteins have an insulinotropic effect and thus promote insulin secretion, which indeed leads to enhanced glucose clearance from the blood. In the long term, however, a high dietary protein intake is associated with an increased risk of type 2 diabetes. Moreover, branched-chain amino acids

  5. Initial investigation of dietitian perception of plant-based protein quality

    OpenAIRE

    Hughes, Glenna J; Kress, Kathleen S; Armbrecht, Eric S; Mukherjea, Ratna; Mattfeldt-Beman, Mildred

    2014-01-01

    Interest in plant-based diets is increasing, evidenced by scientific and regulatory recommendations, including Dietary Guidelines for Americans. Dietitians provide guidance in dietary protein selection but little is known about how familiar dietitians are with the quality of plant versus animal proteins or methods for measuring protein quality. Likewise, there is a need to explore their beliefs related to dietary recommendations. The aim of this study was to assess dietitians' perceptions of ...

  6. Arabinogalactan proteins in plants

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2013-04-01

    Full Text Available AGPs (arabinogalactan-proteins are the major constituent of arabic gum and have been used as emulsifiers and stabilizing agents. They are also one of the most abundant and heterogeneous class forming a large family of proteoglycans that sculpt the surface not only of plant but also of all eukaryotic cells. Undoubtedly, AGPs appear in numerous biological processes, playing diverse functions. Despite their abundance in nature and industrial utility, the in vivofunction(s of AGPs still remains unclear or even unknown. AGPs are commonly distributed in different plant organs and probably participate in all aspects of plant growth and development including reproduction (e.g. they are present in the stigma including stigma exudates, and in transmitting tissues in styles, pollen grains, and pollen tubes. The functions and evident involvement of AGPs in sexual plant reproduction in a few plant species as Actinidia deliciosa (A.Chev. C.F.Liang & A.R.Ferguson, Amaranthus hypochondriacus L., Catharanthus roseus (L. G.Don, Lolium perenneL. and Larix deciduaMill. are known from literature. The localization of two kinds of AGP epitopes, recognized by the JIM8 and JIM13 mAbs, in anatomically different ovules revealed some differences in spatial localization of these epitopes in ovules of monocots Galanthus nivalis L. and Galtonia candicans (Baker Decne. and dicots like Oenothera species and Sinapis albaL. A detailed study of the localization of AGPs in egg cells, zygotes, including the zygote division stage, and in two-celled proembryos in Nicotiana tabacumL. prompts consideration of the necessity of their presence in the very early steps of ontogenesis. The selective labeling obtained with AGP mAbs JIM8, JIM13, MAC207, and LM2 during Arabidopsis thaliana(L. Heynh. development suggests that some AGPs can be regarded as molecular markers for gametophytic cell differentiation. Moreover, the results show evident differences in the distribution of specific AGP

  7. Interactive effect of dietary protein level and zilpaterol hydrochloride ...

    African Journals Online (AJOL)

    Bonsmara type steers were used to determine the effect of dietary zilpaterol hydrochloride (ZH) in combination with different dietary crude protein (CP) levels (100, 120 and 140 g CP/kg) on growth performance and meat quality. Treatment groups (T) consisted of 12 steers each. T1 – 100 g CP/kg + 0.15 mg ZH/kg live weight ...

  8. Lipoprotein(a) and dietary proteins: casein lowers lipoprotein(a) concentrations as compared with soy protein1-3

    DEFF Research Database (Denmark)

    Nilausen, Karin Johanne; Meinertz, H.

    1999-01-01

    Lipoprotein(a), plasma lipoproteins, dietary proteins, soy protein, casein, liquid-formula, coronary artery disease, men, Denmark......Lipoprotein(a), plasma lipoproteins, dietary proteins, soy protein, casein, liquid-formula, coronary artery disease, men, Denmark...

  9. The response of broiler breeder hens to dietary balanced protein

    African Journals Online (AJOL)

    Research

    2016-08-26

    Aug 26, 2016 ... between the two feeding strategies or dietary protein levels, nor were ... supplied, whilst in other cases hens may not consume their daily allocation, ..... Aviagen, 2014. http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/ ...

  10. urban dietary heavy metal intake from protein foods and vegetables

    African Journals Online (AJOL)

    Mgina

    Contamination of food and food products by heavy metals has made dietary intake as one of the ... metals cadmium, copper, lead and zinc from protein-foods (beans, meat, fish, milk) and green ..... on food additives Technical report series. No.

  11. Effect Of Dietary Protein Levels On The Performance And Carcass ...

    African Journals Online (AJOL)

    Effect Of Dietary Protein Levels On The Performance And Carcass ... Nigerian Journal of Animal Production ... Response criteria such as weight gain and feed conversion ratio, among others, and carcass characteristics were measured.

  12. Effects of increasing dietary protein levels on growth, feed utilization ...

    African Journals Online (AJOL)

    Yomi

    2012-01-05

    Jan 5, 2012 ... The effect of different dietary protein levels on growth performance and on feed utilization of catfish. (Heterobranchus ... (Legendre, 1991) because of its taste, fast growth rate ..... diet containing 40% protein had high growth with low food intake and feed ... protein rate (45%) combined with a bad utilization of.

  13. Dietary protein intake in Dutch elderly people : a focus on protein sources

    NARCIS (Netherlands)

    Tieland, Michael; Borgonjen-Van den Berg, Karin J.; Van Loon, Luc J. C.; de Groot, Lisette C. P. G. M.

    2015-01-01

    INTRODUCTION: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people. OBJECTIVES: to assess the

  14. Dietary protein intake in Dutch elderly people: a focus on protein sources

    NARCIS (Netherlands)

    Tieland, C.A.B.; Borgonjen-van den Berg, K.J.; Loon, van L.J.C.; Groot, de C.P.G.M.

    2015-01-01

    Introduction: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people. Objectives: to assess the

  15. Optimum dietary protein requirement of Malaysian mahseer (Tor tambroides) fingerling.

    Science.gov (United States)

    Misieng, Josephine Dorin; Kamarudin, Mohd Salleh; Musa, Mazlinda

    2011-02-01

    The optimum dietary protein requirement of the Malaysian mahseer (Tor tambroides) fingerlings was determined in this study. In this completely randomized designed experiment, formulated diets of five levels of dietary protein (30, 35, 40, 45 and 50%) were tested on the T. tambroides fingerlings (initial body weight of 5.85 +/- 0.40 g), reared in aquarium fitted with a biofiltering system. The fingerlings were fed twice daily at 5% of biomass. The fingerling body weight and total length was taken at every two weeks. Mortality was recorded daily. The dietary protein had significant effects on the body weight gain and Specific Growth Rate (SGR) of the fingerlings. The body weight gain and SGR of fingerlings fed with the diet with the dietary protein level of 40% was significantly higher (p<0.05) than that of 30, 35 and 50%. The feed conversion ratio of the 40% dietary protein was the significantly lowest at 2.19 +/- 0.163. The dietary protein level of 40% was the most optimum for T. tambroides fingerlings.

  16. Effect of dietary protein restriction on renal ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  17. Dietary Proteins, Developmental Programming, and Potential Implication in Maternal Obesity

    Directory of Open Access Journals (Sweden)

    Alireza Jahan-mihan

    2017-08-01

    Full Text Available Background: Proteins are known mainly based on their metabolic and nutritional functions including protein synthesis and a source of energy. In spite of various physiological properties attributed to proteins, their functions have neither been addressed by assessing quality of proteins nor by nutrition and dietetic practices. Methods: Studies were included if they were randomized animal studies, clinical trials and systematic reviews/meta-analysis published in English language. Results: The effect of maternal diet in general and dietary proteins in particular during development on health of offspring has been well-studied. Protein content as well as source of protein in the diet consumed during pregnancy and lactation influenced the risk of metabolic syndrome characteristics in offspring. Both high and low protein diets showed detrimental effects on health of offspring. Moreover, comparison of maternal casein-based diet with soy protein-based diet showed more favorable effect on body weight, body composition, blood pressure, and glucose metabolism in offspring. However, the role of maternal dietary proteins in developing the risk of metabolic syndrome characteristics in offspring in gestational obesity is still unclear and needs further study. Conclusions: Dietary proteins are determining factors in developmental programming. Both quantity and source of proteins in maternal diet influenced the development of metabolic syndrome characteristics in offspring. However, whether they have the same function in presence of gestational obesity is still unclear and needs further study.

  18. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  19. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  20. Interactive effect of dietary protein level and zilpaterol hydrochloride ...

    African Journals Online (AJOL)

    p2492989

    feedlot performance and meat quality of steers ... result of decreased protein degradation and increased protein synthesis (Fiems, ... sheep as well as data from some BAA trials provide evidence to associate ... The perception is that meat is now ... Table 1 Dietary treatments of steers with a mean live weight of 278 ± 20 kg ...

  1. Optimum dietary protein requirement of genetically male tilapia ...

    African Journals Online (AJOL)

    The study was conducted to investigate the optimum dietary protein level needed for growing genetically male tilapia, Oreochromis niloticus. Diets containing crude protein levels 40, 42.5, 45, 47.5 and 50% were formulated and tried in triplicates. Test diets were fed to 20 fish/1m3 floating hapa at 5% of fish body weight daily ...

  2. The response of broiler breeder hens to dietary balanced protein ...

    African Journals Online (AJOL)

    In spite of the range of protein intakes from 18.5 and 28.8 g/bird, no differences were observed in rate of laying between the two feeding strategies or dietary protein levels, nor were there differences in the proportions of yolk or albumen between these treatments. Egg weight, egg output and weight gain increased with ...

  3. Expression of multiple proteins in transgenic plants

    Science.gov (United States)

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  4. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    OpenAIRE

    Lise Madsen; Lise Madsen; Lise Madsen; Lene S. Myrmel; Even Fjære; Bjørn Liaset; Karsten Kristiansen; Karsten Kristiansen

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  5. Links between dietary protein sources, the gut microbiota, and obesity

    OpenAIRE

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  6. Dietary management of chronic kidney disease: protein restriction and beyond.

    Science.gov (United States)

    Goraya, Nimrit; Wesson, Donald E

    2012-11-01

    More kidney protective strategies are needed to reduce the burden of complete kidney failure from chronic kidney disease (CKD). Clinicians sometimes use protein restriction as kidney protection despite its demonstrated lack of effectiveness in the only large-scale study. Small-scale studies support that dietary acid reduction is kidney-protective, including when done with base-inducing foods like fruits and vegetables. We review these studies in light of current kidney-protective recommendations. Animal models of CKD show that acid-inducing dietary protein exacerbates and base-inducing protein ameliorates nephropathy progression, and that increased intake of acid-inducing but not base-inducing dietary protein exacerbates progression. Clinical studies show that dietary acid reduction with Na-based alkali reduces kidney injury and slows nephropathy progression in patients with CKD and reduced glomerular filtration rate (GFR); base-inducing fruits and vegetables reduce kidney injury in patients with reduced GFR; and base-inducing fruits and vegetables improve metabolic acidosis in CKD. Protein type rather than amount might more importantly affect nephropathy progression. Base-inducing foods might be another way to reduce dietary acid, a strategy shown in small studies to slow nephropathy progression. Further studies will determine if CKD patients should be given base-inducing food as part of their management.

  7. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  8. Effect of dietary protein source on piglet meat quality characteristics

    Directory of Open Access Journals (Sweden)

    Panagiotis E Simitzis

    2014-03-01

    Full Text Available An experiment was conducted to examine the effects of different dietary protein sources (soybean meal vs whey protein on piglet meat quality characteristics. Eighteen castrated male Large White × Duroc × Landrace piglets were randomly assigned to 2 groups. Piglets were kept in individual metabolic cages and fed ad libitum over a period of 38 days the following 2 diets: diet SB, which was formulated to meet the nutrient requirements of piglets using soybean meal as the main crude protein source and diet WP, where SB was totally replaced by a mixture of whey proteins on equal digestible energy and crude protein basis. At the end of the experiment, piglets were weighed and slaughtered. After overnight chilling, samples of Longissimus dorsi muscle were taken and were used for meat quality measurements.          No significant differences were observed in the values of pH, colour, water holding capacity, shear force and intramuscular fat content of L. dorsi muscle between the dietary treatments. Measurement of lipid oxidation values showed that dietary supplementation with different protein sources did not influence meat antioxidant properties during refrigerated storage. The SB piglets had lower 14:0 (P<0.01 and higher 18:3n-3 (P<0.001 levels in intramuscular fat in comparison with WP piglets. However, these changes were attributed to background differences in the dietary FA profile and not to a direct protein source effect. The results of this preliminary study indicate that the examined dietary protein sources (soybean meal or whey protein do not have a significant effect on meat quality characteristics of piglets.

  9. Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement

    NARCIS (Netherlands)

    Tieland, C.A.B.; Borgonjen-van den Berg, K.J.; Loon, van L.C.; Groot, de C.P.G.M.

    2012-01-01

    Adequate dietary protein intake is required to postpone and treat sarcopenia in elderly people. Insight into dietary protein intake in this heterogeneous population segment is needed to locate dietary inadequacies and to identify target populations and feeding strategies for dietary interventions.

  10. Silkworm caterpillar - soybean meal blend as dietary protein source ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the utilization of silkworm caterpillar meat (SCM) blended with soybean meal (SBM) as a dietary protein source in the practical diet of Heterobranchus bidorsalis fingerlings (M±SE=17.04±_0.02g). The fish were fed five isonitrogenous and isocaloric diets containing blends of SCM ...

  11. Dietary balanced protein in broiler chickens. 2. An economic analysis

    NARCIS (Netherlands)

    Eits, R.M.; Giesen, G.W.J.; Kwakkel, R.P.; Verstegen, M.W.A.; Hartog, den L.A.

    2005-01-01

    1. An economic model was developed that calculates economic optimal dietary balanced protein (DBP) contents for broiler chickens, based on performance input and prices of meat and feed. 2. Input on broiler responses to DBP content (growth rate, feed conversion, carcase yield and breast meat yield)

  12. Effects of reducing dietary crude protein and metabolic energy in ...

    African Journals Online (AJOL)

    The objective of this experiment was to determine the effects of a pure reduction in the dietary crude protein (CP) and metabolic energy (ME) contents on growth performance, nutrient digestibility, blood profile, faecal microflora and odour gas emission in weaned pigs. A total of 80 weaned piglets ((Landrace × Yorkshire) ...

  13. Effect of dietary crude protein level on the performance and ...

    African Journals Online (AJOL)

    ویرایه

    2013-06-26

    Jun 26, 2013 ... The effects of increasing dietary levels of crude protein (CP) on growth, feed intake, feed efficiency and nutrient apparent ... matter intake (DMI) than the kids fed with 10.5, 12.8, .... Food and Agriculture Organization. Database ...

  14. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    Science.gov (United States)

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  15. Dietary Protein Intake and Distribution Patterns of Well-Trained Dutch Athletes.

    Science.gov (United States)

    Gillen, Jenna B; Trommelen, Jorn; Wardenaar, Floris C; Brinkmans, Naomi Y J; Versteegen, Joline J; Jonvik, Kristin L; Kapp, Christoph; de Vries, Jeanne; van den Borne, Joost J G C; Gibala, Martin J; van Loon, Luc J C

    2017-04-01

    Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p sport (r=0.77, p protein intake was 57% and 43%, respectively. The distribution of protein intake was 19% (19±8 g) at breakfast, 24% (25±13 g) at lunch and 38% (38±15 g) at dinner. Protein intake was below the recommended 20 g for 58% of athletes at breakfast, 36% at lunch and 8% at dinner. In summary, this survey of athletes revealed they habitually consume > 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.

  16. Protein improvement in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Rabson, R

    1974-07-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  17. Protein improvement in crop plants

    International Nuclear Information System (INIS)

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  18. Optimum dietary protein requirement in nondiabetic maintenance hemodialysis patients.

    Science.gov (United States)

    Ohkawa, Sakae; Kaizu, Yukiko; Odamaki, Mari; Ikegaya, Naoki; Hibi, Ikuo; Miyaji, Kunihiko; Kumagai, Hiromichi

    2004-03-01

    There is controversy about whether the dietary protein requirement of 1.2 g/kg/d for hemodialysis (HD) patients, in the nutritional guidelines recommended by the National Kidney Foundation-Kidney Disease Outcomes Quality Initiative (NKF-KDOQI), is reasonable. A cross-sectional study was conducted in 129 stable HD patients without diabetes (84 men, 45 women) to investigate the association between the protein equivalent of nitrogen appearance normalized by ideal body weight (nPNAibw), an index of protein intake, and skeletal muscle mass or other metabolic consequences. Patients were divided into 5 groups according to nPNAibw index. Midthigh muscle area (TMA), midthigh subcutaneous fat area (TSFA), abdominal muscle area (AMA), abdominal subcutaneous fat area (ASFA), and visceral fat area (AVFA) were measured using computed tomography, and various nutritional parameters were compared among these groups. TMA and AMA values increased with increasing dietary protein intake from less than 0.7 g/kg/d to 0.9-1.1 g/kg/d and showed a plateau at greater than 0.9 to 1.1 g/kg/d of dietary protein intake. Conversely, fat mass, including TSFA, ASFA, and AVFA, and serum potassium concentration increased with graded protein intake, and no plateau was formed. Patients with nPNAibw greater than 1.3 g/kg/d satisfied the criterion of visceral obesity. Although serum prealbumin levels showed a trend similar to that of muscle mass, there was no significant difference in serum albumin levels among the study groups. Optimal dietary protein requirement for patients undergoing maintenance HD in a stable condition appears to be less than the level recommended by the NKF-KDOQI nutritional guidelines.

  19. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption.

    Science.gov (United States)

    van Vliet, Stephan; Burd, Nicholas A; van Loon, Luc J C

    2015-09-01

    Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain

  20. The effect of dietary protein on breast meat yield of broilers reared ...

    African Journals Online (AJOL)

    Rob Gous

    2015-03-02

    Mar 2, 2015 ... broilers reared on short daylengths if higher levels of dietary protein were fed. .... The basal feeds were sampled after mixing for the analysis of apparent ... number of replications of the main effects (light and dietary protein), sex ... no significant interactions between lighting programme and dietary protein ...

  1. UTILIZATION OF PLANT PROTEINS IN FUNCTIONAL NUTRITION

    Directory of Open Access Journals (Sweden)

    V. G. Kulakov

    2017-01-01

    Full Text Available Development of functional food products technology is considered to be a prospect way for creating new food products. Such products are known to be popular among consumers. Utilization of plant proteins allows to widen and improve food assortment and quality. The article represents a review of plant proteins utilization in production of functional food. For optimization of flour confectionery chemical composition the authors utilized a method of receipts modeling. Simulation of combined products is based on the principles of food combinatorics and aims to create recipes of new types of food products on basis of methods of mathematical optimization by reasonable selection of the basic raw materials, ingredients, food additives and dietary supplements, totality of which ensures formation desired organoleptic, physical and chemical properties product as well as a predetermined level of food, biological and energy value. Modeling process of combined products recipes includes the following three stages: preparation of input data for the design, formalization requirements for the composition and properties of raw ingredients and quality final product, process modeling; product design with desired structural properties.

  2. Plant based dietary supplement increases urinary pH

    Directory of Open Access Journals (Sweden)

    Rao A Venket

    2008-11-01

    Full Text Available Abstract Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03 with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body.

  3. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  4. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    Science.gov (United States)

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. © 2015 American Society for Nutrition.

  5. Sources of dietary protein in relation to blood pressure in a general Dutch population.

    Directory of Open Access Journals (Sweden)

    Wieke Altorf-van der Kuil

    Full Text Available BACKGROUND: Little is known about the relation of different dietary protein types with blood pressure (BP. We examined whether intake of total, plant, animal, dairy, meat, and grain protein was related to BP in a cross sectional cohort of 20,820 Dutch adults, aged 20-65 y and not using antihypertensive medication. DESIGN: Mean BP levels were calculated in quintiles of energy-adjusted protein with adjustment for age, sex, BMI, education, smoking, and intake of energy, alcohol, and other nutrients including protein from other sources. In addition, mean BP difference after substitution of 3 en% carbohydrates or MUFA with protein was calculated. RESULTS: Total protein and animal protein were not associated with BP (p(trend = 0.62 and 0.71 respectively, both at the expense of carbohydrates and MUFA. Systolic BP was 1.8 mmHg lower (p(trend36 g/d than in the lowest (<27 g/d quintile of plant protein. This inverse association was present both at the expense of carbohydrates and MUFA and more pronounced in individuals with untreated hypertension (-3.6 mmHg than in those with normal (+0.1 mmHg or prehypertensive BP (-0.3 mmHg; p(interaction<0.01. Meat and grain protein were not related to BP. Dairy protein was directly associated with systolic BP (+1.6 mmHg, p(trend<0.01, but not with diastolic BP (p(trend = 0.24. CONCLUSIONS: Total protein and animal protein were not associated with BP in this general untreated Dutch population. Plant protein may be beneficial to BP, especially in people with elevated BP. However, because high intake of plant protein may be a marker of a healthy diet and lifestyle in general, confirmation from randomized controlled trials is warranted.

  6. Fiber-bound nitrogen in gorilla diets: implications for estimating dietary protein intake of primates.

    Science.gov (United States)

    Rothman, Jessica M; Chapman, Colin A; Pell, Alice N

    2008-07-01

    Protein is essential for living organisms, but digestibility of crude protein is poorly understood and difficult to predict. Nitrogen is used to estimate protein content because nitrogen is a component of the amino acids that comprise protein, but a substantial portion of the nitrogen in plants may be bound to fiber in an indigestible form. To estimate the amount of crude protein that is unavailable in the diets of mountain gorillas (Gorilla beringei) in Bwindi Impenetrable National Park, Uganda, foods routinely eaten were analyzed to determine the amount of nitrogen bound to the acid-detergent fiber residue. The amount of fiber-bound nitrogen varied among plant parts: herbaceous leaves 14.5+/-8.9% (reported as a percentage of crude protein on a dry matter (DM) basis), tree leaves (16.1+/-6.7% DM), pith/herbaceous peel (26.2+/-8.9% DM), fruit (34.7+/-17.8% DM), bark (43.8+/-15.6% DM), and decaying wood (85.2+/-14.6% DM). When crude protein and available protein intake of adult gorillas was estimated over a year, 15.1% of the dietary crude protein was indigestible. These results indicate that the proportion of fiber-bound protein in primate diets should be considered when estimating protein intake, food selection, and food/habitat quality.

  7. Associations of Dietary Protein and Energy Intakes With Protein-Energy Wasting Syndrome in Hemodialysis Patients.

    Science.gov (United States)

    Beddhu, Srinivasan; Wei, Guo; Chen, Xiaorui; Boucher, Robert; Kiani, Rabia; Raj, Dominic; Chonchol, Michel; Greene, Tom; Murtaugh, Maureen A

    2017-09-01

    The associations of dietary protein and/or energy intakes with protein or energy wasting in patients on maintenance hemodialysis are controversial. We examined these in the Hemodialysis (HEMO) Study. In 1487 participants in the HEMO Study, baseline dietary protein intake (grams per kilogram per day) and dietary energy intake (kilocalories per kilograms per day) were related to the presence of the protein-energy wasting (PEW) syndrome at month 12 (defined as the presence of at least 1 criteria in 2 of the 3 categories of low serum chemistry, low body mass, and low muscle mass) in logistic regression models. In additional separate models, protein intake estimated from equilibrated normalized protein catabolic rate (enPCR) was also related to the PEW syndrome. Compared with the lowest quartile, the highest quartile of baseline dietary protein intake was paradoxically associated with increased risk of the PEW syndrome at month 12 (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 2.79-6.05). This relationship was completely attenuated (OR: 1.35; 95% CI: 0.88-2.06) with adjustment for baseline body weight, which suggested mathematical coupling. Results were similar for dietary energy intake. Compared with the lowest quartile of baseline enPCR, the highest quartile was not associated with the PEW syndrome at 12 months (OR: 0.78; 95% CI: 0.54-1.12). These data do not support the use of dietary protein intake or dietary energy intake criteria in the definition of the PEW syndrome in patients on maintenance hemodialysis.

  8. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    Science.gov (United States)

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  9. Dietary protein level and performance of growing Baladi kids.

    Science.gov (United States)

    Abdelrahman, M M; Aljumaah, R S

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (Pkids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity.

  10. Effect of feeding different dietary protein levels on reproductive ...

    African Journals Online (AJOL)

    A feeding trial was conducted to evaluate effects of feeding different dietary protein levels on reproductive biology of African mud catfish under hapa system. Catfish fingerlings (mean body weight (4.50± 0.01g) and total length (8.0±0.2cm) were randomly stocked at 20 fish per hapa (1m3). Five experimental diets with crude ...

  11. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories.

    Science.gov (United States)

    Bosse, John D; Dixon, Brian M

    2012-09-08

    An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed "protein spread theory" and "protein change theory" in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend "protein spread theory" and "protein change theory" to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training.

  12. Complex Dietary Supplements from Raw Plants Provide Nutrition for Athletes

    Directory of Open Access Journals (Sweden)

    Dmitriy M. Uvarov

    2017-03-01

    Full Text Available The aim of this study was to investigate the effectiveness of mechanically activated complexes from plant substances to enhance athletes’ adaptability to intense physical activity. Methods: The object of the study was the dietary supplement Kladorod, which is based on the reindeer lichen Cladonia rangiferina and Rhodiola rosea in weight ratio of 10:1. To test the dietary supplement, we developed a special scheme for the experiment and selected 10 elite athletes (boxers and mixfighters. Athletes were divided into 2 groups and were under the same conditions (nutrition, medical monitoring, living conditions and training process. Athletes of the experimental group were given the dietary supplement Kladorod (capsule of 0.4 g by mouth between meals 4 times a day for 28 days. The control group was given placebo (Ringer-Locke powder capsules in the same terms in a similar way. During the experiment, the athletes were medically examined 3 times: at the beginning, in the middle, and after the course of intervention. We measured muscle performance, fat mass, muscle mass, and serum concentrations of cortisol and total testosterone. Results: It was established that during the intensive training of boxers and mixfighters for rating fights, administration of the dietary supplement Kladorod for 28 days stabilized the absolute and relative muscle mass, preventing its reduction, in comparison with the placebo group. At the same time, indicators of fat mass decreased significantly in the experimental group. After administering the course of Kladorod, we did not observe a significant decrease in testosterone/cortisol ratio, compared to the control group Thus, the use of biologically active supplements based on lichen raw materials and complexes of lichen raw materials with different plant substances enables the body to increase its adaptive potential and physical capacity.

  13. Alternative proteins: A New Green Revolution: Dietary Proteins From Leaves

    NARCIS (Netherlands)

    Geerdink, P.; Diaz, J.; Jong, J. de; Bussmann, P.

    2017-01-01

    The fractionation and isolation of leaf proteins, mostly in the form of a photosynthetic enzyme, RuBisCO, contributes to improving sustainability and increasing profitability for the agro-industrial sector.

  14. Initial investigation of dietitian perception of plant-based protein quality.

    Science.gov (United States)

    Hughes, Glenna J; Kress, Kathleen S; Armbrecht, Eric S; Mukherjea, Ratna; Mattfeldt-Beman, Mildred

    2014-07-01

    Interest in plant-based diets is increasing, evidenced by scientific and regulatory recommendations, including Dietary Guidelines for Americans. Dietitians provide guidance in dietary protein selection but little is known about how familiar dietitians are with the quality of plant versus animal proteins or methods for measuring protein quality. Likewise, there is a need to explore their beliefs related to dietary recommendations. The aim of this study was to assess dietitians' perceptions of plant-based protein quality and to determine if these are affected by demographic factors such as age and dietary practice group (DPG) membership. This was a cross-sectional design using an online survey. The survey was sent to all members of the Missouri Dietetic Association. All completed surveys (136) were analyzed. The main outcome measures were responses to belief and knowledge questions about the protein quality of plant-based diets, along with demographic information including age and DPG membership. Descriptive statistics and frequencies were determined, and chi-square analysis was used to determine the associations between belief and knowledge responses and demographic characteristics. Responses to belief statements suggested a high level of support for plant-based diets. No associations were found between any of the belief questions and demographic factors. A majority of respondents were not familiar with protein quality determination methods that are currently recognized by global regulatory and advisory agencies. Potential barriers identified in shifting to a more plant-based diet were lack of interest and perceived difficulty. Knowledge among dietitians of plant-based protein quality in general, and methods of protein quality measurement more specifically, needs to be addressed to enhance their knowledge base for making dietary protein recommendations. Two potential avenues for training are university curricula and continuing education opportunities provided to

  15. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial.

    Science.gov (United States)

    Huang, Tao; Qi, Qibin; Li, Yanping; Hu, Frank B; Bray, George A; Sacks, Frank M; Williamson, Donald A; Qi, Lu

    2014-05-01

    A common obesity-risk variant rs9939609 in the fat mass- and obesity-associated (FTO) gene was recently shown to affect appetite, and the gene is sensitive to the regulation of amino acids. We examined the interaction between FTO genotype and protein intake on the long-term changes in appetite in a randomized controlled trial. We genotyped FTO rs9939609 in 737 overweight adults in the 2-y Preventing Overweight Using Novel Dietary Strategies trial and assessed 4 appetite-related traits including cravings, fullness, hunger, and prospective consumption. We showed that dietary protein significantly modified genetic effects on changes in food cravings and appetite scores at 6 mo after adjustment for age, sex, ethnicity, baseline body mass index, weight change, and baseline value for respective outcomes (P-interaction = 0.027 and 0.048, respectively). The A allele was associated with a greater decrease in food cravings and appetite scores in participants with high-protein-diet intake (P = 0.027 and 0.047, respectively) but not in subjects in the low-protein-diet group (P = 0.384 and 0.078, respectively). The weight regain from 6 to 24 mo attenuated gene-protein interactions. Protein intakes did not modify FTO genotype effects on other appetite measures. Our data suggest that individuals with the FTO rs9939609 A allele might obtain more benefits in a reduction of food cravings and appetite by choosing a hypocaloric and higher-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995.

  16. Dietary protein effects on irradiated rat kidney function

    International Nuclear Information System (INIS)

    Mahler, P.A.; Yatuin, M.B.

    1984-01-01

    The authors have previously reported that unilaterally nephrectomized, kidney irradiated young male S-D rats have an increased median survival when placed on a low (4%) protein diet, as compared to a normal (20%) or high (50%) protein diet (200, 103, and 59 days respectively for 14 Gy irradiation). They have expanded these studies to examine the effects of irradiation and dietary protein levels on kidney function, by examining the parameters of blood urea nitrogen, serum creatinine, urine urea nitrogen, urine creatinine, urine osmolarity, urine volume, and water consumption. Irradiated 20% protein diet animals show an increase in water consumption and urine production and also a decrease in urine osmolarity, urine urea concentration and urine creatinine concentration. These changes all support the hypothesis the kidney irradiated rats fed a normal protein diet have a reduced capability to concentrate urine compared to nonirradiated control rats. Evaluation of the same parameters in irradiated rats fed a 4% protein diet does not indicate a similar loss of concentrating capability. Whether this protection is due to the growth inhibition of the 4% protein diet or some other phenomena remains to be determined

  17. Dietary proteins in humans: basic aspects and consumption in Switzerland.

    Science.gov (United States)

    Guigoz, Yves

    2011-03-01

    This introductory review gives an overview on protein metabolism, and discusses protein quality, sources, and requirements as well as the results from recent studies on Swiss spontaneous protein consumption. To assess protein quality in protein mixes and foods, the "protein digestibility-corrected amino acid score" (PDCAAS) is presented as a valuable tool in addition to the biological value (BV). Considering protein intake recommendations, the lower limit recommended has been defined according to the minimal amount needed to maintain short-term nitrogen balance in healthy people with moderate activity. Evaluation of intakes in Switzerland from food consumption data is about 90 g/day of protein per person. Two-thirds of proteins consumed in Switzerland are animal proteins with high biological value [meat and meat products (28 %), milk and dairy products (28 %), fish (3 %), and eggs (3 %)] and about 1/3 of proteins are of plant origin (25 % of cereals, 3 - 4 % of vegetables). Actual spontaneous protein consumption in Switzerland by specific groups of subjects is well within the actual recommendations (10 - 20 % of energy) with only the frail elderly being at risk of not covering their requirements for protein.

  18. Consideration of insects as a source of dietary protein for human consumption

    NARCIS (Netherlands)

    Churchward-Venne, T.A.; Pinckaers, P.J.M.; Loon, van J.J.A.; Loon, van L.J.C.

    2017-01-01

    Consumption of sufficient dietary protein is fundamental to muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat (ie, beef, pork, lamb), poultry, fish, eggs, and dairy are generally considered high-quality sources of dietary protein because they meet all

  19. Blood harmane concentrations and dietary protein consumption in essential tremor.

    Science.gov (United States)

    Louis, E D; Zheng, W; Applegate, L; Shi, L; Factor-Litvak, P

    2005-08-09

    Beta-carboline alkaloids (e.g., harmane) are highly tremorogenic chemicals. Animal protein (meat) is the major dietary source of these alkaloids. The authors previously demonstrated that blood harmane concentrations were elevated in patients with essential tremor (ET) vs controls. Whether this difference is due to greater animal protein consumption by patients or their failure to metabolize harmane is unknown. The aim of this study was to determine whether patients with ET and controls differ with regard to 1) daily animal protein consumption and 2) the correlation between animal protein consumption and blood harmane concentration. Data on current diet were collected with a semiquantitative food frequency questionnaire and daily calories and consumption of animal protein and other food types was calculated. Blood harmane concentrations were log-transformed (logHA). The mean logHA was higher in 106 patients than 161 controls (0.61 +/- 0.67 vs 0.43 +/- 0.72 g(-10)/mL, p = 0.035). Patients and controls consumed similar amounts of animal protein (50.2 +/- 19.6 vs 49.4 +/- 19.1 g/day, p = 0.74) and other food types (animal fat, carbohydrates, vegetable fat) and had similar caloric intakes. In controls, logHA was correlated with daily consumption of animal protein (r = 0.24, p = 0.003); in patients, there was no such correlation (r = -0.003, p = 0.98). The similarity between patients and controls in daily animal protein consumption and the absence of the normal correlation between daily animal protein consumption and logHA in patients suggests that another factor (e.g., a metabolic defect) may be increasing blood harmane concentration in patients.

  20. Protein turnover in lactating mink (Mustela vison) is not affected by dietary protein supply

    DEFF Research Database (Denmark)

    Tauson, Anne-Helene; Fink, Rikke; Chwalibog, André

    2006-01-01

    The mink is a strict carnivore and may therefore serve as a model for the cat. Current recommendations for protein supply for lactating mink are based on production experiments with preweaning kit growth as a measure of dietary adequacy (1,2). Recently, nitrogen balance and substrate oxidation have...... in humans (7), growing pigs (8), and growing rats (9). In adult cats, both protein synthesis and breakdown were lower when feeding a low- than when feeding a high-protein diet [20 vs. 70% of metabolizable energy (ME)5 from protein] (10). The objectives of this study were therefore to develop a ¹5N...

  1. Effect of dietary plant extract on meat quality and sensory parameters of meat from Equidae.

    Science.gov (United States)

    Rossi, Raffaella; Ratti, Sabrina; Pastorelli, Grazia; Maghin, Federica; Martemucci, Giovanni; Casamassima, Donato; D'Alessandro, Angela Gabriella; Corino, Carlo

    2017-11-01

    Plant extracts as Lippia spp. have been proven antioxidant properties. Recent studies have been shown that dietary supplementation with plant extracts is able to enhance meat quality parameters. Studies regarding meat quality in Equidae are limited. The effect of dietary plant extract (PE), containing verbascoside, on meat quality, oxidative stability and sensory parameters of Longissimus Lumborum (LL) muscle in Equidae was studied. Dietary treatment did not affect (P > 0.05) pH, colour indices and chemical parameters of muscle in both donkey and horse. Dietary PE improved (P meat and to affect the sensory attributes of Equidae meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Effects of plant proteins on postprandial, free plasma amino acid concentrations in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Larsen, Bodil Katrine; Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2012-01-01

    proteins from wheat, peas, field beans, sunflower and soybean. Blood samples were obtained from the caudal vein of 7 fish in each dietary treatment group prior to feeding, as well as: 2, 4, 6, 8, 12, 24, 48 and 72 h after feeding (sampling 7 new fish at each time point), and plasma amino acid......Postprandial patterns in plasma free amino acid concentrations were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed either a fish meal based diet (FM) or a diet (VEG) where 59% of fish meal protein (corresponding to 46% of total dietary protein) was replaced by a matrix of plant...... the two dietary treatment groups correlated largely with the amino acid content of the two diets except for methionine, lysine and arginine, where the differences were more extreme than what would be expected from differences in dietary concentrations. The apparent protein digestibility coefficient...

  3. The Associations of Plant Protein Intake With All-Cause Mortality in CKD.

    Science.gov (United States)

    Chen, Xiaorui; Wei, Guo; Jalili, Thunder; Metos, Julie; Giri, Ajay; Cho, Monique E; Boucher, Robert; Greene, Tom; Beddhu, Srinivasan

    2016-03-01

    Plant protein intake is associated with lower production of uremic toxins and lower serum phosphorus levels. Therefore, at a given total protein intake, a higher proportion of dietary protein from plant sources might be associated with lower mortality in chronic kidney disease. Observational study. 14,866 NHANES III participants 20 years or older without missing data for plant and animal protein intake and mortality. Plant protein to total protein ratio and total plant protein intake. Patients were stratified by estimated glomerular filtration rate (eGFR)protein intakes were estimated from 24-hour dietary recalls. Mortality was ascertained by probabilistic linkage with National Death Index records through December 31, 2000. Mean values for plant protein intake and plant protein to total protein ratio were 24.6±13.2 (SD) g/d and 33.0% ± 14.0%, respectively. The prevalence of eGFRsprotein intake, and physical inactivity, each 33% increase in plant protein to total protein ratio was not associated with mortality (HR, 0.88; 95% CI, 0.74-1.04) in the eGFR≥60mL/min/1.73m(2) subpopulation, but was associated with lower mortality risk (HR, 0.77; 95% CI, 0.61-0.96) in the eGFRprotein itself or to other factors associated with more plant-based diets is difficult to establish. A diet with a higher proportion of protein from plant sources is associated with lower mortality in those with eGFRprotein intake in reducing mortality in those with eGFR<60mL/min/1.73m(2). Published by Elsevier Inc.

  4. Effects of dietary protein level on growth, health and physiological parameters in growing-furring mink

    DEFF Research Database (Denmark)

    Damgaard, Birthe Marie; Larsen, Peter F.; Clausen, Tove

    2012-01-01

    The aim of the study was to investigate the effects of the dietary protein level and the feeding strategy on growth, health and physiological blood and liver parameters in growing-furring male mink. Effects of dietary protein levels ranging from 22% of metabolizable energy (MEp) to experimental p...

  5. Effect of dietary protein to energy ratio on growth and nitrogenous ...

    African Journals Online (AJOL)

    The effect of dietary protein to energy ratio (P:E) on the growth of dusky kob Argyrosomus japonicus was investigated as a first step towards formulating a practical diet for this potential mariculture species in South Africa. The effects of dietary protein and lipid on growth, feed conversion ratio (FCR) and nitrogenous waste ...

  6. Dietary protein restriction for renal patients: don't forget protein-free foods.

    Science.gov (United States)

    D'Alessandro, Claudia; Rossi, Andrea; Innocenti, Maurizio; Ricchiuti, Guido; Bozzoli, Laura; Sbragia, Giulietta; Meola, Mario; Cupisti, Adamasco

    2013-09-01

    The treatment of chronic kidney disease (CKD) consists of pharmacological, nutritional, and psychological-social approaches. The dietary therapy of CKD, namely a low-protein low-phosphorus diet, plays a crucial role in contributing to delay the onset of end-stage renal disease (ESRD) and to protect cardiovascular and nutritional status. The protein-free food products represent a very important tool for the implementation of a low-protein diet to ensure adequate energy supply, reducing the production of nitrogenous waste products. This survey included 100 consecutive CKD patients who were asked their opinion about the use of protein-free foods. Ninety-eight patients (98%) reported a regular daily intake of protein-free pasta (as macaroni, spaghetti, etc.), which was the preferred product consumed. Actually, the taste and texture of protein-free pasta were considered as "good" or "very good" by 70% of patients. Conversely, 43% of CKD patients perceived the taste and texture of protein-free bread as "bad" or "very bad", and 30% found it "acceptable". Therefore, the main concern for the implementation of low-protein diets is the use and palatability of the protein-free products, bread in particular. The use of these products may help in reducing protein, phosphorus, and sodium intake while supplying an adequate energy intake, which represents the basis for a nutritionally safe and successful dietary treatment of advanced CKD patients. Manufacturers and food technology should make more efforts to finding new solutions to improve the taste and texture of protein-free products. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  7. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    Directory of Open Access Journals (Sweden)

    Datis Kharrazian

    2017-01-01

    Full Text Available Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw and modified (cooked and roasted foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease.

  8. Protein Kinases in Shaping Plant Architecture.

    Science.gov (United States)

    Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao

    2018-02-13

    Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. RNA-Binding Proteins in Plant Immunity

    Directory of Open Access Journals (Sweden)

    Virginia Woloshen

    2011-01-01

    Full Text Available Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.

  10. Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index

    DEFF Research Database (Denmark)

    Wang, Ping; Holst, Claus; Astrup, Arne

    2012-01-01

    ) blood biomarkers of dietary protein and GI levels during the weight-maintenance phase. Blood samples were collected at baseline, after 8 weeks of low-energy diet-induced weight loss and after a 6-month dietary intervention period from female continued weight losers (n 48) and weight regainers (n 48......), evenly selected from four dietary groups that varied in protein and GI levels. The blood concentrations of twenty-nine proteins and three steroid hormones were measured. The changes in analytes during weight maintenance largely correlated negatively with the changes during weight loss, with some...

  11. Effective translation of current dietary guidance: understanding and communicating the concepts of minimal and optimal levels of dietary protein.

    Science.gov (United States)

    Rodriguez, Nancy R; Miller, Sharon L

    2015-04-29

    Dietitians and health care providers have critical roles in the translation of the dietary guidance to practice. The protein content of diets for adults can be based on the Recommended Dietary Allowance (RDA) of 0.80 g/kg per day. Alternatively, the most recent Dietary Reference Intakes (DRIs) for macronutrients reflect expanded guidance for assessing protein needs and consider the relative relation of absolute amounts of protein, carbohydrate, and fat to total energy intake in the context of chronic disease prevention. The Acceptable Macronutrient Distribution Range (AMDR) reflects the interrelation between the macronutrients and affords dietitians and clinicians additional flexibility in diet planning. Accounting for the caloric value of RDAs for carbohydrate and fat, "flexible calories" emerge as an opportunity to create varied eating plans that provide for protein intakes in excess of the RDA but within the AMDR. Protein Summit 2.0 highlighted the growing body of scientific evidence documenting the benefits of higher protein intakes at amounts approximating twice the RDA, which include promotion of healthy body weight and preservation of lean body mass and functional ability with age. The essential amino acid (EAA) density of a food also emerged as a novel concept analogous to "nutrient density," which can enable the practitioner to calculate the caloric cost associated with a specific protein source to attain the daily requirement of EAAs to accomplish various health outcomes because these indispensable nutrients have a significant role in protein utilization and metabolic regulation. Tailoring recommendations unique to an individual's varying goals and needs remains a challenge. However, flexibility within the application of DRIs to include consideration of the AMDR provides a sound framework to guide practitioners in effective translation of current dietary guidance with a specific regard for the documented benefits of higher protein intakes. © 2015

  12. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study

    Directory of Open Access Journals (Sweden)

    Marleen A. van Baak

    2017-12-01

    Full Text Available An increase in dietary protein intake has been shown to improve weight loss maintenance in the DIOGenes trial. Here, we analysed whether the source of the dietary proteins influenced changes in body weight, body composition, and cardiometabolic risk factors during the weight maintenance period while following an energy-restricted diet. 489 overweight or obese participants of the DIOGenes trial from eight European countries were included. They successfully lost >8% of body weight and subsequently completed a six month weight maintenance period, in which they consumed an ad libitum diet varying in protein content and glycemic index. Dietary intake was estimated from three-day food diaries. A higher plant protein intake with a proportional decrease in animal protein intake did not affect body weight maintenance or cardiometabolic risk factors. A higher plant protein intake from non-cereal products instead of cereal products was associated with benefits for body weight maintenance and blood pressure. Substituting meat protein for protein from other animal sources increased insulin and HOMA-IR (homeostasis model assessment of insulin resistance. This analysis suggests that not only the amount of dietary proteins, but also the source may be important for weight and cardiometabolic risk management. However, randomized trials are needed to test the causality of these associations.

