WorldWideScience

Sample records for dietary nitrates nitrites

  1. Dietary nitrates, nitrites, and cardiovascular disease.

    Science.gov (United States)

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  2. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions.

    Science.gov (United States)

    Bedale, Wendy; Sindelar, Jeffrey J; Milkowski, Andrew L

    2016-10-01

    Consumers have an illogical relationship with nitrite (and its precursor, nitrate) in food. Despite a long history of use, nitrite was nearly banned from use in foods in the 1970s due to health concerns related to the potential for carcinogenic nitrosamine formation. Changes in meat processing methods reduced those potential risks, and nitrite continued to be used in foods. Since then, two opposing movements continue to shape how consumers view dietary nitrate and nitrite. The discovery of the profound physiological importance of nitric oxide led to the realization that dietary nitrate contributes significantly to the nitrogen reservoir for nitric oxide formation. Numerous clinical studies have also demonstrated beneficial effects from dietary nitrate consumption, especially in vascular and metabolic health. However, the latest wave of consumer sentiment against food additives, the clean-label movement, has renewed consumer fear and avoidance of preservatives, including nitrite. Education is necessary but may not be sufficient to resolve this disconnect in consumer perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Association between dietary nitrate and nitrite intake and sitespecific cancer risk: evidence from observational studies.

    Science.gov (United States)

    Xie, Li; Mo, Miao; Jia, Hui-Xun; Liang, Fei; Yuan, Jing; Zhu, Ji

    2016-08-30

    Epidemiological studies have reported inconsistent findings on the association between dietary nitrate and nitrite intake and cancer risk. We performed a meta-analysis of epidemiological studies to summarize available evidence on the association between dietary nitrate and nitrite intake and cancer risk from published prospective and case-control studies. PubMed database was searched to identify eligible publications through April 30th, 2016. Study-specific relative risks (RRs) with corresponding 95% confidence interval (CI) from individual studies were pooled by using random- or fixed- model, and heterogeneity and publication bias analyses were conducted. Data from 62 observational studies, 49 studies for nitrates and 51 studies for nitrites, including a total of 60,627 cancer cases were analyzed. Comparing the highest vs. lowest levels, dietary nitrate intake was inversely associated with gastric cancer risk (RR = 0.78; 95%CI = 0.67-0.91) with moderate heterogeneity (I2 = 42.3%). In contrast, dietary nitrite intake was positively associated with adult glioma and thyroid cancer risk with pooled RR of 1.21 (95%CI = 1.03-1.42) and 1.52 (95%CI = 1.12-2.05), respectively. No significant associations were found between dietary nitrate/nitrite and cancers of the breast, bladder, colorectal, esophagus, renal cell, non-Hodgkin lymphoma, ovarian, and pancreas. The present meta-analysis provided modest evidence that positive associations of dietary nitrate and negative associations of dietary nitrite with certain cancers.

  4. Association between dietary nitrate and nitrite intake and site-specific cancer risk: evidence from observational studies

    Science.gov (United States)

    Jia, Hui-Xun; Liang, Fei; Yuan, Jing; Zhu, Ji

    2016-01-01

    Epidemiological studies have reported inconsistent findings on the association between dietary nitrate and nitrite intake and cancer risk. We performed a meta-analysis of epidemiological studies to summarize available evidence on the association between dietary nitrate and nitrite intake and cancer risk from published prospective and case-control studies. PubMed database was searched to identify eligible publications through April 30th, 2016. Study-specific relative risks (RRs) with corresponding 95% confidence interval (CI) from individual studies were pooled by using random- or fixed- model, and heterogeneity and publication bias analyses were conducted. Data from 62 observational studies, 49 studies for nitrates and 51 studies for nitrites, including a total of 60,627 cancer cases were analyzed. Comparing the highest vs. lowest levels, dietary nitrate intake was inversely associated with gastric cancer risk (RR = 0.78; 95%CI = 0.67-0.91) with moderate heterogeneity (I2 = 42.3%). In contrast, dietary nitrite intake was positively associated with adult glioma and thyroid cancer risk with pooled RR of 1.21 (95%CI = 1.03-1.42) and 1.52 (95%CI = 1.12-2.05), respectively. No significant associations were found between dietary nitrate/nitrite and cancers of the breast, bladder, colorectal, esophagus, renal cell, non-Hodgkin lymphoma, ovarian, and pancreas. The present meta-analysis provided modest evidence that positive associations of dietary nitrate and negative associations of dietary nitrite with certain cancers. PMID:27486968

  5. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women's health study.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Shu, Xiao-Ou; Gao, Yu-Tang; Ji, Bu-Tian; Yang, Gong; Li, Hong Lan; Rothman, Nathaniel; Chow, Wong-Ho; Zheng, Wei; Ward, Mary H

    2013-02-15

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds and nitrate can disrupt thyroid homeostasis by inhibiting iodide uptake. We evaluated nitrate and nitrite intake and risk of thyroid cancer in the Shanghai Women's Health Study that included 73,317 women, aged 40-70 years enrolled in 1996-2000. Dietary intake was assessed at baseline using a food frequency questionnaire. During approximately 11 years of follow-up, 164 incident thyroid cancer cases with complete dietary information were identified. We used Cox proportional hazards regression to estimate relative risks (RRs). We determined the nitrate and nitrite contents of foods using values from the published literature and focusing on regional values for Chinese foods. Nitrate intake was not associated with thyroid cancer risk [RR(Q4) = 0.93; 95% confidence interval (CI): 0.42-2.07; p for trend = 0.40]. Compared to the lowest quartile, women with the highest dietary nitrite intake had about a twofold risk of thyroid cancer (RR(Q4) = 2.05; 95%CI: 1.20-3.51), but there was not a monotonic trend with increasing intake (p for trend = 0.36). The trend with increasing nitrite intake from animal sources was significant (p for trend = 0.02) and was stronger for nitrite from processed meats (RR(Q4) = 1.96; 95%CI: 1.28-2.99; p for trend nitrate as hypothesized, our results suggest that women consuming higher levels of nitrite from animal sources, particularly from processed meat, may have an increased risk of thyroid cancer. Copyright © 2012 UICC.

  6. Pancreatic cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Cross, Amanda J; Stolzenberg-Solomon, Rachael Z; Schatzkin, Arthur; Hollenbeck, Albert R; Sinha, Rashmi; Ward, Mary H

    2011-08-01

    Nitrate and nitrite are precursors of N-nitroso compounds, which induce tumors of the pancreas in animals. The authors evaluated the relation of dietary nitrate and nitrite to pancreatic cancer risk in the NIH-AARP Diet and Health Study. Nitrate and nitrite intakes were assessed at baseline using a 124-item food frequency questionnaire. During approximately 10 years of follow-up between 1995 and 2006, 1,728 incident pancreatic cancer cases were identified. There was no association between total nitrate or nitrite intake and pancreatic cancer in men or women. However, men in the highest quintile of summed nitrate/nitrite intake from processed meat had a nonsignificantly elevated risk of pancreatic cancer (hazard ratio = 1.18, 95% confidence interval: 0.95, 1.47; P-trend = 0.11). The authors observed a stronger increase in risk among men for nitrate/nitrite intake from processed meat at ages 12-13 years (highest quintile vs. lowest: hazard ratio = 1.32, 95% confidence interval: 0.99, 1.76; P-trend = 0.11), though the relation did not achieve statistical significance. The authors found no associations between adult or adolescent nitrate or nitrite intake from processed meats and pancreatic cancer among women. These results provide modest evidence that processed meat sources of dietary nitrate and nitrite may be associated with pancreatic cancer among men and provide no support for the hypothesis in women.

  7. Epithelial ovarian cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Ward, Mary H; Gierach, Gretchen L; Schatzkin, Arthur; Hollenbeck, Albert R; Sinha, Rashmi; Cross, Amanda J

    2012-01-01

    Ovarian cancer is a leading cause of cancer death among women in the United States and it has the highest mortality rate of all gynecologic cancers. Internationally, there is a five-fold variation in incidence and mortality of ovarian cancer, which suggests a role for environmental factors, including diet. Nitrate and nitrite are found in various food items and they are precursors of N-nitroso compounds, which are known carcinogens in animal models. We evaluated dietary nitrate and nitrite intake and epithelial ovarian cancer in the National Institutes of Health (NIH)-AARP Diet and Health Study, including 151 316 women aged 50-71 years at the time of the baseline questionnaire in 1995-1996. The nitrate and nitrite intake was assessed using a 124-item validated food frequency questionnaire. Through 31 December 2006, 709 incident epithelial ovarian cancer cases with complete dietary information were identified. Using Cox proportional hazards regression to estimate hazard ratios and 95% confidence intervals (CIs), women in the highest intake quintile of dietary nitrate had a 31% increased risk (95% CI: 1.01-1.68) of epithelial ovarian cancer, compared with those in the lowest intake quintile. Although there was no association for total dietary nitrite, those in the highest intake category of animal sources of nitrite had a 34% increased risk (95% CI: 1.05-1.69) of ovarian cancer. There were no clear differences in risk by histologic subtype of ovarian cancer. Our findings suggest that a role of dietary nitrate and nitrite in ovarian cancer risk should be followed in other large cohort studies.

  8. Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice.

    Science.gov (United States)

    Kina-Tanada, Mika; Sakanashi, Mayuko; Tanimoto, Akihide; Kaname, Tadashi; Matsuzaki, Toshihiro; Noguchi, Katsuhiko; Uchida, Taro; Nakasone, Junko; Kozuka, Chisayo; Ishida, Masayoshi; Kubota, Haruaki; Taira, Yuji; Totsuka, Yuichi; Kina, Shin-Ichiro; Sunakawa, Hajime; Omura, Junichi; Satoh, Kimio; Shimokawa, Hiroaki; Yanagihara, Nobuyuki; Maeda, Shiro; Ohya, Yusuke; Matsushita, Masayuki; Masuzaki, Hiroaki; Arasaki, Akira; Tsutsui, Masato

    2017-06-01

    Nitric oxide (NO) is synthesised not only from L-arginine by NO synthases (NOSs), but also from its inert metabolites, nitrite and nitrate. Green leafy vegetables are abundant in nitrate, but whether or not a deficiency in dietary nitrite/nitrate spontaneously causes disease remains to be clarified. In this study, we tested our hypothesis that long-term dietary nitrite/nitrate deficiency would induce the metabolic syndrome in mice. To this end, we prepared a low-nitrite/nitrate diet (LND) consisting of an amino acid-based low-nitrite/nitrate chow, in which the contents of L-arginine, fat, carbohydrates, protein and energy were identical with a regular chow, and potable ultrapure water. Nitrite and nitrate were undetectable in both the chow and the water. Three months of the LND did not affect food or water intake in wild-type C57BL/6J mice compared with a regular diet (RD). However, in comparison with the RD, 3 months of the LND significantly elicited visceral adiposity, dyslipidaemia and glucose intolerance. Eighteen months of the LND significantly provoked increased body weight, hypertension, insulin resistance and impaired endothelium-dependent relaxations to acetylcholine, while 22 months of the LND significantly led to death mainly due to cardiovascular disease, including acute myocardial infarction. These abnormalities were reversed by simultaneous treatment with sodium nitrate, and were significantly associated with endothelial NOS downregulation, adiponectin insufficiency and dysbiosis of the gut microbiota. These results provide the first evidence that long-term dietary nitrite/nitrate deficiency gives rise to the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice, indicating a novel pathogenetic role of the exogenous NO production system in the metabolic syndrome and its vascular complications.

  9. Food sources of nitrates and nitrites: the physiologic context for potential health benefits.

    Science.gov (United States)

    Hord, Norman G; Tang, Yaoping; Bryan, Nathan S

    2009-07-01

    The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.

  10. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis.

    Science.gov (United States)

    Song, Peng; Wu, Lei; Guan, Wenxian

    2015-12-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies-19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)-were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69-0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13-1.52) for nitrites, and 1.34 (95% CI, 1.02-1.76) for NDMA (p for heterogeneity was 0.015, 0.013 and nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings.

  11. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway.

    Science.gov (United States)

    Lidder, Satnam; Webb, Andrew J

    2013-03-01

    The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the 'nitrate-nitrite-nitric oxide (NO) pathway'. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre-clinical studies with nitrate or nitrite also show the potential to protect against ischaemia-reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate-rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate 'Veg-Table' with 'Nitrate Units' [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  12. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study.

    Science.gov (United States)

    Dellavalle, Curt T; Xiao, Qian; Yang, Gong; Shu, Xiao-Ou; Aschebrook-Kilfoy, Briseis; Zheng, Wei; Lan Li, Hong; Ji, Bu-Tian; Rothman, Nathaniel; Chow, Wong-Ho; Gao, Yu-Tang; Ward, Mary H

    2014-06-15

    Nitrate and nitrite are precursors of endogenously formed N-nitroso compounds (NOC), known animal carcinogens. Nitrosation reactions forming NOCs can be inhibited by vitamin C and other antioxidants. We prospectively investigated the association between dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study, a cohort of 73,118 women ages 40-70 residing in Shanghai. We evaluated effect modification by factors that affect endogenous formation of NOCs: vitamin C (at or above/below median) and red meat intake (at or above/below median). Nitrate, nitrite and other dietary intakes were estimated from a 77-item food frequency questionnaire administered at baseline. Over a mean of 11 years of follow-up, we identified 619 colorectal cancer cases (n = 383, colon; n = 236, rectum). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazard regression. Overall, nitrate intake was not associated with colorectal cancer risk (HR = 1.08; 95% CI: 0.73-1.59). However, among women with vitamin C intake below the median (83.9 mg day(-1) ) and hence higher potential exposure to NOCs, risk of colorectal cancer increased with increasing quintiles of nitrate intake (highest vs. lowest quintile HR = 2.45; 95% CI: 1.15-5.18; p trend = 0.02). There was no association among women with higher vitamin C intake. We found no association between nitrite intake and risk of colorectal cancer overall or by intake level of vitamin C. Our findings suggest that high dietary nitrate intake among subgroups expected to have higher exposure to endogenously formed NOCs increases risk of colorectal cancer. © 2013 UICC.

  13. Maternal dietary intake of nitrates, nitrites and nitrosamines and selected birth defects in offspring: a case-control study.

    Science.gov (United States)

    Huber, John C; Brender, Jean D; Zheng, Qi; Sharkey, Joseph R; Vuong, Ann M; Shinde, Mayura U; Griesenbeck, John S; Suarez, Lucina; Langlois, Peter H; Canfield, Mark A; Romitti, Paul A; Weyer, Peter J

    2013-03-21

    Dietary intake of nitrates, nitrites, and nitrosamines can increase the endogenous formation of N-nitroso compounds in the stomach. Results from animal studies suggest that these compounds might be teratogenic. We examined the relationship between maternal dietary intake of nitrates, nitrites (including plant and animal sources as separate groups), and nitrosamines and several types of birth defects in offspring. For this population-based case-control study, data from a 58-question food frequency questionnaire, adapted from the short Willett Food Frequency Questionnaire and administered as part of the National Birth Defects Prevention Study (NBDPS), were used to estimate daily intake of dietary nitrates, nitrites, and nitrosamines in a sample of 6544 mothers of infants with neural tube defects (NTD)s, oral clefts (OC)s, or limb deficiencies (LD)s and 6807 mothers of unaffected control infants. Total daily intake of these compounds was divided into quartiles based on the control mother distributions. Odds ratios (OR)s and 95% confidence intervals (CI)s were estimated using logistic regression; estimates were adjusted for maternal daily caloric intake, maternal race-ethnicity, education, dietary folate intake, high fat diet (>30% of calories from fat), and state of residence. While some unadjusted ORs for NTDS had 95% (CI)s that excluded the null value, none remained significant after adjustment for covariates, and the effect sizes were small (adjusted odds ratios [aOR]nitrate, nitrite, and nitrosamines.

  14. Nitrate and nitrite in biology, nutrition and therapeutics

    NARCIS (Netherlands)

    Lundberg, J.O.; van Faassen, E.E.H.; Gladwin, M.T.; Ahluwalia, A.; Benjamin, N.

    2009-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia.

  15. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Peng Song

    2015-12-01

    Full Text Available The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies—19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA—were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI, 0.69–0.93 for dietary nitrates intake, 1.31 (95% CI, 1.13–1.52 for nitrites, and 1.34 (95% CI, 1.02–1.76 for NDMA (p for heterogeneity was 0.015, 0.013 and <0.001, respectively. The study type was found as the main source of heterogeneity for nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings.

  16. Nitrate and nitrite in biology, nutrition and therapeutics

    Science.gov (United States)

    Lundberg, Jon O.; Gladwin, Mark T.; Ahluwalia, Amrita; Benjamin, Nigel; Bryan, Nathan S.; Butler, Anthony; Cabrales, Pedro; Fago, Angela; Feelisch, Martin; Ford, Peter C.; Freeman, Bruce A.; Frenneau, Michael; Friedman, Joel; Kelm, Malte; Kevil, Christopher G.; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Lancaster, Jack R.; Lefer, David J.; McColl, Kenneth; McCurry, Kenneth; Patel, Rakesh; Petersson, Joel; Rassaf, Tienush; Reutov, Valentin P.; Richter-Addo, George B.; Schechter, Alan; Shiva, Sruti; Tsuchiya, Koichiro; van Faassen, Ernst E.; Webb, Andrew J.; Zuckerbraun, Brian S.; Zweier, Jay L.; Weitzberg, Eddie

    2014-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent two-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm. PMID:19915529

  17. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    Science.gov (United States)

    Song, Peng; Wu, Lei; Guan, Wenxian

    2015-01-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies—19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)—were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69–0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13–1.52) for nitrites, and 1.34 (95% CI, 1.02–1.76) for NDMA (p for heterogeneity was 0.015, 0.013 and NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings. PMID:26633477

  18. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study

    Science.gov (United States)

    DellaValle, Curt T.; Xiao, Qian; Yang, Gong; Shu, Xiao Ou; Aschebrook-Kilfoy, Briseis; Zheng, Wei; Li, Hong Lan; Ji, Bu-Tian; Rothman, Nathaniel; Chow, Wong-Ho; Gao, Yu-Tang; Ward, Mary H.

    2014-01-01

    Nitrate and nitrite are precursors of endogenously formed N-nitroso compounds (NOC), known animal carcinogens. Nitrosation reactions forming NOCs can be inhibited by vitamin C and other antioxidants. We prospectively investigated the association between dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study, a cohort of 73,118 women ages 40 to 70 residing in Shanghai. We evaluated effect modification by factors that affect endogenous formation of NOCs: vitamin C (at or above/below median) and red meat intake (at or above/below median). Nitrate, nitrite and other dietary intakes were estimated from a 77-item food frequency questionnaire administered at baseline. Over a mean of 11 years of follow-up, we identified 619 colorectal cancer cases (n=383, colon; n=236, rectum). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazard regression. Overall, nitrate intake was not associated with colorectal cancer risk (HR = 1.08; 95% CI: 0.73–1.59). However, among women with vitamin C intake below the median (83.9 mg/day) and hence higher potential exposure to NOCs, risk of colorectal cancer increased with increasing quintiles of nitrate intake (highest vs. lowest quintile HR = 2.45; 95% CI: 1.15–5.18; p-trend = 0.02). There was no association among women with higher vitamin C intake. We found no association between nitrite intake and risk of colorectal cancer overall or by intake level of vitamin C. Our findings suggest that high dietary nitrate intake among subgroups expected to have higher exposure to endogenously-formed NOCs increases risk of colorectal cancer. PMID:24242755

  19. Maternal characteristics associated with the dietary intake of nitrates, nitrites, and nitrosamines in women of child-bearing age: a cross-sectional study.

    Science.gov (United States)

    Griesenbeck, John S; Brender, Jean D; Sharkey, Joseph R; Steck, Michelle D; Huber, John C; Rene, Antonio A; McDonald, Thomas J; Romitti, Paul A; Canfield, Mark A; Langlois, Peter H; Suarez, Lucina

    2010-02-19

    Multiple N-nitroso compounds have been observed in animal studies to be both mutagenic and teratogenic. Human exposure to N-nitroso compounds and their precursors, nitrates and nitrites, can occur through exogenous sources, such as diet, drinking water, occupation, or environmental exposures, and through endogenous exposures resulting from the formation of N-nitroso compounds in the body. Very little information is available on intake of nitrates, nitrites, and nitrosamines and factors related to increased consumption of these compounds. Using survey and dietary intake information from control women (with deliveries of live births without major congenital malformations during 1997-2004) who participated in the National Birth Defects Prevention Study (NBDPS), we examined the relation between various maternal characteristics and intake of nitrates, nitrites, and nitrosamines from dietary sources. Estimated intake of these compounds was obtained from the Willet Food Frequency Questionnaire as adapted for the NBDPS. Multinomial logistic regression models were used to estimate odds ratios and 95% confidence intervals for the consumption of these compounds by self-reported race/ethnicity and other maternal characteristics. Median intake per day for nitrates, nitrites, total nitrites (nitrites + 5% nitrates), and nitrosamines was estimated at 40.48 mg, 1.53 mg, 3.69 mg, and 0.472 microg respectively. With the lowest quartile of intake as the referent category and controlling for daily caloric intake, factors predicting intake of these compounds included maternal race/ethnicity, education, body mass index, household income, area of residence, folate intake, and percent of daily calories from dietary fat. Non-Hispanic White participants were less likely to consume nitrates, nitrites, and total nitrites per day, but more likely to consume dietary nitrosamines than other participants that participated in the NBDPS. Primary food sources of these compounds also varied by

  20. [Evaluation of nitrites and nitrates food intake in the students' group].

    Science.gov (United States)

    Wawrzyniak, Agata; Hamułka, Jadwiga; Pankowska, Iwona

    2010-01-01

    The aim of study was to determine the intake of nitrites and nitrates in daily food rations of the students' group in 2008 using 3-day dietary food records method and literature mean values of nitrates and nitrites in food products. Intakes of these compounds were calculated and compared to acceptable daily intake (ADI). The average intake of nitrites was 1.7 mg NaNO2/per person/day (28.0% of ADI), nitrates 77.3 mg NaNO3/per person/day that means 25.4% of ADI. The largest nitrites food intake was noticed for meat products supplied 56.5% of nitrites and cereals (20%). Whereas vegetables and their products supplied 76.1% of nitrates: potatoes 17.1%, cabbage 15.5%, beetroots 13.7%. Calculated nitrites intake for men was 2.4 higher than for women. There were no significant differences of nitrates intake between men and women groups.

  1. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults.

    Science.gov (United States)

    Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B

    2016-05-01

    Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate

  2. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    Science.gov (United States)

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (pnitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  3. Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: a review of the epidemiologic evidence.

    Science.gov (United States)

    Eichholzer, M; Gutzwiller, F

    1998-04-01

    Experimental animal studies have shown N-nitroso compounds (NOC) to be potent carcinogens. Epidemiologic evidence of the carcinogenic potential of dietary NOC and precursor nitrates and nitrites in humans remains inconclusive with regard to the risk of stomach, brain, esophageal, and nasopharyngeal cancers. Inadequate available data could obscure a small to moderate effect of NOC.

  4. Dietary Nitrates, Nitrites, and N-Nitroso Compounds and Cancer Risk: a Review of the Epidemiologic Evidence

    OpenAIRE

    Eichholzer, Monika; Gutzwiller, Felix

    2017-01-01

    Experimental animal studies have shown N-nitroso compounds (NOC) to be potent carcinogens. Epidemiologic evidence of the carcinogenic potential of dietary NOC and precursor nitrates and nitrites in humans remains inconclusive with regard to the risk of stomach, brain, esophageal, and nasopharyngeal cancers. Inadequate available data could obscure a small to moderate effect of NOC

  5. Prospective study of meat intake and dietary nitrates, nitrites, and nitrosamines and risk of adult glioma123

    Science.gov (United States)

    Holick, Crystal N; Batchelor, Tracy T; Giovannucci, Edward; Hunter, David J

    2009-01-01

    Background: The hypothesis that nitrosamine exposure may increase the risk of glioma has been circulating for several decades, but testing it has been difficult because of the ubiquitous nature of nitrosamine exposure. Diet has been the focus of many studies because it can substantially influence nitrosamine exposure, mostly from the endogenous formation of nitrosamines based on intake of nitrite and nitrate. Objective: The objective was to examine the relation between intakes of meats, nitrate, nitrite, and 2 nitrosamines [nitrosodimethylamine (NDMA) and nitrosopyrolidine (NPYR)] and glioma risk in a prospective analysis. Methods: Data from 3 US prospective cohort studies were combined for this analysis; 335 glioma cases were diagnosed during ≤24 y of follow-up. Dietary intake was assessed with food-frequency questionnaires. Nitrate, nitrite, and nitrosamine values were calculated based on published values of these nutrients in various foods over different periods in time. Cox proportional hazards models were used to estimate incidence rate ratios (RRs) and 95% CIs. Estimates from each cohort were pooled by using a random-effects model. Results: Risk of glioma was not elevated among individuals in the highest intake category of total processed meats (RR: 0.92; 95% CI: 0.48, 1.77), nitrate (RR: 1.02; 95% CI: 0.66, 1.58), nitrites (RR: 1.26; 95% CI: 0.89, 1.79), or NDMA (RR: 0.88; 95% CI: 0.57, 1.36) compared with the lowest category. No effect modification was observed by intake of vitamins C or E or other antioxidant measures. Conclusion: We found no suggestion that intake of meat, nitrate, nitrite, or nitrosamines is related to the risk of glioma. PMID:19587083

  6. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the Short Willet Food Frequency Questionnaire.

    Science.gov (United States)

    Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D

    2009-04-06

    Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 microg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes.

  7. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health.

    Science.gov (United States)

    Habermeyer, Michael; Roth, Angelika; Guth, Sabine; Diel, Patrick; Engel, Karl-Heinz; Epe, Bernd; Fürst, Peter; Heinz, Volker; Humpf, Hans-Ulrich; Joost, Hans-Georg; Knorr, Dietrich; de Kok, Theo; Kulling, Sabine; Lampen, Alfonso; Marko, Doris; Rechkemmer, Gerhard; Rietjens, Ivonne; Stadler, Richard H; Vieths, Stefan; Vogel, Rudi; Steinberg, Pablo; Eisenbrand, Gerhard

    2015-01-01

    Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP Diet and Health Study.

    Science.gov (United States)

    Kilfoy, Briseis A; Zhang, Yawei; Park, Yikyung; Holford, Theodore R; Schatzkin, Arthur; Hollenbeck, Albert; Ward, Mary H

    2011-07-01

    During the past several decades, an increasing incidence of thyroid cancer has been observed worldwide. Nitrate inhibits iodide uptake by the thyroid, potentially disrupting thyroid function. An increased risk of thyroid cancer associated with nitrate intake was recently reported in a cohort study of older women in Iowa. We evaluated dietary nitrate and nitrite intake and thyroid cancer risk overall and for subtypes in the National Institutes of Health-American Association of Retired Persons (NIH-AARP) Diet and Health Study, a large prospective cohort of 490,194 men and women, ages 50-71 years in 1995-1996. Dietary intakes were assessed using a 124-item food frequency questionnaire. During an average of 7 years of follow-up we identified 370 incident thyroid cancer cases (170 men, 200 women) with complete dietary information. Among men, increasing nitrate intake was positively associated with thyroid cancer risk (relative risk [RR] for the highest quintile versus lowest quintile RR = 2.28, 95% confidence interval [CI]: 1.29-4.041; p-trend cancer for either men or women. We evaluated risk for the two main types of thyroid cancer. We found positive associations for nitrate intake and both papillary (RR = 2.10; 95% CI: 1.09-4.05; p-trend = 0.05) and follicular thyroid cancer (RR = 3.42; 95% CI: 1.03-11.4; p-trend = 0.01) among men. Nitrite intake was associated with increased risk of follicular thyroid cancer (RR = 2.74; 95%CI: 0.86-8.77; p-trend = 0.04) among men. Our results support a role of nitrate in thyroid cancer risk and suggest that further studies to investigate these exposures are warranted. Published 2010 UICC.

  9. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    Directory of Open Access Journals (Sweden)

    Rene Antonio A

    2009-04-01

    Full Text Available Abstract Background Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. Methods We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Results Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 μg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. Conclusion To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes.

  11. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    Science.gov (United States)

    Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D

    2009-01-01

    Background Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. Methods We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Results Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 μg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. Conclusion To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes. PMID:19348679

  12. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    OpenAIRE

    Peng Song; Lei Wu; Wenxian Guan

    2015-01-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles ...

  13. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  14. Relation between nitrate and nitrite food habits with lung cancer.

    Science.gov (United States)

    Karimzadeh, Laleh; Koohdani, Fariba; Siassi, Fereydoon; Mahmoudi, Mahmoud; Moslemi, Daryoush; Safari, Farid

    2012-01-01

    Nitrites, a probable human carcinogen, generate reactive nitrogen species that may cause damage to the lung. We evaluated the association between nutritional habits related to nitrite and nitrate intake and risk of lung cancer in Mazandaran, Northern Province of Iran. In this case-control study the two groups were matched for gender and age (+/- 5 years). A semi -quantitative food frequency questionnaire (FFQ) was used to collect dietary data about nutritional habits related to nitrate, nitrite, vitamins E and C intake, from 40 lung cancer cases and 40 control subjects admitted at Mazanaran hospitals. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of lung cancer using logistic regression. Mean score of nutritional habits in case group was significantly lower than that in control group (P less than or equal 0.001). We observed a positive association between animal sources of nitrate and nitrite intake (OR = 2.7, 95% CI: 0.13-0.96) and risk of lung cancer. Decreased risk of lung cancer was also observed with fruit intake (OR = 0.26, 95% CI: 1.3-11). Our results indicate a probable association between nutritional habits related to animal sources of nitrate and nitrite intake and the risk of lung cancer that requires to be confirmed by other studies.

  15. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women.

    Science.gov (United States)

    Quist, Arbor J L; Inoue-Choi, Maki; Weyer, Peter J; Anderson, Kristin E; Cantor, Kenneth P; Krasner, Stuart; Freeman, Laura E Beane; Ward, Mary H; Jones, Rena R

    2018-01-15

    Nitrate and nitrite are precursors of N-nitroso compounds (NOC), probable human carcinogens that cause pancreatic tumors in animals. Disinfection by-products (DBP) exposures have also been linked with digestive system cancers, but few studies have evaluated relationships with pancreatic cancer. We investigated the association of pancreatic cancer with these drinking water contaminants and dietary nitrate/nitrite in a cohort of postmenopausal women in Iowa (1986-2011). We used historical monitoring and treatment data to estimate levels of long-term average nitrate and total trihalomethanes (TTHM; the sum of the most prevalent DBP class) and the duration exceeding one-half the maximum contaminant level (>½ MCL; 5 mg/L nitrate-nitrogen, 40 µg/L TTHM) among participants on public water supplies (PWS) >10 years. We estimated dietary nitrate and nitrite intakes using a food frequency questionnaire. We computed hazard ratios (HR) and 95% confidence intervals (CI) using Cox regression and evaluated nitrate interactions with smoking and vitamin C intake. We identified 313 cases among 34,242 women, including 152 with >10 years PWS use (N = 15,710). Multivariable models of average nitrate showed no association with pancreatic cancer (HR p95 vs . Q1  = 1.16, 95% CI: 0.51-2.64). Associations with average TTHM levels were also null (HR Q4 vs . Q1  = 0.70, 95% CI:0.42-1.18). We observed no trend with increasing years of exposure to either contaminant at levels >½ MCL. Positive associations were suggested in the highest dietary nitrite intake from processed meat (HR p95 vs . Q1  = 1.66, 95% CI 1.00-2.75;p trend  = 0.05). We found no interactions of nitrate with known modifiers of endogenous NOC formation. Our results suggest that nitrite intake from processed meat may be a risk factor for pancreatic cancer. 2017 UICC.

  16. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  17. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa.

    Science.gov (United States)

    Inoue-Choi, Maki; Jones, Rena R; Anderson, Kristin E; Cantor, Kenneth P; Cerhan, James R; Krasner, Stuart; Robien, Kim; Weyer, Peter J; Ward, Mary H

    2015-07-01

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC), potential human carcinogens. We evaluated the association of nitrate and nitrite ingestion with postmenopausal ovarian cancer risk in the Iowa Women's Health Study. Among 28,555 postmenopausal women, we identified 315 incident epithelial ovarian cancers from 1986 to 2010. Dietary nitrate and nitrite intakes were assessed at baseline using food frequency questionnaire data. Drinking water source at home was obtained in a 1989 follow-up survey. Nitrate-nitrogen (NO3 -N) and total trihalomethane (TTHM) levels for Iowa public water utilities were linked to residences and average levels were computed based on each woman's duration at the residence. We computed multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. We tested interactions of nitrate with TTHMs and dietary factors known to influence NOC formation. Ovarian cancer risk was 2.03 times higher (CI = 1.22-3.38, ptrend  = 0.003) in the highest quartile (≥2.98 mg/L) compared with the lowest quartile (≤0.47 mg/L; reference) of NO3 -N in public water, regardless of TTHM levels. Risk among private well users was also elevated (HR = 1.53, CI = 0.93-2.54) compared with the same reference group. Associations were stronger when vitamin C intake was nitrate was inversely associated with ovarian cancer risk (ptrend  = 0.02); whereas, dietary nitrite from processed meats was positively associated with the risk (ptrend  = 0.04). Our findings indicate that high nitrate levels in public drinking water and private well use may increase ovarian cancer risk among postmenopausal women. © 2014 UICC.

  18. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate-nitrite-nitric oxide pathway in the gut.

    Science.gov (United States)

    Rocha, Bárbara S; Nunes, Carla; Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2014-08-01

    Dietary polyphenols are complex, natural compounds with recognized health benefits. Initially attractive to the biomedical area due to their in vitro antioxidant properties, the biological implications of polyphenols are now known to be far from their acute ability to scavenge free radicals but rather to modulate redox signaling pathways. Actually, it is now recognized that dietary polyphenols are extensively metabolized in vivo and that the chemical, biophysical and biological properties of their metabolites are, in most cases, quite different from the ones of the parent molecules. Hence, the study of the metabolic, absorptive and signaling pathways of both phenolics and derivatives has become a major issue. In this paper we propose a short-cut for the systemic effects of polyphenols in connection with nitric oxide (˙NO) biology. This free radical is a ubiquitous signaling molecule with pivotal functions in vivo. It is produced through an enzymatic pathway and also through the reduction of dietary nitrate and nitrite in the human stomach. At acidic gastric pH, dietary polyphenols, in the form they are conveyed in foods and at high concentration, not only promote nitrite reduction to ˙NO but also embark in a complex network of chemical reactions to produce higher nitrogen oxides with signaling functions, namely by inducing post-translational modifications. Modified endogenous molecules, such as nitrated proteins and lipids, acquire important physiological functions. Thus, local and systemic effects of ˙NO such as modulation of vascular tone, mucus production in the gut and protection against ischemia-reperfusion injury are, in this sense, triggered by dietary polyphenols. Evidence to support the signaling and biological effects of polyphenols by modulation of the nitrate-nitrite-NO pathway will be herein provided and discussed. General actions of polyphenols encompassing absorption and metabolism in the intestine/liver are short-cut via the production of

  20. Nitrates and nitrites in selected vegetables purchased at supermarkets in Siedlce, Poland.

    Science.gov (United States)

    Raczuk, Jolanta; Wadas, Wanda; Głozak, Katarzyna

    2014-01-01

    Vegetables constitute a vital part of the human diet, being the main source of minerals, vitamins, dietary fibre and phytochemicals. They however, also contain nitrates and nitrites, which adversely affect human health. To determine nitrate and nitrite content in selected vegetables purchased at supermarket chains in Siedlce and to assess their impact on consumer health. Vegetable samples were purchased from local supermarkets in Siedlce, town situated in the Mazovian province (Voivodeship) of Poland. These consisted of 116 samples of nine vegetables types including butterhead and iceberg lettuce, beetroot, white cabbage, carrot, cucumber, radish, tomato and potato collected between April and September 2011. Concentrations of nitrate and nitrite were determined by standard colorimetric methods used in Poland, with results expressed as mg per kg fresh weight of vegetables. Nitrate concentrations varied between 10 mg x kg(-1) to 4800 mg x kg(-1). The highest mean nitrate concentrations were found in radishes (2132 mgkg(-1)), butterhead lettuce (1725 mg x kg(-1)), beetroots (1306 mg x kg(-1)) and iceberg lettuce (890 mg x kg(-1)), whereas the lowest were found in cucumber (32 mg x kg(-1)) and tomato (35 mg x kg(-1)). Nitrite levels were also variable; the highest concentrations measured were in beetroot (mean 9.19 mg x kg(-1)) whilst much smaller amounts were present in carrot, cucumbers, iceberg lettuce, white cabbage, tomatoes and potatoes. The daily adult consumption of 100 g amounts of the studied vegetables were found not exceed the ADI for both nitrates and nitrites. Findings indicated the need for monitoring nitrate and nitrite content in radishes, butterhead lettuce and beetroot due to consumer health concerns.

  1. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    Science.gov (United States)

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the

  2. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis.

    Science.gov (United States)

    Bahadoran, Zahra; Mirmiran, Parvin; Ghasemi, Asghar; Kabir, Ali; Azizi, Fereidoun; Hadaegh, Farzad

    2015-05-01

    The potential effects of inorganic nitrate/nitrite on global health are a much debated issue. In addition to possible methemoglobinemia and carcinogenic properties, anti-thyroid effects of nitrate/nitrite have been suggested. Considering the growing significance of nitrate/nitrite and since there is no comprehensive review in data available, clarifying the effect of nitrate/nitrite on thyroid disorder outcomes is essential. Therefore, we conducted this systematic review of experimental and clinical studies, and a meta-analysis of relevant cohort and cross-sectional studies investigating the association of nitrate/nitrite exposure and thyroid function. Most animal studies show that high exposure (~10-600 times of acceptable daily intake) to nitrate/nitrite induces anti-thyroid effects, including decreased serum level of thyroid hormones and histomorphological changes in thyroid gland; however no similar observations have been documented in humans. Based on our meta-analysis, no significant association was observed between nitrate exposure and the risk of thyroid cancer, hyper- and hypothyroidism; findings from three cohort studies however showed a significant association between higher exposure to nitrite and the risk of thyroid cancer (risk = 1.48, 95% confidence interval = 1.09-2.02, P = 0.012). Additional research is needed to clarify the association between nitrate/nitrite exposures and both thyroid function and cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of high oral doses of nitrate on salivary recirculation of nitrates and nitrites and on bacterial diversity in the saliva of young pigs.

    Science.gov (United States)

    Trevisi, P; Casini, L; Nisi, I; Messori, S; Bosi, P

    2011-04-01

    Ingested nitrate is absorbed in the small intestine, recirculated into the saliva and reduced to nitrite by oral bacteria. In pigs receiving a moderate dietary addition of nitrate, the recirculation into the saliva is modest, so we aimed to assess the effect of higher nitrate doses to find out how the animal reacts to this new situation and to evaluate if a higher nitrate level could enhance the nitrate reduction process, improving the nitrite production Trial 1. Six piglets received 100 g of a commercial diet with 2.45% KNO(3) . In relation to baseline values, nitrate in blood serum and saliva increased 15 times, and declined after 6 h vs. 2 h. Salivary nitrite increased seven times after the addition and declined after 6 h vs. 2 h. Trial 2. Six piglets were fed a diet with or without 1.22% KNO(3) for 2 weeks. Salivary nitrate and nitrite increased with the addition of KNO3: nitrate increased from d0 to the end of the trial, nitrite increased 15 times after 1 week, but decreased after 2 weeks to 4.5-fold the control. After 2 weeks, nitrate reduced Shan diversity index of salivary microbiota. The present results indicate that the long exposure to high quantities of nitrates impairs the oral reduction of nitrate to nitrite and engenders a reduction of the mouth's microbiota diversity. © 2010 Blackwell Verlag GmbH.

  4. Nitrite and nitrate concentrations and metabolism in breast milk, infant formula, and parenteral nutrition.

    Science.gov (United States)

    Jones, Jesica A; Ninnis, Janet R; Hopper, Andrew O; Ibrahim, Yomna; Merritt, T Allen; Wan, Kim-Wah; Power, Gordon G; Blood, Arlin B

    2014-09-01

    Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite. © 2013 American Society for Parenteral and Enteral Nutrition.

  5. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women.

    Science.gov (United States)

    Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M

    2015-10-01

    Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, Pdiet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, Pdiet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, Pdiet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.

  6. Total salivary nitrates and nitrites in oral health and periodontal disease.

    Science.gov (United States)

    Sánchez, Gabriel A; Miozza, Valeria A; Delgado, Alejandra; Busch, Lucila

    2014-01-30

    It is well known that nitrites are increased in saliva from patients with periodontal disease. In the oral cavity, nitrites may derive partly from the reduction of nitrates by oral bacteria. Nitrates have been reported as a defence-related mechanism. Thus, the aim of the present study was to determine the salivary levels of total nitrate and nitrite and their relationship, in unstimulated and stimulated saliva from periodontal healthy subjects, and from patients with chronic periodontal disease. Nitrates and nitrites were determined in saliva from thirty healthy subjects and forty-four patients with periodontal disease. A significant increase in salivary nitrates and nitrites was observed. Nitrates and nitrites concentration was related to clinical attachment level (CAL). A positive and significant Pearson's correlation was found between salivary total nitrates and nitrites. Periodontal treatment induced clinical improvement and decreased nitrates and nitrites. It is concluded that salivary nitrates and nitrites increase, in patients with periodontal disease, could be related to defence mechanisms. The possibility that the salivary glands respond to oral infectious diseases by increasing nitrate secretion should be explored further. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. 9 CFR 319.2 - Products and nitrates and nitrites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be prepared...

  8. Monitoring nitrite and nitrate residues in frankfurters during processing and storage.

    Science.gov (United States)

    Pérez-Rodríguez, M L; Bosch-Bosch, N; Garciá-Mata, M

    1996-09-01

    Frankfurter-type sausages were prepared in a pilot plant with different concentrations of NaNO(2) (75, 125 or 250 ppm) combined or not with 200 ppm KNO(3). A meat system, free of curing agents, was also used as control. Nitrite and nitrate levels were tested in various processing steps and over 120 days storage at 3 °C of the vacuum-packaged frankfurters. Little influence of the originally added nitrite level on the amount of nitrate formed was observed. Important losses of nitrite and nitrate were due to cooking. Thereafter about 50% of the nitrite added initially remained in this form in all samples (39, 59 and 146 ppm, respectively) and between 10 and 15% as nitrate. When only nitrate was initially added, formation of nitrite after cooking was observed (maximum level 43 ppm NaNO(2)). Formulations prepared with both nitrate and nitrite showed no significant differences (p nitrite or nitrate counterparts. A good correlation among nitrite and nitrate levels and storage time was showed by multiple linear regression analysis. It is concluded that the use of nitrate in combination with nitrite in cooked meat products seems to have little technological significance and adds to the total body burden of nitrite.

  9. A Review of Nitrate and Nitrite Toxicity in Foods

    Directory of Open Access Journals (Sweden)

    Mir-Jamal Hosseini

    2016-03-01

    Full Text Available Agricultural advancement and population growth have prompted increases in food supplies, and higher crop yields have been made possible through the application of fertilizers. Large quantities of livestock and poultry on farms, along with the accumulation of biomass and agricultural residues, can cause contamination of ground water resources and other water sanitation concerns in both developing and developed countries. Nitrate is mainly used as a fertilizer in agriculture, and because of its high solubility in water, it can create biological problems in the environment. High usage of nitrite in the food industry as a preservative, flavor enhancer, antioxidant, and color stabilizing agent can cause human exposure to this toxic compound. Nitrite is 10 times as toxic as nitrate in humans. Nitrate is converted to nitrite and nitrosamine compounds in the human stomach, which can lead to bladder cancer. In this review, sources of nitrate and nitrite exposure were investigated. Furthermore, the review evaluates standard levels of nitrate and nitrite in different foods, and acceptable daily doses of these compounds in various countries. Finally, we discuss valid methods of nitrate and nitrite identification and removal in foods.

  10. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus.

    OpenAIRE

    Neubauer, H; Götz, F

    1996-01-01

    Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conserva...

  11. [Nitrates and nitrites in meat products--nitrosamines precursors].

    Science.gov (United States)

    Avasilcăi, Liliana; Cuciureanu, Rodica

    2011-01-01

    To determine the content in nitrates and nitrites and the formation of two nitrosamines (N-nitrosodimethylamine--NDMA, and N-nitrosodiethylaamine--NDEA) in samples of chicken ham, dry Banat salami, dry French salami, traditional Romania sausages, and pork pastrami. Nitrites were determined by spectrophotometry with Peter-Griess reagent, and nitrates by the same method after reduction to nitrites with cadmium powder. High performance liquid chromatography with UV detection was used to determine nitrosamines. The initial concentration of nitrates, nitrites, NDMA and NDEA in the samples ranged as follows: 14.10-60.40 mg NO3/kg, 2.70-26.70 mg NO2/kg, from non-detectable to 0.90 microg NDMA/kg, and from non-detectable to 0.27 microg NDEA/kg, respectively. After 28 days the concentrations were: 3.24-17.1 mg NO3/kg, 0.04 -1.87 mg NO2/kg, 0.8-29 microg NDMA/kg, and 11.6-61.9 microg NDEA/kg, respectively. The decreased nitrate and nitrite and increased NDMA and NDEA concentrations prove that in food products nitrosamines are formed due to residual nitrite during their preservation. The determination of nitrasamines revealed levels much above the admitted maximal concentration for these food products.

  12. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    OpenAIRE

    Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D

    2009-01-01

    Abstract Background Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. Methods We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted ...

  13. Dietary Nitrite: from menace to marvel

    Directory of Open Access Journals (Sweden)

    Nathan S. Bryan

    2016-11-01

    Full Text Available The health benefits of nitrite are now indisputable when administered in a clinical setting for specific diseases. Currently, most published reports identify the production of nitric oxide (NO as the mechanism of action for nitrite. Basic science, in addition to clinical studies, demonstrate that nitrite and/or nitrate cannot restore NO homeostasis as an endothelium independent source of NO that may be a redundant system for endogenous NO production. Nitrate must first be reduced to nitrite by oral commensal bacteria; nitrite can then be further reduced to NO along the physiological oxygen gradient. But despite decades of rigorous research on sodium nitrate’s safety and efficacy as a curing agent, sodium nitrite is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite which are being developed as novel therapies for conditions associated with nitric oxide insufficiency. Thus, this review will highlight the fundamental biochemistry of nitrite in human physiology and provide evidence that nitrite be considered an essential nutrient. Foods or diets enriched with nitrite can have profound positive health benefits.

  14. Nitrates, Nitrites, and Health. Bulletin 750.

    Science.gov (United States)

    Deeb, Barbara S.; Sloan, Kenneth W.

    This review is intended to assess available literature in order to define the range of nitrate/nitrite effects on animals. Though the literature deals primarily with livestock and experimental animals, much of the contemporary research is concerned with human nitrite intoxication. Thus, the effects on man are discussed where appropriate. Some of…

  15. NITRITE AND NITRATE DETERMINATIONS IN PLASMA - A CRITICAL-EVALUATION

    NARCIS (Netherlands)

    MOSHAGE, H; KOK, B; HUIZENGA, [No Value; JANSEN, PLM

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  16. Nitrite and nitrate determinations in plasma: a critical evaluation

    NARCIS (Netherlands)

    Moshage, H.; Kok, B.; Huizenga, J. R.; Jansen, P. L.

    1995-01-01

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  17. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.

    Science.gov (United States)

    Asanuma, Narito; Yokoyama, Shota; Hino, Tsuneo

    2015-04-01

    This study investigated the effects of dietary nitrate addition on ruminal fermentation characteristics and microbial populations in goats. The involvement of Selenomonas ruminantium in nitrate and nitrite reduction in the rumen was also examined. As the result of nitrate feeding, the total concentration of ruminal volatile fatty acids decreased, whereas the acetate : propionate ratio and the concentrations of ammonia and lactate increased. Populations of methanogens, protozoa and fungi, as estimated by real-time PCR, were greatly decreased as a result of nitrate inclusion in the diet. There was modest or little impact of nitrate on the populations of prevailing species or genus of bacteria in the rumen, whereas Streptococcus bovis and S. ruminantium significantly increased. Both the activities of nitrate reductase (NaR) and nitrite reductase (NiR) per total mass of ruminal bacteria were increased by nitrate feeding. Quantification of the genes encoding NaR and NiR by real-time PCR with primers specific for S. ruminantium showed that these genes were increased by feeding nitrate, suggesting that the growth of nitrate- and nitrite-reducing S. ruminantium is stimulated by nitrate addition. Thus, S. ruminantium is likely to play a major role in nitrate and nitrite reduction in the rumen. © 2014 Japanese Society of Animal Science.