  13. Effects of dietary protein quality and quantity on albino rat tissue ...

    African Journals Online (AJOL)

    Effects of dietary protein quality and quantity on albino rat tissue serum protein, erythrocyte fragility and bone mineral content. ... The 20% protein diet was a commercial diet better in nutrient composition and quality than the diet containing 17 and 15% protein formulated in our laboratory. At the end of 21 days, kidney, testes, ...

  14. Effects of dietary protein levels during rearing and dietary energy levels during lay on body composition and reproduction in broiler breeder females

    NARCIS (Netherlands)

    Emous, van R.A.; Kwakkel, R.P.; Krimpen, van M.M.; Hendriks, W.H.

    2015-01-01

    A study with a 2 × 3 × 2 factorial arrangement was conducted to determine the effects of 2 dietary protein levels (high = CPh and low = CPl) during rearing, 3 dietary energy levels (3,000, MEh1; 2,800, MEs1; and 2,600, MEl1, kcal/kg AMEn, respectively) during the first phase of lay, and 2 dietary

  15. HISTORY MAY BE THE BEST GUIDE FOR DETERMINING THE ATHLETE'S DIETARY PROTEIN NEEDS

    Directory of Open Access Journals (Sweden)

    Linda S. Lamont

    2009-03-01

    Full Text Available I was encouraged to read Dr. Longo and colleagues' Letter to the Editor entitled "The best athletes in ancient Rome were vegetarian!"(Longo et al., 2008. These writers ask that we rethink the issue of what is an optimal dietary protein content for athletes by considering the diets that sustained the ancient gladiators of Rome. Historical evidence shows that humans of ancient times performed at intense levels while consuming 78% of their diets' as plant protein (Kanz and Grosschmidt, 2007. This anthropological fact, and some recent laboratory evidence, argues against the need to increase the protein RDA for athletes from 0.8 g of protein per kilogram of body weight per day to 1.2 to 1.4 g per kilogram per day (ACSM, 2000. Our research group found that amino acids make a small contribution (2 - 3% of total to endurance energy needs (Lamont et al, 1999 and that athlete's have similar oxidation rates if corrections are made for oxygen consumption and fat-free body mass. Others report that a short-term training program of 38-days reduces amino acid use during exercise and down-regulates a critical enzyme in the oxidative pathway in order to spare this nutrient (McKenzie et al., 2000 Yet sport nutritionists and physiologists continue to recommend an increased protein RDA for this group. If one does a Google search using the words exercise and protein you would literally get millions of citations recommending the athlete to increase their protein intake. One reason for this continued recommendation, I believe, is that the laboratory procedure used to justify an increased protein RDA (field-based nitrogen balance measurements has many methodological shortcomings that are not recognized by the sports science community (Lamont, 2008. The problems with this technique are so great that its scientific fidelity has been questioned (Lamont, 2008. And as Longo and colleagues have highlighted (2008 the Institute of Medicine concluded that the evidence for

  16. Dietary protein intake in sarcopenic obese older women

    Directory of Open Access Journals (Sweden)

    Muscariello E

    2016-02-01

    Full Text Available Espedita Muscariello,1 Gilda Nasti,1 Mario Siervo,2 Martina Di Maro,1 Dominga Lapi,1 Gianni D’Addio,3 Antonio Colantuoni1 1Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; 2Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK; 3IRCCS Salvatore Maugeri Foundation, Telese, Italy Objective: To determine the prevalence of sarcopenia in a population of obese older women and to assess the effect of a diet moderately rich in proteins on lean mass in sarcopenic obese older women.  Materials and methods: A total of 1,030 females, >65 years old, body mass index >30 kg/m2, were investigated about their nutritional status. Muscle mass (MM was estimated according to the Janssen equation (MM =0.401× height2/resistance measured at 50 kHz +3.825× sex -0.071× age +5.102. Sarcopenia was defined according to the MM index, MM/height2 (kg/m2, as two standard deviations lower than the obesity-derived cutoff score (7.3 kg/m2. A food-frequency questionnaire was used to measure participants’ usual food intake during the previous 3 months. Moreover, a group of sarcopenic obese older women (n=104 was divided in two subgroups: the first (normal protein intake [NPI], n=50 administered with a hypocaloric diet (0.8 g/kg desirable body weight/day of proteins, and the second treated with a hypocaloric diet containing 1.2 g/kg desirable body weight/day of proteins (high protein intake [HPI], n=54, for 3 months. Dietary ingestion was estimated according to a daily food diary, self-administered, and three reports of nonconsecutive 24-hour recall every month during the follow-up.  Results: The 104 women were classified as sarcopenic. After dieting, significant reductions in body mass index were detected (NPI 30.7±1.3 vs 32.0±2.3 kg/m2, HPI 30.26±0.90 vs 31.05±2.90 kg/m2; P<0.01 vs baseline. The MM index presented significant variations in the NPI as well as in the

  17. Protein Dynamics in the Plant Extracellular Space

    Directory of Open Access Journals (Sweden)

    Leonor Guerra-Guimarães

    2016-07-01

    Full Text Available The extracellular space (ECS or apoplast is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF. The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in “cell wall organization and biogenesis”, “response to stimulus” and “protein metabolism”. It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions.

  18. Consequences of different strategies of free amino acid supplementation to dietary proteins for physiological utillization

    NARCIS (Netherlands)

    Gas, M.

    2006-01-01

    The efficiency of using free amino acids (AAs) as dietary constituent is sometimes lower than that of AAs derived from intact protein. The aim of the project was to evaluate dietary management conditions, which can determine the efficiency of utilization of crystalline AAs in animal diets or in

  19. Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Holmer-Jensen, Jens; Mortensen, Lene Sundahl; Astrup, Arne

    2013-01-01

    Non-fasting triglyceridemia is much closer associated to cardiovascular risk compared to fasting triglyceridemia. We hypothesized that there would be acute differential effects of four common dietary proteins (cod protein, whey isolate, gluten, and casein) on postprandial lipemia in obese non......-diabetic subjects. To test the hypothesis we conducted a randomized, acute clinical intervention study with crossover design. We supplemented a fat rich mixed meal with one of four dietary proteins i.e. cod protein, whey protein, gluten or casein. Eleven obese non-diabetic subjects (age: 40-68, body mass index: 30...... concentration in the chylomicron rich fraction (P = .0293). Thus, we have demonstrated acute differential effects on postprandial metabolism of four dietary proteins supplemented to a fat rich mixed meal in obese non-diabetic subjects. Supplementation with whey protein caused lower postprandial lipemia compared...

  20. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  1. Role of dietary supplementation in the protein content of bovine milk

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... Results of protein contents of fodder (FOD) in comparison with concentrates that is,. F-COC, F-MSC .... including proteins which provide a bulk amount of raw ... degradability of dietary protein and fat on ruminal, blood, and milk.

  2. Dietary protein intake and distribution patterns of well-trained Dutch athletes

    NARCIS (Netherlands)

    Gillen, Jenna B.; Trommelen, Jorn; Wardenaar, Floris C.; Brinkmans, Naomi Y.J.; Versteegen, Joline J.; Jonvik, Kristin L.; Kapp, Christoph; Vries, de Jeanne; Borne, van den Joost J.G.C.; Gibala, Martin J.; Loon, van Luc J.C.

    2017-01-01

    Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day

  3. Sex differences in snack food reinforcement in response to increasing dietary protein

    Science.gov (United States)

    BRACKGROUND: Protein is posited to play a dynamic role in energy balance and reward-driven eating behavior. However, little is known about the effect of increasing protein intake on snack food reinforcement. OBJECTIVE: We sought to determine the extent to which increasing dietary protein changes th...

  4. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    Directory of Open Access Journals (Sweden)

    Christopher J. Cifelli

    2016-07-01

    Full Text Available Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES 2007–2010 for persons two years and older (n = 17,387 were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i plant-based foods; (ii protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy; and (iii milk, cheese and yogurt. Scenarios (i and (ii had commensurate reductions in animal product intake. In both children (2–18 years and adults (≥19 years, the percent not meeting the Estimated Average Requirement (EAR decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that

  5. Chronic dietary supplementation with soy protein improves muscle function in rats.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified "Western" diets (n = 10/group differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI, whey protein isolate (WPI, soy protein isolate (SPI, soy protein concentrate (SPC or enzyme-treated soy protein (SPE. The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05 with increases ranging from 13.3-27.5% and 22.8-29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05, whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05. There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.

  6. Practical dietary management of protein energy malnutrition in young children with cow's milk protein allergy.

    Science.gov (United States)

    Meyer, Rosan; Venter, Carina; Fox, Adam T; Shah, Neil

    2012-06-01

    Cow's milk protein allergy (CMPA) affects between 1.9 and 4.9% of infants and young children. This food allergy requires the complete elimination of cow's milk and its derivatives, impacting on nutritional status. The risk of having protein energy malnutrition (PEM) in children with CMPA has been well documented. In 2007, the World Health Organisation published guidelines on the dietary management of PEM, which has impacted on the recommendations and composition on specialist feeds for many chronic diseases, but not on CMPA. The main change in management of the child with PEM is the protein energy ratio and energy requirements. The ideal protein energy ratio lies between 8.9 and 11.5%, which would ensure a deposition of about 70% lean and 30% fat mass. In addition, for optimal catch-up growth between 5 and 10 g/kg/day, energy requirements should be between 105 and 126 kcal/kg/day. Although most current hypoallergenic formulas fall well within the recommendation for protein, there is a problem in achieving energy requirements. As a result, modular additions are often made, disturbing the protein energy ratio or feeds are concentrated, which impacts on osmolality. We therefore aimed to review current guidelines on PEM and how these can be applied in the management of the malnourished child with CMPA. © 2012 John Wiley & Sons A/S.

  7. Diagonal chromatography to study plant protein modifications.

    Science.gov (United States)

    Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris

    2016-08-01

    An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Alcohol-extracted, but not intact, dietary soy protein lowers lipoprotein(a) markedly

    DEFF Research Database (Denmark)

    Meinertz, Hans; Nilausen, Karin; Hilden, Jørgen

    2002-01-01

    We previously found that dietary soy protein produces higher lipoprotein(a) [Lp(a)] plasma concentrations than does casein. This study tested the hypothesis that soy protein contains Lp(a)-raising alcohol-removable components. Twelve normolipidemic women and men consumed, in a crossover design......, liquid-formula diets containing casein, soy protein, or alcohol-extracted soy protein. Dietary periods of 32 days were separated by washout periods on self-selected diets. Fasting lipid and Lp(a) levels were measured throughout. Median Lp(a) concentration was >2-fold greater after 28 to 32 days on a soy...... protein diet than after an extracted soy protein diet (Psoy protein diets were virtually identical. Women and men responded similarly. When the switch was made from a self-selected to a soy protein diet, median Lp(a) concentration increased 16...

  9. Fertilization: a sticky sperm protein in plants.

    Science.gov (United States)

    Dresselhaus, Thomas; Snell, William J

    2014-02-17

    During fertilization in eukaryotes, gametes of the opposite sex undergo a complex series of interactions that culminate in cell fusion. A new study on gamete interaction in plants has identified the first protein in multicellular organisms shown by gene disruption to be essential for gamete membrane adhesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Plant ice-binding (antifreeze) proteins

    Science.gov (United States)

    Proteins that determine the temperature at which ice crystals will form in water-based solutions in cells and tissues, that bind to growing ice crystals, thus affecting their size, and that impact ice re-crystallization have been widely-documented and studied in many plant, bacterial, fungal, insect...

  11. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  12. The effect of dietary protein on reproduction in the mare. VI. Serum progestagen concentrations during pregnancy

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1998-07-01

    Full Text Available Sixty-four Thoroughbred and Anglo-Arab mares aged 6-12 years were used, of which 40 were non-lactating and 24 lactating. Foals from these 24 mares were weaned at the age of 6 months. Non-lactating and lactating mares were divided into 4 dietary groups each. The total daily protein intake and the protein quality (essential amino-acid content differed in the 4 groups of non-lactating and 4 groups of lactating mares. The mares were covered and the effect of the quantity and quality of dietary protein on serum progestagen concentrations during pregnancy was studied. A sharp decline in serum progestagen concentrations was recorded in all dietary groups from Days 18 to 40 of pregnancy, with some individual mares reaching values of less than 4 ng/mℓ. Serum progestagen concentrations recorded in some of the non-lactating mares on the low-quality protein diet increased to higher values (p<0.05 than those of mares in the other 3 dietary groups at 35-140 days of pregnancy. A similar trend was observed for the lactating mares on a low-quality protein diet at 30-84 days of pregnancy. No such trends were observed in any of the other dietary groups. High-quality protein supplementation increased serum progestagen concentrations during the 1st 30 days of pregnancy. Lactation depressed serum progestagen concentrations until after the foals were weaned.

  13. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality.

    Science.gov (United States)

    Song, Mingyang; Fung, Teresa T; Hu, Frank B; Willett, Walter C; Longo, Valter D; Chan, Andrew T; Giovannucci, Edward L

    2016-10-01

    Defining what represents a macronutritionally balanced diet remains an open question and a high priority in nutrition research. Although the amount of protein may have specific effects, from a broader dietary perspective, the choice of protein sources will inevitably influence other components of diet and may be a critical determinant for the health outcome. To examine the associations of animal and plant protein intake with the risk for mortality. This prospective cohort study of US health care professionals included 131 342 participants from the Nurses' Health Study (1980 to end of follow-up on June 1, 2012) and Health Professionals Follow-up Study (1986 to end of follow-up on January 31, 2012). Animal and plant protein intake was assessed by regularly updated validated food frequency questionnaires. Data were analyzed from June 20, 2014, to January 18, 2016. Hazard ratios (HRs) for all-cause and cause-specific mortality. Of the 131 342 participants, 85 013 were women (64.7%) and 46 329 were men (35.3%) (mean [SD] age, 49 [9] years). The median protein intake, as assessed by percentage of energy, was 14% for animal protein (5th-95th percentile, 9%-22%) and 4% for plant protein (5th-95th percentile, 2%-6%). After adjusting for major lifestyle and dietary risk factors, animal protein intake was not associated with all-cause mortality (HR, 1.02 per 10% energy increment; 95% CI, 0.98-1.05; P for trend = .33) but was associated with higher cardiovascular mortality (HR, 1.08 per 10% energy increment; 95% CI, 1.01-1.16; P for trend = .04). Plant protein was associated with lower all-cause mortality (HR, 0.90 per 3% energy increment; 95% CI, 0.86-0.95; P for trend animal protein of various origins with plant protein was associated with lower mortality. In particular, the HRs for all-cause mortality were 0.66 (95% CI, 0.59-0.75) when 3% of energy from plant protein was substituted for an equivalent amount of protein from processed red meat, 0.88 (95% CI

  14. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Science.gov (United States)

    Ulappa, Amy C.; Kelsey, Rick G.; Frye, Graham G.; Rachlow, Janet L.; Shipley, Lisa A.; Bond, Laura; Pu, Xinzhu; Forbey, Jennifer Sorensen

    2015-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites, PSMs) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to other plants. Pygmy rabbits (Brachylagus idahoensis) are dietary specialists that feed on sagebrush (Artemisia spp.) and forage on specific plants more than others within a foraging patch. We predicted that the plants with evidence of heavy foraging (browsed plants) would be of higher dietary quality than plants that were not browsed (unbrowsed). We used model selection to determine which phytochemical variables best explained the difference between browsed and unbrowsed plants. Higher crude protein increased the odds that plants would be browsed by pygmy rabbits and the opposite was the case for certain PSMs. Additionally, because pygmy rabbits can occupy foraging patches (burrows) for consecutive years, their browsing may influence the nutritional and PSM constituents of plants at the burrows. In a post hoc analysis, we did not find a significant relationship between phytochemical concentrations, browse status and burrow occupancy length. We concluded that pygmy rabbits use nutritional and chemical cues while making foraging decisions. PMID:26366011

  15. Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice

    DEFF Research Database (Denmark)

    Sørensen, Allan; Mayntz, David; Simpson, Stephen James

    2010-01-01

    of the protein-rich food. In contrast, intestines, caeca and colons were heavier when diets contained more carbohydrates and less protein. This response may function to increase the digestive rate of carbohydrates when the dietary content of this macronutrient increases, but it may also indicate a compensatory...

  16. Dietary pattern, serum magnesium, ferritin, C-reactive protein and anaemia among older people.

    Science.gov (United States)

    Xu, Xiaoyue; Hall, John; Byles, Julie; Shi, Zumin

    2017-04-01

    Epidemiological data of dietary patterns and anaemia among older Chinese remains extremely scarce. We examined the association between dietary patterns and anaemia in older Chinese, and to assess whether biomarkers of serum magnesium, C-reactive protein (CRP) and serum ferritin can mediate these associations. We analysed the 2009 China Health and Nutrition Survey data (2401 individuals aged ≥60 years for whom both dietary and biomarker data are available). Dietary data was obtained using 24 h-recall over three consecutive days. Fasting blood samples and anthropometry measurement were also collected. Factor analysis was used to identify dietary patterns. Factor scores representing dietary patterns were used in Poisson regression models to explore the association between each dietary pattern and anaemia. Of the 2401 participants, 18.9% had anaemia, 1.9% had anaemia related to inflammation (AI), and 1.3% had iron-deficiency anaemia (IDA). A traditional dietary pattern (high intake of rice, pork and vegetables) was positively associated with anaemia; a modern dietary pattern (high intake of fruit and fast food) was inversely associated with anaemia. Progressively lower magnesium and BMI levels were associated with increasing traditional dietary quartiles; while a progressively higher magnesium and BMI levels were associated with increasing modern dietary quartiles (p  0.05) in CRP and serum ferritin across quartiles for either dietary pattern. In the fully adjusted model, the prevalence ratio (PR) of anaemia, comparing the fourth quartile to the first quartile, was 1.75 (95% CI: 1.33; 2.29) for a traditional dietary pattern, and 0.89 (95% CI: 0.68; 1.16) for a modern dietary pattern. The association between dietary patterns and anaemia is mediated by serum magnesium. Traditional dietary pattern is associated with a higher prevalence of anaemia among older Chinese. Future studies need to examine whether correcting micronutrient deficiency (e.g. magnesium) by

  17. Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs.

    Science.gov (United States)

    Van Eenennaam, A L; Young, A E

    2017-07-01

    Products such as meat, milk, and eggs from animals that have consumed genetically engineered (GE) feed are not currently subject to mandatory GE labeling requirements. Some voluntary "non-genetically modified organism" labeling has been associated with such products, indicating that the animals were not fed GE crops, as there are no commercialized GE food animals. This review summarizes the available scientific literature on the detection of dietary DNA and protein in animal products and briefly discusses the implications of mandatory GE labeling for products from animals that have consumed GE feed. Because glyphosate is used on some GE crops, the available studies on glyphosate residues in animal products are also reviewed. In GE crops, recombinant DNA (rDNA) makes up a small percentage of the plant's total DNA. The final amount of DNA in food/feed depends on many factors including the variable number and density of cells in the edible parts, the DNA-containing matrix, environmental conditions, and the specific transgenic event. Processing treatments and animals' digestive systems degrade DNA into small fragments. Available reports conclude that endogenous DNA and rDNA are processed in exactly the same way in the gastrointestinal tract and that they account for a very small proportion of food intake by weight. Small pieces of high copy number endogenous plant genes have occasionally been detected in meat and milk. Similarly sized pieces of rDNA have also been identified in meat, primarily fish, although detection is inconsistent. Dietary rDNA fragments have not been detected in chicken or quail eggs or in fresh milk from cows or goats. Collectively, studies have failed to identify full-length endogenous or rDNA transcripts or recombinant proteins in meat, milk, or eggs. Similarly, because mammals do not bioaccumulate glyphosate and it is rapidly excreted, negligible levels of glyphosate in cattle, pig and poultry meat, milk, and eggs have been reported. Despite

  18. Effects of dietary crude protein and calcium/ phosphorus content on ...

    African Journals Online (AJOL)

    kesiena

    2011-10-10

    Oct 10, 2011 ... nine dietary treatments. Each treatment combination had four replicate pens (10 birds per pen). .... Ambient temperature was 29°C on day 1, gradually decreased to 21°C and ..... Glu, blood glucose; Lac, blood lactose; HCo3.

  19. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  20. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C.W.; Tungsanga, K.; Walser, M.

    1986-04-01

    The efficiency of alpha-ketoisocaproate (KIC) as a dietary substitute for leucine in rats on varying protein intake was estimated by an isotopic method, previously shown to yield the same results as comparative growth experiments. /sup 14/C-KIC and /sup 3/H-leucine are injected orally. Six hours later the ratio, R, of /sup 14/C//sup 3/H in isolated proteins, divided by the same ratio in the injectate is measured. This ratio has been shown to be approximately equal to nutritional efficiency of KIC relative to leucine. As dietary protein increased from 6.3% to 48.3%, whole body protein R decreased from 0.515 +/- 0.045 to 0.299 +/- 0.016. Variations with protein intake were noted in R of protein isolated from individual organs. The magnitude of R in these organs varied two-fold, in the following sequence: brain greater than heart greater than or equal to skeletal muscle greater than or equal to salivary gland greater than or equal to kidney greater than liver. Whole body protein R could be confidently predicted (r2 = 0.992) from R in the protein of kidney and muscle. Thus, the nutritional efficiency of KIC as a dietary substitute for leucine in individual organs as well as in the whole animal is strongly dependent on the level of protein intake.

  1. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis

    International Nuclear Information System (INIS)

    Kang, C.W.; Tungsanga, K.; Walser, M.

    1986-01-01

    The efficiency of alpha-ketoisocaproate (KIC) as a dietary substitute for leucine in rats on varying protein intake was estimated by an isotopic method, previously shown to yield the same results as comparative growth experiments. 14 C-KIC and 3 H-leucine are injected orally. Six hours later the ratio, R, of 14 C/ 3 H in isolated proteins, divided by the same ratio in the injectate is measured. This ratio has been shown to be approximately equal to nutritional efficiency of KIC relative to leucine. As dietary protein increased from 6.3% to 48.3%, whole body protein R decreased from 0.515 +/- 0.045 to 0.299 +/- 0.016. Variations with protein intake were noted in R of protein isolated from individual organs. The magnitude of R in these organs varied two-fold, in the following sequence: brain greater than heart greater than or equal to skeletal muscle greater than or equal to salivary gland greater than or equal to kidney greater than liver. Whole body protein R could be confidently predicted (r2 = 0.992) from R in the protein of kidney and muscle. Thus, the nutritional efficiency of KIC as a dietary substitute for leucine in individual organs as well as in the whole animal is strongly dependent on the level of protein intake

  2. Culinary Spice Plants in Dietary Supplement Products and Tested in Clinical Trials123

    Science.gov (United States)

    Saldanha, Leila G; Dwyer, Johanna T; Betz, Joseph M

    2016-01-01

    Dried plant parts used as culinary spices (CSs) in food are permitted as dietary ingredients in dietary supplements (DSs) within certain constraints in the United States. We reviewed the amounts, forms, and nutritional support (structure/function) claims of DSs that contain CS plants listed in the Dietary Supplement Label Database (DSLD) and compared this label information with trial doses and health endpoints for CS plants that were the subject of clinical trials listed in clinicaltrials.gov. According to the DSLD, the CS plants occurring most frequently in DSs were cayenne, cinnamon, garlic, ginger, pepper, rosemary, and turmeric. Identifying the botanical species, categorizing the forms used, and determining the amounts from the information provided on DS labels was challenging. CS plants were typically added as a component of a blend, as the powered biomass, dried extracts, and isolated phytochemicals. The amounts added were declared on about 55% of the labels, rendering it difficult to determine the amount of the CS plant used in many DSs. Clinicaltrials.gov provided little information about the composition of test articles in the intervention studies. When plant names were listed on DS labels and in clinical trials, generally the common name and not the Latin binomial name was given. In order to arrive at exposure estimates and enable researchers to reproduce clinical trials, the Latin binomial name, form, and amount of the CS plant used in DSs and tested in clinical trials must be specified. PMID:26980817

  3. Culinary Spice Plants in Dietary Supplement Products and Tested in Clinical Trials.

    Science.gov (United States)

    Saldanha, Leila G; Dwyer, Johanna T; Betz, Joseph M

    2016-03-01

    Dried plant parts used as culinary spices (CSs) in food are permitted as dietary ingredients in dietary supplements (DSs) within certain constraints in the United States. We reviewed the amounts, forms, and nutritional support (structure/function) claims of DSs that contain CS plants listed in the Dietary Supplement Label Database (DSLD) and compared this label information with trial doses and health endpoints for CS plants that were the subject of clinical trials listed in clinicaltrials.gov. According to the DSLD, the CS plants occurring most frequently in DSs were cayenne, cinnamon, garlic, ginger, pepper, rosemary, and turmeric. Identifying the botanical species, categorizing the forms used, and determining the amounts from the information provided on DS labels was challenging. CS plants were typically added as a component of a blend, as the powered biomass, dried extracts, and isolated phytochemicals. The amounts added were declared on about 55% of the labels, rendering it difficult to determine the amount of the CS plant used in many DSs. Clinicaltrials.gov provided little information about the composition of test articles in the intervention studies. When plant names were listed on DS labels and in clinical trials, generally the common name and not the Latin binomial name was given. In order to arrive at exposure estimates and enable researchers to reproduce clinical trials, the Latin binomial name, form, and amount of the CS plant used in DSs and tested in clinical trials must be specified. © 2016 American Society for Nutrition.

  4. Effects of different dietary protein levels during rearing and different dietary energy levels during lay on behaviour and feather cover in broiler breeder females

    NARCIS (Netherlands)

    Emous, Van Rick A.; Kwakkel, René; Krimpen, van Marinus; Hendriks, Wouter

    2015-01-01

    An experiment was conducted to determine the effects of different dietary protein levels during rearing and different dietary energy levels during lay on behaviour and feather cover in broiler breeder females. A 2×3×2 factorial arrangement of treatments was used. A total of 2880 Ross 308

  5. Effects of dietary protein and glycaemic index on biomarkers of bone turnover in children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Müller, Martha; Ritz, Christian

    2014-01-01

    For decades, it has been debated whether high protein intake compromises bone mineralisation, but no long-term randomised trial has investigated this in children. In the family-based, randomised controlled trial DiOGenes (Diet, Obesity and Genes), we examined the effects of dietary protein...... and glycaemic index (GI) on biomarkers of bone turnover and height in children aged 5-18 years. In two study centres, families with overweight parents were randomly assigned to one of five ad libitum-energy, low-fat (25-30 % energy (E%)) diets for 6 months: low protein/low GI; low protein/high GI; high protein....../low GI; high protein/high GI; control. They received dietary instructions and were provided all foods for free. Children, who were eligible and willing to participate, were included in the study. In the present analyses, we included children with data on plasma osteocalcin or urinary N...

  6. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods.

    Science.gov (United States)

    Englyst, H N; Cummings, J H

    1988-01-01

    A method is described that allows rapid estimation of total, soluble, and insoluble dietary fiber as the non-starch polysaccharides (NSP) in plant foods. It is a modification of an earlier, more complex procedure. Starch is completely removed enzymatically, and NSP is measured as the sum of its constituent sugars released by acid hydrolysis. The sugars may, in turn, be measured by gas chromatography (GC), giving values for individual monosaccharides, or more rapidly by colorimetry. Both GC and colorimetry are suitable for routine measurement of total, soluble, and insoluble dietary fiber in cereals, fruits, and vegetables. Values obtained are not affected by food processing so the dietary fiber content of various processed foods and mixed diets can be calculated simply from knowing the amount in the raw materials. The additional information obtained by GC analysis is valuable in the interpretation of physiological studies and in epidemiology where disease is related to type and amount of dietary fiber.

  7. Plant pathology: monitoring a pathogen-targeted host protein.

    Science.gov (United States)

    Ellis, Jeff; Dodds, Peter

    2003-05-13

    A plant protein RIN4 is targeted and modified by bacterial pathogens as part of the disease process. At least two host resistance proteins monitor this pathogen interference and trigger the plant's defence responses.

  8. Influence of dietary protein and excess methionine on choline needs for young bobwhite quail

    Science.gov (United States)

    Serafin, J.A.

    1982-01-01

    Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.

  9. Dietary protein safety and resistance exercise: what do we really know?

    Directory of Open Access Journals (Sweden)

    Lowery Lonnie M

    2009-01-01

    Full Text Available Abstract Resistance trainers continue to receive mixed messages about the safety of purposely seeking ample dietary protein in their quest for stimulating protein synthesis, improving performance, or maintaining health. Despite protein's lay popularity and the routinely high intakes exhibited by strength athletes, liberal and purposeful protein consumption is often maligned by "experts". University textbooks, instructors, and various forms of literature from personal training groups and athletic organizations continue to use dissuasive language surrounding dietary protein. Due to the widely known health benefits of dietary protein and a growing body of evidence on its safety profile, this is unfortunate. In response, researchers have critiqued unfounded educational messages. As a recent summarizing example, the International Society of Sports Nutrition (ISSN Position Stand: Protein and Exercise reviewed general literature on renal and bone health. The concluding remark that "Concerns that protein intake within this range [1.4 – 2.0 g/kg body weight per day] is unhealthy are unfounded in healthy, exercising individuals." was based largely upon data from non-athletes due to "a lack of scientific evidence". Future studies were deemed necessary. This assessment is not unique in the scientific literature. Investigators continue to cite controversy, debate, and the lack of direct evidence that allows it. This review discusses the few existing safety studies done specific to athletes and calls for protein research specific to resistance trainers. Population-specific, long term data will be necessary for effective education in dietetics textbooks and from sports governing bodies.

  10. Impacts of maternal dietary protein intake on fetal survival, growth, and development.

    Science.gov (United States)

    Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao

    2018-03-01

    Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new

  11. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes

    Science.gov (United States)

    Shepon, A.; Eshel, G.; Noor, E.; Milo, R.

    2016-10-01

    Feeding a growing population while minimizing environmental degradation is a global challenge requiring thoroughly rethinking food production and consumption. Dietary choices control food availability and natural resource demands. In particular, reducing or avoiding consumption of low production efficiency animal-based products can spare resources that can then yield more food. In quantifying the potential food gains of specific dietary shifts, most earlier research focused on calories, with less attention to other important nutrients, notably protein. Moreover, despite the well-known environmental burdens of livestock, only a handful of national level feed-to-food conversion efficiency estimates of dairy, beef, poultry, pork, and eggs exist. Yet such high level estimates are essential for reducing diet related environmental impacts and identifying optimal food gain paths. Here we quantify caloric and protein conversion efficiencies for US livestock categories. We then use these efficiencies to calculate the food availability gains expected from replacing beef in the US diet with poultry, a more efficient meat, and a plant-based alternative. Averaged over all categories, caloric and protein efficiencies are 7%-8%. At 3% in both metrics, beef is by far the least efficient. We find that reallocating the agricultural land used for beef feed to poultry feed production can meet the caloric and protein demands of ≈120 and ≈140 million additional people consuming the mean American diet, respectively, roughly 40% of current US population.

  12. Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source.

    Science.gov (United States)

    Mangravite, Lara M; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S; Bergeron, Nathalie; Krauss, Ronald M

    2011-12-01

    Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake in 40 healthy men. After a 3-wk baseline diet [50% daily energy (E) as carbohydrate, 13% E as protein, 15% E as saturated fat], participants consumed for 3 wk each in a randomized crossover design two high-beef diets in which protein replaced carbohydrate (31% E as carbohydrate, 31% E as protein, with 10% E as beef protein). The high-beef diets differed in saturated fat content (8% E vs. 15% E with exchange of saturated for monounsaturated fat). Two-week washout periods were included following the baseline diet period and between the randomized diets periods. Plasma TG concentrations were reduced after the 2 lower carbohydrate dietary periods relative to after the baseline diet period and these reductions were independent of saturated fat intake. Plasma total, LDL, and non-HDL cholesterol as well as apoB concentrations were lower after the low-carbohydrate, low-saturated fat diet period than after the low-carbohydrate, high-saturated fat diet period. Given our previous observations with mixed protein diets, the present findings raise the possibility that dietary protein source may modify the effects of saturated fat on atherogenic lipoproteins.

  13. Effects of dietary protein level on nutrients digestibility and reproductive performance of female mink (Neovison vison during gestation

    Directory of Open Access Journals (Sweden)

    Qingkui Jiang

    2015-06-01

    Full Text Available The objective of this study was to determine whether nutrient digestibility and reproductive performance of pregnant mink (Neovison vison were affected by different dietary protein levels. One hundred and twenty female mink were randomly assigned to four groups, receiving diets of fresh material with different protein levels. The dietary protein levels, expressed as percentage of dry matter (DM, were 32, 36, 40 and 44% respectively. These values corresponded to average 320, 360, 400 and 440 g protein/kg DM, respectively. Results were as follows. All of crude protein digestibility, nitrogen (N intake, N retention increased along with dietary protein level increasing. Low protein level (32% significantly reduced the above indicators (P < 0.05. DM digestibility and ether extract digestibility were not affected by dietary protein level. Results of mated females, barren females, kids per litter, live born kids per mated female, birth survival rate, and birth weight showed that mink achieved optimal reproductive performance when dietary protein level was 36%. In conclusion, dietary protein was anticipated to significantly influence some nutrients' utilization. Adopting the appropriate dietary protein level allow better reproduction performance. The most preferable reproductive performance was achieved when diet contained 275.5 g digestible protein per kg DM for female mink in gestation.

  14. In vitro effect of dietary protein level and nondigestible oligosaccharides on feline fecal microbiota.

    Science.gov (United States)

    Pinna, C; Stefanelli, C; Biagi, G

    2014-12-01

    The aim of the present study was to evaluate in vitro the effect of some prebiotic substances and 2 dietary protein levels on the composition and activity of feline fecal microbiota. Two in vitro studies were conducted. First, 6 nondigestible oligosaccharides were studied; treatments were control diet (CTRL), gluconic acid (GA), carrot fiber (CF), fructooligosaccharides (FOS), galactooligosaccharides (GOS), lactitol (LAC), and pectins from citrus fruit (PEC). Substrates were added to feline fecal cultures at 2 g/L for 24 h incubation. Compared with the CTRL, ammonia had been reduced (Pmicrobiota and that high dietary protein levels in a cat's diet can have negative effects on the animal intestinal environment.

  15. Short-term consumption of a plant protein diet does not improve glucose homeostasis of young C57BL/6J mice.

    Science.gov (United States)

    Lamming, Dudley W; Baar, Emma L; Arriola Apelo, Sebastian I; Tosti, Valeria; Fontana, Luigi

    2017-12-07

    Recently, it has become apparent that dietary macronutrient composition has a profound impact on metabolism, health and even lifespan. Work from many laboratories now suggest that dietary protein quality - the precise amino acid composition of the diet, as well as possibly the source of dietary protein - may also be critical in regulating the impact of diet on health. Perhaps in part due to the naturally low methionine content of plants, vegan diets are associated with a decreased risk of diabetes and improved insulin sensitivity, but this association is confounded by the lower overall protein intake of vegans. Here, we test the effect of consuming isocaloric rodent diets with similar amino acid profiles derived from either plant protein or dairy protein. We find that male C57BL/6J mice consuming either diet have similar glycemic control, as assessed by glucose, insulin, and pyruvate tolerance tests, and have similar overall body composition. We conclude that short-term feeding of plant protein has no positive or negative effect on the metabolic health of young male C57BL/6J mice, and suggest that dietary interventions that alter either dietary protein levels or the levels of specific essential amino acids are more likely to improve metabolic health than alterations in dietary protein source.

  16. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial123

    Science.gov (United States)

    Huang, Tao; Li, Yanping; Hu, Frank B; Bray, George A; Sacks, Frank M; Williamson, Donald A; Qi, Lu

    2014-01-01

    Background: A common obesity-risk variant rs9939609 in the fat mass– and obesity-associated (FTO) gene was recently shown to affect appetite, and the gene is sensitive to the regulation of amino acids. Objective: We examined the interaction between FTO genotype and protein intake on the long-term changes in appetite in a randomized controlled trial. Design: We genotyped FTO rs9939609 in 737 overweight adults in the 2-y Preventing Overweight Using Novel Dietary Strategies trial and assessed 4 appetite-related traits including cravings, fullness, hunger, and prospective consumption. Results: We showed that dietary protein significantly modified genetic effects on changes in food cravings and appetite scores at 6 mo after adjustment for age, sex, ethnicity, baseline body mass index, weight change, and baseline value for respective outcomes (P-interaction = 0.027 and 0.048, respectively). The A allele was associated with a greater decrease in food cravings and appetite scores in participants with high-protein–diet intake (P = 0.027 and 0.047, respectively) but not in subjects in the low-protein–diet group (P = 0.384 and 0.078, respectively). The weight regain from 6 to 24 mo attenuated gene-protein interactions. Protein intakes did not modify FTO genotype effects on other appetite measures. Conclusion: Our data suggest that individuals with the FTO rs9939609 A allele might obtain more benefits in a reduction of food cravings and appetite by choosing a hypocaloric and higher-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995. PMID:24622803

  17. Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche.

    Science.gov (United States)

    Power, Robert C; Salazar-García, Domingo C; Rubini, Mauro; Darlas, Andrea; Harvati, Katerina; Walker, Michael; Hublin, Jean-Jacques; Henry, Amanda G

    2018-06-01

    The ecology of Neanderthals is a pressing question in the study of hominin evolution. Diet appears to have played a prominent role in their adaptation to Eurasia. Based on isotope and zooarchaeological studies, Neanderthal diet has been reconstructed as heavily meat-based and generally similar across different environments. This image persists, despite recent studies suggesting more plant use and more variation. However, we have only a fragmentary picture of their dietary ecology, and how it may have varied among habitats, because we lack broad and environmentally representative information about their use of plants and other foods. To address the problem, we examined the plant microremains in Neanderthal dental calculus from five archaeological sites representing a variety of environments from the northern Balkans, and the western, central and eastern Mediterranean. The recovered microremains revealed the consumption of a variety of non-animal foods, including starchy plants. Using a modeling approach, we explored the relationships among microremains and environment, while controlling for chronology. In the process, we compared the effectiveness of various diversity metrics and their shortcomings for studying microbotanical remains, which are often morphologically redundant for identification. We developed Minimum Botanical Units as a new way of estimating how many plant types or parts are present in a microbotanical sample. In contrast to some previous work, we found no evidence that plant use is confined to the southern-most areas of Neanderthal distribution. Although interpreting the ecogeographic variation is limited by the incomplete preservation of dietary microremains, it is clear that plant exploitation was a widespread and deeply rooted Neanderthal subsistence strategy, even if they were predominately game hunters. Given the limited dietary variation across Neanderthal range in time and space in both plant and animal food exploitation, we argue that

  18. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  19. Mechanism of altered B-cell response induced by changes in dietary protein type in mice

    International Nuclear Information System (INIS)

    Bounous, G.; Shenouda, N.; Kongshavn, P.A.; Osmond, D.G.

    1985-01-01

    The effect of 20 g/100 g dietary lactalbumin (L) or casein (C) diets or a nonpurified (NP) diet on the immune responsiveness of C57Bl/6J, C3H/HeJ and BALB/cJ mice has been investigated by measuring the response to the T cell-independent antigen, TNP-Ficoll. To investigate the possible influence of dietary protein type on the supply of B lymphocytes, bone marrow lymphocyte production has been examined by a radioautographic assay of small lymphocyte renewal and an immunofluorescent stathmokinetic assay of pre-B cells and their proliferation. The humoral response of all mice fed the L diet was found to be higher than that of mice fed the C diet or nonpurified diet. A similar pattern of dietary protein effect in (CBA/N X DBA/2J) F1 mice carrying the xid defect was observed following challenge with sheep red blood cells (SRBC). An even greater enhancing effect of dietary L was noted in normal (DBA/2J X CBA/N) F1 mice after immunization with SRBC, but in contrast, the normal large-scale production of B lymphocytes in mouse bone marrow was independent of the type of dietary protein. Dietary protein type did not affect blood level of minerals and trace metals. The free plasma amino acid profile essentially conformed to the amino acid composition of the ingested protein, suggesting that the changes in plasma amino acid profile might be a crucial factor in diet-dependent enhancement or depression of the B-cell response

  20. Changes in Atherogenic Dyslipidemia Induced by Carbohydrate Restriction in Men Are Dependent on Dietary Protein Source1234

    OpenAIRE

    Mangravite, Lara M.; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S.; Bergeron, Nathalie; Krauss, Ronald M.

    2011-01-01

    Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake i...

  1. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, PH; de Sain-van der Velden, MGM; Stellaard, F; Kuipers, F; Meijer, AJ; Sauerwein, HP; Romijn, JA

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  2. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, P. H.; de Sain-van der Velden, M. G. M.; Stellaard, F.; Kuipers, F.; Meijer, A. J.; Sauerwein, H. P.; Romijn, J. A.

    2003-01-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  3. Do vulnerable populations consume adequate amounts of dietary protein?

    Science.gov (United States)

    In the previous year there has been a renewed interest in the adequacy of protein intake to maintain optimal health and to promote normal growth and development (1, 2). In this issue of the Journal there is an excellent report on protein consumption among children aged 6–36 mo from low-income countr...

  4. The effects of dietary energy and protein concentrations on ostrich ...

    African Journals Online (AJOL)

    The effects were investigated of energy and protein concentrations (with associated amino acid concentrations) in ostrich diets on leather quality of the skins of 50 ostriches. Energy concentrations were 9.0, 10.5 and 12.0 MJ ME/kg diet and protein concentrations were 130, 150 and 170 g/kg diet. The physical leather ...

  5. Identification of biomarkers for intake of protein from meat, dairy products and grains: A controlled dietary intervention study

    NARCIS (Netherlands)

    Altorf-van der Kuil, W.; Brink, E.J.; Boetje, M.; Siebelink, E.; Bijlsma, S.; Engberink, M.F.; Veer, P.V.'.; Tomé, D.; Bakker, S.J.L.; Baak, M.A. van; Geleijnse, J.M.

    2013-01-01

    In the present controlled, randomised, multiple cross-over dietary intervention study, we aimed to identify potential biomarkers for dietary protein from dairy products, meat and grain, which could be useful to estimate intake of these protein types in epidemiological studies. After 9 d run-in,

  6. Identification of biomarkers for intake of protein from meat, dairy products and grains : a controlled dietary intervention study

    NARCIS (Netherlands)

    Altorf-van der Kuil, Wieke; Brink, Elizabeth J.; Boetje, Martine; Siebelink, Els; Bijlsma, Sabina; Engberink, Marielle F.; van 't Veer, Pieter; Tome, Daniel; Bakker, Stephan J. L.; van Baak, Marleen A.; Geleijnse, Johanna M.

    2013-01-01

    In the present controlled, randomised, multiple cross-over dietary intervention study, we aimed to identify potential biomarkers for dietary protein from dairy products, meat and grain, which could be useful to estimate intake of these protein types in epidemiological studies. After 9 d run-in,

  7. Consideration of insects as a source of dietary protein for human consumption.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Pinckaers, Philippe J M; van Loon, Joop J A; van Loon, Luc J C

    2017-12-01

    Consumption of sufficient dietary protein is fundamental to muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat (ie, beef, pork, lamb), poultry, fish, eggs, and dairy are generally considered high-quality sources of dietary protein because they meet all of the indispensable amino-acid requirements for humans and are highly digestible. However, the production of sufficient amounts of conventional animal-based protein to meet future global food demands represents a challenge. Edible insects have recently been proposed as an alternative source of dietary protein that may be produced on a more viable and sustainable commercial scale and, as such, may contribute to ensuring global food security. This review evaluates the protein content, amino-acid composition, and digestibility of edible insects and considers their proposed quality and potential as an alternative protein source for human consumption. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. The effect of dietary rumen degradable protein content on veal calf ...

    African Journals Online (AJOL)

    The objective of this study was to determine the undegradable dietary protein requirements of veal calves. Two experiments were carried out with Holstein bull calves from 3-10 days of age until slaughter at 20 weeks of age. Both experiments were divided into starter and finishing periods. Calves were offered starter pellets ...

  9. Effect of dietary protein content on growth, uniformity and mortality of ...

    African Journals Online (AJOL)

    Two experiments were conducted to determine the response in performance, including uniformity and mortality, of two broiler strains to dietary protein content. In Experiment 1, 480 Cobb 500 and 480 Ross 788 day-old sexed broiler chickens were housed in cages to 21 d with 10 chickens per cage, and in Experiment 2, ...

  10. Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions

    DEFF Research Database (Denmark)

    Gravador, Rufielyn Sungcaya; Jongberg, Sisse; Andersen, Mogens Larsen

    2014-01-01

    The antioxidant effects of dried citrus pulp on proteins in lamb meat, when used as a replacement of concentrate in the feed, was studied using meat from 26 male Comisana lambs. The lambs of age 90. days had been grouped randomly to receive one of the three dietary treatments: (1) commercial...

  11. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs.

    NARCIS (Netherlands)

    Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.L.; Langhout, D.J.; Verstegen, M.W.A.

    1998-01-01

    The effects of dietary protein on nitrogen excretion and ammonia emission from slurry of growing–finishing pigs were studied both in vitro and in a pig house. The three diets had similar contents of NE, minerals, vitamins and ileal digestible lysine, methionine cystine, threonine and tryptophan, but

  12. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs

    NARCIS (Netherlands)

    Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.; Langhout, D.J.; Verstegen, M.W.A.

    1998-01-01

    The effects of dietary protein on nitrogen excretion and ammonia emission from slurry of growing-finishing pigs were studied both in vitro and in a pig house. The three diets had similar contents of NE, minerals, vitamins and ileal digestible lysine, methionine + cystine, threonine and tryptophan,

  13. The effect of different combinations of dietary energy and protein on ...

    African Journals Online (AJOL)

    Nutrition of breeding female birds can influence egg quality and is therefore extremely important for the development of the embryo and the successful hatching of a high quality chick. We investigated the effect of combining different levels of dietary energy and protein, with accompanied amino acid levels, in the diets of ...

  14. Blood profile of proteins and steroid hormones predicts weight change after weight loss with interactions of dietary protein level and glycemic index

    DEFF Research Database (Denmark)

    Wang, Ping; Holst, Claus; Andersen, Malene R

    2011-01-01

    Weight regain after weight loss is common. In the Diogenes dietary intervention study, high protein and low glycemic index (GI) diet improved weight maintenance.......Weight regain after weight loss is common. In the Diogenes dietary intervention study, high protein and low glycemic index (GI) diet improved weight maintenance....

  15. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    Science.gov (United States)

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  16. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  17. A Systematic Review of the Effects of Plant Compared with Animal Protein Sources on Features of Metabolic Syndrome.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Azzout-Marniche, Dalila; Arfsten, Judith; Egli, Léonie; Gaudichon, Claire; Karagounis, Leonidas G; Tomé, Daniel

    2017-03-01

    Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition. © 2017 American

  18. High dietary protein intake is associated with an increased body weight and total death risk.

    Science.gov (United States)

    Hernández-Alonso, Pablo; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Lapetra, José; Basora, Josep; Serra-Majem, Lluis; Muñoz, Miguel Ángel; Buil-Cosiales, Pilar; Saiz, Carmen; Bulló, Mònica

    2016-04-01

    High dietary protein diets are widely used to manage overweight and obesity. However, there is a lack of consensus about their long-term efficacy and safety. Therefore, the aim of this study was to assess the effect of long-term high-protein consumption on body weight changes and death outcomes in subjects at high cardiovascular risk. A secondary analysis of the PREDIMED trial was conducted. Dietary protein was assessed using a food-frequency questionnaire during the follow-up. Cox proportional hazard models were used to estimate the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (95%CI) for protein intake in relation to the risk of body weight and waist circumference changes, cardiovascular disease, cardiovascular death, cancer death and total death. Higher total protein intake, expressed as percentage of energy, was significantly associated with a greater risk of weight gain when protein replaced carbohydrates (HR: 1.90; 95%CI: 1.05, 3.46) but not when replaced fat (HR: 1.69; 95%CI: 0.94, 3.03). However, no association was found between protein intake and waist circumference. Contrary, higher total protein intake was associated with a greater risk of all-cause death in both carbohydrate and fat substitution models (HR: 1.59; 95%CI: 1.08, 2.35; and HR: 1.66; 95%CI: 1.13, 2.43, respectively). A higher consumption of animal protein was associated with an increased risk of fatal and non-fatal outcomes when protein substituted carbohydrates or fat. Higher dietary protein intake is associated with long-term increased risk of body weight gain and overall death in a Mediterranean population at high cardiovascular risk. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  20. Effect van voereiwitgehalte op de ammoniakemissie bij vleeskuikens : oriënterende metingen bij vier behandelingsniveaus = Effect of dietary crude protein content on ammonia emission in broilers

    NARCIS (Netherlands)

    Smits, M.C.J.; Belt, van de K.; Aar, van der P.; Blanken, K.

    2012-01-01

    The effects of dietary protein content on litter composition and ammonia emissions from the litter in a broiler house were measured. Differences were small, probably because feed intake was lower at higher dietary protein content.

  1. Dietary protein intake and quality in early life

    DEFF Research Database (Denmark)

    Lind, Mads V; Larnkjær, Anni; Mølgaard, Christian

    2017-01-01

    programming. Finally, infants with catch-up growth or specific genotypes might be particularly vulnerable to high-protein intake. SUMMARY: Recent studies confirm the associations between high-protein intake during the first 2 years and later obesity. Furthermore, knowledge of the mechanisms involved......PURPOSE OF REVIEW: Obesity is an increasing problem and high-protein intake early in life seems to increase later risk of obesity. This review summarizes recent publications in the area including observational and intervention studies and publications on underlying mechanisms. RECENT FINDINGS...... seems to have an effect on obesity. Specific amino acids, such as leucine, have also been implicated in increasing later obesity risk maybe via specific actions on insulin-like growth factor I. Furthermore, additional underlying mechanisms including epigenetics have been linked to long-term obesogenic...

  2. Modelling responses of broiler chickens to dietary balanced protein

    NARCIS (Netherlands)

    Eits, R.M.

    2004-01-01

    Protein is an important nutrient for growing broiler chickens, as it affects broiler performance, feed cost as well as nitrogen excretion. The objective of this dissertation was to develop a growth model for broiler chickens that could be easily used by practical nutritionists. The model should

  3. Effect of dietary protein, lipid and carbohydrate contents on the ...

    African Journals Online (AJOL)

    lenovo

    2012-04-24

    Apr 24, 2012 ... during 90 days. Feeds were formulated using ground nut oil cake, mustard oil cake, rice bran, wheat ... Lim, 2002). However, protein is essential for normal tissue ... the diet, pre-treatment and degree of gelatinization. The ability of ... A pelleting machine (Hobart, model, A 200) was used to pellet the feeds.

  4. Effects of dietary crude protein and calcium/ phosphorus content on ...

    African Journals Online (AJOL)

    This experiment was conducted to examine the effect of three levels of crude protein (CP) (NRC, 15% more than NRC and 15% less than NRC) and three levels of Ca and available P (Av. P) (NRC, 15% more than NRC and 15% less than NRC) on performance of broilers from hatching until 21 days of age. The experimental ...

  5. The Measurement and Interpretation of Dietary Protein Distribution During a Rugby Preseason.

    Science.gov (United States)

    MacKenzie, Kristen; Slater, Gary; King, Neil; Byrne, Nuala

    2015-08-01

    Evidence suggests that increasing protein distribution may be desirable to promote muscle protein synthesis (MPS) in combination with resistance exercise. However, there is a threshold above which additional protein consumption has limited benefit for MPS and may promote protein loss due to increased oxidation. This study aimed to measure daily protein intake and protein distribution in a cohort of rugby players. Twenty-five developing elite rugby union athletes (20.5 ± 2.3 years, 100.2 ± 13.3 kg, 184.4 ± 7.4 cm) were assessed at the start and end of a rugby preseason. Using a 7-day food diary the reported daily protein intake was 2.2 ± 0.7 g · kg · day(-1) which exceeds daily recommendations. The reported carbohydrate intake was 3.6 ± 1.3 g · kg · day(-1) which may reflect a suboptimal intake or dietary underreporting. In general, the rugby athletes were regularly consuming more than 20 g of protein; 3.8 ± 0.9 times per day (68 ± 18% of eating occasions). In addition to documenting current dietary intakes, an excess protein estimation score was calculated to determine how frequently the rugby athletes consumed protein above a known effective dose with a margin of error. 2.0 ± 0.9 eating occasions contained protein in excess of doses (20 g) known to promote MPS. Therefore, it is currently unclear whether the consumption of regular large doses of protein will benefit rugby athletes via increasing protein distribution, or whether high protein intakes may have unintended effects including a reduction in carbohydrate and/or energy intake.

  6. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    Science.gov (United States)

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This

  7. Body Characteristics, Dietary Protein and Body Weight Regulation

    DEFF Research Database (Denmark)

    Ankarfeldt, Mikkel Zøllner; Ängquist, Lars; Stocks, Tanja

    2014-01-01

    between greater protein intake and weight gain. In both types of studies the results are based on average weight changes, and show considerable diversity in both directions. This study investigates whether the discrepancy in the evidence could be due to recruitment of overweight and obese individuals...... with greater body mass index and waist circumference were analyzed. Selecting subsets of large-scale observational cohort studies with similar characteristics as participants in clinical trials may reconcile the otherwise conflicting results....

  8. Effect of dietary protein, lipid and carbohydrate contents on the ...

    African Journals Online (AJOL)

    lenovo

    This study aimed to determine a feed formulation with the best protein to energy ratio that would result in a better viscera composition and organ indices (OI) of Cyprinus carpio communis. Fingerlings having average weight of 1.64 ± 0.13 g and length of 5.26 ± 0.10 cm were fed on four different formulated feeds and a control ...

  9. Dietary Protein in the Prevention of Diet-Induced Obesity and Co-Morbidities

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup

    mice were fed obesity‐promoting diets with protein from different sources, in different forms and at different levels to evaluate the affect on development of obesity, glucose intolerance and dyslipidemia. Results: In the present study the dietary level of protein, 16 versus 32 percent energy from...... protein, was found to be negligible in development of obesity and co‐morbidities in mice. Seafood protein with high endogenous taurine and glycine contents was found to prevent diet‐induced adiposity and dyslipidemia, both in ad libitum and pair‐fed settings. The ability of seafood proteins to prevent...... that the source and form of protein has great impact on development and prevention of diet‐induced adiposity, dyslipidemia, hyperinsulinemia and impairment of glucose tolerance through modulations of voluntary locomotor activity, energy expenditure and energy substrate metabolism in mice...

  10. Enrichment of pasta with different plant proteins.

    Science.gov (United States)

    Kaur, Gurpreet; Sharma, Savita; Nagi, H P S; Ranote, P S

    2013-10-01

    Effects of supplementation of plant proteins from mushroom powder, Bengal gram flour and defatted soy flour at different levels were assessed on the nutritional quality of pasta. Supplementation of wheat semolina was done with mushroom powder (0-12%), Bengal gram flour (0-20%) and defatted soy flour (0-15%). Mushroom powder and defatted soy flour increased the cooking time of pasta whereas non significant variation was observed in cooking time of Bengal gram supplemented pasta. Significant correlation (r = 0.97, p ≤ 0.05) was observed between water absorption and volume expansion of pasta. Instantization of pasta by steaming improved the cooking quality. Steamed pasta absorbed less water and leached fewer solids during cooking. On the basis of cooking and sensory quality, pasta in combination with 8% mushroom powder, 15% Bengal gram flour and 9% defatted soy flour resulted in a better quality and nutritious pasta.

  11. Uncoupling proteins, dietary fat and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2006-09-01

    Full Text Available Abstract There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome.

  12. Protein oxidation in plant mitochondria as a stress indicator

    DEFF Research Database (Denmark)

    Møller, I.M.; Kristensen, B.K.

    2004-01-01

    oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown......, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat...... shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear....

  13. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Overgaard, Johannes; Loeschcke, Volker

    2011-01-01

    The ability to use different food sources is likely to be under strong selection if organisms are faced with natural variation in macro-nutrient (protein, carbohydrate and lipid) availabilities. Here, we use experimental evolution to study how variable dietary protein content affects adult body...... composition and developmental success in Drosophila melanogaster. We reared flies on either a standard diet or a protein-enriched diet for 17 generations before testing them on both diet types. Flies from lines selected on protein-rich diet produced phenotypes with higher total body mass and relative lipid...... content when compared with those selected on a standard diet, irrespective of which of the two diets they were tested on. However, selection on protein-rich diet incurred a cost as flies reared on this diet had markedly lower developmental success in terms of egg-to-adult viability on both medium types...

  14. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    Directory of Open Access Journals (Sweden)

    Jamie I. Baum

    2015-07-01

    Full Text Available Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1. Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  15. Current issues in determining dietary protein and amino-acid requirements

    DEFF Research Database (Denmark)

    Pencharz, P; Jahoor, F; Kurpad, A

    2014-01-01

    Pregnancy and the first two years of life are periods of rapid growth and yet the knowledge of requirements for protein and dietary indispensable amino acids is very limited. The development of carbon oxidation methods opens the way to studies that should fill these important gaps in knowledge.Eu.......European Journal of Clinical Nutrition advance online publication, 15 January 2014; doi:10.1038/ejcn.2013.297....

  16. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna

    OpenAIRE

    Meadows, Melissa G.; Roudybush, Thomas E.; McGraw, Kevin J.

    2012-01-01

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits,...

  17. The relation between dietary protein, calcium and bone health in women: results from the EPIC-Potsdam cohort.

    Science.gov (United States)

    Weikert, Cornelia; Walter, Dietmar; Hoffmann, Kurt; Kroke, Anja; Bergmann, Manuela M; Boeing, Heiner

    2005-01-01

    The role of dietary protein in bone health is controversial. The objective of the present study was to examine the association between protein intake, dietary calcium, and bone structure measured by broadband ultrasound attenuation (BUA). Our analysis includes 8,178 female study participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) Potsdam Study. Ultrasound bone measurements were performed on the right os calcis, and BUA was determined. Dietary intake was assessed by a standardized food frequency questionnaire. We applied linear regression models to estimate the association between dietary protein and BUA. After multivariate adjustment, high intake of animal protein was associated with decreased BUA values (beta = -0.03; p = 0.010) whereas high vegetable protein intake was related to an increased BUA (beta = 0.11; p = 0.007). The effect of dietary animal protein on BUA was modified by calcium intake. High consumption of protein from animal origin may be unfavourable, whereas a higher vegetable protein intake may be beneficial for bone health. Our results strengthen the hypothesis that high calcium intake combined with adequate protein intake based on a high ratio of vegetable to animal protein may be protective against osteoporosis. Copyright (c) 2005 S. Karger AG, Basel.

  18. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Interactions of dietary protein and adiposity measures in relation to subsequent changes in body weight and waist circumference

    DEFF Research Database (Denmark)

    Ankarfeldt, Mikkel Z; Angquist, Lars; Jakobsen, Marianne Uhre

    2014-01-01

    and at follow-up about 5 years later were analyzed with multiple linear regression and dietary macronutrient substitution models. Interactions between dietary protein and baseline body mass index (BMI) and baseline WC adjusted for BMI (WCBMI ) (divided in tertiles; nine groups total), were analyzed in relation...... protein, whether replacing carbohydrate or fat, and weight change. However, individuals in the highest tertile of baseline BMI (irrespective of baseline WCBMI ) had significantly inverse change in waist circumference when protein replaced carbohydrate, but not when protein replaced fat. CONCLUSION......: Replacing carbohydrate with protein in the diet may prevent a relative increase in WC in individuals with a greater BMI....

  20. DIETARY PROTEIN INTAKE IS INDEPENDENTLY ASSOCIATED WITH THE URINARY EXCRETION OF PHOSPHATE

    Directory of Open Access Journals (Sweden)

    Vladimir Dobronravov

    2012-06-01

    Full Text Available Decrease of urinary phosphate (P excretion and P retention triggers activation of phosphotonins and subsequent development of secondary hyperparathyroidism in progressing of chronic kidney disease (CKD. The main source of P is dietary protein. No large studies are presented to-date to evaluate the relationship between dietary protein intake and parameters of P metabolism in CKD patients. This was a goal of the cross-sectional cohort study .11315 CKD patients were entered (males 43%. Median (10th-90th percentile of age and estimated glomerular filtration rate (GFR were 46 (24-69 and 64 (24-104. The analyzed data were: age, gender, body mass index (BMI serum albumin, creatinine, calcium and phosphate; 24-h urine creatinine, phosphate (P,proteinuria (DP. Estimated parameters includes: eGFR, fractional P excretion (FEP, 24-h P excretion (24-h UP, and P clearance (CP. Dietary protein intake (DPI was based on 24-h urinary urea excretion. No significant differences in serum phosphate were found in groups with various DPI. FEP, 24-h UP and CP were significantly higher in higher DPI range. DPI was positively associated with 24-h UP (β=0,287, p<0.000001 in multivariate model adjusted for age, gender, DP, eGFR, serum P, FEP, BMI, and Ca. Thus, DPI is considered to be the independent factor influencing urinary P excretion and hence contributing to progression of mineral and bone disease in renal dysfunction.

  1. Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Holmer-Jensen, Jens; Hartvigsen, Merete; Mortensen, L.S.

    2012-01-01

    Postprandial lipaemia is an established risk factor for atherosclerosis. To investigate the acute effect of four milk-derived dietary proteins (alpha-lactalbumin, whey isolate, caseinoglycomacropeptide and whey hydrolysate) on postprandial lipaemia, we have conducted a randomized, acute, single...

  2. Effect on Dietary Protein and Feeding Rate on Growth of Tiger Grouper (Epinephelus Fuscoguttatus) Juvenile

    OpenAIRE

    Marzuqi, Muhammad; Astuti, Ni Wayan Widya; Suwirya, Ketut

    2012-01-01

    The grouper fish culture was developed after its succesful seed production in hatchery well known. In grow-out culture grouper, the protein requirement and feeding rate have to know well in order to understand the effectiveness on feed utilization . The experiment was designed by factorial design with the first factor as 3 dietary protein (36%, 42%, 48%) and the second factor as 3 feeding rate ( 1,5%, 2,0%, 2,5%). Ten of juvenile tiger grouper (102, 51-102, 73 g of body weight) were stocked i...

  3. Intake of total protein, plant protein and animal protein in relation to blood pressure : a meta-analysis of observational and intervention studies

    NARCIS (Netherlands)

    Tielemans, S. M. A. J.; Altorf-van der Kuil, W.; Engberink, M. F.; Brink, E. J.; van Baak, M. A.; Bakker, S. J. L.; Geleijnse, J. M.

    There is growing evidence from epidemiological studies that dietary protein may beneficially influence blood pressure (BP), but findings are inconclusive. We performed a meta-analysis of 29 observational studies and randomized controlled trials (RCTs) of dietary protein and types of protein in

  4. Intake of total protein, plant protein and animal protein in relation to blood pressure: a meta-analysis of observatinoal and intervention studies

    NARCIS (Netherlands)

    Tielemans, S.M.A.J.; Altorf-van der Kuil, W.; Engberink, M.F.; Brink, E.J.; Baak, van M.A.; Bakker, S.J.; Geleijnse, J.M.

    2013-01-01

    There is growing evidence from epidemiological studies that dietary protein may beneficially influence blood pressure (BP), but findings are inconclusive. We performed a meta-analysis of 29 observational studies and randomized controlled trials (RCTs) of dietary protein and types of protein in

  5. Biochemical Evaluation of Phenylalanine Ammonia Lyase from Endemic Plant Cyathobasis fruticulosa (Bunge Aellen. for the Dietary Treatment of Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Seda Şirin

    2016-01-01

    Full Text Available Enzyme substitution therapy with the phenylalanine ammonia lyase (PAL is a new approach to the treatment of patients with phenylketonuria (PKU. This enzyme is responsible for the conversion of phenylalanine to trans-cinnamic acid. We assessed the PAL enzyme of the endemic plant Cyathobasis fruticulosa (Bunge Aellen. for its possible role in the dietary treatment of PKU. The enzyme was found to have a high activity of (64.9±0.1 U/mg, with the optimum pH, temperature and buffer (Tris–HCl and L-phenylalanine concentration levels of pH=8.8, 37 °C and 100 mM, respectively. Optimum enzyme activity was achieved at pH=4.0 and 7.5, corresponding to pH levels of gastric and intestinal juice, and NaCl concentration of 200 mM. The purifi cation of the enzyme by 1.87-fold yielded an activity of 98.6 U/mg. PAL activities determined by HPLC analyses before and after purification were similar. Two protein bands, one at 70 and the other at 23 kDa, were determined by Western blot analysis of the enzyme. This enzyme is a potential candidate for serial production of dietary food and biotechnological products.

  6. N-Glycosylation of Plant-produced Recombinant Proteins

    NARCIS (Netherlands)

    Bosch, H.J.; Castilho, A.; Loos, A.; Schots, A.; Steinkeller, H.

    2013-01-01

    Plants are gaining increasingly acceptance as a production platform for recombinant proteins. One reason for this is their ability to carry out posttranslational protein modifications in a similar if not identical way as mammalian cells. The capability of plants to carry out human-like complex

  7. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether...... dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD......) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total...

  8. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    Science.gov (United States)

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  9. Effects of dietary starch and protein levels on milk production and composition of dairy cows fed high concentrate diet

    Directory of Open Access Journals (Sweden)

    Mustafa Güçlü Sucak

    2017-07-01

    Full Text Available Abstract Twenty eight Holstein cows (averaged 41±31.5 and 82±24 days in milk, and 30.4±3.49 and 29.0±2.22 kg/d milk yield were fed a high concentrate diet (70:30 concentrate to forage to examine effects on milk production and composition. The cows were randomly assigned to receive four dietary treatments according to a 2 x 2 factorial arrangement. Factors were starch (14% and 22% and protein (15% and 18%. Wheat straw was used as forage source. The study lasted 6 weeks. Dry matter intake was not affected (P> 0.05 by the dietary treatments in the study. Milk yield increased with increased dietary protein level (P< 0.01. Milk urea nitrogen concentrations were affected by dietary protein and starch levels, but there was no interaction effect. Nitrogen efficiency (Milk N/N intake was decreased by increasing in dietary protein level (P< 0.01. In conclusion, the cows fed total mixed ration (TMR containing low level of wheat straw responded better when dietary protein increased. But, efficiency of N use and N excretion to the environment were worsened. Key words: Dairy cattle, milk composition, protein, starch, wheat straw

  10. Dietary Protein and Amino Acid Profiles in Relation to Risk of Dysglycemia: Findings from a Prospective Population-Based Study

    OpenAIRE

    Mirmiran, Parvin; Bahadoran, Zahra; Esfandyari, Saeed; Azizi, Fereidoun

    2017-01-01

    Considering the limited knowledge on the effects of dietary amino acid intake on dysglycemia, we assessed the possible association of dietary protein and amino acid patterns with the risk of pre-diabetes in a prospective population-based study. Participants without diabetes and pre-diabetes (n = 1878) were recruited from the Tehran Lipid and Glucose Study and were followed for a mean of 5.8 years. Their dietary protein and amino acid intakes were assessed at baseline (2006–2008); demographic,...

  11. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  12. 14-3-3 proteins in plant physiology.

    Science.gov (United States)

    Denison, Fiona C; Paul, Anna-Lisa; Zupanska, Agata K; Ferl, Robert J

    2011-09-01

    Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Dietary Protein in Older Adults: Adequate Daily Intake but Potential for Improved Distribution

    Directory of Open Access Journals (Sweden)

    Danielle K. Cardon-Thomas

    2017-02-01

    Full Text Available Daily distribution of dietary protein may be important in protecting against sarcopenia, specifically in terms of per meal amounts relative to a proposed threshold for maximal response. The aims of this study were to determine total and per meal protein intake in older adults, as well as identifying associations with physical activity and sedentary behavior. Three-day food diaries recorded protein intake in 38 participants. Protein distribution, coefficient of variation (CV, and per meal amounts were calculated. Accelerometry was used to collect physical activity data as well as volume and patterns of sedentary time. Average intake was 1.14 g·kg−1·day−1. Distribution was uneven (CV = 0.67, and 79% of participants reported <0.4 g·kg−1 protein content in at least 2/3 daily meals. Protein intake was significantly correlated with step count (r = 0.439, p = 0.007 and negatively correlated with sedentary time (r = −0.456, p = 0.005 and Gini index G, which describes the pattern of accumulation of sedentary time (r = −0.421, p = 0.011. Total daily protein intake was sufficient; however, distribution did not align with the current literature; increasing protein intake may help to facilitate optimization of distribution. Associations between protein and other risk factors for sarcopenia may also inform protective strategies.

  14. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  15. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.; Hota, Mrinal Kanti; Mallik, Sandipan B.; Maì ti, Chinmay Kumar

    2014-01-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  16. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.

    2014-06-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  17. Fosrenol for Enhancing Dietary Protein Intake in Hypoalbuminemic Dialysis Patients (FrEDI Study

    Directory of Open Access Journals (Sweden)

    Tara Koontz

    2012-06-01

    Full Text Available Protein-energy wasting (PEW, reflected by serum albumin 5.5 mg/dL is also common and is associated with high death risk. The traditional dietary approach to control hyperphosphatemia by limiting protein foods may cause or worsen PEW. We hypothesized that provision of a high protein diet including during HD treatment results in favorable outcomes if a potent phosphorus binder such as lanthanum carbonate (Fosrenol™ can control phosphorus simultaneously and conducted a pilot/feasibility randomized controlled trial in 110 hypoalbuminemic (<4.0 mg/dL MHD patients in several dialysis clinics. After a washout period and upon 1:1 randomization, we provided the INTERVENTION group with 8 weeks of high protein meals as prepared meal boxes (50 g protein, 850 Cal, phosphorus to protein ratio <10 mg/gm during each HD treatment, along with 0.5 to 1.5 g Fosrenol (titrated as needed plus dietary counseling to maintain a high dietary protein intake at home. The CONTROL group received meal boxes containing low calorie (<50 Cal and almost no protein (<1 g, such as salads during each HD treatment and continued non-Fosrenol binders. We examined combined change in serum albumin with remaining in target phosphorus range of 3.5-<5.5 mg/dL over the 8 weeks of intervention. Among the 51 intervention and 55 control subjects who qualified for the intention-to-treat analyses, the combined rise in albumin ≥0.2 g/dL while maintaining phosphorus in 3.5-<5.5 mg/dL range was achieved in 25.5% and 9.8%, respectively (χ² p-value 0.036. No serious adverse events were reported, and patients reported satisfaction with high protein meals during HD. Hence, provision of high protein meals combined with Fosrenol™ during HD is safe and may improve albumin while controlling serum phosphorus. ClinicalTrials.gov # NCT0111694

  18. Effect of voluntary exercise and dietary protein levels on incorporation of 14C-leucine into protein by mice liver slices in vitro

    International Nuclear Information System (INIS)

    Yashiro, Masanori; Kimura, Shuichi

    1983-01-01

    The effect of voluntary exercise on incorporation of 14 C-leucine into protein by mice liver slices in vitro were examined with mice fed 4 %, 6 % and 20 % protein diets. The incorporation of 14 C-leucine increased as dietary protein levels decreased and was significantly higher in liver slices of exercise groups than in slices of non-exercise groups. (author)

  19. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  20. Effect of dietary energy and protein content on growth and carcass traits of Pekin ducks.

    Science.gov (United States)

    Zeng, Q F; Cherry, P; Doster, A; Murdoch, R; Adeola, O; Applegate, T J

    2015-03-01

    A study was conducted to determine the influence of dietary energy and protein concentrations on growth performance and carcass traits of Pekin ducks from 15 to 35 d of age. In experiment 1, 14-d-old ducks were randomly assigned to 3 dietary metabolizable energy (11.8, 12.8, and 13.8 MJ/kg) and 3 crude protein concentrations (15, 17, and 19%) in a 3×3 factorial arrangement (6 replicate pens; 66 ducks/pen). Carcass characteristics were evaluated on d 28, 32, and 35. In Experiment 2, 15-d-old ducks (6 replicate cages; 6 ducks/cage) were randomly allotted to the 9 diets that were remixed with 0.5% chromic oxide. Excreta were collected from d 17 to 19, and ileal digesta was collected on d 19 to determine AMEn and amino acid digestibility. In Experiment 1, there were interactions (Pducks were fed a high dietary AMEn (13.75 MJ/kg) and high CP (19%, 1.21% SID Lys). These results provide a framework for subsequent modeling of amino acid and energy inputs and the corresponding outputs of growth performance and carcass components. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.

  1. Pharmaceutical proteins produced in plant bioreactor in recent years ...

    African Journals Online (AJOL)

    Plant bioreactor, also called molecular farming, has enormous potential to produce recombinant proteins infinitely. Products expressed in plants have natural physico-chemical properties and bioactivities. Plant bioreactor could be a safe, economic and convenient production system, and can been widely applied in ...

  2. Influence of Protein and Energy Level in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetics and Carcass Characteristics

    Directory of Open Access Journals (Sweden)

    F. G. Ríos-Rincón

    2014-01-01

    Full Text Available Forty-eight Pelibuey×Katahdin male intact lambs (23.87±2.84 kg were used in an 84-d feeding trial, with six pens per treatment in a 2×2 factorial design arrangement. The aim of the study was to evaluate the interaction of two dietary energy levels (3.05 and 2.83 Mcal/kg ME and two dietary protein levels (17.5% and 14.5% on growth performance, dietary energetics and carcass traits. The dietary treatments used were: i High protein-high energy (HP-HE; ii High protein-low energy (HP-LE; iii Low protein-high energy (LP-HE, and iv Low protein-low energy (LP-LE. With a high-energy level, dry matter intake (DMI values were 6.1% lower in the low-protein diets, while with low-energy, the DMI values did not differ between the dietary protein levels. Energy levels did not influence the final weight and average daily gain (ADG, but resulted in lower DMI values and higher gain efficiencies. No effects of protein level were detected on growth performance. The observed dietary net energy (NE ratio and observed DMI were closer than expected in all treatments and were not affected by the different treatments. There was an interaction (p2.80 Mcal/kg ME. Providing a level of protein above 14.5% does not improves growth-performance, dietary energetics or carcass dressing percentage.

  3. Immunoglobulin production is impaired in protein-deprived mice and can be restored by dietary protein supplementation

    Directory of Open Access Journals (Sweden)

    J.F. Amaral

    2006-12-01

    Full Text Available Most contacts with food protein and microbiota antigens occur at the level of the gut mucosa. In animal models where this natural stimulation is absent, such as germ-free and antigen-free mice, the gut-associated lymphoid tissue (GALT and systemic immunological activities are underdeveloped. We have shown that food proteins play a critical role in the full development of the immune system. C57BL/6 mice weaned to a diet in which intact proteins are replaced by equivalent amounts of amino acids (Aa diet have a poorly developed GALT as well as low levels of serum immunoglobulins (total Ig, IgG, and IgA, but not IgM. In the present study, we evaluated whether the introduction of a protein-containing diet in 10 adult Aa-fed C57BL/6 mice could restore their immunoglobulin levels and whether this recovery was dependent on the amount of dietary protein. After the introduction of a casein-containing diet, Aa-fed mice presented a fast recovery (after 7 days of secretory IgA (from 0.33 to 0.75 mg/mL, while in casein-fed mice this value was 0.81 mg/mL and serum immunoglobulin levels (from 5.39 to 10.25 mg/mL of total Ig. Five percent dietary casein was enough to promote the restoration of secretory IgA and serum immunoglobulin levels to a normal range after 30 days feeding casein diet (as in casein-fed mice - 15% by weight of diet. These data suggest that the defect detected in the immunoglobulin levels was a reversible result of the absence of food proteins as an antigenic stimulus. They also indicate that the deleterious consequences of malnutrition at an early age for some immune functions may be restored by therapeutic intervention later in life.

  4. Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.

    Science.gov (United States)

    Richardson, Michael

    1981-01-01

    Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)

  5. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  6. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dietary Curcumin Ameliorates Aging-Related Cerebrovascular Dysfunction through the AMPK/Uncoupling Protein 2 Pathway

    Directory of Open Access Journals (Sweden)

    Yunfei Pu

    2013-11-01

    Full Text Available Background/Aims: Age-related cerebrovascular dysfunction contributes to stroke, cerebral amyloid angiopathy, cognitive decline and neurodegenerative diseases. One pathogenic mechanism underlying this effect is increased oxidative stress. Up-regulation of mitochondrial uncoupling protein 2 (UCP2 plays a crucial role in regulating reactive oxygen species (ROS production. Dietary patterns are widely recognized as contributors to cardiovascular and cerebrovascular disease. In this study, we tested the hypothesis that dietary curcumin, which has an antioxidant effect, can improve aging-related cerebrovascular dysfunction via UCP2 up-regulation. Methods: The 24-month-old male rodents used in this study, including male Sprague Dawley (SD rats and UCP2 knockout (UCP2-/- and matched wild type mice, were given dietary curcumin (0.2%. The young control rodents were 6-month-old. Rodent cerebral artery vasorelaxation was detected by wire myograph. The AMPK/UCP2 pathway and p-eNOS in cerebrovascular and endothelial cells were observed by immunoblotting. Results: Dietary curcumin administration for one month remarkably restored the impaired cerebrovascular endothelium-dependent vasorelaxation in aging SD rats. In cerebral arteries from aging SD rats and cultured endothelial cells, curcumin promoted eNOS and AMPK phosphorylation, up-regulated UCP2 and reduced ROS production. These effects of curcumin were abolished by either AMPK or UCP2 inhibition. Chronic dietary curcumin significantly reduced ROS production and improved cerebrovascular endothelium-dependent relaxation in aging wild type mice but not in aging UCP2-/- mice. Conclusions: Curcumin improves aging-related cerebrovascular dysfunction via the AMPK/UCP2 pathway.

  8. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO2 Algal Extracts

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2017-01-01

    Full Text Available The review paper presents the use of algal extracts as safe and solvent-free components of plant growth biostimulants, dietary feed additives and cosmetics. Innovative technology that uses extracts obtained by supercritical CO2 extraction, as a method of isolation of biologically active compounds from algal biomass, is presented. An important part of the complete technology is the final formulation of the product. This enabled realization of the further step which was assessment of the utilitarian properties of the extract-based products. The extracts were analysed for the presence of biologically active molecules (e.g., plant hormones, polyphenols which provide useful properties such as antioxidant, antiviral, anti-inflammatory and antibacterial. The bio-products were tested in germination tests and underwent field trials to search for plant growth biostimulatory properties. Tests on animals (laying hens experiments were conducted to assess pro-health properties of new dietary feed supplement. Another application were cosmetic formulations (dermatological tests. The results of the application tests were very promising, however further studies are required for the registration of the products and successful implementation to the market.

  9. Dietary protein intake in patients with advanced chronic kidney disease and on dialysis.

    Science.gov (United States)

    Dukkipati, Ramanath; Noori, Nazanin; Feroze, Usama; Kopple, Joel D

    2010-01-01

    Many patients with chronic kidney disease (CKD), particularly those with stage 5 CKD, have protein wasting. The degree to which increased morbidity and mortality seen in these patients is due to protein depletion rather than to the often accompanying comorbidity is not clear. High protein diets lead to the accumulation of metabolites of protein that are potentially toxic. The MDRD Study, which investigated the effects of three levels of dietary protein and phosphorus intakes and two blood pressure goals on the progression of CKD, has several limitations. Several meta-analyses have examined the effects of low protein diets (LPD) on the progression of CKD. It is possible that the lower SUN levels or lesser degree of uremic symptoms may have contributed to the positive findings of LPD in the meta-analyses of Fouque and Pedrini et al., when compared with the study of Kasiske et al. A number of published reports indicate that LPD provide adequate protein for almost all clinically stable CKD patients and do not adversely affect body composition. In general, there are no large differences in the protein intake recommended by different expert groups for a given stage of CKD.

  10. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  11. Protein supplementation in strength and conditioning adepts: knowledge, dietary behavior and practice in Palermo, Italy

    Directory of Open Access Journals (Sweden)

    Bianco Antonino

    2011-12-01

    Full Text Available Abstract Background It is known that supplement use is a widespread and accepted practice by athletes and people who attend commercial gyms. Little is known about protein supplement amongst people undertaking strength training in commercial gyms in Italy when compared to the US. Objective The purpose of this study was to examine the use of protein supplementation, alone or in association with other supplements, and dietary behavior amongst regular fitness center attendees in Palermo, Italy. Design Resistance training information have been collected from 800 regular fitness center attendees for the initial analysis. A specific questionnaire was generated for the experimentation. Data were collected using a face-to-face interview method. Supplement users were then compared to the non users and analyzed using a one-way ANOVA, Kruskall-Wallis, chi-square test or exact test of Fisher when appropriate. Results 30.1% of the respondents use dietary supplements during their training as a believe it is the "way to gain muscles and strength". Whey protein shakes (50.0% mixed with creatine and amino-acids (48.3% were the most frequent choices amongst the users. A majority of the subjects (34.0% appeared to rely on their gym instructors' advice for their intake; a lower proportion (13.0% consulted physicians, while none of them consulted nutritionists. A high consumption of milk has been noticed in both users (67,7% and non-users (52,8%; supplement non-users consumed significantly more snacks and bakery products than users per week (P Conclusions A considerable number of regular strength training adepts consume protein supplements mixed with other products (mainly creatine and amino-acids. Limited numbers consult "dietary specialists" and rely mainly on their instructors. We emphasize on the importance of the dissemination of scientifically based information about supplementation in this environment and the promotion of updated educational programs for the

  12. Sources and Amounts of Animal, Dairy, and Plant Protein Intake of US Adults in 2007–2010

    Directory of Open Access Journals (Sweden)

    Stefan M. Pasiakos

    2015-08-01

    Full Text Available Dietary guidelines suggest consuming a mixed-protein diet, consisting of high-quality animal, dairy, and plant-based foods. However, current data on the distribution and the food sources of protein intake in a free-living, representative sample of US adults are not available. Data from the National Health and Nutrition Examination Survey (NHANES, 2007–2010, were used in these analyses (n = 10,977, age ≥ 19 years. Several US Department of Agriculture (USDA databases were used to partition the composition of foods consumed into animal, dairy, or plant components. Mean ± SE animal, dairy, and plant protein intakes were determined and deciles of usual intakes were estimated. The percentages of total protein intake derived from animal, dairy, and plant protein were 46%, 16%, and 30%, respectively; 8% of intake could not be classified. Chicken and beef were the primary food sources of animal protein intake. Cheese, reduced-fat milk, and ice cream/dairy desserts were primary sources of dairy protein intake. Yeast breads, rolls/buns, and nuts/seeds were primary sources of plant protein intake. This study provides baseline data for assessing the effectiveness of public health interventions designed to alter the composition of protein foods consumed by the American public.

  13. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna.

    Science.gov (United States)

    Meadows, Melissa G; Roudybush, Thomas E; McGraw, Kevin J

    2012-08-15

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent.

  14. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.

    Science.gov (United States)

    Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel

    2016-12-01

    Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  15. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins

    Directory of Open Access Journals (Sweden)

    Obed Ramírez-Sánchez

    2016-12-01

    Full Text Available Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa, average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81 aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt]. Streptophyta have on average only ∼5.7 exons of medium size (∼230 nt. Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400 nt. Among subcellular compartments, membrane proteins are the largest (∼520 aa, whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240 aa. Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.

  16. Threonine supplementation reduces dietary protein and improves lipid metabolism in Pekin ducks.

    Science.gov (United States)

    Jiang, Y; Tang, J; Xie, M; Wen, Z G; Qiao, S Y; Hou, S S

    2017-12-01

    1. This study was conducted to investigate the efficiency of threonine (Thr) supplementation on reducing dietary crude protein (CP) content and the effects of Thr on lipid metabolism in Pekin ducks. The effects of dietary CP concentration (160, 190 and 220 g/kg) and Thr supplemental concentration (0, 0.7, 1.4, 2.1 and 2.8 g/kg) on growth performance, carcass, liver lipid and plasma profiles were determined in Pekin ducks from 1-21 d of age. 2. A total of 720-d-old male Pekin ducks were randomly allotted to 1 of 15 dietary treatments with 6 replicate cages of 8 birds per cage for each treatment according to average body weight. 3. Dietary Thr supplementation improved growth performance and breast muscle percentage at all CP diets, and ducks fed Thr-supplemented diets had higher plasma concentrations of some plasma amino acids. Thr supplementation reduced the concentrations of total lipid, triglyceride, cholesterol in liver, and plasma low density lipoprotein cholesterin concentration at 160 and 190 g/kg CP, whereas it increased triglyceride concentration at 160 g/kg CP. 4. Thr requirements based on quadratic broken-line model estimation were 6.6 and 7.0 g/kg for optimal average daily gain (ADG), and 6.7 and 7.3 g/kg for breast muscle percentage of Pekin ducks from 1-21 d of age at 190 and 220 g/kg CP, respectively. The dietary Thr requirements and estimated ADG (55.18 vs. 55.86 g/d/bird) and breast muscle percentage (2.79% vs. 2.75%) of Pekin ducks did not differ between 190 and 220 g/kg CP according to the t-test results. 5. Dietary CP level could be reduced to 190 g/kg in Pekin ducks from 1-21 d of age with Thr supplementation to balance dietary amino acids, and Thr supplementation prevented excess liver lipid deposition in this instance.

  17. Association of Animal and Plant Proteins Intake with Hypertension in Iranian Adult Population: Isfahan Healthy Heart Program

    Directory of Open Access Journals (Sweden)

    Sanaz Mehrabani

    2017-01-01

    Full Text Available Background: There is evidence regarding the relationship between dietary proteins intake and blood pressure (BP, but they had inconsistent results. Therefore, this study was designed to assess the association between different kinds of protein intake (animal and plant protein and BP. Materials and Methods: Data were collected from Isfahan Healthy Heart Program. We performed a cross-sectional study among 9660 randomly selected Iranian adults aged ≥19-year-old that they were selected from three large Iranian regions in 2007. A simplified validated 48-item-food frequency questionnaire was used to assess dietary intake including all kinds of protein. Systolic and diastolic BPs were measured in duplicate by trained personnel using a standard protocol. Multivariable regressions were applied to assess the relationship between protein intake and BP levels and the presence of hypertension (HTN. Results: More frequent consumption of animal, plant, and total protein intake were inversely associated with BP in a crude model (P < 0.001; however, after adjustment for potential confounders this relationship remained only for plant protein (P = 0.04. The risk of HTN occurrence decreased in the highest quintile of total and plant protein consumption by 19% (odds ratio [OR] = 0.81; confidence interval [CI]: [0.65–0.96]; P for trend = 0.004 and 18% (OR = 0.82; [CI: (0.67–0.94]; P for trend = 0.03, respectively. Conclusions: More frequent protein intake, especially plant protein consumption was inversely associated with BP and risk of HTN among Iranian adults.

  18. Protein-enhanced soups: a consumer-accepted food for increasing dietary protein provision among older adults.

    Science.gov (United States)

    Donahue, Elizabeth; Crowe, Kristi Michele; Lawrence, Jeannine

    2015-02-01

    Protein-enhanced soups (PES) may improve protein intake among older adults. This study examined sensory attributes (aroma, texture, taste, and overall acceptability) and preferences of PES (chicken noodle and cheddar broccoli) compared with flavor-matched control soups (FCS) among older adults (≥65 years) and evaluated dietary profile changes of a standard menu based on the substitution of one PES serving/d for a standard soup. Modified paired preference tests and 5-point facial hedonic scales were administered to participants (n = 44). No significant differences in sensory attributes between either PES compared with FCS were identified, but significant gender- and age-related differences (p preferred protein-enhanced chicken noodle soup while only 38% preferred protein-enhanced cheddar broccoli soup to their respective FCS. Substituting one PES serving for one non-fortified soup serving per day resulted in significantly higher (p < 0.001) protein profile. Results suggest that all attributes of PES were consistent with sensory expectations and PES substitution could improve protein provision.

  19. A novel family of small proteins that affect plant development

    Energy Technology Data Exchange (ETDEWEB)

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  20. Towards plant protein refinery: Review on protein extraction using alkalo and potential enzymatic assistance

    NARCIS (Netherlands)

    Sari, Y.W.; Mulder, W.J.; Sanders, J.P.M.; Bruins, M.E.

    2015-01-01

    The globally increasing protein demands require additional resources to those currently available. Furthermore, the optimal usage of protein fractions from both traditional and new protein resources, such as algae and leaves, is essential. Here, we present an overview on alkaline plant protein

  1. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review.

    Science.gov (United States)

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Amaya-Farfan, Jaime

    2018-05-28

    Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.

  2. Effects of dietary energy density and digestible protein:energy ratio on de novo lipid synthesis from dietary protein in gilthead sea bream (Sparus aurata) quantified with stable isotopes

    DEFF Research Database (Denmark)

    Ekmann, Kim Schøn; Dalsgaard, Anne Johanne Tang; Holm, Jørgen

    2013-01-01

    to trace the metabolic fate of dietary protein, 1·8% fishmeal was replaced with isotope-labelled whole protein (.98% 13C). The experiment was divided into a growth period lasting 89 d, growing fish from approximately 140 to 350 g, followed by a 3 d period feeding isotope-enriched diets. Isotope ratio MS...