  18. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  19. Beneficial Effects of Dietary Nitrate on Endothelial Function and Blood Pressure Levels

    Directory of Open Access Journals (Sweden)

    Jenifer d’El-Rei

    2016-01-01

    Full Text Available Poor eating habits may represent cardiovascular risk factors since high intake of fat and saturated fatty acids contributes to dyslipidemia, obesity, diabetes mellitus, and hypertension. Thus, nutritional interventions are recognized as important strategies for primary prevention of hypertension and as adjuvants to pharmacological therapies to reduce cardiovascular risk. The DASH (Dietary Approach to Stop Hypertension plan is one of the most effective strategies for the prevention and nonpharmacological management of hypertension. The beneficial effects of DASH diet on blood pressure might be related to the high inorganic nitrate content of some food products included in this meal plan. The beetroot and other food plants considered as nitrate sources account for approximately 60–80% of the daily nitrate exposure in the western population. The increased levels of nitrite by nitrate intake seem to have beneficial effects in many of the physiological and clinical settings. Several clinical trials are being conducted to determine the broad therapeutic potential of increasing the bioavailability of nitrite in human health and disease, including studies related to vascular aging. In conclusion, the dietary inorganic nitrate seems to represent a promising complementary therapy to support hypertension treatment with benefits for cardiovascular health.

  20. Intake of nitrate and nitrite and the risk of gastric cancer: A prospective cohort study

    NARCIS (Netherlands)

    Loon, A.J.M. van; Botterweck, A.A.M.; Goldbohm, R.A.; Brants, H.A.M.; Klaveren, J.D. van; Brandt, P.A. van den

    1998-01-01

    The association between the intake of nitrate or nitrite and gastric cancer risk was investigated in a prospective cohort study started in 1986 in the Netherlands, of 120,852 men and women aged 55-69 years. At baseline, data on dietary intake, smoking habits and other covariates were collected by

  1. Inactivation of Yersinia enterocolitica by nitrite and nitrate in food.

    Science.gov (United States)

    de Giusti, M; de Vito, E

    1992-01-01

    The antimicrobial effects of sodium nitrite and sodium and potassium nitrate against Yersinia enterocolitica were investigated in solution and in treated pork meat. Potassium nitrate and sodium nitrate showed only feeble antimicrobial activity in cultures; no antimicrobial activity was detected with sodium nitrite. Conversely, all three salts displayed apparent antimicrobial activity in pork meat, possibly due to selective effects on competitive flora.

  2. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Rizzuto, Anthony M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  3. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  4. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  5. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  6. Ingested nitrate and nitrite and stomach cancer risk: an updated review.

    Science.gov (United States)

    Bryan, Nathan S; Alexander, Dominik D; Coughlin, James R; Milkowski, Andrew L; Boffetta, Paolo

    2012-10-01

    Nitrite and nitrate are naturally occurring molecules in vegetables and also added to cured and processed meats to delay spoilage and pathogenic bacteria growth. Research over the past 15 years has led to a paradigm change in our ideas about health effects of both nitrite and nitrate. Whereas, historically nitrite and nitrate were considered harmful food additives and listed as probable human carcinogens under conditions where endogenous nitrosation could take place, they are now considered by some as indispensible nutrients essential for cardiovascular health by promoting nitric oxide (NO) production. We provide an update to the literature and knowledge base concerning their safety. Most nitrite and nitrate exposure comes from naturally occurring and endogenous sources and part of the cell signaling effects of NO involve nitrosation. Nitrosation must now be considered broadly in terms of both S- and N-nitrosated species, since S-nitrosation is kinetically favored. Protein S-nitrosation is a significant part of the role of NO in cellular signal transduction and is involved in critical aspects of cardiovascular health. A critical review of the animal toxicology literature of nitrite indicates that in the absence of co-administration of a carcinogenic nitrosamine precursor, there is no evidence for carcinogenesis. Newly published prospective epidemiological cohort studies indicate that there is no association between estimated intake of nitrite and nitrate in the diet and stomach cancer. This new and growing body of evidence calls for a reconsideration of nitrite and nitrate safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Nitrates and Nitrites in the Treatment of Ischemic Cardiac Disease

    Science.gov (United States)

    Nossaman, Vaughn E.; Nossaman, Bobby D.; Kadowitz, Philip J.

    2010-01-01

    The organic nitrite, amyl of nitrite, was initially used as a therapeutic agent in the treatment of angina pectoris in 1867, but was replaced over a decade later by the organic nitrate, nitroglycerin (NTG), due to the ease of administration and longer duration of action. The administration of organic nitrate esters, such as NTG, continues to be used in the treatment of angina pectoris and heart failure during the birth of modern pharmacology. The clinical effectiveness is due to vasodilator activity in large veins and arteries through an as yet unidentified method of delivering nitric oxide (NO), or a NO-like compound to vascular smooth muscle cells. The major drawback with NTG administration is the rapid development of tolerance; and with amyl of nitrite, the duration and route of administration. Although amyl of nitrite are no longer used in the treatments of hypertension or ischemic heart disease, the nitrite anion has recently been discovered to possess novel pharmacologic actions such as modulating hypoxic vasodilation and providing cytoprotection in ischemia-reperfusion injury. Although the actions of these two similar chemical classes (nitrites and organic nitrates) have often been considered to be alike, we still do not understand their mechanism of action. However, the recent discovery that the nitrite anion, derived from either sodium nitrite or an intermediate NTG form, may act as a storage form for NO and provides support for investigating the use of these agents in the treatment of ischemic cardiovascular states. We review what is presently known about the use of nitrites and nitrates, the potential uses of these agents, and their mechanisms of action. PMID:20539102

  8. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    Science.gov (United States)

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  9. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  10. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  11. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  12. Role of nitrite, urate and pepsin in the gastroprotective effects of saliva

    Science.gov (United States)

    Rocha, Bárbara S.; Lundberg, Jon O; Radi, Rafael; Laranjinha, João

    2016-01-01

    Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (pstomach, preventing the progression of gastric ulcers. PMID:27156250

  13. MONITORING KADAR NITRIT DAN NITRAT PADA AIR SUMUR DI DAERAH CATUR TUNGGAL YOGYAKARTA DENGAN METODE SPEKTROFOTOMETRI UV-VIS (Monitoring of Nitrite and Nitrate Content in Ground Water of Catur Tunggal Region of Yogyakarta by UV-VIS Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Setiowati Setiowati

    2016-07-01

    Full Text Available ABSTRAK Metode analisis nitrit dan nitrat perlu dikembangkan untuk memonitor kualitas air minum. Kualitas air sumur untuk parameter nitrit dan nitrat dipengaruhi oleh kondisi lingkungan dan kedalaman air sumur.Penelitian ini bertujuan menganalisis nitrit dan nitrat menggunakan asam p-aminobenzoat (PABA pada air sumur di daerah perkotaan Yogyakarta. Analisis nitrit didasarkan pada reaksi antara ion nitrit dengan PABA yang membentuk senyawa azo dengan panjang gelombang maksimum 546 nm. Kedalaman air sumur di daerah Catur Tunggal rata-rata > 10 m. Kadar nitrit dan nitrat pada air sumur adalah 0,05-0,09 dan 8,22-36,58 mg/L. Kadar nitrit dan nitrat tersebut memenuhi baku mutu dan aman untuk dikonsumsi. Konsentrasi nitrit dan nitrat pada air RO adalah 0,05 dan 2,72-59,57 mg/L. Kadar nitrit pada air RO tidak memenuhi baku mutu sedangkan kadar nitrat memenuhi baku mutu kecuali RO 5. ABSTRACT The method for analysis nitrite and nitrate had to developed to monitor the drinking water quality. The well water quality, especially for nitrite and nitrate were influenced by environmental conditions and depth of well. This study aims to analyze nitrite and nitrate using p-aminobenzoic acid (PABA in ground water at urban areas of Yogyakarta. The analysis was based on the reaction between nitrite ions with PABA which form azo compounds with a maximum wavelength of 546 nm. The depth of wells at Catur Tunggal were more than 10 m. Concentration of nitrite and nitrate in well water were 0.05 to 0.09 and 8.22 to 36.58 mg / L. The concentrations met the standard for drinking water quality and was safe for consumption. The concentration of nitrite and nitrate in reverse osmosis (RO water were 0.05 and 2.72 to 59.57 mg / L. The concentration of nitrite did not meet the standard for drinking water quality while the concentration of nitrate met the standard for drinking water quality except RO 5.

  14. Determination of nitrite, nitrate and total nitrogen in vegetable samples

    Directory of Open Access Journals (Sweden)

    Manas Kanti Deb

    2007-04-01

    Full Text Available Yellow diazonium cation formed by reaction of nitrite with 6-amino-1-naphthol-3-sulphonic acid is coupled with β-naphthol in strong alkaline medium to yield a pink coloured azo dye. The azo-dyes shows absorption maximum at 510 nm with molar absorptivity of 2.5 ×104 M-1 cm-1. The dye product obeys Beer's law (correlation coefficient = 0.997, in terms of nitrite concentration, up to 2.7 μg NO2 mL-1. The above colour reaction system has been applied successfully for the determination of nitrite, nitrate and total nitrogen in vegetable samples. Unreduced samples give direct measure for nitrite whilst reduction of samples by copperized-cadmium column gives total nitrogen content and their difference shows nitrate content in the samples. Variety of vegetables have been tested for their N-content (NO2-/NO3-/total-N with % RSD ranging between 1.5 to 2.5 % for nitrite determination. The effects of foreign ions in the determination of the nitrite, nitrate, and total nitrogen have been studied. Statistical comparison of the results with those of reported method shows good agreement and indicates no significant difference in precision.

  15. The use and control of nitrate and nitrite for the processing of meat products.

    Science.gov (United States)

    Honikel, Karl-Otto

    2008-01-01

    Nitrate and nitrite are used for the purpose of curing meat products. In most countries the use of both substances, usually added as potassium or sodium salts, is limited. Either the ingoing or the residual amounts are regulated by laws. The effective substance is nitrite acting primarily as an inhibitor for some microorganisms. Nitrite added to a batter of meat is partially oxidized to nitrate by sequestering oxygen - thus it acts as an antioxidant - a part of nitrite is bound to myoglobin, forming the heat stable NO-myoglobin, a part is bound to proteins or other substances in meat. Nitrate may be reduced to nitrite in raw meat products by microorganisms. As oxidation and reduction may occur the concentrations of nitrite plus nitrate in a product has to be controlled and measured especially if the residual amounts are regulated. This sum of both compounds is important for the human body. Intake of nitrate with food leads to its absorption over the digestive tract into the blood. In the oral cavity nitrate appears again where it is reduced to nitrite. With the saliva the nitrite is mixed with food, having the same effect as nitrite in a batter (inhibiting growth of some pathogenic microorganisms) and swallowed. In the stomach nitrite can eventually form carcinogenic nitrosamines in the acidic environment.

  16. Green Alternatives to Nitrates and Nitrites in Meat-based Products-A Review.

    Science.gov (United States)

    Gassara, Fatma; Kouassi, Anne Patricia; Brar, Satinder Kaur; Belkacemi, Khaled

    2016-10-02

    Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration. Their addition is however very limited as, in high dose, it can have risks on human health and the environment. Nitrites may also combine with secondary or tertiary amines to form N-nitroso derivatives. Certain N-nitroso compounds have been shown to produce cancers in a wide range of laboratory animals. Thus, alternatives of nitrates and nitrites are the object of numerous research studies. Alternatives, such as the addition of vitamins, fruits, chemicals products, natural products containing nitrite or spices, which have similar properties of nitrites, are in evaluation. In fact, spices are considered to have several organoleptic and anti-microbial properties which would be interesting to study. Several spices and combinations of spices are being progressively evaluated. This review discusses the sources of nitrites and nitrates, their use as additives in food products, their physicochemical properties, their negatives effects and the use of alternatives of nitrites and nitrates in preserving meat products.

  17. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest

    Directory of Open Access Journals (Sweden)

    Meei Chien Quek

    2015-05-01

    Full Text Available The high nitrite content in edible bird’s nests is a major concern to the local swiftlet industry. It lowers the price of the edible bird’s nests and it brings severe health hazards to consumers and farmers. This research investigated the nitrite and nitrate contents of eight types of local edible bird’s nests by using ion chromatography system and evaluating its colour using the CIE system in L∗a∗b∗ parameters. The nitrite content obtained ranged from 5.7 μg/g for the house nests to 843.8 μg/g for the cave nests. The nitrate content for the house and cave nests was 98.2 μg/g and 36,999.4 μg/g, respectively. The cave nests with darker and redder colour had higher nitrite and nitrate contents than the brighter and more yellow house nests. This likely suggests that the nitrite and nitrate contents have correlations with edible bird’s nests colour. Correlations studies suggested that the nitrite content had high correlations with colour parameters, L∗a∗b∗ of edible bird’s nests at significant level of P < 0.10. These findings suggest that edible bird’s nests’ colour may be a useful indicator for measuring nitrite and nitrate contaminations.

  18. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  19. Evaluation of the Intake of Nitrate, Nitrite, Nitrosodiethylamine and Nitrosodimethylamine by Food Consumption

    Directory of Open Access Journals (Sweden)

    Liliana Avasilcai

    2014-12-01

    Full Text Available The aim of the present study was the evaluation of nitrate, nitrite, nitrosodiethylamine (NDEA and nitrosodimethylamine (NDMA intake by food consumption. We determined concentrations of nitrates, nitrites in 102 food samples (40 meat products, 15 fermented cheese, 25 vegetables, 22 fruits and the concentration NDEA, NDMA in 40 meat products. Nitrates and nitrites were determined using Peter-Griess method; nitrosamines were quantified by HPLC with UV detection.  We designed vegetalian, vegetarian and conventional diets of about 2500 kcal/day.  Based of the values found, we calculated the intake of nitrates, nitrites and nitrosamines. The obtained values fits to WHO’s recommendations, except for vegetalian and conventional diet, in which the nitrate content was 3,46 respectively 1,64 times higher than the acceptable daily intake (157 mg NO3-/day.

  20. Effect of Electrolytes on the Adsorption of Nitrite and Nitrate from ...

    African Journals Online (AJOL)

    Nitrite and nitrate levels were quantitatively adsorbed to wood-derived activated carbon in aqueous system and the effects of electrolytes investigated in this study using batch sorption process. The data showed that nitrate adsorbed nearly 1.5 times higher than that of nitrite. The adsorption is adequately explained by ...

  1. Energetics and kinetics of ferrocyanide and nitrate/nitrite reactions

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Sell, R.L.

    1994-01-01

    During the 1950's, radiocesium scavenging at the Hanford site resulted in radioactive waste sludges containing ferrocyanide, nitrate, and nitrite. These waters are a concern since certain mixtures of ferrocyanide and nitrate and/or nitrite are known to explode when heated. The authors have used differential scanning calorimetry, thermogravimetric analysis, isothermal calorimetry and gravimetry, and accelerating rate calorimetry to measure the thermal behavior, the reaction enthalpies, and selected kinetic parameters for reactions between sodium nickel ferrocyanide, the suspected ferrocyanide form in Hanford wastes, and nitrate and/or nitrite. These studies indicate that the oxidation proceeds via multiple steps, the initial reaction begins near 200 degrees C, the initial step has a high activation energy (>200 kJ/mole-K), succeeding reaction steps have activation energies ranging from 90 to 160 kJ/mole-K, and that the oxidation yields about 50% of the theoretical heat of reaction for the most energetic reaction

  2. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    Science.gov (United States)

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site.

  3. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  4. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  5. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities

    DEFF Research Database (Denmark)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne

    2008-01-01

    nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation......Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour...... with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial...

  6. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  7. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10

  8. Nitrate and nitrite content in bottled beverages by ion-pair high-performance liquid chromatography.

    Science.gov (United States)

    Song, Yang; Deng, Gui-Fang; Xu, Xiang-Rong; Chen, Yong-Hong; Chen, Feng; Li, Hua-Bin

    2013-01-01

    Nitrate and nitrite levels in six types of beverages--total of 292 individual samples from 73 brands (four bottles each)--from Guangzhou city in China were evaluated by ion-pair high-performance liquid chromatography. All samples contained nitrate. Nitrate and nitrite ranges were 0.43-46.08 and safety of Chinese bottled beverages.

  9. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors?

    Science.gov (United States)

    Münzel, Thomas; Daiber, Andreas

    2018-03-01

    In 1867 the organic nitrite, amyl nitrite, was introduced as a therapeutic agent in the treatment of angina pectoris and was later substituted by the organic nitrate nitroglycerin (NTG). Despite having a highly potent vasodilator capacity in veins>coronary arteries>arterioles, the vasodilator effects NTG are rapidly attenuated by the development of nitrate tolerance. We and others established that NTG treatment stimulates the production of reactive oxygen species such as superoxide and peroxynitrite with subsequent marked attenuation of the NTG vasodilator potency. The nitrite anion (NO 2 - ) has more recently been characterized to possess novel pharmacotherapeutic actions such as modulation of vasodilation under hypoxic conditions, thereby providing protection in ischemia-reperfusion injury. Administration of NO 2 - /NO 3 - has also been shown to improve myocardial function in heart failure and to lower blood pressure. Despite these positive aspects there is still a great need to study inorganic nitrate and nitrite therapy in various cardiovascular diseases in prospective outcome directed studies. In case being successful, this kind of therapy would indeed represent a cheap, therefore affordable, effective cardiovascular therapy without major side effects as observed in response to therapy with organic nitrates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Nitrate uptake and nitrite release by tomato roots in response to anoxia.

    Science.gov (United States)

    Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry

    2004-07-01

    Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.

  11. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli

    NARCIS (Netherlands)

    Rowe, John J.; Ubbink-Kok, Trees; Molenaar, Douwe; Konings, Wilhelmus; Driessen, Arnold J.M.

    Escherichia coli can use nitrate as a terminal electron acceptor for anaerobic respiration. A polytopic membrane protein, termed NarK, has been implicated in nitrate uptake and nitrite excretion and is thought to function as a nitrate/nitrite antiporter. The longest-lived radioactive isotope of

  12. Researches concerning nitrates and nitrites accumulation in carrots, along of the vegetation stages

    Directory of Open Access Journals (Sweden)

    Monica NEGREA

    2008-05-01

    Full Text Available The presented paper deals with the determination of nitrates and nitrites content in carrots, in different vegetation stages of the carrot culture. High nitrates and nitrites concentration in vegetables is mainly due to excessive nitrogen content in the soil system, thus deteriorating the nutritional and hygienic values of products and complicating the processing and storage. The determination was tested on carrot samples assayed from an experimental field set up near Timisoara. In experimental field, to the carrot culture was administrated different doses of fertilizers (NPK and the samples for analysis were assayed in different phases of vegetation. The obtained results indicated that the highest level of nitrate in carrots was found to the variant b3 (N150P90K90 in experimental field, who was above maximum limit allowed (LMA. Maximum limit allowed for nitrates in carrots, in accordance with ORDER No. 293/640/2001-1/2002 regarding security and quality conditions for vegetables and fresh fruits for human consumption is 400 ppm. For all other samples of carrots the nitrates level was below of LMA. The nitrite content grows in case of fertilizer administration during the whole vegetation stages of the plant. In variant N150P90K90 the nitrite content was above (LMA in carrot samples in all stages of vegetation. The nitrite content in carrots should not exceed 1-2 ppm. Nitrate and nitrite content in carrots was done with the help of High Performance Liquid Chromatography (HPLC in the Laboratory for the Measurement of Residues of the Department of Agro-techniques of the U.S.A-V.M.B in Timisoara.

  13. Determination of nitrate, nitrite, N- nitrosamines, cyanide and ...

    African Journals Online (AJOL)

    The nitrate, nitrite, N- nitrosamines and ascorbic acid content as well as the levels of cyanide in eight brands of fruit juices and twelve brands of sachet water commonly marketed and consumed in Nigeria were estimated. The mean values of nitrate ranged from 2.29±0.05 to 16.50±1.21 mg/L for the juices and 0.64±0.21 to ...

  14. Nitrites and nitrates in exhaled breath condensate in cystic fibrosis: relation to clinical parameters.

    Science.gov (United States)

    Fila, L; Chladek, J; Maly, M; Musil, J

    2013-01-01

    To evaluate correlation of exhaled breath condensate (EBC) nitrite and nitrate concentrations with disease severity in cystic fibrosis (CF) patients. Nitrites and nitrates are products of oxidative metabolism of nitric oxide. Impaired metabolism of nitric oxide plays a role in pathogenesis of CF. EBC was collected from 46 stable CF patients and from 21 healthy controls. EBC concentrations of nitrites and nitrates were correlated with parameters of lung disease and nutritional status and with systemic inflammatory markers. EBC nitrates concentrations in CF patients were lower than in healthy subjects (5.8 vs 14.3 μmol/l, pnitrates concentrations correlate with disease severity in CF patients and are lower than in healthy subjects (Tab. 4, Fig. 1, Ref. 48).

  15. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology...... from nitrate- and nitrite-rich synthetic lake waters at initial concentration of 10 mg-N/L. Along with the electricity production a total nitrogen removal of 62% and 77% was accomplished, for nitrate and nitrite, respectively. The nitrogen removal was almost 4 times higher under close-circuit condition...... with biocathode, compared to either the open-circuit operation or with abiotic cathode. The mass balance on nitrogen indicates that most of the removed nitrate and nitrite (84.7±0.1% and 81.8±0.1%, respectively) was reduced to nitrogen gas. The nitrogen removal and power generation was limited by the dissolved...

  16. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    Science.gov (United States)

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control.

    Science.gov (United States)

    Malinovschi, Andrei; Pizzimenti, Stefano; Sciascia, Savino; Heffler, Enrico; Badiu, Iuliana; Rolla, Giovanni

    2011-07-01

    Asthma is a chronic respiratory disease, characterised by airways inflammation, obstruction and hyperresponsiveness. Asthma control is the goal of asthma treatment, but many patients have sub-optimal control. Exhaled NO and exhaled breath condensate (EBC) NO metabolites (nitrites and nitrates) measurements are non-invasive tools to assess airways inflammation. Our aim was to investigate the relationships between asthma control and the above-named biomarkers of airways inflammation. Thirty-nine non-smoking asthmatic patients (19 women) aged 50 (21-80) years performed measurements of exhaled NO (FENO), EBC nitrates, nitrites and pH, and answered Asthma Control Questionnaire (ACQ) and Asthma Control Test (ACT)-questionnaire. The ACT and ACQ score were strongly interrelated (ρ = -0.84, p 0.05). EBC nitrates were negatively related to ACT score (ρ = -0.34, p = 0.03) and positively related to ACQ score (ρ = 0.41, p = 0.001) while no relation of EBC nitrites to either ACQ or ACT score was found (p>0.05). EBC nitrates were the only biomarker that was significantly related to asthma control. This suggests that nitrates, but not nitrites or FENO, reflect an aspect of airways inflammation that is closer related to asthma symptoms. Therefore there is a potential role for EBC nitrates in objective assessment of asthma control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype.

    Science.gov (United States)

    Bentley, Robert F; Walsh, Jeremy J; Drouin, Patrick J; Velickovic, Aleksandra; Kitner, Sarah J; Fenuta, Alyssa M; Tschakovsky, Michael E

    2017-09-01

    Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow. Whether this lack of compensatory vasodilation in healthy, young individuals can be restored with dietary nitrate supplementation is unknown. Six healthy (21 ± 2 yr), recreationally active men completed a rhythmic forearm exercise. During steady-state exercise, the exercising arm was rapidly transitioned from an uncompromised (below heart) to a compromised (above heart) position, resulting in a reduction in local pressure of -31 ± 1 mmHg. Exercise was completed following 5 days of nitrate-rich (70 ml, 0.4 g nitrate) and nitrate-depleted (70 ml, ~0 g nitrate) beetroot juice consumption. Forearm blood flow (in milliliters per minute; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimeters of mercury; finger photoplethysmography), exercising forearm venous effluent (ante-cubital vein catheter), and plasma nitrite concentrations (chemiluminescence) revealed two distinct vasodilatory responses: nitrate supplementation increased (plasma nitrite) compared with placebo (245 ± 60 vs. 39 ± 9 nmol/l; P nitrate supplementation (568 ± 117 vs. 714 ± 139 ml ⋅ min -1 ⋅ 100 mmHg -1 ; P = 0.005) but not in placebo (687 ± 166 vs. 697 ± 171 min -1 ⋅ 100 mmHg -1 ; P = 0.42). As such, peak exercise capacity was reduced to a lesser degree (-4 ± 39 vs. -39 ± 27 N; P = 0.01). In conclusion, dietary nitrate supplementation during a perfusion pressure challenge is an effective means of restoring exercise capacity and enabling compensatory vasodilation. NEW & NOTEWORTHY Previously, we

  19. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities.

    Science.gov (United States)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne; Tjener, Karsten; Stahnke, Louise H; Møller, Jens K S

    2008-04-01

    Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour was followed by L(∗)a(∗)b measurements and the content of nitrosylmyoglobin (MbFe(II)NO) quantified by electron spin resonance (ESR). MbFe(II)NO was rapidly formed in sausages with added nitrite independent of the presence of nitrite reducing bacteria, whereas the rate of MbFe(II)NO formation in sausages with added nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation by autofluorescence and hexanal content, respectively. No significant direct effect of the Staphylococcus addition was observed, however, there was a clear correspondence between high initial amount of MbFe(II)NO in the different sausages and the colour stability during storage. Autofluorescence data correlated well with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial for ensuring optimal colour formation during initial fermentation stages.

  20. Determination of Nitrite and Nitrate in Natural Waters Using Flow Injection with Spectrophotometric Detection

    International Nuclear Information System (INIS)

    Yaqoob, M.; Nabi, A.

    2013-01-01

    A simple and sensitive flow injection spectrophotometric method is reported for the room temperature determination of nitrite and nitrate based on the Griess reaction and a copperised cadmium column for reduction of nitrate. Calibration graphs were linear over the range 2 - 1000 micro g N L /sup -1/ (R2 = 0.9997 and 0.9999, n = 9) with a limit of detection (3 s.d.) of 1.0 micro g N L and relative standard deviations (n = 10) of 0.9 and 1.2% for 50 micro g N L nitrite and nitrate respectively. The sample throughput was 50 h. The effect of reagent concentrations, physical parameters (flow rate, sample volume, reaction coil and copperised cadmium column length) and the potential interferences are reported. The effect of salinity on the blank and on the determination of nitrite and nitrate are also presented. The method was applied to natural waters (rainwater, freshwater and estuarine water) and the results for nitrite + nitrate (140 - 7310 micro g N L/sup -1/) were not significantly different (95% confidence interval) from results obtained using a segmented flow analyser reference method with spectrophotometric detection. (author)

  1. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): a contribution to risk assessment.

    Science.gov (United States)

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2014-03-15

    Nitrites and nitrates are compounds considered harmful to humans and the major part of the daily intake of nitrates in foodstuffs is related to vegetable consumption. In this work, 150 leafy vegetables samples (75 spinach and 75 lettuce) were analysed in order to assess the levels of nitrites and nitrates. The analyses were carried out by a validated ion chromatography method and the samples with nitrate concentrations higher than legal limits and/or with quantifiable concentrations of nitrites were confirmed by an alternative ion chromatography method. Nitrate levels higher than legal limits were detected both in spinach (four samples) and in lettuce (five samples). Nitrite residues were registered both at low concentrations--lower than 28.5 mg kg⁻¹ (12 spinach samples)--and at high concentrations, up to 197.5 mg kg⁻¹ (three spinach and one lettuce sample). Considering the non-negligible percentage of 'not-compliant' samples for nitrates (6.0%), control is needed. Moreover, it is possible to suggest the introduction in the Communities Regulations of a 'maximum admissible level' for nitrites in leafy vegetables. © 2013 Society of Chemical Industry.

  2. Flow-injection analysis of nitrate by reduction to nitrite and gas-phase molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, B.; Tavassoli, A. [Dept. of Chemistry, Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran)

    2001-12-01

    Two flow-injection manifolds have been investigated for the determination of nitrate. These manifolds are based on the reduction of nitrate to nitrite and determination of nitrite by gas-phase molecular absorption spectrophotometry. Nitrate sample solution (300 {mu}L) which is injected to the flow line, is reduced to nitrite by reaction with hydrazine or passage through the on-line copperized cadmium (Cd-Cu) reduction column. The nitrite produced reacts with a stream of hydrochloric acid and the evolved gases are purged into the stream of O{sub 2}carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then swept into a flow-through cell which has been positioned in the cell compartment of an UV-visible spectrophotometer. The absorbance of the gaseous phase is measured at 204.7 nm. A linear relationship was obtained between the intensity of absorption signals and concentration of nitrate when Cd-Cu reduction method was used, but a logarithmic relationship was obtained when the hydrazine reduction method was used. By use of the Cd-Cu reduction method, up to 330 {mu}g of nitrate was determined. The limit of detection was 2.97 {mu}g nitrate and the relative standard deviations for the determination of 12.0, 30.0 and 150 {mu}g nitrate were 3.32, 3.87 and 3.6%, respectively. Maximum sampling rate was approximately 30 samples per hour. The Cd-Cu reduction method was applied to the determination of nitrate and the simultaneous determination of nitrate and nitrite in meat products, vegetables, urine, and a water sample. (orig.)

  3. Intake assessment of the food additives nitrite (E 249 and E 250) and nitrate (E 251 and E 252)

    NARCIS (Netherlands)

    Sprong RC; Niekerk EM; Beukers MH; VVH; V&Z

    2017-01-01

    Nitrate and nitrite are authorised as preservatives in certain food products, such as salami, ham (nitrite) and cheese (nitrate). They prevent food spoilage and protect the consumer against food-borne pathogens. Next to that, nitrate and nitrite play a role in food colour retention and contribute to

  4. Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.

    Science.gov (United States)

    Ologhobo, A D; Adegede, H I; Maduagiwu, E N

    1996-01-01

    Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P Nitrite levels were also reduced significantly by processing (P Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.

  5. Association of nitrate, nitrite, and total organic carbon (TOC) in drinking water and gastrointestinal disease.

    Science.gov (United States)

    Khademikia, Samaneh; Rafiee, Zahra; Amin, Mohammad Mehdi; Poursafa, Parinaz; Mansourian, Marjan; Modaberi, Amir

    2013-01-01

    We aimed to investigate the amounts of nitrate, nitrite, and total organic carbon (TOC) in two drinking water sources and their relationship with some gastrointestinal diseases. This cross-sectional study was conducted in 2012 in Iran. Two wells located in residential areas were selected for sampling and measuring the TOC, nitrate (NO3(-)), and nitrite (NO2(-)). This water is used for drinking as well as for industrial and agricultural consumption. Nitrate and nitrite concentrations of water samples were analyzed using DR 5000 spectrophotometer. The information of patients was collected from the records of the main referral hospital of the region for gastrointestinal diseases. In both areas under study, the mean water nitrate and nitrite concentrations were higher in July than in other months. The mean TOC concentrations in areas 1 and 2 were 2.29 ± 0.012 and 2.03 ± 0.309, respectively. Pollutant concentration and gastrointestinal disease did not show any significant relationship (P > 0.05). Although we did not document significant association of nitrite, nitrate, and TOC content of water with gastrointestinal diseases, it should be considered that such health hazards may develop over time, and the quality of water content should be controlled to prevent different diseases.

  6. Nitrite and Nitrate Content in Meat Products and Estimated Intake in Denmark From 1998 to 2006

    DEFF Research Database (Denmark)

    Leth, Torben; Fagt, Sisse; Nielsen, S.

    2008-01-01

    The content of nitrite and nitrate in cured meat products has been monitored in Denmark seven times between 1995 and 2006. The maximum permitted added amounts of sodium nitrite in Denmark (60 mg kg(-1) for most products up to 150 mg kg(-1) for special products) have not been exceeded, except...... period with levels varying between 6 and 20 mg sodium nitrite kg(-1) with sausages, meat for open sandwiches and salami-type sausages being the greatest contributors. The mean intake of sodium nitrate was around 1 mg day(-1), which is very low compared with the total intake of 61 mg day(-1). The mean...... group, only very few persons were responsible for the high intake. The conversion of nitrate to nitrite in the saliva and the degradation of nitrite during production and storage must also be considered when evaluating the intake of nitrite....

  7. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  8. Changes of sodium nitrate, nitrite, and N-nitrosodiethylamine during in vitro human digestion.

    Science.gov (United States)

    Kim, Hyeong Sang; Hur, Sun Jin

    2017-06-15

    This study aimed to determine the changes in sodium nitrate, sodium nitrite, and N-nitrosodiethylamine (NDEA) during in vitro human digestion, and the effect of enterobacteria on the changes in these compounds. The concentrations of nitrate, nitrite, and NDEA were significantly reduced from 150, 150, and 1ppm to 42.8, 63.2, and 0.85ppm, respectively, during in vitro human digestion (pdigestion. This study is the first to report that E. coli can dramatically reduce the amount of nitrite during in vitro human digestion and this may be due to the effect of nitrite reductase present in E. coli. We therefore conclude that the amounts of potentially harmful substances and their toxicity can be decreased during human digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  10. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation

    Science.gov (United States)

    Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar

    2016-01-01

    ABSTRACT The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products. PMID:26743589

  11. Association between Dietary Intakes of Nitrate and Nitrite and the Risk of Hypertension and Chronic Kidney Disease: Tehran Lipid and Glucose Study

    Directory of Open Access Journals (Sweden)

    Zahra Bahadoran

    2016-12-01

    Full Text Available Background and Aim: The association of habitual intakes of dietary nitrate (NO3− and nitrite (NO2− with blood pressure and renal function is not clear. Here, we investigated a potential effect of dietary NO3− and NO2− on the occurrence of hypertension (HTN and chronic kidney disease (CKD. Methods: A total of 2799 Iranian adults aged ≥20 years, participating in the Tehran Lipid and Glucose Study (TLGS, were included and followed for a median of 5.8 years. Dietary intakes of NO3− and NO2− were estimated using a semi-quantitative food frequency questionnaire. Demographics, anthropometrics, blood pressure and biochemical variables were evaluated at baseline and during follow-up examinations. To identify the odds ratio (OR and 95% confidence interval (CI of HTN and CKD across tertile categories of residual energy-adjusted NO3− and NO2− intakes, multivariate logistic regression models were used. Results: Dietary intake of NO3− had no significant association with the risk of HTN or CKD. Compared to the lowest tertile category (median intake < 6.04 mg/day, the highest intake (median intake ≥ 12.7 mg/day of dietary NO2− was accompanied with a significant reduced risk of HTN, in the fully adjusted model (OR = 0.58, 95% CI = 0.33–0.98; p for trend = 0.054. The highest compared to the lowest tertile of dietary NO2− was also accompanied with a reduced risk of CKD (OR = 0.50, 95% CI = 0.24–0.89, p for trend = 0.07. Conclusion: Our findings indicated that higher intakes of NO2− might be an independent dietary protective factor against the development of HTN and CKD, which are major risk factors for adverse cardiovascular events.

  12. Simultaneous determination of nitrite and nitrate residues in meat products marketed in Shiraz by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    H Golkari

    2012-08-01

    Full Text Available Nitrite and nitrate are the key ingredients and play a multifunctional role in meat curing technology. Despite all of their desirable effects, the addition of nitrite to meat is the major cause of carcinogenic N-nitrosamines formation. In this study, the amount of residual nitrite and nitrate in meat products containing 61% to 80% meat were assessed. The samples were obtained at the fourth day of their production from Shiraz retails and analyzed using high performance liquid chromatography (HPLC. According to the results, the mean concentrations of residual nitrite and nitrate were estimated at 36.96 ± 7.38 and 85.81 ± 5.5 mg/kg in small-diameter (1.5-2 cm sausages. Meanwhile, in large-diameter (5.5-8 cm sausages the residues were estimated at 20.97 ± 3.28 and 124.85±5.3 mg/kg, respectively. In all analyzed samples, the residual nitrite level was found below the permitted level of 120 mg/kg which indicated the application of allowed concentrations of nitrite in such products. The mean values of residual nitrite and nitrate concentrations were statistically different (p

  13. The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Vione, D. [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Novelli, A. [Max Planck Institute for Chemistry, 55128 Mainz (Germany); Pelizzetti, E.; Minero, C. [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy)

    2012-11-15

    Nitrite and nitrate are known to be involved in photochemical processes occurring in natural waters. In this study we have investigated the role played by these photosensitizers towards the transformation of xenobiotic organic matter in marine water, with the goal of assessing the typical transformation routes induced in seawater by irradiated nitrite/nitrate. For this purpose, phenol was chosen as model molecule. Phenol transformation was investigated under simulated solar radiation in the presence of nitrite (in the range of 1 Multiplication-Sign 10{sup -5}-1 Multiplication-Sign 10{sup -2} M) or nitrate ions, in pure water at pH 8, in artificial seawater (containing same dissolved salts as seawater but no organic matter), and in natural seawater. In all experiments, phenol degradation rate and formation of intermediates were assessed. As expected, phenol disappearance rate decreased with decreasing nitrite concentration and was slightly reduced by the presence of chloride. Other salts present in artificial seawater (e.g. HCO{sub 3}{sup -}, CO{sub 3}{sup 2-} and Br{sup -}) had a more marked effect on phenol transformation. Analysis of intermediates formed in the different matrices under study showed generation of hydroxyl-, nitro- and chloroderivatives of phenol, to a different extent depending on experimental conditions. 1,4-Benzoquinone prevailed in all cases, nitroderivatives were only formed with nitrite but were not detected in nitrate-spiked solutions. Competition was observed between halogenation and nitration of phenol, with variable outcome depending on nitrite concentration. The most likely reason is competition between nitrating and halogenating species for reaction with the phenoxyl radical. A kinetic model able to justify the occurrence of different intermediates under the adopted conditions is presented and discussed. -- Highlights: Black-Right-Pointing-Pointer Nitrite and nitrate-mediated solar-driven transformations of pollutant in seawater were

  14. The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater

    International Nuclear Information System (INIS)

    Calza, P.; Vione, D.; Novelli, A.; Pelizzetti, E.; Minero, C.

    2012-01-01

    Nitrite and nitrate are known to be involved in photochemical processes occurring in natural waters. In this study we have investigated the role played by these photosensitizers towards the transformation of xenobiotic organic matter in marine water, with the goal of assessing the typical transformation routes induced in seawater by irradiated nitrite/nitrate. For this purpose, phenol was chosen as model molecule. Phenol transformation was investigated under simulated solar radiation in the presence of nitrite (in the range of 1 × 10 −5 –1 × 10 −2 M) or nitrate ions, in pure water at pH 8, in artificial seawater (containing same dissolved salts as seawater but no organic matter), and in natural seawater. In all experiments, phenol degradation rate and formation of intermediates were assessed. As expected, phenol disappearance rate decreased with decreasing nitrite concentration and was slightly reduced by the presence of chloride. Other salts present in artificial seawater (e.g. HCO 3 − , CO 3 2− and Br − ) had a more marked effect on phenol transformation. Analysis of intermediates formed in the different matrices under study showed generation of hydroxyl-, nitro- and chloroderivatives of phenol, to a different extent depending on experimental conditions. 1,4-Benzoquinone prevailed in all cases, nitroderivatives were only formed with nitrite but were not detected in nitrate-spiked solutions. Competition was observed between halogenation and nitration of phenol, with variable outcome depending on nitrite concentration. The most likely reason is competition between nitrating and halogenating species for reaction with the phenoxyl radical. A kinetic model able to justify the occurrence of different intermediates under the adopted conditions is presented and discussed. -- Highlights: ► Nitrite and nitrate-mediated solar-driven transformations of pollutant in seawater were studied. ► Phenol degradation rate and formation of intermediates were assessed

  15. Nitrites and nitrates in the human diet: Carcinogens or beneficial hypotensive agents?

    Science.gov (United States)

    Butler, Anthony

    2015-06-05

    The presence of nitrite in the human diet was thought to constitute a hazard as secondary nitrosamines are known to cause gastric cancers. Recent publications on the physiology of serum nitrite have been consulted. Nitrite is added to some foodstuffs as an antibotulinum agent. The epidemiological evidence that nitrite causes gastric ulcers is weak. On the other hand, evidence that the presence of nitrite in serum lowers blood pressure is strong. This allows us to explain why a Tang dynasty treatment for angina, given in a Dunhuang medical manuscript, can be successful. The presence of nitrite in food is free of danger and a diet high in nitrate is beneficial to the health. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  17. Dietary nitrate protects submandibular gland from hyposalivation in ovariectomized rats via suppressing cell apoptosis.

    Science.gov (United States)

    Xu, Yipu; Pang, Baoxing; Hu, Liang; Feng, Xiaoyu; Hu, Lei; Wang, Jingsong; Zhang, Chunmei; Wang, Songlin

    2018-02-26

    Xerostomia, a major oral symptom of menopause, is a subjective feeling of dry mouth associated with oral pain and difficulties in deglutition and speech, which significantly reduces patient's quality of life. Dietary nitrate, which can be converted to nitric oxide, has multiple physiological functions in the body, including antioxidant activity and vasodilatation; however, its protective effect against xerostomia remains poorly understood. The present study aimed to evaluate the effects of dietary nitrate on estrogen deficiency-induced xerostomia. We established an ovariectomized (OVX) rat model, which included five groups: sham-operated, OVX, OVX + 0.4 mM nitrate, OVX + 2 mM nitrate, and OVX + 4 mM nitrate (n = 6). After ovariectomy, animals in the nitrate treatment groups received appropriate amounts of sodium nitrate dissolved in distilled water for 3 months. The results showed that nitrate treatment reduced body weight and water intake, and increased serum nitrate and nitrite levels. Furthermore, nitrate uptake increased saliva secretion as evidenced by saliva flow rates and aquaporin 5 expression, and alleviated histological lesions as evidenced by reduction of the fibrotic area and cell atrophy in the salivary glands. Although protective effects of nitrate against estrogen deficiency-induced xerostomia were observed at all doses, treatment with 2 mM nitrate was more effective than that with 0.4 mM and 4 mM nitrate. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 expression analyses showed that nitrate also protected cells from apoptosis, possibly through upregulation of Cu-Zn superoxide dismutase (Cu-Zn SOD) known to inhibit oxidative stress-related apoptosis. Our findings indicate that nitrate could improve functional activity of the salivary glands in OVX rats by suppressing apoptosis and upregulating Cu-Zn SOD expression, suggesting that dietary nitrate may potentially prevent hyposalivation in menopausal

  18. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes.

    Science.gov (United States)

    Kramer, Samuel J; Baur, Daniel A; Spicer, Maria T; Vukovich, Matthew D; Ormsbee, Michael J

    2016-01-01

    While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d -1 ) or a non-caloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t -tests were utilized to assess changes over time and to compare changes between treatments. Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p  = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p  = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes.

  19. Does nitrite and nitrate levels in drinking water impact the health of people in Dakahlia governorate, Egypt?

    Science.gov (United States)

    Mortada, Wael I; Shokeir, Ahmed A

    2018-05-07

    A total of 1291 drinking water samples were examined for nitrite and nitrate during 6 months from December, 2015 to May, 2016 at 17 cities of Dakahlia governorate (Nile Delta, north of Egypt), and the results were utilized for assessment of health risk of the exposure from drinking water by calculating average daily intake (ADI), hazard quotient (HQ), and the hazard index (HI). The nitrite and nitrate in drinking water had a concentration range of 0.030-0.113 and 2.41-8.70 mg L -1 , with mean values of 0.059 ± 0.014 and 5.25 ± 1.61 mg L -1 , respectively. Nitrite and nitrate levels in rural areas and ground water samples were significantly higher than that in the urban ones. None of the analyzed samples exceeded WHO guideline values that set out to prevent methemoglobinemia. The values of HQ and HI for all age groups do not exceed unity indicating a low risk of methaemoglobinaemia for the population in this area. Results of the present study indicate that there is no health risk of residents from nitrite and nitrate through drinking water in the studied area. However, the other sources of exposure to nitrite and nitrate should be investigated in further studies.

  20. Evolution of nitrate and nitrite during the processing of dry-cured ham with partial replacement of NaCl by other chloride salts.

    Science.gov (United States)

    Armenteros, Mónica; Aristoy, María-Concepción; Toldrá, Fidel

    2012-07-01

    Nitrate and nitrite are commonly added to dry-cured ham to provide protection against pathogen microorganisms, especially Clostridium botulinum. Both nitrate and nitrite were monitored with ion chromatography in dry-cured hams salted with different NaCl formulations (NaCl partially replaced by KCl and/or CaCl(2), and MgCl(2)). Nitrate, that is more stable than nitrite, diffuses into the ham and acts as a reservoir for nitrite generation. A correct nitrate and nitrite penetration was detected from the surface to the inner zones of the hams throughout its processing, independently of the salt formulation. Nitrate and nitrite achieved similar concentrations, around 37 and 2.2 ppm, respectively in the inner zones of the ham for the three assayed salt formulations at the end of the process, which are in compliance with European regulations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest

    OpenAIRE

    Quek, Meei Chien; Chin, Nyuk Ling; Yusof, Yus Aniza; Tan, Sheau Wei; Law, Chung Lim

    2015-01-01

    The high nitrite content in edible bird’s nests is a major concern to the local swiftlet industry. It lowers the price of the edible bird’s nests and it brings severe health hazards to consumers and farmers. This research investigated the nitrite and nitrate contents of eight types of local edible bird’s nests by using ion chromatography system and evaluating its colour using the CIE system in L∗a∗b∗ parameters. The nitrite content obtained ranged from 5.7 μg/g for the house nests to 843.8 μg...

  2. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Gong, You-Kui; Peng, Yong-Zhen [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Yang, Qing, E-mail: gykren@163.com [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Wu, Wei-Min [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 (China); Wang, Shu-Ying [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The correlation of DO to N{sub 2}O emission under denitrification via nitrite was confirmed. Black-Right-Pointing-Pointer The higher nitrite ratio in NO{sub x} (nitrite and nitrate) caused the more N{sub 2}O emission. Black-Right-Pointing-Pointer Reactor feed mode and nitrite loading rate had significant impact on N{sub 2}O emission which was related to nitrite level. - Abstract: Nitrous oxide (N{sub 2}O) emission has been observed during denitrification of nitrate via nitrite as intermediate. With a laboratory-scale reactor (2.4 L), the N{sub 2}O emission was characterized under a gradient of DO concentration from 0 to 0.7 mg/L, different ratio of nitrite versus nitrate and different nitrite feed mode. The N{sub 2}O emission was influenced by the level of dissolved oxygen (DO) and nitrite accumulation. The higher DO level and the higher ratio of nitrite versus nitrate resulted in the higher N{sub 2}O emission. Using nitrite as sole electron acceptor at the same loading rate, the sequence of N{sub 2}O emission with three different feed modes was: pulse > step-wise > continuous feed. The N{sub 2}O emitted in pulse feed reactors was 3.1-4.2 and 8.2-11.7 folds of that in the step-wise feed and continuous feed reactors, respectively. With continuous feed mode, the impact of DO concentration on the mass of N{sub 2}O emitted was limited while the higher N{sub 2}O emission occurred at the higher nitrite loading rate.

  3. The Nitrite-Scavenging Properties of Catechol, Resorcinol, and Hydroquinone: A Comparative Study on Their Nitration and Nitrosation Reactions.

    Science.gov (United States)

    Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang

    2016-10-14

    The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.