  3. Protein needs in athletes and dietary-nutrition guidelines to gain muscle mass

    Directory of Open Access Journals (Sweden)

    Aritz Urdampilleta

    2014-05-01

    Full Text Available One of the most important effects of strength training is muscular hypertrophy. Athletes should optimize their nutritional management in order to compensate their own genetic limitations. The aim of this review is to analyze the scientific evidence concerning protein intake as a tool to achieve muscle hypertrophy. Depending on the expenditure and energy intake of athlete, a daily protein ranging between 10-15% of total dietary intake is needed. However in sports diets, it is preferable to estimate the amount of protein needed per kilogram of body weight in each individual. In this regard athletes should ingest an amount between 1.2 g and 1.8 g of proteins/kg of body mass/day to maintain their lean mass. In order to increase muscle mass (0.5 kg/week, athletes should take between 1.6 g and 1.8 g of protein/kg/day with an increase of 400-500 kcal in their daily diet. These needs will depend on the sport, muscular catabolic status, the athlete’s lean mass and glycogen stores. Protein needs will increase if muscle and liver glycogen stores are empty. Excess of protein intake (more than 2 g/kg/day, with full glycogen stores, does not benefit the athlete and could cause an increase in circulating ketones and urea, thereby producing an early dehydration.

  4. Serum plant sterols as surrogate markers of dietary compliance in familial dyslipidemias.

    Science.gov (United States)

    Mateo-Gallego, Rocío; Baila-Rueda, Lucía; Mouratidou, Theodora; De Castro-Orós, Isabel; Bea, Ana M; Perez-Calahorra, Sofía; Cenarro, Ana; Moreno, Luis A; Civeira, Fernando

    2015-06-01

    A well-balanced diet is the first-line treatment in hyperlipidemia. The objective was to study the association between serum phytosterols and dietary patterns to use them as surrogate markers of dietary compliance in primary dyslipidemias. 288 patients with primary hyperlipidemias (192 autosomal dominant hypercholesterolemia (ADH) and 96 familial combined hyperlipidemia (FCHL)) were included. Principal factor analysis identified 2 major dietary patterns using a 137-item food frequency questionnaire. "Vegetable & Fruits pattern" was characterized by higher intake of fruits, green beans, nuts, tomatoes, roasted or boiled potatoes, lettuce and chard and lower of processed baked goods, pizza and beer. "Western pattern" was positively characterized by hamburgers, pasta, sunflower oil, rice, chickpeas, whole milk, veal, red beans and negatively with white fish. Serum non-cholesterol sterols were determined by HPLC-MS/MS. Plant sterols to-total cholesterol (TC) levels were lower with a higher adherence to a "Vegetable & Fruits pattern" (P = 0.009), mainly in ADH subjects (R(2) = 0.019). Their concentration was greater with higher compliance to "Western pattern" especially in FCHL (P = 0.014). Higher levels of synthesis markers-to-TC with a greater adherence to "Vegetable & Fruits pattern" were found (P = 0.001) (R(2) = 0.033 and R(2) = 0.109 in ADH and FCHL respectively). In subjects with primary dislipidemia, dietary patterns associate with serum absorption and synthesis markers, but no with lipid concentrations. The influence of diet on non-cholesterol sterols levels is not powerful enough to use them as subrogate markers. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance.

    Science.gov (United States)

    Bandegan, Arash; Courtney-Martin, Glenda; Rafii, Mahroukh; Pencharz, Paul B; Lemon, Peter Wr

    2017-05-01

    Background: Despite a number of studies indicating increased dietary protein needs in bodybuilders with the use of the nitrogen balance technique, the Institute of Medicine (2005) has concluded, based in part on methodologic concerns, that "no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise." Objective: The aim of the study was to assess the dietary protein requirement of healthy young male bodybuilders ( with ≥3 y training experience) on a nontraining day by measuring the oxidation of ingested l-[1- 13 C]phenylalanine to 13 CO 2 in response to graded intakes of protein [indicator amino acid oxidation (IAAO) technique]. Methods: Eight men (means ± SDs: age, 22.5 ± 1.7 y; weight, 83.9 ± 11.6 kg; 13.0% ± 6.3% body fat) were studied at rest on a nontraining day, on several occasions (4-8 times) each with protein intakes ranging from 0.1 to 3.5 g · kg -1 · d -1 , for a total of 42 experiments. The diets provided energy at 1.5 times each individual's measured resting energy expenditure and were isoenergetic across all treatments. Protein was fed as an amino acid mixture based on the protein pattern in egg, except for phenylalanine and tyrosine, which were maintained at constant amounts across all protein intakes. For 2 d before the study, all participants consumed 1.5 g protein · kg -1 · d -1 On the study day, the protein requirement was determined by identifying the breakpoint in the F 13 CO 2 with graded amounts of dietary protein [mixed-effects change-point regression analysis of F 13 CO 2 (labeled tracer oxidation in breath)]. Results: The Estimated Average Requirement (EAR) of protein and the upper 95% CI RDA for these young male bodybuilders were 1.7 and 2.2 g · kg -1 · d -1 , respectively. Conclusion: These IAAO data suggest that the protein EAR and recommended intake for male bodybuilders at rest on a nontraining day exceed the current recommendations of the Institute of Medicine by ∼2.6-fold

  6. Dietary protein and carbohydrate requirement of juvenile Hawaiian limpet (Cellana sandwicensis Pease, 1861 fed practical diet

    Directory of Open Access Journals (Sweden)

    Nhan Thai Hua

    2016-10-01

    Full Text Available Abstract This study was conducted to evaluate dietary protein and carbohydrate requirement of juvenile Hawaiian limpets Cellana sandwincensis. A total of 64 juvenile limpets (3.12 ± 0.86 g were fed five different dietary protein levels ranging from 270 to 470 g kg−1 for 90 days. Carbohydrate and lipid levels were held constant at 180 and 49.7 g kg−1, respectively. Weight gain and growth rates of the animals did not differ significantly (P > 0.05 among the protein levels ranging from 270 g kg−1 (0.30 % day−1 to 470 g kg−1 (0.23 % day−1. Next, opihi were fed four diets with protein levels from 210 to 500 g kg−1 with a constant carbohydrate level at 120 g kg−1. Weight gain and specific growth rates of opihi increased with increasing dietary protein from 210 to 350 g kg−1, and significantly (P < 0.05 decreased at the 500 g kg−1 diet. Highest weight gain, growth rates, and protein efficiency ratio were achieved at 350 g kg−1. Elevated carbohydrate levels (180–370 g kg−1 produced a significant difference (P < 0.05 in growth. The fastest growth rates of animals were obtained with 270 g kg−1 (0.27 % day−1 and 320 g kg−1 (0.26 % day−1. The weight gain of animals fed 180 and 370 g kg−1 carbohydrate diets were significantly (P < 0.05 lower than those of animals fed 270 and 320 g kg−1. We conclude that about 350 g kg−1 protein and 320 g kg−1 carbohydrate levels could be used for opihi.

  7. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  8. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    Directory of Open Access Journals (Sweden)

    Fabien J Démares

    Full Text Available Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera. Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  9. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    International Nuclear Information System (INIS)

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-01-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations

  10. Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks.

    Science.gov (United States)

    Shah, Faiz-Ul-Hassan; Sharif, Mian Kamran; Butt, Masood Sadiq; Shahid, Muhammad

    2017-06-01

    The study was aimed to develop protein, dietary fiber, and micronutrient enriched corn snacks through extrusion processing. Corn snacks supplemented with chickpea, defatted soy flour (20-40/100 g) and guar gum (7/100 g) were prepared through extrusion processing. Micronutrients (iron, zinc, iodine, and vitamins A, C, and folic acid) at recommended daily values were added in all formulations. Extruded corn snacks were analyzed for physical, textural, and sensory attributes. Results showed that piece density (0.34-0.44 g/cm 3 ), moisture (3.40-5.25%), water activity (0.203-0.361), hardness (64.4-133.2 N), and cohesiveness (0.25-0.44) was increased Whereas, expansion ratio (3.72-2.64), springiness (0.82-0.69), chewiness (1.63-0.42), and resilience (1.37-0.14) was decreased as supplementation with soy and chickpea flour increased from 20 to 40/100 g. Overall corn snack supplemented with 15/100 g of soy and 15/100 g of chickpea flour got the highest acceptance from the sensory panelists. The article focuses on physical, textural, and sensory attributes of extruded corn snacks enriched with protein, dietary fiber, and micronutrients Awareness about the importance of healthy snacks has grown among the consumers during the last decade. Extruded snacks developed using nutrient rich ingredients with good textural and sensory properties has always remained a challenge for the snack industry. Texture of the extruded snacks varies a lot with high levels of protein and dietary fiber. This study is helpful for the development of healthy snacks especially in developing countries lacking storage infrastructure or tropical environment. Nutrient rich extruded snacks can also be used to alleviate malnutrition by incorporating in school lunch programs. © 2016 Wiley Periodicals, Inc.

  11. Dietary protein and fat intake in relation to risk of colorectal adenoma in Korean.

    Science.gov (United States)

    Yang, Sun Young; Kim, Young Sun; Lee, Jung Eun; Seol, Jueun; Song, Ji Hyun; Chung, Goh Eun; Yim, Jeong Yoon; Lim, Sun Hee; Kim, Joo Sung

    2016-12-01

    Consumption of red meat and alcohol are known risk factors for colorectal cancer, but associations for dietary fat remain unclear. We investigated the associations of dietary fat, protein, and energy intake with prevalence of colorectal adenoma.We performed a prospective cross-sectional study on asymptomatic persons who underwent a screening colonoscopy at a single center during a routine health check-up from May to December 2011. Dietary data were obtained via a validated Food Frequency Questionnaire (FFQ), assisted by a registered dietician. We also obtained information on alcohol consumption and smoking status, and measured metabolic syndrome markers including abdominal circumference, blood pressure, fasting glucose, serum triglyceride and high-density lipoprotein cholesterol. We calculated odds ratio (OR) and 95% confidence interval (CI) to evaluate the associations using the polytomous logistic regression models. As a secondary analysis, we also conducted a matched analysis, matched by age and sex (557 cases and 557 non-cases).The study sample included 557 cases (406 males and 151 females) with histopathologically confirmed colorectal adenoma, and 1157 controls (650 males and 507 females). The proportion of advanced adenoma was 28.1% of men and 18.5% of female, respectively. Although vegetable protein intake was inversely associated with the prevalence of colorectal adenoma, further adjustment for potential confounding factors attenuated the association, resulting in no significant associations. There were no significant associations between dietary fat intake and colorectal adenoma in energy-adjusted models. For vegetable protein in women, the OR for the comparison of those in the highest tertile with those in the lowest tertile was 0.47 (95% CI 0.25-0.91, P for trend = 0.07) after adjustment for total energy intake. However, after controlling for metabolic syndrome markers, body mass index, smoking status, alcohol consumption, and family history of

  12. Lectin binders. A new group of plant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rudiger, H; Gebauer, G; Gansera, R; Schurz, H; Schimpl, A [Wuerzburg Univ. (Germany, F.R.)

    1982-09-01

    Lectins are widely distributed in the plant kingdom, many of them being well characterized in their chemical structure and the effects they have on alien biological systems such as erythrocytes or lymphocytes. The biological function of plant lectins remains speculative. We therefore inspected plant extracts from components which might bind specifically to the lectin from the respective plant. Single proteins (lectin binders) could be isolated from each plant extract. The interaction of these proteins with lectins was demonstrated and qualified by several methods. Similar to the lectins, the lectin binders are localized in the cytoplasm in contrast to them, however, they persist during germination and plant growth. Their precise role in the plant is not known, but they are likely to be associated with lectins not only in vitro but also in vivo. They also interact with alien cells, and are able to stimulate mitosis in murine lymphocytes. Some lectin binders act specifically on B lymphocytes, leaving T cells uninfluenced.

  13. Evolution, diversification and expression of KNOX proteins in plants

    Directory of Open Access Journals (Sweden)

    Jie eGao

    2015-10-01

    Full Text Available The KNOX (KNOTTED1-like homeobox transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.

  14. Effect of dietary proteins on the incorporation of amino acids in plasma proteins of ruminants

    International Nuclear Information System (INIS)

    Mehra, Usha R.; Singh, U.B.; Kumar, S.

    1979-01-01

    Experiments were conducted on nine male calves (Hariana x Holstein) of about one and a half years of age and fed different amounts of crude protein. 14 C-DL-leucine was injected into the blood of the animals and specific radioactivity of plasma protein measured. There was linear correlation between nitrogen ingested, digested and retained by the animals and the specific radioactivity of total plasma proteins. The experiments suggest the possible use of the incorporation of amino acids into plasma proteins as an index of nutritional status of the animals. (auth.)

  15. Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Far Eastern Catfish

    Directory of Open Access Journals (Sweden)

    Kyoung-Duck Kim

    2012-03-01

    Full Text Available A 3×2 factorial experiment was conducted to determine the effects of dietary protein and lipid levels on the growth and body composition of juvenile far eastern catfish. Six diets were formulated to contain three levels of protein (20%, 30% and 40% and two levels of lipid (9% and 17%. Triplicate groups of fish (initial body weight of 7.6 g were hand-fed to apparent satiation for 66 days. Final mean weight was improved with increasing dietary protein and lipid levels, and the highest final mean weight was observed in fish fed the 40/17 (% protein/% lipid diet. No significant difference was observed in final mean weight for fish fed between 30/17 diet and 40/9 diet. Feed efficiency of fish fed the diets containing over 30% protein levels with 9% and 17% lipid levels were significantly higher than those of fish fed the 20% protein levels. Feed efficiency of fish fed the 30/17 diet was not significantly different from that of fish fed the 40/9 diet or 40/17 diet. Feed efficiency and protein efficiency ratio of fish fed the 20% protein diets with 17% lipid level were significantly higher than those of fish fed 9% lipid diet. Daily feed intake of fish tended to decrease with increasing dietary protein and lipid levels. Moisture content of whole body in fish fed the 9% lipid diets was significantly higher than that of fish fed the 17% lipid diets at the same protein level, but the opposite trends were found for crude lipid content. Significant effects of dietary lipid were observed for most fatty acids, according to their relative values in the diets. The results of this study suggest that the protein requirement for maximum growth of juvenile far eastern catfish may be higher than 40%, and an increase of dietary lipid level from 9% to 17% can improve growth and feed utilization.

  16. Effect of Dietary Crude Protein and Methionine on Egg Production and Egg Quality of Laying Hens During Phase II

    Directory of Open Access Journals (Sweden)

    H Mohammadi Emarat

    2012-02-01

    Full Text Available An experiment was conducted to evaluate the effect of dietary crude protein and methionine levels on quality and quantity of egg production. Fifteen diets formulated with 3 levels of protein (13, 14 and 15% and 5 levels of methionine (0.25, 0.28, 0.31, 0.34 and 0.37% and fed to 420 birds in a 3×5 factorial arrangement. Each diet was randomly fed to 4 replicates of 7 birds each and fed for 3 periods of 4 weeks (50-62wks of age each. Egg number and mortality was recorded daily, whereas feed consumption determined at the end of each period. The increased in dietary protein significantly increased egg production from 54 to 59.4 %. Egg weight, egg mass and feed intake increased by 1.7 g, 3.4 g, and 2.8 g, respectively during the whole experimental period. As the dietary protein increased, feed conversion, egg component (as a percent of whale egg and egg albumin percent were improved. However, the egg breaking, specific gravity and eggshell were significantly decreased with increased dietary protein. The egg yolk percent was not influenced by dietary protein levels. The increased in dietary methionine from 0.25% to 0.37% caused the overall egg production, egg weight, egg mass, feed intake and egg component to improve by about 8.2%, 4g, 6.6g, 8.7g, and 6.0g, respectively. Feed conversion, specific gravity, egg breakage, egg shell, and egg yolk and albumin percent were not influenced by dietary methionine levels.

  17. Plant proteins as binders in cellulosic paper composites.

    Science.gov (United States)

    Fahmy, Yehia; El-Wakil, Nahla A; El-Gendy, Ahmed A; Abou-Zeid, Ragab E; Youssef, M A

    2010-07-01

    Plant proteins are used - for the first time - in this work as bulk binders for cellulosic fibers in paper composites. Soy bean protein and wheat gluten were denatured by two methods, namely by: urea+NaOH and by urea+NaOH+acrylamide. Addition of increased amounts of the denatured proteins resulted in a significant increase in all paper strength properties. Soy protein led, in addition, to a remarkable enhancement in opacity. The use of proteins increased kaolin retention in the paper composites, while keeping the paper strength higher than the blank protein-free paper. The results show that plant proteins are favorable than synthetic adhesives; because they are biodegradable and do not cause troubles in paper recycling i.e. they are environmentally friendly. (c) 2010 Elsevier B.V. All rights reserved.

  18. Dietary Intake of High-Protein Foods and Other Major Foods in Meat-Eaters, Poultry-Eaters, Fish-Eaters, Vegetarians, and Vegans in UK Biobank

    Science.gov (United States)

    2017-01-01

    Vegetarian diets are defined by the absence of meat and fish, but differences in the intake of other foods between meat-eaters and low or non-meat eaters are also important to document. We examined intakes of high-protein foods (meat, poultry, fish, legumes, nuts, vegetarian protein alternatives, dairy products, and eggs) and other major food groups (fruit, vegetables, bread, pasta, rice, snack foods, and beverages) in regular meat-eaters, low meat-eaters, poultry-eaters, fish-eaters, vegetarians, and vegans of white ethnicity participating in UK Biobank who had completed at least one web-based 24-h dietary assessment (n = 199,944). In regular meat-eaters, around 25% of total energy came from meat, fish, dairy and plant milk, cheese, yogurt, and eggs. In vegetarians, around 20% of energy came from dairy and plant milk, cheese, yoghurt, eggs, legumes, nuts, and vegetarian protein alternatives, and in vegans around 15% came from plant milk, legumes, vegetarian alternatives, and nuts. Low and non-meat eaters had higher intakes of fruit and vegetables and lower intakes of roast or fried potatoes compared to regular meat-eaters. The differences in the intakes of meat, plant-based high-protein foods, and other foods between meat-eaters and low and non-meat eaters in UK Biobank may contribute to differences in health outcomes. PMID:29207491

  19. Dietary Intake of High-Protein Foods and Other Major Foods in Meat-Eaters, Poultry-Eaters, Fish-Eaters, Vegetarians, and Vegans in UK Biobank.

    Science.gov (United States)

    Bradbury, Kathryn E; Tong, Tammy Y N; Key, Timothy J

    2017-12-02

    Vegetarian diets are defined by the absence of meat and fish, but differences in the intake of other foods between meat-eaters and low or non-meat eaters are also important to document. We examined intakes of high-protein foods (meat, poultry, fish, legumes, nuts, vegetarian protein alternatives, dairy products, and eggs) and other major food groups (fruit, vegetables, bread, pasta, rice, snack foods, and beverages) in regular meat-eaters, low meat-eaters, poultry-eaters, fish-eaters, vegetarians, and vegans of white ethnicity participating in UK Biobank who had completed at least one web-based 24-h dietary assessment ( n = 199,944). In regular meat-eaters, around 25% of total energy came from meat, fish, dairy and plant milk, cheese, yogurt, and eggs. In vegetarians, around 20% of energy came from dairy and plant milk, cheese, yoghurt, eggs, legumes, nuts, and vegetarian protein alternatives, and in vegans around 15% came from plant milk, legumes, vegetarian alternatives, and nuts. Low and non-meat eaters had higher intakes of fruit and vegetables and lower intakes of roast or fried potatoes compared to regular meat-eaters. The differences in the intakes of meat, plant-based high-protein foods, and other foods between meat-eaters and low and non-meat eaters in UK Biobank may contribute to differences in health outcomes.

  20. Dietary Intake of High-Protein Foods and Other Major Foods in Meat-Eaters, Poultry-Eaters, Fish-Eaters, Vegetarians, and Vegans in UK Biobank

    Directory of Open Access Journals (Sweden)

    Kathryn E. Bradbury

    2017-12-01

    Full Text Available Vegetarian diets are defined by the absence of meat and fish, but differences in the intake of other foods between meat-eaters and low or non-meat eaters are also important to document. We examined intakes of high-protein foods (meat, poultry, fish, legumes, nuts, vegetarian protein alternatives, dairy products, and eggs and other major food groups (fruit, vegetables, bread, pasta, rice, snack foods, and beverages in regular meat-eaters, low meat-eaters, poultry-eaters, fish-eaters, vegetarians, and vegans of white ethnicity participating in UK Biobank who had completed at least one web-based 24-h dietary assessment (n = 199,944. In regular meat-eaters, around 25% of total energy came from meat, fish, dairy and plant milk, cheese, yogurt, and eggs. In vegetarians, around 20% of energy came from dairy and plant milk, cheese, yoghurt, eggs, legumes, nuts, and vegetarian protein alternatives, and in vegans around 15% came from plant milk, legumes, vegetarian alternatives, and nuts. Low and non-meat eaters had higher intakes of fruit and vegetables and lower intakes of roast or fried potatoes compared to regular meat-eaters. The differences in the intakes of meat, plant-based high-protein foods, and other foods between meat-eaters and low and non-meat eaters in UK Biobank may contribute to differences in health outcomes.

  1. Estimation of the True Digestibility of Rumen Undegraded Dietary Protein in the Small Intestine of Ruminants by the Mobile Bag Technique

    DEFF Research Database (Denmark)

    Hvelplund, Torben; Weisbjerg, Martin Riis; Andersen, L. S.

    1992-01-01

    Dietary protein degraded to various extents by varying the time of rumen incubation was prepared from eight concentrates and four roughages. Intestinal digestibility was obtained using the mobile bag technique on intact protein and on the samples of undegraded dietary protein from each feed. The ...

  2. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms

    Science.gov (United States)

    Nirumand, Mina Cheraghi; Hajialyani, Marziyeh; Rahimi, Roja; Farzaei, Mohammad Hosein; Nabavi, Seyed Mohammad

    2018-01-01

    Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action. Camellia sinensis (green tea), Rubus idaeus (raspberry), Rubia cordifolia (common madder), Petroselinum crispum (parsley), Punica granatum (pomegranate), Pistacia lentiscus (mastic), Solanum xanthocarpum (yellow-fruit nightshade), Urtica dioica (stinging nettle), Dolichos biflorus (horse gram), Ammi visnaga (khella), Nigella sativa (black-cumin), Hibiscus sabdariffa (roselle), and Origanum vulgare (oregano) have received considerable interest based on scientific evidence. Beside these dietary plants, phytochemicals—such as catechin, epicatechin, epigallocatechin-3-gallate, diosmin, rutin, quercetin, hyperoside, and curcumin—as antioxidant dietary phyto-phenols were found to be effective for the prevention of urolithiasis (the process of stone formation in the urinary tract). The main underlying mechanisms of these dietary plants and their isolated phytonutrients in the management of urolithiasis include diuretic, antispasmodic, and antioxidant activity, as well as an inhibitory effect on crystallization, nucleation, and aggregation of crystals. The results as presented in this review demonstrate the promising role of dietary plants and phytophenols in the prevention and management of kidney stones. Further investigations are required to confirm the safety and efficacy of these compounds. PMID:29518971

  3. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms.

    Science.gov (United States)

    Nirumand, Mina Cheraghi; Hajialyani, Marziyeh; Rahimi, Roja; Farzaei, Mohammad Hosein; Zingue, Stéphane; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2018-03-07

    Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action. Camellia sinensis (green tea), Rubus idaeus (raspberry), Rubia cordifolia (common madder), Petroselinum crispum (parsley), Punica granatum (pomegranate), Pistacia lentiscus (mastic), Solanum xanthocarpum (yellow-fruit nightshade), Urtica dioica (stinging nettle), Dolichos biflorus ( horse gram ), Ammi visnaga (khella), Nigella sativa (black-cumin), Hibiscus sabdariffa (roselle), and Origanum vulgare (oregano) have received considerable interest based on scientific evidence. Beside these dietary plants, phytochemicals-such as catechin, epicatechin, epigallocatechin-3-gallate, diosmin, rutin, quercetin, hyperoside, and curcumin-as antioxidant dietary phyto-phenols were found to be effective for the prevention of urolithiasis (the process of stone formation in the urinary tract). The main underlying mechanisms of these dietary plants and their isolated phytonutrients in the management of urolithiasis include diuretic, antispasmodic, and antioxidant activity, as well as an inhibitory effect on crystallization, nucleation, and aggregation of crystals. The results as presented in this review demonstrate the promising role of dietary plants and phytophenols in the prevention and management of kidney stones. Further investigations are required to confirm the safety and efficacy of these compounds.

  4. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Mina Cheraghi Nirumand

    2018-03-01

    Full Text Available Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action. Camellia sinensis (green tea, Rubus idaeus (raspberry, Rubia cordifolia (common madder, Petroselinum crispum (parsley, Punica granatum (pomegranate, Pistacia lentiscus (mastic, Solanum xanthocarpum (yellow-fruit nightshade, Urtica dioica (stinging nettle, Dolichos biflorus (horse gram, Ammi visnaga (khella, Nigella sativa (black-cumin, Hibiscus sabdariffa (roselle, and Origanum vulgare (oregano have received considerable interest based on scientific evidence. Beside these dietary plants, phytochemicals—such as catechin, epicatechin, epigallocatechin-3-gallate, diosmin, rutin, quercetin, hyperoside, and curcumin—as antioxidant dietary phyto-phenols were found to be effective for the prevention of urolithiasis (the process of stone formation in the urinary tract. The main underlying mechanisms of these dietary plants and their isolated phytonutrients in the management of urolithiasis include diuretic, antispasmodic, and antioxidant activity, as well as an inhibitory effect on crystallization, nucleation, and aggregation of crystals. The results as presented in this review demonstrate the promising role of dietary plants and phytophenols in the prevention and management of kidney stones. Further investigations are required to confirm the safety and efficacy of these compounds.

  5. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  6. Effect of dietary protein levels on growth performance, mortality rate and clinical blood parameters in mink (Mustela vison)

    DEFF Research Database (Denmark)

    Damgaard, B.M.; Clausen, T.N.; Dietz, Hans Henrik

    1998-01-01

    Effects of dietary protein levels ranging from 35% to 15% of metabolizable energy (ME) and dietary fat levels ranging in a reciprocal fashion from 47% to 67% of ME, and a constant dietary carbohydrate level of 18% of ME were investigated in male mink kits in the growing-furring period. Growth...... performance, mortality rate, hepatic fatty infiltration, weights of body and liver, relative weight of liver, haematocrit values, plasma activities of alanine-aminotransferase (ALAT), aspartate-aminotransferase (ASAT) and creatine-kinase (CK), and plasma concentrations of chemical parameters were studied...

  7. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    Science.gov (United States)

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  8. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  9. Effect of changes in dietary protein and oil levels on production parameters of female broiler chickens

    International Nuclear Information System (INIS)

    Farran, M.T.; Barbour, G.W.; Usayran, N.N.; Darwish, A.

    2013-01-01

    Two experiments, as factorial arrangement of treatments in a complete randomized design, were conducted to evaluate weight gain (WG), feed conversion (FC), and carcass characteristics of female broilers fed diets varying in crude protein (CP) and metabolisable energy (ME) levels with graded oil supplementation. In experiment 1, the CP level was 190 and 220 g/kg in the starter diets and reduced by 25 g/kg for each grower diet with ME of 12.1 and 12.6 MJ /kg and oil level of 0 and 40 g/kg. In the second experiment, the level of CP was 190, 210, and 230 g/kg in the starter diets and reduced by 30g/kg in each corresponding grower diet with an oil level of 0, 20, and 40 g /kg. The 190 g/kg dietary CP reduced WG of birds at market age in both experiments but increased the FC value only in trial 2 (P < 0.05). In addition, it reduced protein and moisture contents but increased fat level in ready to cook (RTC) carcasses (P<0.05). In experiment 2, however, birds fed the 210 g CP/kg diet had WG and FC at market age, and yield of abdominal fat, pectoralis major muscle and drum, in addition to RTC carcass moisture comparable to those fed the highest dietary CP level. Dietary oil supplementation at 40 g/kg improved (P<0.05) bird WG and FC in both trials. In conclusion, diets containing 40 g oil/kg with 210 - 180 g CP/kg (starter and grower, respectively) can be safely fed to broiler females. (author)

  10. Protein supplementation in strength and conditioning adepts: knowledge, dietary behavior and practice in Palermo, Italy

    Science.gov (United States)

    2011-01-01

    Background It is known that supplement use is a widespread and accepted practice by athletes and people who attend commercial gyms. Little is known about protein supplement amongst people undertaking strength training in commercial gyms in Italy when compared to the US. Objective The purpose of this study was to examine the use of protein supplementation, alone or in association with other supplements, and dietary behavior amongst regular fitness center attendees in Palermo, Italy. Design Resistance training information have been collected from 800 regular fitness center attendees for the initial analysis. A specific questionnaire was generated for the experimentation. Data were collected using a face-to-face interview method. Supplement users were then compared to the non users and analyzed using a one-way ANOVA, Kruskall-Wallis, chi-square test or exact test of Fisher when appropriate. Results 30.1% of the respondents use dietary supplements during their training as a believe it is the "way to gain muscles and strength". Whey protein shakes (50.0%) mixed with creatine and amino-acids (48.3%) were the most frequent choices amongst the users. A majority of the subjects (34.0%) appeared to rely on their gym instructors' advice for their intake; a lower proportion (13.0%) consulted physicians, while none of them consulted nutritionists. A high consumption of milk has been noticed in both users (67,7%) and non-users (52,8%); supplement non-users consumed significantly more snacks and bakery products than users per week (P < 0.001), while users consumed significantly more protein-rich foods (P < 0.01) with a particular preference for meat (48.0%). Conclusions A considerable number of regular strength training adepts consume protein supplements mixed with other products (mainly creatine and amino-acids). Limited numbers consult "dietary specialists" and rely mainly on their instructors. We emphasize on the importance of the dissemination of scientifically based

  11. Viral vectors for production of recombinant proteins in plants.

    Science.gov (United States)

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  12. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  13. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  14. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Science.gov (United States)

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  15. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Directory of Open Access Journals (Sweden)

    Sousa Gabriela TD

    2012-07-01

    Full Text Available Abstract Obesity and type 2 diabetes mellitus (DM have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1; and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress.

  16. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    Science.gov (United States)

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Directory of Open Access Journals (Sweden)

    Sungback Cho

    2015-09-01

    Full Text Available This study was performed to investigate the effect of different levels of dietary crude protein (CP on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg fed diets containing three levels of dietary CP (20%, 17.5%, and 15% and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05 in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05 in CP 15% than in CP 20% group. There was a positive correlation (p<0.05 between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

  18. Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements.

    Science.gov (United States)

    Arcila Hernández, Lina M; Sanders, Jon G; Miller, Gabriel A; Ravenscraft, Alison; Frederickson, Megan E

    2017-12-01

    Many arboreal ants depend on myrmecophytic plants for both food and shelter; in return, these ants defend their host plants against herbivores, which are often insects. Ant-plant and other mutualisms do not necessarily involve the exchange of costly rewards or services; they may instead result from by-product benefits, or positive outcomes that do not entail a cost for one or both partners. Here, we examined whether the plant-ant Allomerus octoarticulatus pays a short-term cost to defend their host plants against herbivores, or whether plant defense is a by-product benefit of ant foraging for insect prey. Because the food offered by ant-plants is usually nitrogen-poor, arboreal ants may balance their diets by consuming insect prey or associating with microbial symbionts to acquire nitrogen, potentially shifting the costs and benefits of plant defense for the ant partner. To determine the effect of ant diet on an ant-plant mutualism, we compared the behavior, morphology, fitness, stable isotope signatures, and gaster microbiomes of A. octoarticulatus ants nesting in Cordia nodosa trees maintained for nearly a year with or without insect herbivores. At the end of the experiment, ants from herbivore exclosures preferred protein-rich baits more than ants in the control (i.e., herbivores present) treatment. Furthermore, workers in the control treatment were heavier than in the herbivore-exclusion treatment, and worker mass predicted reproductive output, suggesting that foraging for insect prey directly increased ant colony fitness. The gaster microbiome of ants was not significantly affected by the herbivore exclusion treatment. We conclude that the defensive behavior of some phytoecious ants is a by-product of their need for external protein sources; thus, the consumption of insect herbivores by ants benefits both the ant colony and the host plant. © 2017 by the Ecological Society of America.

  19. Regulation of hepatic peroxisome proliferator-activated receptor alpha expression but not adiponectin by dietary protein in finishing pigs.

    Science.gov (United States)

    Weber, T E; Kerr, B J; Spurlock, M E

    2008-10-01

    Soy protein regulates adiponectin and peroxisome proliferator-activated receptor alpha (PPARalpha) in some species, but the effect of dietary soy protein on adiponectin and PPARalpha in the pig has not been studied. Therefore, the objective of this study was to determine whether soya bean meal reduction or replacement influences serum adiponectin, adiponectin mRNA, serum metabolites and the expression of PPARalpha and other genes involved in lipid deposition. Thirty-three pigs (11 pigs per treatment) were subjected to one of three dietary treatments: (i) reduced crude protein (CP) diet containing soya bean meal (RCP-Soy), (ii) high CP diet containing soya bean meal (HCP-Soy) or (iii) high CP diet with corn gluten meal replacing soya bean meal (HCP-CGM) for 35 days. Dietary treatment had no effect on overall growth performance, feed intake or measures of body composition. There was no effect of dietary treatment on serum adiponectin or leptin. Dietary treatment did not affect the abundance of the mRNAs for adiponectin, PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthase in adipose tissue. The mRNA expression of PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthetase in loin muscle was not affected by dietary treatment. In liver tissue, the relative abundance of PPARalpha mRNA was greater (p Soy diets when compared to pigs fed RCP-Soy or HCP-CGM diets. Hepatic mRNA expression of acyl-CoA oxidase or fatty acid synthase was not affected by dietary treatment. Western blot analysis indicated that hepatic PPARalpha protein levels were decreased (p Soy diets when compared to pigs fed the HCP-Soy diets. These data suggest that increasing the soy protein content of swine diets increases hepatic expression of PPARalpha without associated changes in body composition.

  20. The dynamics of plant plasma membrane proteins: PINs and beyond.

    Science.gov (United States)

    Luschnig, Christian; Vert, Grégory

    2014-08-01

    Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment. © 2014. Published by The Company of Biologists Ltd.

  1. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)

    admin

    Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and ... to their role in stress signalling. Their role in transport of plant hormone auxin and mechanism of action in stress response shed new light on diverse role of.

  2. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    Science.gov (United States)

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  3. Functional diversification of structurally alike NLR proteins in plants.

    Science.gov (United States)

    Chakraborty, Joydeep; Jain, Akansha; Mukherjee, Dibya; Ghosh, Suchismita; Das, Sampa

    2018-04-01

    In due course of evolution many pathogens alter their effector molecules to modulate the host plants' metabolism and immune responses triggered upon proper recognition by the intracellular nucleotide-binding oligomerization domain containing leucine-rich repeat (NLR) proteins. Likewise, host plants have also evolved with diversified NLR proteins as a survival strategy to win the battle against pathogen invasion. NLR protein indeed detects pathogen derived effector proteins leading to the activation of defense responses associated with programmed cell death (PCD). In this interactive process, genome structure and plasticity play pivotal role in the development of innate immunity. Despite being quite conserved with similar biological functions in all eukaryotes, the intracellular NLR immune receptor proteins happen to be structurally distinct. Recent studies have made progress in identifying transcriptional regulatory complexes activated by NLR proteins. In this review, we attempt to decipher the intracellular NLR proteins mediated surveillance across the evolutionarily diverse taxa, highlighting some of the recent updates on NLR protein compartmentalization, molecular interactions before and after activation along with insights into the finer role of these receptor proteins to combat invading pathogens upon their recognition. Latest information on NLR sensors, helpers and NLR proteins with integrated domains in the context of plant pathogen interactions are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The influence of dietary crude protein intake on bone and mineral metabolism in sheep

    Directory of Open Access Journals (Sweden)

    T.S. Brand

    1999-07-01

    Full Text Available Increased dietary protein consumption is thought to cause calciuresis, a negative calcium balance and increased bone loss that may result in skeletal deformities and fracture. To explore this hypothesis, 40 approximately 100-day-old meat-type Merino ram lambs were fed, for 6 months, diets with an increasing crude protein (CP content (114, 142, 171 and 190 g/kg DM but approximately on an iso-nutrient basis with regard to metabolisable energy, calcium and phosphorus. Increased protein consumption modestly (NS enhanced calciuresis and resulted in significant (P < 0.01 limb skewness. This could not, however, be ascribed to osteopaenic bones, and compared with animals consuming lower protein rations, the bone mineral density (BMD and vertebral trabecular bone volume of animals fed high protein diets were significantly increased: theBMDof thoracic vertebrae was positively related to the CP intake (r=0.62; P < 0.001. In animals consuming higher protein diets, skeletal radiology and quantitative bone histology revealed no evidence of increased bone turnover as would be expected in animals that are in negative calcium balance. No relationship existed between limb skewness and the growth rate of lambs. However, the ratio of Ca:P in the forelimb (r = -0.98, vertebrae (r = -0.72 and rib (r = -0.42 was found to be inversely correlated with increased protein intake and resulted from an increase in the phosphorus content of bone, while the amount of bone calcium was unaffected. We conclude that qualitative micro-architectural abnormalities, and not mere bone loss, may underlie the skeletal deformities induced by increased protein consumption in sheep.

  5. Receptor-like proteins involved in plant disease resistance

    NARCIS (Netherlands)

    Kruijt, M.; Kock, de M.J.D.; Wit, de P.J.G.M.

    2005-01-01

    Race-specific resistance in plants against microbial pathogens is governed by several distinct classes of resistance (R) genes. This review focuses on the class that consists of the plasma membrane-bound leucine-rich repeat proteins known as receptor-like proteins (RLPs). The first isolated

  6. Dry fractionation for sustainable production of plant protein concentrates

    NARCIS (Netherlands)

    Pelgrom, P.J.M.

    2015-01-01

    The global demand for protein-rich foods is expected to double in the coming decades due to the increasing prosperity and world population. To keep up with the demand, the transition from an animal to a plant-based protein supply is desirable from long-term economic and environmental

  7. Antifreeze proteins enable plants to survive in freezing conditions

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... Recent studies have shown that plant AFPs bind to both prism planes and basal ... Abbreviations used: AFP, antifreeze protein; ECP, extra-cellular protein; IAC, ice adsorption ...... This work was partially supported by a grant (BT/PR10799/ ... ity in Ammopiptanthus mongolicus (in Chinese with English.

  8. High dietary sodium chloride causes further protein loss during head-down tilt bed rest (HDBR)

    Science.gov (United States)

    Buehlmeier, Judith; Frings-Meuthen, Petra; Baecker, Natalie; Stehle, Peter; Heer, Martina

    Human spaceflight is associated with a loss of body protein most likely caused by muscle degradation. Additionally astronauts tend towards a high dietary intake of sodium chloride (NaCl), which has recently been shown to induce low grade metabolic acidosis (Frings-Meuthen et al. JBMR, Epub 2007). In several patterns, e.g. chronical renal failure, metabolic acidosis is associated with protein catabolism. We therefore hypothesized that high dietary intake of NaCl enforces protein losses in HDBR, a model for physiological changes in microgravity (µG). Eight healthy male subjects (mean age 26.25 ± 3.5; mean body weight: 78.5 ± 4.1 kg) participated in a 14-day bed rest study in the metabolic ward of the DLR - Institute of Aerospace Medicine, Cologne, Germany. The study was carried out in a cross over design, consisting of two phases, each lasting 22 days (5 days adaptation, 14 days 6° HDBR and 3 days recovery). Both study phases were identical with respect to environmental conditions and study protocol. Subjects received an individually tailored, weight-maintaining diet containing 1.3 g protein/kg/day. The diet was identical in both study phases with the exception of NaClintake: Every subject received a low NaCl diet (0.7 mmol/kg/day) in one phase and a high NaCl diet (7.7 mmol/kg/day) in another one. Blood gas for analysis of acid-base balance was implemented at days 4 and 5 of adaptation, days 2, 5, 7, 10, 12, 14 of HDBR and days 2, 3 of recovery. Continuous urine collection started on the first day in the metabolic ward to analyze nitrogen excretion. Nitrogen balance was calculated from the difference between protein intake and urinary nitrogen excretion, determined by use of chemiluminescence (Grimble et al. JPEN, 1988). Plasma pH did not change significantly (p=0.285), but plasma bicarbonate and base excess decreased (p=0.0175; p=0.0093) with high NaCl intake in HDBR compared to the low NaCl diet. Nitrogen balance in HDBR was negative, as expected in

  9. Effect of dietary protein level on ewe milk yield and on air quality under different ventilation rates

    Directory of Open Access Journals (Sweden)

    A. Sevi

    2010-01-01

    Full Text Available The efficiency of dietary N utilization for milk protein synthesis in dairy animals is quite low (15 to 35% (NRC, 1988; Tamminga, 1992, therefore farmers are driven to use high protein level diets for sustaining milk production in lactating animals. Previous experiments have demonstrated that an increase in the protein level of diet from 13 to 16% resulted in higher blood urea concentrations (Jaime and Purroy, 1995 and increased N excretion in urine in sheep (Gonzalez et al., 1984.

  10. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats

    Directory of Open Access Journals (Sweden)

    Norton Layne E

    2012-07-01

    Full Text Available Abstract Background Leucine (Leu regulates muscle protein synthesis (MPS producing dose-dependent plasma Leu and MPS responses from free amino acid solutions. This study examined the role of Leu content from dietary proteins in regulation of MPS after complete meals. Methods Experiment 1 examined 4 protein sources (wheat, soy, egg, and whey with different Leu concentrations (6.8, 8.0, 8.8, and 10.9% (w/w, respectively on the potential to increase plasma Leu, activate translation factors, and stimulate MPS. Male rats (~250 g were trained for 14 day to eat 3 meals/day consisting of 16/54/30% of energy from protein, carbohydrates and fats. Rats were killed on d14 either before or 90 min after consuming a 4 g breakfast meal. Experiment 2 compared feeding wheat, whey, and wheat + Leu to determine if supplementing the Leu content of the wheat meal would yield similar anabolic responses as whey. Results In Experiment 1, only whey and egg groups increased post-prandial plasma Leu and stimulated MPS above food-deprived controls. Likewise, greater phosphorylation of p70 S6 kinase 1 (S6K1 and 4E binding protein-1 (4E-BP1 occurred in whey and egg groups versus wheat and soy groups. Experiment 2 demonstrated that supplementing wheat with Leu to equalize the Leu content of the meal also equalized the rates of MPS. Conclusion These findings demonstrate that Leu content is a critical factor for evaluating the quantity and quality of proteins necessary at a meal for stimulation of MPS.

  11. Replacement of dietary soy- with air classified faba bean protein concentrate alters the hepatic transcriptome in Atlantic salmon (Salmo salar) parr.

    Science.gov (United States)

    De Santis, Christian; Crampton, Viv O; Bicskei, Beatrix; Tocher, Douglas R

    2015-12-01

    The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates. The primary aim of the present study was to assess the metabolic response of salmon to increasing inclusion of air-classified faba bean protein concentrate (BPC) in feeds as a replacement for soy protein concentrate (SPC). Specifically, we tested treatments with identical contents of fishmeal (222.4gkg(-1)) and progressively higher inclusion of BPC (0gkg(-1), 111.8gkg(-1), 223.6gkg(-1), 335.4gkg(-1), 447.2gkg(-1)) substituting SPC. This study demonstrated a dose-dependent metabolic response to a plant ingredient and was the first to compare the nutrigenomic transcriptional responses after substitution of terrestrial feed ingredients such as BPC and SPC without withdrawal of marine ingredients. It was found that after eight weeks a major physiological response in liver was only evident above 335.4gkg(-1) BPC and included decreased expression of metabolic pathways, and increased expression of genes regulating transcription and translation processes and the innate immune response. Furthermore, we showed that the nutritional stress caused by BPC resembled, at least at hepatic transcriptional level, that caused by soybean meal (included as a positive control in our experimental design). The outcomes of the present study suggested that Atlantic salmon parr might efficiently utilize moderate substitution of dietary SPC with BPC, with the optimum inclusion level being around 120gkg(-1)in the type of feeds

  12. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  13. Dietary phosphorus restriction in dialysis patients: potential impact of processed meat, poultry, and fish products as protein sources.

    Science.gov (United States)

    Sherman, Richard A; Mehta, Ojas

    2009-07-01

    Dietary intake of phosphorus is derived largely from protein sources and is a critical determinant of phosphorus balance in patients with chronic kidney disease. Information about the phosphorus content of prepared foods generally is unavailable, but it is believed to contribute significantly to the phosphorus burden of patients with chronic kidney disease. Analysis of dietary components. We measured the phosphorus content of 44 food products, including 30 refrigerated or frozen precooked meat, poultry, and fish items, generally national brands. Measured and reported phosphorus content of foods. Phosphorus by using Association of Analytical Communities official method 984.27; protein by using Association of Analytical Communities official method 990.03. We found that the ratio of phosphorus to protein content in these items ranged from 6.1 to 21.5 mg of phosphorus per 1 g of protein. The mean ratio in the 19 food products with a label listing phosphorus as an additive was 14.6 mg/g compared with 9.0 mg/g in the 11 items without listed phosphorus. The phosphorus content of only 1 precooked food product was available in a widely used dietary database. Results cannot be extrapolated to other products. Manufacturers also may alter the phosphorus content of foods at any time. Protein content was not directly measured for all foods. Better reporting of phosphorus content of foods by manufacturers could result in improved dietary phosphorus control without risk of protein malnutrition.

  14. Oxidation of Proteins in Plants-Mechanisms and Consequences

    DEFF Research Database (Denmark)

    Sweetlove, Lee J; Møller, Ian M

    2009-01-01

    The production of reactive oxygen and reactive nitrogen species in plant cells can lead to a variety of modifications of proteins through oxidation of amino acid side groups. The widespread occurrence of such modifications is becoming appreciated as new proteomic approaches allow their systematic....... A view that such modifications could have signalling ramifications is emerging. However, in many cases there is a lack of information as to the effect of oxidation on protein activity or function. Severe protein oxidation is costly to the cell since oxidatively damaged proteins need to be degraded...... of modified proteins by affinity purification. Although there are several technical caveats with such approaches, they have been useful in documenting the extent of oxidative modification of proteins and have highlighted a number of proteins where oxidative modification is critical for protein function...

  15. MORC Proteins: Novel Players in Plant and Animal Health.

    Science.gov (United States)

    Koch, Aline; Kang, Hong-Gu; Steinbrenner, Jens; Dempsey, D'Maris A; Klessig, Daniel F; Kogel, Karl-Heinz

    2017-01-01

    Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

  16. MORC Proteins: Novel Players in Plant and Animal Health

    Directory of Open Access Journals (Sweden)

    Aline Koch

    2017-10-01

    Full Text Available Microrchidia (MORC proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

  17. Protein disorder in plants: a view from the chloroplast

    Directory of Open Access Journals (Sweden)

    Yruela Inmaculada

    2012-09-01

    Full Text Available Abstract Background The intrinsically unstructured state of some proteins, observed in all living organisms, is essential for basic cellular functions. In this field the available information from plants is limited but it has been reached a point where these proteins can be comprehensively classified on the basis of disorder, function and evolution. Results Our analysis of plant genomes confirms that nuclear-encoded proteins follow the same trend than other multi-cellular eukaryotes; however, chloroplast- and mitochondria- encoded proteins conserve the patterns of Archaea and Bacteria, in agreement with their phylogenetic origin. Based on current knowledge about gene transference from the chloroplast to the nucleus, we report a strong correlation between the rate of disorder of transferred and nuclear-encoded proteins, even for polypeptides that play functional roles back in the chloroplast. We further investigate this trend by reviewing the set of chloroplast ribosomal proteins, one of the most representative transferred gene clusters, finding that the ribosomal large subunit, assembled from a majority of nuclear-encoded proteins, is clearly more unstructured than the small one, which integrates mostly plastid-encoded proteins. Conclusions Our observations suggest that the evolutionary dynamics of the plant nucleus adds disordered segments to genes alike, regardless of their origin, with the notable exception of proteins currently encoded in both genomes, probably due to functional constraints.

  18. Role of Dietary Protein and Muscular Fitness on Longevity and Aging.

    Science.gov (United States)

    Strasser, Barbara; Volaklis, Konstantinos; Fuchs, Dietmar; Burtscher, Martin

    2018-02-01

    Muscle atrophy is an unfortunate effect of aging and many diseases and can compromise physical function and impair vital metabolic processes. Low levels of muscular fitness together with insufficient dietary intake are major risk factors for illness and mortality from all causes. Ultimately, muscle wasting contributes significantly to weakness, disability, increased hospitalization, immobility, and loss of independence. However, the extent of muscle wasting differs greatly between individuals due to differences in the aging process per se as well as physical activity levels. Interventions for sarcopenia include exercise and nutrition because both have a positive impact on protein anabolism but also enhance other aspects that contribute to well-being in sarcopenic older adults, such as physical function, quality of life, and anti-inflammatory state. The process of aging is accompanied by chronic immune activation, and sarcopenia may represent a consequence of a counter-regulatory strategy of the immune system. Thereby, the kynurenine pathway is induced, and elevation in the ratio of kynurenine to tryptophan concentrations, which estimates the tryptophan breakdown rate, is often linked with inflammatory conditions and neuropsychiatric symptoms. A combined exercise program consisting of both resistance-type and endurance-type exercise may best help to ameliorate the loss of skeletal muscle mass and function, to prevent muscle aging comorbidities, and to improve physical performance and quality of life. In addition, the use of dietary protein supplementation can further augment protein anabolism but can also contribute to a more active lifestyle, thereby supporting well-being and active aging in the older population.

  19. Chemical Utilization of Albizia lebbeck Leaves for Developing Protein Concentrates as a Dietary Supplement.

    Science.gov (United States)

    Khan, Lutful Haque; Varshney, V K

    2017-08-17

    In search of nonconventional sources of protein to combat widespread malnutrition, the possibility of developing a protein concentrate as an alternative dietary supplement from abundantly available yet poorly valorized leaves of Albizia lebbeck (siris) was examined. A process for recovery of leaf protein concentrate (LPC) from these leaves was optimized and applied for isolation of LPCs from lower, middle, and upper canopies of the tree. The optimized conditions (leaves to water 1:9, coagulation at pH 4.0 using 1 N citric acid at 90°C for 11 minutes) afforded LPCs containing protein 37.15%, 37.57%, and 37.76% in 5.99%, 5.97%, and 6.07% yield, respectively. The proximate nutritional composition, pigments, minerals, in vitro digestibility, and antinutritional factors of these LPCs were determined. Analysis of variance of these data revealed no significant difference with respect to canopy. Use of Albizia lebbeck leaves for development of LPC as a food/feed supplement was revealed.

  20. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health

    Directory of Open Access Journals (Sweden)

    Barbara A. Williams

    2017-10-01

    Full Text Available The majority of dietary fibre (DF originates from plant cell walls. Chemically, DF mostly comprise carbohydrate polymers, which resist hydrolysis by digestive enzymes in the mammalian small intestine, but can be fermented by large intestinal bacteria. One of the main benefits of DF relate to its fermentability, which affects microbial diversity and function within the gastro-intestinal tract (GIT, as well as the by-products of the fermentation process. Much work examining DF tends to focus on various purified ingredients, which have been extracted from plants. Increasingly, the validity of this is being questioned in terms of human nutrition, as there is evidence to suggest that it is the actual complexity of DF which affects the complexity of the GIT microbiota. Here, we review the literature comparing results of fermentation of purified DF substrates, with whole plant foods. There are strong indications that the more complex and varied the diet (and its ingredients, the more complex and varied the GIT microbiota is likely to be. Therefore, it is proposed that as the DF fermentability resulting from this complex microbial population has such profound effects on human health in relation to diet, it would be appropriate to include DF fermentability in its characterization—a functional approach of immediate relevance to nutrition.

  1. Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Sandra C. Gouveia-Figueira

    2014-10-01

    Full Text Available The potential bioactivity of dietary and medicinal endemic Helichrysum plants from Madeira Archipelago was explored, for the first time, in order to supply new information for the general consumer. In vitro antioxidant properties were investigated using DPPH, ABTS•+, FRAP and β-Carotene assays, and the total phenolic content (TPC and total flavonoid content (TFC were also determined. Although the results generally showed a large variation among the three analyzed plants, the methanolic extracts showed the highest antioxidant capacity. Exception is made for H. devium n-hexane extract that showed good radical scavenger capacity associated to compounds with good reducing properties. In the Artemia salina toxicity assay and antimycobaterial activity, H. devium was the most potent plant with the lowest LD50 at 216.7 ± 10.4 and MIC ≤ 50 μg·mL−1. Chemometric evaluation (Principal Component Analysis—PCA showed close interdependence between the ABTS, TPC and TFC methods and allowed to group H. devium samples.

  2. Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants.

    Science.gov (United States)

    Gouveia-Figueira, Sandra C; Gouveia, Carla A; Carvalho, Maria J; Rodrigues, Ana I; Nording, Malin L; Castilho, Paula C

    2014-10-31

    The potential bioactivity of dietary and medicinal endemic Helichrysum plants from Madeira Archipelago was explored, for the first time, in order to supply new information for the general consumer. In vitro antioxidant properties were investigated using DPPH, ABTS(•+), FRAP and β-Carotene assays, and the total phenolic content (TPC) and total flavonoid content (TFC) were also determined. Although the results generally showed a large variation among the three analyzed plants, the methanolic extracts showed the highest antioxidant capacity. Exception is made for H. devium n-hexane extract that showed good radical scavenger capacity associated to compounds with good reducing properties. In the Artemia salina toxicity assay and antimycobaterial activity, H. devium was the most potent plant with the lowest LD50 at 216.7 ± 10.4 and MIC ≤ 50 μg·mL(-1). Chemometric evaluation (Principal Component Analysis-PCA) showed close interdependence between the ABTS, TPC and TFC methods and allowed to group H. devium samples.

  3. On characterization of anisotropic plant protein structures

    NARCIS (Netherlands)

    Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Goot, van der A.J.; Stefanidis, G.D.

    2014-01-01

    In this paper, a set of complementary techniques was used to characterize surface and bulk structures of an anisotropic Soy Protein Isolate (SPI)–vital wheat gluten blend after it was subjected to heat and simple shear flow in a Couette Cell. The structured biopolymer blend can form a basis for a

  4. Additive and Synergistic Modulation of LPS-induced NF-kappa B Activity by Dietary Plant Extracts

    OpenAIRE

    Kolberg, Marit

    2008-01-01

    Epidemiological studies have shown that a high intake of fruits and vegetables is associated with a reduced risk of chronic diseases. The mechanisms behind these beneficial effects are not fully understood, but it is widely believed that the numerous phytochemicals found in plants and interactions between them plays an important role. In the present work 8 different dietary plant extracts are selected on basis of their high phytochemical content and their ability to inhibit the transcription ...

  5. Blood profile of proteins and steroid hormones predicts weight change after weight loss with interactions of dietary protein level and glycemic index.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-02-01

    Full Text Available Weight regain after weight loss is common. In the Diogenes dietary intervention study, high protein and low glycemic index (GI diet improved weight maintenance.To identify blood predictors for weight change after weight loss following the dietary intervention within the Diogenes study.Blood samples were collected at baseline and after 8-week low caloric diet-induced weight loss from 48 women who continued to lose weight and 48 women who regained weight during subsequent 6-month dietary intervention period with 4 diets varying in protein and GI levels. Thirty-one proteins and 3 steroid hormones were measured.Angiotensin I converting enzyme (ACE was the most important predictor. Its greater reduction during the 8-week weight loss was related to continued weight loss during the subsequent 6 months, identified by both Logistic Regression and Random Forests analyses. The prediction power of ACE was influenced by immunoproteins, particularly fibrinogen. Leptin, luteinizing hormone and some immunoproteins showed interactions with dietary protein level, while interleukin 8 showed interaction with GI level on the prediction of weight maintenance. A predictor panel of 15 variables enabled an optimal classification by Random Forests with an error rate of 24±1%. A logistic regression model with independent variables from 9 blood analytes had a prediction accuracy of 92%.A selected panel of blood proteins/steroids can predict the weight change after weight loss. ACE may play an important role in weight maintenance. The interactions of blood factors with dietary components are important for personalized dietary advice after weight loss.ClinicalTrials.gov NCT00390637.

  6. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    Science.gov (United States)

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Expression and affinity purification of recombinant proteins from plants

    Science.gov (United States)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  8. Physical Activity Modifies the Association between Dietary Protein and Lean Mass of Postmenopausal Women.

    Science.gov (United States)

    Martinez, Jessica A; Wertheim, Betsy C; Thomson, Cynthia A; Bea, Jennifer W; Wallace, Robert; Allison, Matthew; Snetselaar, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A

    2017-02-01

    Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Our aim was to evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. We performed a cross-sectional analysis of a prospective cohort. Participants were postmenopausal women from the Women's Health Initiative with body composition measurements by dual-energy x-ray absorptiometry (n=8,298). Our study measured percent lean mass, percent fat mass, and lean body mass index. Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (Plean body mass index were both inversely related to protein intake (both Plean body mass index (P interaction =0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both Plean mass in postmenopausal women. Importantly, those that also engage in physical activity have the highest lean mass across body mass index categories. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Dietary balanced protein in broiler chickens. 1. A flexible and practical tool to predict dose-response curves

    NARCIS (Netherlands)

    Eits, R.M.; Kwakkel, R.P.; Verstegen, M.W.A.; Hartog, den L.A.

    2005-01-01

    1. An empirical model of exponential form was developed, different versions of which can be used to predict growth rate, feed conversion and carcase and breast meat yield of broiler chickens as a function of dietary balanced protein ( DBP) content. The model was developed to support decision- making

  10. Effect of dietary protein level and quebracho tannin on consumption of pine needles (Pinus ponderosa) by beef cows

    Science.gov (United States)

    Ponderosa pine trees occupy over 15 million hectares of rangeland in western North America. Pregnant cows often consume pine needles (PN), and subsequently abort. The protein-to-energy ratio may be important in the ability of cattle to tolerate dietary terpenes. Tannins often co-occur with terpenes ...

  11. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi.

    Science.gov (United States)

    Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth

    2013-09-01

    Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.

  12. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    Full Text Available Dietary protein levels and cysteamine (CS supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP levels (14% or 10% and CS supplemental levels (0 or 700 mg/kg. The low-protein (LP diets (10% CP were supplemented with enough essential amino acids (EAA to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS (P<0.01 and plasma urea nitrogen (PUN (P<0.001, while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001 and lean percentage (P<0.05, and decreased the feed conversion ratio (P<0.05 and back fat (P<0.05. CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1 (P<0.001, and reduced the concentrations of leptin, SS, and PUN (P<0.001. Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001 and decreased mRNA abundance of Forkhead Box O (FOXO 4 (P<0.01 and muscle atrophy F-box (P<0.001 were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target of

  13. Plant protein annotation in the UniProt Knowledgebase.

    Science.gov (United States)

    Schneider, Michel; Bairoch, Amos; Wu, Cathy H; Apweiler, Rolf

    2005-05-01

    The Swiss-Prot, TrEMBL, Protein Information Resource (PIR), and DNA Data Bank of Japan (DDBJ) protein database activities have united to form the Universal Protein Resource (UniProt) Consortium. UniProt presents three database layers: the UniProt Archive, the UniProt Knowledgebase (UniProtKB), and the UniProt Reference Clusters. The UniProtKB consists of two sections: UniProtKB/Swiss-Prot (fully manually curated entries) and UniProtKB/TrEMBL (automated annotation, classification and extensive cross-references). New releases are published fortnightly. A specific Plant Proteome Annotation Program (http://www.expasy.org/sprot/ppap/) was initiated to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Through UniProt, our aim is to provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information that will allow the plant community to fully explore and utilize the wealth of information available for both plant and non-plant model organisms.

  14. Influence of dietary lipid and protein sources on the sensory quality of organic rainbow trout (Oncorhynchus mykiss) after ice storage

    DEFF Research Database (Denmark)

    Green-Petersen, Ditte; Hyldig, Grethe; Jacobsen, Charlotte

    2014-01-01

    The influence of dietary protein and lipid sources on the quality of organic rainbow trout (Oncorhynchus mykiss) was studied. The protein and oil sources were fishmeal, fish oil, and organic vegetable protein and oils. Sensory profiling was performed during 3 to 14 days of ice storage along...... with lipid analyses of the fillet. Overall, the results showed that the sensory characteristics of the trout were affected in different ways during ice storage. The source of lipid seemed to affect the sensory quality at the beginning of the storage period, while the protein source seemed to have a more...

  15. Romanian plant produces protein concentrate from paraffin-nourished yeasts

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    One of the world's few factories in which proteins are produced by continuous biotechnology is located in Romania. Here, at the bioproteins plant, microorganisms are converted into a flour which contains a protein concentrate that is so essential to the fattening of swine, cattle, sheep, fowl, and fish. These microorganisms are Candida type yeasts. The culture medium in which they are grown contains sulfates and phosphates. Paraffin, a petroleum product, supplies the carbon that is essential to the microorganisms viability.

  16. Taste sensitivity for monosodium glutamate and an increased liking of dietary protein.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Smeets, Astrid J P G; Westerterp-Plantenga, Margriet S

    2008-04-01

    The aim of the present study was to determine individuals' taste threshold for monosodium glutamate (MSG) alone and in combination with inosine 5'-monophosphate (IMP-5) and to examine if this threshold was related to an increase in sensory properties (including pleasantness of taste) and/or to one's preference for dietary protein over carbohydrate and fat. Using the triangle tasting method, the taste threshold was determined for thirty-six women and twenty-four men. Thresholds varied from zero to infinite as determined using a clear soup with added MSG in the concentration range of 0.1 to 0.8 % (w/w) MSG. Subjects rated fourteen sensory properties of the soup and also their 'liking', 'eating frequency' and 'preference' of twenty-two common high-protein, high-carbohydrate and high-fat food items. The taste threshold (and therefore sensitivity) of MSG was lowered from 0.33 (sem 0.24) to 0.26 (sem 0.22) % MSG when 0.25 % (w/w) IMP-5 was added. None of the sensory properties assessed was associated with the taste threshold of MSG +/- 0.25 % IMP-5 in the overall study population. However, the taste descriptor 'meatiness' was associated with the threshold data for individuals who could taste concentrations of protein were found to be related to the threshold of MSG +/- 0.25 % IMP-5. From this study population we conclude that the taste threshold of MSG in combination with IMP-5 does appear to predict one's 'liking' of as well as 'preference' for high-protein foods.

  17. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers.

    Science.gov (United States)

    Shim, M Y; Song, E; Billard, L; Aggrey, S E; Pesti, G M; Sodsee, P

    2013-10-01

    The effects of a series of balanced dietary protein levels on egg production and egg quality parameters of laying hens from 18 through 74 wk of age were investigated. One hundred forty-four pullets (Bovans) were randomly assigned to individual cages with separate feeders including 3 different protein level series of isocaloric diets. Diets were separated into 4 phases of 18-22, 23-32, 33-44, and 45-74 wk of age. The high protein (H) series contained 21.62, 19.05, 16.32, and 16.05% CP, respectively. Medium protein (M) and low protein (L) series were 2 and 4% lower in balanced dietary protein. The results clearly demonstrated that the balanced dietary protein level was a limiting factor for BW, ADFI, egg weight, hen day egg production (HDEP), and feed per kilogram of eggs. Feeding with the L series resulted in lower ADFI and HDEP (90.33% peak production) and more feed per kilogram of eggs compared with the H or M series (HDEP; 93.23 and 95.68% peak production, monthly basis). Egg weight responded in a linear manner to balanced dietary protein level (58.78, 55.94, and 52.73 g for H, M, and L, respectively). Feed intake of all hens, but especially those in the L series, increased considerably after wk 54 when the temperature of the house decreased due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house temperature to maintain BW, ADFI, and HDEP. For egg quality parameters, percent yolk, Haugh units, and egg specific gravity were similar regardless of diets. Haugh units were found to be greatly affected by the variation of housing temperature (P = 0.025). Maximum performance cannot always be expected to lead to maximum profits. Contrary to the idea of a daily amino acid requirement for maximum performance, these results may be used to determine profit-maximizing levels of balanced dietary protein based on the cost of protein and returns from different possible protein levels that may be fed.

  18. Effects of ractopamine hydrochloride and dietary protein content on performance, carcass traits and meat quality of Nellore bulls.

    Science.gov (United States)

    Cônsolo, N R B; Mesquita, B S; Rodriguez, F D; Rizzi, V G; Silva, L F P

    2016-03-01

    Ractopamine hydrochloride (RH) alters protein metabolism and improves growth performance in Bos taurus cattle with high carcass fat. Our objective was to evaluate the effects of RH, dietary CP and RH×CP interaction on performance, blood metabolites, carcass characteristics and meat quality of young Nellore bulls. A total of 48 bulls were randomly assigned to four treatments in a 2×2 factorial arrangement. The factors were two levels of dietary CP (100% and 120% of metabolizable protein requirement, defined as CP100 and CP120, respectively), and two levels of RH (0 and 300 mg/animal·per day). Treated animal received RH for the final 35 days before slaughter. Animals were weighed at the beginning of the feedlot period (day 63), at the beginning of ractopamine supplementation (day 0), after 18 days of supplementation (day 18) and before slaughter (day 34). Animals were slaughtered and hot carcass weights recorded. After chilling, carcass data was collected and longissimus samples were obtained for determination of meat quality. The 9-11th rib section was removed for carcass composition analysis. Supplementation with RH increased ADG independently of dietary CP. There was a RH×CP interaction on dry matter intake (DMI), where RH reduced DMI at CP120, with no effect at CP100. Ractopamine improved feed efficiency, without RH×CP interaction. Ractopamine had no effect on plasma creatinine and urea concentration. Greater dietary CP tended to increase blood urea, and there was a RH×CP interaction for plasma total protein. Ractopamine supplementation increased plasma total protein at CP120, and had no effect at CP100. Ractopamine also decreased plasma glucose concentration at CP100, but had no effect at CP120. Ractopamine increased alkaline phosphatase activity at CP120 and had no effect at CP100. There was a tendency for RH to increase longissimus muscle area, independently of dietary CP. Ractopamine did not alter fat thickness; however, fat thickness was reduced by

  19. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  20. Reassessing the Potential Activities of Plant CGI-58 Protein

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  1. Effects of dietary protein levels on growth performance and body composition of juvenile parrot fish, Oplegnathus fasciatus

    Directory of Open Access Journals (Sweden)

    Kang-Woong Kim

    2016-07-01

    Full Text Available Abstract The present study was conducted to evaluate the effects of dietary protein levels on growth, biometrics, hematology and body composition in juvenile parrot fish Oplegnathus fasciatus. Fish averaging 7.1 ± 0.06 g (mean ± SD was randomly distributed into 15 net cages (each size: 60 × 40 × 90 cm, W × L × H as groups of 20 fish. Five isocaloric diets (16.7 kJ/g energy were formulated to contain crude protein levels (CP as 35 (CP35, 40 (CP40, 45 (CP45, 50 (CP50 and 60 % (CP60 in the diets. Fish were fed one of the experimental diets at apparent satiation twice a day in triplicate groups. At the end of 8-week feeding trial, weight gain (WG of fish fed with CP50 and CP60 diets were significantly higher than those of fish fed with CP35, CP40 and CP45 diets. Fish fed with CP45, CP50 and CP60 diets had higher feed efficiency (FE and specific growth rate (SGR than those of fish fed with CP35 and CP40 diets. Protein retention efficiency (PRE decreased with increase of dietary protein levels among fish fed with the experimental diets. Whole-body crude protein and lipid contents increased with the dietary protein level up to CP50 diet. In conclusion, analysis of variance (ANOVA revealed that the optimum dietary protein level could be 50 % for maximum growth of juvenile parrot fish, while the broken-line analysis of WG suggested that the level could be 48.5 %, in a diet containing 16.7 kJ/g energy.

  2. Rapeseed (Brassica napus L. as a protein plant species

    Directory of Open Access Journals (Sweden)

    Marinković Radovan

    2010-01-01

    Full Text Available Proteins of plant origin have a profound impact on human and animal lives. It is impossible to solve worldwide nutrition problem without taking into concern needs for proteins. Inadequate nutrition can only be improved by providing adequate proteins. Humans need c. 120g proteins daily, a third of which should come from meat and milk. Certain population categories, such as the sick, children, pregnant women and sportspeople are more sensitive to lack of protein. Oil crops synthesise oil, which is the basic reserve material in seed, but they also synthesise high levels of protein and can serve as protein source for human and animal nutrition. Generally speaking, protein content in seed of rapeseed at site R. Šančevi was from 19.60% (NS-L-74 to 25.93% JR-NS-36, and at site Sombor from 19.26% (NS-L-74 to 24.06% and 24.09% (NS-L-46 and cultivar Mira. Genotype NS-L-74 had the lowest protein content at both testing sites. Higher protein content was evident with spring genotypes than with winter gentypes. .

  3. Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens

    Directory of Open Access Journals (Sweden)

    Xiaocui Wang

    2017-03-01

    Full Text Available Objective This study was conducted to evaluate the effects of dietary protein sources (soybean meal, SBM; low-gossypol cottonseed meal, LCSM; double-zero rapeseed meal, DRM on laying performance, egg quality, and plasma parameters of laying hens. Methods A total of 432 32-wk-old laying hens were randomly divided into 6 treatments with 6 replicates of 12 birds each. The birds were fed diets containing SBM, LCSM100, or DRM100 individually or in combination with an equal amount of crude protein (CP (LCSM50, DRM50, and LCSM50-DRM50. The experimental diets, which were isocaloric (metabolizable energy, 11.11 MJ/kg and isonitrogenous (CP, 16.5%, had similar digestible amino acid profile. The feeding trial lasted 12 weeks. Results The daily egg mass was decreased in the LCSM100 and LCSM50-DRM50 groups (p0.05 and showed increased yolk color at the end of the trial (p0.05. Conclusion Together, our results suggest that the LCSM100 or DRM100 diets may produce the adverse effects on laying performance and egg quality after feeding for 8 more weeks. The 100.0 g/kg LCSM diet or the148.7 g/kg DRM diet has no adverse effects on laying performance and egg quality.

  4. Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum.

    Science.gov (United States)

    Claustre, Jean; Toumi, Férial; Trompette, Aurélien; Jourdan, Gérard; Guignard, Henri; Chayvialle, Jean Alain; Plaisancié, Pascale

    2002-09-01

    The hypothesis that dietary proteins or their hydrolysates may regulate intestinal mucin discharge was investigated in the isolated vascularly perfused rat jejunum using an enzyme-linked immunosorbent assay for rat intestinal mucins. On luminal administration, casein hydrolysate [0.05-5% (wt/vol)] stimulated mucin secretion in rat jejunum (maximal response at 417% of controls). Lactalbumin hydrolysate (5%) also evoked mucin discharge. In contrast, casein, and a mixture of amino acids was without effect. Chicken egg albumin and its hydrolysate or meat hydrolysate also did not modify mucin release. Interestingly, casein hydrolysate-induced mucin secretion was abolished by intra-arterial TTX or naloxone (an opioid antagonist). beta-Casomorphin-7, an opioid peptide released from beta-casein on milk ingestion, induced a strong mucin secretion (response at 563% of controls) that was inhibited by naloxone. Intra-arterial beta-casomorphin-7 also markedly increased mucin secretion (410% of controls). In conclusion, two enzymatic milk protein hydrolysates (casein and lactalbumin hydrolysates) and beta-casomorphin-7, specifically, induced mucin release in rat jejunum. The casein hydrolysate-induced mucin secretion is triggered by a neural pathway and mediated by opioid receptor activation.

  5. The effect of palatability of protein source on dietary selection in dairy calves.

    Science.gov (United States)

    Miller-Cushon, E K; Terré, M; DeVries, T J; Bach, A

    2014-07-01

    Evidence has shown that soybean meal is perceived as more palatable than canola meal by dairy calves in short-term preference tests. This study evaluated the effect of protein source on longer-term dietary selection of dairy calves. In experiment 1, 40 Holstein bull calves (11.4 ± 4.3 d of age) were randomly assigned to 1 of 2 choice diets for 6 wk: base starter pellet (S; 12% crude protein; CP) and high-protein pellet (40% CP) containing either (1) soybean meal (SB) or (2) canola meal (CM). In wk 7 to 8, all calves were offered a single pelleted diet containing the protein source to which they were previously exposed. In experiment 2, 22 Holstein bull calves (9.9 ± 4.6d of age) were offered, for 6 wk, a choice of 2 mixed pelleted diets: (1) 70% S and 30% SB (SB mix), or (2) 70% S and 30% CM (CM mix). In wk 7 to 8, calves were randomly assigned to 1 of 2 choice diets, as in experiment 1: (1) SB + S, or (2) CM + S. All feeds were provided ad libitum. Calves received 6 L/d of milk replacer [0.75 kg/d of dry matter (DM)] for the duration of both experiments. Feed intake was recorded daily and calves were weighed every 14 d. Feeds were sampled weekly to analyze DM and nutrient intake. Mixed diets in experiment 2 were analyzed for CP in wk 4 and 6 to assess feed sorting (calculated as actual CP intake as a percentage of predicted intake). In experiment 1, calves offered SB + S in wk 1 to 6 consumed more high-protein pellet than calves offered CM + S [73 vs. 42% of DM intake (DMI)] and, consequently, more CP (168 vs. 117 g/d). Solid feed DMI and average daily gain were similar between treatments. When offered a single diet in wk 7 to 8, calves offered starter containing soybean meal increased intake to a greater extent than calves offered the starter containing canola meal. In experiment 2, calves preferred the SB mix to CM mix (preference ratio: 0.7). Calves consumed more CP than predicted from SB mix in wk 4 and 6 (108 ± 2.0%), indicating that they were sorting in

  6. Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Hevrøy, Ernst M; El-Mowafi, Adel; Taylor, Richard; Norberg, Birgitta; Espe, Marit

    2008-12-01

    To investigate the endocrine signalling from dietary plant protein on somatotropic system and gastrointestinal hormone cholecystokinin (CCK), two iso-amino acid diets based on either high plant or high fish meal protein were fed to Atlantic salmon. Salmon with an average starting weight of 641+/-23 g (N=180), were fed a fish meal (FM) based diet (containing 40% FM) or diets mainly consisting of blended plant proteins (PP) containing only 13% marine protein, of which only 5% was FM for 3 months. mRNA levels of target genes GH, GH-R, IGF-I, IGF-II, IGFBP-1, IGF-IR in addition to CCK-L, were studied in brain, hepatic tissue and fast muscle, and circulating levels of IGF-I in plasma of Atlantic salmon were measured. We detected reduced feed intake resulting in lower growth, weight gain and muscle protein accretion in salmon fed plant protein compared to a diet based on fish meal. There were no significant effects on the regulation of the target genes in brain or in hepatic tissues, but a trend of down-regulation of IGF-I was detected in fast muscle. Lower feed intake, and therefore lower intake of the indispensable amino acids, may have resulted in lower pituitary GH and lower IGF-I mRNA levels in muscle tissues. This, together with higher protein catabolism, may be the main cause of the reduced growth of salmon fed plant protein diet. There were no signalling effects detected either by the minor differences of the diets on mRNA levels of GH, GH-R, IGF-IR, IGF-II, IGFBP-1, CCK or plasma protein IGF-I.

  7. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L. Is Affected by Dietary Protein Source.

    Directory of Open Access Journals (Sweden)

    Haibin Hu

    Full Text Available In Atlantic salmon (Salmo salar L., and also in other fish species, certain plant protein ingredients can increase fecal water content creating a diarrhea-like condition which may impair gut function and reduce fish growth. The present study aimed to strengthen understanding of the underlying mechanisms by observing effects of various alternative plant protein sources when replacing fish meal on expression of genes encoding proteins playing key roles in regulation of water transport across the mucosa of the distal intestine (DI. A 48-day feeding trial was conducted with five diets: A reference diet (FM in which fish meal (72% was the only protein source; Diet SBMWG with a mix of soybean meal (30% and wheat gluten (22%; Diet SPCPM with a mix of soy protein concentrate (30% and poultry meal (6%; Diet GMWG with guar meal (30% and wheat gluten (14.5%; Diet PM with 58% poultry meal. Compared to fish fed the FM reference diet, fish fed the soybean meal containing diet (SBMWG showed signs of enteritis in the DI, increased fecal water content of DI chyme and higher plasma osmolality. Altered DI expression of a battery of genes encoding aquaporins, ion transporters, tight junction and adherens junction proteins suggested reduced transcellular transport of water as well as a tightening of the junction barrier in fish fed the SBMWG diet, which may explain the observed higher fecal water content and plasma osmolality. DI structure was not altered for fish fed the other experimental diets but alterations in target gene expression and fecal water content were observed, indicating that alterations in water transport components may take place without clear effects on intestinal structure.

  8. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols.

    Science.gov (United States)

    Harding, Scott V; Rideout, Todd C; Jones, Peter J H

    2010-07-01

    The effect of dietary plant sterols on cholesterol homeostasis has been well characterized in the intestine, but how plant sterols affect lipid metabolism in other lipid-rich tissues is not known. Changes in hepatic cholesterol homeostasis in response to high dietary intakes of plant sterols were determined in male golden Syrian hamsters fed hypercholesterolemia-inducing diets with and without 2% plant sterols (wt:wt; Reducol, Forbes Meditech) for 28 d. Plasma and hepatic cholesterol concentrations, cholesterol biosynthesis and absorption, and changes in the expression of sterol response element binding protein 2 (SREBP2) and liver X receptor-beta (LXRbeta) and their target genes were measured. Plant sterol feeding reduced plasma total cholesterol, non-HDL cholesterol, and HDL cholesterol concentrations 43% (P 6-fold (P = 0.029) and >2-fold (P sterol-fed hamsters compared with controls. Plant sterol feeding also increased fractional cholesterol synthesis >2-fold (P sterol feeding increased hepatic protein expression of cytosolic (inactive) SREBP2, decreased nuclear (active) SREBP2, and tended to increase LXRbeta (P = 0.06) and ATP binding cassette transporter G5, indicating a differential modulation of the expression of proteins central to cholesterol metabolism. In conclusion, high-dose plant sterol feeding of hamsters changes hepatic protein abundance in favor of cholesterol excretion despite lower hepatic cholesterol concentrations and higher cholesterol fractional synthesis.

  9. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  10. Plant Protein Annotation in the UniProt Knowledgebase1

    Science.gov (United States)

    Schneider, Michel; Bairoch, Amos; Wu, Cathy H.; Apweiler, Rolf

    2005-01-01

    The Swiss-Prot, TrEMBL, Protein Information Resource (PIR), and DNA Data Bank of Japan (DDBJ) protein database activities have united to form the Universal Protein Resource (UniProt) Consortium. UniProt presents three database layers: the UniProt Archive, the UniProt Knowledgebase (UniProtKB), and the UniProt Reference Clusters. The UniProtKB consists of two sections: UniProtKB/Swiss-Prot (fully manually curated entries) and UniProtKB/TrEMBL (automated annotation, classification and extensive cross-references). New releases are published fortnightly. A specific Plant Proteome Annotation Program (http://www.expasy.org/sprot/ppap/) was initiated to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Through UniProt, our aim is to provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information that will allow the plant community to fully explore and utilize the wealth of information available for both plant and nonplant model organisms. PMID:15888679

  11. BIOLOGICAL VALUE OF PLANT PROTEIN AND VITAMIN SUPPLEMENTS

    OpenAIRE

    Fisenko G. V.; Koshchaeva O. V.; Luneva A. V.; Petenko I. A.

    2014-01-01

    Results of the use of plant protein feed additives containing pumpkin paste and soybean seeds of different varieties for quail are presented in the article. It was established that the use of such additives on the basis of Valens soybean allowed to receive higher growth parameters than groups treated with Vilan soybean additive

  12. [Use of algarrobo (Prosopis chilensis (Mol) Stuntz) flour as protein and dietary fiber source in cookies and fried chips manufacture].

    Science.gov (United States)

    Escobar, Berta; Estévez, Ana María; Fuentes, Carolina; Venegas, Daniela

    2009-06-01

    Limiting amino acids of the protein from chilean "algarrobo" are isoleucine, theronine and methionine/cyteine. Cereals and legume blends allow to improve the amino acid balance, since legume have more lysine, and cereals are richer in sulphur amino acids. Due to the nutritional interest of "algarrobo" cotyledons, the use of "algarrobo cotyledon" flour (ACF) in sweet and salty snack manufacture was evaluated. Cookies and fried salty chips with 0%, 10% and 20% ACF were prepared. Flours were analyzed for color, particle size, moisture, proximate composition, available lysine, and soluble, insoluble and total dietary fiber. Cookies and chips were analyzed for the same characteristics (except for particle size); besides there were determined water activity, weight and size of the units, and also, the caloric value was computed. Sensory quality and acceptance of both products were evaluated. It is noticeable the high amount of protein, lipids, ash, crude fiber (63.6; 10.2; 4.3 and 4.2 g/100 g dmb, respectively), available lysine (62.4 mg/g protein) and total dietary fiber (24.2 g/100 g dmb) of ACF. Both, cookies and chips with ACF, showed a significant increase in the amount of protein, lipids, ash, crude fiber and, available lysine (from 15.5 to 19,3 and from 20.3 a 29.6 mg lisina/g protein, respectively), and total dietary fiber (from 1.39 to 2.80 and from 1.60 a 5.60 g/100 g dmb, respectively). All of the cookies trials were well accepted ("I like it very much"); chips with 10% of AFC showed the highest acceptance ("I like it"). It can be concluded that the use of ACF in cookies and chips manufacture increases the contribution of available lysine; their protein and dietary fiber content, improving the soluble/insoluble fiber ratio, without affect neither their physical nor their sensory acceptance.

  13. THE EFFECTS OF DIFFERENT LEVELS OF DIETARY PROTEIN AND LIPID ON THE GROWTH OF RED SNAPPER, Lutjanus sebae

    Directory of Open Access Journals (Sweden)

    Nyoman Adiasmara Giri

    2009-06-01

    Full Text Available Red snapper, Lutjanus sebae is favored in mariculture activities because it has a relatively good market and price. Technology for big scale seed production of this species has been developed and is now adequate to supply seed for grow-out activities. However, the availability of artifical diets for L. sebae is still a major constraint for grow-out production. Data on optimum dietary protein and lipid requirements for this fish as a basic information in feed development is not available yet. The objective of the present study was to find out dietary protein and lipid requirements for juvenile of L. sebae. A 70-day feeding experiment was conducted in 24 fiberglass tanks, 200 L volume. Each tank was equipped with a flow-through water system. Twenty five hatchery-produced juveniles of L. sebae (43.1 g BW were randomly selected and stocked in each tank. The fish were fed with the experimental diets twice everyday at a level of 3% of biomass for the first 4 weeks, and then 2% of biomass afterward. Twelve experimental diets were prepared in form of dry pellet containing casein and fish meal as the main protein sources. Experimental diet had 4 levels of crude protein (32%, 37%, 42%, and 47% and each protein level consisted of 3 levels of lipid (7%, 12%, and 17%. The experiment employed factorial method with completely random design using 12 combination treatments and 2 replications for each treatment. Result of the experiment showed that there was no significant effect of dietary protein and lipid on growth, feed consumption, and feed efficiency of tested fish. Growth and feed efficiency of fish fed on diet containing 42% and 47% crude protein were significantly higher than that of fish fed on diet containing 32% and 37% crude protein. High lipid content in the diet (17% resulted in poor growth and poor feed efficiency. This data indicates that Lutjanus sebae has limited ability to utilize dietary lipid as an energy

  14. Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters.

    Science.gov (United States)

    Dong, L F; Zhang, W B; Zhang, N F; Tu, Y; Diao, Q Y

    2017-02-01

    Eighteen Chinese Holstein heifers average age 230 ± 14 days were allocated to 1 of 3 dietary crude protein (CP) to metabolizable energy (ME) ratios to examine the effects on growth performance, blood metabolites and rumen fermentation parameters with 90-days experiment. Three different dietary CP:ME ratios were targeted based on the formulation of dietary CP contents of 10.85%, 12.78% and 14.63% on dry matter (DM) basis with similar ME contents (10.42 MJ/kg DM), which were categorized as low, medium and high dietary CP:ME ratios. The actual CP:ME ratios obtained in this study significantly increased from low to high CP:ME ratio groups with a value of 10.59, 11.83 and 13.38 g/MJ respectively. Elevated CP:ME ratios significantly increased CP intake (kg/day) and feed efficiency (FE) which was defined as dry matter intake as a proportion of average daily gain (ADG), whereas little difference was observed in body weight (kg), ADG (kg/day), DM intake (kg/day) and ME intake (MJ/day) among the three different CP:ME ratio groups. Increasing dietary CP to ME ratios significantly increased CP digestibility, whereas digestibility of DM and gross energy remained constant in the current experiment. Blood urea nitrogen and insulin-like growth factor-1 linearly increased with increasing dietary CP:ME ratios. There was significantly dietary treatment effect on rumen fermentation parameters including acetate, propionate, butyrate and total volatile fatty acids. Therefore, this study indicated that increasing dietary CP levels with similar energy content contributed to increased protein intake and its digestibility, as well as FE. Holstein heifers between 200 and 341 kg subjected to 13.38 dietary CP:ME ratio showed improved feed efficiency, nutrient digestibility, some blood metabolites and rumen fermentation characteristics for 0.90 kg/day rate of gain. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  15. Dietary influence on the m. longissimus dorsi fatty acid composition of lambs in relation to protein source.

    Science.gov (United States)

    Turner, T D; Karlsson, L; Mapiye, C; Rolland, D C; Martinsson, K; Dugan, M E R

    2012-08-01

    Dietary lipid effect, as a consequence of protein supplement, on lamb m. longissimus dorsi fatty acid composition was investigated, with emphasis on biohydrogenation intermediates. Crossbred lambs (White Swedish Landrace × Texel) were fed a barley-based diet without (CON) or with protein supplements including peas (PEA), rapeseed cake (RC) or hempseed cake (HC). The HC diet resulted in the highest muscle 22:6n-3 proportion, with the RC diet being similar (Pmaking the RC diet the preferred protein supplement; however the magnitude of the changes in the present experiment may not be sufficient to have an impact on human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Response of broiler chickens to different dietary crude protein and feeding regimens

    Directory of Open Access Journals (Sweden)

    JO Oyedeji

    2005-09-01

    Full Text Available Five isocaloric (3200kcal/kg diets were used in an experiment designed to investigate the effects of dietary crude protein (CP and feeding regimens on broiler performance. Day-old broilers were randomly distributed into four groups using a completely randomized design. Each group was replicated three times with ten broiler chicks per replicate. The experiment lasted for eight weeks. Broilers in group 1 received 23% CP from 0 to 3 weeks, 20% CP from 3 to 6 weeks and 18% CP from 6 to 8 weeks, while broilers in group 2 received 23% CP between 0 and 6 weeks and 18% CP between 6 and 8 weeks. Besides, broilers in group 3 were fed 23% CP from 0 to 4 weeks and 16% CP from 4 to 8 weeks, whereas group 4 was given 18% CP from 0 to weeks. Water was supplied ad libitum for broilers in the different dietary groups. A metabolic trial was carried out on the third week of the experiment using a total collection method. Proximate analyses of diets and faecal samples were performed according to the methods outlined by the Association Of the Official Analytical Chemists. Results at market age showed that broiler performance with respect to feed intake, weight gain, feed to gain ratio and water intake were not significantly influenced by CP regimens (p>0.05. Furthermore, CP regimens did not significantly influence broilers liveability (p>0.05. Protein retention, fat utilization and available fiber were not significantly influenced among treatments (p> 0.05. Economic data showed that cost to benefit ratio of producing broilers was comparable among broilers for all CP regimens used in this trial (p>0.05. It was concluded that a single diet of 18% CP and 3200kcal/kg metabolizable energy would be most suitable and convenient for farmers who are engaged in on-farm feed production for broilers as compared with the standard feeding regimens of broiler starter and broiler finisher diets.