  4. STUDY ON DECREASE OF NITRITE AND NITRATE USAGE IN PROCESSED MEAT WITH ADDITION OF NATURAL SALT AND CARBON MONOXIDE

    Directory of Open Access Journals (Sweden)

    R. Sakata

    2017-01-01

    Full Text Available This study was carried out to examine the reddening of meat products due to the addition of natural yellow salt (YS and carbon monoxide (CO. Following YS or NaCl addition at 2% to pork subsequent to nitrite (0~100 ppm treatment, color development due to this addition was analyzed optically. Heme pigment content in the meat was also determined spectrophotometrically. YS was found to bring about greater reddening than NaCl, indicating residual nitrite and nitrate content to be significantly higher in meat containing YS, through the amount of either was quite small. The nitrite itself in YS could never explain the color formation by the YS. Because the YS included not only nitrite but also nitrate, the effects of nitrate on the color stability of cooked cured pork were examined. Nitrate inhibited the nitrite decrement and discoloration in the cooked cured ham. The degradation rate of nitrite was clearly found to decrease with nitric acid content. Nitrate does not appear to serve as a donor of nitrite, but rather inhibits nitrite reduction in cooked meat products, with consequent prolongation of color stability. Nitrate, observed in many rock salt and also in this case, could enhance the color formation. CO treatment of pork caused the formation of carboxy myoglobin (COMb with consequent reddening of the meat. COMb was shown to be heat-stable and form stably at pH 5.0 to 8.0 and to be extractable with water, but was barely extractable at all with acetone. Nitric oxide was found to have greater affinity toward myoglobin (Mb than CO. Nitrosyl Mb was noted to be stable in all meat products examined. CO was seen to be capable of controlling the extent of lipid oxidation.

  5. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  6. Effect of potential Hanford ferrocyanide waste constituents on the reaction between ferrocyanide and nitrates/nitrites

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Sell, R.L.

    1993-02-01

    During the 1950s, ferrocyanide- and nitrate-bearing wastes were produced at Hanford. A concern about continued safe storage and future treatment of these wastes has arisen because ferrocyanide and nitrate mixtures can explode when heated. Because of this concern, the Pacific Northwest Laboratory has performed experimental studies to determine the conditions needed to continue storing the wastes safely. In this paper, we present the results of our studies on the effects of other potential ferrocyanide waste constituents on the explosivity of mixtures of sodium nickel ferrocyanide and sodium nitrate and nitrite. In particular, this paper presents the results of investigations on the diluent effects of equimolar sodium nitrate and nitrite, sodium nickel ferrocyanide, and sodium aluminate, and the catalyst or initiator effects of nickel sulfide

  7. Seasonal and Water Column Trends of the Relative Role of Nitrate and Nitrite as ·OH Sources in Surface Waters

    International Nuclear Information System (INIS)

    Vione, D.; Minero, C.; Maurino, V.; Pelizzetti, E.

    2007-01-01

    Based on literature data of sunlight spectrum, photolysis quantum yields, and absorption spectra, the relative role of nitrite and nitrate as ·OH sources in surface waters was assessed, and its dependence on the season and the depth of the water column studied. In the majority of surface water samples (river, lake and seawater) nitrite is expected to play a more important role as ·OH source compared to nitrate, in spite of the usually lower [NO 2 - ] values. Interestingly, under the hypothesis of a constant ratio of the concentrations of nitrate and nitrite (to be corrected later on for the actual concentration ratio in a given sample), the relative role of nitrite compared to nitrate would be minimum in summer, at noon, in the surface layer of natural waters. Any decrease in the sunlight intensity that can be experienced in the natural environment (different season than summer, water column absorption, time of the day other than the solar noon), with its associated influence on the sunlight spectrum, would increase the relative role of nitrite compared to nitrate

  8. Effect of Sodium Nitrite and Sodium Nitrate on Botulinal Toxin Production and Nitrosamine Formation in Wieners

    Science.gov (United States)

    Hustad, Gerald O.; Cerveny, John G.; Trenk, Hugh; Deibel, Robert H.; Kautter, Donald A.; Fazio, Thomas; Johnston, Ralph W.; Kolari, Olaf E.

    1973-01-01

    Wieners were formulated and processed approximating commercial conditions as closely as possible. Twenty-four batches of product were made with the addition of six levels of sodium nitrite (0, 50, 100, 150, 200, and 300 μg/g), four levels of sodium nitrate (0, 50, 150, and 450 μg/g), and two levels of Clostridium botulinum (0 and 620 spores/g). After formulation, processing, and vacuum packaging, portions of each batch were incubated at 27 C or held for 21 days at 7 C followed by incubation at 27 C for 56 days. The latter storage condition approximated distribution of product through commercial channels and potential temperature abuse at the consumer level. Samples were analyzed for botulinal toxin, nitrite, and nitrate levels after 3, 7, 14, 21, 28, and 56 days of incubation. When nitrite was not added, toxic samples were detected after 14 days of incubation at 27 C. At the lowest level of nitrite added (50 μg/g), no toxic samples were observed until 56 days of incubation. Higher levels of nitrite completely inhibited toxin production throughout the incubation period. Nine uninoculated samples, representing various levels and combinations of nitrite and nitrate, were evaluated organoleptically. The flavor quality of wieners made with nitrite was judged significantly higher (P = 0.05) than of wieners made without nitrite. The nine samples were negative for 14 volatile nitrosamines at a sensitivity level of 10 ng/g. The results indicated that nitrite effectively inhibited botulinal toxin formation at commercially employed levels in wieners and that detectable quantities of nitrosamines were not produced during preparation and processing of the product for consumption. PMID:4580194

  9. Nitrate/nitrite poisoning in dairy cattle from the Midwestern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Amaral Gontijo

    2017-11-01

    Full Text Available ABSTRACT: In a rural property of the Midwestern Minas Gerais, Brazil, three 2.5 to 3-year-old female bovines (7/8 Holstein x 1/8 Gir weighing approximately 380kg died after showing brownish colored mucosa of conjunctiva and vaginal vestibule, gray-bluish tongue, dyspnea, sialorrhea, tympany, and progression to sternal decubitus and death. In the macroscopic evaluation of one of the bovines, dark (chocolate-colored blood of difficult coagulation, and intensely cherry-red skeletal and cardiac musculature were observed. Beyond that were observed brownish lungs, kidneys, liver, and encephalon, and all the stomach compartments were dilated due to large amounts of gas. In addition, the carcass exhaled a nitrous odor. The diphenylamine test and the nitrate dosage in the forage (Pennisetum purpureum, “elephant grass”, Napier grass cultivar used in feeding the bovines showed a high concentration of nitrate, allowing the diagnosis of nitrate/nitrite intoxication. The main factors leading to the poisoning were attributed to excessive fertilization of grass with bovine manure, the occurrence of a drought period followed by a rainy season, lack of adaptation of the bovines to a nitrate-rich diet, and a diet composed almost exclusively of elephant grass. This is the first report of spontaneous nitrate/nitrite poisoning in cattle in southeastern Brazil.

  10. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate‐nitrite‐nitric oxide pathway

    Science.gov (United States)

    Lidder, Satnam; Webb, Andrew J.

    2013-01-01

    The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the ‘nitrate‐nitrite‐nitric oxide (NO) pathway’. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre‐clinical studies with nitrate or nitrite also show the potential to protect against ischaemia‐reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate‐rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate ‘Veg‐Table’ with ‘Nitrate Units’ [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. PMID:22882425

  11. The levels of nitrite and nitrate, proline and protein profiles in tomato plants infected with pseudomonas syringae

    International Nuclear Information System (INIS)

    Berber, I.; Onlu, H.

    2012-01-01

    In this study, the contents of nitrite-nitrate and free L-proline, and pathogenesis-related (PR) proteins in tomato plants following inoculation with Pseudomonas syringae pv. tomato strain were examined. The results of the nitrite and nitrate indicated that there was a reduction in the levels of nitrate in the infected tomato plants through 1-8 study days, compared with the healthy plants. On the other hands, when the nitrite amounts increased in the first and second days, the nitrite concentrations reduced in infected plants at subsequent time periods, compared with uninfected plants. The accumulation of free proline increased in the infected plants, according to control plants. The whole-cell protein profiles displayed that the levels of the protein bands of molecular masses 204.6 kDa and 69.9 kDa significantly increased in infected and uninfected plants during 2-10 study days. In additionally, in the quantities of the protein bands of molecular weights 90.3 and 79.4 kDa were observed an increase in the infected and healthy plants after the fourth day. However, the protein band of molecular weight 54.3 kDa was visible only in uninfected plants for the fourth and eighth days. Finally, the study suggest that there were the sophisticate relationships among the proline accumulation, the conversion of nitrate to nitrite and the induction of PR protein genes in the regulation of defense mechanisms toward microbial invaders. Our results also indicated that the increases in nitrite and proline contents might be useful indicator for the response toward pathogen attacks. (author)

  12. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    Science.gov (United States)

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  13. PENURUNAN KADAR AMONIA, NITRIT, DAN NITRAT LIMBAH CAIR INDUSTRI TAHU MENGGUNAKAN ARANG AKTIF DARI AMPAS KOPI

    Directory of Open Access Journals (Sweden)

    Irmanto

    2009-11-01

    Full Text Available The tofu industry is one of food industry which the product of organic waste to environment pollution. One of alternative methode which used to overcome tofu industrial waste water pollution is adsorption methode using activated carbon from coffee waste. The aim of this researched is to know about the activated carbon from coffee waste quality which observe of rendemen, water content, ash content, and iodium adsorption, to know optimum contact of time and pH of coffee waste to decrease ammonia, nitrite and nitrate contents in tofu industry waste water and to know decrease percentage of ammonia, nitrite and nitrate contents in tofu industrial waste water using activated carbon from coffee waste. The activated carbon made by soaking of coffee waste in HCl 0.1 M solution for 2 days. The activated carbon coaled in muffle furnace at temperature 350°C. The activated carbon analyzed consist of rendemen, water content, ash content, and iodium adsorption. Optimum contact of time and pH of coffee waste determined in order to get optimum adsorption ammonia, nitrite and nitrate in tofu industrial waste water. Contact time variation are 1, 10, 30, 45, 60, 90, 120 minutes and pH variation are 4, 5, 6, 7, 8, 9, 10. The result showed that the activated carbon from coffee waste fulfill the criteria SNI number 06-3730-1995. The activated carbon from coffee waste could be used to decrease the ammonia, nitrite, and nitrate contents in tofu industrial waste water at the optimum contact of time of 30 minutes and pH 7. Decreasing percentage of ammonia, nitrite and nitrate contents in tofu industrial waste water are 64,69% , 52,35% and 86,40% respectively.

  14. Nitrite in feed: From Animal health to human health

    Energy Technology Data Exchange (ETDEWEB)

    Cockburn, Andrew [Institute for Research on Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE17RU (United Kingdom); Brambilla, Gianfranco [Istituto Superiore di Sanità, Toxicological chemistry unit, Viale Regina Elena 299, 00161 Rome (Italy); Fernández, Maria-Luisa [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ministerio de Ciencia e Innovación, Carretera de la Coruña, 28040 Madrid (Spain); Arcella, Davide [Unit on Data Collection and Exposure, European Food Safety Authority, Largo N. Palli 5/A43100 Parma (Italy); Bordajandi, Luisa R. [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy); Cottrill, Bruce [Policy Delivery Group, Animal Health and Welfare, ADAS, Wolverhampton (United Kingdom); Peteghem, Carlos van [University of Gent, Harelbekestraat 72, 9000 Gent (Belgium); Dorne, Jean-Lou, E-mail: jean-lou.dorne@efsa.europa.eu [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy)

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  15. Nitrite in feed: From Animal health to human health

    International Nuclear Information System (INIS)

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Bordajandi, Luisa R.; Cottrill, Bruce; Peteghem, Carlos van; Dorne, Jean-Lou

    2013-01-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  16. Development of a method to manufacture uncured, no-nitrate/nitrite-added whole muscle jerky.

    Science.gov (United States)

    Sindelar, Jeffrey J; Terns, Matthew J; Meyn, Elizabeth; Boles, Jane A

    2010-10-01

    "Natural curing" is accomplished by use of vegetable juice/powder high in naturally occurring nitrates combined with a nitrate reducing starter culture to result in indirectly "cured" products. Since the starter culture used is not water soluble, making "naturally cured" whole muscle jerky with current manufacturing techniques has been found ineffective. The objective was to investigate processes for whole muscle beef jerky that might provide cured meat characteristics similar to those of a nitrite-added control. Treatments where jerky was placed in a barrier bag during incubation were found to be the least similar to the nitrite-added control. Jerky placed in a 40.6 degrees C smokehouse during incubation resulted in significantly more (Pprocessing methods investigated to manufacture "naturally cured" whole muscle jerky in this study were ineffective in resulting in products similar to those cured with sodium nitrite. Published by Elsevier Ltd.

  17. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Pagliano, Enea, E-mail: enea.pagliano@nrc-cnrc.gc.ca; Meija, Juris; Mester, Zoltán

    2014-05-01

    Highlights: • High-precision determination of nitrite and nitrate in seawater. • Use of quadruple isotope dilution. • Aqueous Et₃O⁺BF₄]⁻ derivatization chemistry for GCMS analysis of nitrite and nitrate. Abstract: Quadruple isotope dilution mass spectrometry (ID⁴MS) has been applied for simultaneous determination of nitrite and nitrate in seawater. ID⁴MS allows high-precision measurements and entails the use of isotopic internal standards (¹⁸O-nitrite and ¹⁵N-nitrate). We include a tutorial on ID⁴MS outlining optimal experimental design which generates results with low uncertainties and obviates the need for direct (separate) evaluation of the procedural blank. Nitrite and nitrate detection was achieved using a headspace GCMS procedure based on single-step aqueous derivatization with triethyloxonium tetrafluoroborate at room temperature. In this paper the sample preparation was revised and fundamental aspects of this chemistry are presented. The proposed method has detection limits in the low parts-per-billion for both analytes, is reliable, precise, and has been validated using a seawater certified reference material (MOOS-2). Simplicity of the experimental design, low detection limits, and the use of quadruple isotope dilution makes the present method superior to the state-of-the-art for determination of nitrite and nitrate, and an ideal candidate for reference measurements of these analytes in seawater.

  18. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  19. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology ...

  20. Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water

    Science.gov (United States)

    Beitz; Bechmann; Mitzner

    1999-01-01

    The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.

  1. Evaluation of Nitrate and Nitrite Reduction Kinetics Related to Liquid-Air-Interface Corrosion

    International Nuclear Information System (INIS)

    Li, Xiaoji; Gui, F.; Cong, Hongbo; Brossia, C.S.; Frankel, G.S.

    2014-01-01

    Liquid-air interface (LAI) corrosion has been a concern for causing leaks in the carbon steel tanks used for holding high-level radioactive liquid waste. To assist in understanding the mechanism of LAI corrosion, the kinetics of nitrate and nitrite reduction reactions were investigated electrochemically. Cyclic voltammetry and cathodic polarization measurements indicated that the nitrite reduction reaction exhibited faster kinetics than the nitrate reduction reaction at higher cathodic overpotential. However, the primary reduction reaction at the open circuit potential under aerated conditions was the oxygen reduction reaction. The reduction of residual oxygen was also the dominant cathodic reaction at open circuit potential in deaerated conditions. Moreover, the kinetics of oxygen reduction on steel electrodes were significantly influenced by the sample immersion conditions (partial vs. full) for aerated liquid nuclear waste simulants, but not for deaerated conditions. Lastly, the gaseous products formed during LAI corrosion were analyzed using the gas detector tube method and gas chromatography-mass spectrometry and found to contain NH 3 , NO 2 and NO. However, the results suggested that these products were caused by the local acidification generated by the hydrolysis of cations after LAI corrosion underwent extensive propagation, instead of being directly reduced in alkaline conditions. Thus, the results in this work showed that the kinetics of nitrate and nitrite reduction could not generate a salt concentration cell in the meniscus region to cause LAI corrosion

  2. Analysis of nitrites and nitrates in hams and sausages by open-tubular capillary electrochromatography with a nanolatex-coated capillary column.

    Science.gov (United States)

    Zhang, Yanhao; Tian, Xiangyu; Guo, Yaxiao; Li, Haibin; Yu, Ajuan; Deng, Zhifen; Sun, Barry Baoguo; Zhang, Shusheng

    2014-04-16

    In this work, a new open-tubular capillary electrochromatography (OT-CEC) method with the nanolatex-coated column was proposed for the determination of nitrites and nitrates in foodstuffs. The method was simple and repeatable as a result of avoiding the introduction of an electroosmotic flow reverse additive (such as cetyltrimethylammonium chloride) in electrophoretic buffer. The limits of quantitation were 0.89 and 1.05 mg kg⁻¹ for nitrate and nitrite, respectively, whereas the overall recoveries ranged from 94 to 103%. The developed OT-CEC method was successfully applied for 12 samples, and the residue profiles of nitrites and nitrates in hams and sausages were obtained and evaluated.

  3. IRIS Assessment Plan for Nitrate and Nitrite (Scoping and Problem Formulation Materials)

    Science.gov (United States)

    In September 2017, EPA released the draft IRIS Assessment Plan (IAP) for Nitrate and Nitrite for public review and comment. This document was discussed at an EPA Science Advisory Board (SAB) Chemical Assessment Advisory Committee (CAAC) meeting on September 27-28, 2017....

  4. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    OpenAIRE

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, whe...

  5. Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation

    DEFF Research Database (Denmark)

    Hezel, M.; Peleli, Maria; Liu, M.

    2016-01-01

    . Finally, nitrate treatment in aged rats normalized the gene expression profile of ANG II receptors (AT1A, AT2, AT1A/AT2 ratio) in the renal and cardiovascular systems without altering plasma levels of renin or ANG II. Our results show that boosting the nitrate-nitrite-NO pathway can partly compensate...... that increased angiotensin II (ANG II) signaling is also implicated in the pathogenesis of endothelial dysfunction and hypertension by accelerating formation of reactive oxygen species. This study was designed to test the hypothesis that dietary nitrate supplementation could reduce blood pressure and improve...... glucose tolerance in aged rats, via attenuation of NADPH oxidase activity and ANG II receptor signaling. Dietary nitrate supplementation for two weeks reduced blood pressure (10–15 mmHg) and improved glucose clearance in old, but not in young rats. These favorable effects were associated with increased...

  6. Incubation of curing brines for the production of ready-to-eat, uncured, no-nitrite-or-nitrate-added, ground, cooked and sliced ham.

    Science.gov (United States)

    Krause, B L; Sebranek, J G; Rust, R E; Mendonca, A

    2011-12-01

    Salt concentration, vegetable juice powder (VJP) concentration and temperature were investigated to determine necessary conditions for incubation of curing brines including VJP and a starter culture containing Staphylococcus carnosus prior to production of naturally cured, no-nitrate/nitrite-added meat products. Subsequently, incubated brines were utilized to produce no-nitrate/nitrite-added sliced ham in which quality characteristics and residual nitrite concentrations were measured to determine feasibility of brine incubation for nitrate conversion prior to injection. Two ham treatments (one with VJP and starter culture; one with pre-converted VJP) and a nitrite-added control were used. No differences (P>0.05) were found for color in the VJP treatments. Control sliced ham was redder after 42 days of storage, retaining significantly (Phams during the first week of storage. While the nitrite-added control retained greater red color and initially had more residual nitrite than the VJP treatments, the two VJP treatments did not differ from each other. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Annual and seasonal variation of turbidity, total dissolved solids, nitrate and nitrite in the Parsabad water treatment plant, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zare

    2013-01-01

    Full Text Available Aims: This study investigated the annual and seasonal variation of turbidity; total dissolved solid (TDS, nitrate and nitrite in Parsabad water treatment plant (WTP, Iran. Materials and Methods: The water samples were obtained from the inlet and outlet of Parsabad WTP from February 2002 to June 2009. The samples′ turbidity, TDS, nitrate, nitrite, pH, and temperature were measured according to standard methods once a month and the average of these parameters were calculated for each season of year. Results: The maximum concentration of inlet turbidity, TDS, nitrate and nitrite were 691, 700.5, 25, and 0.17 mg/l, respectively. These parameters for outlet samples in the study period were 3.0, 696.7, 18, and 0.06 mg/l, respectively. While these concentrations in outlet zone were lower than World Health Organization (WHO or United States Environmental Protection Agency (US-EPA water quality guidelines, WTP could not reduce the TDS, nitrate, nitrite and pH value and these parameters were not different in the inlet and outlet samples. However, the WTP reduced the turbidity significantly with an efficiency of up to 85%. Conclusion: This study showed that a common WTP with rapid sand filtration can treat a maximum river turbidity of 700 NTU in several years. As no differences were observed between inlet and outlet TDS, nitrate, nitrite and pH in the studied WTP. It can be concluded that compensatory schemes should be predicted for modification of these parameters when they exceed the standards in the emergency situations.

  8. Determination of nitrate and nitrite in Hanford defense waste (HDW) by reverse polarity capillary zone electrophoresis (RPCE) method

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%

  9. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    Science.gov (United States)

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  10. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study

    Science.gov (United States)

    Sinha, Rashmi; Ward, Mary H; Graubard, Barry I; Inoue-Choi, Maki; Dawsey, Sanford M; Abnet, Christian C

    2017-01-01

    Objective To determine the association of different types of meat intake and meat associated compounds with overall and cause specific mortality. Design Population based cohort study. Setting Baseline dietary data of the NIH-AARP Diet and Health Study (prospective cohort of the general population from six states and two metropolitan areas in the US) and 16 year follow-up data until 31 December 2011. Participants 536 969 AARP members aged 50-71 at baseline. Exposures Intake of total meat, processed and unprocessed red meat (beef, lamb, and pork) and white meat (poultry and fish), heme iron, and nitrate/nitrite from processed meat based on dietary questionnaire. Adjusted Cox proportional hazards regression models were used with the lowest fifth of calorie adjusted intakes as reference categories. Main outcome measure Mortality from any cause during follow-up. Results An increased risk of all cause mortality (hazard ratio for highest versus lowest fifth 1.26, 95% confidence interval 1.23 to 1.29) and death due to nine different causes associated with red meat intake was observed. Both processed and unprocessed red meat intakes were associated with all cause and cause specific mortality. Heme iron and processed meat nitrate/nitrite were independently associated with increased risk of all cause and cause specific mortality. Mediation models estimated that the increased mortality associated with processed red meat was influenced by nitrate intake (37.0-72.0%) and to a lesser degree by heme iron (20.9-24.1%). When the total meat intake was constant, the highest fifth of white meat intake was associated with a 25% reduction in risk of all cause mortality compared with the lowest intake level. Almost all causes of death showed an inverse association with white meat intake. Conclusions The results show increased risks of all cause mortality and death due to nine different causes associated with both processed and unprocessed red meat, accounted for, in part, by

  11. Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring.

    Science.gov (United States)

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2013-10-15

    The massive introduction of nitrogen fertilisers, necessary to maximise the global food production, has brought about an increase of the residual amounts of nitrites and nitrates in the products. Notoriously, these compounds may exercise toxic effects. In this work the results obtained from 5years of official controls and monitoring focused on tracing quantifiable amounts of nitrites and nitrates in 1785 samples of meat, dairy, fish products and leafy vegetables are reported. A widespread presence of nitrates at low concentrations in foodstuffs was verified. High concentrations of nitrates were registered in some leafy vegetables and mussels samples, while high nitrites concentrations were registered in some spinach samples. The results confirmed the necessity to develop most controls and suggest the introduction of new legal limits related to some combinations contaminant/matrix. Such new limits may fill legislative gaps that may cause wrong interpretations of the results obtained during official controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  13. Effect of gamma radiation on residual nitrate and nitrite in some meat and chicken products

    International Nuclear Information System (INIS)

    Afifi, S.A.; Abdel-Daiem, M.H.

    2006-01-01

    This study was carried out to establish the residual nitrate and nitrite and concentrations of six heavy metals in meat products samples that purchased from retail outlets in Sharkia governorate, Egypt. The possibility of using gamma irradiation at doses of 3, 5 and 7 KGy for reducing residual nitrate and nitrite was studied. The results showed that most of samples under investigation above the maximum permissible limit of nitrate in Egypt. Gamma irradiation at doses of 3, 5 and 7 KGy reduced the levels of nitrate and nitrite proportionally to applied doses. The irradiation dose of 7 KGy was more effective for reducing the level of residual nitrate and nitrite. Heavy metals concentrations were determined using the inductively coupled plasma spectrometry (ICPS) in non-irradiated samples. The results showed that the concentration of Pb in meat products was ranged between 0.643-0.828, 0.548, 0.598-0.844, 0.574-0.877, 0.324-0.568 and 0.156-0.432 mg/kg (wet weight basis) in pastirma, chicken luncheon, fresh sausages, burger, minced chicken and minced beef meat, respectively, but the values of Hg ranged between 0.0965-0.839, 0.121, 0.147-0.218, 0.114-0.258, 0.087-0.143 and 0.057-0.124 mg/kg in pastirma, chicken luncheon, fresh sausages, burger, minced chicken and beef meat, respectively. The content of iron ranged between 0.336, 0.362-4.284, 0.364-0.611, 0.264-0.336 and 0.276-0.314 mg/kg in chicken luncheon, fresh sausages, burger, minced chicken and beef meat, respectively. However, the results indicated that, the most of meat products under investigation had high concentrations from toxic metals of Pb and Hg than the permissible limits that recommended by FAO/WHO of person daily. Therefore, the consumption of high amount of these commodities dose not pose a health risk for the consumer

  14. Nitrate and nitrite contamination of sub-surface water in some areas of North West Frontier Province (N.W.F.P.) Pakistan

    International Nuclear Information System (INIS)

    Khan, M.; Khawaja, M.A.; Imdadullah

    1998-01-01

    Over the past few years, nitrate and nitrite contamination of sub-surface water samples from Peshawar, Charsada, Mardan and Nowshera districts of NWFP has been studied. In all the areas under study, nitrate concentration of sub-surface water was found to be below WHO approved limit of 45 mg/l. Whereas city area after 1987 showed a decreasing level of nitrate contamination of sub-surface water, it appeared to be on the increase in water samples from the outskirts of Peshawar-Charsada road. No uniform increasing or decreasing patterns of nitrate contamination were observed for water samples from cantonment, University and Hayatabad, areas of Mardan, Charsada and Nowshera under study. The nitrate contamination of sub-surface water appeared to be due to both the agricultural activities as well as human and animal wastes. A few sub-surface water samples from Peshawar city, Mardan and Nowshera areas indicated high concentration of nitrite, which is alarming in view of the earlier reports showing absence of nitrite in water samples from these areas. However, since 1993, nitrite presence has not been detected in sub-surface water samples from all the areas under present investigation. (author)

  15. Enriched Nitrate and Depleted Nitrite Isotopic Signatures in the OMZ off Northern Chile

    Science.gov (United States)

    Bristow, L. A.; Altabet, M. A.; Stewart, F.; Delong, E.; Ulloa, O.

    2010-12-01

    The vast majority of fixed nitrogen loss from the ocean’s water-column occurs in the O2 minimum zones of the Arabian Sea and the eastern tropical North and South Pacific (ETNP and ETSP). In these regions, subsurface O2 concentrations reach suboxic levels that favor microbial production of N2 gas from combined N sources via heterotrophic denitrification and anammox. One of the most intense oxygen minimum zones (OMZ) is found in the ETSP, especially off northern Chile, where O2 depleted waters can reach into the photic zone as a result of coastal upwelling and a narrow continental shelf. Despite the importance of these regions there still remains much uncertainty about N cycling in these regions. We present δ15N and δ18O isotope data for nitrate and δ15N data for nitrite, which along with corroborating relative gene abundances from metagenomes provide insight into N-cycling processes both within and above the OMZ. Depth profiles showed some of the highest δ15N nitrate values seen to date in an OMZ (up to 32‰), which has implications for tracing denitrification related biogeochemical signals throughout the Pacific and for downcore recording of past changes in OMZ intensity. Co-occurring nitrite δ15N in the OMZ fell in the range -6 to -20‰, resulting in a δ15N offset between co-occurring nitrate and nitrite in the range 30 to 40‰. This offset is greater than that expected from heterotrophic denitrification alone, implying either a larger isotope effect for the first enzymatic step in denitrification (NO3- reduction to NO2-) than previously estimated from field and culture studies or, more likely, that additional processes are enhancing this separation. NO3- consumption by heterotrophic denitrification has been shown to increase both δ15N and δ18O of nitrate in a 1:1 ratio. The slope for samples in the OMZ off northern Chile show a clear but surprisingly negative deviation from the expected slope of 1, again suggesting additional processes are occurring

  16. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  17. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  18. Data on nitrate and nitrate of Taham dam in Zanjan (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadreza Massoudinejad

    2018-04-01

    Full Text Available In recent years, contamination of water resources, with pollutants such as nitrate and nitrite, has significantly increased. These compounds can have harmful effects on human health, especially children such as methemoglobinemia. The main objective of this study was to measure the concentration of nitrate and nitrite and its health-risk assessment in the rivers entering Taham dam in Zanjan. USEPA Method was used to assess the health-risk of nitrate and nitrite. According to the obtained results, the concentration of nitrate and nitrite was in the range of 0.51–14.93 mg/l and 0.001–0.061 mg/l, respectively. According to the results, the mean of the CDI for nitrate and nitrite was 9.52*10−2 and 3.63*10−4 mg/kg/day, respectively. Furthermore, the mean HI for nitrate and nitrite was 5.97*10−2 and 3.63*10−3, respectively. The concentration of nitrate and nitrite in rivers was lower than the WHO and Iran guidelines. Based on the results, the HI value in all samples was less than 1 which indicating the non-carcinogenic effects of nitrate and nitrite in these rivers. Keywords: Nitrate, Nitrite, Water quality, Dam

  19. Relevance of nitrate and nitrite in dry-cured ham and their effects on aroma development

    Directory of Open Access Journals (Sweden)

    Flores, Mónica

    2009-07-01

    Full Text Available Potassium and sodium salts of nitrite (E 249 and E 250 and nitrate (E 251 and E 252 are authorised for use under certain levels in several foodstuffs such as non-heat-treated, cured and dried meat products, other cured meat products, canned meat products and bacon. The key point in the use of nitrate and nitrite as preservatives is to find a balance between ensuring the microbiological safety of the ham and keeping as low as possible the level of nitrosamines in the final product. Nitrites and nitrates are authorised as additives for dry-cured ham in the Directive 2006/52/EC of 5 July 2006 that modifies previous Council Directive 95/2/EC on food additives other than colours and sweeteners. The effect of nitrate and its reduction to nitrite in controlling the lipid oxidation process during the ham ripening is very important for the development of the characteristic cured flavour. The main benefits and drawbacks of the use of nitrites and nitrates in dry-cured ham and how these levels may affect its flavour are discussed in this manuscript.Las sales sódica y potásica del nitrito (E249 y E250 y del nitrato (E251 y E252 están autorizados para su uso en los productos cárnicos, secos, curados y no tratados por el calor, otros productos cárnicos curados, productos cárnicos enlatados y bacon. El punto esencial en el uso de nitrato y nitrito como conservantes consiste en encontrar un balance entre el aseguramiento de la seguridad microbiológica del jamón y mantener el nivel de nitrosaminas tan bajo como sea posible. Los nitratos y nitritos están autorizados como aditivos en el jamón curado según la Directiva Europea 2006/52/EC de 5 de Julio de 2006 que modificaba la previa Directiva Europea 95/2/EC de aditivos alimentarios distintos a los colorantes y edulcorantes. El efecto del nitrato y su reducción a nitrito para controlar la oxidación de los lípidos durante la maduración del jamón es muy importante para el desarrollo del caracter

  20. Determination of nitrite/nitrate in human biological material by the simple Griess reaction.

    Science.gov (United States)

    Guevara, I; Iwanejko, J; Dembińska-Kieć, A; Pankiewicz, J; Wanat, A; Anna, P; Gołabek, I; Bartuś, S; Malczewska-Malec, M; Szczudlik, A

    1998-06-22

    Since a number of pathological processes such as septic shock, inflammation, graft rejection, diabetes, etc. are associated with a release of nitric oxide (NO), rapid and accurate methods of monitoring of NO concentration are of interest. Various methods for measurement of nitrite and nitrate (NO2-, NO3- ) -- the stable metabolites of NO -- are commonly used for this purpose. In this paper we have shown that the proper Griess procedure for nitrite determination significantly increases the sensitivity of this method. This procedure, supplemented with deproteinization and reduction of nitrates to nitrites in the presence of NADPH-sensitive reductase, can be successfully applied for measurement of NOx levels in human body fluids (serum, urine and CSF). Deproteinization of samples with methanol/diethylether is required and does not influence the sensitivity of detection of NO metabolites. The recovery of the method is 88%+/-6% (n = 30). The NOx concentrations measured by this procedure ranged from 25.0 to 39.0 micromol/l in blood, 4.6 to 14.6 micromol/l in CSF and 0.37 to 2.52 mmol/l (adjusted to creatinine concentration) in urine. The coefficient of variation for this method was between 1.3-2.2%. This method can also be recommended for measurement of NOx produced by cells in tissue cell culture.

  1. The role of natural organic matter in nitrite formation by LP-UV/H2O2 treatment of nitrate-rich water.

    Science.gov (United States)

    Semitsoglou-Tsiapou, Sofia; Mous, Astrid; Templeton, Michael R; Graham, Nigel J D; Hernández Leal, Lucía; Kruithof, Joop C

    2016-12-01

    The role of natural organic matter (NOM) on nitrite formation from nitrate photolysis by low pressure ultraviolet lamp (LP-UV) photolysis and LP-UV/H 2 O 2 treatment was investigated. Nitrate levels up to the WHO guideline maximum of 50 mg NO 3 - /L were used in tests. The presence of 4 mg/L Suwannee River natural organic matter (NOM) led to increased nitrite yields compared to NOM-free controls. This was caused partly by NOM scavenging of OH radicals, preserving the produced NO 2 - as well as the ONOO - that leads to NO 2 - formation, but also via the production of radical species ( 1 O 2 , O 2 - and OH) by the photolysis of NOM. In addition, solvated electrons formed by NOM photolysis may reduce nitrate directly to nitrite. For comparison, Nordic Lake NOM, representative of aquatic NOM, as well as Pony Lake NOM, which had a greater nitrogen content (6.51% w/w) than the other two types of NOM, were investigated, yielding similar nitrite levels as Suwannee River NOM. The results suggest that neither the type nor the nitrogen content of the NOM have an effect on the nitrite yields obtained over the range of UV/H 2 O 2 doses applied (UV fluences of 500-2100 mJ/cm 2 and hydrogen peroxide doses of 10, 25, and 50 mg/L). The findings indicate that for UV fluences above 1500 mJ/cm 2 the resulting nitrite concentration can exceed the 0.1 mg/L EU regulatory limit for nitrite, suggesting that nitrite formation by LP-UV advanced oxidation of nitrate-rich waters is important to consider. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Development of a novel running buffer for the simultaneous determination of nitrate and nitrite in human serum by capillary zone electrophoresis.

    Science.gov (United States)

    Miyado, Takashi; Nagai, Hidenori; Takeda, Sahori; Saito, Keiitsu; Fukushi, Keiichi; Yoshida, Yasukazu; Wakida, Shin-ichi; Niki, Etsuo

    2003-10-03

    In order to improve NO2- peak height and obtain a convenient buffer system for the assay of nitrogen monooxide metabolites, we developed a novel running buffer for the simultaneous determination of nitrite and nitrate in human serum by capillary electrophoresis. The addition of cetyltrimethylammonium chloride to the running buffer resulted in high-speed separation using reverse electroosmotic flow. Highly sensitive determination was also achieved using stacking with 10-fold diluted sample solutions. The samples were injected hydrodynamically for 100 s into a 50 cm x 75 microm I.D. capillary. The separation voltage was 10 kV (negative polarity). UV detection was performed at 214 nm. We obtained complete separation of nitrite and nitrate in deproteinized human serum within 6 min with optimum analytical conditions. Linear calibration curves for nitrite and nitrate for both peak height and peak area were obtained with standard addition method. The limits of detection obtained at a signal-to-noise ratio of 3 for nitrite and nitrate were 4.1 and 2.0 microM, while the values of relative standard deviation of peak height were 2.4 and 2.6%, respectively.

  3. Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation

    International Nuclear Information System (INIS)

    Rocha, Barbara S.; Gago, Bruno; Barbosa, Rui M.; Laranjinha, Joao

    2009-01-01

    Nitrite, considered a biological waste and toxic product, is being regarded as an important physiological molecule in nitric oxide (·NO) biochemistry. Because the interaction of dietary phenolic compounds and nitrite would be kinetically (due to the high concentrations achieved) and thermodynamically (on basis of the redox potentials) feasible in the stomach, we have studied the potential reduction of nitrite by polyphenols present in several dietary sources. By measuring the time courses of ·NO production in simulated gastric juice (pH 2), the efficiency of the compounds studied is as follows: Epicatechin-3-O-gallate > quercetin > procyanidin B8 dimer > oleuropein > procyanidin B2 dimer > chlorogenic acid > epicatechin > catechin > procyanidin B5 dimer. The initial rates of ·NO production fall in a narrow range (ca. 1-5 μM s -1 ) but the distinct kinetics of the decay of ·NO signals suggest that competition reactions for ·NO are operative. The proof of concept that, in the presence of nitrite, phenol-containing dietary products induce a strong increase of ·NO in the stomach was established in an in vivo experiment with healthy volunteers consuming lettuce, onions, apples, wine, tea, berries and cherries. Moreover, selected mixtures of oleuropein and catechin with low nitrite (1 μM) were shown to induce muscle relaxation of stomach strips in a structure-dependent way. Data presented here brings strong support to the concept that polyphenols consumed in a variety of dietary products, under gastric conditions, reduce nitrite to ·NO that, in turn, may exert a biological impact as a local relaxant.

  4. Simultaneous high-performance liquid chromatographic determination of nitrate, nitrite, and organic pesticides in soil solution using a multidimensional column with ultraviolet detection

    International Nuclear Information System (INIS)

    Nkedi-Kizza, P.; Owusu-Yaw, J.

    1992-01-01

    In many fertilizer trials, the amount of nitrate-nitrogen in soil solution must be quantified frequently because nitrate is easily leached. Because pesticides are generally applied to cropland with fertilizers, quantitative information is needed on the concentration of these chemicals still available in the soil. Information on nitrite, nitrate and pesticide concentrations in food, water and environmental samples is essential because of their toxicity and potential for groundwater and surface water contamination. Most of the methods currently used for nitrate determination also account for nitrite, because nitrite and some organics act as interferences. Some of the existing analytical methods require sample reduction or derivatization, complex solvent mixtures or large sample volumes which make analysis times long. A High-Performance Liquid Chromatography (HPLC) method has been developed for the simultaneous determination of nitrate, nitrite and organic pesticides in soil solution samples and extracts using a multidimensional separator column with ultraviolet detection at 220 nm. The method is rapid and requires small sample volumes (20 μL). It is a sensitive method which is suitable for routine analyses of up to 100 samples per day. A comparison of this method with standard ion chromatography with conductivity detection showed very good agreement between the two methods for the analysis of NO3- and NO2-

  5. Effect of dietary addition of nitrate on growth, salivary and gastric function, immune response, and excretion of Salmonella enterica serovar Typhimurium, in weaning pigs challenged with this microbe strain

    Directory of Open Access Journals (Sweden)

    M. Mazzoni

    2010-04-01

    Full Text Available Two dietary additions of nitrate (15 mg/kg or 150 mg/kg, supplied by potassium salt were tested in a total 96 weaning pigs challenged or not with Salmonella enterica serovar typhimurium (ST. The oral challenge was done on d 5 and pigs were sacrificed on d 7 or d 25. The effect of challenge never interacted significantly with the dietary treatment. Feed intake, growth, body temperature, salivary excretion, and faecal excretion of ST and gastric function were not affected by the nitrate supplementation. With nitrate additions, total IgA in blood serum tended to be higher before and after the challenge (P<0.10. Nitrite in saliva – but not nitrate – increased with the increasing supplementation at d 5, but not at d 19. The nitrate additions did not negatively affect the weaning performance, but also did not contrast the effect of ST infection.

  6. ASPECTS CONCERNING NITRATE AND NITRITE POLLUTION OF GROUNDWATERS

    Directory of Open Access Journals (Sweden)

    A. UNGUREANU

    2011-03-01

    Full Text Available Aspects concerning nitrate and nitrite pollution of groundwaters. Water is a basic natural resource for the good functioning of all thebiological processes in nature. It is very important for life and for the developmentof human activities. The quality of the ground water has begun to degrade moreand more, as a result of the physical, chemical and bacteriological changes.Nitrogen compounds pollution of the underground has increased lately. This hasbeen caused by the excessive and irrational use of nitrogen derived fertilizers, bythe wrong storage of the dejections resulted from zootechnical processes and byother chemical substances discharged into water. Samples were collected fromdifferent wells in order to check whether the well water was drinkable. The resultof the test revealed the existence of high concentrations of nitrates as well asvalues exceeding normal microbiological parameters. The value recorded in thetown of Segarcea, the county of Dolj, showed extremely high concentrations ofnitrates of the drinking water in the wells. Thus, Segarcea is the town with thegreatest number of contaminated wells in the country.

  7. Occurence and dietary exposure of volatile and non-volatile N-Nitrosamines in processed meat products

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Granby, Kit

    Nitrite and nitrate have for many decades been used for preservation of meat. However, nitrite can react with secondary amines in meat to form N-Nitrosamines (NAs), many of which have been shown to be genotoxic1 . The use of nitrite therefore ought to be limited as much as possible. To maintain...... a high level of consumer protection Denmark obtains National low limits of the nitrite use in meat products. An estimation of the dietary exposure to volatile NAs (VNA) and non-volatile NAs (NVNA) is necessary when performing a risk assessment of the use of nitrite and nitrate for meat preservation....

  8. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress

    Directory of Open Access Journals (Sweden)

    Aurore eVermassen

    2014-12-01

    Full Text Available Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to colour and flavour development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 hours of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defence. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress.

  9. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress

    Science.gov (United States)

    Vermassen, Aurore; de la Foye, Anne; Loux, Valentin; Talon, Régine; Leroy, Sabine

    2014-01-01

    Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress. PMID:25566208

  10. Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles and opportunities for lowering methane emissions from ruminant livestock

    Directory of Open Access Journals (Sweden)

    Chengjian eYang

    2016-02-01

    Full Text Available Ruminal methane production is among the main targets for greenhouse gas (GHG mitigation for the animal agriculture industry. Many compounds have been evaluated for their efficacy to suppress enteric methane production by ruminal microorganisms. Of these, nitrate as an alternative hydrogen sink has been among the most promising, but it suffers from variability in efficacy for reasons that are not understood. The accumulation of nitrite, which is poisonous when absorbed into the animal’s circulation, is also variable and poorly understood. This review identifies large gaps in our knowledge of rumen microbial ecology that handicap the further development and safety of nitrate as a dietary additive. Three main bacterial species have been associated historically with ruminal nitrate reduction, namely Wolinella succinogenes, Veillonella parvula and Selenomonas ruminantium, but others almost certainly exist in the largely uncultivated ruminal microbiota. Indications are strong that ciliate protozoa can reduce nitrate, but the significance of their role relative to bacteria is not known. The metabolic fate of the reduced nitrate has not been studied in detail. It is important to be sure that nitrate metabolism and efforts to enhance rates of nitrite reduction do not lead to the evolution of the much more potent GHG, nitrous oxide. The relative importance of direct inhibition of archaeal methanogenic enzymes by nitrite or the efficiency of capture of hydrogen by nitrate reduction in lowering methane production is also not known, nor are nitrite effects on other members of the microbiota. How effective would combining mitigation methods be, based on our understanding of the effects of nitrate and nitrite on the microbiome? Answering these fundamental microbiological questions is essential in assessing the potential of dietary nitrate to limit methane emissions from ruminant livestock.

  11. Simultaneous GC-ECNICI-MS measurement of nitrite, nitrate and creatinine in human urine and plasma in clinical settings.

    Science.gov (United States)

    Hanff, Erik; Lützow, Moritz; Kayacelebi, Arslan Arinc; Finkel, Armin; Maassen, Mirja; Yanchev, Georgi Radoslavov; Haghikia, Arash; Bavendiek, Udo; Buck, Anna; Lücke, Thomas; Maassen, Norbert; Tsikas, Dimitrios

    2017-03-15

    Creatinine in urine is a useful biochemical parameter to correct the urinary excretion rate of endogenous and exogenous substances. Nitrite (ONO - ) and nitrate (ONO 2 - ) are metabolites of nitric oxide (NO), a signalling molecule with multiple biological functions. Under certain and standardized conditions, the concentration of nitrate in the urine is a suitable measure of whole body NO synthesis. The urinary nitrate-to-nitrite molar ratio (U NOx R) may indicate nitrite-dependent renal carbonic anhydrase (CA) activity. In clinical studies, urine is commonly collected by spontaneous micturition. In those cases the nitrate and nitrite excretion must be corrected for creatinine excretion. Pentafluorobenzyl (PFB) bromide (PFB-Br) is a useful derivatization reagent of numerous inorganic and organic compounds, including urinary nitrite, nitrate and creatinine, for highly sensitive and specific quantitation by GC-MS. Here, we report on the simultaneous PFB-Br derivatization (60min, 50°C) of ONO - , O 15 NO - , ONO 2 - , O 15 NO 2 - , creatinine (d o -Crea) and [methylo- 2 H 3 ]creatinine (d 3 -Crea) in acetonic dilutions of native human urine and plasma samples (4:1, v/v) and their simultaneous quantification by GC-MS as PFBNO 2 , PFB 15 NO 2 , PFBONO 2 , PFBO 15 NO 2 , d o -Crea-PFB and d 3 -Crea-PFB, respectively. Electron capture negative-ion chemical ionization (ECNICI) of these derivatives generates anions due to [M-PFB] - , i.e., the starting analytes. Quantification is performed by selected-ion monitoring (SIM) of m/z 46 (ONO - ), m/z 47 (O 15 NO - ), m/z 62 (ONO 2 - ), m/z 63 (O 15 NO 2 - ), m/z 112 (d o -Crea), and m/z 115 (d 3 -Crea). Retention times were 2.97min for PFB-ONO 2 /PFB-O 15 NO 2 , 3.1min for PFB-NO 2 /PFB- 15 NO 2 , and 6.7min for d o -Crea-PFB/d 3 -Crea-PFB. We used this method to investigate the effects of long-term oral NaNO 3 or NaCl (serving as placebo) supplementation (each 0.1mmol/kg body weight per day for 3 weeks) on creatinine excretion

  12. [Nitrates and nitrites content in the samples taken from the dug and drilled wells from the area of Podkarpacie region as a methemoglobinemia risk factors].

    Science.gov (United States)

    Bilek, Maciej; Rybakowa, Maria

    2014-01-01

    The aim of the study was to determine the nitrates and nitrites content in water samples taken from fourteen dug and drilled wells from the area of Podkarpacie, as well as a summary of the previously performed analysis. Private water intakes are not under the supervision of the State Sanitary Inspection. So in the case of exceeding the standards provided by the Regulation of the Minister of Health, regulating the requirements for drinking water, private water intakes can be a serious threat to the health of consumers. Particularly at risk are infants, in whom nitrates and especially nitrites can cause, among others, methemoglobinemia. The analysis was performed by ion chromatography method, making it possible to simultaneously determining the concentrations of nitrates and nitrites. As it turned out there was no presence of nitrites in the water of the tested wells. In five samples taken from the dug wells nitrates concentration exceeding the norm of 50 mg/L have been reported. In two cases, exceeding the nitrate concentrations were significant: 96.53 mg L and 204.65 mg/L.

  13. Sulfate, nitrate and blood pressure - An EPIC interaction between sulfur and nitrogen.

    Science.gov (United States)

    Kuhnle, Gunter G; Luben, Robert; Khaw, Kay-Tee; Feelisch, Martin

    2017-08-01

    Nitrate (NO 3 - )-rich foods such as green leafy vegetables are not only part of a healthy diet, but increasingly marketed for primary prevention of cardiovascular disease (CVD) and used as ergogenic aids by competitive athletes. While there is abundant evidence for mild hypotensive effects of nitrate on acute application there is limited data on chronic intake in humans, and results from animal studies suggest no long-term benefit. This is important as nitrate can also promote the formation of nitrosamines. It is therefore classified as 'probably carcinogenic to humans', although a beneficial effect on CVD risk might compensate for an increased cancer risk. Dietary nitrate requires reduction to nitrite (NO 2 - ) by oral commensal bacteria to contribute to the formation of nitric oxide (NO). The extensive crosstalk between NO and hydrogen sulfide (H 2 S) related metabolites may further affect nitrate's bioactivity. Using nitrate and nitrite concentrations of drinking water - the only dietary source continuously monitored for which detailed data exist - in conjunction with data of >14,000 participants of the EPIC-Norfolk study, we found no inverse associations with blood pressure or CVD risk. Instead, we found a strong interaction with sulfate (SO 4 2- ). At low sulfate concentrations, nitrate was inversely associated with BP (-4mmHg in top quintile) whereas this was reversed at higher concentrations (+3mmHg in top quintile). Our findings have a potentially significant impact for pharmacology, physiology and public health, redirecting our attention from the oral microbiome and mouthwash use to interaction with sulfur-containing dietary constituents. These results also indicate that nitrate bioactivation is more complex than hitherto assumed. The modulation of nitrate bioactivity by sulfate may render dietary lifestyle interventions aimed at increasing nitrate intake ineffective and even reverse potential antihypertensive effects, warranting further investigation

  14. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Science.gov (United States)

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  15. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Directory of Open Access Journals (Sweden)

    Embriette R Hyde

    Full Text Available The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  16. Effect of ascorbate, nitrate and nitrite on the amount of flavour compounds produced from leucine by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller; Talon, R.

    2004-01-01

    Resting cells of Staphylococcus xylosus and S. carnosus were incubated with ascorbate, nitrate and nitrite in defined reaction medium and their degradation of H-3-labelled leucine into methyl-branched catabolites were studied using HPLC/radiometric detection. The experiments were carried out...... of nitrite and nitrate for S. xylosus. Addition of alpha-ketoglutarate generally increased the concentration of 3-methylbutanoic acid for both S. xylosus and S. carnosus....... with and without addition of alpha-ketoglutarate. The main catabolic product of leucine degradation was 3-methylbutanoic acid but also small amounts of alpha-hydroxy isocaproic acid were produced. Nitrite addition lowered the concentration of 3-methylbutanoic acid for both Staphylococcus species and this effect...

  17. The Nitrate-nitrite-NO pathway and its implications for Heart Failure and Preserved Ejection Fraction

    Science.gov (United States)

    Chirinos, Julio A.; Zamani, Payman

    2016-01-01

    The pathogenesis of exercise intolerance in patients with heart failure and preserved ejection fraction (HFpEF) is likely multifactorial. In addition to cardiac abnormalities (diastolic dysfunction, abnormal contractile reserve, chronotropic incompetence), several peripheral abnormalities are likely to be involved. These include abnormal pulsatile hemodynamics, abnormal arterial vasodilatory responses to exercise, and abnormal peripheral O2 delivery, extraction and utilization. The nitrate-nitrite-NO pathway is emerging as a potential target to modify key physiologic abnormalities, including late systolic LV load from arterial wave reflections (which has deleterious short- and long-term consequences for the LV), arterial vasodilatory reserve, muscle O2 delivery, and skeletal muscle mitochondrial function. In a recently completed randomized trial, the administration of a single dose of exogenous inorganic nitrate has been shown exert various salutary arterial hemodynamic effects, ultimately leading to enhanced aerobic capacity in patients with HFpEF. These effects have the potential for both immediate improvements in exercise tolerance and for long-term “disease-modifying” effects. In this review, we provide an overview of key mechanistic contributors to exercise intolerance in HFpEF, and of the potential therapeutic role of drugs that target the nitrate-nitrite-NO pathway. PMID:26792295

  18. Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk

    2003-01-01

    Roč. 495, 1-2 (2003), s. 225-232 ISSN 0003-2670 R&D Projects: GA AV ČR IAA4031105; GA ČR GA526/03/1182 Grant - others:COPERNICUS(XE) SUB-AERO-EVK2-1999-0052 Institutional research plan: CEZ:AV0Z4031919 Keywords : nitrate * nitrite * FIA Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.210, year: 2003

  19. Chemical assessment of lead, cadmium, nitrate, and nitrite intakes with daily diets of children and adolescents from orphanages in Krakow, Poland.

    Science.gov (United States)

    Pysz, Katarzyna; Leszczyńska, Teresa; Bieżanowska-Kopeć, Renata; Kopeć, Aneta

    2016-12-01

    The aim of this study has been to measure the level of lead, cadmium, nitrates, and nitrites in the daily diets of children and adolescents from orphanages located in Krakow (Poland). Diets were collected over four seasons of 2009. The content of cadmium and lead was measured with flameless atomic absorption spectrometry. Nitrates and nitrites in diets were measured using the Griess colorimetric method. In all orphanages, the average intake of lead with daily diets, regardless of the season, ranged from 1.11 ± 0.15 to 22.59 ± 0.07 μg/kg bw/week. The average cadmium intake by children and adolescents ranged between 3.09 ± 0.21 and 20.36 ± 2.21 μg/kg bw/week and, for all orphanages, exceeded the tolerable weekly intake (TWI) level. Daily intake of nitrates and nitrites ranged respectively from 27 to 289 % and from 9 to 99 % of the acceptable daily intake (ADI). The youngest children, with lower body mass, were particularly sensitive to the excessive intakes of cadmium and nitrates.

  20. Ingested Nitrate, Disinfection By-products, and Kidney Cancer Risk in Older Women.

    Science.gov (United States)

    Jones, Rena R; Weyer, Peter J; DellaValle, Curt T; Robien, Kim; Cantor, Kenneth P; Krasner, Stuart; Beane Freeman, Laura E; Ward, Mary H

    2017-09-01

    N-nitroso compounds formed endogenously after nitrate/nitrite ingestion are animal renal carcinogens. Previous epidemiologic studies of drinking water nitrate did not evaluate other potentially toxic water contaminants, including the suspected renal carcinogen chloroform. In a cohort of postmenopausal women in Iowa (1986-2010), we used historical measurements to estimate long-term average concentrations of nitrate-nitrogen (NO3-N) and disinfection by-products (DBP) in public water supplies. For NO3-N and the regulated DBP (total trihalomethanes [THM] and the sum of five haloacetic acids [HAA5]), we estimated the number of years of exposure above one-half the current maximum contaminant level (>½-MCL NO3-N; >5 mg/L). Dietary intakes were assessed via food frequency questionnaire. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) with Cox models, and evaluated interactions with factors influencing N-nitroso compound formation. We identified 125 incident kidney cancers among 15,577 women reporting using water from public supplies >10 years. In multivariable models, risk was higher in the 95th percentile of average NO3-N (HRp95vsQ1 = 2.3; CI: 1.2, 4.3; Ptrend = 0.33) and for any years of exposure >½-MCL; adjustment for total THM did not materially change these associations. There were no independent relationships with total THM, individual THMs chloroform and bromodichloromethane, or with haloacetic acids. Dietary analyses yielded associations with high nitrite intake from processed meats but not nitrate or nitrite overall. We found no interactions. Relatively high nitrate levels in public water supplies were associated with increased risk of renal cancer. Our results also suggest that nitrite from processed meat is a renal cancer risk factor.

  1. Influence of Nitrate and Nitrite on Thyroid Hormone Responsive and Stress-Associated Gene Expression in Cultured Rana catesbeiana Tadpole Tail Fin Tissue

    Science.gov (United States)

    Hinther, Ashley; Edwards, Thea M.; Guillette, Louis J.; Helbing, Caren C.

    2012-01-01

    Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid axis. In amphibians, thyroid hormone (TH)-dependent metamorphosis is affected, although whether the effect is acceleration or deceleration of this developmental process varies from study to study. One mechanism of action of these nitrogenous compounds is through alteration of TH synthesis. However, direct target tissue effects on TH signaling are hypothesized. The present study uses the recently developed cultured tail fin biopsy (C-fin) assay to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from premetamorphic Rana catesbeiana tadpoles were exposed to 5 and 50 mg/L nitrate (NO3–N) and 0.5 and 5 mg/L nitrite (NO2–N) in the absence and presence of 10 nM T3. Thyroid hormone receptor β (TRβ) and Rana larval keratin type I (RLKI), both of which are TH-responsive gene transcripts, were measured using quantitative real time polymerase chain reaction. To assess cellular stress which could affect TH signaling and metamorphosis, heat shock protein 30, and catalase (CAT) transcript levels were also measured. We found that nitrate and nitrite did not significantly change the level of any of the four transcripts tested. However, nitrate exposure significantly increased the heteroscedasticity in response of TRβ and RLKI transcripts to T3. Alteration in population variation in such a way could contribute to the previously observed alterations of metamorphosis in frog tadpoles, but may not represent a major mechanism of action. PMID:22493607

  2. Influence of nitrate and nitrite on thyroid hormone-responsive and stress-associated gene expression in cultured Rana catesbeiana tadpole tail fin tissue

    Directory of Open Access Journals (Sweden)

    Ashley eHinther

    2012-04-01

    Full Text Available Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid axis. In amphibians, thyroid hormone (TH-dependent metamorphosis is affected, although whether the effect is acceleration or deceleration of this developmental process varies from study to study. One mechanism of action of these nitrogenous compounds is through alteration of TH synthesis. However, direct target tissue effects on TH signalling are hypothesized. The present study uses the recently developed cultured tail fin biopsy (C-fin assay to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from premetamorphic Rana catesbeiana tadpoles were exposed to 5 mg/L and 50 mg/L nitrate (NO3-N and 0.5 mg/L and 5 mg/L nitrite (NO2-N in the absence and presence of 10 nM T3. Thyroid hormone receptor β (TRβ and Rana larval keratin type I (RLKI, both of which are thyroid hormone responsive gene transcripts, were measured using quantitative real time polymerase chain reaction. To assess cellular stress which could affect TH signalling and metamorphosis, heat shock protein 30 (HSP30 and catalase (CAT transcript levels were also measured. We found that nitrate and nitrite did not significantly change the level of any of the four transcripts tested. However, nitrate exposure significantly increased the heteroscedasticity in response of TRβ and RLKI transcripts to T3. Alteration in population variation in such a way could contribute to the previously observed alterations of metamorphosis in frog tadpoles, but may not represent a major mechanism of action.

  3. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@bmsu.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany); Rezaei, Mosayeb; Shirzadmehr, Ali [Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S{sub b}/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  4. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    International Nuclear Information System (INIS)

    Bagheri, Hasan; Hajian, Ali; Rezaei, Mosayeb; Shirzadmehr, Ali

    2017-01-01

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S_b/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  5. Lack of modulation of gastric emptying by dietary nitrate in healthy volunteers.

    Science.gov (United States)

    Terai, Shiho; Iijima, Katsunori; Asanuma, Kiyotaka; Ara, Nobuyuki; Uno, Kaname; Abe, Yasuhiko; Koike, Tomoyuki; Imatani, Akira; Ohara, Shuichi; Shimosegawa, Tooru

    2009-05-01

    Nitric oxide produced endogenously in vagal neurons modulates gastrointestinal motor activity as an important non-adrenergic and non-cholinergic neurotransmitter. Other than through endogenous biosynthesis, a high concentration of nitric oxide also occurs by chemical reactions within the stomach in the presence of gastric acid through the entero-salivary re-circulation of dietary nitrate. Although dietary nitrate can be a potential source of nitric oxide in the human stomach, there has been no report on the effect of dietary nitrate on gastric motor function. The aim of this study is to investigate the effect of dietary nitrate on gastric emptying, one of the major parameters for the gastric motor function. Fifteen healthy volunteers underwent a placebo-controlled (310 mg sodium nitrate or placebo), double-blind, crossover trial. Since a sufficient amount of gastric acid is essential for dietary nitrate-derived nitric oxide generation in the stomach, the same protocol was repeated after 1-week treatment with a proton pump inhibitor, rabeprazole. Gastric emptying was evaluated by (13)C-octanoate breath test. The sodium nitrate ingestion did not affect gastric emptying either prior to or during rabeprazole treatment, although rabeprazole treatment itself significantly delayed gastric emptying, being independent of the dietary nitrate load. Confirmation of the delayed gastric emptying with rabeprazole indicates the sensitivity of the breath test employed in the present study. In conclusion, despite the potential nitrogen source of exogenous nitric oxide, the ingestion of 310 mg sodium nitrate, which is equivalent to the average daily intake of Japanese adults, does not affect gastric emptying in healthy volunteers.

  6. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Negative chemical ionization GC/MS determination of nitrite and nitrate in seawater using exact matching double spike isotope dilution and derivatization with triethyloxonium tetrafluoroborate.

    Science.gov (United States)

    Pagliano, Enea; Meija, Juris; Sturgeon, Ralph E; Mester, Zoltan; D'Ulivo, Alessandro

    2012-03-06

    The alkylation of nitrite and nitrate by triethyloxonium tetrafluoroborate allows determination of their ethyl esters by headspace gas chromatography/mass spectrometry (GC/MS). In the present study, significant improvement in analytical performance is achieved using negative chemical ionization providing detection limits of 150 ng/L for NO(2)(-) and 600 ng/L for NO(3)(-), an order of magnitude better than those achieved using electron impact ionization. The derivatization procedure was optimized and alkaline conditions adopted to minimize conversion of nitrite to nitrate (determined to be 0.07% at 100 mg/L NO(2)(-)) and to avoid the exchange of oxygen between the analytes and the solvent (water). Quantitation entails use of isotopically enriched standards (N(18)O(2)(-) and (15)NO(3)(-)), which also permits monitoring of potential conversion from nitrite to nitrate during the analysis (double spike isotope dilution).

  8. Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH.

    Science.gov (United States)

    Hohensinn, Barbara; Haselgrübler, Renate; Müller, Ulrike; Stadlbauer, Verena; Lanzerstorfer, Peter; Lirk, Gerald; Höglinger, Otmar; Weghuber, Julian

    2016-11-30

    Dietary inorganic nitrate (NO 3 - ) and its reduced forms nitrite (NO 2 - ) and nitric oxide (NO), respectively, are of critical importance for host defense in the oral cavity. High concentrations of salivary nitrate are linked to a lower prevalence of caries due to growth inhibition of cariogenic bacteria. In-vitro studies suggest that the formation of antimicrobial NO results in an increase of the pH preventing erosion of tooth enamel. The purpose of this study was to prove this effect in-vivo. In a randomized clinical study with 46 subjects we investigated whether NO 3 - rich beetroot juice exhibits a protective effect against caries by an increase of salivary pH. Our results show that, in comparison to a placebo group, consumption of beetroot juice that contains 4000 mg/L NO 3 - results in elevated levels of salivary NO 2 - , nitrite NO 3 - , and NO. Furthermore, we determined an increase of the mean pH of saliva from 7.0 to 7.5, confirming the anti-cariogenic effect of the used NO 3 - -rich beetroot juice. Taken together, we have found that NO 3 - -rich beetroot juice holds potential effects against dental caries by preventing acidification of human saliva. C-87-15 (Ethics Commissions of Upper Austria). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  10. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation

    DEFF Research Database (Denmark)

    Nwankire, Charles E.; Chan, Di-Sien S.; Gaughran, Jennifer

    2013-01-01

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction...

  11. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes

  12. Adsorption of Nitrite and Nitrate Ions from an Aqueous Solution by Fe-Mg-Type Hydrotalcites at Different Molar Ratios.

    Science.gov (United States)

    Ogata, Fumihiko; Nagai, Noriaki; Kariya, Yukine; Nagahashi, Eri; Kobayashi, Yuhei; Nakamura, Takehiro; Kawasaki, Naohito

    2018-01-01

    In this study, we prepared Fe-Mg-type hydrotalcites (Fe-HT3.0 and Fe-HT5.0) with different molar ratios and evaluated their adsorption capability for nitrite and nitrate ions from aqueous solution. Fe-HT is a typical hydrotalcite-like layered double hydroxide. Adsorption isotherms, as well as the effects of contact time and pH were investigated, and it was found that Fe-HT can adsorb larger amounts of nitrite and nitrate ions than Al-HT (normal-type hydrotalcite). Adsorption isotherm data were fitted to both Freundlich (correlation coefficient: 0.970-1.000) and Langmuir (correlation coefficient: 0.974-0.999) equations. Elemental analysis and binding energy of Fe-HT surface before and after adsorption indicated that the adsorption mechanism was related to the interaction between the adsorbent surface and anions. In addition, the ion exchange process is related to the adsorption mechanism. The adsorption amount increased with increasing temperature (7-25°C). The experimental data fit the pseudo-second-order model better than the pseudo-first-order model. The effect of pH on adsorption was not significant, which suggested that Fe-HT could be used over a wide pH range (4-12). These results indicate that Fe-HT is a good adsorbent for the removal of nitrite and nitrate ions from aqueous solution.

  13. Automated analysis for nitrate by hydrazine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kamphake, L J; Hannah, S A; Cohen, J M

    1967-01-01

    An automated procedure for the simultaneous determinations of nitrate and nitrite in water is presented. Nitrite initially present in the sample is determined by a conventional diazotization-coupling reaction. Nitrate in another portion of sample is quantitatively reduced with hydrazine sulfate to nitrite which is then determined by the same diazotization-coupling reaction. Subtracting the nitrite initially present in the sample from that after reduction yields nitrite equivalent to nitrate initially in the sample. The rate of analysis is 20 samples/hr. Applicable range of the described method is 0.05-10 mg/l nitrite or nitrate nitrogen; however, increased sensitivity can be obtained by suitable modifications.

  14. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Alinat, Elodie, E-mail: elodie.alinat@chimie-paristech.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); Central Laboratory of Police Prefecture (LCPP), 39 bis rue de Dantzig, 75015 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); Delaunay, Nathalie, E-mail: nathalie.delaunay@espci.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); Archer, Xavier, E-mail: xavier.archer@interieur.gouv.fr [Central Laboratory of Police Prefecture (LCPP), 39 bis rue de Dantzig, 75015 Paris (France); Mallet, Jean-Maurice, E-mail: jean-maurice.mallet@es.fr [École Normale Supérieure-PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 7203 LBM, F-75005 Paris (France); Gareil, Pierre, E-mail: pierre.gareil@chimie-paristech.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France)

    2015-04-09

    Highlights: • New insights into the nitrocellulose alkaline denitration mechanism. • Linear correlation for molar ratio of nitrite-to-nitrate ions and nitrogen content. • Capillary electrophoresis monitoring of nitrite and nitrate ions. • Applications to explosive and non-explosive nitrocellulose-containing samples. • Improved performances (including safety) over classical methods. - Abstract: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C)

  15. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis

    International Nuclear Information System (INIS)

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Mallet, Jean-Maurice; Gareil, Pierre

    2015-01-01

    Highlights: • New insights into the nitrocellulose alkaline denitration mechanism. • Linear correlation for molar ratio of nitrite-to-nitrate ions and nitrogen content. • Capillary electrophoresis monitoring of nitrite and nitrate ions. • Applications to explosive and non-explosive nitrocellulose-containing samples. • Improved performances (including safety) over classical methods. - Abstract: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C)

  16. Impact of chorioamnionitis on exhaled nitric oxide and endotracheal aspirate levels of nitrites-nitrates and interleukin-8 in mechanically ventilated preterm neonates.

    Science.gov (United States)

    Figueras-Aloy, Josep; Salvia-Roiges, Maria Dolors; Rodriguez-Miguélez, J Manuel; Miracle-Echegoyen, Xavier; Botet-Mussons, Francesc; Marín-Soria, J Luís; Carbonell-Estrany, Xavier

    2011-06-01

    To assess the influence of maternal chorioamnionitis on early exhaled nitric oxide (NO) and levels of nitrites-nitrates and interleukin (IL)-8 in endotracheal aspirate fluid in mechanically ventilated preterm neonates. Cross-sectional study. PATIENT-SUBJECT SELECTION: Between September 2007 and August 2009, 54 mechanically ventilated preterm neonates were included. Patients were divided into two groups according to the presence or absence of maternal chorioamnionitis, and those without chorioamnionitis (controls) were further stratified into two subgroups by birth weight nitrates were significantly higher in the chorioamnionitis group than in controls (3.6 vs. 1.07 µmol/L; P = 0.035). Nitrites-nitrates levels were positively correlated with exhaled NO in ppb (ρ = 0.367; P = 0.006). Minute exhaled endogenous NO was significantly higher in the chorioamnionitis group (0.48 vs. 0.27 nl/min/kg; P = 0.021). In mechanically ventilated preterm infants weighing nitrates in endotracheal aspirate fluid. Copyright © 2011 Wiley-Liss, Inc.

  17. Determination of endogenous concentrations of nitrites and nitrates in different types of cheese in the United States: method development and validation using ion chromatography.

    Science.gov (United States)

    Genualdi, Susan; Jeong, Nahyun; DeJager, Lowri

    2018-04-01

    Nitrites and nitrates can be present in dairy products from both endogenous and exogenous sources. In the European Union (EU), 150 mg kg - 1 of nitrates are allowed to be added to the cheese milk during the manufacturing process. The CODEX General Standard for Food Additives has a maximum permitted level of 50 mg kg - 1 residue in cheese, while in the United States (U.S.) nitrates are unapproved for use as food additives in cheese. In order to be able to investigate imported cheeses for nitrates intentionally added as preservatives and the endogenous concentrations of nitrates and nitrites present in cheeses in the U.S. marketplace, a method was developed and validated using ion chromatography with conductivity detection. A market sampling of cheese samples purchased in the Washington DC metro area was performed. In 64 samples of cheese, concentrations ranged from below the method detection limit (MDL) to 26 mg kg - 1 for nitrates and no concentrations of nitrites were found in any of the cheese samples above the MDL of 0.1 mg kg - 1 . A majority of the samples (93%) had concentrations below 10 mg kg - 1 , which indicate the presence of endogenous nitrates. The samples with concentrations above 10 mg kg - 1 were mainly processed cheese spread, which can contain additional ingredients often of plant-based origin. These ingredients are likely the cause of the elevated nitrate concentrations. The analysis of 12 additional cheese samples that are liable to the intentional addition of nitrates, 9 of which were imported, indicated that in this limited study, concentrations of nitrate in the U.S.-produced cheeses did not differ from those in imported samples.

  18. Effects of nitrate supplementation in trained and untrained muscle are modest with initial high plasma nitrite levels

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Petersen, Nanna K; Friis, Signe N

    2017-01-01

    Nitrate (NO3(-) ) supplementation resulting in higher plasma nitrite (NO2(-) ) is reported to lower resting mean arterial blood pressure (MAP) and oxygen uptake (VO2 ) during submaximal exercise in non-athletic populations, whereas effects in general are absent in endurance trained individuals...... consumed nitrate-rich beetroot-juice ([NO3(-) ] ~9 mmol) (NIT) or placebo (PLA) with assessment of resting MAP and energy expenditure during moderate intensity (~50% VO2 -max) and incremental leg cycling (LEG-ex) and arm cranking exercise (ARM-ex). NIT increased (P

  19. Interaction of nitrate and folate on the risk of breast cancer among postmenopausal women.

    Science.gov (United States)

    Inoue-Choi, Maki; Ward, Mary H; Cerhan, James R; Weyer, Peter J; Anderson, Kristin E; Robien, Kim

    2012-01-01

    Ingested nitrate can be endogenously reduced to nitrite, which may form N-nitroso compounds, known potent carcinogens. However, some studies have reported no or inverse associations between dietary nitrate intake and cancer risk. These associations may be confounded by a protective effect of folate, which plays a vital role in DNA repair. We evaluated the interaction of dietary and water nitrate intake with total folate intake on breast cancer risk in the Iowa Women's Health Study. Dietary intake was assessed at study baseline. Nitrate intake from public water was assessed using a historical database on Iowa municipal water supplies. After baseline exclusions, 34,388 postmenopausal women and 2,875 incident breast cancers were included. Overall, neither dietary nor water nitrate was associated with breast cancer risk. Among those with folate intake ≥400 μg/day, breast cancer risk was significantly increased in public water users with the highest nitrate quintile (HR = 1.40, 95% CI = 1.05-1.87) and private well users (HR = 1.38, 95% CI = 1.05-1.82) compared to public water users with the lowest nitrate quintile; in contrast, there was no association among those with lower folate intake. Our findings do not support a previous report of increased risk of breast cancer among individuals with high dietary nitrate but low folate intake.

  20. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.

    Science.gov (United States)

    Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C

    2013-01-15

    Dietary nitrate (NO(3)(-)) supplementation, via its reduction to nitrite (NO(2)(-)) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O(2) cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO(3)(-) supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO(3)(-) supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague-Dawley rats (3-6 months) were administered either NO(3)(-) (via beetroot juice; 1 mmol kg(-1) day(-1), BR n = 8) or untreated (control, n = 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min(-1) (100 g)(-1), P exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO(3)(-) supplementation improves metabolic control.

  1. Nitrous oxide emission from Ulva lactuca incubated in batch cultures is stimulated by nitrite, nitrate and light

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Bruhn, Annette; Ambus, Per

    2013-01-01

    oxide (N2O) may be produced by green algae. We investigated the N2O emissions in the green alga Ulva lactuca. Significant N2O emissions, along with CO2 uptake, were demonstrated from vital U. lactuca material from different natural populations incubated in the laboratory with nitrite (NO2−) and nitrate...

  2. Serum nitrate and nitrite are associated with the prevalence of various chronic diseases except cancer.

    Science.gov (United States)

    Gumanova, Nadezhda G; Deev, Alexander D; Klimushina, Marina V; Kots, Alexander Y; Shalnova, Svetlana A

    2017-04-01

    Nitric oxide and its metabolites, nitrate and nitrite, are important regulators linked to various diseases. We studied the association of fasting serum concentrations of nitrate and nitrite, combined as NOx, without special diet, with the prevalence of various chronic diseases. Fasting concentrations of NOx were assayed in a cohort of 1087 patients recruited to Stress Aging and Health in Russia study that represents male and female population in Moscow, Russia, over 55 years of age. Chronic diseases were recorded based on anamnesis and additional assays were run to characterize immune status and lipid and carbohydrate metabolism. Odds ratios were calculated to associate NOx concentrations with prevalence of chronic diseases in pooled deciles below or above borderline. NOx over 44.7 µM were associated with increased prevalence of various chronic diseases such as diabetes type II, hyperthyroidism, coronary heart disease, gout and thrombosis/stroke. NOx 65.3 µM and above were associated with lowered prevalence of osteoporosis. NOx levels of 74.6 µM and above were associated with significantly higher number of patients who abstain from consumption of alcoholic beverages. NOx were not associated with cancer. Thus, fasting concentrations of NOx in serum can be an important diagnostic parameter characteristic for specific chronic diseases.

  3. Development of a reference database for assessing dietary nitrate in vegetables.

    Science.gov (United States)

    Blekkenhorst, Lauren C; Prince, Richard L; Ward, Natalie C; Croft, Kevin D; Lewis, Joshua R; Devine, Amanda; Shinde, Sujata; Woodman, Richard J; Hodgson, Jonathan M; Bondonno, Catherine P

    2017-08-01

    Nitrate from vegetables improves vascular health with short-term intake. Whether this translates into improved long-term health outcomes has yet to be investigated. To enable reliable analysis of nitrate intake from food records, there is a strong need for a comprehensive nitrate content of vegetables database. A systematic literature search (1980-2016) was performed using Medline, Agricola and Commonwealth Agricultural Bureaux abstracts databases. The nitrate content of vegetables database contains 4237 records from 255 publications with data on 178 vegetables and 22 herbs and spices. The nitrate content of individual vegetables ranged from Chinese flat cabbage (median; range: 4240; 3004-6310 mg/kg FW) to corn (median; range: 12; 5-1091 mg/kg FW). The database was applied to estimate vegetable nitrate intake using 24-h dietary recalls (24-HDRs) and food frequency questionnaires (FFQs). Significant correlations were observed between urinary nitrate excretion and 24-HDR (r = 0.4, P = 0.013), between 24-HDR and 12 month FFQs (r = 0.5, P vegetables. It can be applied to dietary records to explore the associations between nitrate intake and health outcomes in human studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tekirdağ İlinde Yetiştirilen Bazı Sebze ve Meyvelerde Nitrat ve Nitrit Miktarları Üzerinde Araştırmalar

    Directory of Open Access Journals (Sweden)

    Harun Dıraman

    2015-02-01

    Full Text Available Meyve ve sebzelerin doğal yapılarında bulunan nitrat ve nitritin miktarları, günümüzde çevre kirlenmesinin gıdalar üzerindeki etkisini gösteren önemli parametrelerdendir. Nitrat ve nitritler gerekli ortamı buldukları zaman kanserojen bileşenlere dönüşmektedirler. Nitrat ve nitritin tayininde çeşitli kimyasal yöntemler kullanılmaktadır. Bu araştırmada ISO tarafından meyve ve sebzelerde nitrat ve nitrit belirlenmesinde referans metot olarak verilen moleküler absorpsiyon spektrofotometrik metot kullanılmıştır.Tekirdağ ilinin farklı yerleşim birimlerinden toplanan toplam 96 örnek üzerinde çalışılmıştır. Ispanak, marul, taze fasulye, patates, elma ve üzümde mg/kg taze ağırlık üzerinden belirlenen ortalama nitrat değerleri sırası ile 362.5, 685.6, 168.6, 777.9, 18.1, 16.6 olmuştur. Nitrit miktarları ise  çok düşük ve önemsiz düzeyde bulunmuştur. Örnekler üzerindeki nitrat ve nitrit miktarlarıyla ilgili istatistiki değerlendirmede  yapılan gruplar arasında önemli farklılık olduğu bulunmuştur. Örneklerin nitrat miktarlarının Türk Gıda Kodeksi tarafından izin verilen  maksimum değerlerin altında ve düşük  olduğu görülmüştür.

  5. Effects of acute dietary nitrate supplementation on aortic blood pressure and aortic augmentation index in young and older adults.

    Science.gov (United States)

    Hughes, William E; Ueda, Kenichi; Treichler, David P; Casey, Darren P

    2016-09-30

    Aging is associated with elevated blood pressure (peripheral and aortic; BP) and aortic augmentation index (AIx) which may contribute to aortic BP. Although inorganic nitrate consumption reduces peripheral BP in both young and older adults, the effects of nitrate consumption on aortic BP and wave reflection in young and older adults is unknown. Therefore, we sought to characterize the effects of nitrate consumption on aortic BP and AIx in young and older adults. Noninvasive aortic pressure waveforms were synthesized from high-fidelity radial pressure waveforms via applanation tonometry before and following (60, 90, 120, 150, and 180 min) consumption of a nitrate-rich beetroot juice in 26 healthy adults (young: 25 ± 4 years, n = 14; older: 64 ± 5 years, n = 12). Aortic BP and indices of aortic wave reflection (AIx and AIx normalized for heart rate; AIx@75bpm) were calculated from the generated aortic pressure waveform. Nitrate consumption increased plasma nitrite in both groups 60-180 min following beetroot consumption (P young and older adults (P age groups. Conversely, indices of aortic wave reflection were reduced only in young adults following nitrate consumption (range of change from baseline over time: AIx@75bpm, -4.3 to -8.8%, P adults. Taken together, our results suggest that acute dietary nitrate supplementation reduces peripheral and aortic BP similarly in young and older adults despite differential effects on aortic AIx between age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Evaluation of Endocrine Disrupting Effects of Nitrate after In Utero Exposure in Rats and of Nitrate and Nitrite in the H295R and T-Screen Assay

    DEFF Research Database (Denmark)

    Hansen, Pernille Reimer; Taxvig, Camilla; Christiansen, Sofie

    2009-01-01

    /l. At GD21, fetuses were examined for anogenital distance, plasma thyroxine levels, testicular and plasma levels of testosterone and progesterone, and testicular testosterone production and histopathology. In addition, endocrine disrupting activity of nitrate and nitrite were studied in two in vitro assays......Animal studies have shown that nitrate acts as an endocrine disrupter affecting the androgen production in adult males. This raises a concern for more severe endocrine disrupting effects after exposure during the sensitive period of prenatal male sexual development. As there are no existing studies...... of effects of nitrate on male sexual development, the aim of the study was to examine how in utero exposure to nitrate would affect male rat fetuses. Pregnant dams were dosed with nitrate in the drinking water from gestational day (GD) 7 to GD21 at the following dose levels 17.5, 50, 150, 450, and 900 mg...

  7. Music stimuli lead to increased levels of nitrite in unstimulated mixed saliva.

    Science.gov (United States)

    Jin, Luyuan; Zhang, Mengbi; Xu, Junji; Xia, Dengsheng; Zhang, Chunmei; Wang, Jingsong; Wang, Songlin

    2018-06-15

    Concentration of salivary nitrate is approximately 10-fold to that of serum. Many circumstances such as acute stress could promote salivary nitrate secretion and nitrite formation. However, whether other conditions can also be used as regulators of salivary nitrate/nitrite has not yet been explored. The present study was designed to determine the influence of exposure to different music on the salivary flow rate and nitrate secretion and nitrite formation. Twenty-four undergraduate students (12 females and 12 males) were exposed to silence, rock music, classical music or white noise respectively on four consecutive mornings. The unstimulated salivary flow rate and stimulated salivary flow rate were measured. Salivary ionic (Na + , Ca 2+ Cl - , and PO 4 3- ) content and nitrate/nitrite levels were detected. The unstimulated salivary flow rate was significantly increased after classical music exposure compared to that after silence. Salivary nitrite levels were significantly higher upon classical music and white noise stimulation than those under silence in females. However, males were more sensitive only to white noise with regard to the nitrite increase. In conclusion, this study demonstrated that classical music stimulation promotes salivary nitrite formation and an increase in saliva volume was observed. These observations may play an important role in regulating oral function.

  8. Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Hansen, Marie N.

    2011-01-01

    extracellular and intracellular compartments, revealing nitrosative stress with extensive nitros(yl)ation of thiols, amines and heme groups. The degree of nitrosative stress correlated with nitrite load. Nitrate levels increased in all compartments, reflecting that a significant fraction of the nitrite taken up...... was converted to non-toxic nitrate. The generation of methemoglobin and nitrosylhemoglobin (assessed by spectral deconvolution) was more pronounced during normoxic nitrite exposure than during hypoxic nitrite exposure, in agreement with the higher nitrite load in normoxic fish. However, at any given nitrite......Nitrite is a physiological important nitric oxide donor at low concentrations but becomes toxic at high concentrations, as develops in freshwater fish exposed to environmental nitrite. We hypothesized that nitrite uptake across the gills differs between normoxic and hypoxic fish and that nitrite...

  9. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    Science.gov (United States)

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  10. PRESENCE OF NITRATES AND NITRITES IN WATER FOR HUMAN CONSUMPTION AND THEIR IMPACT ON PUBLIC HEALTH IN SUGARCANE-PRODUCING AREAS

    Directory of Open Access Journals (Sweden)

    Itzel Galaviz-Villa

    2011-11-01

    Full Text Available Water pollution has emerged as a consequence of human settlements, as well as from specific rural, agricultural, forestry and industrial activities within a region. It has been found that increasing use of nitrogen fertilizers also increases water pollution. Nitrates and nitrites that are dissolved in groundwater used for human consumption cause adverse health effects, such as production of nitrosamines (cause of cancer and decrease of oxygen carrying capacity of the blood, known as blue baby syndrome. The aim of this study was to determine the relationship between the concentration of dissolved nitrates and nitrites in drinking water, and the incidence of esophagus and stomach cancer in the population living close to agricultural areas. The maximum concentration of nitrates (NO3- in water for human consumption was 7.5 mg L-1. A total of 45 cases of esophagus and stomach cancer were identified, distributed in six agricultural municipalities studied. A weak correlation (r = 0.46, p < 0.05 was found between the factor of rational use of nitrogen in sugarcane cultivation and the number of cancer cases recorded in the area of study.

  11. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David; Brune, Andreas

    2011-01-01

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite

  12. Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Bethany R Hannas

    2010-08-01

    Full Text Available Nitrate and nitrite (jointly referred to herein as NO(x are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NO(x undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes.These experiments were performed with insect cells (Drosophila S2 and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO(3(- and nitrite (NO(2(- to nitric oxide using amperometric real-time nitric oxide detection. Both NO(3(- and NO(2(- were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO(2(- to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control and to concentrations of NO(3(- and NO(2(-. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers.Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.

  13. Is nitrate an endocrine active compound in fish?

    DEFF Research Database (Denmark)

    Mose, M. P.; Kinnberg, Karin Lund; Bjerregaard, Poul

    Nitrate and nitrite taken up into fish may be reduced to NO which is known to be a signalling compound in the organism contributing to the regulation of i.e. steroid synthesis. Exposure of male rats to nitrate and nitrite results in reduced plasma concentrations of testosterone (also nitrate...... concentrations around or below the limits for drinking water). Nitrate concentrations in streams may be elevated due to releases from agricultural practices. The effects of nitrate and nitrite on endocrine relevant endpoints were investigated in zebrafish (Danio rerio) and brown trout (Salmo trutta). Zebrafish...... were exposed to nitrate and nitrite from hatch to sexual maturation (60 d) and sex ratio and vitellogenin concentrations were determined. Juvenile brown trout were exposed in a short-term experiment and the concentrations of vitellogenin were determined. The sex ratio in zebrafish was not affected...

  14. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  15. Nitrite disrupts multiple physiological functions in aquatic animals

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2003-01-01

    be inhibited, while changes in ammonia and urea levels and excretion rates reflect an influence of nitrite on nitrogen metabolism. Detoxification of nitrite occurs via endogenous oxidation to nitrate, and elimination of nitrite takes place both via gills and urine. The susceptibility to nitrite varies between...... nitrite-induced vasodilation (possibly via nitric oxide generated from nitrite) that is countered by increased cardiac pumping to re-establish blood pressure. Nitrite can form and/or mimic nitric oxide and thereby interfere with processes regulated by this local hormone. Steroid hormone synthesis may...

  16. The reduction of nitrate, nitrite and hydroxylamine to ammonia by enzymes from Cucurbita pepo L. in the presence of reduced benzyl viologen as electron donor

    Science.gov (United States)

    Cresswell, C. F.; Hageman, R. H.; Hewitt, E. J.; Hucklesby, D. P.

    1965-01-01

    1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90–100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation–reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH– or NADPH–nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent Km for nitrite (1 μm) is substantially less than that for hydroxylamine, for which variable values between 0·05 and 0·9mm (mean 0·51 mm) have been observed. 8. The apparent Km values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7·5 μm respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite

  17. Bioavailability of sodium nitrite from an aqueous solution in healthy adults.

    NARCIS (Netherlands)

    Hunault, C.C.; van Velzen, A.G.; Sips, A.J.; Schothorst, R.C.; Meulenbelt, J.|info:eu-repo/dai/nl/079479227

    2009-01-01

    Nitrate intake in humans is high through intake of vegetables such as beets, lettuce, and spinach. Nitrate itself is a compound of low toxicity but its metabolite, nitrite, formed by bacteria in the oral cavity and gastrointestinal tract, has been suspected of potential carcinogenic effects. Nitrite

  18. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue.

    Science.gov (United States)

    Lea, Unni S; Ten Hoopen, Floor; Provan, Fiona; Kaiser, Werner M; Meyer, Christian; Lillo, Cathrine

    2004-05-01

    In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine residue, Ser 521 in tobacco, and interaction with divalent cations or polyamines, and 14-3-3 proteins. The physiological importance of the post-translational NR modulation is presently under investigation using a transgenic N. plumbaginifolia line. This line expresses a mutated tobacco NR where Ser 521 has been changed into aspartic acid (Asp) by site-directed mutagenesis, resulting in a permanently active NR enzyme. When cut leaves or roots of this line (S(521)) were placed in darkness in a buffer containing 50 mM KNO(3), nitrite was excreted from the tissue at rates of 0.08-0.2 micromol (g FW)(-1) h(-1) for at least 5 h. For the control transgenic plant (C1), which had the regulatory serine of NR intact, nitrite excretion was low and halted completely after 1-3 h. Without nitrate in the buffer in which the tissue was immersed, nitrite excretion was also low for S(521), although 20-40 micromol (g FW)(-1) nitrate was present inside the tissue. Apparently, stored nitrate was not readily available for reduction in darkness. Leaf tissue and root segments of S(521) also emitted much more nitric oxide (NO) than the control. Importantly, NO emission from leaf tissue of S(521) was higher in the dark than in the light, opposite to what was usually observed when post-translational NR modulation was operating.

  19. GC-ECNICI-MS analysis of S-nitrosothiols and nitroprusside after treatment with aqueous sulphide (S2-) and derivatization with pentafluorobenzyl bromide: Evidence of S-transnitrosylation and formation of nitrite and nitrate.

    Science.gov (United States)

    Tsikas, Dimitrios; Schmidt, Mario; Hanff, Erik; Böhmer, Anke

    2017-02-01

    A GC-MS method is reported for the quantitative analysis of S-nitrosothiols (RSNO) derived from endogenous low- and high-molecular mass thiols (RSH) including hemoglobin, cysteine, glutathione, N-acetylcysteine, and the exogenous N-acetylcysteine ethyl ester. The method is based on the conversion of RSNO to nitrite by aqueous Na 2 S (S 2- ). 15 N-Labelled analogs (RS 15 NO) or 15 N-labelled nitrite and nitrate were used as internal standards. The nitrite ( 14 NO 2 - and 15 NO 2 - ) and nitrate (O 14 NO 2 - and O 15 NO 2 - anions were derivatised by pentafluorobenzyl (PFB) bromide (PFB-Br) in aqueous acetone and their PFB derivatives were separated by gas chromatography. After electron-capture negative-ion chemical ionization, the anions were separated by mass spectrometry and detected by selected-ion monitoring of m/z 46 for 14 NO 2 - , m/z 47 for 15 NO 2 - , m/z 62 for O 14 NO 2 - , and m/z 63 for O 15 NO 2 - . The expected thionitrites ( - S 14 NO and - S 15 NO) were not detected, suggesting that they are intermediates and rapidly exchange their S by O from water, presumably prior to PFB-Br derivatization. The reaction of S 2- with RSNO and sodium nitroprusside (SNP) resulted in the formation of nitrite and nitrate as the major and minor reaction products, respectively. The novel Na 2 S procedure was compared with established procedures based on the use of aqueous HgCl 2 or cysteine/Cu 2+ reagents to convert the S-nitroso group to nitrite. Our results provide evidence for an equilibrium S-transnitrosylation reaction between S 2- with RSNO in buffered solutions of neutral pH. Use of Na 2 S in molar excess over RSNO shifts this reaction to the right, thus allowing almost complete conversion of RSNO to nitrite and nitrate. The Na 2 S procedure should be useful for the quantitative determination of RSNO as nitrite and nitrate after PFB-Br derivatization and GC-MS analysis. The Na 2 S procedure may also contribute to explore the complex reactions of S 2- with RSNO

  20. Genetic basis for nitrate resistance in Desulfovibrio strains

    Directory of Open Access Journals (Sweden)

    Hannah eKorte

    2014-04-01

    Full Text Available Nitrate is an inhibitor of sulfate-reducing bacteria (SRB. In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702, as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605 that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

  1. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Estimating of Dietary Nitrate Consumption in Two Cities of Varzaghan and Parsabad with Different Occurrence of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Hasan Taghipour

    2014-09-01

    Full Text Available Background & objectives: Nitrate is one of the major contaminants in food and water. Excess intake of this substance can increase the risk of stomach cancer and also cause other health problems. The objectives of this study were estimation of dietary nitrate consumption in the Varzaghan with high and Parsabad with low stomach cancer incidence in country, and also the comparison dietary nitrate consumption with World Health Organization standards.   Methods: In this comparative study performed during autumn and spring of 2011 about 216 food samples (including all food groups and drinking water collected and their nitrate concentration was determined by colorimetric method. Then daily dietary consumption of nitrate calculated based on daily diet of each person (according to national study on food consumption pattern in Iran and nitrate concentration in each group of food and drinking water.   Results: Daily consumption of nitrate in Varzaghan and Parsabad was 8.53 ± 0.35 and 8.17 ± 0.54 mg per kg of body weight (of adults, respectively, which is much greater than the amount recommended by FAO/WHO (0-3.7 mg per kg of body weight. Significant difference was not observed in the dietary consumption of nitrate in two cities at studied period (P> 0.05.   Conclusion: Despite of no significant difference in dietary consumption of nitrate in two cities, the daily consumption of nitrate in both of studied cities was significantly greater than the recommended level. Therefore monitoring sources of contamination and reduction of environmental pollution for decreasing food nitrate concentration are recommended.

  3. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study123

    Science.gov (United States)

    Velmurugan, Shanti; Gan, Jasmine Ming; Rathod, Krishnaraj S; Khambata, Rayomand S; Ghosh, Suborno M; Hartley, Amy; Van Eijl, Sven; Sagi-Kiss, Virag; Chowdhury, Tahseen A; Curtis, Mike; Kuhnle, Gunter GC; Wade, William G; Ahluwalia, Amrita

    2016-01-01

    Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a

  4. Role of nitrite in the photochemical formation of radicals in the snow.

    Science.gov (United States)

    Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf

    2014-01-01

    Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.

  5. Nitrate from Drinking Water and Diet and Bladder Cancer Among Postmenopausal Women in Iowa.

    Science.gov (United States)

    Jones, Rena R; Weyer, Peter J; DellaValle, Curt T; Inoue-Choi, Maki; Anderson, Kristin E; Cantor, Kenneth P; Krasner, Stuart; Robien, Kim; Freeman, Laura E Beane; Silverman, Debra T; Ward, Mary H

    2016-11-01

    Nitrate is a drinking water contaminant arising from agricultural sources, and it is a precursor in the endogenous formation of N-nitroso compounds (NOC), which are possible bladder carcinogens. We investigated the ingestion of nitrate and nitrite from drinking water and diet and bladder cancer risk in women. We identified incident bladder cancers among a cohort of 34,708 postmenopausal women in Iowa (1986-2010). Dietary nitrate and nitrite intakes were estimated from a baseline food frequency questionnaire. Drinking water source and duration were assessed in a 1989 follow-up. For women using public water supplies (PWS) > 10 years (n = 15,577), we estimated average nitrate (NO3-N) and total trihalomethane (TTHM) levels and the number of years exceeding one-half the maximum contaminant level (NO3-N: 5 mg/L, TTHM: 40 μg/mL) from historical monitoring data. We computed hazard ratios (HRs) and 95% confidence intervals (CIs), and assessed nitrate interactions with TTHM and with modifiers of NOC formation (smoking, vitamin C). We identified 258 bladder cancer cases, including 130 among women > 10 years at their PWS. In multivariable-adjusted models, we observed nonsignificant associations among women in the highest versus lowest quartile of average drinking water nitrate concentration (HR = 1.48; 95% CI: 0.92, 2.40; ptrend = 0.11), and we found significant associations among those exposed ≥ 4 years to drinking water with > 5 mg/L NO3-N (HR = 1.62; 95% CI: 1.06, 2.47; ptrend = 0.03) compared with women having 0 years of comparable exposure. TTHM adjustment had little influence on associations, and we observed no modification by vitamin C intake. Relative to a common reference group of never smokers with the lowest nitrate exposures, associations were strongest for current smokers with the highest nitrate exposures (HR = 3.67; 95% CI: 1.43, 9.38 for average water NO3-N and HR = 3.48; 95% CI: 1.20, 10.06 and ≥ 4 years > 5 mg/L, respectively). Dietary nitrate and

  6. Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter

    DEFF Research Database (Denmark)

    Abdul-Talib, Suhaimi; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2001-01-01

     significant breakthrough and progress have been made in the study of the kinetics of microbial transformation in sewers under aerobic and under changing aerobic/anaerobic conditions. Fundamental knowledge on anoxic kinetics of wastewater is still lacking, so it is not now possible to apply...... an integrated approach to municipal wastewater treatment incorporating sewer networks as a bio-chemical reactor. This paper presents the results of studies on determining half saturation constants for nitrate, KNO3, and nitrite, KNO2, in raw wastewater. The average values of KNO3 and KNO2, determined from...

  7. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter

    2008-01-01

    in accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...... activity resulting in a lowered pH and thus a decreased FA concentration, promoting further growth of NOB. Yet, in some cases a situation with a nitrate-to-nitrite ratio of 1 and moderate pH remained stable even under varying air load and water supply, suggesting that additional mechanisms were involved......In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting...

  8. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study.