  17. Survey the of building and dietary structure of local residents around Yangjiang and Hongyanhe nuclear power plants

    International Nuclear Information System (INIS)

    Qian Yekan; Lei Cuiping; Sun Quanfu; Fan Yaohua; Huang Zhibiao; Cui Yong

    2011-01-01

    Objective: To provide a guide in the course of the daily operation and accident emergency response. Methods: The survey was conducted with questionnaires among heads of households collected by stratified radom sampling. The head of a household was asked about residential type and structure, the sources of drinking water, milk, type and frequency of main vegetables. Results: Two-storied and more than two-storied houses were dominant around Yangjiang nuclear power plant, single-storey houses and tile-roofed houses were dominant around Hongyanhe nuclear power plant. The top three of wall construction materials around the two nuclear power plants were orderly brick, stone and beton. Glass window shelters were in the majority. Drinking water of residents was mainly from wells and waterworks. Milk comes from nonlocal packaged products. The top five high frequency vegetables the residents around Yangjiang nuclear power plants eat were orderly cabbage, zucchini, string beans, tong dish, cucumber, and those around Yangjiang nuclear power plant were orderly chinese cabbage, leek, celery, cabbage, spinach. Conclusion: Building and dietary structure around Yangjiang and Hongyanhe nuclear power plants are incongruence. Government can make decisions to collect foods for nuclides monitoring according to building and dietary structure baseline data, and take emergency measures to direct nuclear safety radiation protection for residents when nuclear accident takes place. (authors)

  18. A novel family of plant nuclear envelope-associated proteins.

    Science.gov (United States)

    Pawar, Vidya; Poulet, Axel; Détourné, Gwénaëlle; Tatout, Christophe; Vanrobays, Emmanuel; Evans, David E; Graumann, Katja

    2016-10-01

    This paper describes the characterisation of a new family of higher plant nuclear envelope-associated proteins (NEAPs) that interact with other proteins of the nuclear envelope. In the model plant Arabidopsis thaliana, the family consists of three genes expressed ubiquitously (AtNEAP1-3) and a pseudogene (AtNEAP4). NEAPs consist of extensive coiled-coil domains, followed by a nuclear localisation signal and a C-terminal predicted transmembrane domain. Domain deletion mutants confirm the presence of a functional nuclear localisation signal and transmembrane domain. AtNEAP proteins localise to the nuclear periphery as part of stable protein complexes, are able to form homo- and heteromers, and interact with the SUN domain proteins AtSUN1 and AtSUN2, involved in the linker of nucleoskeleton and cytoskeleton (LINC) complex. An A. thaliana cDNA library screen identified a putative transcription factor called AtbZIP18 as a novel interactor of AtNEAP1, which suggest a connection between NEAP and chromatin. An Atneap1 Atneap3 double-knockout mutant showed reduced root growth, and altered nuclear morphology and chromatin structure. Thus AtNEAPs are suggested as inner nuclear membrane-anchored coiled-coil proteins with roles in maintaining nuclear morphology and chromatin structure. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse.

    Science.gov (United States)

    Hadem, Ibanylla Kynjai Hynniewta; Sharma, Ramesh

    2017-08-01

    Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective

  20. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at phigh Fe

  1. Influence of dietary casein or lactalbumin on incorporation of 14C leucine into protein of ethanol-perfused livers of rats

    International Nuclear Information System (INIS)

    James, K.A.C.; Treloar, B.P.; Hove, E.L.; Sedcole, J.R.

    1983-01-01

    Rats were fed diets containing casein or lactalbumin as the sole source of protein (c. 200 g protein/kg diet) for about 4 weeks. At 190-210 g live weight the rats were anaesthetised, and the livers were perfused with ethanol (0-3.7 mL/100 mL perfusate, i.e., 0-625 m ) and 30 minutes later with 14 C leucine (5 micro g Ci) for 60 minutes. The specific radioactivity (dpm/mg protein) of liver and perfusate protein was determined. The log specific radioactivity data of each dietary group were described by a 2-phase linear model: a constant or plateau level up to an ethanol concentration of c. 2 mL ethanol/100 mL perfusate (340 m ), and a linear decrease in log specific radioactivity above that level. For the liver protein the constant log specific radioactivity of the casein dietary group was significantly higher than that for the lactalbumin dietary group. The decreases in log specific radioactivity for both liver and perfusate in the casein dietary group were significantly greater than those in the lactalbumin dietary group. The dietary dependent difference in incorporation with varying ethanol concentrations may result from a combination of control over liver protein synthesis and protein secretion. Predisposing rats to 2 high-quality protein diets results in differences in liver protein metabolism which are maintained against a wide range of ethanol perfusate concentrations. (auths)

  2. Role of Dietary Protein and Thiamine Intakes on Cognitive Function in Healthy Older People: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Freda Koh

    2015-04-01

    Full Text Available The effectiveness of nutritional interventions to prevent and maintain cognitive functioning in older adults has been gaining interest due to global population ageing. A systematic literature review was conducted to obtain and appraise relevant studies on the effects of dietary protein or thiamine on cognitive function in healthy older adults. Studies that reported on the use of nutritional supplementations and/or populations with significant cognitive impairment were excluded. Seventeen eligible studies were included. Evidence supporting an association between higher protein and/or thiamine intakes and better cognitive function is weak. There was no evidence to support the role of specific protein food sources, such as types of meat, on cognitive function. Some cross-sectional and case-control studies reported better cognition in those with higher dietary thiamine intakes, but the data remains inconclusive. Adequate protein and thiamine intake is more likely associated with achieving a good overall nutritional status which affects cognitive function rather than single nutrients. A lack of experimental studies in this area prevents the translation of these dietary messages for optimal cognitive functioning and delaying the decline in cognition with advancing age.

  3. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  4. Investigation of the influence of the content of plant crude protein in the ration on the utilisation of urea in dairy cattle. 5

    International Nuclear Information System (INIS)

    Motyl, T.; Barej, W.; Kulasek, G.; Bergner, H.; Goersch, R.

    1984-01-01

    The incorporation of urea- 15 N (given as an intraruminal drench or infusion) into plasma urea and protein of dairy cows fed isoenergetic rations with different levels of plant protein (9, 11, 12, 14, 15, and 17% in dry matter) was investigated. A nonlinear and asymptotic dependence between the plasma concentration of urea and protein level in the ration was stated. The availability of dietary urea- 15 N for plasma urea for 48 hours after administration was lowest in cows fed with low protein rations (9 and 11% of plant protein). On the contrary the highest incorporation of urea- 15 N into plasma protein of these animals was observed. The possible explanation of these results is presented. (author)

  5. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji; Koizumi, Nozomu

    2012-01-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  6. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  7. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  8. Plant Protein Intake Is Associated with Fibroblast Growth Factor 23 and Serum Bicarbonate in Patients with CKD: The Chronic Renal Insufficiency Cohort Study

    Science.gov (United States)

    Scialla, Julia J.; Appel, Lawrence J; Wolf, Myles; Yang, Wei; Zhang, Xiaoming; Sozio, Stephen M.; Miller, Edgar R.; Bazzano, Lydia A.; Cuevas, Magdalena; Glenn, Melanie J.; Lustigova, Eva; Kallem, Radhakrishna R.; Porter, Anna C.; Townsend, Raymond R.; Weir, Matthew R.; Anderson, Cheryl A.M.

    2012-01-01

    Background Protein from plant, as opposed to animal, sources may be preferred in chronic kidney disease (CKD), due to lower bioavailability of phosphate and lower nonvolatile acid load. Study Design Observational cross-sectional study. Setting & Participants 2938 participants with chronic kidney disease and information on dietary intake at the baseline visit in the Chronic Renal Insufficiency Cohort Study. Predictors Percentage of total protein from plant sources (% plant protein) was determined by scoring individual food items from the National Cancer Institute Diet History Questionnaire (DHQ). Outcomes Metabolic parameters, including serum phosphate, bicarbonate (HCO3), potassium, and albumin, plasma fibroblast growth factor 23 (FGF23), and parathyroid hormone (PTH), and hemoglobin. Measurements We modeled the association between % plant protein and metabolic parameters using linear regression. Models were adjusted for age, sex, race, diabetes, body mass index, eGFR, income, smoking, total energy intake, total protein intake, 24 hour urinary sodium, use of angiotensin converting enzyme inhibitors/angiotensin receptor blockers and use of diuretics. Results Higher % plant protein was associated with lower FGF23 (p=0.05) and higher HCO3 (p=0.01), but not with serum phosphate or PTH (p=0.9 and 0.5, respectively). Higher % plant protein was not associated with higher serum potassium (p=0.2), lower serum albumin (p=0.2) or lower hemoglobin (p=0.3). The associations of % plant protein with FGF23 and HCO3 did not differ by diabetes status, sex, race, CKD stage (2/3 vs. 4/5) or total protein intake (≤ 0.8 g/kg/d vs. >0.8 g/kg/d) (p-interaction > 0.10 for each). Limitations Cross-sectional study; Determination of % plant protein using the DHQ has not been validated. Conclusions Consumption of a higher percentage of protein from plant sources may lower FGF23 and raise HCO3 in patients with CKD. PMID:22480598

  9. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    ;1 in Arabidopsis. That led to the discovery that tip4;1 is gametophytic lethal- gene essential for normal seed set. ICP-MS analyses of the elemental composition of tip4;1 heterozygous T-DNA insert mutant plants and 35S::TIP4;1 over-expression plants indicate that AtTIP4;1 has a role in arsenic distribution...... inorganic forms of arsenic in the environment, can be taken up by plants and thus enter the food chain. Once inside the root cells, As(V) is reduced to As(III) which is then extruded to the soil solution or bound to phytochelatins (PCs) and transported to the vacuole in an effort to accomplish...... detoxification. Plant Noduline 26-like Intrinsic Proteins (NIPs) can channel As(III) and consequently influence the detoxification process. The role of the Tonoplast Intrinsic Proteins (TIPs) in As(III) detoxification remains to be clarified, yet TIPs could have an impact on As(III) accumulation in plant cell...

  10. Addition of aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour

    Czech Academy of Sciences Publication Activity Database

    Rakszegi, M.; Molnár, I.; Lovegrove, A.; Darkó, É.; Farkas, A.; Láng, L.; Bedő, Z.; Doležel, Jaroslav; Molnár-Láng, M.; Shewry, P.

    2017-01-01

    Roč. 8, SEP 6 (2017), č. článku 1529. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Aegilops * Arabinoxylan * Dietary fiber * U and M genomes * Wheat * β-glucan Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  11. Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-producing Bacteria

    Directory of Open Access Journals (Sweden)

    Z. B. Wang

    2013-05-01

    Full Text Available An in vitro fermentation was conducted to determine the effects of hainanmycin on protein degradation and populations of ammonia-producing bacteria. The substrates (DM basis for in vitro fermentation consisted of alfalfa hay (31.7%, Chinese wild rye grass hay (28.3%, ground corn grain (24.5%, soybean meal (15.5% with a forage: concentrate of 60:40. Treatments were the control (no additive and hainanmycin supplemented at 0.1 (H0.1, 1 (H1, 10 (H10, and 100 mg/kg (H100 of the substrates. After 24 h of fermentation, the highest addition level of hainanmycin decreased total VFA concentration and increased the final pH. The high addition level of hainanmycin (H1, H10, and H100 reduced (p0.05. After 24 h of fermentation, H10 and H100 increased (p<0.05 concentrations of peptide nitrogen and AA nitrogen and proteinase activity, and decreased (p<0.05 NH3-N concentration and deaminase activity compared with control. Peptidase activitives were not affected by hainanmycin. Hainanmycin supplementation only inhibited the growth of Butyrivibrio fibrisolvens, which is one of the species of low deaminative activity. Hainanmycin supplementation also decreased (p<0.05 relative population sizes of hyper-ammonia-producing species, except for H0.1 on Clostridium aminophilum. It was concluded that dietary supplementation with hainanmycin could improve ruminal fermentation and modify protein degradation by changing population size of ammonia-producing bacteria in vitro; and the addition level of 10 mg/kg appeared to achieve the best results.

  12. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets.

    Science.gov (United States)

    Pieper, Robert; Boudry, Christelle; Bindelle, Jérôme; Vahjen, Wilfried; Zentek, Jürgen

    2014-01-01

    Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal

  13. Beyond the role of dietary protein and amino acids in the prevention of diet-induced obesity.

    Science.gov (United States)

    Petzke, Klaus J; Freudenberg, Anne; Klaus, Susanne

    2014-01-20

    High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.

  14. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    Science.gov (United States)

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  15. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease?

    Science.gov (United States)

    Shinaberger, Christian S; Greenland, Sander; Kopple, Joel D; Van Wyck, David; Mehrotra, Rajnish; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2008-12-01

    Dietary restrictions to control serum phosphorus, which are routinely recommended to persons with chronic kidney disease, are usually associated with a reduction in protein intake. This may lead to protein-energy wasting and poor survival. We aimed to ascertain whether a decline in serum phosphorus and a concomitant decline in protein intake are associated with an increase in the risk of death. In a 3-y study (7/2001-6/2004) of 30 075 prevalent maintenance hemodialysis (MHD) patients, we examined changes in serum phosphorus and in normalized protein nitrogen appearance (nPNA), a surrogate of dietary protein intake, during the first 6 mo and the subsequent mortality. Four groups of MHD patients were defined on the basis of the direction of the changes in serum phosphorus and nPNA. Baseline phosphorus had a J-shaped association with mortality, whereas higher baseline nPNA was linearly associated with greater survival. Compared with MHD patients whose serum phosphorus and nPNA both rose over 6 mo, those whose serum phosphorus decreased but whose nPNA increased had greater survival, with a case mix-adjusted death risk ratio of 0.90 (95% confidence limits: 0.86, 0.95; P protein intake may outweigh the benefit of controlled phosphorus and may lead to greater mortality. Additional studies including randomized controlled trials should examine whether nondietary control of phosphorus or restriction of nonprotein sources of phosphorus is safer and more effective.

  16. Redox conditions and protein oxidation in plant mitochondria

    DEFF Research Database (Denmark)

    Møller, Ian Max; Kasimova, Marina R.; Krab, Klaas

    2005-01-01

    Redox conditions and protein oxidation in plant mitochondria NAD(P)H has a central position in respiratory metabolism. It is produced by a large number of enzymes, e.g. the Krebs cycle dehydrogenases, in the mitochondrial matrix and is oxidised by, amongst others, the respiratory chain. Most...... of this NAD(P)H appears to be bound to proteins, in fact free NAD(P)H – an important parameter in metabolic regulation - has never been observed in mitochondria. We have estimated free and bound NAD(P)H in isolated plant mitochondria under different metabolic conditions. The fluorescence spectra of free...... and bound NADH was determined and used to deconvolute fluorescence spectra of actively respiring mitochondria. Most of the mitochondrial NADH is bound in states 2 and 4. The amount of free NADH is lower but relatively constant even increasing a little in state 3 where it is about equal to bound NADH...

  17. Amyloid-like protein inclusions in tobacco transgenic plants.

    Directory of Open Access Journals (Sweden)

    Anna Villar-Piqué

    Full Text Available The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.

  18. From beef to beans: Eating motives and the replacement of animal proteins with plant proteins among Finnish consumers.

    Science.gov (United States)

    Vainio, Annukka; Niva, Mari; Jallinoja, Piia; Latvala, Terhi

    2016-11-01

    A better understanding of the motives underlying the adoption of sustainable and healthy diets is needed for designing more effective policies. The aim of the study was to examine how eating motives were associated with self-reported changes in the consumption of beef, beans, and soy products, i.e., changes related to reducing animal and increasing plant proteins. The study analysed a survey of an adult population living in Finland (N = 1048). The eating motives were measured with the Eating Motivation Survey (TEMS), which distinguishes between 15 eating motives. Six clusters of consumers based on self-reported changes in food choices were identified with latent class analysis (LCA). Four clusters had established food consumption patterns ("Beef only", "Beef and beans", "Beef, beans, and soy products", and "No beef"), one was undergoing a change, and one had attempted a change earlier. ANOVA with planned contrasts revealed that the motives relating to natural concerns, health, and weight control were higher, and convenience and price lower, among those who had an established diet including beans and soy products, as compared to those who consumed only beef. Those undergoing a dietary change expressed a higher endorsement of natural concerns as well as health, sociability, social image, and price motives than those with an established diet including beans and soy products. The results suggest that eating motives play an important role in changing towards more sustainable food consumption patterns in which meat/beef is replaced with plant proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients.

    Science.gov (United States)

    Rossi, M; Johnson, D W; Xu, H; Carrero, J J; Pascoe, E; French, C; Campbell, K L

    2015-09-01

    Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are uremic toxins derived solely from colonic bacterial fermentation of protein. Dietary fiber may counteract this by limiting proteolytic bacterial fermentation. However, the influence of dietary intake on the generation of IS and PCS has not been adequately explored in chronic kidney disease (CKD). This cross-sectional study included 40 CKD participants (60% male; age 69 ± 10 years; 45% diabetic) with a mean estimated glomerular filtration rate (eGFR) of 24 ± 8 mL/min/1.73 m(2), who enrolled in a randomized controlled trial of synbiotic therapy. Total and free serum IS and PCS were measured at baseline by ultra-performance liquid chromatography. Dietary intake was measured using in-depth diet histories collected by a dietitian. Associations between each toxin, dietary fiber (total, soluble and insoluble), dietary protein (total, and amino acids: tryptophan, tyrosine and phenylalanine), and the protein-fiber index (ratio of protein to fiber) were assessed using linear regression. Dietary fiber was associated with free and total serum PCS (r = -0.42 and r = -0.44, both p protein and either toxin. The protein-fiber index was associated with total serum IS (r = 0.40, p = 0.012) and PCS (r = 0.43, p = 0.005), independent of eGFR, sex and diabetes. Dietary protein-fiber index is associated with serum IS and PCS levels. Such association, beyond fiber and protein alone, highlights the importance of the interplay between these nutrients. We speculate that dietary modification towards a lower protein-fiber index may contribute to lowering IS and PCS. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dietary Protein and Amino Acid Profiles in Relation to Risk of Dysglycemia: Findings from a Prospective Population-Based Study

    Directory of Open Access Journals (Sweden)

    Parvin Mirmiran

    2017-09-01

    Full Text Available Considering the limited knowledge on the effects of dietary amino acid intake on dysglycemia, we assessed the possible association of dietary protein and amino acid patterns with the risk of pre-diabetes in a prospective population-based study. Participants without diabetes and pre-diabetes (n = 1878 were recruited from the Tehran Lipid and Glucose Study and were followed for a mean of 5.8 years. Their dietary protein and amino acid intakes were assessed at baseline (2006–2008; demographic, lifestyle, and biochemical variables were evaluated at baseline and in follow-up examinations. Pre-diabetes was defined according to the American Diabetes Association criteria. Multivariate Cox proportional hazard regression models, adjusted for potential confounders, were used to estimate the risk of pre-diabetes across tertiles of dietary protein and amino acid pattern scores. The mean age of the participants (44.9% men was 38.3 ± 12.7 years at baseline. Three major amino acid patterns were characterized: (1 higher loads of lysine, methionine, valine, aspartic acids, tyrosine, threonine, isoleucine, leucine, alanine, histidine, and serine; (2 higher loads of glycine, cysteine, arginine, and tryptophan; and (3 higher loads of proline and glutamic acid. Dietary total protein intake Hazard Ratio (HR = 1.13, 95% Confidence Interval (CI = 0.92–1.38 and HR = 1.00, 95% CI = 0.81–1.23, in the second and third tertile, respectively was not related to the development of pre-diabetes. The highest score of second dietary amino acid pattern tended to be associated with a decreased risk of pre-diabetes (HR = 0.81, 95% CI = 0.65–1.01, whereas the third pattern was related to an increased risk in the fully adjusted model (HR = 1.24, 95% CI = 1.02–1.52; p for trend = 0.05. These novel data suggest that the amino acid composition of an individual’s diet may modify their risk of pre-diabetes.

  1. In vivo import of plastocyanin and a fusion protein into developmentally different plastids of transgenic plants

    NARCIS (Netherlands)

    Boer, Douwe de; Cremers, Fons; Teertstra, Renske; Smits, Lianne; Hille, Jacques; Smeekens, Sjef; Weisbeek, Peter

    1988-01-01

    Transgenic tomato plants that constitutively express a foreign plastocyanin gene were used to study protein transport in different tissues. Normally expression of endogenous plastocyanin genes in plants is restricted to photosynthetic tissues only, whereas this foreign plastocyanin protein is found

  2. Effects of dietary protein levels during rearing and dietary energy levels during lay on body composition and reproduction in broiler breeder females.

    Science.gov (United States)

    van Emous, R A; Kwakkel, R P; van Krimpen, M M; Hendriks, W H

    2015-05-01

    A study with a 2 × 3 × 2 factorial arrangement was conducted to determine the effects of 2 dietary protein levels (high = CPh and low = CPl) during rearing, 3 dietary energy levels (3,000, MEh1; 2,800, MEs1; and 2,600, MEl1, kcal/kg AMEn, respectively) during the first phase of lay, and 2 dietary energy levels (2,800, MEs2; and 3,000, MEh2, kcal/kg AMEn, respectively) during the second phase of lay on body composition and reproduction in broiler breeders. No meaningful interactions for energy and protein treatments within the different phases of the study were found and, therefore, this paper focusses on the main effects. Pullets fed the CPl diet had a 12.8% higher feed intake, 14% lower breast muscle, and 97% higher abdominal fat pad portion at 22 wk age. The increased abdominal fat pad and decreased breast muscle of the CPl compared to the CPh birds increased hatchability during the first phase of lay, due to a decreased embryonic mortality between d 10 to 21 of incubation, and increased egg production during the second phase of lay. Feeding birds the MEh1 and MEl1 diets slightly decreased egg production compared to the MEs1 birds. Birds fed the MEh1 diet showed a higher mortality compared to the birds fed the MEs1 and MEl1 diets. Feeding birds the MEh2 diet did not affect egg production, increased hatchability of fertile eggs, decreased embryonic mortality between d 3 to 21 of incubation, and increased the number of first-grade chicks. It was concluded that a low-protein diet during rearing changed body composition with positive effects on incubation traits during the first phase of lay and improved egg production during the second phase of lay in broiler breeders. A high-energy or low-energy diet compared to a standard diet during the first phase of lay slightly decreased total and settable egg numbers while a high-energy diet during the second phase of lay increased hatchability and number of saleable chicks. © 2015 Poultry Science Association Inc.

  3. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (Prelated AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in

  4. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Daniell, Henry

    2016-08-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.

  5. In Plant Activation: An Inducible, Hyperexpression Platform for Recombinant Protein Production in Plants[W][OPEN

    Science.gov (United States)

    Dugdale, Benjamin; Mortimer, Cara L.; Kato, Maiko; James, Tess A.; Harding, Robert M.; Dale, James L.

    2013-01-01

    In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the β-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein. PMID:23839786

  6. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A

    2003-01-01

    Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.

  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Dietary Reference Values for protein

    DEFF Research Database (Denmark)

    Tetens, Inge

    This opinion of the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for protein. The Panel concludes that a Population Reference Intake (PRI) can be derived from nitrogen balance studies. Several health outcomes possibly...... for growth and maintenance. For pregnancy, an intake of 1, 9 and 28 g/d in the first, second and third trimesters, respectively, is proposed in addition to the PRI for non-pregnant women. For lactation, a protein intake of 19 g/d during the first six months, and of 13 g/d after six months, is proposed...

  8. Effects of dietary incorporation of potato protein concentrate and supplementation of methionine on growth and feed utilization of rainbow trout

    DEFF Research Database (Denmark)

    Xie, S.; Jokumsen, Alfred

    1998-01-01

    and supplementation of methionine in the diet of rainbow trout. When the proportion of PPC exceeded 56 g kg-1 the growth of fish decreased while both growth and feed utilization decreased when the dietary PPC was 111 g kg-1. Protein productive value and condition factor of the fish decreased and mortality increased......Four diets (1, 2, 3 and 4) were formulated to contain different potato protein concentrate (PPC) levels (0, 22, 56, and 111 g kg-1). Diet 5 contained 56 g kg-1 PPC and 17 g kg-1 methionine. A growth trial was conducted to investigate the effect on growth and feed utilization of incorporation of PPC...

  9. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  10. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  11. Effect of dietary protein sources of on blood or milk urea nitrogen of native cows

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, N R; Huque, K S; Asaduzzaman, M. [Animal Production Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka (Bangladesh)], E-mail: nathusarker@yahoo.com

    2009-07-01

    T{sub 4} treatment groups. Milk urea nitrogen (MUN) content in morning milk was lower compared to evening milk. This similar findings also reported by Broderick and Clayton, (1997), they reported that MUN concentrations was generally lower for samples collected at morning milking. Others explained that the differences of MUN in morning or evening milk might be influenced by the differences in feeding to milking intervals. These data show that feeding urea or protein of organic sources had effect on BSU and MUN contents in the morning milk but had no significant effect on evening milk. The lower BSU or MUN content in milk of the cows fed urea and molasses either in daily meals or as mix with concentrates may be due mainly to a lower CP intake compared to UMS and Matikalai. The results and discussion evinced no significant effect of feeding urea or organic protein on milk protein per cent (%). Determination of dietary protein concentration or sources on different components of milk protein is important to identify to determine feeding effect of urea on the quality of milk. Further detail study, may be worth a try to answer these questions.

  12. Association between Low Dietary Protein Intake and Geriatric Nutrition Risk Index in Patients with Chronic Kidney Disease: A Retrospective Single-Center Cohort Study

    OpenAIRE

    Aki Kiuchi; Yasushi Ohashi; Reibin Tai; Toshiyuki Aoki; Sonoo Mizuiri; Toyoko Ogura; Atsushi Aikawa; Ken Sakai

    2016-01-01

    Reduced dietary protein intake in malnourished patients with chronic kidney disease (CKD) may be associated with adverse clinical outcomes, which may mask any efficacy of a low-protein diet. The study included 126 patients with CKD who attended a dedicated dietary counseling clinic in 2005–2009 and were systematically followed until January 2015. Of these patients, 20 (15.9%) had moderate or severe nutrition-related risk of geriatric nutritional risk index (GNRI) < 92; these patients were ...

  13. Responses of heat shock protein 70 and caspase-3/7 to dietary selenomethionine in juvenile white sturgeon

    Directory of Open Access Journals (Sweden)

    Weifang Wang

    2016-03-01

    Full Text Available An 8-week feeding trial was conducted to investigate the responses of juvenile white sturgeon (Acipenser transmontanus to elevated dietary selenium (Se based on the determination of the RNA/DNA ratio in muscle, heat shock protein 70 (Hsp70, and caspase-3/7 in muscle and/or liver tissues. Four semi-purified test diets were prepared by adding different levels of L-selenomethionine (0, 50, 100, and 200 mg/kg diet. The analytical determinations of total Se were 2.2, 19.7, 40.1, and 77.7 mg/kg diet. The sturgeon (initial body weight: 30 ± 2 g; mean ± SEM were raised in indoor tanks provided with flow through freshwater (18–19 °C. There were three replicates for each dietary treatment with 25 fish per replicate. The liver and muscle tissues were collected at 4 and 8 weeks after feeding the test diets. A significant interaction between duration and levels of dietary Se exposures on RNA/DNA ratio in the muscle tissue was detected (P < 0.05. Although there was no significant main effect due to the duration of dietary Se exposures (i.e., 4 weeks versus 8 weeks on muscle RNA/DNA ratio (P ≥ 0.05, the ratio was significantly decreased with increasing dietary Se levels. Significant main effects were caused by the duration and levels of dietary Se exposures on Hsp70 in both the muscle and liver tissues, with significant increases in Hsp70 due to a longer exposure (8 weeks and higher levels (40.1 and 77.7 mg Se/kg diet of dietary Se. The caspase-3/7 activity in the liver were significantly higher in fish fed the diets containing 40.1 and 77.7 mg Se/kg diet than those fed the other diets. The toxic thresholds of Se in the muscle were estimated to be 32.2 and 26.6 mg Se/kg for the depressed specific growth rate and the induced Hsp70 response in muscle, respectively. This result indicated that the Hsp70 response in muscle is a more sensitive biomarker than the SGR of sturgeon for evaluating Se toxicity in white sturgeon. Results of the

  14. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    Science.gov (United States)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  15. The Effect of Dietary Phytase Supplementation and Incubation in Soy Protein Concentrate based diet Fed to Nile Tilapia

    OpenAIRE

    Xue, Yuhang

    2015-01-01

    Aquatic feed require high quality, low cost nutrients with increasing aquaculture production. Tilapia has become the third most important cultured fish species in the world, just after salmonids and carps. Soybean and its products are the most popular source of plant protein in compound aquatic feeds. In the existing plant protein sources phytate-P absorption and digestion is low in Nile Tilapia. This experiment aimed to investigate the different effects on retention and utilization o...

  16. Influence of supplemental vitamin C on postmortem protein degradation and fatty acid profiles of the longissimus thoracis of steers fed varying concentrations of dietary sulfur.

    Science.gov (United States)

    Pogge, Danielle J; Lonergan, Steven M; Hansen, Stephanie L

    2014-02-01

    The objective was to examine the effects of supplemental vitamin C (VC) on postmortem protein degradation and fatty acid profiles of cattle receiving varying concentrations of dietary sulfur (S). A longissimus muscle was collected from 120 Angus-cross steers assigned to a 3 × 2 factorial, evaluating three concentrations of dietary S (0.22, 0.34, and 0.55%) and two concentrations of supplemental VC (0 or 10 g h(-1)d(-1)). Increasing dietary S and VC supplementation (Pdegradation (P = 0.07) and protein carbonylation (Pdegradation. © 2013.

  17. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses

    Directory of Open Access Journals (Sweden)

    Oskar Musidlak

    2017-11-01

    Full Text Available Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL proteins, Argonaute (AGO proteins, and RNA-dependent RNA polymerases (RDRs confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.

  18. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus.

    Science.gov (United States)

    Immanuel, G; Uma, R P; Iyapparaj, P; Citarasu, T; Peter, S M Punitha; Babu, M Michael; Palavesam, A

    2009-05-01

    The effects of supplementing diets with acetone extract (1% w/w) from four medicinal plants (Bermuda grass Cynodon dactylon, H(1), beal Aegle marmelos, H(2), winter cherry Withania somnifera, H(3) and ginger Zingiber officinale, H(4)) on growth, the non-specific immune response and ability to resist pathogen infection in tilapia Oreochromis mossambicus were assessed. In addition, the antimicrobial properties of the extract were assessed against Vibrio alginolyticus, Vibrioparahaemolyticus, Vibrio mimicus, Vibrio campbelli, Vibrio vulnificus, Vibrio harveyi and Photobacterium damselae. Oreochromis mossambicus were fed 5% of their body mass per day for 45 days, and those fed the experimental diets showed a greater increase in mass (111-139%) over the 45 days compared to those that received the control diet (98%). The specific growth rate of O. mossambicus fed the four diets was also significantly greater (1.66-1.93%) than control (1.52%) diet-fed fish. The blood plasma chemistry analysis revealed that protein, albumin, globulin, cholesterol, glucose and triglyceride levels of experimental fish were significantly higher than that of control fish. Packed cell volume of the blood samples of experimental diet-fed fish was also significantly higher (34.16-37.95%) than control fish (33.0%). Leucocrit value, phagocytic index and lysozyme activity were enhanced in fish fed the plant extract-supplemented diets. The acetone extract of the plants inhibited growth of Vibrio spp. and P. damselae with extracts from W. somnifera showing maximum growth inhibition. A challenge test with V. vulnificus showed 100% mortality in O. mossambicus fed the control diet by day 15, whereas the fish fed the experimental diets registered only 63-80% mortality at the end of challenge experiment (30 days). The cumulative mortality index for the control group was 12,000, which was equated to 1.0% mortality, and accordingly, the lowest mortality of 0.35% was registered in H(4)-diet-fed group.

  19. Postexercise Dietary Protein Strategies to Maximize Skeletal Muscle Repair and Remodeling in Masters Endurance Athletes: A Review.

    Science.gov (United States)

    Doering, Thomas M; Reaburn, Peter R; Phillips, Stuart M; Jenkins, David G

    2016-04-01

    Participation rates of masters athletes in endurance events such as long-distance triathlon and running continue to increase. Given the physical and metabolic demands of endurance training, recovery practices influence the quality of successive training sessions and, consequently, adaptations to training. Research has suggested that, after muscle-damaging endurance exercise, masters athletes experience slower recovery rates in comparison with younger, similarly trained athletes. Given that these discrepancies in recovery rates are not observed after non-muscle-damaging exercise, it is suggested that masters athletes have impairments of the protein remodeling mechanisms within skeletal muscle. The importance of postexercise protein feeding for endurance athletes is increasingly being acknowledged, and its role in creating a positive net muscle protein balance postexercise is well known. The potential benefits of postexercise protein feeding include elevating muscle protein synthesis and satellite cell activity for muscle repair and remodeling, as well as facilitating muscle glycogen resynthesis. Despite extensive investigation into age-related anabolic resistance in sedentary aging populations, little is known about how anabolic resistance affects postexercise muscle protein synthesis and thus muscle remodeling in aging athletes. Despite evidence suggesting that physical training can attenuate but not eliminate age-related anabolic resistance, masters athletes are currently recommended to consume the same postexercise dietary protein dose (approximately 20 g or 0.25 g/kg/meal) as younger athletes. Given the slower recovery rates of masters athletes after muscle-damaging exercise, which may be due to impaired muscle remodeling mechanisms, masters athletes may benefit from higher doses of postexercise dietary protein, with particular attention directed to the leucine content of the postexercise bolus.

  20. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  1. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids

    National Research Council Canada - National Science Library

    Panel on Macronutrients; Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes

    Responding to the expansion of scientific knowledge about the roles of nutrients in human health, the Institute of Medicine has developed a new approach to establish Recommended Dietary Allowances (RDAs...

  2. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids

    National Research Council Canada - National Science Library

    A Report of the Panel on Macronutrients, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes

    2005-01-01

    Responding to the expansion of scientific knowledge about the roles of nutrients in human health, the Institute of Medicine has developed a new approach to establish Recommended Dietary Allowances (RDAs...

  3. Hunting for low abundant redox proteins in plant plasma membranes.

    Science.gov (United States)

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  4. Effect of dietary protein on the excretion of. cap alpha. /sub 2u/, the sex-dependent protein of the adult male rat

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, O W; Flory, W

    1975-01-01

    Adult male rates were maintained on normal (20 percent casein), protein-free (0 percent casein), high protein (50 percent casein), deficient protein (20 percent zein), and a supplemented, deficient protein (20 percent zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg ..cap alpha../sub 2u//24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on the normal diet showed a rapid restoration of the normal ..cap alpha../sub 2u/ excretion as well as total urinary proteins. Accumulation of ..cap alpha../sub 2u/ in the blood serum was measured in nephrectomized rats. Rats on the protein free diet accumulated only 30 percent of the ..cap alpha../sub 2u/ compared to normals. On a 50 precent casein diet, rats excreted 30-50 mg ..cap alpha../sub 2u//24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate ..cap alpha../sub 2u/ synthesis but probably increased the renal loss of all urinary proteins. The excretion of ..cap alpha../sub 2u/ on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate ..cap alpha../sub 2u/ to near normal levels. Accumulation of ..cap alpha../sub 2u/ in the serum of nephrectomized rats kept on the zein diets showed that the effect was to suppress the synthesis of the ..cap alpha../sub 2u/. Supplementation restored the biosynthesis of ..cap alpha../sub 2u/. It is concluded that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in a large part by an influence on the hepatic biosynthesis of ..cap alpha../sub 2u/. The biosynthesis of this protein, which represents approximately 30 percent of the total urinary proteins, is dependent on an adequate supply of dietary protein.

  5. Ribosome-Inactivating Proteins from Plants: A Historical Overview

    Directory of Open Access Journals (Sweden)

    Andrea Bolognesi

    2016-11-01

    Full Text Available This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs, starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.

  6. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  7. New method for the quality check of food proteins of the maintenance metabolism. 4. Investigation of isolated proteins as well as some protein sources of plant and animal origin

    Energy Technology Data Exchange (ETDEWEB)

    Simon, O; Hernandez, M; Bergner, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1981-01-01

    Male adult rats (370 g body weight) were fed on maintenance level (460 kJ ME/kgsup(0,75). In a 10 days preliminary period they received a casein/methionine (95/5) diet supplemented with 10 mg /sup 15/N excess per 0.178 kg metabolic body weight in form of ammonium acetate. Thereafter the animals were put on 8 isonitrogenous diets containing as protein sources casein, soya protein, gelatine, whole-egg, fish meal, pea, wheat and yeast. The /sup 15/N excretion via urine and feces was used to evaluate the dietary proteins for maintenance. /sup 15/N in urine was lowest in animals fed on wheat diet and highest after feeding whole-egg diet. From these data a so called '/sup 15/N excretion biological valence (BV)' was calculated, which indicated the highest quality for wheat and soy protein in meeting the needs of the intermediary maintenance metabolism. On the other hand, dietary protein sources influence the loss of endogenous nitrogen as metabolic fecal nitrogen (MFN). It was found to be lowest in animals fed on diets containing isolated proteins (6 mg MFN/100 g body weight) and highest after feeding protein sources of plant origin with a high content in crude fibre (10 mg MFN/100 g). Both, losses of /sup 15/N via urine and via feces were combined in a parameter called 'total BV'. According to this parameter the differences in quality for maintenance were only little between the protein sources tested (casein 100, soy protein 100, pea 99, wheat 99, whole egg 92, fish meal 89, gelatin 89). It was concluded that in the state of maintenance the supply with essential amino acids is not critical and that the supply with dispensable amino acids (or nonspecific nitrogen) is of great importance.

  8. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson’s Disease

    Science.gov (United States)

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N.; Adhikari, Binita; King, Jason F.; King, Michael L.; Peng, Nan; Laine, Roger A.

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes’ hypothesis, suggesting one alternate potential dietary etiology of Parkinson’s disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  9. Dietary plant lectins appear to be transported from the gut to gain access to and alter dopaminergic neurons of Caenorhabditis elegans, a potential etiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Jolene eZheng

    2016-03-01

    Full Text Available Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N in transgenic Caenorhabditis elegans (C. elegans (egIs1[Pdat-1::GFP] where the mutant has the Green Fluorescent Protein (GFP gene fused to a dopamine transport protein gene labeling dopaminergic neurons, The lectins were supplemented along with the food organism Escherichia coli (OP50. Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E, Bandeiraea simplicifolia (BS-I, Dolichos biflorus agglutinin (DBA, and Arachis hypogaea (PNA, appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia (GSL-I and PHA-E, reduced the number of GFP-DAergic-N suggesting a toxic activity. PHA-E, BS-I, Pisum Sativum (PSA, and Triticum vulgaris agglutinin (Succinylated reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes’ hypothesis, suggesting one alternate potential dietary etiology of Parkinson’s disease (PD. A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model.

  10. Effects of Increasing Prepartum Dietary Protein Level Using Poultry by-Product Meal on Productive Performance and Health of Multiparous

    Directory of Open Access Journals (Sweden)

    M Hossein Yazdi

    2011-12-01

    Full Text Available The aim of this study was to compare the effects of two levels of crude protein using poultry by-product meals (PBPM fed during late gestation on the performance, blood metabolites, and colostrum composition of Holstein dairy cows. Sixteen multiparous cows 26±6 d before expected calving were assigned randomly to two treatments containing 1 14% and 2 16% crude protein. The cow’s BCS was 3.56 ± 0.5 on average, at the beginning of the trial. Yields of milk, protein, lactose, fat, and SNF were not affected by prepartum dietary CP level. Colostrum composition (fat, CP and Total solids, blood metabolites (Ca, Glucose, Total protein, Albumin, Globulin and Urea N, and metabolic diseases incidence were not influenced by prepartum dietary CP level. There was no significant difference between treatments in body weight and BCS changes. As expected, blood urea N before calving was higher in the cows fed 16% CP diets. Serum cholesterol during prepartum and postpartum periods was significantly decreased as the CP increased in the diet. In general, although postpartum glucose level increased in cows which received 16% CP in the diet, it seems that no other obvious advantages over feeding the 14% CP diet are apparent. So feeding this last diet is recommended to close up cows.

  11. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring.

    Science.gov (United States)

    Zheng, Benle; Wu, Zaifu; Xu, Baohua

    2014-01-01

    This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  12. Intake of total, animal and plant proteins, and their food sources in 10 countries in the European Prospective Investigation into Cancer and Nutrition.

    Science.gov (United States)

    Halkjaer, J; Olsen, A; Bjerregaard, L J; Deharveng, G; Tjønneland, A; Welch, A A; Crowe, F L; Wirfält, E; Hellstrom, V; Niravong, M; Touvier, M; Linseisen, J; Steffen, A; Ocké, M C; Peeters, P H M; Chirlaque, M D; Larrañaga, N; Ferrari, P; Contiero, P; Frasca, G; Engeset, D; Lund, E; Misirli, G; Kosti, M; Riboli, E; Slimani, N; Bingham, S

    2009-11-01

    To describe dietary protein intakes and their food sources among 27 redefined centres in 10 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC). Between 1995 and 2000, 36 034 persons, aged between 35 and 74 years, were administered a standardized 24-h dietary recall (24-HDR) using a computerized interview software programme (EPIC-SOFT). Intakes (g/day) of total, animal and plant proteins were estimated using the standardized EPIC Nutrient Database (ENDB). Mean intakes were adjusted for age, and weighted by season and day of recall. Mean total and animal protein intakes were highest in the Spanish centres among men, and in the Spanish and French centres among women; the lowest mean intakes were observed in the UK health-conscious group, in Greek men and women, and in women in Potsdam. Intake of plant protein was highest among the UK health-conscious group, followed by some of the Italian centres and Murcia, whereas Sweden and Potsdam had the lowest intake. Cereals contributed to the highest proportion of plant protein in all centres. The combined intake of legumes, vegetables and fruit contributed to a greater proportion of plant protein in the southern than in the northern centres. Total meat intake (with some heterogeneity across subtypes of meat) was, with few exceptions, the most important contributor to animal protein in all centres, followed by dairy and fish products. This study shows that intake of protein, especially of animal origin, differs across the 10 European countries, and also shows some differences in food sources of protein across Europe.

  13. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  14. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  15. In silico Characterization of Plant and Microbial Antifreeze Proteins

    Directory of Open Access Journals (Sweden)

    Abdul Mohin Sajib

    2012-12-01

    Full Text Available Antifreeze proteins (AFPs are class of proteins that protect organisms from the damage caused by freezing through their ability to inhibit ice growth and effectively lower the temperature at which water freezes. In this study, a total of 25 antifreeze proteins were selected from four different sources (plant, bacteria and fungus where they represent distinct physicochemical and structural features. Several Physico-chemical properties such as grand average hydropathy (GRAVY, aliphatic index (AI, extinction coefficient (EC, isolelectric point (pI, and instability index (II were computed. S-S bridges and secondary structures were analyzed using CYS_REC and SOPMA programs respectively. The three dimensional structure of Antifreeze proteins is predicted by using three homology modelling server Geno3D, Swiss-model and CPHmodels. These models were evaluated with PROCHECK, What If, and ProSA programs. Model visualization and analysis was done with Pymol. These structures will provide a good foundation for functional analysis of experimentally derived crystal structures.

  16. The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management.

    Science.gov (United States)

    Paterson, Megan; Bell, Kirstine J; O'Connell, Susan M; Smart, Carmel E; Shafat, Amir; King, Bruce

    2015-09-01

    A primary focus of the management of type 1 diabetes has been on matching prandial insulin therapy with carbohydrate amount consumed. However, even with the introduction of more flexible intensive insulin regimes, people with type 1 diabetes still struggle to achieve optimal glycaemic control. More recently, dietary fat and protein have been recognised as having a significant impact on postprandial blood glucose levels. Fat and protein independently increase the postprandial glucose excursions and together their effect is additive. This article reviews how the fat and protein in a meal impact the postprandial glycaemic response and discusses practical approaches to managing this in clinical practice. These insights have significant implications for patient education, mealtime insulin dose calculations and dosing strategies.