    Science.gov (United States)

    Kapil, Vikas; Khambata, Rayomand S; Robertson, Amy; Caulfield, Mark J; Ahluwalia, Amrita

    2015-02-01

    Single dose administration of dietary inorganic nitrate acutely reduces blood pressure (BP) in normotensive healthy volunteers, via bioconversion to the vasodilator nitric oxide. We assessed whether dietary nitrate might provide sustained BP lowering in patients with hypertension. We randomly assigned 68 patients with hypertension in a double-blind, placebo-controlled clinical trial to receive daily dietary supplementation for 4 weeks with either dietary nitrate (250 mL daily, as beetroot juice) or a placebo (250 mL daily, as nitrate-free beetroot juice) after a 2-week run-in period and followed by a 2-week washout. We performed stratified randomization of drug-naive (n=34) and treated (n=34) patients with hypertension aged 18 to 85 years. The primary end point was change in clinic, ambulatory, and home BP compared with placebo. Daily supplementation with dietary nitrate was associated with reduction in BP measured by 3 different methods. Mean (95% confidence interval) reduction in clinic BP was 7.7/2.4 mm Hg (3.6-11.8/0.0-4.9, Pnitrate consumption with no change after placebo. The intervention was well tolerated. This is the first evidence of durable BP reduction with dietary nitrate supplementation in a relevant patient group. These findings suggest a role for dietary nitrate as an affordable, readily-available, adjunctive treatment in the management of patients with hypertension (funded by The British Heart Foundation). http://www.clinicaltrials.gov. Unique identifier: NCT01405898. © 2014 American Heart Association, Inc.

  9. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  10. Trakya Bölgesinde Üretilen Çeşitli Süt Ürünlerinin Nitrat ve Nitrit Düzeylerine Göre Kemometrik Yöntemlerle Sınıflandırılması

    Directory of Open Access Journals (Sweden)

    Harun Dıraman

    2015-02-01

    Full Text Available Bu araştırma ile Türkiye süt ürünleri üretiminde önemli bir yeri olan Trakya Bölgesinde iki üretim yılı süresince üretilen beyaz peynir (28 adet, kaşar (19 adet, eritme peyniri (1 adet, yoğurt (16 adet, çiğ süt (5 adet ve pastörize-steril (7 adet sütlerdeki nitrat ve nitrit miktarları tespit edilmiş ve bulunan sonuçlar kemometrik yöntemler (Temel Bileşenler [PCA] ve Kümeleme [HCA] Analizleri yardımıyla yörelere göre sınıflandırılmıştır. Gıdalarda bulunan nitrat ve nitrit düzeyleri, çevresel kirliliğin önemli bir parametresi olarak kabul edilmektedir. Beyaz peynirlerin (% 11.11’i nitrat, (% 51.85’i nitrit, kaşarların (% 21.05’i nitrat ve (%31.58’i nitrit, yoğurtların (%18.75’i nitrat ve (%6.25’i nitrit ve süt örneklerinin de (%25’i nitrat ve tamamının ise nitrit içermediği görülmüştür. Trakya Bölgesi orijinli süt ürünlerinin tamamına ilişkin birleştirilmiş temel bileşenler analizi (PCA sonuçlarına göre, PC1’in %83,04 oranında ve PC2’nin de %16.96 oranında toplam varyansı açıkladığı gözlemlenmiştir. Kemometrik analizlerden Kümeleme (HCA analizi sonuçları temelinde, süt ürünleri (beyaz peynir, kaşar, yoğurt ve süt örnekleri orijinlerine göre üçer ana gruba ayrılmış ve sınıflanmıştır.

  11. Nitrate Intake Does Not Influence Bladder Cancer Risk: The Netherlands Cohort Study

    Science.gov (United States)

    Zeegers, Maurice P.; Selen, Roel F.M.; Kleinjans, Jos C.S.; Goldbohm, R. Alexandra; van den Brandt, Piet A.

    2006-01-01

    Objectives N-nitroso compounds, endogenously formed from nitrate-derived nitrite, are suspected to be important bladder carcinogens. However, the association between nitrate exposure from food or drinking water and bladder cancer has not been substantially investigated in epidemiologic studies. Methods We evaluated the associations between nitrate exposure and bladder cancer in the Netherlands Cohort Study, conducted among 120,852 men and women, 55–69 years of age at entry. Information on nitrate from diet was collected via a food frequency questionnaire in 1986 and a database on nitrate content of foods. Individual nitrate exposures from beverages prepared with tap water were calculated by linking the postal code of individual residence at baseline to water company data. After 9.3 years of follow-up and after excluding subjects with incomplete or inconsistent dietary data, 889 cases and 4,441 subcohort members were available for multivariate analyses. We calculated incidence rate ratios (RR) and corresponding 95% confidence intervals (CIs) using Cox regression analyses. We also evaluated possible effect modification of dietary intake of vitamins C and E (low/high) and cigarette smoking (never/ever). Results The multivariate RRs for nitrate exposure from food, drinking water, and estimated total nitrate exposure were 1.06 (95% CI, 0.81–1.31), 1.06 (95% CI, 0.82–1.37), and 1.09 (95% CI, 0.84–1.42), respectively, comparing the highest to the lowest quintiles of intake. Dietary intake of vitamins C and E (low/high) and cigarette smoking (never/ever) had no significant impact on these results. Conclusion Although the association between nitrate exposure and bladder cancer risk is biologically plausible, our results in this study do not support an association between nitrate exposure and bladder cancer risk. PMID:17035137

  12. Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon.

    Science.gov (United States)

    Christiansen, L N; Tompkin, R B; Shaparis, A B; Kueper, T V; Johnston, R W; Kautter, D A; Kolari, O J

    1974-04-01

    Pork bellies were formulated to 0, 30, 60, 120, 170, or 340 mug of nitrite per g of meat and inoculated with Clostridium botulinum via pickle or after processing and slicing. Processed bacon was stored at 7 or 27 C and assayed for nitrite, nitrate, and botulinal toxin at different intervals. Nitrite levels declined during processing and storage. The rate of decrease was more rapid at 27 than at 7 C. Although not added to the system, nitrate was detected in samples during processing and storage at 7 and 27 C. The amount of nitrate found was related to formulated nitrite levels. No toxin was found in samples incubated at 7 C throughout the 84-day test period. At 27 C, via pickle, inoculated samples with low inoculum (210 C. botulinum per g before processing and 52 per g after processing) became toxic if formulated with 120 mug of nitrite per g of meat or less. Toxin was not detected in bacon formulated with 170 or 340 mug of nitrite per g of meat under these same conditions. Toxin was detected at all formulated nitrite levels in bacon inoculated via the pickle with 19,000 C. botulinum per g (4,300 per g after processing) and in samples inoculated after slicing. However, increased levels of formulated nitrite decreased the probability of botulinal toxin formation in bacon inoculated by both methods.

  13. Radiation chemistry of the aqueous aluminium nitrate solution (Preprint no. RC-26)

    International Nuclear Information System (INIS)

    Kalkar, C.D.; Date, D.B.

    1991-01-01

    Radiolysis of aqueous aluminium nitrate solution is studied as a function of concentration in the range 10 -4 M to 10 -1 M. The stable radiolytic product of nitrate radiolysis is nitrite. The yield of nitrite linearly increases with absorbed dose. The G(NO 2 ) values are determined at various concentrations of aluminium nitrate. A suitable mechanism is proposed to explain the observed G-value for the reduction of nitrate to nitrite. (author). 6 refs., 1 tab

  14. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    Science.gov (United States)

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analysis of nitrates and nitrites in subsoil and ground water samples in Swaziland

    Directory of Open Access Journals (Sweden)

    A.O. Fadiran

    2005-06-01

    Full Text Available The concentrations of nitrate as nitrogen (NO3–N in mg/L and nitrite as nitrogen (NO2–N in µg/L were determined in water samples from 60 boreholes, 21 shallow wells and 7 springs located in the four regions of the country. For all the 88 sampling points nitrate levels vary within 0.05 plus or minus 0.00 – 28.44 plus or minus 0.80 mg/L NO3–N, out of which 10.22% have mg/L NO3–N ≥ MCL (maximum contaminant level of 10 mg/L NO3–N. Shallow wells recorded the highest NO3–N% ≥ MCL of 20.0% followed by boreholes with NO3–N % ≥ MCL of 8.33% while for springs, the NO3–N % ≥ MCL was zero. On the other hand, NO2–N (μg/L from all the sampling points vary within (ND/0.30 plus or minus 0.00 – 297.0 plus or minus 0.50 μg/L NO2–N, which were far below the recommended MCL of 1 mg/L (= 1000 μg/L.

  16. Nitrite enhances liver graft protection against cold ischemia ...

    African Journals Online (AJOL)

    Amani Cherif-Sayadi

    2017-03-30

    Mar 30, 2017 ... cold ischemia reperfusion injury through a NOS ... oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when ... liver graft preservation [15]. ... nitrite activity is dependent on NO production but .... LiversT rat (n = 6) were flushed and preserved in IGL-1 solution ..... The nitrate-.

  17. Dietary nitrate supplementation improves reaction time in type 2 diabetes: development and application of a novel nitrate-depleted beetroot juice placebo.

    Science.gov (United States)

    Gilchrist, Mark; Winyard, Paul G; Fulford, Jon; Anning, Christine; Shore, Angela C; Benjamin, Nigel

    2014-08-31

    In this substudy of the effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes, we report the development of a novel nitrate depleted beetroot juice for use clinical trials and determine if dietary nitrate supplementation improved cognitive function in patients with type 2 diabetes mellitus. Beetroot juice was treated with the anion exchange resin Purolite A520e. UV-vis-spectrophotometry, and a blind taste test were performed along with determination of sugar content, measurement of ascorbate and dehydroascorbate, the ionic composition of juice and Proton NMR. Subsequently, 27 patients, age 67.2±4.9 years, (18 male) were recruited for a double blind, randomised, placebo-controlled crossover trial. Participants were randomised to begin in either order beetroot juice (nitrate content 7.5 mmol per 250 ml) or placebo (nitrate depleted beetroot juice nitrate content 0.002 mmol per 250 ml). At the end of each 2 week supplementation period cognitive function was assessed using E-prime, E-Studio software with 5 separate tests being performed. The tests utilised in the present study have been adapted from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The differences in the UV-vis spectra were comparable to the natural variation found in differing cultivars. There were no discernable differences in taste, sugar content, or Proton NMR. Ascorbate and dehydroascorbate were undetectable in either juice. After 2 weeks of beetroot juice simple reaction time was significantly quicker in the active arm at 327±40 ms versus 341.8±52.7 ms in the placebo arm, mean difference 13.9±25.6 ms (95% CI 3.8-24.0 ms), p=0.009. No other measures of cognitive function differed between treatment arms. We have developed an effective placebo beetroot juice for use in trials of supplementation of dietary nitrate. Two weeks supplementation of the diet with 7.5 mmol of nitrate per day caused a significant improvement in

  18. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell

    International Nuclear Information System (INIS)

    Tu, Min; Huang, Yi; Li, Hai-Ling; Gao, Zhong-Hong

    2012-01-01

    Highlights: ► Nitrite increased photo-toxicity of nano-TiO 2 on human keratinocyte cells in a dose-dependant manner. ► Morphological study suggested the cell death may be mediated by apoptosis inducing factor. ► Protein nitration was generated in the cells, and the most abundant nitrated protein was identified as cystatin-A. ► Tyr35 was the most likely site to be nitrated in cystatin-A. -- Abstract: Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.

  19. Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots.

    Science.gov (United States)

    Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi

    2016-11-01

    Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste

    International Nuclear Information System (INIS)

    Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

    1995-08-01

    As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company's (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards

  2. Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

    1995-08-01

    As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

  3. Formation of zinc protoporphyrin IX in Parma-like ham without nitrate or nitrite.

    Science.gov (United States)

    Wakamatsu, Jun-ichi; Uemura, Juichi; Odagiri, Hiroko; Okui, Jun; Hayashi, Nobutaka; Hioki, Shoji; Nishimura, Takanori; Hattori, Akihito

    2009-04-01

    Zinc protoporphyrin IX (ZPP) is a characteristic red pigment in meat products that are manufactured without the addition of a curing agent such as nitrate or nitrite. To examine the effects of impurities such as mineral components in sea salt on the formation of ZPP, we manufactured Parmatype dry-cured hams that were salted with refined salt or sea salt and examined the involvement of oxidation-reduction potential (ORP) in the formation of ZPP. The content of ZPP was increased drastically after 40 weeks. Microscopic observation showed strong fluorescence caused by ZPP muscle fiber after 40 weeks. Conversely, heme content varied considerably during processing. ORP increased during processing. However, there was no obvious difference between ham salted with refined salt and that salted with sea salt. Therefore, it was concluded that impurities in sea salt were not involved in the formation of ZPP.

  4. An Ultrasound Assessed Extraction Combined with Ion-Pair HPLC Method and Risk Assessment of Nitrite and Nitrate in Cured Meat

    Directory of Open Access Journals (Sweden)

    Babiker Yagoub Abdulkair

    2018-01-01

    Full Text Available An accurate IPC-UV method was developed and validated for the determination of nitrite (NI and nitrate (NA in meat products. The best separation was achieved on a phenyl-hexyl column (150 mm × 4.6 mm, 3 µm with a mobile phase composed of 25% acetonitrile and 75% buffer (2 mM disodium hydrogen phosphate and 3 mM tetrabutylammonium bromide, pH = 4. Eluents were monitored at 205 nm. Linearity ranges were 1.86 × 10−6–7.5 µg·ml−1 and 0.09–5.0 µg·ml−1 for NI and NA, respectively. The correlation coefficients were greater than 0.999 for NI and NA. This method was applied to a number of processed meat products in Riyadh (n = 155. NI ranged from 1.78 to 129.69 mg·kg−1, and NA ranged from 0.76 to 96.64 mg·kg−1. Results showed extensive use of NI and NA; however, concentrations were within the legal limit of Saudi Arabia except for one sample. Further, the risk assessment and dietary exposure have been estimated for both NI and NA.

  5. PRESENCE OF NITRATES AND NITRITES IN WATER FOR HUMAN CONSUMPTION AND THEIR IMPACT ON PUBLIC HEALTH IN SUGARCANE-PRODUCING AREAS

    OpenAIRE

    Itzel Galaviz-Villa; Cesáreo Landeros-Sánchez; Ma. del Refugio Castañeda Chávez; Fabiola Lango-Reynoso; Juan Pablo Martínez-Dávila; Arturo Pérez-Vázquez; Iourii Nikolskii-Gavrilov

    2011-01-01

    Water pollution has emerged as a consequence of human settlements, as well as from specific rural, agricultural, forestry and industrial activities within a region. It has been found that increasing use of nitrogen fertilizers also increases water pollution. Nitrates and nitrites that are dissolved in groundwater used for human consumption cause adverse health effects, such as production of nitrosamines (cause of cancer) and decrease of oxygen carrying capacity of the blood, known as blue bab...

  6. 15N studies on the in-vivo assay of nitrate reductase in leaves

    International Nuclear Information System (INIS)

    Yoneyama, Tadakatsu

    1981-01-01

    The reduction of nitrate and nitrite in the leaf disks of seven di- and two mono-cotyledonous species under the in-vivo assay conditions of nitrate reductase was studied using N-15 labeled substrates. The significant reduction of both nitrate and nitrite into ammonia and amino acids was detected in the atmosphere of air. In the atmosphere of N 2 gas, anaerobic incubation enhanced the accumulation of nitrite, but the subsequent reduction to the basic nitrogen compounds was from 40 to 180 % of the aerobic rate. The present examination indicated that the in-vivo assay of nitrate reductase under aerobic condition may give greatly underestimated results due to nitrite reduction, and that the exclusion of oxygen from the in-vivo assay mixture is desirable. The addition of n- propanol may be desirable for the assay under aerobic condition. Significant difference was not observed in the reduction of nitrate supplied as sodium and potassium salts on the nitrite formation and on the incorporation of nitrate-N into basic fractions. The N-15 experiment on the dark assimilation of nitrate, nitrite and ammonia into amino acids in wheat leaves showed that these three nitrogen sources were assimilated through the same route, and that the glutamine synthetase/glutamate synthetase pathway was the main route. By anaerobic treatment, the incorporation of nitrogen into alanine and serine was relatively high. (Kako, I.)

  7. Dietary nitrate supplementation in COPD: An acute, double-blind, randomized, placebo-controlled, crossover trial.

    LENUS (Irish Health Repository)

    Kerley, Conor P

    2014-12-19

    The acute consumption of dietary nitrate has been shown to improve exercise capacity in athletes, healthy adults and subjects with peripheral vascular disease. Many COPD patients have reduced exercise capacity. We hypothesized that acute nitrate consumption might increase incremental shuttle walk test (ISWT) distance in COPD subjects.

  8. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  9. Nitrate-rich beetroot juice selectively lowers ambulatory pressures and LDL cholesterol in uncontrolled but not controlled hypertension: a pilot study.

    Science.gov (United States)

    Kerley, C P; Dolan, E; Cormican, L

    2017-11-01

    Dietary nitrate has been shown to increase nitrate/nitrite levels in multiple populations, with potential blood pressure lowering effects. However, there are few reports among hypertensives. We aimed to assess the effect of daily nitrate in subjects with controlled hypertension vs. uncontrolled hypertension. On day 0, hypertensives wore an ambulatory BP monitor (ABPM) for 24 h and fasting blood was taken. Subjects then consumed concentrated beetroot juice (12.9 mmol nitrate) for 14 consecutive days. On day 14 subjects consumed their last nitrate dose after fasting blood was drawn and again had an ABPM for 24 h. According to baseline ABPM, 11 subjects had controlled BP while 8 had uncontrolled BP. There were similar, significant increases in serum nitrate/nitrite in both groups. We observed little change in BP variables among controlled hypertensives. However, there were reductions in BP variables in uncontrolled hypertensives where decreases in nighttime DBP (-6 ± 4.8 mmHg), arterial stiffness (-0.08 ± 0.03 ambulatory arterial stiffness index) and LDL (-0.36 ± 0.42 mmol/L) reached significance (p = 003, 0.05 and 0.046, respectively). Our results support the existing data suggesting an anti-hypertensive effect of nitrate-containing beetroot juice, but only among those with uncontrolled hypertension.

  10. Effect of Calcium Nitrate and Sodium Nitrite on the Rebar Corrosion of Medium Carbon Steel in Seawater and Cassava Fluid

    OpenAIRE

    Adamu, M; Umoru, LE; Ige, OO

    2014-01-01

    Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of differ...

  11. Safety and sensory aspects of nitrite alternatives in meat curing

    International Nuclear Information System (INIS)

    Shahidi, F.; Pegg, R.B.

    1991-01-01

    The use of nitrite to cure meats (especially bacon) is viewed as undesirable, because it leads to the formation of carcinogenic nitrosamines. The amount of nitrite (10-40 ppm) associated with the cured colour and flavour is fairly harmless, and it is the larger amount, (100-200 ppm) added to preserve the meat, which is potentially harmful. This article reviews various preservatives which can be used in combination with low concentrations of nitrate. The authors consider that the use of lactate, of alternatively radiation sterilization, offers the best safe alternative to nitrate

  12. Results, meta-analysis and a first evaluation of UNOxR, the urinary nitrate-to-nitrite molar ratio, as a measure of nitrite reabsorption in experimental and clinical settings.

    Science.gov (United States)

    Tsikas, Dimitrios; Hanff, Erik; Bollenbach, Alexander; Kruger, Ruan; Pham, Vu Vi; Chobanyan-Jürgens, Kristine; Wedekind, Dirk; Arndt, Tanja; Jörns, Anne; Berbée, Jimmy F P; Princen, Hans M G; Lücke, Thomas; Mariotti, François; Huneau, Jean-François; Ückert, Stefan; Frölich, Jürgen C; Lenzen, Sigurd

    2018-05-04

    We recently found that renal carbonic anhydrase (CA) is involved in the reabsorption of inorganic nitrite (NO 2 - ), an abundant reservoir of nitric oxide (NO) in tissues and cells. Impaired NO synthesis in the endothelium and decreased NO bioavailability in the circulation are considered major contributors to the development and progression of renal and cardiovascular diseases in different conditions including diabetes. Isolated human and bovine erythrocytic CAII and CAIV can convert nitrite to nitrous acid (HONO) and its anhydride N 2 O 3 which, in the presence of thiols (RSH), are further converted to S-nitrosothiols (RSNO) and NO. Thus, CA may be responsible both for the homeostasis of nitrite and for its bioactivation to RSNO/NO. We hypothesized that enhanced excretion of nitrite in the urine may contribute to NO-related dysfunctions in the renal and cardiovascular systems, and proposed the urinary nitrate-to-nitrite molar ratio, i.e., U NOx R, as a measure of renal CA-dependent excretion of nitrite. Based on results from clinical and experimental animal studies, here, we report on a first evaluation of U NOx R. We determined U NOx R values in preterm neonates, healthy children, and adults, in children suffering from type 1 diabetes mellitus (T1DM) or Duchenne muscular dystrophy (DMD), in elderly subjects suffering from chronic rheumatic diseases, type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), or peripheral arterial occlusive disease (PAOD). We also determined U NOx R values in healthy young men who ingested isosorbide dinitrate (ISDN), pentaerythrityl tetranitrate (PETN), or inorganic nitrate. In addition, we tested the utility of U NOx R in two animal models, i.e., the LEW.1AR1-iddm rat, an animal model of human T1DM, and the APOE*3-Leiden.CETP mice, a model of human dyslipidemia. Mean U NOx R values were lower in adult patients with rheumatic diseases (187) and in T2DM patients of the DALI study (74) as compared to healthy elderly adults

  13. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption

  14. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.

    Science.gov (United States)

    Elrod, Lee Taylor; Kim, Eunsuk

    2018-03-05

    The reduction of nitrate (NO 3 - ) to nitrite (NO 2 - ) is of significant biological and environmental importance. While Mo IV (O) and Mo VI (O) 2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst Mo IV (O)(SN) 2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf) 3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to Mo VI (O) 2 (SN) 2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N 2 O and O 2 . This work highlights the ability of Sc 3+ additives to expand the reactivity scope of an existing Mo IV (O) complex together with which Sc 3+ can convert nitrate to stable gaseous molecules.

  15. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  16. The effect of environmental hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon hypophthalmus)

    DEFF Research Database (Denmark)

    Hvas, Malthe; Damsgaard, Christian; Gam, Le Thi Hong

    2016-01-01

    Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl- for uptake at the branchial HCO3-/Cl- exchanger, ...... the ambient concentration, while small fish did not. Small P. hypophthalmus instead had significantly higher plasma [nitrate], and haemoglobin concentrations, revealing greater capacity for detoxifying nitrite by oxidising it to nitrate.......Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl- for uptake at the branchial HCO3-/Cl- exchanger...... to a reduced nitrite uptake. To assess the effect of hypercapnia on nitrite uptake, fish were cannulated in the dorsal aorta, allowing repeated blood sampling for measurements of haemoglobin derivatives, plasma ions and acid-base status during exposure to 0.9 mM nitrite alone and in combination with acute...

  17. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  18. A Convenient Method for Preparation of Pure Standards of Peroxyacetyl Nitrate for Atmospheric Analyses

    DEFF Research Database (Denmark)

    Nielsen, Torben; Hansen, A. M.; Lund Thomsen, E.

    1982-01-01

    Peroxyacetyl nitrate (PAN) is synthesized by nitration of peracetic acid (1.2 M), extracted by n- heptane, and purified with normal-phase high-performance liquid chromatography. The purified PAN solution is free of acetyl nitrate. The content of PAN is determined by means of hydrolysis of PAN int...... into nitrite, and determination by ion chromatography of nitrite and nitrate (formed by oxidation of nitrite). The purified PAN solution is used for the calibration of the gas Chromatograph with electron capture detection.......Peroxyacetyl nitrate (PAN) is synthesized by nitration of peracetic acid (1.2 M), extracted by n- heptane, and purified with normal-phase high-performance liquid chromatography. The purified PAN solution is free of acetyl nitrate. The content of PAN is determined by means of hydrolysis of PAN...

  19. In-situ nitrite analysis in high level waste tanks

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  20. Effect of Dietary Sodium Nitrate Consumption on Egg Production, Egg Quality Characteristics and Some Blood Indices in Native Hens of West Azarbaijan Province

    Directory of Open Access Journals (Sweden)

    H. Safary

    2012-11-01

    Full Text Available The aim of the study was to evaluate the effect of sodium nitrate consumption on egg quality and quantity, and some blood parameters of native breeder hens of West Azerbaijan province. One hundred native hens were used from wk 25 to 32 of age. These birds were divided into two groups. One group was fed the control diet (CD but the other fed the same diet supplemented with 4.2 g/kg sodium nitrate (ND. After 2 wks of adaptation, eggs were collected daily and egg mass and egg production were measured weekly for five weeks. To assess the egg quality parameters, two eggs from each replicate pen were collected for three consecutive days each week. At the end of experimental period (wk 32 of age, blood samples of 5 birds per replicate were collected from the wing vein into anticoagulant tubes. Dietary sodium nitrate didn’t affect the egg production, shell stiffness, shell thickness and Haugh unit (p>0.05 but it decreased the both egg production and egg mass during the last three weeks (wks 30, 31 and 32 (p0.05. No effect of time or treatment×time were observed for shell stiffness (p>0.05. Over time, shell thickness was decreased while Haugh unit increased (p0.05. Sodium nitrite decreased both the TAC and TC at wk 32 of age (p<0.001. It was concluded that the lower body antioxidant capacity of nitrate fed birds resulted in the lower performance (egg weight, egg production and egg mass.

  1. Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double-blind, placebo-controlled pilot and feasibility study.

    Science.gov (United States)

    Falls, Roman; Seman, Michael; Braat, Sabine; Sortino, Joshua; Allen, Jason D; Neil, Christopher J

    2017-08-08

    Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO 3 ) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.

  2. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    International Nuclear Information System (INIS)

    Malone, J.P.; Stevens, R.J.

    1998-01-01

    Potassium nitrate labeled with 15 N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO 2 - impurity has been found in the batches of K 15 NO 3 enriched to 99 atom % excess 15 N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO 3 - could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO 2 - impurity from any NO 3 - solution in a water matrix. The principle is the oxidation of NO2- to NO 3 - by UV light in the presence of a heterogenous TiO 2 catalyst. A NO 2 - concentration of 0.2 mM in 100 mL of 0.2 M NO 3 - solution could be oxidized in 12 min using 0.5 g L -1 TiO 2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO 2 - , use of the same TiO 2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  3. Practical Use of Nitrite and Basis for Dosage in the Manufacture of Meat Products

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens; Ekgreen, Maria Helbo; Risum, Jørgen

    . The particularities of the production methods make such a quantification rather uncertain. Furthermore, some dry cured products from South Europe are made with nitrate, which slowly and only partly is converted to nitrite and further to NO during the curing process. The Danish limitations on the use of nitrate......The use of nitrite (NaNO2) in the manufacture of salted (cured) meat products has a long tradition in the industry, dating back to the early twentieth century. Nitrite serves several technological purposes, primarily by the formation of a stable red colour in the meat and the inhibition...... of the growth of Clostridium botulinum. According to an assessment report by the European Food Safety Authority (The EFSA Journal, 14, p. 1-134, 2003) all evidence points to that it is the added amount of nitrite rather than the residual amount of nitrite in the product which exerts the antimicrobial effect...

  4. Dietary intake of nitrate relative to antioxidant vitamin in relation to breast cancer risk: a case-control study.

    Science.gov (United States)

    Yang, Yoon Jung; Hwang, Se Hee; Kim, Hyun Ja; Nam, Seok-Jin; Kong, Gu; Kim, Mi Kyung

    2010-01-01

    Nitrate is a precursor in the endogenous formation of N-nitroso compounds, which are potent animal carcinogens, whereas antioxidant vitamins have been suggested to protect against carcinogenesis. Interestingly, nitrate and antioxidant vitamins stem from the same dietary sources. We investigated whether the intake of nitrate relative to antioxidant vitamins is associated with the risk of breast cancer. A total of 362 breast cancer cases were matched to the 362 controls by age and menopausal status. Dietary intake was assessed using a quantitative food frequency questionnaire with 121 food items by trained interviewers. The nitrate to antioxidant vitamin consumption ratio was then calculated. Conditional logistic regression analysis was used to obtain odds ratios (ORs) and corresponding 95% confidence intervals (CI). Mean intakes of nitrate for cases and controls were 421 mg/day and 424 mg/day, respectively. Intakes of nitrate, nitrate/beta-carotene, nitrate/vitamin C, and nitrate/vitamin E were not associated with breast cancer risk. However, higher breast cancer risk was observed with higher intake of nitrate/folate (OR = 2.03, 95% CI = 1.16-3.54, P for trend = 0.052). Our results suggest that lowering the ratio of nitrate to folate intake may be effective in reducing breast cancer risk.

  5. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata

    DEFF Research Database (Denmark)

    Lefevre, Sjannie; Jensen, Frank B.; Huong, Do T.T.

    2012-01-01

    M. Effects of sub-lethal exposures to nitrite (0 mM, 1.4 mM, and 3.0 mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite...... taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60......The tolerance and effects of nitrite on ion balance and haematology were investigated in the striped snakehead, Channa striata Bloch 1793, which is an air-breathing fish with reduced gills of importance for aquaculture in South East Asia. C. striata was nitrite tolerant with a 96 h LC50 of 4.7 m...

  6. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    OpenAIRE

    Samuelsson, M O

    1985-01-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sod...

  7. The dual effects of nitrite on hemoglobin-dependent redox reactions.

    Science.gov (United States)

    Lu, Naihao; Chen, Chao; He, Yingjie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2014-08-31

    Evidence to support the role of heme proteins-dependent reactions as major inducers of oxidative damage is increasingly present. Nitrite (NO2(-)) is one of the major end products of NO metabolism, and from the daily consumption. Although the biological significance of heme proteins/NO2(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO2(-) on heme proteins-dependent redox reactions have been greatly underestimated. In this study, we investigated the influence of NO2(-) on met-hemoglobin (Hb)-dependent oxidative and nitrative stress. It was found that NO2(-) effectively reduced cytotoxic ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. However, the presence of NO2(-) surprisingly exerted pro-oxidant effect on Hb-H2O2-induced protein (bovine serum albumin, enolase) oxidation at low concentrations and enhanced the loss of HepG2 cell viability. In the reduction of ferryl Hb to ferric state, NO2(-) was decreased and oxidized to a nitrating agent NO2, Tyr12 and Tyr191 in enolase were subsequently nitrated. In contrast to the frequently inhibitive effect of nitrotyrosine, NO2(-)-triggered tyrosine nitration might play an important role in enolase activation. These data provided novel evidence that the dietary intake and potential therapeutic application of NO2(-) would possess anti- and pro-oxidant activities through interfering in hemoglobin-dependent redox reactions. Besides the classic role in protein tyrosine nitration, the dual effects on hemoglobin-triggered oxidative stress may provide new insights into the physiological and toxicological implications of NO2(-) with heme proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Intragastric nitrites, nitrosamines, and bacterial overgrowth during cimetidine treatment.

    OpenAIRE

    Stockbrugger, R W; Cotton, P B; Eugenides, N; Bartholomew, B A; Hill, M J; Walters, C L

    1982-01-01

    A six week course of cimetidine (1 g/day) healed peptic ulcers in 20 of 23 patients (14 with duodenal ulcer, nine with gastric ulcer). Reduction of basal acid output by 73% and peak acid output by 36% led to a rise in concentrations of intragastric aerobic bacteria and nitrate-reducing bacteria. While the mean intragastric concentration of nitrate was unchanged by treatment, there were statistically significant rises in nitrite and N-nitrosamine concentrations. The conversion from nitrates to...

  9. Unimolecular Reactions of Nitrites and Nitrates.

    Science.gov (United States)

    1983-04-01

    verified the mechanism as being the one originally proposed by Levy, RONO - RO + NO RO + NO- 1 2*RONO •I kRO + NO-- ROH HHO -Hi k5 :and not by direct...produced by ,’Levy’s mechanism. I1 Emission from CH30, C2H50, and l-C3H70 radicals were observed in the photolysis of these nitrites between...wavelengths of 2000 and 1100 A, by Ohbayashi, Akimoto and Tanaka [78]. Emission was assigned to the (A2A1IX2E) transition of CH30 . Bands of NO were also *i

  10. Nitrate removal with reverse osmosis in a rural area in South Africa

    CSIR Research Space (South Africa)

    Schoeman, JJ

    2003-05-30

    Full Text Available of age, and is compounded when the intake of vitamin C is inadequate. Metabolically, nitrates may react with secondary and tertiary amines and amides, commonly derived from food, to form nitro- amines which are known... carcinogens. A diet, adequate in vitamin C, partially protects against the adverse effects of nitrate- nitrite. Methaemoglobinaemia in infants can only be mitigated by blood transfusion. The effects of nitrate-nitrite on human health...

  11. Reexamining the risks of drinking-water nitrates on public health.

    Science.gov (United States)

    Richard, Alyce M; Diaz, James H; Kaye, Alan David

    2014-01-01

    Nitrates in drinking water are generally considered the sole source of nitrite poisoning with methemoglobinemia in infantile methomoglobinemia (IM). However, IM, which occurs during the first 4 months of life, is actually a constellation of cyanosis and hypoxia associated with methemoglobinemia that can result from several other causes. This review reexamines the role of nitrate levels in drinking water as a cause of IM and identifies other sources of nitrates that can affect public health and cause chronic diseases. Causes of IM include nitrites in foods, environmental chemical exposures, commonly prescribed pharmaceuticals, and the endogenous generation of oxides of nitrogen. Infants with congenital enzyme deficiencies in glucose-6-phosphate dehydrogenase and methemoglobin reductase are at greater risk of nitrite-induced methemoglobinemia from nitrates in water and food and from exposures to hemoglobin oxidizers. Early epidemiological studies demonstrated significant associations between high groundwater nitrate levels and elevated methemoglobin levels in infants fed drinking water-diluted formulas. However, more recent epidemiological investigations suggest other sources of nitrogenous substance exposures in infants, including protein-based formulas and foods and the production of nitrate precursors (nitric acid) by bacterial action in the infant gut in response to inflammation and infection.

  12. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo

    batch incubations with biofilm samples revealed a significant N2O assimilatory activity. Anoxic incubations with N-15 enriched nitrite, nitrate, or ammonium, in presence or absence of acetate revealed the following: a very high conversion of original nitrite or nitrate N to N2O over N2, no stimulatory......Combining partial nitritation with anaerobic ammonium oxidation maybe a cost- and energy-efficient alternative to remove reduced nitrogen from nitrogen rich waste streams. However, increased N2O emissions (upto several % of the incoming N flux) have been observed for reactors performing partial...... nitritation, which is likely due to the stimulatory effect of combined elevated nitrite and ammonium concentrations and reduced oxygen concentrations on nitrous oxide formation by ammonium oxidizing bacteria. Because increased N2O emission may be inherent to partial nitrification systems, we have explored how...

  13. The effect of dietary factors on nitrosoproline levels in human urine.

    Science.gov (United States)

    Stich, H F; Hornby, A P; Dunn, B P

    1984-05-15

    The effect of dietary components on the levels of nitrosoproline ( NPRO ) excreted over a 24 h period in the urine was examined in volunteers ingesting known amounts of various food products. The ingestion of nitrite-preserved meats (85-170 g per meal), including canned, rolled or Yunnan ham, cured pork, luncheon meat, and various Chinese and European-style sausages, led to urinary NPRO excretion levels ranging from 2.5 to 78.5 micrograms/24 h, whereas the consumption of non-preserved meat and fish products, including chicken, herring, salmon, shrimp, ground beef (hamburger), pork chops and beef liver, led to relatively low NPRO excretion levels, ranging from 0.0 to 0.8 micrograms/24 h. The urinary NPRO levels of 22 vegetarians and 14 lacto-vegetarians averaged 0.8 and 1.4 micrograms/24 h, respectively. A change from a nitrite-preserved meat diet to a vegetarian diet was accompanied by an approximately six-fold reduction in urinary NPRO levels; however, these remained above control levels for at least 3 days following the dietary change. The relatively high NPRO levels following the ingestion of nitrite-preserved meats could not be reduced by nitrite-trapping chemicals, including ascorbic acid, ferulic acid, caffeic acid, or phenolic-containing mixtures such as coffee and tea, which were effective in suppressing endogenous NPRO formation following the intake of nitrate and proline. The high urinary NPRO levels after ingestion of preserved meat products appear to be due to the consumption of preformed NPRO . An understanding of the relative contribution of preformed and endogenously formed nitrosamines appears to be essential when designing dietary intervention programmes.

  14. Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Michelle M Giffin

    Full Text Available Mycobacterium tuberculosis induces nitrate reductase activity in response to decreasing oxygen levels. This is due to regulation of both the transcription and the activity of the nitrate transporter NarK2. A model of NarK2 structure is proposed containing 12 membrane spanning regions consistent with other members of the major facilitator superfamily. The role of the proton gradient was determined by exposing M. tuberculosis to uncouplers. Nitrite production decreased indicating that the importation of nitrate involved an H(+/nitrate symporter. The addition of nitrite before nitrate had no effect, suggesting no role for a nitrate/nitrite antiporter. In addition the NarK2 knockout mutant showed no defect in nitrite export. NarK2 is proposed to be a Type I H(+/nitrate symporter. Site directed mutagenesis was performed changing 23 amino acids of NarK2. This allowed the identification of important regions and amino acids of this transporter. Five of these mutants were inactive for nitrate transport, seven produced reduced activity and eleven mutants retained wild type activity. NarK2 is inactivated in the presence of oxygen by an unknown mechanism. However none of the mutants, including those with mutated cysteines, were altered in their response to oxygen levels. The assimilatory nitrate transporter NasA of Bacillus subtilis was expressed in the M. tuberculosis NarK2 mutant. It remained active during aerobic incubation showing that the point of oxygen control is NarK2.

  15. Nitrat i drikkevandet og vores sundhed

    DEFF Research Database (Denmark)

    Hansen, Birgitte; Schullehner, Jörg; Sigsgaard, Torben

    2014-01-01

    Nitrat i drikkevandet er uønsket, da det kan påvirke vores sundhed negativt. Den øvre grænse for hvor meget nitrat der tillades i drikkevandet er fastsat i forhold til risikoen for akut forgiftning med nitrit og blå børn-syndromet. Men nitrat i drikkevandet mistænkes også for at være medvirkende...

  16. Factors controlling nitrate cracking of mild steel

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1977-01-01

    Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth

  17. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor.

    Science.gov (United States)

    Liu, Chunshuang; Li, Wenfei; Li, Xuechen; Zhao, Dongfeng; Ma, Bin; Wang, Yongqiang; Liu, Fang; Lee, Duu-Jong

    2017-11-01

    The nitrite accumulation in handling nitrate and sulfide-laden wastewater in a continuous-flow upflow anaerobic sludge blanket reactor was studied. At sulfide/nitrate-nitrogen ratio of 1:0.76 and loading rates of 1.2kg-Sm -3 d -1 and 0.4kg-Nm -3 d -1 , the elemental sulfur and nitrite accumulation rates peaked at 90% and 70%, respectively, with Acrobacter, Azoarcus and Thauera presenting the functional strains in the studied reactor. The accumulated nitrite was proposed a promising feedstock for anaerobic ammonia oxidation process. An integrated partial autotrophic denitrification-anaerobic ammonia oxidation-aeration process for handling the ammonia and sulfide-laden wastewaters is proposed for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  19. The influence of Metisevit on biochemical and morphological indicators of blood of piglets under nitrate loading

    Directory of Open Access Journals (Sweden)

    B. Gutyj

    2017-07-01

    Full Text Available The article presents the results of research on the influence of the developed complex preparation Metisevit on the dynamics of morphological and biochemical blood indicators of piglets under nitrate loading. The research established that sodium nitrate intoxication causes disbalance of the physiological level of hematological indicators of the tested animals’ organisms. This was indicated by the manifestations of subclinical chronic nitrate-nitrite toxicosis: the increase in the level of nitrates, nitrites and methemoglobin in the blood. After prolonged feeding of the piglets with sodium nitrate at a dose of 0.3 g nitrate ion/kg, the concentration of nitrates and nitrites in the blood serum reached its maximum on the 60th day of the experiment. Also, the number of leukocytes and erythrocytes in the blood increased, and the activity of aspartate- and alanineaminotransferase in the blood serum increased. We rank the extent of liver intoxication with nitrates according to intensity of aminotransferase in the blood serum of the tested piglets. The normalization of morphological and biochemical blood indicators of piglets under nitrate-nitrite intoxication requires usage of a preparation which contains vitamins, zeolites and antioxidants. If the fodder contains high doses of nitrates, 1.0 mg/kg dose of Metisevit is added to the fodder for preventing subclinical nitrate-nitrite toxicosis. Metisevit contains the following agents: phenozan acid, methionine, zeolite, selenium, vitamins E and C. The research conducted proved the feasibility of using Metisevit for preventing chronic nitrate-nitrite toxicosis in piglets. This preparation caused a decrease in the concentration of nitrates, nitrites and in the level of methemoglobin in the blood of piglets. Usage of Metisevit on piglets showed normalization of the number of erythrocytes and hemoglobin in the blood on the 10th day, and normalization of ASAT and ALAT on 30th and 90th days. The mechanism of

  20. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance.

    Science.gov (United States)

    Glaister, Mark; Pattison, John R; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul

    2015-01-01

    The aim of this study was to examine the acute supplementation effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. Using a randomized, counterbalanced, double-blind Latin-square design, 14 competitive female cyclists (age: 31 ± 7 years; height: 1.69 ± 0.07 m; body mass: 61.6 ± 6.0 kg) completed four 20-km time trials on a racing bicycle fitted to a turbo trainer. Approximately 2.5 hours before each trial, subjects consumed a 70-ml dose of concentrated beetroot juice containing either 0.45 g of dietary nitrate or with the nitrate content removed (placebo). One hour before each trial, subjects consumed a capsule containing either 5 mg·kg of caffeine or maltodextrin (placebo). There was a significant effect of supplementation on power output (p = 0.001), with post hoc tests revealing higher power outputs in caffeine (205 ± 21 W) vs. nitrate (194 ± 22 W) and placebo (194 ± 25 W) trials only. Caffeine-induced improvements in power output corresponded with significantly higher measures of heart rate (caffeine: 166 ± 12 b·min vs. placebo: 159 ± 15 b·min; p = 0.02), blood lactate (caffeine: 6.54 ± 2.40 mmol·L vs. placebo: 4.50 ± 2.11 mmol·L; p caffeine: 0.95 ± 0.04 vs. placebo: 0.91 ± 0.05; p = 0.03). There were no effects (p ≥ 0.05) of supplementation on cycling cadence, rating of perceived exertion, (Equation is included in full-text article.), or integrated electromyographic activity. The results of this study support the well-established beneficial effects of caffeine supplementation on endurance performance. In contrast, acute supplementation with dietary nitrate seems to have no effect on endurance performance and adds nothing to the benefits afforded by caffeine supplementation.

  1. 21 CFR 172.175 - Sodium nitrite.

    Science.gov (United States)

    2010-04-01

    ... preservative and color fixative, with sodium nitrate, in meat-curing preparations for the home curing of meat and meat products (including poultry and wild game), with directions for use which limit the amount of sodium nitrite to not more than 200 parts per million in the finished meat product, and the amount of...

  2. Effect of luminal or circulating nitrite on colonic ion movement in the rat

    International Nuclear Information System (INIS)

    Radcliffe, B.C.; Nance, S.H.; Deakin, E.J.; Roediger, W.E.W.

    1987-01-01

    The disposition of intravenously or luminally administered nitrite across the colonic mucosa and its effect on ion movement into or from the colon was assessed in anesthetized Porton rats using the isolated colon instilled either with sodium chloride or sodium chloride with sodium butyrate. Ionic changes in the colon after intravenous injection of 10 μmol NaNO 2 were compared with those occurring after injection of 10 μmol NaCl. After intravenous administration of nitrite, both nitrite and nitrate appeared in the colonic instillate in a ratio of 1:1. Nitrite increased chloride absorption (110%) and bicarbonate production (20%) when 40 mM butyrate was included in the instillate. Net sodium absorption, measured in the whole colon, was unchanged. Intravenous nitrite had no effect on ionic movement in the absence of butyrate. When NaNO 2 was included luminally with the sodium chloride-butyrate instillate, bicarbonate production rate increased, but sodium and chloride absorption were unaffected. Nitrite concentration in the instillate decreased during the 40-min experimental period at a rate of 0.275 nmol·min -1 ·cm -2 and nitrate appeared at a rate of 0.037 nmol·min -1 ·cm -2 . The authors conclude that nitrite stimulates bicarbonate production in the colon, probably by stimulating the oxidation by butyrate, the main source of CO 2 generation by the colonic mucosa

  3. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  4. Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Gerber, Lucie; Hansen, Marie Niemann

    2015-01-01

    were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S......Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism...... and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels...

  5. A nitrate sensitive planar optode; performance and interferences

    DEFF Research Database (Denmark)

    Pedersen, Lasse; Dechesne, Arnaud; Smets, Barth F.

    2015-01-01

    We present a newly developed nitrate sensitive planar optode. It exhibits a linear response to nitrate from 1 to 50 mM at pH 8.0, a fast response time below 10 s and a good lifetime, allowing for fast two dimensional nitrate measurements over long periods of time. Interference from nitrite...

  6. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  7. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Formation of vascular S-nitrosothiols and plasma nitrates/nitrites following inhalation of diesel emissions.

    Science.gov (United States)

    Knuckles, Travis L; Buntz, Jennifer G; Paffett, Michael; Channell, Meghan; Harmon, Molly; Cherng, Tom; Lucas, Selita N; McDonald, Jacob D; Kanagy, Nancy L; Campen, Matthew J

    2011-01-01

    Epidemiological studies have associated traffic-related airborne pollution with adverse cardiovascular outcomes. Nitric oxide (NO) is a common component of fresh diesel and gasoline engine emissions that rapidly transforms both in the atmosphere and once inhaled. Because of this rapid transformation, limited information is available in terms of potential human exposures and adverse health effects. Young rats were exposed to whole diesel emissions (DE) adjusted to 300 μg/m(3) of particulate matter (containing 3.5 ppm NO) or 0, 3, or 10 ppm NO as a positive control. Animals were also pre-injected (ip) with either saline or N-acetylcysteine (NAC), a precursor of glutathione. Predictably, pure NO exposures led to a concentration-dependent increase in plasma nitrates compared to controls, which lasted for roughly 4 h postexposure. Whole DE exposure for 1 h also led to a doubling of plasma NOx. NAC injection increased the levels of plasma nitrates and nitrites (NOx) in the DE exposure group. Inhibition of nitric oxide symthase (NOS) by N(G)-nitro-L-arginine (L-NNA) did not block the rise in plasma NOx, demonstrating that the increase was entirely due to exogenous sources. Both DE and pure NO exposures paradoxically led to elevated eNOS expression in aortic tissue. Furthermore, coronary arterioles from NO-exposed animals exhibited greater constriction to endothelin-1 compared to controls, consistent with a derangement of the NOS system. Thus, NO may be an important contributor to traffic-related cardiovascular morbidity, although further research is necessary for proper hazard identification.

  9. Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat.

    Science.gov (United States)

    Lopez-Moreno, Cristina; Perez, Isabel Viera; Urbano, Ana M

    2016-03-01

    The purpose of this study is to develop the validation of a method for the analysis of certain preservatives in meat and to obtain a suitable Certified Reference Material (CRM) to achieve this task. The preservatives studied were NO3(-), NO2(-) and Cl(-) as they serve as important antimicrobial agents in meat to inhibit the growth of bacteria spoilage. The meat samples were prepared using a treatment that allowed the production of a known CRM concentration that is highly homogeneous and stable in time. The matrix effects were also studied to evaluate the influence on the analytical signal for the ions of interest, showing that the matrix influence does not affect the final result. An assessment of the signal variation in time was carried out for the ions. In this regard, although the chloride and nitrate signal remained stable for the duration of the study, the nitrite signal decreased appreciably with time. A mathematical treatment of the data gave a stable nitrite signal, obtaining a method suitable for the validation of these anions in meat. A statistical study was needed for the validation of the method, where the precision, accuracy, uncertainty and other mathematical parameters were evaluated obtaining satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of temperature and benzalkonium chloride on nitrate reduction.