  17. Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption

    Science.gov (United States)

    Ceglia, Lisa; Harris, Susan S.; Abrams, Steven A.; Rasmussen, Helen M.; Dallal, Gerard E.; Dawson-Hughes, Bess

    2009-01-01

    Context: Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system, particularly in older individuals with declining renal function. Objective: We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment. Design: We conducted a 41-d randomized, placebo-controlled, double-blind study of KHCO3 or placebo with a 16-d phase-in and two successive 10-d metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-d washout between diets. Setting: The study was conducted in a metabolic research unit. Participants: Nineteen healthy subjects ages 54–82 yr participated. Intervention: KHCO3 (up to 90 mmol/d) or placebo was administered for 41 d. Main Outcome Measures: We measured 24-h urinary nitrogen excretion, IGF-I, 24-h urinary calcium excretion, and fractional calcium absorption. Results: KHCO3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake (P = 0.015) and was associated with higher IGF-I levels on the low-protein diet (P = 0.027) with a similar trend on the high-protein diet (P = 0.050). KHCO3 was also associated with higher fractional calcium absorption on the low-protein diet (P = 0.041) with a similar trend on the high-protein diet (P = 0.064). Conclusions: In older adults, KHCO3 attenuates the protein-induced rise in urinary nitrogen excretion, and this may be mediated by IGF-I. KHCO3 may also promote calcium absorption independent of the dietary protein content. PMID:19050051

  18. The effects of protein dietary supplementation on fecal egg counts and hematological parameters in goat kids with subclinical nematodosis

    Directory of Open Access Journals (Sweden)

    Priyanka Konwar

    2015-11-01

    Full Text Available Aim: The aim of the present study was to assess the effect of dietary supplementation with different levels of protein on fecal egg counts and hematological parameters in goat kids with subclinical nematodosis under semi-intensive condition. Materials and Methods: 20 goat kids (3-5 months old with an average body weight of 8.90 kg were randomly allocated to four groups: T1, served as a negative control, without receiving concentrate feed, and T2, T3, and T4 that received concentrate feed containing 16, 20, and 24% digestible crude protein, respectively. The experiment was carried out for 60 days. Results: In this study, protein supplementation had a significant (p<0.05 effect on fecal egg counts even after 15 days; hemoglobin (Hb (g/dl after 45 days; total leukocyte count (103/mm3 and total erythrocyte count (106/mm3 after 30 days; packed cell volume (%, lymphocyte (%, and eosinophil (% after 15 days of supplementation, whereas monocyte (% and neutrophil (% values were not significantly influenced by protein supplementation effect during the entire experiment. The values of mean corpuscular volume (fl were affected significantly (p<0.05, p<0.01 due to protein supplementation after 30 days, mean corpuscular Hb (MCH (pg after 45 days, but MCH concentration (g/dl was not significantly different among the experimental groups during the entire experiment. Conclusion: The dietary supplementation with different levels of protein significantly improved the hematological profiles and inhibited the nematodosis infection in the experimental goat kids.

  19. Nutrient-dense, Plant-rich Dietary Intervention Effective at Reducing Cardiovascular Disease Risk Factors for Worksites: A Pilot Study.

    Science.gov (United States)

    Sutliffe, Jay Thomas; Fuhrman, Joel Harvey; Carnot, Mary Jo; Beetham, Raena Marie; Peddy, Madison Sarah

    2016-09-01

    conduct interventions for health promotion and disease prevention to ameliorate chronic risk factors for disease, such as for cardiovascular disease (CVD). Likewise, nutrient-dense, plant-rich (NDPR) dietary patterns have been shown to be effective at preventing and improving chronic-disease conditions, including CVD. Objective • The study's aim was to determine the feasibility and effectiveness of an NDPR dietary intervention for worksites to lower CVD risk factors. Design • The study was a 6-wk pilot intervention using a pretest and posttest design. The intervention was conducted at the Northern Arizona University (Flagstaff, AZ, USA) and sponsored by its Employee Assistance and Wellness Department. Participants • Participants were 35 employees with body mass indexes (BMIs) >25 kg/m2 who were ready and willing to make a lifestyle change, who were not currently participating in a weight loss program, and who were not taking any medications that could increase medical risk or had weight loss as a primary side effect. The average age of participants was 42.57 y; 91.4% were female, and 80% were Caucasian. Intervention • The intervention used a dietary protocol consisting of the daily consumption of greens, beans, legumes, and a variety of other vegetables, as well as fresh or frozen whole fruits, nuts, seeds, and whole grains. Participants were encouraged to minimize the consumption of refined grains, vegetable oils, processed foods, and animal products. Outcome Measures • The study measured serum lipids, height, weight, waist and hip circumference, waist-to-hip ratio, and blood pressure. Results • Based on paired-sample t tests and Wilcoxon signed-ranks test with a maximum level of P = .05, the intervention resulted in significant changes in weight, BMI, waist and hip measurements, high-density lipoproteins, low-density lipoproteins, and estimated average glucose. Conclusions • The findings favorably revealed that an NDPR dietary intervention that was

  20. Effects of dietary level of tannic acid and protein on internal organ weights and biochemical blood parameters of rats.

    Directory of Open Access Journals (Sweden)

    Marcin Barszcz

    Full Text Available Tannic acid (TA is a polyphenolic compound with a health-promoting potential for humans. It is hypothesised that TA effects on the relative weight of internal organs and biochemical blood indices are modified by dietary protein level in rats. The study involved 72 rats divided into 12 groups fed diets with 10 or 18% of crude protein (CP and supplemented with 0, 0.25, 0.5, 1, 1.5 or 2% of TA. After 3 weeks of feeding, the relative weight of the caecum was greater in rats fed TA diets, while feeding diets with 10% of CP increased the relative weight of the stomach, small intestine and caecum, but decreased that of kidneys and spleen. Albumin concentration was higher in rats fed 0.25% and 0.5% TA diets than in rats given the 2% TA diets. The 2% TA diets reduced creatine kinase (CK activity compared to non-supplemented diets and those with 0.5, 1 and 1.5% of TA. Rats fed the 10% CP diets had a higher activity of alkaline phosphatase, amylase, and γ-glutamyltransferase as well as the concentration of iron and cholesterol, but lower that of urea and uric acid. The interaction affected only cholinesterase activity. In conclusion, TA induced caecal hypertrophy and could act as a cardioprotective agent, as demonstrated by reduced CK activity, but these effects were not modified by dietary protein level.

  1. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  2. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes.

    Science.gov (United States)

    Chen, Mei-En; Hwang, Shang-Jyh; Chen, Hung-Chun; Hung, Chi-Chih; Hung, Hsin-Chia; Liu, Shao-Chun; Wu, Tsai-Jiin; Huang, Meng-Chuan

    2017-05-01

    Dietary energy and protein intake can affect progression of chronic kidney disease (CKD). CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI) and dietary protein intake (DPI) to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3-5 CKD patients [estimated glomerular filtration rate (eGFR)Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1) kidney diet (KD) A (KD-A), the most appropriate diet, was characterized by low DPI and adequate DEI; (2) KD-B, low DPI and inadequate DEI; (3) KD-C, excess DPI and adequate DEI; and (4) KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (ppatients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of -5.63 mL/min/1.73 m 2 (p = 0.029) and -7.72 mL/min/1.73 m 2 (p=0.015). In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets. Copyright © 2017. Published by Elsevier Taiwan.

  3. Commercial breakfast cereals available in Mexican markets and their contribution in dietary fiber, β-glucans and protein quality by rat bioassays.

    Science.gov (United States)

    Falcón-Villa, María R; Barrón-Hoyos, Jesús M; Cinco-Moroyoqui, Francisco J

    2014-09-01

    The beneficial effect of dietary fiber (DF) consumption has long been recognized. The global economy and open market trade policies have increased the availability of food products in Mexican markets, resulting in a wide variety of ready-to-eat commercial breakfast cereals classified as 'high fiber'. This research was aimed to evaluate the total dietary fiber contents, its fractions (soluble and insoluble) and β-glucan in 13 commercial 'high-fiber' breakfast cereals, as well as to evaluate their protein quality by rat bioassays. Commercial 'high-fiber' breakfast cereals had 7.42-39.82% insoluble dietary fiber, 2.53-12.85% soluble dietary fiber, and 0.45-4.96% β-glucan. These ready-to-eat commercial 'high-fiber' breakfast cereals differed significantly in their total dietary fiber, their soluble and insoluble DF fractions, and also in their β-glucan contents. When supplied as experimental diets, in 14-day rat feeding trials, the 'high-fiber' breakfast cereals showed an adverse effect on the % N digestibility but protein utilization, as measured as net protein ratio (NPR), was not significantly affected. The consumption of these commercial breakfast cereals, especially those made of oats as the basic ingredient, is highly recommended, since these products, being a concentrated source of dietary fiber, do not affect their protein quality.

  4. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows.

    Science.gov (United States)

    Mutsvangwa, T; Davies, K L; McKinnon, J J; Christensen, D A

    2016-08-01

    The objective of this study was to determine how interactions between dietary crude protein (CP) and rumen-degradable protein (RDP) concentrations alter urea-nitrogen recycling, nitrogen (N) balance, omasal nutrient flow, and milk production in lactating Holstein cows. Eight multiparous Holstein cows (711±21kg of body weight; 91±17d in milk at the start of the experiment) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of dietary treatments and 29-d experimental periods. Four cows in one Latin square were fitted with ruminal cannulas to allow ruminal and omasal sampling. The dietary treatment factors were CP (14.9 vs. 17.5%; dry matter basis) and RDP (63 vs. 69% of CP) contents. Dietary RDP concentration was manipulated by including unprocessed or micronized canola meal. Diet adaptation (d 1-20) was followed by 8d (d 21-29) of sample and data collection. Continuous intrajugular infusions of [(15)N(15)N]-urea (220mg/d) were conducted for 4d (d 25-29) with concurrent total collections of urine and feces to estimate N balance and whole-body urea kinetics. Proportions of [(15)N(15)N]- and [(14)N(15)N]-urea in urinary urea, and (15)N enrichment in feces were used to calculate urea kinetics. For the low-CP diets, cows fed the high-RDP diet had a greater DM intake compared with those fed the low-RDP diet, but the opposite trend was observed for cows fed the high-CP diets. Dietary treatment had no effect on milk yield. Milk composition and milk component yields were largely unaffected by dietary treatment; however, on the low-CP diets, milk fat yield was greater for cows fed the low-RDP diet compared with those fed the high-RDP diet, but it was unaffected by RDP concentration on the high-CP diets. On the high-CP diets, milk urea nitrogen concentration was greater in cows fed the high-RDP diet compared with those fed the low-RDP diet, but it was unaffected by RDP concentration on the low-CP diets. Ruminal NH3-N concentration tended to

  5. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway.

    Science.gov (United States)

    Bisson, Melanie M A; Groth, Georg

    2015-08-01

    The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Riboflavin-binding protein. Concentration and fractional saturation in chicken eggs as a function of dietary riboflavin.

    OpenAIRE

    White, H B; Armstrong, J; Whitehead, C C

    1986-01-01

    The concentration of riboflavin and riboflavin-binding protein were determined in the plasma, egg yolk and albumen from hens fed a riboflavin-deficient diet (1.2 mg/kg) supplemented with 0, 1, 2, 3, 10 and 40 mg of riboflavin/kg. We observed that the deposition of riboflavin in egg yolk and albumen is dependent on dietary riboflavin and reaches half-maximal values at about 2 mg of supplemental riboflavin/kg. The maximal amount of riboflavin deposited in the yolk is limited stoichiometrically ...

  7. Dietary Protein Sources and Risk for Incident Chronic Kidney Disease: Results From the Atherosclerosis Risk in Communities (ARIC) Study.

    Science.gov (United States)

    Haring, Bernhard; Selvin, Elizabeth; Liang, Menglu; Coresh, Josef; Grams, Morgan E; Petruski-Ivleva, Natalia; Steffen, Lyn M; Rebholz, Casey M

    2017-07-01

    Dietary protein restriction is recommended for patients with moderate to severe renal insufficiency. Long-term data on the relationship between dietary protein sources and risk for incident kidney disease in individuals with normal kidney function are largely missing. This study aimed to assess the association between dietary protein sources and incident chronic kidney disease (CKD). Prospective cohort. Atherosclerosis Risk in Communities study participants from 4 US communities. A total of 11,952 adults aged 44-66 years in 1987-1989 who were free of diabetes mellitus, cardiovascular disease, and had an estimated glomerular filtration rate (eGFR) ≥ 60 mL/minute/1.73 m 2 . A 66-item food frequency questionnaire was used to assess food intake. CKD stage 3 was defined as a decrease in eGFR of ≥25% from baseline resulting in an eGFR of less than 60 mL/minute/1.73 m 2 ; CKD-related hospitalization; CKD-related death; or end-stage renal disease. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression. During a median follow-up of 23 years, there were 2,632 incident CKD cases. Red and processed meat consumption was associated with increased CKD risk (HR Q5 vs. Q1 : 1.23, 95% CI: 1.06-1.42, p trend  = 0.01). In contrast, higher dietary intake of nuts, legumes, and low-fat dairy products was associated with lower CKD risk (nuts: HR Q5 vs. Q1 : 0.81, 95% CI: 0.72-0.92, p trend protein sources with risk of incident CKD; with red and processed meat being adversely associated with CKD risk; and nuts, low-fat dairy products, and legumes being protective against the development of CKD. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Saponins and phenolic content in plant dietary additives of a traditional subsistence community, the Batemi of Ngorongoro District, Tanzania.

    Science.gov (United States)

    Johns, T; Mahunnah, R L; Sanaya, P; Chapman, L; Ticktin, T

    1999-07-01

    Reports of plants added to milk and meat-based soups by the Maasai and Batemi in East Africa support a role for phenolic antioxidants and hypocholesterolemic agents in the diet, and provide explanation of the low incidence of cardiovascular disease of populations that traditionally consume high levels of dietary fat and cholesterol. Plant food additives used by the Batemi of Ngorongoro District, Tanzania, were tabulated, based on interviews with 22 informants, while 17 specimens were collected in the field and analyzed for saponin and phenolic content. A total of 81% of the Batemi additives and 82% of those known to be used by the Maasai contain potentially hypocholesterolemic saponins and/or phenolics.

  9. Alternative plant protein sources for pigs and chickens in the tropics – nutritional value and constraints: a review

    Directory of Open Access Journals (Sweden)

    Carlos E. Lascano

    2012-01-01

    Full Text Available In the tropics, a large number of smallholder farms contribute significantly to food security by raising pigs and poultry for domestic consumption and for sale on local markets. The high cost and, sometimes, the lack of availability of commercial protein supplements is one of the main limitations to efficient animal production by smallholders. Locally-grown forages and grain legumes offer ecological benefits such as nitrogen fixation, soil improvement, and erosion control which contribute to improve cropping efficiency. Besides these agronomical assets, they can be used as animal feeds in mixed farming systems. In this paper we review options to include locally-grown forages and grain legumes as alternative protein sources in the diets of pigs and poultry in order to reduce farmers’ dependence on externally-purchased protein concentrates. The potential nutritive value of a wide range of forages and grain legumes is presented and discussed. The influence of dietary fibre and plant secondary metabolites contents and their antinutritive consequences on feed intake, digestive processes and animal performances are considered according to the varying composition in those compounds of the different plant species and cultivars covered in this review. Finally, methods to overcome the antinutritive attributes of the plant secondary metabolites using heat, chemical or biological treatment are reviewed regarding their efficiency and their suitability in low input farming systems.

  10. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    Directory of Open Access Journals (Sweden)

    José Luis Carrasco

    Full Text Available Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6, a previously reported DBP1 interactor, and MAP kinase (MAPK MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV, and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  11. Effect of dietary protein levels on rumen metabolism and milk yield in mid-lactating cows under hot and humid conditions

    NARCIS (Netherlands)

    Thiangtum, W.; Schonewille, J.T.; Yawongsa, A.; Rukkwamsuk, T.; Kanjanapruthipong, J.; Verstegen, M.W.A.; Hendriks, W.H.

    2014-01-01

    An experiment was conducted to investigate the effects of 2 levels of dietary Crude Protein (CP) in concentrates with similar proportions of Rumen Undegradable Protein (RUP) on rumen metabolism, milk yield and composition in mid lactating cows in Thailand. Eight 87.5% Holsteinx12.5% indigenous

  12. Effect of dietary protein levels on rumen metabolism and milk yield in mid-lactating cows under hot and humid conditions.

    NARCIS (Netherlands)

    Thiangtum, W; Schonewille, Thomas; Yawongsa, A; Rukkwamsuk, T; Kanjanapruthipon, J; Verstegen, M.W.A.; Hendriks, Wouter

    2014-01-01

    An experiment was conducted to investigate the effects of 2 levels of dietary Crude Protein (CP) in concentrates with similar proportions of Rumen Undegradable Protein (RUP) on rumen metabolism, milk yield and composition in mid lactating cows in Thailand. Eight 87.5% Holsteinx12.5% indigenous

  13. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis.

    Science.gov (United States)

    Neale, E P; Batterham, M J; Tapsell, L C

    2016-05-01

    Consumption of healthy dietary patterns has been associated with reduced risk of cardiovascular disease and metabolic syndrome. Dietary intervention targets disease prevention, so studies increasingly use biomarkers of underlying inflammation and metabolic syndrome progression to examine the diet-health relationship. The extent to which these biomarkers contribute to the body of evidence on healthy dietary patterns is unknown. The aim of this meta-analysis was to determine the effect of healthy dietary patterns on biomarkers associated with adiposity, insulin resistance, and inflammation in adults. A systematic search of Scopus, PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (all years to April 2015) was conducted. Inclusion criteria were randomized controlled trials; effects of dietary patterns assessed on C-reactive protein (CRP), total adiponectin, high-molecular-weight adiponectin, tumor necrosis factor-α, adiponectin:leptin, resistin, or retinol binding protein 4. Random effects meta-analyses were conducted to assess the weighted mean differences in change or final mean values for each outcome. Seventeen studies were included in the review. These reflected research on dietary patterns associated with the Mediterranean diet, Nordic diet, Tibetan diet, and the Dietary Approaches to Stop Hypertension diet. Consumption of a healthy dietary pattern was associated with significant reductions in CRP (weighted mean difference, -0.75 [-1.16, -0.35]; P = .0003). Non-significant changes were found for all other biomarkers. This analysis found evidence for favorable effects of healthy dietary patterns on CRP, with limited evidence for other biomarkers. Future research should include additional randomized controlled trials incorporating a greater range of dietary patterns and biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of feed intake level and dietary protein content on the body temperature of pigs housed under thermo neutral conditions.

    Science.gov (United States)

    Morales, A; Ibarra, N; Chávez, M; Gómez, T; Suárez, A; Valle, J A; Camacho, R L; Cervantes, M

    2018-04-01

    Feed intake and diet composition appear to affect the body temperature of pigs. Two trials were conducted to analyse the effect of feed intake level and dietary protein content on the intestinal temperature (IT) of pigs housed under thermo neutral conditions. Ten pigs (64.1 ± 1.3 kg initial body weight) fitted with an ileal cannula were used. A thermometer set to register the IT at 5-min intervals was implanted into the ileum through the cannula. In both trials, the ambient temperature ranged from 19.1 to 21.6°C and the pigs were fed at 07:00 and 19:00 hr (same amount each time). In trial 1, the pigs were fed daily 1.2 or 1.8 kg of a wheat-soybean meal diet. The IT followed a similar pattern along a 24-hr period regardless the feed intake level. The IT rapidly increased up to 0.61 and 0.74°C after the morning meal and up to 0.53 and 0.47°C after the evening meal in pigs fed 1.2 and 1.8 kg/d respectively. The postprandial IT was higher in pigs fed 1.8 kg after each meal (p level. The postprandial IT did not differ between pigs fed the low protein or the high protein (p > .10). The IT rapidly increased up to 0.66 and 0.62°C after the morning meal in pigs fed the high- and low-protein diet (p  .10). In conclusion, the feed intake level affected the IT of pigs housed under TN conditions, but the dietary protein content had no effect. © 2017 Blackwell Verlag GmbH.

  15. Usefulness of dietary enrichment on energy and protein intake in elderly patients at risk of malnutrition discharged to home.

    Science.gov (United States)

    Trabal, Joan; Hervas, Sonia; Forga, Maria; Leyes, Pere; Farran-Codina, Andreu

    2014-02-01

    Malnutrition is a cause for concern among many admitted elderly patients, being common at hospital admission and discharge. The objective of this study was to assess if diet enrichment with small servings of energy and protein dense foods, improves energy and nutrient intake in elderly patients at risk of malnutrition discharged to home. This was a retrospective case series study in elderly patients at risk of malnutrition treated with diet enrichment. There was a data review of dietary and health records of elderly patients discharged to home. Forty-one patients, mean age of 83 ± 5 years, met the inclusion criteria; 13 patients had been lost after 4 weeks of treatment and a total of 24 patients after 12 weeks. Records contained food intake data assessed at baseline, and after 4 and 12 weeks of treatment. Mini Nutritional Assessment, anthropometric measurements, routine biochemical parameters and the Barthel Index were assessed at baseline and after 12 weeks. Compared to baseline, patients significantly improved their energy and protein intake after 4 weeks of treatment, fulfilling the mean nutritional requirements. The improvement in energy and protein intake was still manifest at week 12. After 12 weeks of dietary enrichment, a significant weight gain was observed (4.1%, p = 0.011), as well. No significant changes were detected in functional status. Using small servings of energy and protein dense foods to enrich meals seems a feasible nutritional treatment to increase energy and protein intake and meet nutritional goals among elderly patients discharged to home. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei; Ecker, Joseph R.

    2010-02-02

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding a F-box protein, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding a F-box protein.

  17. Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults.

    Science.gov (United States)

    Berryman, Claire E; Agarwal, Sanjiv; Lieberman, Harris R; Fulgoni, Victor L; Pasiakos, Stefan M

    2016-09-01

    Higher-protein diets are associated with decreased adiposity and greater HDL cholesterol than lower protein diets. Whether these benefits can be attributed to a specific protein source (i.e., nondairy animal, dairy, or plant) is unknown, and concerns remain regarding the impact of higher-protein diets on kidney function. The objective of this study was to evaluate trends of protein source on markers of cardiometabolic disease risk and kidney function in US adults. Total, nondairy animal, dairy, and plant protein intake were estimated with the use of 24-h recall data from NHANES 2007-2010 (n = 11,111; ≥19 y). Associations between source-specific protein intake and health outcomes were determined with the use of models that adjusted for sex, race and ethnicity, age, physical activity, poverty-to-income ratio, individual intake (grams per kilogram) for each of the other 2 protein sources, body mass index (BMI) (except for weight-related variables), and macronutrient (carbohydrate, fiber, and total and saturated fat) intake. Mean ± SE total protein intake was 82.3 ± 0.8 g/d (animal: 37.4 ± 0.5 g/d; plant: 24.7 ± 0.3 g/d; and dairy: 13.4 ± 0.3 g/d). Both BMI and waist circumference were inversely associated [regression coefficient (95% CI)] with animal [-0.199 (-0.265, -0.134), P protein intake. Blood urea nitrogen concentrations increased across deciles for animal [0.313 (0.248, 0.379), P protein intake. Glomerular filtration rate and blood creatinine were not associated with intake of any protein source. Diets higher in plant and animal protein, independent of other dietary factors, are associated with cardiometabolic benefits, particularly improved central adiposity, with no apparent impairment of kidney function. © 2016 American Society for Nutrition.

  18. The effect of dietary protein on reproduction in the mare. I. The composition and evaluation of the digestibility of dietary protein from different sources

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1997-07-01

    Full Text Available Four rations that differed in their crude protein and essential amino-acid content were compiled. Digestibility of the crude protein and essential amino-acid contents were determined biologically in a feeding trial using 4 Anglo-Arab stallions. Their respective daily diets were: Diet 1: 2 kg cubes, 5 kg tef hay (Eragrostis tef; Diet 2: 2 kg cubes, 5 kg lucerne hay (Medicago sativa; Diet 3: 2 kg cubes, 5 kg tef hay, 200 g fishmeal; Diet 4: 2 kg cubes, 5 kg lucerne hay, 200 g fishmeal. The concentrations of the amino-acids threonine, iso-leucine, leucine and arginine were increased in the total ration when lucerne hay replaced the tef hay while fishmeal supplementation increased the methionine and lysine contents, which provided a wide range of concentrations of digestible amino-acids in each of the 4 rations.

  19. the effect of dietary energy and protein levels on the composition

    African Journals Online (AJOL)

    Zannel

    Keywords: Breeding ostriches, nutrition, energy, protein, amino acids, egg ... Yolk is an important nutritional component of the avian egg because .... 3 (energy) x 3 (protein) factorial design with energy and protein levels featuring as main factors. ... No significant interactions were observed between energy and protein levels.

  20. Effect of dietary energy and protein on the performance, egg quality, bone mineral density, blood properties and yolk fatty acid composition of organic laying hens

    Directory of Open Access Journals (Sweden)

    Md. Rakibul Hassan

    2013-02-01

    Full Text Available An experiment was conducted to evaluate the effect of dietary metabolizable energy (ME and crude protein (CP on the performance, egg quality, blood properties, bone characteristics and yolk fatty acid composition of organic laying hens. At 23 weeks, a total of 600 Brown nick laying hens were randomly distributed into 24 outdoor pens (4 replicate pens/treatment; 25 birds/pen and were given (2750, 2775 and 2800 kcal of ME/kg and CP (16 and 17% resulting in a 3×2 factorial arrangement of organic dietary treatments. The experiment lasted 23 weeks. The performance of laying hens were not affected by the dietary treatment while the egg weight was increased with energy and CP levels in the diet (P<0.05. Serum total protein was not affected by dietary energy and protein level. Total cholesterol and triglyceride tend to reduce with the increasing amount of CP in the diet. Thereafter, bone and egg quality characteristics were numerically increased in dietary 2775 kcal of ME/kg and 16% CP treatment. On the other hand, docosahexanoic acid content in egg yolk was higher (P<0.01 in 2750 kcal of ME/kg and 17% CP treatment. As a result, the performance, blood and fatty acid composition were maximized in 2750 kcal of ME/kg and 16% CP treatment. Thus, dietary 2750-2775 kcal of ME/kg and 16% CP may enhance performance, blood and fatty acid composition of organic laying hens.

  1. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice

    Science.gov (United States)

    Li, Jianing; Wang, Yu; Tang, Lihua; de Villiers, Willem JS; Cohen, Donald; Woodward, Jerold; Finkelman, Fred D; Eckhardt, Erik RM

    2012-01-01

    BACKGROUND The prevalence of peanut allergies is rising. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCT), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared to long-chain triglycerides (LCT), which stimulate mesenteric lymph flow and are absorbed in chylomicrons via mesenteric lymph. OBJECTIVE Test how dietary MCT affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81; “PL81”). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood, but stimulated absorption into Peyer's patches. A single gavage of peanut protein with MCT as well as prolonged feeding in MCT-based diets caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis upon systemic challenge and IgE-dependent anaphylaxis upon oral challenge. MCT feeding stimulated jejunal-epithelial TSLP, IL-25 and IL-33 expression compared to LCT, and promoted Th2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared to challenges with LCT. Importantly, effects of MCT could be mimicked by adding PL81 to LCT, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCT promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating Th2 responses. PMID:23182172

  2. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Directory of Open Access Journals (Sweden)

    Yingying Liu

    Full Text Available Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet- or higher/NRC (National Research Council-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I and longissimus dorsi muscle (LDM, type II were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05 gradually with increasing age. Bama mini-pigs had generally higher (P<0.05 muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05 than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K, and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05. There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05 the levels for mTOR and p70S6K in Bama mini-pigs, but

  3. Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions

    NARCIS (Netherlands)

    Ho, Kacie K.H.Y.; Schroën, Karin; San Martín-González, M.F.; Berton-Carabin, Claire C.

    2018-01-01

    Whey-plant protein-based emulsions had high physicochemical stability. Whey and plant protein blend-based interfaces were viscoelastic while casein-based interfaces were relatively viscous. Whey-plant and plant-plant protein blends behaved synergistically leading to enhanced emulsion stability.

  4. Effect of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs

    Directory of Open Access Journals (Sweden)

    J. S. Hong

    2016-10-01

    Full Text Available Abstract Background Providing of insufficient nutrients limits the potential growth of pig, while feeding of excessive nutrients increases the economic loss and causes environment pollution. For these reasons, phase feeding had been introduced in swine farm for improving animal production. This experiment was conducted to evaluate the effects of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs. Methods A total of 128 growing pigs ([Yorkshire × Landrace] × Duroc, averaging 26.62 ± 3.07 kg body weight, were assigned in a 2 × 4 factorial arrangement with 4 pigs per pen. The first factor was two dietary energy level (3,265 kcal of ME/kg or 3,365 kcal of ME/kg, and the second factor was four different levels of dietary protein by phase feeding (1growing(G-2finishing(F phases, 2G-2F phases, 2G-3F phases and 2G-3F phases with low CP requirement. Results In feeding trial, there was no significant difference in growth performance. The BUN concentration was decreased as dietary protein level decreased in 6 week and blood creatinine was increased in 13 week when pigs were fed diets with different dietary energy level. The digestibility of crude fat was improved as dietary energy levels increased and excretion of urinary nitrogen was reduced when low protein diet was provided. Chemical compositions of longissimus muscle were not affected by dietary treatments. In backfat thickness (P2 at 13 week, pigs fed high energy diet had thicker backfat thickness (P = 0.06 and pigs fed low protein diet showed the trend of backfat thinness reduction (P = 0.09. In addition, water holding capacity was decreased (P = 0.01 and cooking loss was increased (P = 0.07 as dietary protein level reduced. When pigs were fed high energy diet with low subdivision of phase feeding, days to 120 kg market weight was reached earlier compared to

  5. Dietary macronutrient recommendations for optimal Dietary ...

    African Journals Online (AJOL)

    Both resistance and endurance-trained athletes have a higher dietary protein requirement of between 1.2 and 1.8 g protein/kg body weight (BW)/day, with an upper limit of 2 g protein/kg BW/day. To increase the rate of protein synthesis during the recovery period, immediate ingestion of protein postexercise is recommended ...

  6. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    Science.gov (United States)

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  7. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    Science.gov (United States)

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  8. Dietary supplementation with Lactobacilli improves emergency granulopoiesis in protein-malnourished mice and enhances respiratory innate immune response.

    Directory of Open Access Journals (Sweden)

    Matias Herrera

    Full Text Available This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.

  9. Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice.

    Science.gov (United States)

    Untersmayr, Eva; Schöll, Isabella; Swoboda, Ines; Beil, Waltraud J; Förster-Waldl, Elisabeth; Walter, Franziska; Riemer, Angelika; Kraml, Georg; Kinaciyan, Tamar; Spitzauer, Susanne; Boltz-Nitulescu, George; Scheiner, Otto; Jensen-Jarolim, Erika

    2003-09-01

    Digestible proteins were supposed to be irrelevant for oral sensitization and induction of food allergy. Approximately 10% of the adult population uses antacids for the treatment of dyspeptic disorders, drugs that hinder peptic digestion. In these patients, proteins that are normally degradable might act as food allergens. We aimed to study the influence of antacid intake on the allergenicity of dietary proteins, taking sturgeon caviar and parvalbumin, the major fish allergen, as examples. Caviar proteins and recombinant parvalbumin from carp, rCyp c 1, were applied for intragastric feedings with or without the antacids sucralfate, ranitidine or omeprazole, using a Balb/c mouse model. Both caviar proteins and parvalbumin were rapidly degraded in an in vitro digestion assay at pH 2.0, but not at pH 5.0, imitating the effect of antacids. The groups fed with caviar in combination with ranitidine hydrochloride intramuscularly or sucralfate orally had significant levels of caviar-specific IgE antibodies (P allergy in these groups was further evidenced by oral provocation tests and positive immediate-type skin reactivity. In contrast, feedings with caviar alone led to antigen-specific T-cell tolerance. None of the groups showed immune reactivity against the daily mouse diet. As a proof of the principle, feeding mice with parvalbumin in combination with ranitidine or omeprazole intramuscularly induced allergen-specific IgE antibodies (P allergy.

  10. Performance of Broilers Given Different Dietary Levels of Acacia ...

    African Journals Online (AJOL)

    The study was aimed at evaluating the seeds of a leguminous plant, Acacia sieberiana DC as an alternative source of dietary plant protein for broilers. Five experimental diets containing 0 (control), 5, 10, 15 and 20% Acacia sieberiana seeds (ASS) were formulated and fed to 5 groups of birds during starter (0 - 4 weeks), ...

  11. Dietary Protein Intake in a Multi-ethnic Asian Population of Healthy Participants and Chronic Kidney Disease Patients.

    Science.gov (United States)

    Teo, Boon Wee; Toh, Qi Chun; Xu, Hui; Yang, Adonsia Y T; Lin, Tingxuan; Li, Jialiang; Lee, Evan J C

    2015-04-01

    Clinical practice guidelines recommend different levels of dietary protein intake in predialysis chronic kidney disease (CKD) patients. It is unknown how effectively these recommendations perform in a multi-ethnic Asian population, with varied cultural beliefs and diets. We assess the profi le of protein intake in a multi-ethnic Asian population, comparing healthy participants and CKD patients. We analysed the 24-hour urine collections of the Asian Kidney Disease Study (AKDS) and the Singapore Kidney Function Study (SKFS) to estimate total protein intake (TPI; g/day). We calculated ideal body weight (IDW; kg): 22.99 × height2 (m). Standard statistical tests were applied where appropriate, and linear regression was used to assess associations of continuous variables with protein intake. There were 232 CKD patients and 103 healthy participants with 35.5% diabetics. The mean TPI in healthy participants was 58.89 ± 18.42 and the mean TPI in CKD patients was 53.64 ± 19.39. By US National Kidney Foundation (NKF) guidelines, 29/232 (12.5%) of CKD patients with measured glomerular filtration rate (GFR) patients had TPI-IDW >0.75g/kg/ day. By American Dietetic Association (ADA) guidelines, 34.7% (44/127) of CKD patients with GFR patients with GFR protein intake of between 0.3 to 0.5 g/kg/day. A total of 21.9% (25/114) of diabetic CKD patients had protein intake between 0.8 to 0.9 g/kg/day. On average, the protein intake of most CKD patients exceeds the recommendations of guidelines. Diabetic CKD patients should aim to have higher protein intakes.

  12. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Reitelseder, Søren; Holm, Lars

    2013-01-01

    intake. Ingestion of excess protein exerts an unwanted load to the body and therefore, it is important to find the least amount of protein that provides the maximal hypertrophic stimulus. Hence, research has focused on revealing the relationship between protein intake (dose) and its resulting stimulation...... response dependent on the characteristics of the protein ingested. The effect of protein intake on muscle protein accretion can further be stimulated by prior exercise training. In the ageing population, physical training may counteract the development of "anabolic resistance" and restore the beneficial...

  13. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    Science.gov (United States)

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  14. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    Science.gov (United States)

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    Science.gov (United States)

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  16. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2-9 weeks of age.

    Science.gov (United States)

    Mahrose, Kh M; Attia, A I; Ismail, I E; Abou-Kassem, D E; El-Hack, M E Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%).

  17. Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats.

    Science.gov (United States)

    Yusuf, Aisha L; Adeyemi, Kazeem D; Samsudin, Anjas A; Goh, Yong M; Alimon, Abdul Razak; Sazili, Awis Q

    2017-11-24

    The nature and amount of dietary medicinal plants are known to influence rumen fermentation and nutrient digestibility in ruminants. Nonetheless, changes in nutrient digestibility and rumen metabolism in response to dietary Andrographis paniculata (AP) in goats are unknown. This study examined the effects of dietary supplementation of leaves and whole plant of AP on nutrient digestibility, rumen fermentation, fatty acids and rumen microbial population in goats. Twenty-four Boer crossbred bucks (4 months old; average body weight of 20.18 ± 0.19 kg) were randomly assigned to three dietary groups of eight goats each. The dietary treatments included a control diet (Basal diet without additive), basal diet +1.5% (w/w) Andrographis paniculata leaf powder (APL) and basal diet +1.5% (w/w) Andrographis paniculata whole plant powder (APW). The trial lasted 100 d following 14 d of adjustment. The rumen pH and concentration of propionate were greater (P Andrographis paniculata can be used to manipulate rumen metabolism for improved nutrient digestibility in goats.

  18. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products.

    Science.gov (United States)

    Mäkinen, Outi Elina; Wanhalinna, Viivi; Zannini, Emanuele; Arendt, Elke Karin

    2016-01-01

    A growing number of consumers opt for plant-based milk substitutes for medical reasons or as a lifestyle choice. Medical reasons include lactose intolerance, with a worldwide prevalence of 75%, and cow's milk allergy. Also, in countries where mammal milk is scarce and expensive, plant milk substitutes serve as a more affordable option. However, many of these products have sensory characteristics objectionable to the mainstream western palate. Technologically, plant milk substitutes are suspensions of dissolved and disintegrated plant material in water, resembling cow's milk in appearance. They are manufactured by extracting the plant material in water, separating the liquid, and formulating the final product. Homogenization and thermal treatments are necessary to improve the suspension and microbial stabilities of commercial products that can be consumed as such or be further processed into fermented dairy-type products. The nutritional properties depend on the plant source, processing, and fortification. As some products have extremely low protein and calcium contents, consumer awareness is important when plant milk substitutes are used to replace cow's milk in the diet, e.g. in the case of dairy intolerances. If formulated into palatable and nutritionally adequate products, plant-based substitutes can offer a sustainable alternative to dairy products.

  19. Body characteristics, [corrected] dietary protein and body weight regulation. Reconciling conflicting results from intervention and observational studies?

    Directory of Open Access Journals (Sweden)

    Mikkel Z Ankarfeldt

    Full Text Available Physiological evidence indicates that high-protein diets reduce caloric intake and increase thermogenic response, which may prevent weight gain and regain after weight loss. Clinical trials have shown such effects, whereas observational cohort studies suggest an association between greater protein intake and weight gain. In both types of studies the results are based on average weight changes, and show considerable diversity in both directions. This study investigates whether the discrepancy in the evidence could be due to recruitment of overweight and obese individuals into clinical trials.Data were available from the European Diet, Obesity and Genes (DiOGenes post-weight-loss weight-maintenance trial and the Danish Diet, Cancer and Health (DCH cohort. Participants of the DCH cohort were matched with participants from the DiOGenes trial on gender, diet, and body characteristics. Different subsets of the DCH-participants, comparable with the trial participants, were analyzed for weight maintenance according to the randomization status (high or low protein of the matched trial participants.Trial participants were generally heavier, had larger waist circumference and larger fat mass than the participants in the entire DCH cohort. A better weight maintenance in the high-protein group compared to the low protein group was observed in the subgroups of the DCH cohort matching body characteristics of the trial participants.This modified observational study, minimized the differences between the RCT and observational data with regard to dietary intake, participant characteristics and statistical analysis. Compared with low protein diet the high protein diet was associated with better weight maintenance when individuals with greater body mass index and waist circumference were analyzed. Selecting subsets of large-scale observational cohort studies with similar characteristics as participants in clinical trials may reconcile the otherwise conflicting

  20. Estimation of internal dose due to potassium-40 in dietary items over one decade around Kudankulam Nuclear Power Plant

    International Nuclear Information System (INIS)

    Selvi, B.S.; Rajan, P.S.; Vijayakumar, B.; Thomas, G.; Balamurugan, M.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    The radioactivity measurement of food crops and dietary items were carried out as a part of base line data collection around Kudankulam Nuclear Power Plant from 2004 to 2013. The major natural radionuclide present in all dietary items is Potassium-40. Natural potassium comprises of three isotopes, 39 K (93.26%), 40 K (0.0117 %), and 41 K (6.73 %). 40 K radioactive has a radioactive half life of 1.248 x 10 9 y. In ∼89% transitions, it emits a β-particle with a maximum energy of 1.33 MeV and in 11% of transitions; it emits a gamma photon of 1.461 MeV. Being ubiquitous, 40 K gives radiation dose to all human beings. It is an important radionuclide in terms of the dose associated with naturally occurring radionuclides. The objective of this work is to investigate the natural radioactivity level of 40 K in some selected major food crops which are locally grown and evaluate the annual ingestion dose to the members of the public around Kudankulam

  1. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    International Nuclear Information System (INIS)

    Sampson, D.A.; Jansen, G.R.

    1985-01-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of [3- 3 H]phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary gland protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis

  2. Effects of Differences in Dietary Protein and Varying the Interval from Collection of Bovine Embryos to Freezing on Embryo Quality and Viability

    OpenAIRE

    Jousan, Frank Dean

    2002-01-01

    High levels of dietary protein may be detrimental to reproductive performance in cattle. The objective of Exp. 1 was to determine the effects of differences in dietary protein on the production and quality of bovine embryos collected from superovulated donors. Angus cows were randomly assigned to receive one of three experimental diets: a daily ration of 5.7 kg poultry litter, 2.0 kg hay, 3.1 kg corn, and 0.5 kg peanut hulls (LITTER; n = 15); a daily ration of 6.2 kg peanut hulls, 2.2 k...

  3. Low Dietary Protein Status Potentiating Risk of Health Hazard in Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    El-Gawish, M.A.M.; Yousri, R.M.; Roushdy, H.M.; Abdel-Reheem, K.A.; Al-Mossallamy, N.A.

    1998-01-01

    Investigations were planned to assess the changes in certain biochemical parameters as affected by the synergistic effect of exposure to fractionated doses of rays and / or feeding on different protein levels. The date showed that animals kept on normal or low protein diet exhibited a significant decrease in serum total protein and glucose. Also , a significant increase was recorded in insulin level in rats exposed at the radiation dose level of 20 Gy. Exposure to cumulative doses of irradiation has aggrevated the hyperglycemic effect of high protein diet with a significant and marked increase of insulin at all the applied doses. Animals fed normal high or low protein diet were found to exert significant decreases in T3, T4 while a significant increase in TSH of high protein group occurred as a result of exposure to cumulative doses of gamma-irradiation. Rats kept on low protein diet exhibited losses in body weight, hypercholesterolemia, low levels of phospholipids and triglycerides as compared with the normal protein diet group. In contrast high protein diet group showed no serious effects. Irradiation has potentiated body weight losses, hypotriglyceridemia and hypercholesterolemia in animal group fed low protein diet with a significant increase in serum phospholipids due to the higher radiation dose of 20 Gy. Protein deficiency acted synergistically with gamma irradiation and increased the susceptibility of body organs to radiation damage. Such findings contributed to the knowledge which stimulated the decrease of the internationally recognized occupational dose limits from 50 down to 20 m Sv (ICRP 1991)

  4. TFAP2B -Dietary Protein and Glycemic Index Interactions and Weight Maintenance after Weight Loss in the DiOGenes Trial

    DEFF Research Database (Denmark)

    Stocks, Tanja; Ängquist, Lars Henrik; Hager, Jörg

    2013-01-01

    Background: TFAP2B rs987237 is associated with obesity and has shown interaction with the dietary fat-to-carbohydrate ratio, which has an effect on weight loss. We investigated interactions between rs987237 and protein-to-carbohydrate ratio or glycemic index (GI) in relation to weight maintenance...... percentage from fat: either low-protein/low-GI, low-protein/high-GI, high-protein/low-GI, or high-protein/high-GI diets, or a control diet for a 6-month weight maintenance period. Using linear regression analyses and additive genetic models, we investigated main and dietary interaction effects of TFAP2B rs...... diverge depending on the nutritional state. © 2013 S. Karger AG, Basel....

  5. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Tacchi Luca

    2012-08-01

    Full Text Available Abstract Background Aquaculture of piscivorous fish is in continual expansion resulting in a global requirement to reduce the dependence on wild caught fish for generation of fishmeal and fish oil. Plant proteins represent a suitable protein alternative to fish meal and are increasingly being used in fish feed. In this study, we examined the transcriptional response of Atlantic salmon (Salmo salar to a high marine protein (MP or low fishmeal, higher plant protein replacement diet (PP, formulated to the same nutritional specification within previously determined acceptable maximum levels of individual plant feed materials. Results After 77 days of feeding the fish in both groups doubled in weight, however neither growth performance, feed efficiency, condition factor nor organ indices were significantly different. Assessment of histopathological changes in the heart, intestine or liver did not reveal any negative effects of the PP diet. Transcriptomic analysis was performed in mid intestine, liver and skeletal muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K. The dietary comparison revealed large alteration in gene expression in all the tissues studied between fish on the two diets. Gene ontology analysis showed, in the mid intestine of fish fed PP, higher expression of genes involved in enteritis, protein and energy metabolism, mitochondrial activity/kinases and transport, and a lower expression of genes involved in cell proliferation and apoptosis compared to fish fed MP. The liver of fish fed PP showed a lower expression of immune response genes but a higher expression of cell proliferation and apoptosis processes that may lead to cell reorganization in this tissue. The skeletal muscle of fish fed PP vs MP was characterized by a suppression of processes including immune response, energy and protein metabolism, cell proliferation and apoptosis which may reflect a more energy efficient tissue. Conclusions The PP

  6. Ingestion of Casein in a Milk Matrix Modulates Dietary Protein Digestion and Absorption Kinetics but Does Not Modulate Postprandial Muscle Protein Synthesis in Older Men.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C

    2015-07-01

    The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole

  7. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Science.gov (United States)

    Song, Shangxin; Hooiveld, Guido J.; Li, Mengjie; Zhao, Fan; Zhang, Wei; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets. PMID:26857845

  8. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes

    Directory of Open Access Journals (Sweden)

    Mei-En Chen

    2017-05-01

    Full Text Available Dietary energy and protein intake can affect progression of chronic kidney disease (CKD. CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI and dietary protein intake (DPI to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3–5 CKD patients [estimated glomerular filtration rate (eGFR<60 mL/min/1.73 m2 using the Modification of Diet in Renal Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1 kidney diet (KD A (KD-A, the most appropriate diet, was characterized by low DPI and adequate DEI; (2 KD-B, low DPI and inadequate DEI; (3 KD-C, excess DPI and adequate DEI; and (4 KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (p<0.001 and DPI higher (p=0.002 than recommended levels. However, only in the nondiabetic CKD patients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of −5.63 mL/min/1.73 m2 (p = 0.029 and −7.72 mL/min/1.73 m2 (p=0.015. In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets.