    Science.gov (United States)

    Hajaya, Malek G; Tezel, Ulas; Pavlostathis, Spyros G

    2011-04-01

    The effect of temperature and benzalkonium chloride (BAC) on nitrate reduction was investigated in batch assays using a mixed nitrate reducing culture. Nitrate was transformed completely, mainly through denitrification, to dinitrogen at 5, 10, 15 and 22 °C. In the absence of BAC, reduction of individual nitrogen oxides had different susceptibility to temperature and transient nitrite accumulation was observed at low temperatures. When the effect of BAC was tested up to 100 mg/L from 5 to 22 °C, denitrification was inhibited at and above 50mg BAC/L with transient nitrite accumulation at all temperatures. The effect of BAC was described by a competitive inhibition model. Nitrite reduction was the denitrification step most susceptible to BAC, especially at low temperatures. BAC was not degraded during the batch incubation and was mostly biomass-adsorbed. Overall, this study shows that low temperatures exacerbate the BAC inhibitory effect, which in turn is controlled by adsorption to biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Extreme nitrite tolerance in the clown knifefish Chitala ornata is linked to up-regulation of methaemoglobin reductase activity

    DEFF Research Database (Denmark)

    Le Thi Hong Gam; Jensen, Frank Bo; Damsgaard, Christian

    2017-01-01

    and fell towards control values during the last half of the exposure period. Plasma nitrate, in contrast, rose continuously, reflecting detoxification of nitrite to nitrate. MetHb generated from the reaction between nitrite and erythrocyte Hb reached 38% at day 2, but then decreased to 17% by the end......The clown knifefish is a facultative air breather, which is widely farmed in freshwater ponds in Vietnam. Here we report a very high nitrite tolerance (96h LC50 of 7.82mM) in this species and examine the effects of 1mM (LC5) and 2.5mM (LC10) ambient nitrite on haemoglobin (Hb) derivatives......, electrolyte levels, acid-base status, and total body water content during 7days of exposure. Furthermore, we tested the hypothesis that erythrocyte methaemoglobin (metHb) reductase activity is upregulated by nitrite exposure. Plasma nitrite levels increased for 2-3days but stayed below environmental levels...

  12. Nitrate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham.

    Science.gov (United States)

    Bosse Née Danz, Ramona; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-07-01

    The influence of the nitrate reductase activity of two Staphylococcus carnosus strains used as starter cultures on the formation of nitrate, nitrite and color pigments in cured raw ham was investigated. In this context, microbiological, chemical and multivariate image analyses were carried out on cured raw hams, which were injected with different brines containing either nitrite or nitrate, with or without the S. carnosus starter cultures. During processing and storage, the viable counts of staphylococci remained constant at 6.5logcfu/g in the hams inoculated with starter cultures, while the background microbiota of the hams processed without the starter cultures developed after 14days. Those cured hams inoculated with S. carnosus LTH 7036 (high nitrate reductase activity) showed the highest decrease in nitrate and high nitrite concentrations in the end product, but were still in the range of the legal European level. The hams cured with nitrate and without starter culture or with the other strain, S. carnosus LTH 3838 (low nitrate reductase activity) showed higher residual nitrate levels and a lower nitrite content in the end product. The multivariate image analysis identified spatial and temporal differences in the meat pigment profiles of the differently cured hams. The cured hams inoculated with S. carnosus LTH 3838 showed an uncured core due to a delay in pigment formation. Therefore, the selection of starter cultures based on their nitrate reductase activity is a key point in the formation of curing compounds and color pigments in cured raw ham manufacture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Makabe, Nobuyuki; Mitsui, Ryo; Hirokawa, Takeshi

    2005-08-12

    A fast and highly sensitive ion chromatographic method using monolithic ODS columns was developed for the determination of nitrite (NO2-) and nitrate (NO3-) in seawater. Two monolithic ODS columns (50 mm x 4.6 mm i.d. + 100 mm x 4.6 mm i.d.) connected in series were coated and equilibrated with 5 mM cetyltrimethylammonium chloride (CTAC) aqueous solution. The column efficiency with 0.5 M NaCl as the mobile phase did not decrease in spite of the increase in flow rate of the mobile phase. Thus, good chromatograms were obtained within 3 minutes for NO2- and NO3 in artificial seawater without interferences by coexisting ions. The detection limit (S/N = 3) with UV detection at 225 nm was 0.8 and 1.6 microg/L for NO2- and NO3-, respectively. The characteristics of the monolithic CTA(+)-coated ODS columns were discussed. The present method was successfully applied to the fast and sensitive determination of NO2- and NO3- in real seawater samples.

  14. The effect of spatial heterogeneity on nitrate reduction in soil systems

    DEFF Research Database (Denmark)

    Pedersen, Lasse Lu

    the initial inoculum size, nitrate reduction was barely affected, but DNRA increased substantially by 71%. Additionally, nitrite-, ammonium-, and nitrous oxide were sequentially produced during nitrate reduction: an initial burst of nitrite production led to DNRA, and for the microcosms which became mass...... was chemically or biochemically fixed from inert nitrogen, back into the atmosphere as inert nitrogen. Over the last century, the excess of anthropogenically fixed nitrogen has put increasing pressures on the nitrogen cycle. Nitrate is a central molecule in the nitrogen cycle. Its concentration is, on the one...... hand governed by formation by oxidation of ammonia-N, and on the other hand by removal a removal by two dissimilatory nitrate reduction processes:denitrification, in which nitrate is converted to the gaseous compounds dinitrogen and nitrous oxide, and dissimilatory nitrate reduction to ammonium, DNRA...

  15. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  16. Effect of 6-months of physical exercise on the nitrate/nitrite levels in hypertensive postmenopausal women

    Directory of Open Access Journals (Sweden)

    Moraes Camila

    2009-06-01

    Full Text Available Abstract Background Evidences have showed that the incidence of arterial hypertension is greater in postmenopausal women as compared to premenopausal. Physical inactivity has been implicated as a major contributor to weight gain and abdominal obesity in postmenopausal women and the incidence of cardiovascular disease increases dramatically after menopause. Additionally, more women than men die each year of coronary heart disease and are twice as likely as men to die within the first year after a heart attack. A healthy lifestyle has been strongly associated with the regular physical activity and evidences have shown that physically active subjects have more longevity with reduction of morbidity and mortality. Nitric oxide (NO produced by endothelial cells has been implicated in this beneficial effect with improvement of vascular relaxing and reduction in blood pressure in both laboratory animals and human. Although the effect of exercise training in the human cardiovascular system has been largely studied, the majority of these studies were predominantly conducted in men or young volunteers. Therefore, the aim of this work was to investigate the effects of 6 months of dynamic exercise training (ET on blood pressure and plasma nitrate/nitrite concentration (NOx- in hypertensive postmenopausal women. Methods Eleven volunteers were submitted to the ET consisting in 3 days a week, each session of 60 minutes during 6 months at moderate intensity (50% of heart rate reserve. Anthropometric parameters, blood pressure, NOx- concentration were measured at initial time and after ET. Results A significant reduction in both systolic and diastolic blood pressure values was seen after ET which was accompanied by markedly increase of NOx- levels (basal: 10 ± 0.9; ET: 16 ± 2 μM. Total cholesterol was significantly reduced (basal: 220 ± 38 and ET: 178 ± 22 mg/dl, whereas triglycerides levels were not modified after ET (basal: 141 ± 89 and ET: 147 ± 8 mg

  17. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  18. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows

    NARCIS (Netherlands)

    Olijhoek, D.W.; Hellwing, A.L.F.; Brask, M.; Weisbjerg, M.R.; Højberg, O.; Larsen, M.K.; Dijkstra, Jan; Erlandsen, E.J.; Lund, P.

    2016-01-01

    Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient

  19. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.; Moisy, P.

    2012-01-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with circle NO 2 radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during γ-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  20. Radiation-induced nitration of organic compounds in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Moisy, P. [CEA, Bagnols sur Ceze (France). Nuclear Energy Div.

    2012-07-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with {sup circle} NO{sup 2} radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during {gamma}-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  1. Meat and components of meat and the risk of bladder cancer in the NIH-AARP Diet and Health Study.

    Science.gov (United States)

    Ferrucci, Leah M; Sinha, Rashmi; Ward, Mary H; Graubard, Barry I; Hollenbeck, Albert R; Kilfoy, Briseis A; Schatzkin, Arthur; Michaud, Dominique S; Cross, Amanda J

    2010-09-15

    Meat could be involved in bladder carcinogenesis via multiple potentially carcinogenic meat-related compounds related to cooking and processing, including nitrate, nitrite, heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs). The authors comprehensively investigated the association between meat and meat components and bladder cancer. During 7 years of follow-up, 854 transitional cell bladder-cancer cases were identified among 300,933 men and women who had completed a validated food-frequency questionnaire in the large prospective NIH-AARP Diet and Health Study. The authors estimated intake of nitrate and nitrite from processed meat and HCAs and PAHs from cooked meat by using quantitative databases of measured values. Total dietary nitrate and nitrite were calculated based on literature values. The hazard ratios (HR) and 95% confidence intervals (CI) for red meat (HR for fifth quintile compared with first quintile, 1.22; 95% CI, 0.96-1.54; P(trend) = .07) and the HCA 2-amino-1 methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) (HR, 1.19; 95% CI, 0.95-1.48; P(trend) = .06) conferred a borderline statistically significant increased risk of bladder cancer. Positive associations were observed in the top quintile for total dietary nitrite (HR, 1.28; 95% CI, 1.02-1.61; P(trend) = .06) and nitrate plus nitrite intake from processed meat (HR, 1.29; 95% CI, 1.00-1.67; P(trend) = .11). These findings provided modest support for an increased risk of bladder cancer with total dietary nitrite and nitrate plus nitrite from processed meat. Results also suggested a positive association between red meat and PhIP and bladder carcinogenesis. © 2010 American Cancer Society.

  2. Impact of food processing and storage conditions on nitrate content in canned vegetable-based infant foods.

    Science.gov (United States)

    Tamme, T; Reinik, M; Roasto, M; Meremäe, K; Kiis, A

    2009-08-01

    The nitrate and nitrite contents were determined in canned vegetable-based infant foods of five varieties. Furthermore, changes in nitrate content during industrial processing were studied. Samples were taken from raw materials, homogenized mixtures, and final products after sterilization, and then analyzed for nitrate and nitrite content by high-pressure liquid chromatography. Processing steps preceding heat treatment, such as vegetable peeling and washing, decreased the nitrate concentrations in the range of 17 to 52%. During processing, the nitrate content in canned infant foods decreased 39 to 50%, compared with nitrate concentration in the raw-vegetable mixture. The final nitrate concentration in infant foods depends mainly on the initial nitrate content of the raw-vegetable mixture. The effect of storage time (24 and 48 h) and temperature (4 to 6 degrees C and 20 to 22 degrees C) on nitrate and nitrite content in opened canned infant-food samples was studied. After 24 h of storage at refrigerated and room temperatures, the mean nitrate content increased on average by 7 and 13%, and after 48 h of storage by 15 and 29%, respectively. The nitrite content in all analyzed samples was below the quantification limit. Storage requirements of industrial manufacturers must be followed strictly. Opened can foods, stored under refrigerated conditions, have to be consumed within 2 days, as recommended by manufacturers. The infant-food producers must pay more attention to the quality of raw materials. Nitrate content analyses should be added as compulsory tests to the quality assurance programs.

  3. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets

    NARCIS (Netherlands)

    Hulshof, R.B.A.; Berndt, A.; Gerrits, W.J.J.; Dijkstra, J.; Zijderveld, van S.M.; Newbold, J.R.; Perdok, H.B.

    2012-01-01

    The objective of this study was to determine the effect of dietary nitrate on methane emission and rumen fermentation parameters in Nellore × Guzera (Bos indicus) beef cattle fed a sugarcane based diet. The experiment was conducted with 16 steers weighing 283 ± 49 kg (mean ± SD), 6 rumen cannulated

  4. Inhibition of nitrate stress corrosion cracking of mild steel in nuclear process wastes

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    The concentration of hydroxide and nitrite ions necessary to prevent crack growth in A-285-B steel exposed to waste solutions was determined by the systematic testing of solutions within the ranges of hydroxide, nitrate, and nitrite concentrations found in waste tanks. The relative susceptibility to SCC was assumed to be dependent on the concentrations of nitrate, nitrite, and hydroxyl ions; the other components were assumed to have little effect on cracking. All of the tests were done at 97 0 C, with specimens loaded initially to an effective stress intensity of 45 ksi √in. Both the temperature of exposure and the initial stress intensity create conditions more severe than would normally be found in the waste tanks. All specimens were exposed for a minimum of 1000 hours. Results showed that the aggressiveness of the solutions increased with increasing nitrate ion concentration. For example, cracks grew in 5M NO 3 - + 0.3M NO 2 - , but not in 1.5M NO 3 - + 0.3M NO 2 - . Also, the solutions causing crack growth within the range of compositions found in the waste tank were concentrated in the high nitrate--low nitrite, hydroxyl ion region. Most of the results were obtained with solutions containing 5M NO 3 - and various amounts of nitrite and hydroxyl ion concentrations. (U.S.)

  5. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction.

    Science.gov (United States)

    Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C; Pretzer, Lori A; Heck, Kimberly N; Wong, Michael S

    2014-01-07

    Nitrate (NO3(-)) and nitrite (NO2(-)) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (k(cat) = 576 L g(Pd)(-1) min(-1)) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L g(Pd)(-1) min(-1)) and Pd/Al2O3 (1 wt% Pd; 76 L g(Pd)(-1) min(-1)), respectively. Accounting only for surface Pd atoms, these NPs (576 L g(surface-Pd)(-1) min(-1)) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L g(surface-Pd)(-1) min(-1)) and Pd/Al2O3 (361 L g(surface-Pd)(-1) min(-1)). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.

  6. Dietary Nitrate for Methane Mitigation Leads to Nitrous Oxide Emissions from Dairy Cows

    DEFF Research Database (Denmark)

    Petersen, Søren O; Hellwing, Anne Louise Frydendahl; Brask, Maike

    2015-01-01

    Nitrate supplements to cattle diets can reduce enteric CH4 emissions. However, if NO3- metabolism stimulates N2O emissions, this will reduce the effectiveness of dietary NO3- for CH4 mitigation. We quantified N2O emissions as part of a dairy cow feeding experiment where urea was substituted...

  7. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  8. Electrolytic treatment of liquid waste containing ammonium nitrate

    International Nuclear Information System (INIS)

    Komori, R.; Ogawa, N.; Ohtsuka, K.; Ohuchi, J.

    1981-01-01

    A study was made on the safe decomposition of ammonium nitrate, which is the main component of α-liquid waste from plutonium fuel facilities, by means of electrolytic reduction and thermal decomposition. In the first stage, ammonium nitrate is reduced to ammonium nitrite by electrolytic reduction using an electrolyser with a cation exchange membrane as a diaphragm. In the second stage, ammonium nitrite is decomposed to N 2 and H 2 O. The alkaline region and a low temperature are preferable for electrolytic reduction and the acidic region and high temperature for thermal decomposition. A basis was established for an ammonium nitrate treatment system in aqueous solution through the operation of a bench-scale unit, and the operating data obtained was applied to the basic design of a 10-m 3 /a facility. (author)

  9. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, M.; Laverman, A.M.; Keuskamp, J.A.; Laanbroek, H.J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  10. Precursor/product studies of macrophage synthesis of nitrite, nitrate and N-nitrosamines

    International Nuclear Information System (INIS)

    Iyengar, R.; Marletta, M.A.

    1987-01-01

    Previous experiments showed that nitrite, nitrate and N-nitrosamine synthesis was carried out by both stimulated macrophages (M phi) and a number of M phi cell lines. Here the authors report the precursor to NO 2 - , NO 3 - , and the source of the nitrosating agent. Previous kinetic studies established a time lag for NO 2 - /NO 3 - synthesis during which protein synthesis required for product formation occurred. Medium change after the protein synthesis phase showed that L-arginine was the only amino acid essential for the synthesis. Other precursors were homoarginine, arginine methyl ester, arginine infinity-hydroxamate, argininamide and the peptide arginine-aspartate. Glutamine, citrulline, ornithine, hydroxylamine and D-arginine were among some of the non-precursors. Canavanine though not a precursor inhibited arginine-derived NO 2 -/NO 3 - synthesis while D-arginine had no effect. When 15 N-arginine (guanido- 15 N 2 , 95%) was used, GC/MS results showed that all the NO 2 - /NO 3 - synthesized was derived exclusively from these two guanido nitrogens. Similar labeling experiments carried out in the presence of morpholine showed that the isotopic enrichment of N-nitrosomorpholine was the same as that of NO 2 - /NO 3 - synthesized, suggesting that the nitrosating agent is a common intermediate. In conclusion, NO 2 - /NO 3 - and N-nitrosomorpholine synthesis by stimulated macrophages is derived specifically from the two guanido nitrogens of arginine

  11. Design, synthesis and biological assessment of N-adamantyl, substituted adamantyl and noradamantyl phthalimidines for nitrite, TNF-α and angiogenesis inhibitory activities.

    Science.gov (United States)

    Luo, Weiming; Tweedie, David; Beedie, Shaunna L; Vargesson, Neil; Figg, William D; Greig, Nigel H; Scerba, Michael T

    2018-05-01

    A library of 15 novel and heretofore uncharacterized adamantyl and noradamantyl phthalimidines was synthesized and evaluated for neuroprotective and anti-angiogenic properties. Phthalimidine treatment in LPS-challenged cells effected reductions in levels of secreted TNF-α and nitrite relative to basal amounts. The primary SAR suggests nitration of adamantyl phthalimidines has marginal effect on TNF-α activity but promotes anti-nitrite activity; thioamide congeners retain anti-nitrite activity but are less effective reducing TNF-α. Site-specific nitration and thioamidation provided phthalimidine 24, effecting an 88.5% drop in nitrite concurrent with only a 4% drop in TNF-α. Notable anti-angiogenesis activity was observed for 20, 21 and 22. Published by Elsevier Ltd.

  12. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    Science.gov (United States)

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    International Nuclear Information System (INIS)

    Dodds, J.N.; UNOCAL, Brea, CA

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na 2 NiFe(CN) 6 , and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300 degrees C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ''hot spot'' show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions

  14. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Science.gov (United States)

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A NO way to BOLD?

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi Ching Lynn

    2013-01-01

    Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this ......Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway...... to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties....... On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual...

  16. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    -labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed......In batch experiments, we studied the isotope fractionation in N and O of dissolved nitrate during dentrification. Denitrifying strains Thauera aromatica and “Aromatoleum aromaticum strain EbN1” were grown under strictly anaerobic conditions with acetate, benzoate, and toluene as carbon sources. 18O...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  17. Study of the electroreduction of nitrate on copper in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Reyter, David [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada); Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Roue, Lionel [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada)

    2008-08-20

    The electrocatalytic activity of a Cu electrode for the electroreduction of nitrate in alkaline medium was investigated by linear sweep voltammetry at stationary and rotating disc electrodes. Nitrate-reduction products generated upon prolonged electrolyses at different potentials were quantified. In addition, adsorption phenomena associated with the nitrate electroreduction process were characterized by electrochemical quartz crystal microbalance (EQCM) experiments. This data revealed that nitrate electroreduction process strongly depends on the applied potential. Firstly, at ca. -0.9 V vs. Hg/HgO, the electroreduction of adsorbed nitrate anions to nitrite anions was identified as the rate-determining step of the nitrate electroreduction process. Between -0.9 and -1.1 V, nitrite is reduced to hydroxylamine. However, during long-term electrolyses, hydroxylamine is not detected and presumably because it is rapidly reduced to ammonia. At potential more negative than -1.1 V, nitrite is reduced to ammonia. At ca. -1.45 V, i.e. just before the hydrogen evolution reaction, the abrupt decrease of the cathodic current is due to the electrode poisoning by adsorbed hydrogen. In addition, during the first minutes of nitrate electrolysis, a decrease of the copper electrode activity was observed at the three investigated potentials (-0.9, -1.1 and -1.4 V). From polarization and EQCM measurements, this deactivation was attributed to the adsorption of nitrate-reduction products, blocking the electrode surface and slowing down the nitrate electroreduction rate. However, it was demonstrated that the Cu electrode can be reactivated by the periodic application of a square wave potential pulse at -0.5 V, which causes the desorption of poisoning species. (author)

  18. Effects of a Short-Term High-Nitrate Diet on Exercise Performance

    Directory of Open Access Journals (Sweden)

    Simone Porcelli

    2016-08-01

    Full Text Available It has been reported that nitrate supplementation can improve exercise performance. Most of the studies have used either beetroot juice or sodium nitrate as a supplement; there is lack of data on the potential ergogenic benefits of an increased dietary nitrate intake from a diet based on fruits and vegetables. Our aim was to assess whether a high-nitrate diet increases nitric oxide bioavailability and to evaluate the effects of this nutritional intervention on exercise performance. Seven healthy male subjects participated in a randomized cross-over study. They were tested before and after 6 days of a high (HND or control (CD nitrate diet (~8.2 mmol∙day−1 or ~2.9 mmol∙day−1, respectively. Plasma nitrate and nitrite concentrations were significantly higher in HND (127 ± 64 µM and 350 ± 120 nM, respectively compared to CD (23 ± 10 µM and 240 ± 100 nM, respectively. In HND (vs. CD were observed: (a a significant reduction of oxygen consumption during moderate-intensity constant work-rate cycling exercise (1.178 ± 0.141 vs. 1.269 ± 0.136 L·min−1; (b a significantly higher total muscle work during fatiguing, intermittent sub-maximal isometric knee extension (357.3 ± 176.1 vs. 253.6 ± 149.0 Nm·s·kg−1; (c an improved performance in Repeated Sprint Ability test. These findings suggest that a high-nitrate diet could be a feasible and effective strategy to improve exercise performance.

  19. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  20. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  1. Effects of different rehabilitation models on erythrocyte deformability and nitrite plus nitrate as end-products of nitric oxide levels in elderly women.

    Science.gov (United States)

    Filar-Mierzwa, Katarzyna; Wójcik, Barbara; Marchewka, Anna; Dąbrowski, Zbigniew; Superata, Jerzy; Wiśniowski, Zdzisław

    2017-12-01

    The aim of the present study was to analyze the effects of two rehabilitation protocols, dance movement therapy exercises (DMT) and general rehabilitation exercises (GRE), on erythrocyte deformability and plasma levels of nitrite plus nitrate as end products of nitric oxide (NOx) in elderly women. The study included 39 women aged 61-82 years, subjected to either GRE (n = 20) or DMT (n = 19). Women were subjected to 5-months programs of GRE and DMT, with each session lasting no longer than 45-50 min, and the intensity of exercising corresponding to no more than 40-60% of heart rate reserve. Plasma levels of NOx were determined spectrophotometrically before and at the end of the intervention. A significant increase in the total nitrate/nitrite concentration from 1.341 μmol/L to 1.590 μmol/L (7.3%) was observed in women subjected to the DMT rehabilitation program. Furthermore, an increase in erythrocyte deformability was observed in this group at shear stress 0.30. No significant difference was found between the pre- and post-rehabilitation NOx levels of women participating in the GRE program. Participation in DMT rehabilitation program might be reflected by an increase in plasma NOx levels and an improvement of erythrocyte deformability at lesser shear stress, and thus could potentially result in better vascular function. DMT should be offered to older adults, especially to persons who do not find conventional forms of rehabilitation as attractive, as they might refrain from physical activity and suffer from a faster decline in nitric oxide production. Geriatr Gerontol Int 2017; 17: 2479-2484. © 2017 Japan Geriatrics Society.

  2. Dietary exposure to benzoates (E210-E213), parabens (E214-E219), nitrites (E249-E250), nitrates (E251-E252), BHA (E320), BHT (E321) and aspartame (E951) in children less than 3 years old in France.

    Science.gov (United States)

    Mancini, F R; Paul, D; Gauvreau, J; Volatier, J L; Vin, K; Hulin, M

    2015-01-01

    This study aimed to estimate the exposure to seven additives (benzoates, parabens, nitrites, nitrates, BHA, BHT and aspartame) in children aged less than 3 years old in France. A conservative approach, combining individual consumption data with maximum permitted levels, was carried out for all the additives. More refined estimates using occurrence data obtained from products' labels (collected by the French Observatory of Food Quality) were conducted for those additives that exceeded the acceptable daily intake (ADI). Information on additives' occurrence was obtained from the food labels. When the ADI was still exceeded, the exposure estimate was further refined using measured concentration data, if available. When using the maximum permitted level (MPL), the ADI was exceeded for benzoates (1.94 mg kg(-1) bw day(-1)), nitrites (0.09 mg kg(-1) bw day(-1)) and BHA (0.39 mg kg(-1) bw day(-1)) in 25%, 54% and 20% of the entire study population respectively. The main food contributors identified with this approach were current foods as these additives are not authorised in specific infant food: vegetable soups and broths for both benzoates and BHA, delicatessen and meat for nitrites. The exposure estimate was significantly reduced when using occurrence data, but in the upper-bound scenario the ADI was still exceeded significantly by the age group 13-36 months for benzoates (2%) and BHA (1%), and by the age group 7-12 months (16%) and 13-36 months (58%) for nitrites. Measured concentration data were available exclusively for nitrites and the results obtained using these data showed that the nitrites' intake was below the ADI for all the population considered in this study. These results suggest that refinement of exposure, based on the assessment of food levels, is needed to estimate the exposure of children to BHA and benzoates for which the risk of exceeding the ADI cannot be excluded when using occurrence data.

  3. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  4. Volatile compounds and some physico-chemical properties of pastırma produced with different nitrate levels

    Directory of Open Access Journals (Sweden)

    Ahmet Akköse

    2017-08-01

    Full Text Available Objective The aim of the study was to evaluate the effects of different nitrate levels (150, 300, 450, and 600 ppm KNO3 on the volatile compounds and some other properties of pastırma. Methods Pastırma samples were produced under the controlled condition and analyses of volatile compounds, and thiobarbituric acid reactive substances (TBARS as an indicator of lipid oxidation, non-protein nitrogenous matter content as an indicator of proteolysis, color and residual nitrite were carried out on the final product. The profile of volatile compounds of pastırma samples was analyzed by gas chromatography/mass spectrometry using a solid phase microextraction. Results Nitrate level had a significant effect on pH value (p<0.05 and a very significant effect on TBARS value (p<0.01. No significant differences were determined in terms of aw value, non-protein nitrogenous substance content, color and residual nitrite between pastırma groups produced by using different nitrate levels. Nitrate level had a significant (p<0.05 or a very significant (p<0.01 effect on some volatile compounds. It was determined that the amounts and counts of volatile compounds were lower in the 450 and especially 600 ppm nitrate levels than 150 and 300 ppm nitrate levels (p<0.05. While the use of 600 ppm nitrate did not cause an increase in residual nitrite levels, the use of 150 ppm nitrate did not negatively affect the color of pastırma. However, the levels of volatile compounds decreased with an increasing level of nitrate. Conclusion The use of 600 ppm nitrate is not a risk in terms of residual nitrite in pastırma produced under controlled condition, however, this level is not suitable due to decrease in the amount of volatile compounds.

  5. Dramatic loss of comammox Nitrospira associated with long-term nitrite feeding

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Palomo, Alejandro; Dechesne, Arnaud

    Until recently, nitrification was thought to be a strict two-step process where ammonia was first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite oxidizing bacteria (NOB). Recent studies in NOB metabolism, however, have revealed that certain......, with nitrite as the main energy source. Community assembly was monitored on well-established biofilms formed on the grains of rapid sand filter (RSF) for drinking water production. RSF sand was placed in laboratory scale column bioreactors and subjected to continuous feeding of tap water spiked with NO2- (1 mg...... sequences (100% similarity to uncultured Nitrospira sp. clone KC836101 (Pester et al., 2014)). These observations indicate different behavior of Nitrospira in the absence of ammonia and point to a possible competitive advantage of canonical Nitrospira in environments where nitrite is the sole nitrogen...

  6. Dietary supplementation with selenium yeast and tea polyphenols improve growth performance and nitrite tolerance of Wuchang bream (Megalobrama amblycephala).

    Science.gov (United States)

    Long, Meng; Lin, Wang; Hou, Jie; Guo, Honghui; Li, Li; Li, Dapeng; Tang, Rong; Yang, Fan

    2017-09-01

    In order to explore the effects of dietary selenium yeast, tea polyphenols and their combination on growth of Wuchang bream (Megalobrama amblycephala) and its resistance to nitrite stress, 360 healthy Wuchang bream with initial body weight of (55.90 ± 2.60) g were randomly divided into four groups: a control group fed with basal diet and three treated groups fed with basal diets supplemented with 0.50 mg/kg selenium yeast, 50 mg/kg tea polyphenols, and the combination of 0.50 mg/kg selenium yeast and 50 mg/kg tea polyphenols, respectively. After 60 d of feeding, the growth performance of Wuchang bream was measured. Then 25 fish per tank were exposed to nitrite stress of 15.0 mg/L. The serum stress hormones, liver histology and hepatic antioxidant responses were evaluated before nitrite exposure (0 h) and at 6, 12, 24, 48 and 96 h after exposure. The results showed that before nitrite exposure, compared with the control, the weight gain, specific growth rate, liver total antioxidant capacity, the activities and transcriptional levels of hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in the selenium yeast and combination groups were significantly increased, while feed conversion rate was decreased significantly, which suggested that the combined use of selenium yeast and tea polyphenols as well as the single selenium yeast supplementation improved growth performance and enhanced antioxidant capacity in fish. After nitrite exposure, compared with the control, liver total antioxidant capacity as well as the activities and transcription levels of catalase superoxide dismutase and glutathione peroxidase in three treatment groups were significantly increased in varying degrees whereas serum cortisol contents and liver malondialdehyde levels were decreased significantly. By contrast, the combined use of selenium yeast and tea polyphenols was more effective than the single supplementation with selenium yeast or tea polyphenols. In

  7. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  8. Physicochemical, nutritional, and sensory analyses of a nitrate-enriched beetroot gel and its effects on plasmatic nitric oxide and blood pressure

    Directory of Open Access Journals (Sweden)

    Davi Vieira Teixeira da Silva

    2016-01-01

    Full Text Available Background: Beetroot (Beta vulgaris L. is a dietary source of natural antioxidants and inorganic nitrate (NO3–. It is well known that the content of antioxidant compounds and inorganic nitrate in beetroot can reduce blood pressure (BP and the risk of adverse cardiovascular effects. Objective: The aim of the present study was to formulate a beetroot gel to supplement dietary nitrate and antioxidant compounds able to cause beneficial health effects following acute administration. Design and subjects: A beetroot juice produced from Beta vulgaris L., without any chemical additives, was used. The juice was evaluated by physicochemical and microbiological parameters. The sample was tested in five healthy subjects (four males and one female, ingesting 100 g of beetroot gel. Results: The formulated gel was nitrate enriched and contained carbohydrates, fibers, saponins, and phenolic compounds. The formulated gels possess high total antioxidant activity and showed adequate rheological properties, such as high viscosity and pleasant texture. The consumer acceptance test for flavor, texture, and overall acceptability of beetroot gel flavorized with synthetic orange flavor had a sensory quality score >6.6. The effects of acute inorganic nitrate supplementation on nitric oxide production and BP of five healthy subjects were evaluated. The consumption of beetroot gel increased plasma nitrite threefold after 60 min of ingestion and decreased systolic BP (−6.2 mm Hg, diastolic BP (−5.2 mm Hg, and heart rate (−7 bpm.

  9. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham.

    Science.gov (United States)

    Sindelar, J J; Cordray, J C; Sebranek, J G; Love, J A; Ahn, D U

    2007-08-01

    Vegetable juice powder (VJP) and a starter culture containing Staphylococcus carnosus have been identified as necessary ingredients for the manufacture of uncured, no-nitrate/nitrite-added meat products with quality and sensory attributes similar to traditional cured products. The objectives of this study were to determine the effects of varying concentrations of VJP and incubation time (MIN-HOLD) on quality characteristics, including lipid oxidation, color, and cured meat pigment concentrations, of ham over a 90-d storage period, compare residual nitrate and nitrite content, and determine if differences exist in sensory properties of finished products. Four ham treatments (TRT) (TRT 1: 0.20% VJP, 0 MIN-HOLD; TRT 2: 0.20% VJP, 120 MIN-HOLD; TRT 3: 0.35% VJP, 0 MIN-HOLD; TRT 4: 0.35% VJP, 120 MIN-HOLD) and a sodium nitrite-added control (C) were used for this study. No differences (P > 0.05) were observed between TRTs and C for CIE L*, a*, b*, and cured color measured by reflectance ratio. Lipid oxidation (TBARS) for combined TRTs and C revealed little change over time while the C had less (P 0.05) were reported for cured pigment concentration between TRTs and C. Trained sensory panel intensity ratings for ham and vegetable aroma, and flavor, color, and firmness showed that a high concentration (0.35%) of VJP resulted in the highest scores for undesirable vegetable aroma and flavor. Treatment combinations with a low concentration (0.20%) of VJP were comparable to the C for all sensory attributes.

  10. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  11. Disguised as a sulfate reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    DEFF Research Database (Denmark)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa Jean Lehsau

    2017-01-01

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D...... of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane......-anchored nitrite reductase....

  12. Performance of denitrifying microbial fuel cell with biocathode over nitrite

    Directory of Open Access Journals (Sweden)

    Zhao eHuimin

    2016-03-01

    Full Text Available Microbial fuel cell (MFC with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN removal rate of 54.80±0.01 g m-3 d-1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode .

  13. Acute Effects of Nitrate-Rich Beetroot Juice on Blood Pressure, Hemostasis and Vascular Inflammation Markers in Healthy Older Adults: A Randomized, Placebo-Controlled Crossover Study

    Directory of Open Access Journals (Sweden)

    Kyle Raubenheimer

    2017-11-01

    Full Text Available Aging is associated with a vasoconstrictive, pro-coagulant, and pro-inflammatory profile of arteries and a decline in the bioavailability of the endothelium-derived molecule nitric oxide. Dietary nitrate elicits vasodilatory, anti-coagulant and anti-inflammatory effects in younger individuals, but little is known about whether these benefits are evident in older adults. We investigated the effects of 140 mL of nitrate-rich (HI-NI; containing 12.9 mmol nitrate versus nitrate-depleted beetroot juice (LO-NI; containing ≤0.04 mmol nitrate on blood pressure, blood coagulation, vascular inflammation markers, plasma nitrate and nitrite before, and 3 h and 6 h after ingestion in healthy older adults (five males, seven females, mean age: 64 years, age range: 57–71 years in a randomized, placebo-controlled, crossover study. Plasma nitrate and nitrite increased 3 and 6 h after HI-NI ingestion (p < 0.05. Systolic, diastolic and mean arterial blood pressure decreased 3 h relative to baseline after HI-NI ingestion only (p < 0.05. The number of blood monocyte-platelet aggregates decreased 3 h after HI-NI intake (p < 0.05, indicating reduced platelet activation. The number of blood CD11b-expressing granulocytes decreased 3 h following HI-NI beetroot juice intake (p < 0.05, suggesting a shift toward an anti-adhesive granulocyte phenotype. Numbers of blood CD14++CD16+ intermediate monocyte subtypes slightly increased 6 h after HI-NI beetroot juice ingestion (p < 0.05, but the clinical implications of this response are currently unclear. These findings provide new evidence for the acute effects of nitrate-rich beetroot juice on circulating immune cells and platelets. Further long-term research is warranted to determine if these effects reduce the risk of developing hypertension and vascular inflammation with aging.

  14. Nitrate in leafy green vegetables and estimated intake | Brkić ...

    African Journals Online (AJOL)

    Background: Vegetarian diets are rich in vegetables. Green leafy vegetables are foods that contain considerable amounts of nitrate, which can have both positive and negative effects on the human body. Their potential carcinogenicity and toxicity have been proven, particularly after the reduction of nitrate to nitrite itself or ...

  15. Nitrate intake does not influence bladder cancer risk: The Netherlands Cohort Study

    NARCIS (Netherlands)

    Zeegers, M.P.; Selen, R.F.M.; Kleinjans, J.C.S.; Goldbohm, R.A.; Brandt, P.A. van den

    2006-01-01

    Objectives: N-nitroso compounds, endogenously formed from nitrate-derived nitrite, are suspected to be important bladder carcinogens. However, the association between nitrate exposure from food or drinking water and bladder cancer has not been substantially investigated in epidemiologic studies.

  16. Plasma levels of nitrate and risk of prostate cancer: a prospective study.

    Science.gov (United States)

    Wu, Tianying; Wang, Yushan; Ho, Shuk-Mei; Giovannucci, Edward

    2013-07-01

    Nitrate and nitrite supplements have recently been shown to improve cardiovascular health, but there is concern that these supplements could contribute to the development of cancer. Previous small, cross-sectional studies reported positive associations between circulating nitrate/nitrite levels and cancer. Prospective studies examining the association between plasma nitrate and cancer, especially prostate cancer, are lacking. We conducted a nested case-control study within the Health Professionals Follow-up Study. Baseline blood samples were collected in 1994, and incident cases of prostate cancer were identified from 1997 to 2005. Baseline plasma levels of nitrate were measured in the 630 cases and 630 matched controls. We have found that baseline levels of plasma nitrate were not associated with risk of prostate cancer. Compared to quintile 1, the relative risk from quintiles 2 to 5 were 1.13 [95% confidence interval (CI), 0.78-1.63], 0.93 (95% CI, 0.63-1.38), 0.95 (95% CI, 0.65-1.39), and 0.99 (95% CI, 0.68-1.48); Ptrend was 0.9 after adjustment of multivariate risk factors. When analyses were restricted to men fasting more than 6 hours, the trend was similar. Furthermore, plasma nitrate seemed to be inversely associated with advanced-stage prostate cancer. The relative risk across extreme quartiles was 0.44 (95% CI, 0.17-1.12; Ptrend = 0.07) for the whole dataset and 0.30 (95% CI, 0.09-0.99; Ptrend = 0.05) for the fasting dataset. In summary, we did not find an increased risk of prostate cancer associated with higher plasma nitrate levels. A potential protective association between nitrate and aggressive forms of prostate cancer requires confirmation. Nitrate-nitrite-nitric oxide pathway has emerged as a new therapeutic pathway for chronic diseases. The results of this study certainly merit replications in other prospective studies.

  17. Suspected nitrite poisoning in pigs caused by Capsella bursa-pastoris (L. Medik. ('herderstassie', shepherd's purse : case report

    Directory of Open Access Journals (Sweden)

    W.J. Wiese

    2001-07-01

    Full Text Available Nitrite poisoning in pigs was suspected when 4 of 18 pigs died in a piggery near Ellisras in the Northern Province. The pigs showed typical brownish discolouration of the blood at autopsy. It was established that they ingested vegetable tops and weeds from the adjacent garden as part of their daily ration. Of the available plants, only Capsella bursa-pastoris contained nitrites. The drinking water and some of the other plants tested positive for nitrates but not for nitrites. This is the first report of suspected nitrite poisoning in pigs caused by Capsella bursa-pastoris.

  18. Heat Production by the Denitrifying Bacterium Pseudomonas fluorescens and the Dissimilatory Ammonium-Producing Bacterium Pseudomonas putrefaciens during Anaerobic Growth with Nitrate as the Electron Acceptor

    OpenAIRE

    Samuelsson, M.-O.; Cadez, P.; Gustafsson, L.

    1988-01-01

    The heat production rate and the simultaneous nitrate consumption and production and consumption of nitrite and nitrous oxide were monitored during the anaerobic growth of two types of dissimilatory nitrate reducers. Pseudomonas fluorescens, a denitrifier, consumed nitrate and accumulated small amounts of nitrite or nitrous oxide. The heat production rate increased steadily during the course of nitrate consumption and decreased rapidly concomitant with the depletion of the electron acceptors....

  19. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  20. Comparison of pre-workout nitric oxide stimulating dietary supplements on skeletal muscle oxygen saturation, blood nitrate/nitrite, lipid peroxidation, and upper body exercise performance in resistance trained men

    Directory of Open Access Journals (Sweden)

    Canale Robert E

    2010-05-01

    Full Text Available Abstract Background We compared Glycine Propionyl-L-Carnitine (GlycoCarn® and three different pre-workout nutritional supplements on measures of skeletal muscle oxygen saturation (StO2, blood nitrate/nitrite (NOx, lactate (HLa, malondialdehyde (MDA, and exercise performance in men. Methods Using a randomized, double-blind, cross-over design, 19 resistance trained men performed tests of muscular power (bench press throws and endurance (10 sets of bench press to muscular failure. A placebo, GlycoCarn®, or one of three dietary supplements (SUPP1, SUPP2, SUPP3 was consumed prior to exercise, with one week separating conditions. Blood was collected before receiving the condition and immediately after exercise. StO2 was measured during the endurance test using Near Infrared Spectroscopy. Heart rate (HR and rating of perceived exertion (RPE were determined at the end of each set. Results A condition effect was noted for StO2 at the start of exercise (p = 0.02, with GlycoCarn® higher than SUPP2. A condition effect was also noted for StO2 at the end of exercise (p = 0.003, with SUPP1 lower than all other conditions. No statistically significant interaction, condition, or time effects were noted for NOx or MDA (p > 0.05; however, MDA decreased 13.7% with GlycoCarn® and increased in all other conditions. Only a time effect was noted for HLa (p 0.05; however, GlycoCarn® resulted in a statistically insignificant greater total volume load compared to the placebo (3.3%, SUPP1 (4.2%, SUPP2 (2.5%, and SUPP3 (4.6%. Conclusion None of the products tested resulted in favorable changes in our chosen outcome measures, with the exception of GlycoCarn® in terms of higher StO2 at the start of exercise. GlycoCarn® resulted in a 13.7% decrease in MDA from pre- to post-exercise and yielded a non-significant but greater total volume load compared to all other conditions. These data indicate that 1 a single ingredient (GlycoCarn® can provide similar practical benefit

  1. Genetic control of nitrate assimilation in Klebsiella oxytoca. Final technical report; FINAL

    International Nuclear Information System (INIS)

    Stewart, Valley J.

    2001-01-01

    Some microorganisms can use nitrate as the sole source of nitrogen for biosynthesis. This project focused on the bacterium Klebsiella oxytoca, an enterobacterium found in soil and water. Mutagenesis and molecular cloning identified the nasFEDCBA operon encoding enzymes for the uptake and reduction of nitrate and nitrite to ammonium, and the adjacent nasR regulatory gene. Analysis of nasF operon expression revealed that transcription is activated by the Ntr (general nitrogen regulation ) system in response to nitrogen limitation. Transcription antitermination control in response to nitrate and nitrite is mediated by the NasR protein. Additional work established that the NasR protein is an RNA-binding protein that interacts with nasF operon leader RNA to control transcription readthrough

  2. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  3. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  4. Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation

    DEFF Research Database (Denmark)

    Ma, Yunjie; Domingo Felez, Carlos; Plósz, Benedek G.

    2017-01-01

    . On the basis of dissolved oxygen (DO), ammonium, nitrite, and nitrate profiles within the biofilm and in the bulk, a 1-dimensional nitrifying biofilm model was developed and calibrated. The model was utilized to explore the potential mechanisms of NOB suppression associated with intermittent aeration...... nitritation, strategies to suppress nitrite-oxidizing bacteria (NOB) are needed, which are ideally grounded on an understanding of underlying mechanisms. In this study, a nitrifying MABR was operated under intermittent aeration. During eight months of operation, AOB dominated, while NOB were suppressed...... during intermittent aeration was mostly explained by periodic inhibition caused by free ammonia due to periodic transient pH upshifts. Dissolved oxygen limitation did not govern NOB suppression. Different intermittent aeration strategies were then evaluated for nitritation success in intermittently...

  5. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate.

    Directory of Open Access Journals (Sweden)

    Thomas E Hanson

    2013-07-01

    Full Text Available The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e. whether it is retained as ammonium (ammonification or lost as nitrous oxide or dinitrogen (denitrification. Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM pathway. Instead of a classical ammonia-forming nitrite reductase that performs a 6 electron-transfer process, the pathway is thought to employ two catalytic redox modules operating in sequence: the reverse-HURM reducing nitrite to hydroxylamine followed by a hydroxylamine reductase that converts hydroxylamine to ammonium. Experiments were performed on Nautilia profundicola strain AmH, whose genome sequence led to the reverse-HURM pathway proposal. N. profundicola produced ammonium from nitrate, which was assimilated into biomass. Furthermore, genes encoding the catalysts of the reverse-HURM pathway were preferentially expressed during growth of N. profundicola on nitrate as an electron acceptor relative to cultures grown on polysulfide as an electron acceptor. Finally, nitrate-grown cells of N. profundicola were able to rapidly and stoichiometrically convert high concentrations of hydroxylamine to ammonium in resting cell assays. These experiments are consistent with the reverse-HURM pathway and a free hydroxylamine intermediate, but could not definitively exclude direct nitrite reduction to ammonium by the reverse-HURM with hydroxylamine as an off-pathway product. N. profundicola and related organisms are models for a new pathway of nitrate ammonification that may have global impact due to the wide distribution of these organisms in hypoxic environments and symbiotic or pathogenic associations with animal hosts.

  6. Stable-isotope dilution GC-MS approach for nitrite quantification in human whole blood, erythrocytes, and plasma using pentafluorobenzyl bromide derivatization: nitrite distribution in human blood.

    Science.gov (United States)

    Schwarz, Alexandra; Modun, Darko; Heusser, Karsten; Tank, Jens; Gutzki, Frank-Mathias; Mitschke, Anja; Jordan, Jens; Tsikas, Dimitrios

    2011-05-15

    Previously, we reported on the usefulness of pentafluorobenzyl bromide (PFB-Br) for the simultaneous derivatization and quantitative determination of nitrite and nitrate in various biological fluids by GC-MS using their (15)N-labelled analogues as internal standards. As nitrite may be distributed unevenly in plasma and blood cells, its quantification in whole blood rather than in plasma or serum may be the most appropriate approach to determine nitrite concentration in the circulation. So far, GC-MS methods based on PFB-Br derivatization failed to measure nitrite in whole blood and erythrocytes because of rapid nitrite loss by oxidation and other unknown reactions during derivatization. The present article reports optimized and validated procedures for sample preparation and nitrite derivatization which allow for reliable quantification of nitrite in human whole blood and erythrocytes. Essential measures for stabilizing nitrite in these samples include sample cooling (0-4°C), hemoglobin (Hb) removal by precipitation with acetone and short derivatization of the Hb-free supernatant (5 min, 50°C). Potassium ferricyanide (K(3)Fe(CN)(6)) is useful in preventing Hb-caused nitrite loss, however, this chemical is not absolutely required in the present method. Our results show that accurate GC-MS quantification of nitrite as PFB derivative is feasible virtually in every biological matrix with similar accuracy and precision. In EDTA-anticoagulated venous blood of 10 healthy young volunteers, endogenous nitrite concentration was measured to be 486±280 nM in whole blood, 672±496 nM in plasma (C(P)), and 620±350 nM in erythrocytes (C(E)). The C(E)-to-C(P) ratio was 0.993±0.188 indicating almost even distribution of endogenous nitrite between plasma and erythrocytes. By contrast, the major fraction of nitrite added to whole blood remained in plasma. The present GC-MS method is useful to investigate distribution and metabolism of endogenous and exogenous nitrite in blood

  7. Headaches: a Review of the Role of Dietary Factors.

    Science.gov (United States)

    Zaeem, Zoya; Zhou, Lily; Dilli, Esma

    2016-11-01

    Dietary triggers are commonly reported by patients with a variety of headaches, particularly those with migraines. The presence of any specific dietary trigger in migraine patients varies from 10 to 64 % depending on study population and methodology. Some foods trigger headache within an hour while others develop within 12 h post ingestion. Alcohol (especially red wine and beer), chocolate, caffeine, dairy products such as aged cheese, food preservatives with nitrates and nitrites, monosodium glutamate (MSG), and artificial sweeteners such as aspartame have all been studied as migraine triggers in the past. This review focuses the evidence linking these compounds to headache and examines the prevalence of these triggers from prior population-based studies. Recent literature surrounding headache related to fasting and weight loss as well as elimination diets based on serum food antibody testing will also be summarized to help physicians recommend low-risk, non-pharmacological adjunctive therapies for patients with debilitating headaches.

  8. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  9. Nitrate contamination of drinking water: evaluation of genotoxic risk in human populations.

    OpenAIRE

    Kleinjans, J C; Albering, H J; Marx, A; van Maanen, J M; van Agen, B; ten Hoor, F; Swaen, G M; Mertens, P L

    1991-01-01

    Nitrate contamination of drinking water implies a genotoxic risk to man due to the endogenous formation of carcinogenic N-nitroso compounds from nitrate-derived nitrite. Thus far, epidemiological studies have presented conflicting results on the relation of drinking water nitrate levels with gastric cancer incidence. This uncertainty becomes of relevance in view of the steadily increasing nitrate levels in regular drinking water supplies. In an attempt to apply genetic biomarker analysis to i...

  10. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    Science.gov (United States)

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  11. Hydrogen anode for nitrate waste destruction. Revision 2

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Kalu, E.E.; White, R.E.

    1996-01-01

    Large quantities of radioactive and hazardous wastes have been generated from nuclear materials production during the past fifty years. Processes are under evaluation to separate the high level radioactive species from the waste and store them permanently in the form of durable solids. The schemes proposed will separate the high level radioactive components, cesium-137 and strontium-90, into a small volume for incorporation into a glass wasteform. The remaining low-level radioactive waste contain species such as nitrites and nitrates that are capable of contaminating ground water. Electrochemical destruction of the nitrate and nitrite before permanent storage has been proposed. Not only will the electrochemical processing destroy these species, the volume of the waste could also be reduced. The use of a hydrogen gas-fed anode and an acid anolyte in an electrochemical cell used to destroy nitrate was demonstrated. A mixed Na 2 SO 4 /H 2 SO 4 anolyte was shown to favor the nitrate cell performance, and the generation of a higher hydroxide ion concentration in the catholyte. The suggested scheme is an apparent method of sodium sulfate disposal and a possible means through which ammonia (to ammonium sulfate, fertilizer) and hydrogen gas could be recycled through the anode side of the reactor. This could result in a substantial savings in the operation of a nitrate destruction cell

  12. Effect of Electrolytes on the Adsorption of Nitrite and Nitrate from ...

    African Journals Online (AJOL)

    Michael Horsfall

    presence of alkaline salts (Na3PO4, CH3COONa; 95.5 per cent) and neutral chloride salts (NaCl, MgCl2; 90.4 per cent) compared to ... The charcoal was freed off its residual nitrite and ..... separation factor, Rl, over the test concentrations have.

  13. The effects of elevated environmental CO2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata

    DEFF Research Database (Denmark)

    Le Thi Hong Gam; Jensen, Frank Bo; Do Thi Thanh Huong

    2018-01-01

    hypercapnia) and nitrite for 96 h. Blood was sampled to measure acid-base status, haemoglobin derivatives and plasma ions. Plasma nitrite increased for 48 h, but levels stayed below the exposure concentration, and subsequently decreased as a result of nitrite detoxification to nitrate. The total uptake......Nitrite and carbon dioxide are common environmental contaminants in the intensive aquaculture ponds used to farm clown knifefish (Chitala ornata) in the Mekong delta, Vietnam. Here we tested the hypothesis that hypercapnia reduces nitrite uptake across the gills, because pH regulation will reduce...... chloride uptake and hence nitrite uptake as the two ions compete for the same transport route via the branchial HCO3-/Cl- exchanger. Fish fitted with arterial catheters were exposed to normocapnic/normoxic water (control), nitrite (1 mM), hypercapnia (21 mmHg CO2), or combined hypercapnia (acclimated...

  14. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sjannie, E-mail: sjannie.lefevre@biology.au.dk [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Jensen, Frank B. [Department of Biology, University of Southern Denmark, Odense (Denmark); Huong, Do.T.T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Wang, Tobias [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Phuong, Nguyen T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Bayley, Mark [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark)

    2011-07-15

    In this study we investigated nitrite (NO{sub 2}{sup -}) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO{sub 2max}) and critical swimming speed (U{sub crit}) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC{sub 50} of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO{sub 2max} and U{sub crit}. The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO{sub 2max} and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  15. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    Science.gov (United States)

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    International Nuclear Information System (INIS)

    Lefevre, Sjannie; Jensen, Frank B.; Huong, Do.T.T.; Wang, Tobias; Phuong, Nguyen T.; Bayley, Mark

    2011-01-01

    In this study we investigated nitrite (NO 2 - ) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO 2max ) and critical swimming speed (U crit ) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC 50 of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO 2max and U crit . The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO 2max and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  17. Biological nitrate removal processes from drinking water supply-a review.

    Science.gov (United States)

    Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali

    2013-12-19

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.

  18. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    Science.gov (United States)

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mechanism of pitting corrosion prevention by nitrite in carbon steel exposed to dilute salt solutions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Zapp, P.E.; Zee, J. van.

    1998-01-01

    'The overall goal of this project is to develop a fundamental understanding of the role of nitrite in preventing the breakdown of protective oxide(s) on carbon steel and the onset of pitting. Pitting corrosion of carbon steel exposed to dilute alkaline salt solutions can be induced by nitrate, sulfate, and chloride ions and is prevented by sufficient concentration of nitrite. A significant example of this material/electrolyte system is the storage and processing of DOE''s high-level radioactive liquid waste in carbon steel tanks. Added nitrite in the waste has a considerable downstream impact on the immobilization of the waste in a stable glass form. Waste tank integrity and glass production efficiency may benefit from the fundamental understanding of nitrite''s role in preventing pitting. This report summarizes progress after approximately six months of effort in this three-year EMSP project. Initial experimental and theoretical work has focused on the electrochemical behavior of carbon steel in simplified non-radioactive solutions that simulate complex dilute radioactive waste solutions. These solutions contain corrosion-inducing species such as nitrate and chloride and the corrosion-inhibiting nitrite at moderately alkaline pHs. The electrochemical behavior of interest here is that of the open-circuit potential of the steel specimen at equilibrium in the experimental electrolyte and the measures of the steel''s passivity and passivity breakdown.'

  20. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Wunderlich, Anja A.L.

    2012-01-01

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  1. Reaction mixtures formed by nitrite and selected sulfa-drugs showed mutagenicity in acidic medium

    Directory of Open Access Journals (Sweden)

    Claudia Trossero

    2009-01-01

    Full Text Available Nitrite, which is present in preserved meat and can be produced in the oral cavity by reduction of nitrate taken from vegetables, could react in stomach with nitrosatable drugs, giving genotoxic-carcinogenic N-nitroso compounds (NOC. The mutagenicity of reaction mixtures formed by sodium nitrite and selected sulfa-drugs (sulfathiazole, HST; phtalylsulfathiazole, PhST; complex Co(II-sulfathiazole, Co(II-ST in acidic medium was evaluated using the Salmonella typhimurium reverse mutation assay (Ames test, with TA98 and TA 100 strains. The reactions were carried out at room temperature, with a mole ratio [nitrite]/[sulfa-drug] > 1. The three reaction mixtures showed mutagenic effects in the considered range.

  2. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    Tormo Ferrero, M.J.

    1977-01-01

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolisis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (author) [es

  3. Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms

    NARCIS (Netherlands)

    Koopman, J.E.; Buijs, M.J.; Brandt, B.W.; Keijser, B.J.F.; Crielaard, W.; Zaura, E.

    2016-01-01

    Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral

  4. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    Tormo Ferrero, M. J.

    1977-01-01

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolysis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (Author) 22 refs

  5. Transformation of benzalkonium chloride under nitrate reducing conditions.

    Science.gov (United States)

    Tezel, Ulas; Pavlostathis, Spyros G

    2009-03-01

    The effect and transformation potential of benzalkonium chlorides (BAC) under nitrate reducing conditions were investigated at concentrations up to 100 mg/L in batch assays using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (DNRN) were observed at BAC concentrations up to 25 mg/L At and above 50 mg BAC/L, DNRA was inhibited and DNRN was incomplete resulting in accumulation of nitrous oxide. Long-term inhibition of methanogenesis and accumulation of volatile fatty acids were observed at and above 50 mg BAC/L Over 99% of the added BAC was recovered from all cultures except the one amended with 100 mg BAC/L where 37% of the initially added BAC was transformed during the 100 day incubation period. Abiotic and biotic assays performed with 100 mg/L of BAC and 5 mM (in the liquid phase) of either nitrate, nitrite, or nitric oxide demonstrated that BAC transformation was abiotic and followed the modified Hofmann degradation pathway, i.e., bimolecular nucleophilic substitution with nitrite. Alkyl dimethyl amines (tertiary amines) were produced at equamolar levels to BAC transformed, but were not further degraded. This is the first report demonstrating the transformation of BAC under nitrate reducing conditions and elucidating the BAC transformation pathway.

  6. Nitrate reduction in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Boesen, Carsten; Kristiansen, Henning

    1991-01-01

    of total dissolved ions in the NO3- free anoxic zone indicates the downward migration of contaminants and that active nitrate reduction is taking place. Nitrate is apparently reduced to N2 because both nitrite and ammonia are absent or found at very low concentrations. Possible electron donors......Nitrate distribution and reduction processes were investigated in an unconfined sandy aquifer of Quaternary age. Groundwater chemistry was studied in a series of eight multilevel samplers along a flow line, deriving water from both arable and forested land. Results show that plumes of nitrate...... processes of O2 and NO3- occur at rates that are fast compared to the rate of downward water transport. Nitrate-contaminated groundwater contains total contents of dissolved ions that are two to four times higher than in groundwater derived from the forested area. The persistence of the high content...

  7. The Effect of Influent Characteristics and Operational Conditions over the Performance and Microbial Community Structure of Partial Nitritation Reactors

    Directory of Open Access Journals (Sweden)

    Alejandro Rodriguez-Sanchez

    2014-06-01

    Full Text Available Nitrogen is a main contaminant of wastewater worldwide. Novel processes for nitrogen removal have been developed over the last several decades. One of these is the partial nitritation process. This process includes the oxidation of ammonium to nitrite without the generation of nitrate. The partial nitritation process has several advantages over traditional nitrification-denitrification processes for nitrogen removal from wastewaters. In addition, partial nitritation is required for anammox elimination of nitrogen from wastewater. Partial nitritation is affected by operational conditions and substances present in the influent, such as quinolone antibiotics. In this review, the impact that several operational conditions, such as temperature, pH, dissolved oxygen concentration, hydraulic retention time and solids retention time, have over the partial nitritation process is covered. The effect of quinolone antibiotics and other emerging contaminants are discussed. Finally, future perspectives for the partial nitritation process are commented upon.

  8. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes {sup 15}N/{sup 14}N and {sup 18}O/{sup 16}O in dissolved nitrate during microbial dentrification in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Anja A.L.

    2012-11-02

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  9. Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers.

    Science.gov (United States)

    Liu, Alex H; Bondonno, Catherine P; Croft, Kevin D; Puddey, Ian B; Woodman, Richard J; Rich, Lisa; Ward, Natalie C; Vita, Joseph A; Hodgson, Jonathan M

    2013-11-30

    An increase in nitrate intake can augment circulating nitrite and nitric oxide. This may lead to lower blood pressure and improved vascular function. Green leafy vegetables, such as spinach, are rich sources of nitrate. We aimed to assess the acute effects of a nitrate-rich meal containing spinach on arterial stiffness and blood pressure in healthy men and women. Twenty-six participants aged 38-69years were recruited to a randomized controlled cross-over trial. The acute effects of two energy-matched (2000kJ) meals, administered in random order, were compared. The meals were either high nitrate (220mg of nitrate derived from spinach [spinach]) or low nitrate [control]. Outcome measurements were performed pre-meal and at specific time points up to 210min post meal. Spinach resulted in an eightfold increase in salivary nitrite and a sevenfold increase in salivary nitrate concentrations from pre-meal (Pnitrate-rich meal can lower systolic blood pressure and pulse pressure and increase large artery compliance acutely in healthy men and women. If sustained, these effects could contribute to better cardiovascular health. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation.

    Science.gov (United States)

    Lillo, Cathrine; Lea, Unni S; Leydecker, Marie-Thérèse; Meyer, Christian

    2003-09-01

    In wild-type Nicotiana plumbaginifolia and other higher plants, nitrate reductase (NR) is rapidly inactivated/activated in response to dark/light transitions. Inactivation of NR is believed to be caused by phosphorylation at a special conserved regulatory Ser residue, Ser 521, and interactions with divalent cations and inhibitory 14-3-3 proteins. A transgenic N. plumbaginifolia line (S(521)) was constructed where the Ser 521 had been changed by site-directed mutagenesis into Asp. This mutation resulted in complete abolishment of inactivation in response to light/dark transitions or other treatments known to inactivate NR. During prolonged darkness, NR in wild-type plants is in the inactivated form, whereas NR in the S(521) line is always in the active form. Differences in degradation rate between NR from S(521) and lines with non-mutated NR were not found. Kinetic constants like Km values for NADH and NO3(-) were not changed, but a slightly different pH profile was observed for mutated NR as opposed to non-mutated NR. Under optimal growth conditions, the phenotype of the S(521) plants was not different from the wild type (WT). However, when plants were irrigated with high nitrate concentration, 150 mM, the transgenic plants accumulated nitrite in darkness, and young leaves showed chlorosis.

  11. Inorganic nitrogen and nitrate reduction in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Qasim, S.Z.

    the secondary nitrite maximum seem to be associated with Persian Gulf water. It is suggested that these originate as a result of biological reduction of nitrate (denitrification) due to the prevailing reducing conditions associated with a pronounced depletion...

  12. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy

    NARCIS (Netherlands)

    Nabben, M.; Schmitz, J.P.J.; Ciapaite, J.; le Clercq, C.M.P.; van Riel, N.A.; Haak, H.R.; Nicolay, K.; de Coo, I.F.M.; Smeets, H.; Praet, S.F.; van Loon, L.J.; Prompers, J.J.

    2017-01-01

    Muscle weakness and exercise intol erance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We

  13. Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model.

    Directory of Open Access Journals (Sweden)

    Marianne Sødring

    Full Text Available Red and processed meats are considered risk factors for colorectal cancer (CRC; however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat, and hemin in combination with nitrite (a model of processed meat on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.

  14. Biosensor for laboratory and lander-based analysis of benthicnitrate plus nitrite distribution in marine environments

    DEFF Research Database (Denmark)

    Revsbech, N. P.; Glud, Ronnie Nøhr

    2009-01-01

    We present a psychotropic bacteria–based biosensor that can be used in low–temperature seawater for the analysis of nitrate + nitrite (NOx –). The sensor can be used to resolve concentrations below 1 µmol L–1 at low temperature (

  15. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    Science.gov (United States)

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-10-08

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.

  16. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    Science.gov (United States)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback

  17. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R.; Werth, Charles J.

    2012-01-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  18. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  19. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    Science.gov (United States)

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O

  20. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  1. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    Science.gov (United States)

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  2. Research factors of the electrochemical remediation clay soils from the nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The electrokinetic's methods are prevalent [1, 2], but abilities of the method for remediation nitrates contaminated soils are studied insufficiently. The investigations of effectiveness electrochemical remediation are complicated by processes of reduction nitrates to nitrites (that are more toxic) and then to nitrogen in soil under the constant electric current. Therefore, the objectives of the research was following: - Evaluate mechanism of electrokinetic's removing nitrates from soil; - Evaluate basic value of moisture and alkalinity influence for electrochemical remediation of soil from nitrates; - Determine flow-through regime effect on electrokinetic's treating. (orig.)

  3. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  4. Nitrate Uptake Capacity and Efficiency of Upper Mississippi River Flow-Regulated Backwaters

    National Research Council Canada - National Science Library

    James, William F; Richardson, William B; Soballe, David M

    2007-01-01

    In-stream uptake and processing of nitrate nitrite-N may be improved in large river systems by increasing hydrological connectivity between the main channel and adjoining backwaters, wetlands, and floodplain areas...

  5. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor......An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... for frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design...

  6. [Can nitrates lead to indirect toxicity?].

    Science.gov (United States)

    Hamon, M

    2007-09-01

    For many years, nitrates have been used, at low dosages, as an additive in salted food. New laws have been promulgated to limit their concentration in water due to increased levels found in soils, rivers and even the aquifer. Although nitrate ions themselves have not toxic properties, bacterial reduction into nitrite ions (occurring even in aqueous medium) can lead to nitrous anhydride, which in turn generates nitrosonium ions. Nitrosium ions react with secondary amine to give nitrosamines, many of which are cancer-inducing agents at very low doses. Opinions on this toxicity are clear-cut and difficult to reconcile. In fact, increased levels are due, in a large part, to the use of nitrates as fertiliéers but also to bacterial transformation of human and animal nitrogenous wastes such as urea.

  7. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  8. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    Science.gov (United States)

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  9. Nitrite-embedded packaging film effects on fresh and frozen beef color development and stability as influenced by meat age and muscle type.

    Science.gov (United States)

    Claus, James R; Du, Chen

    2013-11-01

    Muscles (Longissimus lumborum, LL; Psoas major, PM, semitendinosus, ST) were aged (2, 9d postmortem), cut into steaks, anaerobically packaged (nitrite-embedded film, NEF), and displayed (fresh, 19d; frozen, 39d). Fresh NEF increased (PMeat age influenced NEF color. Intact NEF maintained acceptable red color throughout display. Residual nitrite and nitrate associated with fresh NEF and nitrate in NEF cooked LL were found (Pmeat age and muscle differences. NEF packaging has potential to extend fresh beef color display life. NEF appears to offer the opportunity to display bright red beef in frozen display by limiting typical effects of photooxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment.

    Science.gov (United States)

    Castro-Barros, Celia M; Jia, Mingsheng; van Loosdrecht, Mark C M; Volcke, Eveline I P; Winkler, Mari K H

    2017-06-01

    Anammox bacteria can perform dissimilatory nitrate reduction to ammonium (DNRA) with nitrite as intermediate coupled to the oxidation of volatile fatty acids (VFA). Batch tests with enriched anammox and a co-culture of anammox and heterotrophic bacteria showed the capacity of Candidatus 'Brocadia fulgida' to perform the DNRA coupled to the anammox reaction (DNRA-anammox) at a high rate although the culture was not previously adapted to VFA. From thermodynamic calculations it could be stated that low COD/N influent ratios favour the DNRA-anammox transformation over heterotrophic conversions since more free energy is gained. A process scheme is proposed for an innovative nitrogen removal system in which the nitrate produced by nitrite oxidizing bacteria and/or anammox bacteria is converted during DNRA-anammox pathway, resulting in a sustainable nitrogen removal from municipal wastewater while circumventing the troublesome out-selection of nitrite oxidizing bacteria encountered in mainstream applications. Copyright © 2017. Published by Elsevier Ltd.

  11. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Science.gov (United States)

    van Grinsven, Hans JM; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-01-01

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution. PMID:16989661

  12. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Science.gov (United States)

    van Grinsven, Hans J M; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-09-21

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2-3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  13. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Directory of Open Access Journals (Sweden)

    Benjamin Nigel

    2006-09-01

    Full Text Available Abstract Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  14. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.

    Science.gov (United States)

    Luckmann, Monique; Mania, Daniel; Kern, Melanie; Bakken, Lars R; Frostegård, Asa; Simon, Jörg

    2014-08-01

    Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed. © 2014 The Authors.

  15. Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Rowley, Gary; Hensen, Daniela; Felgate, Heather; Arkenberg, Anke; Appia-Ayme, Corinne; Prior, Karen; Harrington, Carl; Field, Sarah J; Butt, Julea N; Baggs, Elizabeth; Richardson, David J

    2012-01-15

    The production of cytotoxic nitric oxide (NO) and conversion into the neuropharmacological agent and potent greenhouse gas nitrous oxide (N₂O) is linked with anoxic nitrate catabolism by Salmonella enterica serovar Typhimurium. Salmonella can synthesize two types of nitrate reductase: a membrane-bound form (Nar) and a periplasmic form (Nap). Nitrate catabolism was studied under nitrate-rich and nitrate-limited conditions in chemostat cultures following transition from oxic to anoxic conditions. Intracellular NO production was reported qualitatively by assessing transcription of the NO-regulated genes encoding flavohaemoglobin (Hmp), flavorubredoxin (NorV) and hybrid cluster protein (Hcp). A more quantitative analysis of the extent of NO formation was gained by measuring production of N₂O, the end-product of anoxic NO-detoxification. Under nitrate-rich conditions, the nar, nap, hmp, norV and hcp genes were all induced following transition from the oxic to anoxic state, and 20% of nitrate consumed in steady-state was released as N₂O when nitrite had accumulated to millimolar levels. The kinetics of nitrate consumption, nitrite accumulation and N₂O production were similar to those of wild-type in nitrate-sufficient cultures of a nap mutant. In contrast, in a narG mutant, the steady-state rate of N₂O production was ~30-fold lower than that of the wild-type. Under nitrate-limited conditions, nap, but not nar, was up-regulated following transition from oxic to anoxic metabolism and very little N₂O production was observed. Thus a combination of nitrate-sufficiency, nitrite accumulation and an active Nar-type nitrate reductase leads to NO and thence N₂O production, and this can account for up to 20% of the nitrate catabolized.

  16. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments

    International Nuclear Information System (INIS)

    Yin, Guoyu; Hou, Lijun; Liu, Min; Zheng, Yanling; Li, Xiaofei; Lin, Xianbiao; Gao, Juan; Jiang, Xiaofen

    2016-01-01

    Nitrate overload is an important driver of water pollution in most estuarine and coastal ecosystems, and thus nitrate reduction processes have attracted considerable attention. Antibiotics contamination is also an emerging environmental problem in estuarine and coastal regions as a result of growing production and usage of antibiotics. However, the effects of antibiotics on nitrate reduction remain unclear in these aquatic ecosystems. In this study, continuous-flow experiments were conducted to examine the effects of thiamphenicol (TAP, a common chloramphenicol antibiotic) on nitrate reduction and greenhouse gas N 2 O release. Functional genes involved in nitrogen transformation were also quantified to explore the microbial mechanisms of the TAP influence. Production of N 2 were observed to be inhibited by TAP treatment, which implied the inhibition effect of TAP on nitrate reduction processes. As intermediate products of nitrogen transformation processes, nitrite and N 2 O were observed to accumulate during the incubation. Different TAP inhibition effects on related functional genes may be the microbial mechanism for the changes of nutrient fluxes, N 2 fluxes and N 2 O release rates. These results indicate that the antibiotics residues in estuarine and coastal ecosystems may contribute to nitrate retention and N 2 O release, which could be a major factor responsible for eutrophication and greenhouse effects. - Highlights: • Production of N 2 are inhibited by the TAP treatment. • Accumulation of nitrite and N 2 O is stimulated by TAP treatment. • Different TAP effects on functional genes may be the microbial mechanism. - TAP inhibits the production of N 2 and stimulates the accumulation of nitrite and N 2 O due to its different inhibition effects on functional genes.

  17. [Kinetics of uptake of phosphates and nitrates by marine multicellular algae Gelidium latifolium (Grev.) Born. et Thur].

    Science.gov (United States)

    Silkin, V A; Chubchikova, I N

    2007-01-01

    We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.

  18. Evaluation of Total Nitrite Pattern Visualization as an Improved Method for Gunshot Residue Detection and its Application to Casework Samples.

    Science.gov (United States)

    Berger, Jason; Upton, Colin; Springer, Elyah

    2018-04-23

    Visualization of nitrite residues is essential in gunshot distance determination. Current protocols for the detection of nitrites include, among other tests, the Modified Griess Test (MGT). This method is limited as nitrite residues are unstable in the environment and limited to partially burned gunpowder. Previous research demonstrated the ability of alkaline hydrolysis to convert nitrates to nitrites, allowing visualization of unburned gunpowder particles using the MGT. This is referred to as Total Nitrite Pattern Visualization (TNV). TNV techniques were modified and a study conducted to streamline the procedure outlined in the literature to maximize the efficacy of the TNV in casework, while reducing the required time from 1 h to 5 min, and enhancing effectiveness on blood-soiled samples. The TNV method was found to provide significant improvement in the ability to detect significant nitrite residues, without sacrificing efficiency, that would allow for the determination of the muzzle-to-target distance. © 2018 American Academy of Forensic Sciences.

  19. Use of lysozyme from chicken egg white as a nitrite replacer in an Italian-type chicken sausage

    Directory of Open Access Journals (Sweden)

    Nalaka Sandun Abeyrathne

    2015-09-01

    Full Text Available Background: Sodium or potassium nitrite is widely used as a curing agent in sausages and other cured meat products. Nitrite has strong antimicrobial and antioxidant effects and generates cured meat color. Nitrite, however, can react with secondary or tertiary amines in meat to form carcinogenic, teratogenic and mutagenic N-nitroso compounds. Several findings have been suggested that high consumption of processed meat may increase the risk of cancer, and emphasized that dietary nitrosamines are positively associated with cancer. Lysozyme is one of the major egg proteins that have antimicrobial and antioxidant characteristics. Therefore, lysozyme can be used in meat processing to prevent microbial growth and oxidative degradation in meat products during storage. This study is focused on evaluating the antimicrobial and antioxidant effects of lysozyme extracted from egg white as a replacer of nitrite in a cooked Italian-type chicken sausage. Methods: Four curing treatments including 100% nitrite (control, 100% lysozyme (treatment 1, 25% nitrite + 75% lysozyme (treatment 2 and 50% nitrite + 50% lysozyme (treatment 3 were used to prepare Italian-type chicken sausage samples. Recipe was developed with 64% (w/w meat, 17% (w/w binder (bread crumble, 12% (w/w ice, 4% (w/w vegetable oil, 2% (w/w salt, 1% (w/w spices (chili, black pepper, cardamom. Prepared samples were cooked in an 80 °C smoke house to a core temperature of 65 °C and cooled in cold water to 20-25 °C subsequently packed in polyethylene and stored in a freezer (-18 °C. The antimicrobial effect lysozyme was tested using Escherichia coli and Salmonella. The growth of these pathogens at 0, 3 and 5 days of storage of spore inoculation was determined. The antioxidant activity of lysozyme was determined using the TBARS value during the 25 d storage period. The redness (a*, lightness (L*, and yellowness (b* of sausages were analyzed using a Minolta color meter (CR 410, Konica Minolta Inc

  20. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst

    International Nuclear Information System (INIS)

    Iyengar, R.; Stuehr, D.J.; Marletta, M.A.

    1987-01-01

    The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-γ synthesized nitrite (NO 2 - ) and nitrate (NO 3 - ). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO 2 - /NO 3 - synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-[guanido- 15 N 2 ]arginine established that the NO 2 - /NO 3 - and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO 2 - /NO 3 - was L-citrulline. The role of the respiratory burst in NO 2 - /NO 3 - synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO 2 - /NO 3 - . However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO 2 - /NO 3 - synthesis

  1. Nitrates in SNCs: Implications for the nitrogen cycle on Mars

    Science.gov (United States)

    Grady, Monica M.; Wright, I. P.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    Nitrogen is the second most abundant constituent of the Martian atmosphere, after CO2, present at a level of ca. 2.7 percent. Several authors have hypothesized that earlier in the planet's history, nitrogen was more abundant, but has been removed by processes such as exospheric loss from the atmosphere. However, an alternative sink for atmospheric nitrogen is the regolith; model calculations have predicted that, via the formation of NOx, HNO2 and HNO3 in the lower layers of the Martian atmosphere, the regolith might trap nitrite and nitrate anions, leading to the build-up of involatile nitrates. Integrated over 4.5 x 10(exp 9) yr, such a mechanism would contribute the equivalent of a layer of nitrates up to 0.3 cm thick distributed across the Martian surface. Features in thermal emission spectra of the surface of Mars have been interpreted tentatively as emanating from various anions (carbonates, bicarbonates, sulphates, etc.), and the presence of nitrates has also been addressed as a possibility. The identification of carbonates in SCN meteorites has allowed inferences to be drawn concerning the composition and evolution of the Martian atmosphere in terms of its carbon isotope systematics; if nitrites, nitrates, or other nitrogen-bearing salts could be isolated from SNC's, similar conclusions might be possible for an analogous nitrogen cycle. Nitrates are unstable, being readily soluble in water, and decomposed at temperatures between 50 C and 600 C, depending on composition. Any nitrates present in SNC's might be removed during ejection from the planet's surface, passage to Earth, or during the sample's terrestrial history, by weathering etc. The same might have been said for carbonates, but pockets of shock-produced glass (lithology C) from within the EET A79001 shergottite and bulk samples of other SNC contain this mineral, which did apparently survive. Nitrates occurring within the glassy melt pockets of lithology C in EET A79001 might likewise be protected

  2. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers.

    Directory of Open Access Journals (Sweden)

    Helen eDecleyre

    2015-10-01

    Full Text Available The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate. In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary. We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m, with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.

  3. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers.

    Science.gov (United States)

    Decleyre, Helen; Heylen, Kim; Van Colen, Carl; Willems, Anne

    2015-01-01

    The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.

  4. Serum and gastric fluid levels of cytokines and nitrates in gastric diseases infected with Helicobacter pylori.

    Science.gov (United States)

    Mehmet, N; Refik, M; Harputluoglu, M; Ersoy, Y; Aydin, N Engin; Yildirim, B

    2004-04-01

    This case control study presents data on the concentrations of nitrite and nitrate and a variety of pro-inflammatory cytokines such as interleukin-1 beta (IL-1 beta), interleukin-2R (IL-2R), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor TNF-alpha in gastric fluid and serum. Patients with gastritis, gastric ulcer and gastric cancer are studied and grouped according to infection by Helicobacter pylori. The 208 patients who underwent upper gastrointestinal endoscopic examination were classified as follows; H. pylori-positive gastritis (n = 32), H. pylori-negative gastritis (n = 32), H. pylori-positive ulcers (n = 34), H. pylori-negative ulcers (n = 34), 43 patients with H. pylori-positive gastric cancer in addition to 33 H. pylori-negative healthy control individuals. Gastric fluids and blood samples were taken concomitantly. Cytokines and nitrite and nitrate determinations were attempted as soon as possible after collection of the samples. Nitrite and nitrate levels of serum and gastric fluids of H. pylori-positive gastritis and ulcers were higher than H. pylori-negative gastritis and ulcers. The concentrations of total nitrite and nitrate and cytokines (TNF-alpha, IL-2R, IL-6, and IL-8) in gastric fluids and sera of H. pylori-positive gastric cancer patients were higher than H. pylori-negative control groups. IL-1 beta level was significantly elevated in gastric fluid of infected cancer patients but not in serum. Taken together, the results suggest that an increase in cytokine-NO combination in gastric mucosa previously reported by many studies is not restricted to local infected gastric tissue but also detected in gastric fluid and sera of H. pylori-positive subjects and may have an important role in the pathogenesis and development of common gastric diseases.

  5. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  6. Effects of C/N ratio on nitrate removal and floc morphology of autohydrogenotrophic bacteria in a nitrate-containing wastewater treatment process.

    Science.gov (United States)

    Nguyen, Tran Ngoc Phu; Chao, Shu-Ju; Chen, Pei-Chung; Huang, Chihpin

    2018-07-01

    The effects of C/N ratio of a nitrate-containing wastewater on nitrate removal performed by autohydrogenotrophic bacteria as well as on the morphological parameters of floc such as floc morphology, floc number distribution, mean particle size (MPS), aspect ratio and transparency were examined in this study. The results showed that the nitrate reduction rate increased with increasing C/N ratio from 0.5 to 10 and that the nitrogen removal of up to 95% was found at the C/N ratios of higher than 5 (between 0.5-10). Besides, high C/N ratio values reflected a corresponding high nitrite accumulation after 12-hr operation, and a fast decreasing rate of nitrite in the rest of operational time. The final pH values increased with the C/N ratio increasing from 0.5 to 2.5, but decreased with the C/N ratio increasing from 2.5 to 10. There were no significant changes in floc morphology with the MPSs ranging from 35 to 40μm. Small and medium-sized flocs were dominant in the sludge suspension, and the number of flocs increased with the increasing C/N ratios. Furthermore, the highest apparent frequency of 10% was observed at aspect ratios of 0.5 and 0.6, while the transparency of flocs changed from 0.1 to 0.7. Copyright © 2017. Published by Elsevier B.V.

  7. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    Science.gov (United States)

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  8. Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism.

    Science.gov (United States)

    López-Berges, Manuel S; Schäfer, Katja; Hera, Concepción; Di Pietro, Antonio

    2014-01-01

    Velvet is a conserved protein complex that functions as a regulator of fungal development and secondary metabolism. In the soil-inhabiting pathogen Fusarium oxysporum, velvet governs mycotoxin production and virulence on plant and mammalian hosts. Here we report a previously unrecognized role of the velvet complex in regulation of nitrate metabolism. F. oxysporum mutants lacking VeA or LaeA, two key components of the complex, were impaired in growth on the non-preferred nitrogen sources nitrate and nitrite. Both velvet and the general nitrogen response GATA factor AreA were required for transcriptional activation of nitrate (nit1) and nitrite (nii1) reductase genes under de-repressing conditions, as well as for the nitrate-triggered increase in chromatin accessibility at the nit1 locus. AreA also contributed to chromatin accessibility and expression of two velvet-regulated gene clusters, encoding biosynthesis of the mycotoxin beauvericin and of the siderophore ferricrocin. Thus, velvet and AreA coordinately orchestrate primary and secondary metabolism as well as virulence functions in F. oxysporum. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Direct Analysis in Real Time Mass Spectrometry of Potential By-Products from Homemade Nitrate Ester Explosive Synthesis

    OpenAIRE

    Sisco, Edward; Forbes, Thomas P.

    2015-01-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were ...

  10. Role of xanthine oxidoreductase in the anti-thrombotic effects of nitrite in rats in vivo.

    Science.gov (United States)

    Kramkowski, K; Leszczynska, A; Przyborowski, K; Kaminski, T; Rykaczewska, U; Sitek, B; Zakrzewska, A; Proniewski, B; Smolenski, R T; Chabielska, E; Buczko, W; Chlopicki, S

    2016-01-01

    The mechanisms underlying nitrite-induced effects on thrombosis and hemostasis in vivo are not clear. The goal of the work described here was to investigate the role of xanthine oxidoreductase (XOR) in the anti-platelet and anti-thrombotic activities of nitrite in rats in vivo. Arterial thrombosis was induced electrically in rats with renovascular hypertension by partial ligation of the left renal artery. Sodium nitrite (NaNO2, 0.17 mmol/kg twice daily for 3 days, p.o) was administered with or without one of the XOR-inhibitors: allopurinol (ALLO) and febuxostat (FEB) (100 and 5 mg/kg, p.o., for 3 days). Nitrite treatment (0.17 mmol/kg), which was associated with a significant increase in NOHb, nitrite/nitrate plasma concentration, resulted in a substantial decrease in thrombus weight (TW) (0.48 ± 0.03 mg vs. vehicle [VEH] 0.88 ± 0.08 mg, p < 0.001) without a significant hypotensive effect. The anti-thrombotic effect of nitrite was partially reversed by FEB (TW = 0.63 ± 0.06 mg, p < 0.05 vs. nitrites), but not by ALLO (TW = 0.43 ± 0.02 mg). In turn, profound anti-platelet effect of nitrite measured ex vivo using collagen-induced whole-blood platelet aggregation (70.5 ± 7.1% vs. VEH 100 ± 4.5%, p < 0.05) and dynamic thromboxaneB2 generation was fully reversed by both XOR-inhibitors. In addition, nitrite decreased plasminogen activator inhibitor-1 concentration (0.47 ± 0.13 ng/ml vs. VEH 0.62 ± 0.04 ng/ml, p < 0.05) and FEB/ALLO reversed this effect. In vitro the anti-platelet effect of nitrite (1 mM) was reversed by FEB (0.1 mM) under hypoxia (0.5%O2) and normoxia (20%O2). Nitrite treatment had no effect on coagulation parameters. In conclusion, the nitrite-induced anti-platelet effect in rats in vivo is mediated by XOR, but XOR does not fully account for the anti-thrombotic effects of nitrite.

  11. Open-Source Photometric System for Enzymatic Nitrate Quantification.

    Science.gov (United States)

    Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.

  12. Correlation of Aerobic Exercise and High Nitrate Diet with Population of Eschericia coli in the Digestive Tract of Liver Cirrhosis Individuals

    Directory of Open Access Journals (Sweden)

    Retti Nurlaili

    2017-12-01

    Full Text Available Background: In liver cirrhosis, the population of E coli is increased. conditions such as reduced intestinal. Escherichia coli with 2 enzyme nitrate reductase (NRF and Nir reduce nitrate to nitrite and subsequently converted to ammonia (99% and nitric oxide (1% in anaerobic condition. Regular aerobic exercise 2-3 times/week for 30 minutes resulted in increased 2,3-DPG which reduces the activity of E. coli to reduce nitrate to nitrite and ammonia, which only works on the anaerobic state. High Nitrate Diets lead to increased nitrate reducing bacteria such as E. coli resulting in the reduction of nitrate excess produce nitrite and ammonia in large quantities. Probiotic Lactobacillus spp. can suppress the growth of bacterial endotoxins and pathogens such as E. coli and other Enterobacteriaceae. This study aimed to determine the correlation of aerobic exercise and a high nitrate diet in gastrointestinal populations of Escherichia coli gastrointestinal tract in patient with liver cirrhosis. Method: This was a descriptive-experimental study in liver cirrhosis patients Child Pugh A/B in outpatient clinic Saiful Anwar Hospital in August 2015. Respondents were asked to fill out a questionnaire with information about the demographic data, the nitrate diet, aerobic exercise, other medical data and sanitation, and stool samples were taken for faecal culture. Eta Correlation statistical test was used to determine the correlation of aerobic exercise and a high nitrate diet high in population of E. coli. The significant difference are indicated by p < 0.005. Results: A total of 36 patients diagnosed with liver cirrhosis Child Pugh A/B, 14 (39% underwent aerobic exercise 3x /week, as many as 25 (70% consume a high nitrate diet. There was a strong relationship between aerobic exercise and high nitrate diet with population of E. coli (Ƞ = 0.725; p < 0.05. Conclusion: There was a strong relationship between aerobic exercise and high nitrate diet with a population

  13. Association of dietary nitrate with atherosclerotic vascular disease mortality: a prospective cohort study of older adult women.

    Science.gov (United States)

    Blekkenhorst, Lauren C; Bondonno, Catherine P; Lewis, Joshua R; Devine, Amanda; Woodman, Richard J; Croft, Kevin D; Lim, Wai H; Wong, Germaine; Beilin, Lawrence J; Prince, Richard L; Hodgson, Jonathan M

    2017-07-01

    Background: Nitrate-rich vegetables lower blood pressure and improve endothelial function in humans. It is not known, however, whether increased consumption of nitrate-rich vegetables translates to a lower risk of atherosclerotic vascular disease (ASVD) mortality. Objective: The objective was to investigate the association of nitrate intake from vegetables with ASVD mortality. Design: A total of 1226 Australian women aged 70-85 y without prevalent ASVD and/or diabetes were recruited in 1998 and were studied for 15 y. We assessed demographic and ASVD risk factors at baseline (1998), and we used a validated food-frequency questionnaire to evaluate dietary intake. Nitrate intake from vegetables was calculated by use of a newly developed comprehensive database. The primary outcome was any death attributed to ASVD ascertained by using linked data that were provided via the Western Australian Data Linkage system. We used Cox proportional hazards modeling to examine the association between nitrate intake and ASVD mortality before and after adjustment for lifestyle and cardiovascular disease risk factors. Results: During a follow-up period of 15,947 person-years, 238 of 1226 (19.4%) women died of ASVD-related causes. The mean ± SD vegetable nitrate intake was 67.0 ± 29.2 mg/d. Each SD higher vegetable nitrate intake was associated with a lower risk of ASVD mortality in both unadjusted [HR: 0.80 (95% CI: 0.70, 0.92), P = 0.002] and multivariable-adjusted [HR: 0.79 (95% CI: 0.68, 0.93), P = 0.004] analyses. This relation was attenuated after further adjustment for diet quality [HR: 0.85 (95% CI: 0.72, 1.01), P = 0.072]. Higher vegetable nitrate intake (per SD) also was associated with a lower risk of all-cause mortality [multivariable-adjusted HR: 0.87 (95% CI: 0.78, 0.97), P = 0.011]. Conclusions: Nitrate intake from vegetables was inversely associated with ASVD mortality independent of lifestyle and cardiovascular disease risk factors in this population of older adult

  14. In situ analysis of microbial reduction of a nitrate plume in Opalinus clay

    International Nuclear Information System (INIS)

    Bleyen, N.; Smets, S.; Valcke, E.; Albrecht, A.; De Canniere, P.; Schwyn, B.; Wittebroodt, C.

    2012-01-01

    nitrate and nitrite concentrations and pH, an on-line UV spectrophotometer and pH electrode are installed in the water circuit of one of the intervals. In a first series of tests, the biogeochemical evolution of the artificial Opalinus Clay pore water in the intervals was investigated after injection of low concentrations of nitrate or nitrate and acetate, simulating the BDP. The results of these tests indicate that microbial reduction of nitrate and nitrite can occur in the Opalinus Clay artificial water in the borehole, using acetate and/or clay components as electron donors. In these tests, nitrate was reduced to nitrite, ammonium and/or nitrogenous gases. Comparing the evolution in nitrate and nitrite concentrations in the absence or presence of acetate, clearly indicates faster reaction rates of microbial nitrate reduction when the system is fueled with acetate. When easily degradable organic compounds like acetate were added to the nitrate containing artificial pore water, these compounds were preferentially used as electron donors for nitrate reduction by heterotrophic microorganisms. Afterwards, alternative electron donors have been used originating either from the clay rock, e.g. pyrite, siderite, clay minerals, and/or dissolved natural organic matter, or from the stainless steel equipment, i.e. Fe 0 and/or Fe 2+ . Furthermore, high concentrations of nitrate reducing prokaryotes were detected after injection of the intervals with nitrate, indicating that the nitrate and nitrite reduction, observed during all tests, was microbially mediated. Based on the results of the microbiological analyses, these nitrate reducers have most likely been introduced during the first injection or installation of the downhole equipment. The nature of the nitrate reduction reaction prevailing in the system appears to be depending on the microbial populations active in the borehole and on the electron donors and carbon sources present in the interval. Furthermore, the history of the

  15. Effects of antiseptic mouthwash on resting metabolic rate: A randomized, double-blind, crossover study.

    Science.gov (United States)

    Sundqvist, Michaela L; Lundberg, Jon O; Weitzberg, Eddie

    2016-12-30

    The nitrate-nitrite-nitric oxide pathway has emerged as a significant source of nitric oxide (NO) bioactivity. Dietary intake of inorganic nitrate has a number of cardiovascular effects as well as a decrease in oxygen cost during exercise and a reduction in resting metabolic rate (RMR). Oral bacteria have a key role in bioactivation of inorganic nitrate since they catalyse the conversion of salivary nitrate to the more reactive nitrite anion. Recent studies demonstrate that blood pressure increases with the use of an antiseptic mouthwash, indicating that endogenous, NO-synthase derived nitrate is recycled into nitrite and NO, sufficiently to modulate cardiovascular function. Here we tested if also RMR would be affected by an antiseptic mouthwash. Seventeen healthy normotensive female subjects (23 ± 4 y) participated in this randomized, double-blinded, crossover study. During two 3-day periods separated by 28 days the subjects consumed a diet low in nitrate combined with rinsing their mouth three times daily with a chlorhexidine-containing mouthwash (mouthwash) or placebo mouthwash (placebo) with similar taste but no antiseptic properties. Resting metabolic rate (RMR) was measured by indirect calorimetry and 24 h ambulatory blood pressure recordings were obtained after each intervention together with blood, saliva and urine samples. Treatment with chlorhexidine-containing mouthwash effectively reduced oral conversion of nitrate to nitrite but had no effect on plasma levels of these anions or plasma cGMP. RMR and 24 h ambulatory blood pressure were unaffected by the intervention. We conclude that in young healthy females an antiseptic mouthwash was effective in disrupting oral bacterial nitrate conversion to nitrite, but this was not associated with changes in plasma nitrite, RMR or blood pressure. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  17. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    International Nuclear Information System (INIS)

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  18. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    Science.gov (United States)

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  19. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    % was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom......-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  20. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  1. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.

  2. Nitrate and Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction

    Science.gov (United States)

    2014-01-01

    NDMA N-nitrosodimethylamine NDPA N-nitroso-di-n-propylamine ng/L nanograms per liter NO2- nitrite NO3- nitrate NTU nephelometric turbidity units...Nitrosamines including N-nitrosodiethylamine (NDEA), N- nitrosodimethylamine ( NDMA ), and N-nitroso-di-n-propylamine (NDPA) were below their

  3. Atomic structure of nitrate-binding protein crucial for photosynthetic productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

    2006-06-27

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (Nrt

  4. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  5. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.

    Science.gov (United States)

    Pierson, M D; Smoot, L A

    1982-01-01

    Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.

  6. Research on changes of nitrate by interactions with metals under the wastes disposal environment containing TRU nuclide

    International Nuclear Information System (INIS)

    Wada, Ryutaro; Nishimura, Tsutomu; Masuda, Kaoru; Fujiwara, Kazuo; Imakita, Tsuyoshi; Tateishi, Tsuyoshi

    2003-02-01

    There exists the waste including a nitrate ion as a salt in the TRU waste materials. This nitrate ion can transferred to the nitrite ion and/or ammonia by reducing materials such as metals in the waste disposal environment, and has the possibility to affect on the disposal environment and nuclide transfer parameters. Therefore, electrochemical tests were conducted to evaluate the reaction rate parameters of the nitrate ion and metals under the low oxygen environment. The long-term reaction test using the glass-seal vessel was also conducted to grasp precisely the nitrate ion transition reaction rate and the gas generation rate caused by the reaction of metal and the nitrate ion coexist solution. (1) Reaction rate constants under various environments were obtained performing the potentiostatic holding tests with the parameters of the solution pH, temperature, and the nitrate and nitrite ion concentrations. The formula of the nitrate ion transition reaction rate was also examined based on these obtained data. (2) Conducting the immersion tests under the environment of the low oxygen and high-pH rainfall underground water site, the long-term reaction rate data were obtained on the reaction products (ammonia, hydrogen gas etc.) of metals (carbon steel, stainless steel and zircaloy etc.) with nitrate ion. The tests under the same conditions as in the past were also conducted to evaluate the test accuracy and error range of the long-term reaction test with the glass-seal vessels. (author)

  7. Performance and Health Benefits of Dietary Nitrate Supplementation in Older Adults: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Luke Stanaway

    2017-10-01

    Full Text Available Supplementation with nitrate (NO3−-rich beetroot juice has been shown to improve exercise performance and cardiovascular (CV responses, due to an increased nitric oxide (NO availability. However, it is unclear whether these benefits are greater in older adults who have an age-related decrease in NO and higher risk of disease. This systematic review examines 12 randomised, crossover, control trials, investigating food-based NO3− supplementation in older adults and its potential benefits on physiological and cognitive performances, and CV, cerebrovascular and metabolic health. Four studies found improvements in physiological performance (time to exhaustion following dietary NO3− supplementation in older adults. Benefits on cognitive performance were unclear. Six studies reported improvements in CV health (blood pressure and blood flow, while six found no improvement. One study showed improvements in cerebrovascular health and two found no improvement in metabolic health. The current literature indicates positive effects of dietary NO3− supplementation in older adults on physiological performance, with some evidence indicating benefits on cardiovascular and cerebrovascular health. Effects on cognitive performance were mixed and studies on metabolic health indicated no benefit. However, there has been limited research conducted on the effects of dietary NO3− supplementation in older adults, thus, further study, utilising a randomised, double-blind, control trial design, is warranted.

  8. In vitro effect of sodium nitrite on platelet aggregation in human platelet rich plasma--preliminary report.

    Science.gov (United States)

    Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F

    2015-10-01

    The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.

  9. The oral bioavailability of nitrate from vegetables investigated in healthy volunteers

    NARCIS (Netherlands)

    Lambers AC; Kortboyer JM; Schothorst RC; Sips AJAM; Cleven RFMJ; Meulenbelt J; VIC; LBM; ARO; LAC

    2000-01-01

    The major source of human nitrate exposure comes from vegetables. Several studies were performed to estimate the total daily dietary nitrate intake based on the nitrate contents of food and drinking water. However, only nitrate that is absorbed from the gastro-intestinal tract may contribute to

  10. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  11. Dietary beetroot juice – effects on physical performance in COPD patients: a randomized controlled crossover trial

    Directory of Open Access Journals (Sweden)

    Friis AL

    2017-06-01

    Full Text Available Anne Louise Friis,1,* Carina Bjørnskov Steenholt,1,* Anders Løkke,2 Mette Hansen1 1Section for Sport Science, Department of Public Health, Aarhus University, Denmark; 2Department of Clinical Medicine, Aarhus University, Denmark *These authors contributed equally to this work Background and objective: Dietary beetroot juice (BR supplementation has been shown to reduce the oxygen (O2 consumption of standardized exercise and reduce resting blood pressure (BP in healthy individuals. However, the physiological response of BR in chronic obstructive pulmonary disease (COPD remains controversial. The objective was to test exercise performance in COPD, supplementing with higher doses of BR for a longer duration compared to previous trials in this patient group.Methods: Fifteen COPD patients consumed concentrated BR (2×70 mL twice daily, each containing 300 mg nitrate or placebo (PL (2×70 mL twice daily, nitrate-negligible in a randomized order for 6 consecutive days. On day 7, participants consumed either BR or PL 150 min before testing. BP was measured before completing 6-minute walk test (6MWT and two trials of submaximal cycling. The protocol was repeated after a minimum washout of 7 days.Results: Plasma nitrite concentration was higher in the BR condition compared to PL (P<0.01. There was no difference between the BR and PL conditions regarding the covered distance during the 6MWT (mean ± standard error of the mean: 515±35 m (BR vs 520±38 m (PL, P=0.46, O2 consumption of submaximal exercise (trial 1 P=0.31 vs trial 2 P=0.20, physical activity level (P>0.05, or systolic BP (P=0.80. However, diastolic BP (DBP was reduced after BR ingestion compared to baseline (mean difference: 4.6, 95% CI: 0.1–9.1, P<0.05.Conclusion: Seven days of BR ingestion increased plasma nitrite concentrations and lowered DBP in COPD patients. However, BR did not increase functional walking capacity, O2 consumption during submaximal cycling, or physical activity level

  12. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea.