  9. Dietary protein intake and coronary heart disease in a large community based cohort: results from the Atherosclerosis Risk in Communities (ARIC study [corrected].

    Directory of Open Access Journals (Sweden)

    Bernhard Haring

    Full Text Available Prospective data examining the relationship between dietary protein intake and incident coronary heart disease (CHD are inconclusive. Most evidence is derived from homogenous populations such as health professionals. Large community-based analyses in more diverse samples are lacking.We studied the association of protein type and major dietary protein sources and risk for incident CHD in 12,066 middle-aged adults (aged 45-64 at baseline, 1987-1989 from four U.S. communities enrolled in the Atherosclerosis Risk in Communities (ARIC Study who were free of diabetes mellitus and cardiovascular disease at baseline. Dietary protein intake was assessed at baseline and after 6 years of follow-up by food frequency questionnaire. Our primary outcome was adjudicated coronary heart disease events or deaths with following up through December 31, 2010. Cox proportional hazard models with multivariable adjustment were used for statistical analyses.During a median follow-up of 22 years, there were 1,147 CHD events. In multivariable analyses total, animal and vegetable protein were not associated with an increased risk for CHD before or after adjustment. In food group analyses of major dietary protein sources, protein intake from red and processed meat, dairy products, fish, nuts, eggs, and legumes were not significantly associated with CHD risk. The hazard ratios [with 95% confidence intervals] for risk of CHD across quintiles of protein from poultry were 1.00 [ref], 0.83 [0.70-0.99], 0.93 [0.75-1.15], 0.88 [0.73-1.06], 0.79 [0.64-0.98], P for trend  = 0.16. Replacement analyses evaluating the association of substituting one source of dietary protein for another or of decreasing protein intake at the expense of carbohydrates or total fats did not show any statistically significant association with CHD risk.Based on a large community cohort we found no overall relationship between protein type and major dietary protein sources and risk for CHD.

  10. Effect of dietary amino acid composition from proteins alternative to fishmeal on the growth of juveniles of the common snook, Centropomus undecimalis

    Directory of Open Access Journals (Sweden)

    Cristiane Freire Silvão

    Full Text Available ABSTRACT This study investigated the effect of dietary amino acid composition from proteins alternative to fishmeal on the growth performance of the common snook, Centropomus undecimalis. Fish of 10.79±0.71 g (n = 150 were stocked in 15 shaded outdoor tanks of 1 m3. The basal diet contained 643.4 g kg−1 salmon byproduct meal (SML and 200.0 g kg−1 soy protein concentrate (SPC. Two other diets replaced 39 and 29% of the SML with poultry byproduct meal (PBM, 170.1 g kg−1 and SPC (334.9 g kg−1, respectively. Fish were fed twice daily for 84 days under 32±1 g L−1 water salinity and 27.3±0.9 °C temperature. Final survival (99.5±2.6% was unaffected by dietary treatment. Snook grew slower (0.24±0.03 and 0.27±0.04 vs 0.35±0.06 g day−1 and achieved the lowest body weight (31.1±6.62 and 33.3±10.20 vs 40.4±13.18 g and the highest feed conversion ratio (3.69±0.29 and 3.11±0.51 vs 2.33±0.34 when fed SPC and basal diets compared with PBM, respectively. Retention of dietary crude protein varied from 36 to 38% for fish fed the basal and SPC diets, but exceeded 51% in fish fed PBM. Results indicate a greater ability of the common snook to gain weight and increase retention of nutrients when dietary protein is of terrestrial animal origin. Dietary protein from PBM yields a more balanced dietary amino acid composition relative to fish muscle, but possibly in excess of the species requirements.

  11. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    Science.gov (United States)

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Young [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Miyashita, Michio [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Department of Pediatrics, Nihon University School of Medicine, Itabashi, Tokyo (Japan); Simon Cho, B.H. [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Harlan E. Moore Heart Research Foundation, 503 South Sixth Street, Champaign, IL 61820 (United States); Nakamura, Manabu T., E-mail: mtnakamu@illinois.edu [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  13. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    International Nuclear Information System (INIS)

    Koo, Hyun-Young; Miyashita, Michio; Simon Cho, B.H.; Nakamura, Manabu T.

    2009-01-01

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  14. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the Chronic Renal Insufficiency Cohort study.

    Science.gov (United States)

    Scialla, Julia J; Appel, Lawrence J; Wolf, Myles; Yang, Wei; Zhang, Xiaoming; Sozio, Stephen M; Miller, Edgar R; Bazzano, Lydia A; Cuevas, Magdalena; Glenn, Melanie J; Lustigova, Eva; Kallem, Radhakrishna R; Porter, Anna C; Townsend, Raymond R; Weir, Matthew R; Anderson, Cheryl A M

    2012-07-01

    Protein from plant, as opposed to animal, sources may be preferred in chronic kidney disease (CKD) because of the lower bioavailability of phosphate and lower nonvolatile acid load. Observational cross-sectional study. A total of 2,938 participants with CKD and information on their dietary intake at the baseline visit in the Chronic Renal Insufficiency Cohort Study. Percentage of total protein intake from plant sources (percent plant protein) was determined by scoring individual food items using the National Cancer Institute Diet History Questionnaire (DHQ). Metabolic parameters, including serum phosphate, bicarbonate (HCO₃), potassium, and albumin, plasma fibroblast growth factor 23 (FGF-23), and parathyroid hormone (PTH), and hemoglobin levels. We modeled the association between percent plant protein and metabolic parameters using linear regression. Models were adjusted for age, sex, race, diabetes status, body mass index, estimated glomerular filtration rate, income, smoking status, total energy intake, total protein intake, 24-hour urinary sodium concentration, use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, and use of diuretics. Higher percent plant protein was associated with lower FGF-23 (P = .05) and higher HCO₃ (P = .01) levels, but not with serum phosphate or parathyroid hormone concentrations (P = .9 and P = .5, respectively). Higher percent plant protein was not associated with higher serum potassium (P = .2), lower serum albumin (P = .2), or lower hemoglobin (P = .3) levels. The associations of percent plant protein with FGF-23 and HCO₃ levels did not differ by diabetes status, sex, race, CKD stage (2/3 vs. 4/5), or total protein intake (≤0.8 g/kg/day vs. >0.8 g/kg/day; P-interaction >.10 for each). This is a cross-sectional study; determination of percent plant protein using the Diet History Questionnaire has not been validated. Consumption of a higher percentage of protein from plant sources may lower FGF-23 and

  15. Effect of Dietary Protein Level on the Expression of Proteins in the Gastrointestinal Tract of Young Pigs.

    Science.gov (United States)

    Ma, Xianyong; Tian, Zhimei; Deng, Dun; Cui, Yiyan; Qiu, Yueqin

    2018-05-02

    The objective of this research is to investigate the effect of protein level on proteins expression in the gastrointestinal tract of young pigs. Eighteen piglets (Duroc × Landrace × Yorkshire) were weaned at 28 days of age and randomly assigned to three diets with 20%, 17%, and 14% CP level, and four essential amino acids, Lys, Met, Thr, and Trp, in three diets met the requirements of weaned piglets. The experimental period lasted 45 days. Compared with the control (20% CP level), the average daily feed intake, the average daily gain, and gain feed ratio of the 17% CP group did not decrease ( P > 0.05), but those of 14% CP group decreased ( P protein digestion and absorption, lipid or carbon digestion and absorption, etc. were up-regulated in 17% CP group, while most of them were down-regulated in 14% CP group. Amino acids metabolism of gastric, pancreatic secretion of duodenum or steroid hormone biosynthesis of jejunum was down-regulated in the 17% CP group, but the lipid metabolism was up-regulated in the 14% CP group. Six proteins were selected for identification by Western-blot, and their changes had the same trend as the proteomics results. The protein level decreased from 20% to 17%, the growth performance was not affected, while the nutrient digestion and absorption or the immune function were improved, which implied that 17% protein level maybe benefit for nutrients absorption of pigs.

  16. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Chou

    Full Text Available One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing methods in predicting plant protein subcellular localization can only cover three or four location sites, and none of them can be used to deal with multiplex plant proteins that can simultaneously exist at two, or move between, two or more different location sits. Actually, such multiplex proteins might have special biological functions worthy of particular notice. The present study was devoted to improve the existing plant protein subcellular location predictors from the aforementioned two aspects. A new predictor called "Plant-mPLoc" is developed by integrating the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify plant proteins among the following 12 location sites: (1 cell membrane, (2 cell wall, (3 chloroplast, (4 cytoplasm, (5 endoplasmic reticulum, (6 extracellular, (7 Golgi apparatus, (8 mitochondrion, (9 nucleus, (10 peroxisome, (11 plastid, and (12 vacuole. Compared with the existing methods for predicting plant protein subcellular localization, the new predictor is much more powerful and flexible. Particularly, it also has the capacity to deal with multiple-location proteins, which is beyond the reach of any existing predictors specialized for identifying plant protein subcellular localization. As a user-friendly web-server, Plant-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to

  17. Venom allergen-like proteins in secretions of plant-parasitic nematodes activate and suppress extracellular plant immune receptors

    NARCIS (Netherlands)

    Lozano Torres, J.L.

    2014-01-01

    Parasitic worms threaten human, animal and plant health by infecting people, livestock and crops worldwide. Animals and plants share an anciently evolved innate immune system. Parasites modulate this immune system by secreting proteins to maintain their parasitic lifestyle. This thesis

  18. Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit.

    Science.gov (United States)

    Marsan, David W; Conrad, Stephen M; Stutts, Whitney L; Parker, Christine H; Deeds, Jonathan R

    2018-03-01

    The cyanobacterium Aphanizomenon flos-aquae (AFA), from Upper-Klamath Lake, Oregon, are used to produce blue-green algal (BGA) dietary supplements. The periodic co-occurrence of hepatotoxin-producing contaminant species prompted the Oregon Health Division to establish a limit of 1 μg/g microcystin (MC) for products sold in Oregon in 1997. At the federal level, the current good manufacturing practice (CGMP) regulations for dietary supplements require manufacturers establish a specification, and test, for limits on contaminants that may adulterate finished products. Despite this, several previous international surveys reported MC in BGA supplements in excess of 1 μg/g. The objectives of this study were (1) identify a reliable, easy to use test kit for the detection of MC in dried BGA materials and (2) use this kit to assess the occurrence of MC contamination in AFA-BGA dietary supplements in the U.S. A commercial protein phosphatase inhibition assay (PPIA), based on the enzyme PP2A, was found to have acceptable relative enzyme inhibition and accuracy for the majority of MC variants tested, including those most commonly identified in commercial samples, making the kit fit for purpose. Using the PPIA kit, 51% (26 of 51) distinct AFA-BGA products had MC ≥0.25 μg/g (the detection limit of the kit), 10 products had MC concentrations between 0.5 and 1.0 μg/g, and 4 products exceeded the limit (1.1-2.8 μg/g). LC-MS/MS confirmed PPIA results ≥0.5 μg/g and determined that MC-LA and MC-LR were the main congeners present. PPIA is a reliable method for the detection of MC contamination in dried BGA dietary supplements produced in the U.S. While the majority of AFA-BGA products contained ≥0.25 μg/g MC, most were at or below 1.0 μg/g, suggesting that manufacturers have adopted this level as a specification in these products; however, variability in recommended serving sizes prevented further analysis of consumer exposure based on the concentrations of MC

  19. Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit

    Directory of Open Access Journals (Sweden)

    David W. Marsan

    2018-03-01

    Full Text Available The cyanobacterium Aphanizomenon flos-aquae (AFA, from Upper-Klamath Lake, Oregon, are used to produce blue-green algal (BGA dietary supplements. The periodic co-occurrence of hepatotoxin-producing contaminant species prompted the Oregon Health Division to establish a limit of 1 μg/g microcystin (MC for products sold in Oregon in 1997. At the federal level, the current good manufacturing practice (CGMP regulations for dietary supplements require manufacturers establish a specification, and test, for limits on contaminants that may adulterate finished products. Despite this, several previous international surveys reported MC in BGA supplements in excess of 1 μg/g. The objectives of this study were (1 identify a reliable, easy to use test kit for the detection of MC in dried BGA materials and (2 use this kit to assess the occurrence of MC contamination in AFA-BGA dietary supplements in the U.S. A commercial protein phosphatase inhibition assay (PPIA, based on the enzyme PP2A, was found to have acceptable relative enzyme inhibition and accuracy for the majority of MC variants tested, including those most commonly identified in commercial samples, making the kit fit for purpose. Using the PPIA kit, 51% (26 of 51 distinct AFA-BGA products had MC ≥0.25 μg/g (the detection limit of the kit, 10 products had MC concentrations between 0.5 and 1.0 μg/g, and 4 products exceeded the limit (1.1–2.8 μg/g. LC-MS/MS confirmed PPIA results ≥0.5 μg/g and determined that MC-LA and MC-LR were the main congeners present. PPIA is a reliable method for the detection of MC contamination in dried BGA dietary supplements produced in the U.S. While the majority of AFA-BGA products contained ≥0.25 μg/g MC, most were at or below 1.0 μg/g, suggesting that manufacturers have adopted this level as a specification in these products; however, variability in recommended serving sizes prevented further analysis of consumer exposure based on the concentrations of MC

  20. Effect of dietary protein and GABA on food intake, growth and tissue amino acids in cats.

    Science.gov (United States)

    Tews, J K; Rogers, Q R; Morris, J G; Harper, A E

    1984-02-01

    GABA at 5%, but not 3%, of a low protein diet depressed food intake and growth of kittens. Adaptation to high protein prevented these effects. When cats adapted to low or high protein were fed a meal containing GABA, plasma GABA concentration after 2 hr was 8-fold higher in the low than in the high protein group; clearance was almost complete within 6 hr. Concentrations of proline, branched-chain, other large neutral and basic (especially ornithine) amino acids increased more when cats were fed a high rather than a low protein meal; glycine decreased. At 6 hr, concentrations had consistently returned to initial levels only in the low protein group. Feeding the high protein diet ad lib increased tissue concentrations of threonine, proline and the branched-chain amino acids. Hepatic or renal GABA-aminotransferase activity was not altered in kittens fed the high protein diet. Kidney activity was 10-fold that of liver, which may contribute to the better tolerance of GABA by cats than by rats.

  1. Role of dietary supplementation in the protein content of bovine milk ...

    African Journals Online (AJOL)

    Feed back response of the caseins and whey proteins was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profile by resolving these proteins upon 15% SDS PAGE which showed remarkable variation in the banding pattern of all caseins i.e., α-caseins, β-caseins, κ-casein and whey ...

  2. Feeds and feeding strategies for Colossoma macropomum (Cuvier 1818) : fish growth as related to dietary protein

    NARCIS (Netherlands)

    Meer, van der M.B.

    1997-01-01

    Colossoma macropomum is an indigenous fish species from the Amazon region. The amino acid profile of its body protein proved to be similar to that of other fish species. Soya meal and fish meal have, based on their amino acid profiles, a comparable protein quality. This

  3. Interaction between dietary content of protein and sodium chloride on milk urea concentration, urinary urea excretion, renal recycling of urea, and urea transfer to the gastrointestinal tract in dairy cows

    NARCIS (Netherlands)

    Spek, J.W.; Bannink, A.; Gort, G.; Hendriks, W.H.; Dijkstra, J.

    2013-01-01

    Dietary protein and salt affect the concentration of milk urea nitrogen (MUN; mg of N/dL) and the relationship between MUN and excretion of urea nitrogen in urine (UUN; g of N/d) of dairy cattle. The aim of the present study was to examine the effects of dietary protein and sodium chloride (NaCl)

  4. Recombinant proteins from plants: production and isolation of clinically useful compounds

    National Research Council Canada - National Science Library

    Cunningham, Charles; Porter, Andrew J. R

    1998-01-01

    ... of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide comprehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many laboratories, coverage is also given to some of the more "...

  5. Xylosylation of proteins by expression of human xylosyltransferase 2 in plants.

    Science.gov (United States)

    Matsuo, Kouki; Atsumi, Go

    2018-04-12

    Through the years, the post-translational modification of plant-made recombinant proteins has been a considerable problem. Protein glycosylation is arguably the most important post-translational modification; thus, for the humanization of protein glycosylation in plants, the introduction, repression, and knockout of many glycosylation-related genes has been carried out. In addition, plants lack mammalian-type protein O-glycosylation pathways; thus, for the synthesis of mammalian O-glycans in plants, the construction of these pathways is necessary. In this study, we successfully xylosylated the recombinant human proteoglycan core protein, serglycin, by transient expression of human xylosyltransferase 2 in Nicotiana benthamiana plants. When human serglycin was co-expressed with human xylosyltransferase 2 in plants, multiple serine residues of eight xylosylation candidates were xylosylated. From the results of carbohydrate assays for total soluble proteins, some endogenous plant proteins also appeared to be xylosylated, likely through the actions of xylosyltransferase 2. The xylosylation of core proteins is the initial step of the glycosaminoglycan part of the synthesis of proteoglycans. In the future, these novel findings may lead to whole mammalian proteoglycan synthesis in plants. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Effects of the Replacement of Soybean Meal with Pea as Dietary Protein Source on the Serum Protein Fractions of Broilers

    Directory of Open Access Journals (Sweden)

    NT Bingol

    Full Text Available ABSTRACT The aim of this study was to determine the effects of the replacement of different levels of protein derived from soybean meal with that from peas in broiler diets on serum protein fractions. A corn-soybean meal basal diet was formulated as the control diet (Control=C (NRC, 1994, and then pea was added to the control diet to replace 20% (P20 or 40% (P40 of the crude protein of the control diet. The diets were randomly fed to 12 pens per treatment, each housing five birds, for 42 days. Blood samples were collected from 36 birds (3 birds x 4 pens x3 treatments and the serum protein fractions were separated. Gamma-globulin percentage was higher in group P20 compared with C and P40 groups. Total protein, beta-globulin, and gamma-globulin concentrations were significantly higher in group P20 compared with those of both control and P40 group (p<0.05.

  7. Absorption of dietary manganese by dairy cows and the role of plasma proteins and the liver in its homeostasis

    International Nuclear Information System (INIS)

    Sansom, B.F.; Gibbons, R.A.; Dixon, S.N.; Russell, A.M.; Symonds, H.W.

    1976-01-01

    The concentration of manganese in the systemic blood plasma of cattle is maintained close to 5 μg/1 whether their diet contains 50 or 1000 ppm manganese. The gut absorbs approximately 1% of this dietary manganese irrespective of its dietary concentration. The homeostasis of plasma manganese concentration must therefore be achieved by an excretory method. In vitro experiments have shown that manganese in plasma became bound to two proteins - to α 2 -macroglobulin, in its divalent Mn 2+ state, and to transferrin, in its trivalent Mn 3+ state. The proportions of 54 Mn bound to these two proteins depended strongly on the temperature of incubation of 54 Mn with plasma, and the temperature and pH at which electrophoresis was subsequently performed. 54 Mn 2+ was bound to transferrin only in the presence of an oxidizing agent such as molecular oxygen, ceruloplasmin or permanganate, and α 2 -macroglobulin was not involved in this process. In vivo experiments using cows with permanently indwelling mesenteric, portal and hepatic venous cannulae have shown that the liver cleared the portal blood quantitatively of free Mn 2+ ions, removed approximately 75% of Mn 2+ bound to α 2 -macroglobulin, but removed practically none of the Mn 3+ transferrin complex. These results suggest that manganese may be absorbed through the gut as Mn 2+ ions; some of these become bound to α 2 -macroblobulin while any excess free ions are extracted by the liver and excreted. Some of those bound to α 2 -macroglobulin enter the systemic circulation and are oxidized, either in the plasma or in tissue, to the Mn 3+ state and become bound to transferring, the form in which manganese is circulated for metabolic purposes. (author)

  8. The effect of dietary protein and phosphorus on ammonia concentration and litter composition in broilers.

    Science.gov (United States)

    Ferguson, N S; Gates, R S; Taraba, J L; Cantor, A H; Pescatore, A J; Straw, M L; Ford, M J; Burnham, D J

    1998-08-01

    An experiment was conducted to determine whether broiler litter concentration of N and P and equilibrium NH3 gas concentration can be reduced by reducing dietary CP and P levels and supplementing with amino acids and phytase, respectively, without adversely affecting bird performance. Equilibrium NH3 gas concentration above the litter was measured. The experiment was divided into a starter period (1 to 21 d) and grower period (22 to 42 d), each having two different CP and P levels in a 2 x 2 factorial arrangement. The CP treatments consisted of a control with a mean CP of 204 and 202 g/kg for starter and grower periods, respectively, and a low CP diet with means of 188 and 183 g/kg, respectively, but with similar amino acid levels as the control. The P treatments comprised starter and grower control diets containing means of 6.7 and 6.3 g/kg P, respectively, and low P treatment means of 5.8 and 5.4 g/kg P supplemented with 1.0 g/kg phytase. Reducing starter diet CP by 16 g/kg reduced weight gain by 3.5% and, hence, body weight at 21 d of age, but did not affect feed intake or feed efficiency. Reducing P did not affect feed intake and weight gain, but improved feed efficiency by 2.0%. Responses in feed intake and efficiency to CP depended on the level of dietary P. For the grower period there were no significant differences in feed intake, weight gain, and feed efficiency, nor in body weight at 42 d of age, after correcting for 21-d body weight, between CP and P treatments. There were significant (P litter N and P concentrations, but not equilibrium NH3 gas concentration, moisture content, or pH, for low CP and P diets. Mean equilibrium NH3 gas concentration was 63 ppm. Litter N concentration was reduced 16.3% with the low CP diets, and litter P by 23.2% in low P treatments. The results suggest that dietary manipulation shows merit for reducing litter N and P concentrations while maintaining acceptable production performance from broilers.

  9. Marginal dietary zinc deprivation augments sepsis-induced alterations in skeletal muscle TNF-α but not protein synthesis.

    Science.gov (United States)

    Crowell, Kristen T; Kelleher, Shannon L; Soybel, David I; Lang, Charles H

    2016-11-01

    Severe zinc deficiency is associated with an increased systemic inflammatory response and mortality after sepsis. However, the impact of mild zinc deficiency, which is more common in populations with chronic illnesses and sepsis, is unknown. In this study, we hypothesized that marginal dietary Zn deprivation (ZM) would amplify tissue inflammation and exacerbate the sepsis-induced decrease in muscle protein synthesis. Adult male C57BL/6 mice were fed a zinc-adequate (ZA) or ZM diet (30 or 10 mg Zn/kg, respectively) over 4 weeks, peritonitis was induced by cecal ligation and puncture (CLP), and mice were examined at either 24 h (acute) or 5 days (chronic) post-CLP Acute sepsis decreased the in vivo rate of skeletal muscle protein synthesis and the phosphorylation of the mTOR substrate 4E-BP1. Acutely, sepsis increased TNF-α and IL-6 mRNA in muscle, and the increase in TNF-α was significantly greater in ZM mice. However, muscle protein synthesis and 4E-BP1 phosphorylation returned to baseline 5 days post-CLP in both ZA and ZM mice. Protein degradation via markers of the ubiquitin proteasome pathway was increased in acute sepsis, yet only MuRF1 mRNA was increased in chronic sepsis and ZM amplified this elevation. Our data suggest that mild zinc deficiency increases TNF-α in muscle acutely after sepsis but does not significantly modulate the rate of muscle protein synthesis. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions

    Directory of Open Access Journals (Sweden)

    Qinghong Li

    2017-01-01

    Full Text Available Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate or a low-protein, high-carbohydrate (LPHC diet (25.5% protein, 38.8% carbohydrate in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes. The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt.

  11. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants

    OpenAIRE

    Pires, Nuno; Dolan, Liam

    2009-01-01

    Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms. Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa (rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown. In this study, we use wh...

  13. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants

    OpenAIRE

    Baudisch, Bianca; Pfort, Ingrid; Sorge, Eberhard; Conrad, Udo

    2018-01-01

    Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.

  14. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants

    Directory of Open Access Journals (Sweden)

    Bianca Baudisch

    2018-02-01

    Full Text Available Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.

  15. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants.

    Science.gov (United States)

    Baudisch, Bianca; Pfort, Ingrid; Sorge, Eberhard; Conrad, Udo

    2018-01-01

    Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.

  16. Metabolic and growth response of mink (Neovison vison) kits until 10 weeks of age when exposed to different dietary protein provision

    DEFF Research Database (Denmark)

    Larsson, Caroline; Fink, Rikke; Matthiesen, Connie Marianne Frank

    2012-01-01

    to solid feed. The capacity to regulate the rate of gluconeogenesis was even more limited in young mink kits than in adult dams. However, young mink kits can regulate protein oxidation in response to dietary protein supply, probably by adapting the size of the liver and kidneys to the level of protein......Growth performance and metabolism were investigated in mink kits (n = 210) exposed to the same dietary treatment as their dams (n = 30), i.e. high (HP; 61% of metabolisable energy, ME), medium (MP; 48% of ME) or low (LP; 30% of ME) protein supply, from birth until 10 weeks of age. The kits were...... the heaviest. After transition to solid feed MP kits weighed most at nine weeks of age (p age, the kits fed the LP diet retained less (p

  17. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers

    NARCIS (Netherlands)

    Verhoef, P.; Vliet, van T.; Olthof, M.R.; Katan, M.B.

    2005-01-01

    Background: A high plasma concentration of total homocysteine (tHcy) is associated with increased risk of cardiovascular disease. A high protein intake and hence a high intake of methionine¿the sole dietary precursor of homocysteine¿may raise plasma tHcy concentrations. Objectives: We studied

  18. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: A dietary controlled, crossover trial in healthy volunteers

    NARCIS (Netherlands)

    Verhoef, P.; Vliet, T. van; Olthof, M.R.; Katan, M.B.

    2005-01-01

    Background: A high plasma concentration of total homocysteine (tHcy) is associated with increased risk of cardiovascular disease. A high protein intake and hence a high intake of methionine-the sole dietary precursor of homocysteine-may raise plasma tHcy concentrations. Objectives: We studied

  19. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations : A dietary controlled, crossover trial in healthy volunteers

    NARCIS (Netherlands)

    Verhoef, Petra; Van Vliet, Trinette; Olthof, Margreet R.; Katan, Martijn B.

    2005-01-01

    Background: A high plasma concentration of total homocysteine (tHcy) is associated with increased risk of cardiovascular disease. A high protein intake and hence a high intake of methionine-the sole dietary precursor of homocysteine-may raise plasma tHcy concentrations. Objectives: We studied

  20. The effect of modifying dietary protein and carbohydrate in weight loss on arterial compliance and postprandial lipidemia in overweight women with polycystic ovary syndrome.

    Science.gov (United States)

    Moran, Lisa J; Noakes, Manny; Clifton, Peter M; Norman, Robert J

    2010-11-01

    In overweight women with polycystic ovary syndrome, weight loss improves arterial compliance and postprandial lipidemia. Modifying dietary carbohydrate or protein in weight loss provided similar improvements in arterial compliance and postprandial lipidemia. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    Science.gov (United States)

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Is Peripheral Benzodiazepine Receptor (PBR) Gene Expression Involved in Breast Cancer Suppression by Dietary Soybean Protein?

    National Research Council Canada - National Science Library

    Das, Salil

    2006-01-01

    .... It has been established that women in Asian countries consume more soy protein than women in the United States and that the incidence of breast cancer in women in Asian countries is generally lower...

  3. Is Peripheral Benzodiazepine Receptor (PBR) Gene Expression Involved in Breast Cancer Suppression by Dietary Soybean Protein

    National Research Council Canada - National Science Library

    Das, Salil

    2004-01-01

    ...% casein and those of groups 3 and 4 received same diet containing 20% soybean protein. Animals of groups 2 and 4 received DMBA in sesame oil by gavage (15 mg per animal). Control animals (groups 1 and 3...

  4. The success of dietary protein restriction in alkaptonuria patients is age-dependent

    NARCIS (Netherlands)

    de Haas, V.; Carbasius Weber, E. C.; de Klerk, J. B.; Bakker, H. D.; Smit, G. P.; Huijbers, W. A.; Duran, M.; Poll-The, B. T.

    1998-01-01

    Alkaptonuria is characterized by an increased urinary excretion of homogentisic acid, pigmentation of cartilage and connective tissues, and ultimately the development of inflammatory arthropathy. Various diets low in protein have been designed to decrease homogentisic acid excretion and to prevent

  5. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2–9 weeks of age

    OpenAIRE

    Kh.M. Mahrose; A.I. Attia; I.E. Ismail; D.E. Abou-Kassem; M.E. Abd El-Hack

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The res...

  6. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    Directory of Open Access Journals (Sweden)

    Adriano Maida

    2017-08-01

    Conclusions: Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD.

  7. Role of dietary supplementation in the protein content of bovine milk

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... protein contents was 32.85 µg/ml (3.3%), which increased to 34.08 µg/ml (3.4 %), 34.03 µg/ml (3.4 %) and ... *Corresponding author: E.mail: aqib72@aup.edu.pk. Phone: .... Figure 2. SDS-PAGE analysis for the composition of milk protein ... detoxified matri flour with wheat flour on the quality of pan bread.

  8. Metabolism of serine in growing rats and chicks at various dietary protein levels

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1976-01-01

    The metabolic fate of the carbon skeleton of L-serine-U- 14 C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (C %) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein at 12 hr after the injection of serine- 14 C was about 49% of the injected dose in rats fed the 10 or 15 PC% diet, though the value was reduced in rats fed lower and higher protein diets. The 14 CO 2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14 C incorporation into body protein. Urinary excretion of 14 C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum. In contrast to the case of rats, the incorporation of 14 C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14 C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group. The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets. These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets. (auth.)

  9. Effects of dietary protein levels on length-weight relationships and ...

    African Journals Online (AJOL)

    Feeding trial involving different protein levels on length–weight relationships and condition factor of Clarias gariepinus was conducted in floating hapa system. Fingerlings (average weight, 4.50± 0.01g and average length, 8.0±0.2 cm) were randomly stocked at 20 fish/1m3. Five diets with crude protein: 40.0, 42.5, 45.0, 47.5 ...

  10. Effects of dietary protein level on growth and body composition of ...

    African Journals Online (AJOL)

    Heterobranchus longifilis fingerlings of mean weight 1.648 g were stocked in plastic aquaria of 0.049 m3 at a rate of 10 fish per aquarium. Fish were fed with diets containing 30, 35 and 40% protein in triplicate for 10 weeks using fish meal as the main protein source. Growth of H. longifilis was significantly different (P < 0.05) ...

  11. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  12. Dietary options and behavior suggested by plant biomarker evidence in an early human habitat

    Science.gov (United States)

    Magill, Clayton R.; Ashley, Gail M.; Domínguez-Rodrigo, Manuel; Freeman, Katherine H.

    2016-03-01

    The availability of plants and freshwater shapes the diets and social behavior of chimpanzees, our closest living relative. However, limited evidence about the spatial relationships shared between ancestral human (hominin) remains, edible resources, refuge, and freshwater leaves the influence of local resources on our species' evolution open to debate. Exceptionally well-preserved organic geochemical fossils-biomarkers-preserved in a soil horizon resolve different plant communities at meter scales across a contiguous 25,000 m2 archaeological land surface at Olduvai Gorge from about 2 Ma. Biomarkers reveal hominins had access to aquatic plants and protective woods in a patchwork landscape, which included a spring-fed wetland near a woodland that both were surrounded by open grassland. Numerous cut-marked animal bones are located within the wooded area, and within meters of wetland vegetation delineated by biomarkers for ferns and sedges. Taken together, plant biomarkers, clustered bone debris, and hominin remains define a clear spatial pattern that places animal butchery amid the refuge of an isolated forest patch and near freshwater with diverse edible resources.

  13. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  14. Dietary utilisation of protein and energy from fresh and ensiled coffee pulp by the Nile tilapia, Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Yann Moreau

    2003-03-01

    Full Text Available Dietary protein and energy utilisation of diets containing fresh and ensiled coffee pulp were studied on 3.2 ± 0.2 g Nile tilapia for 28 days. Diets formulation and feeding were designed on the basis of daily dietary protein and energy allowance. A control diet A (100 % protein and 100 % energy allowance corresponding to 15 g CP kg-1 day-1 and 750 kJ kg-1 day-1, a low protein control diet B (80 % protein and 100 % energy allowance, two diets C and E (100 % protein and 100 % energy allowance where 20 % of protein were supplied by coffee pulp, and two diets D and F with the same amount of coffee pulp than in C and E and supplementation in non-protein energy. Inclusion of coffee pulp in the diet strongly impaired growth and feed utilisation. Silage process improved overall feed utilisation comparing to fresh coffee pulp. Results showed that fresh or ensiled coffee pulp was not a suitable feedstuff for Nile tilapia. However, better knowledge on modification occurring during silage process could allow finding the way to significantly improve nutritive value of coffee pulp by-products.Polpa de café ensilada foi utilizada na dieta calórica-protéica de Tilápia do Nilo na razão de 3.2 g ± 0,2 durante um período de 28 dias. As dietas calórico-protéica foram formuladas com base na ingestão diária permitida. Uma dieta A controle (100% de proteína e 100% da energia que corresponde a g PC/kg/dia e 750 Kj/Kg/dia, uma dieta B baixa em proteína (80% de proteína e 100% da energia, duas dietas C e E (100% de proteína e 100% da energia onde 20% da proteína foi suplementada com polpa de café e duas dietas D e F com a mesma concentração de polpa de café é prejudicial a dieta de crescimento. O processo de ensilagem melhorou sua utilização como alimento em comparação com a polpa de café fresca. Os resultados demonstraram que a polpa fresca ou ensilada não é para ser usada como alimentação de Tilápia do Nilo. Entretanto, uma melhor

  15. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation

    Directory of Open Access Journals (Sweden)

    Andreas eWachter

    2012-05-01

    Full Text Available Alternative precursor mRNA splicing is a widespread phenomenon in multicellular eukaryotes and represents a major means for functional expansion of the transcriptome. While several recent studies have revealed an important link between splicing regulation and fundamental biological processes in plants, many important aspects, such as the underlying splicing regulatory mechanisms, are so far not well understood. Splicing decisions are in general based on a splicing code that is determined by the dynamic interplay of splicing-controlling factors and cis-regulatory elements. Several members of the group of heterogeneous nuclear ribonucleoprotein (hnRNP proteins are well-known regulators of splicing in animals and the comparatively few reports on some of their plant homologues revealed similar functions. This also applies to polypyrimidine tract-binding proteins (PTBs, a thoroughly investigated class of hnRNP proteins with splicing regulatory functions in both animals and plants. Further examples from plants are auto- and cross-regulatory splicing circuits of glycine-rich RNA-binding proteins (GRPs and splicing enhancement by oligouridylatebinding proteins. Besides their role in defining splice site choice, hnRNP proteins are also involved in multiple other steps of nucleic acid metabolism, highlighting the functional versatility of this group of proteins in higher eukaryotes.

  16. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks

    Directory of Open Access Journals (Sweden)

    MA Abbasi

    2014-03-01

    Full Text Available The present study aimed at investigating the effects of different dietary crude protein (CP and threonine (Thr levels on the performance, immune responses and jejunal morphology of broiler chicks. A total of 432 broiler chicks were randomly assigned to a 3×3 factorial arrangement of treatments including three different CP dietary levels (90, 95, and 100% of Ross 308 recommendations and Thr (100, 110, and 120% of Ross specifications dietary levels. Performance parameters were recorded for the starter (1-12 days, grower (13-24 days and finisher (25-42 days periods. Birds were subjected to different antigen inoculations to evaluate antibody responses. At day 42 of age, two randomly-selected birds per replicate were slaughtered to measure carcass traits. Although Thr dietary supplementation had no marked effect on Newcastle antibody titers, particularly the supplementation of Thr up to 110% of Ross specifications improved (p<0.05 antibody titers against sheep red blood cells during both primary and secondary responses. Reduction of dietary CP level resulted in significant decrease in villus height (p<0.05 and crypt depth (p<0.01 in jejunal epithelial cells, but the supplementation of low-CP diets with Thr up to 110 and 120% of the recommended values allowed overcoming these changes. Except for the starter period, reducing dietary CP level to 90% of Ross recommendations had no harmful effects on performance parameters; however, the best values were obtained with diets containing 110% Thr. The present results indicate that it is possible to reduce dietary CP level up to 10% after the starter period without any detrimental impact on growth performance, and dietary Thr supplementation up to 110% of Ross values may compensate for low CP-induced growth delay in broiler chicks.

  17. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium.

    Science.gov (United States)

    Rudolph, Michael C; Monks, Jenifer; Burns, Valerie; Phistry, Meridee; Marians, Russell; Foote, Monica R; Bauman, Dale E; Anderson, Steven M; Neville, Margaret C

    2010-12-01

    The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase (Fasn), insulin-induced gene 1 (Insig1), mitochondrial citrate transporter (Slc25a1), and stearoyl-CoA desaturase 2 (Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α (Acaca) and ATP citrate lyase (Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.

  18. Polyphenol Content and Modulatory Activities of Some Tropical Dietary Plant Extracts on the Oxidant Activities of Neutrophils and Myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Thierry Franck

    2012-01-01

    Full Text Available Young leaves of Manihot esculenta Crantz (Euphorbiaceae, Abelmoschus esculentus (Malvaceae, Hibiscus acetosella (Malvaceae and Pteridium aquilinum (Dennstaedtiaceae are currently consumed as green vegetables by peoples in sub-Saharan Africa, Latin America, Asia and their migrants living in Western Europe. Sub-Saharan peoples use Manihot, Abelmoschus and Hibiscus also in the folk medicine to alleviate fever and pain, in the treatment of conjunctivitis, rheumatism, hemorrhoid, abscesses, ... The present study investigates the effects of aqueous extracts of those plants on the production of reactive oxygen species (ROS and the release of myeloperoxidase (MPO by equine neutrophils activated with phorbol 12-myristate 13-acetate (PMA. The ROS production was measured by lucigenin-enhanced chemiluminescence (CL, and the release of total MPO by an ELISA method. The study also investigates the effect of the extracts on the activity of MPO by studying its nitration activity on tyrosine and by using a new technique called SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection that allows studying the direct interaction of compounds with the enzyme. In all experiments, the aqueous extracts of the plants developed concentration-dependent inhibitory effects. A moderate heat treatment did not significantly modify the inhibitory capacity of the extracts in comparison to not heated ones. Total polyphenol and flavonoid contents were determined with an HPLC-UV/DAD analysis and a spectroscopic method using Folin-Ciocalteu reagent. Some polyphenols with well-known antioxidant activities (caffeic acid, chlorogenic acid, hyperoside, rosmarinic acid and rutin were found in the extracts and may partly explain the inhibitory activities observed. The role of those dietary and medicinal plants in the treatment of ROS-dependent inflammatory diseases could have new considerations for health.

  19. [Indicators of protein metabolism in infants with intrauterine dystrophy red various dietary mixtures].

    Science.gov (United States)

    Krukowa, A; Symonowicz, H; Wachnik, Z; Koziej, M

    1979-01-01

    In the previous work published in No 7 of "Development Period Medicine" ( Problemy Medycyny Wieku Rozwojowego ) the results of nitrogen balance studies in S-f-D infants fed different milk formulas were described. The present study concerns other protein metabolism indices in the same infants. The infants were divided into four groups according to the formula they were fed. The composition of formulas is shown in table I. In the infants besides the balance study, serum urea nitrogen, protein and albumin level, were estimated once a month. Also urea, creatine and creatinine, and hydroxyproline in 24-hours urine collections were examined. Excretion of creatine, creatinine and hydroxyproline was summarized in 5 boys from the group of 38 investigated infants in the first five months of life when meat-free diet was fed. The above mentioned indices permit for better assessment of the effect of the diet on protein metabolism and the requirement of protein for S-f-D infants. The results of protein metabolism indices were compared with the indices obtained in F.S. infants similarly fed. Group S of S-f-D infants was compared with group A of F.S. infants and the other groups of S-f-D infants were compared with each other. In S-f-D infants fed formula S, a lower level of serum urea nitrogen was observed in comparison with F.S. infants of group A in spite of greater protein intake in S-f-D infants. This should prove a greater protein requirement in S-f-D infants. Decreased protein content and cow's milk fat modification also had profitable influence on protein utilization because serum urea nitrogen and nitrogen in urine were low in S-f-D infants fed this formula. Urine urea nitrogen as a part of total urine nitrogen is bigger in group S and C infants, and the lowest in group G infants (formula with lower fat and total protein content). Serum protein and albumin level was generally higher in S-f-D infants than in FS ones. Particularly high level of these parameters was observed

  20. Effects of inadequate maternal dietary protein:carbohydrate ratios during pregnancy on offspring immunity in pigs

    Directory of Open Access Journals (Sweden)

    Tuchscherer Margret

    2012-11-01

    Full Text Available Abstract Background Inadequate nutrition in utero may retard foetal growth and alter physiological development of offspring. This study investigated the effects of low and high protein diets fed to primiparous German Landrace sows throughout pregnancy on the immune function of their offspring at different ages. Sows were fed diets with adequate (AP, 12.1%; n = 13, low (LP, 6.5%; n = 15, or high (HP, 30%; n = 14 protein content, made isoenergetic by varying carbohydrate levels. Cortisol, total protein and immunoglobulin (IgG, IgM, IgA concentrations were measured in the blood of sows over the course of pregnancy. Cortisol, total protein, immunoglobulins, lymphocyte proliferation, immune cell counts, and cytokines were assessed in the blood of offspring at baseline and under challenging conditions (weaning; lipopolysaccharide (LPS administration. Results In sows, the LP diet increased cortisol (P P P P + cell percentage and the CD4+/CD8+ ratio increased after weaning (P P = 0.09 and HP (P P  Conclusions Our results indicate that both low and high protein:carbohydrate ratios in the diet of pregnant sows can induce short-term as well as long-lasting effects on immune competence in piglets that may have serious consequences for host defence against bacterial pathogens.

  1. Dietary breadth of the animal protein consumed by riverine communities in the Tapajós National Forest, Brazil.

    Science.gov (United States)

    Fonseca, Raphael Alves; Pezzuti, Juarez Carlos Brito

    2013-03-01

    In small-scale human settlements, the acquisition of animal protein is strictly related to subsistence activities, and yours dietary habits are determined by the availability and the selectivity permitted by the diversity of these resources. This study analyzed the consumption of animal protein sources in seven traditional riverine communities of the Tapajos National Forest, located in Eastern Brazilian Amazonia, considering fish, game meat and domestic animals. The analysis of animal protein consumption was based on the assumptions of the diet breadth model and the Optimal Foraging Theory. We compared diet breadths between communities and between rainy and dry seasons. The study focused on seven traditional riverside communities, six of them distributed along the right bank of the Tapajos River and one on the right bank of the Cupari River. Data collection was performed in four fields trips, two in the rainy season (May and July) and two in the dry season (September and November) in 2010. Data were collected through semi-structured interviews where the informant mentioned the source of animal protein consumed in the last three meals and which would be consumed at the next meal, if possible. We carried out a total of 470 interviews, where we documented 1 512 meals, and in only 12% of the meals there was no consumption of any animal protein source. The fish was consumed in 60.4% of the meals, being the most important source of animal protein consumed, differing significantly from other protein sources (X2=23.79, df=5, pCuniculus paca, while the preference for fish consumption included Plagioscion spp., Astronotus spp., Cichla spp. and Leporinus spp.. The Simpson index did not vary significantly between the rainy and dry season (N=6, t=1.25, p=0.267) or between communities (N=6, t=-5, p=0.42), although SLo Francisco das Chagas have significantly higher consumption of game meat (X2=370.41, df=25, p<0.001). Fishing is an activity of paramount importance to these

  2. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco, horseradish peroxidase (HRP, hemoglobin (Hb], and two pepsin resistant proteins [lipid transfer protein (LTP and soybean trypsin inhibitor (STI]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no