    Science.gov (United States)

    Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten

    2014-02-11

    A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.

  13. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification.

    Science.gov (United States)

    Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi

    2011-11-01

    The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8-6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-09-01

    Full Text Available Background: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34 showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58, which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet

  15. Radiation decomposition of pure and barium doped potassium nitrate and effect of oxides thereon

    International Nuclear Information System (INIS)

    Patil, S.F.; Bedekar, A.G.

    1985-01-01

    Studies of radiation decomposition of naturally and quench cooled fused potassium nitrate and potassium nitrate doped with Ba 2+ ions reveal that in quench cooled samples the nitrite yield is higher than in the naturally cooled samples. This observation is attributed to the higher defect concentration present in the quenched samples. A comparison of G(NO 2 - ) values obtained in heterogeneous mixtures containing PbO and Al 2 O 3 indicates that Al 2 O 3 retards while PbO enhances the rate of formation of nitrite during radiolysis. Further, G(NO 2 - ) values were found to increase with the mole% of PbO in the admixture. These results observed in the heterogeneous systems are explained on the basis of energy transfer processes occurring within the solid and at the surface and also in terms of electron donor-acceptor properties of oxides. (orig.)

  16. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas.

    Science.gov (United States)

    Chamizo-Ampudia, Alejandro; Sanz-Luque, Emanuel; Llamas, Ángel; Ocaña-Calahorro, Francisco; Mariscal, Vicente; Carreras, Alfonso; Barroso, Juan B; Galván, Aurora; Fernández, Emilio

    2016-10-01

    Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it. © 2016 John Wiley & Sons Ltd.

  17. Reducing the amount of nitrites in the production of pasteurized organic meat : summary of the project and implications

    NARCIS (Netherlands)

    Stegeman, D.; Verkleij, T.J.

    2008-01-01

    In the production of organic meat products like cold meats, nitrites and nitrates are used for several reasons: for the antimicrobial and anti-oxidative properties, forming and stabilizing the red, cured meat colour, and for forming a cured flavour. From literature, it is concluded that it is not

  18. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete

    Science.gov (United States)

    Montanini, Barbara; Viscomi, Arturo R.; Bolchi, Angelo; Martin, Yusé; Siverio, José M.; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2005-01-01

    Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (Km=4.7 μM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils. PMID:16201972

  19. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

    Directory of Open Access Journals (Sweden)

    Masoud Tourang1

    2018-05-01

    Full Text Available Background: Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N ratio and empty bed contact time (EBCT on nitrate removal efficiency and byproducts. Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with different S/N ratios and EBCTs were applied. Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4 2-/L, respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent nitrite and sulfate concentrations. Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and pumice as media was feasible and applicable for nitrate contaminated groundwater.

  20. Improvement in blood pressure after short-term inorganic nitrate supplementation is attenuated in cigarette smokers compared to non-smoking controls.

    Science.gov (United States)

    Bailey, Stephen J; Blackwell, Jamie R; Wylie, Lee J; Holland, Terezia; Winyard, Paul G; Jones, Andrew M

    2016-12-30

    Dietary supplementation with inorganic nitrate (NO 3 - ) has been reported to improve cardiovascular health indices in healthy adults. Cigarette smoking increases circulating thiocyanate (SCN - ), which has been suggested to competitively inhibit salivary nitrate (NO 3 - ) uptake, a rate-limiting step in dietary NO 3 - metabolism. Therefore, this study tested the hypothesis that dietary NO 3 - supplementation would be less effective at increasing the circulating plasma nitrite concentration ([NO 2 - ]) and lowering blood pressure in smokers (S) compared to non-smokers (NS). Nine healthy smokers and eight healthy non-smoking controls reported to the laboratory at baseline (CON) and following six day supplementation periods with 140 mL day -1 NO 3 - -rich (8.4 mmol NO 3 -  day -1 ; NIT) and NO 3 - -depleted (0.08 mmol NO 3 -  day -1 ; PLA) beetroot juice in a cross-over experiment. Plasma and salivary [SCN - ] were elevated in smokers compared to non-smokers in all experimental conditions (P smokers and non-smokers (P vs. NS: 7.5 ± 4.4 mM), plasma [NO 3 - ] (S: 484 ± 198 vs. NS: 802 ± 199 μM) and plasma [NO 2 - ] (S: 218 ± 128 vs. NS: 559 ± 419 nM) between the CON and NIT conditions was lower in the smokers compared to the non-smokers (P smokers and non-smokers (P > 0.05). Systolic blood pressure was lowered compared to PLA with NIT in non-smokers (P smokers (P > 0.05). These findings suggest that dietary NO 3 - metabolism is compromised in smokers leading to an attenuated blood pressure reduction compared to non-smokers after NO 3 - supplementation. These observations may provide novel insights into the cardiovascular risks associated with cigarette smoking and suggest that this population may be less likely to benefit from improved cardiovascular health if they increase dietary NO 3 - intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Platelet inhibitory effects of juices from Pachyrhizus erosus L. root and Psidium guajava L. fruit: a randomized controlled trial in healthy volunteers.

    Science.gov (United States)

    Thaptimthong, Thitiporn; Kasemsuk, Thitima; Sibmooh, Nathawut; Unchern, Supeenun

    2016-08-03

    The purpose of this study is to investigate cardiovascular benefits of juices obtained from two commonly consumed fruits in Thailand, Pachyrhizus erosus, L. (yam bean) and Psidium guajava, L. (guava), by examining their acute cardiovascular effects in healthy volunteers. Possible involvements of the dietary nitrate on their effects were investigated as well. Thirty healthy volunteers were randomly divided into three groups of 10 subjects per group and each group was allocated to drink 500 ml of freshly prepared yam bean root juice, guava fruit juice, or water. Systemic nitrate and nitrite concentrations, heart rate, systolic and diastolic blood pressure, serum K(+) concentrations, ex vivo platelet aggregation, and plasma cGMP concentrations were monitored at the baseline and at various time points after the intake of juices or water. Data were compared by repeated measures ANOVA. Following the ingestion of both yam bean root juice and guava fruit juice, collagen-induced but not ADP-induced platelet aggregation was attenuated. Ingestion of yam bean root juice increased systemic nitrate and nitrite concentrations whereby elevated nitrite concentrations correlated with the extent of inhibiting collagen-induced platelet aggregation. In addition, positive correlation between systemic nitrite and plasma cGMP concentrations and negative correlation between plasma cGMP concentrations and the extent of collagen-induced platelet aggregation were revealed. Nevertheless, yam bean root juice reduced only diastolic blood pressure while guava fruit juice reduced heart rate, systolic and diastolic blood pressure. The present study has illustrated, for the first time, acute inhibitory effects of yam bean root juice and guava fruit juice on ex vivo collagen-induced platelet aggregation in healthy subjects. Dietary nitrate was shown to underlie the effect of yam bean root juice but not that of guava fruit juice. Following yam bean root juice ingestion, systemic nitrate apparently

  2. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, R.; Stuehr, D.J.; Marletta, M.A.

    1987-09-01

    The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-..gamma.. synthesized nitrite (NO/sub 2//sup -/) and nitrate (NO/sub 3//sup -/). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO/sub 2//sup -//NO/sub 3//sup -/ synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-(guanido-/sup 15/N/sub 2/)arginine established that the NO/sub 2//sup -//NO/sub 3//sup -/ and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO/sub 2//sup -//NO/sub 3//sup -/ was L-citrulline. The role of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO/sub 2//sup -//NO/sub 3//sup -/. However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis.

  3. Histopathological effects of sodium nitrite on the spleen of male and female rats

    Directory of Open Access Journals (Sweden)

    Fateme Juibar

    2015-01-01

    Full Text Available Background: Nitrite and nitrate are common additives in meat processed products. In spite of all technological advantages of nitrite, creation of nitrosamine carcinogenic substances causes a lot of concerns for use of these additives. In this study, the histopatological effects of sodium nitrite on the splenic tissue in adult male and female rats were evaluated. Material and method: In recent studies, 60 adult male and female rats strain Vistar, divided in 6 groups of 10. They were examined for 60 day, and they (male and female rats separately were divided in 175 mg/kg/day dose recipient group, 350 mg/kg/day dose recipient group and control group which was absorbed nitrite through drinking water. At the end of day 60, using cotton dipped in ether in the jar of anesthesia, were anesthetized. After anesthesia, blood from the left ventricle was taken .the spleen was taking out of body, and then tissue sections were prepared for testing tissue changes. The samples were stained with Hematoxilin- Eozin method. In both sex, factors like morphometric and morphologic from spleen tissue, body weight changes before and after test and blood NOx level was checked. After data collection, all data was analyzed by SPSS statistical software version 17 with using Independent sample t-test and ANOVA. P value of less than 0.05 were reported as statistically significant. Result: The results showed that consume of sodium nitrite, cause background inflammation type of Mononuclear in both sex, especially around the pulp. Also, in both sex NOx levels in the blood of animals in the group receiving 350 mg/ kg and group receiving 175 mg of sodium nitrite per kg compared with the control group, significantly increased (p ≤ 0.05. Conclusion: Considering of this study and other studies, Nitrite can cause damage to blood vessels, liver, spleen and other organs. Also sodium nitrite has to switching to other food preservatives.

  4. Removal of Nitrate from Aqueous Solutions by Starch Stabilized nano Zero-Valent Iron(nZVI

    Directory of Open Access Journals (Sweden)

    Kaveh Yaghmaeian

    2016-09-01

    Full Text Available Background and Objective: Nitrate is one of the inorganic anions derived as a result of oxidation of elemental nitrogen. Urban and industrial wastewater, animal and vegetable waste products in large cities that have organic nitrogen are excreted along the soil. The primary risk of Nitrate in drinking water occurs when nitrate in the gastrointestinal tract switch to nitrite. Nitrite causes the oxidation of iron in hemoglobin of red blood cells, result in red blood cells could not carry the oxygen, a condition called methemoglobinemia. Therefore, achieving the new technologies for nitrate removal is necessary. Material and Methods: The present study was conducted at laboratory Scale in non-continuous batches. Stabilized adsorbent was produced through reducing Iron sulfate by sodium borohydride (NaBH4 in presence of Starch (0.2W % as a stabilizer. At first, the effect of various parameters such as contact time (10-90min, pH (3-11, adsorbent dose (0.5-3 g/L and initial concentration of arsenate (50-250 mg/L were investigated on process efficiency. Freundlich and Langmuir isotherm model equilibrium constant, were calculated. Residual nitrate were measured by using the DR5000 spectrophotometer. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of nitrate were 5.87, 2.25 g/L, 55.7 min, and 110.35 mg/L respectively. Langmuir isotherm with R2= 0.9932 for nitrate was the best graph for the experimental data. The maximum amount of nitrate adsorption was 138.88mg/g. Conclusion: Stabilized absorbent due to have numerous absorption sites and Fe0 as a reducing agent could have great potential in nitrate removal from water.

  5. Estimated dietary intakes of nitrates in vegetarians compared to a traditional diet in Poland and acceptable daily intakes: is there a risk?

    Science.gov (United States)

    Mitek, Marta; Anyzewska, Anna; Wawrzyniak, Agata

    2013-01-01

    Vegetarian diets, by definition, are rich in vegetables and so may have high levels of nitrates, that can elicit both positive or negative effects on the human body. Exposure to nitrates can thus be potentially higher for this population group. To estimate dietary nitrates intakes in Polish vegetarians and compare these with the Polish average. A sample of 86 vegetarians were surveyed via a questionnaire to determine nitrate intake for those adopting a vegetarian diet. Nitrate intakes for the average Pole were obtained from the Central Statistical Office. The domestic intake of nitrate, per average person, during 2000-2009, ranged from 115.5 to 133.7 mg NaNO3 with a mean of 125 mg NaNO3 of which 35.4% constituted the Acceptable Daily Intake (ADI). For vegetarians, the corresponding levels ranged from 37.3 to 2054.3 mg NaNO3 with a mean intake of 340.1 mg NaNO3 of which 95.8% represented the ADI. This was almost twice more than values obtained from calculating nitrate intakes of a typical 7-day vegetarian menu; 104.5 to 277.6 mg NaNO3, with a mean 175.9 mg NaNO3 with the 49.1% making up the ADI. The nitrate intakes in the tested vegetarians were 140 to 270% higher than ones for the average Pole, however in both cases the ADI was not exceeded. Nevertheless, the higher intake of nitrates so observed in vegetarians can be hazardous to some from this population group.

  6. Ingested Nitrate and Breast Cancer in the Spanish Multicase-Control Study on Cancer (MCC-Spain).

    Science.gov (United States)

    Espejo-Herrera, Nadia; Gracia-Lavedan, Esther; Pollan, Marina; Aragonés, Nuria; Boldo, Elena; Perez-Gomez, Beatriz; Altzibar, Jone M; Amiano, Pilar; Zabala, Ana Jiménez; Ardanaz, Eva; Guevara, Marcela; Molina, Antonio J; Barrio, Juan Pablo; Gómez-Acebo, Ines; Tardón, Adonina; Peiró, Rosana; Chirlaque, Maria Dolores; Palau, Margarita; Muñoz, Montse; Font-Ribera, Laia; Castaño-Vinyals, Gemma; Kogevinas, Manolis; Villanueva, Cristina M

    2016-07-01

    Ingested nitrate leads to endogenous formation of N-nitroso compounds that are breast carcinogens in animals, but human evidence is limited. We evaluated ingested nitrate as a risk factor for breast cancer (BC) in a multicase-control study. Hospital-based incident BC cases and population-based controls were recruited in eight Spanish regions in 2008-2013; participants provided residential and water consumption from 18 years of age and information on known BC risk factors. Long-term nitrate levels (1940-2010) were estimated and linked with residential histories and water consumption to calculate waterborne ingested nitrate (milligrams/day). Dietary ingested nitrate (milligrams/day) was calculated using food frequency questionnaires and published dietary nitrate contents. Interactions with endogenous nitrosation factors and other variables were evaluated. A total of 1,245 cases and 1,520 controls were included in the statistical analysis. Among the study regions, average ± SD waterborne ingested nitrate ranged from 2.9 ± 1.9 to 13.5 ± 7.5 mg/day, and dietary ingested nitrate ranged from 88.5 ± 48.7 to 154 ± 87.8 mg/day. Waterborne ingested nitrate was not associated with BC overall, but among postmenopausal women, those with both high nitrate (> 6 vs. nitrate and low red meat intake (adjusted odds ratio = 1.64; 95% confidence interval: 1.08, 2.49; overall interaction p-value = 0.17). No association was found with dietary nitrate. Waterborne ingested nitrate was associated with BC only among postmenopausal women with high red meat consumption. Dietary nitrate was not associated with BC regardless of the animal or vegetable source or of menopausal status. Espejo-Herrera N, Gracia-Lavedan E, Pollan M, Aragonés N, Boldo E, Perez-Gomez B, Altzibar JM, Amiano P, Zabala AJ, Ardanaz E, Guevara M, Molina AJ, Barrio JP, Gómez-Acebo I, Tardón A, Peiró R, Chirlaque MD, Palau M, Muñoz M, Font-Ribera L, Castaño-Vinyals G, Kogevinas M, Villanueva CM. 2016. Ingested

  7. The roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp

    DEFF Research Database (Denmark)

    Hansen, Marie Niemann; Lundberg, Jon O; Filice, Mariacristina

    2016-01-01

    . We also tested whether liver, muscle and heart tissue possess nitrate reductase activity that supplies nitrite to the tissues during severe hypoxia. Crucian carp exposed to deep hypoxia (1nitrite in red musculature to more than double the value in normoxic fish......In mammals, treatment with low doses of nitrite has a cytoprotective effect in ischemia/reperfusion events, as a result of nitric oxide formation and S-nitrosation of proteins. Interestingly, anoxia-tolerant lower vertebrates possess an intrinsic ability to increase intracellular nitrite...... concentration during anoxia in tissues with high myoglobin and mitochondria content, such as the heart. Here, we tested the hypothesis that red and white skeletal muscles develop different nitrite levels in crucian carp exposed to deep hypoxia and assessed whether this correlates with myoglobin concentration...

  8. Regulation by nitrate of protein synthesis and translation of RNA in maize roots

    International Nuclear Information System (INIS)

    McClure, P.R.; Bouthyette, P.Y.

    1986-01-01

    Roots of maize seedlings were exposed to 35 S-methionine in the presence or absence of nitrate. Using SDS-PAGE, nitrate-induced changes in labeled polypeptides were noted in the soluble (at 92, 63 and 21kD) and organellar(at 14kD) fractions, as well as in a membrane fraction of putative tonoplast origin (at 31kD). No nitrate-induced changes were noted in a plasmamembrane-enriched fraction or in a membrane fraction of mixed origin. Total RNA from nitrate-treated and control roots was translated in a rabbit reticulocyte system. Five translation products (94, 63, 41, 39 and 21kD) were identified as nitrate-inducible by comparative gel electrophoresis. Changes in protein synthesis and translation of mRNA were apparent within 2-3 h after introduction of nitrate. Within 4-6 h after removal of nitrate, the level of nitrate-inducible translation products diminished to that of control roots. In contrast, the 31kD tonoplast polypeptide was still labeled 26 h after removal of external nitrate and 35 S-methionine. The results will be discussed in relation to the nitrate induction of nitrate reductase, nitrite reductase, and the nitrate uptake system

  9. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    Directory of Open Access Journals (Sweden)

    Casper Thorup

    2017-07-01

    Full Text Available This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR. Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.

  10. Determination, Source Identification and GIS Mapping for Nitrate Concentration in Groundwater from Bara Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Elami, G. M.; Sam, A. K.; Yagob, T. I.; Siddeeg, S. E.M.B.; Hatim, E.; Hajo, I. [Sudan Atomic Energy Commission, Sudan, Khartoum (Sudan)

    2013-07-15

    This study was carried out to determine the level of nitrate concentration in well water from Bara aquifer in north Kordofan state (west central sudan). The analysis was conducted for 69 wells from different villages within the Bara basin. Spectophotometric analysis was used to determine nitrate, nitrite and ammonia. Results revealed that nitrate concentration range was from 9.68 to 891 mg L in the sampled well with 81% exceeding the maximum permissible limits set for drinking water by WHO and SSMO. Animal waste and organic soil nitrogen were found to be the source of nitrate in these wells as indicated by {sup 15}N. The majority of wells with high nitrate are in the north and the north east part of the study area are shown by the GIS predictive map. (author)

  11. Presence of nitrate NO 3 a ects animal production, photocalysis is a possible solution

    Science.gov (United States)

    Barba-Molina, Heli; Barba-Ortega, J.; Joya, M. R.

    2016-02-01

    Farmers and ranchers depend on the successful combination of livestock and crops. However, they have lost in the production by nitrate pollution. Nitrate poisoning in cattle is caused by the consumption of an excessive amount of nitrate or nitrite from grazing or water. Both humans and livestock can be affected. It would appear that well fertilised pasture seems to take up nitrogen from the soil and store it as nitrate in the leaf. Climatic conditions, favour the uptake of nitrate. Nitrate poisoning is a noninfectious disease condition that affects domestic ruminants. It is a serious problem, often resulting in the death of many animals. When nitrogen fertilizers are used to enrich soils, nitrates may be carried by rain, irrigation and other surface waters through the soil into ground water. Human and animal wastes can also contribute to nitrate contamination of ground water. A possible method to decontaminate polluted water by nitrates is with methods of fabrication of zero valent iron nanoparticles (FeNps) are found to affect their efficiency in nitrate removal from water.

  12. The oral bioavailability of nitrate from vegetables investigated in healthy volunteers

    OpenAIRE

    Lambers AC; Kortboyer JM; Schothorst RC; Sips AJAM; Cleven RFMJ; Meulenbelt J; VIC; LBM; ARO; LAC

    2000-01-01

    The major source of human nitrate exposure comes from vegetables. Several studies were performed to estimate the total daily dietary nitrate intake based on the nitrate contents of food and drinking water. However, only nitrate that is absorbed from the gastro-intestinal tract may contribute to the toxicity of nitrate in the body. At present no data are available on the bioavailability of nitrate from vegetables. Therefore the present study was performed to evaluate the oral bioavailability o...

  13. Electrolytic production of uranous nitrate

    International Nuclear Information System (INIS)

    Orebaugh, E.G.; Propst, R.C.

    1980-04-01

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP

  14. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.

    Science.gov (United States)

    Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P

    2016-08-01

    Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid

  15. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Ryszard M Pluta

    Full Text Available BACKGROUND: Infusion of sodium nitrite could provide sustained therapeutic concentrations of nitric oxide (NO for the treatment of a variety of vascular disorders. The study was developed to determine the safety and feasibility of prolonged sodium nitrite infusion. METHODOLOGY: Healthy volunteers, aged 21 to 60 years old, were candidates for the study performed at the National Institutes of Health (NIH; protocol 05-N-0075 between July 2007 and August 2008. All subjects provided written consent to participate. Twelve subjects (5 males, 7 females; mean age, 38.8±9.2 years (range, 21-56 years were intravenously infused with increasing doses of sodium nitrite for 48 hours (starting dose at 4.2 µg/kg/hr; maximal dose of 533.8 µg/kg/hr. Clinical, physiologic and laboratory data before, during and after infusion were analyzed. FINDINGS: The maximal tolerated dose for intravenous infusion of sodium nitrite was 267 µg/kg/hr. Dose limiting toxicity occurred at 446 µg/kg/hr. Toxicity included a transient asymptomatic decrease of mean arterial blood pressure (more than 15 mmHg and/or an asymptomatic increase of methemoglobin level above 5%. Nitrite, nitrate, S-nitrosothiols concentrations in plasma and whole blood increased in all subjects and returned to preinfusion baseline values within 12 hours after cessation of the infusion. The mean half-life of nitrite estimated at maximal tolerated dose was 45.3 minutes for plasma and 51.4 minutes for whole blood. CONCLUSION: Sodium nitrite can be safely infused intravenously at defined concentrations for prolonged intervals. These results should be valuable for developing studies to investigate new NO treatment paradigms for a variety of clinical disorders, including cerebral vasospasm after subarachnoid hemorrhage, and ischemia of the heart, liver, kidney and brain, as well as organ transplants, blood-brain barrier modulation and pulmonary hypertension. CLINICAL TRIAL REGISTRATION INFORMATION: http

  16. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

    Science.gov (United States)

    Gambelli, Lavinia; Guerrero-Cruz, Simon; Mesman, Rob J; Cremers, Geert; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran; Lueke, Claudia; van Niftrik, Laura

    2018-02-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbe-mediated processes, thus decreasing methane emissions in the atmosphere. Using a complementary array of methods, including phylogenetic analysis, physiological experiments, and light and electron microscopy techniques (including electron tomography), we investigated the community composition and ultrastructure of a continuous bioreactor enrichment culture, in which anaerobic oxidation of methane (AOM) was coupled to nitrate reduction. A membrane bioreactor was seeded with AOM biomass and continuously fed with excess methane. After 150 days, the bioreactor reached a daily consumption of 10 mmol nitrate · liter -1 · day -1 The biomass consisted of aggregates that were dominated by nitrate-dependent anaerobic methane-oxidizing " Candidatus Methanoperedens"-like archaea (40%) and nitrite-dependent anaerobic methane-oxidizing " Candidatus Methylomirabilis"-like bacteria (50%). The " Ca Methanoperedens" spp. were identified by fluorescence in situ hybridization and immunogold localization of the methyl-coenzyme M reductase (Mcr) enzyme, which was located in the cytoplasm. The " Ca Methanoperedens" sp. aggregates consisted of slightly irregular coccoid cells (∼1.5-μm diameter) which produced extruding tubular structures and putative cell-to-cell contacts among each other. " Ca Methylomirabilis" sp. bacteria exhibited the polygonal cell shape typical of this genus. In AOM archaea and bacteria, cytochrome c proteins were localized in the cytoplasm and periplasm, respectively, by cytochrome staining. Our results indicate that AOM bacteria and archaea might work closely together in the process of anaerobic methane oxidation, as the bacteria depend on the archaea for nitrite. Future studies will be aimed at elucidating the function of the cell-to-cell interactions in nitrate-dependent AOM. IMPORTANCE Microorganisms performing nitrate- and nitrite-dependent anaerobic

  17. Evaluation of ferrocyanide/nitrate explosive hazard

    International Nuclear Information System (INIS)

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed

  18. Toxicokinetische modellering van nitraat en nitriet I. Modeldefinitie en toepassing bij de normering van nitraat

    NARCIS (Netherlands)

    Zeilmaker MJ

    1992-01-01

    This report describes the development of a human physiologically based toxicokinetic model for nitrate and nitrite and its application in setting dietary standards (Acceptable Daily Intake). On the basis of a literature survey a concept of human PBPK-model was defined. This model contains the

  19. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    Science.gov (United States)

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; Pflow-mediated dilatation (Peffect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Too much of a good thing? Nitrate from nitrogen fertilizers and cancer.

    Science.gov (United States)

    Ward, Mary H

    2009-01-01

    Nitrate levels in water supplies have been increasing in many areas of the world; therefore, additional studies of populations with well-characterized exposures are urgently needed to further our understanding of cancer risk associated with nitrate ingestion. Future studies should assess exposure for individuals (e.g., case-control, cohort studies) in a time frame relevant to disease development, and evaluate factors affecting nitrosation. Estimating N-nitroso compounds formation via nitrate ingestion requires information on dietary and drinking water sources of nitrate, inhibitors of nitrosation (e.g., vitamin C), nitrosation precursors (e.g., red meat, nitrosatable drugs), and medical conditions that may increase nitrosation (e.g., inflammatory bowel disease). Studies should account for the potentially different effects of dietary and water sources of nitrate and should include the population using private wells for whom exposure levels are often higher than public supplies.

  1. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    Science.gov (United States)

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  2. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  3. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Aouina, Nizar; Cachet, Hubert; Debiemme-chouvy, Catherine; Tran, Thi Tuyet Mai

    2010-01-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10 -3 , 10 -2 and 10 -1 M. For a nitrate concentration of 10 -2 M, D was found to be 1.31 x 10 -5 cm 2 s -1 allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  4. Colorectal cancer risk and nitrate exposure through drinking water and diet.

    Science.gov (United States)

    Espejo-Herrera, Nadia; Gràcia-Lavedan, Esther; Boldo, Elena; Aragonés, Nuria; Pérez-Gómez, Beatriz; Pollán, Marina; Molina, Antonio J; Fernández, Tania; Martín, Vicente; La Vecchia, Carlo; Bosetti, Cristina; Tavani, Alessandra; Polesel, Jerry; Serraino, Diego; Gómez Acebo, Inés; Altzibar, Jone M; Ardanaz, Eva; Burgui, Rosana; Pisa, Federica; Fernández-Tardón, Guillermo; Tardón, Adonina; Peiró, Rosana; Navarro, Carmen; Castaño-Vinyals, Gemma; Moreno, Victor; Righi, Elena; Aggazzotti, Gabriella; Basagaña, Xavier; Nieuwenhuijsen, Mark; Kogevinas, Manolis; Villanueva, Cristina M

    2016-07-15

    Ingested nitrate leads to the endogenous synthesis of N-nitroso compounds (NOCs), animal carcinogens with limited human evidence. We aimed to evaluate the risk of colorectal cancer (CRC) associated with nitrate exposure in drinking water and diet. A case-control study in Spain and Italy during 2008-2013 was conducted. Hospital-based incident cases and population-based (Spain) or hospital-based (Italy) controls were interviewed on residential history, water consumption since age 18, and dietary information. Long-term waterborne ingested nitrate was derived from routine monitoring records, linked to subjects' residential histories and water consumption habits. Dietary nitrate intake was estimated from food frequency questionnaires and published food composition databases. Odd ratios (OR) were calculated using mixed models with area as random effect, adjusted for CRC risk factors and other covariables. Generalized additive models (GAMs) were used to analyze exposure-response relationships. Interaction with endogenous nitrosation factors and other covariables was also evaluated. In total 1,869 cases and 3,530 controls were analyzed. Average waterborne ingested nitrate ranged from 3.4 to 19.7 mg/day, among areas. OR (95% CIs) of CRC was 1.49 (1.24, 1.78) for >10 versus ≤5 mg/day, overall. Associations were larger among men versus women, and among subjects with high red meat intake. GAMs showed increasing exposure-response relationship among men. Animal-derived dietary nitrate was associated with rectal, but not with colon cancer risk. In conclusion, a positive association between CRC risk and waterborne ingested nitrate is suggested, mainly among subgroups with other risk factors. Heterogeneous effects of nitrate from different sources (water, animal and vegetables) warrant further research. © 2016 UICC.

  5. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    Science.gov (United States)

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  6. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    Directory of Open Access Journals (Sweden)

    Alexander Klotz

    2015-03-01

    Full Text Available Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS by a precise dosage of l-methionine-sulfoximine (MSX mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

  7. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    Science.gov (United States)

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  8. Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from traditional and vegetable-based sources on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham.

    Science.gov (United States)

    Myers, Kevin; Cannon, Jerry; Montoya, Damian; Dickson, James; Lonergan, Steven; Sebranek, Joseph

    2013-05-01

    The objective of this study was to determine the effect the source of added nitrite and high hydrostatic pressure (HHP) had on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Use of 600MPa HHP for 3min resulted in an immediate 3.9-4.3log CFU/g reduction in L. monocytogenes numbers, while use of 400MPa HHP (3min) provided less than 1log CFU/g reduction. With the 600MPa HHP treatment, sliced ham with a conventional concentration of sodium nitrite (200ppm) was not different in L. monocytogenes growth from use with 50 or 100ppm of sodium nitrite in pre-converted celery powder. Instrumental color values as well as residual nitrite and residual nitrate concentrations for cured (sodium nitrite and nitrite from celery powder) and uncured ham formulations are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Nitrate salts suppress sporulation and production of enterotoxin in Clostridium perfringens strain NCTC8239.

    Science.gov (United States)

    Yasugi, Mayo; Otsuka, Keisuke; Miyake, Masami

    2016-10-01

    Clostridium perfringens type A is a common source of food-borne illness in humans. Ingested vegetative cells sporulate in the small intestinal tract and in the process produce C. perfringens enterotoxin (CPE). Although sporulation plays a critical role in the pathogenesis of food-borne illness, the molecules triggering/inhibiting sporulation are still largely unknown. It has previously been reported by our group that sporulation is induced in C. perfringens strain NCTC8239 co-cultured with Caco-2 cells in Dulbecco's Modified Eagle Medium (DMEM). In contrast, an equivalent amount of spores was not observed when bacteria were co-cultured in Roswell Park Memorial Institute-1640 medium (RPMI). In the present study it was found that, when these two media are mixed, RPMI inhibits sporulation and CPE production induced in DMEM. When a component of RPMI was added to DMEM, it was found that calcium nitrate (Ca[NO 3 ] 2 ) significantly inhibits sporulation and CPE production. The number of spores increased when Ca(NO 3 ) 2 -deficient RPMI was used. The other nitrate salts significantly suppressed sporulation, whereas the calcium salts used did not. qPCR revealed that nitrate salts increased expression of bacterial nitrate/nitrite reductase. Furthermore, it was found that nitrite and nitric oxide suppress sporulation. In the sporulation stages, Ca(NO 3 ) 2 down-regulated the genes controlled by Spo0A, a master regulator of sporulation, but not spo0A itself. Collectively, these results indicate that nitrate salts suppress sporulation and CPE production by down-regulating Spo0A-regulated genes in C. perfringens strain NCTC8239. Nitrate reduction may be associated with inhibition of sporulation. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  10. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors.

    Directory of Open Access Journals (Sweden)

    Yuan eXue

    2015-12-01

    Full Text Available Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate at a flow rate of 3 or 6 pore volumes per day. Pulsed injection of the biocides glutaraldehyde (Glut, benzalkonium chloride (BAC and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT needed to re-establish an aqueous sulfide concentration of 0.8-1 mM (of the 1.7-2 mM before the pulse. Pulses were either for a long time (120 h at low concentration (long-low or for a short time (1 h at high concentration (short-high. The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy.

  11. Removal of Nitrate From Aqueous Solution Using Rice Chaff

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-09-01

    Full Text Available Background Nitrate is largely dissolved in the surface and ground water, due to its high solubility. Continual uptake of nitrite through drinking water can lead to problems and diseases (such as blue baby for humans, especially children. Objectives The aim of this study was to develop a new and inexpensive method for the removal of nitrate from water. In this regard, the possibility of using chaff for removal of nitrate from aqueous solutions was studied and the optimum operating conditions of nitrate removal was determined. Materials and Methods This is a cross-sectional study conducted in laboratory scale. The UV spectrophotometer at a wavelength of maximum absorbance (220 nm was used to determine the nitrate concentration. The effect of pH, amount of chaff, temperature, and contact time were investigated. Results The result of this study revealed that chaff as an absorbent could remove nitrate from solutions, and the efficiency of adsorption increased as contact time increased from 5 to 30 minutes, amount of chaff increased from 1 to 3 g, temperature increased in a range of 300 - 400°C and the amount of pH decreased from 10 to 3. The maximum adsorption rate was around pH 3 (53.14%. Conclusions It was shown that the removal efficiency of nitrate was directly proportional to the amount of chaff, temperature, and contact time but inversely to the pH. This study showed that nitrate removal by chaff is a promising technique.

  12. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    International Nuclear Information System (INIS)

    Zapp, Philip E.; Zee, John W. van

    2002-01-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation

  13. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Green, Stefan; Luo, Jian; Kelly, Shelly D.; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Boonchayanant, Benjaporn; Loeffler, Frank E.; Jardine, Philip M.; Criddle, Craig

    2010-01-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H 2 S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 μM.

  14. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode.

    Science.gov (United States)

    Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju

    2006-03-01

    The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.

  15. Effect of ozonation on microbial fish pathogens, ammonia, nitrate, nitrite, and bod in simulated reuse hatchery water

    Energy Technology Data Exchange (ETDEWEB)

    Colberg, P.J.; Lingg, A.J.

    1978-10-01

    The effectiveness of ozone for eliminating fish pathogens and reducing nitrite, ammonia, and BOD associated with reuse hatchery systems was evaluated. Comparative survival rates of four bacterial fish pathogens and a bacterium-protozoan population during batch and continuous flow ozonation indicated a specific microbial ozone demand during batch treatment and 99% mortality of pathogens during continuous flow treatment. Oxidation of carbon and nitrite by ozone was rapid at low ozone concentrations; carbon and ammonia oxidation rates were pH dependent. The oxidation capacity of ozone in water was greatest at elevated pH even though lower ozone concentrations were used. Ozone treatment appears to be successful for disinfecting hatchery makeup water for recycling. However, the economics of such treatment are yet to be determined. (10 graphs, 28 references, 1 table)

  16. Electrochemical Destruction of Nitrates and Organics FY1995 Progress Report

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1995-01-01

    Production of nuclear materials within the DOE complex has yielded large volumes of high-level waste containing hazardous species such as nitrate, nitrite, chromium, and mercury. Processes being developed for the permanent disposal of these wastes are aimed at separating the bulk of the radioactivity, primarily 137-Cs and 90-Sr, into a small volume for incorporation into a vitrified wasteform, with the remainder being incorporated into a low-level wasteform

  17. Nitrate, nitrite, and nitrous oxide transformations in sediments along a salinity gradient in the Weser Estuary

    DEFF Research Database (Denmark)

    Nielsen, Michael; Gieseke, Armin; de Beer, Dirk

    2009-01-01

    by activity of nitrite oxidisers in oxic surface layers. In contrast, high rates of NO2- release occurred in marine sediment, where NO2- production was predominantly associated with incomplete nitrification in oxic layers. Similarly, stimulated partial nitrification due to NH4+ addition led to NO2- liberation...

  18. Stimulation effect of synthetic cytokinins on the uptake and incorporation of nitrogen-15-labelled ammonium nitrate and urea in wheat leaves

    International Nuclear Information System (INIS)

    Iglewski, S.M.; Szarvas, T.; Pozsar, B.I.

    1977-01-01

    The turnover of different labelled nitrogen sources in wheat leaves has been investigated using the isotopic tracer technique. The 15 N at.% was determined in free ammonium ion, in the nitrate and the nitrite levels, and also in the non-disintegrated urea. The accumulation and the incorporation of stable nitrogen was measured in the TCA insoluble protein fraction. According to the experimental data the intensity of incorporation of urea nitrogen is relatively higher than that of the different inorganic compounds. The utilization of ammonium ion was 76% compared with the urea, whereas that of the nitrate nitrogen was 60% in the wheat leaves. The incorporation rate of the two nitrogen atoms from ammonium nitrate was 32% lower than that of the urea nitrogen, in the leaf protein of Bezostaia-1 wheat variety. The turnover of urea through the transamination was very rapid, the amination with ammonium ion was slower, and the first phase of the nitrate reduction was relatively more retarded than the nitrite reduction. The endogenous cytokinin-like biological activity and some synthetic cytokinins (kinetin, benzyladenine) have a remarkably stimulating effect on the incorporation of the different 15 N-labelled nitrogen sources into the leaf protein fraction. (author)

  19. Øget indhold af nitrat i foderet til malkekøer reducerer udledningen af metan betydeligt

    DEFF Research Database (Denmark)

    Lund, Peter; Olijhoek, Dana; Dahl, Regina

    2015-01-01

    would be a substrate for the formation of methane, is being consumed during the energy-favorable reduction of nitrate to ammonia in the rumen. Nitrite is formed during the reduction of nitrate to ammonium and is a potentially toxic intermediate. Neither acute nor long-term negative effect...... metabolism, and energy loss from the process amounts to 5-7 % of the total feed gross energy. Recent Danish research shows that the addition of nitrate to feed can reduce methane emissions by up to 23 % without feed digestibility being negatively affected. This reduction is due to hydrogen, which otherwise...... of the addition of nitrate on the animal's health could be detected. Surprisingly, addition of nitrate resulted in significant emission of nitrous oxide (N2O), which is a very potent greenhouse gas. This underlines that there is a significant change in the rumen nitrogen metabolism when nitrate is added...

  20. Nitrate intake and the risk of thyroid cancer and thyroid disease.

    Science.gov (United States)

    Ward, Mary H; Kilfoy, Briseis A; Weyer, Peter J; Anderson, Kristin E; Folsom, Aaron R; Cerhan, James R

    2010-05-01

    Nitrate is a contaminant of drinking water in agricultural areas and is found at high levels in some vegetables. Nitrate competes with uptake of iodide by the thyroid, thus potentially affecting thyroid function. We investigated the association of nitrate intake from public water supplies and diet with the risk of thyroid cancer and self-reported hypothyroidism and hyperthyroidism in a cohort of 21,977 older women in Iowa who were enrolled in 1986 and who had used the same water supply for >10 years. We estimated nitrate ingestion from drinking water using a public database of nitrate measurements (1955-1988). Dietary nitrate intake was estimated using a food frequency questionnaire and levels from the published literature. Cancer incidence was determined through 2004. We found an increased risk of thyroid cancer with higher average nitrate levels in public water supplies and with longer consumption of water exceeding 5 mg/L nitrate-N (for >or=5 years at >5 mg/L, relative risk [RR] = 2.6 [95% confidence interval (CI) = 1.1-6.2]). We observed no association with prevalence of hypothyroidism or hyperthyroidism. Increasing intake of dietary nitrate was associated with an increased risk of thyroid cancer (highest vs. lowest quartile, RR = 2.9 [1.0-8.1]; P for trend = 0.046) and with the prevalence of hypothyroidism (odds ratio = 1.2 [95% CI = 1.1-1.4]), but not hyperthyroidism. Nitrate may play a role in the etiology of thyroid cancer and warrants further study.

  1. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.

    Science.gov (United States)

    Kalimuthu, Palraj; Ringel, Phillip; Kruse, Tobias; Bernhardt, Paul V

    2016-09-01

    We report the first direct (unmediated) catalytic electrochemistry of a eukaryotic nitrate reductase (NR). NR from the filamentous fungus Neurospora crassa, is a member of the mononuclear molybdenum enzyme family and contains a Mo, heme and FAD cofactor which are involved in electron transfer from NAD(P)H to the (Mo) active site where reduction of nitrate to nitrite takes place. NR was adsorbed on an edge plane pyrolytic graphite (EPG) working electrode. Non-turnover redox responses were observed in the absence of nitrate from holo NR and three variants lacking the FAD, heme or Mo cofactor. The FAD response is due to dissociated cofactor in all cases. In the presence of nitrate, NR shows a pronounced cathodic catalytic wave with an apparent Michaelis constant (KM) of 39μM (pH7). The catalytic cathodic current increases with temperature from 5 to 35°C and an activation enthalpy of 26kJmol(-1) was determined. In spite of dissociation of the FAD cofactor, catalytically activity is maintained. Copyright © 2016. Published by Elsevier B.V.

  2. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    International Nuclear Information System (INIS)

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-01-01

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 ± 50 h (half-life), (b) nitrite production = 850 ± 300 h, and (c) ammonia production = 650 ± 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  3. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    Science.gov (United States)

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  4. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aouina, Nizar; Cachet, Hubert [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Debiemme-chouvy, Catherine, E-mail: catherine.debiemme-chouvy@upmc.f [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Tran, Thi Tuyet Mai [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France)

    2010-10-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10{sup -3}, 10{sup -2} and 10{sup -1} M. For a nitrate concentration of 10{sup -2} M, D was found to be 1.31 x 10{sup -5} cm{sup 2} s{sup -1} allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  5. Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite

    Science.gov (United States)

    Chenni, Fatima Z; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Hobbs, Ditte A; Kunhle, Gunter G C; Pierre, Fabrice H; Corpet, Denis E

    2013-01-01

    Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme/alcenal, heterocyclic amines or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate heme-induced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, salivary nitrite did not change the effect of hemoglobin on biochemical markers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitroso-compounds level, but their fecal concentration and their nature (iron-nitrosyl) would not be associated with an increased risk of cancer. The rat model could thus be relevant to study the effect of red meat on colon carcinogenesis in spite of the lack of nitrite recycling in rat’s saliva. PMID:23441609

  6. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    Science.gov (United States)

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  8. Research on changes of nitrate by interactions with metals under the wastes disposal environment containing TRU nuclide. 2

    International Nuclear Information System (INIS)

    Wada, Ryutaro; Nishimura, Tsutomu; Masuda, Kaoru; Fujiwara, Kazuo; Imakita, Tsuyoshi; Tateishi, Tsuyoshi

    2004-02-01

    In TRU wastes, wastes containing nitrate ion as salt exist. In the disposal site environment, this nitrate ion changes into nitrite ion, ammonia, etc., and possibly affects disposal site environmental changes or nuclide migration parameters. In the present research, evaluation was carried out on the chemical interaction between nitrate ion and carbon steel, which is primary reducing agent, under the low-oxygen conditions simulating a disposal site. (1) In the electrochemical test, test data were generated in order to supplement influence parameters required for improvement of the accuracy of the nitrate reaction model (NEON). As the results, it was found that the influence of potential and pH is remarkable, also that of initial nitrate concentration is significant, while the temperature is not remarkable to the nitrate and nitrite reaction themselves. Besides, it was found that the difference in the surface condition of the electrodes is not remarkable. (2) Several long-term reaction tests were carried out to assume the effects of important parameters on the nitrate behavior with carbon steel under low-oxygen high-alkaline type simulated groundwater conditions using glass sealed apparatus (ampoule tests). As the results, it was found that initial nitrate ion concentration and temperature causes the increase of hydrogen generation as well as ammonia generation, while it was found that the difference of carbon steel composition doesn't affect significantly. (3) The parameter fitting NEON was reexamined to improve accuracy, gathering data of electrochemical tests and ampoule tests conducted in 2003 and 2000 through 2002. In addition by comparing the calculation results with experimental results, applicability of NEON was investigated. (4) Implementation of NEON to the mass transfer calculation code was carried out in order to enable the calculation of the nitrate ion behavior including incomings and outgoings of substance to and from the system, resulting in the

  9. Effects of Dietary l-Arginine on Nitric Oxide Bioavailability in Obese Normotensive and Obese Hypertensive Subjects

    Directory of Open Access Journals (Sweden)

    Beverly Giam

    2016-06-01

    Full Text Available Obesity related hypertension is a major risk factor for resistant hypertension. We do not completely understand the mechanism(s underlying the development of obesity related hypertension which hinders the development of novel treatment strategies for this condition. Data from experimental studies and small clinical trials indicate that transport of l-arginine, the substrate for nitric oxide (NO, and subsequent NO production are reduced in obesity induced hypertension. Reduced NO bioavailability can induce hypertension via multiple mechanisms. Mirmiran et al. recently analyzed data from a large population study and found that the association between dietary l-arginine and serum nitrate and nitrite was weakened in obese hypertensive subjects compared to obese normotensives. These data suggest that l-arginine dependent NO production is impaired in the former group compared to the latter which may represent a novel mechanism contributing to hypertension in the setting of obesity.

  10. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    Science.gov (United States)

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae.

    Science.gov (United States)

    Beutler, Martin; Milucka, Jana; Hinck, Susanne; Schreiber, Frank; Brock, Jörg; Mussmann, Marc; Schulz-Vogt, Heide N; de Beer, Dirk

    2012-11-01

    We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.

    Science.gov (United States)

    Paradis, Charles J; Jagadamma, Sindhu; Watson, David B; McKay, Larry D; Hazen, Terry C; Park, Melora; Istok, Jonathan D

    2016-04-01

    Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at

  13. Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved?

    Directory of Open Access Journals (Sweden)

    Mária Kovács

    Full Text Available To provide evidence for the protective role of inorganic nitrite against acute ischaemia and reperfusion-induced ventricular arrhythmias in a large animal model.Dogs, anaesthetized with chloralose and urethane, were administered intravenously with sodium nitrite (0.2 µmol kg(-1 min(-1 in two protocols. In protocol 1 nitrite was infused 10 min prior to and during a 25 min occlusion of the left anterior descending (LAD coronary artery (NaNO2-PO; n = 14, whereas in protocol 2 the infusion was started 10 min prior to reperfusion of the occluded vessel (NaNO2-PR; n = 12. Control dogs (n = 15 were infused with saline and subjected to the same period of ischaemia and reperfusion. Severities of ischaemia and ventricular arrhythmias, as well as changes in plasma nitrate/nitrite (NOx levels in the coronary sinus blood, were assessed throughout the experiment. Myocardial superoxide and nitrotyrosine (NT levels were determined during reperfusion. Changes in protein S-nitrosylation (SNO and S-glutathionylation were also examined.Compared with controls, sodium nitrite administered either pre-occlusion or pre-reperfusion markedly suppressed the number and severity of ventricular arrhythmias during occlusion and increased survival (0% vs. 50 and 92% upon reperfusion. There were also significant decreases in superoxide and NT levels in the nitrite treated dogs. Compared with controls, increased SNO was found only in NaNO2-PR dogs, whereas S-glutathionylation occurred primarily in NaNO2-PO dogs.Intravenous infusion of nitrite profoundly reduced the severity of ventricular arrhythmias resulting from acute ischaemia and reperfusion in anaesthetized dogs. This effect, among several others, may result from an NO-mediated reduction in oxidative stress, perhaps through protein SNO and/or S-glutathionylation.

  14. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    Science.gov (United States)

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run

  15. Ingested Nitrate and Breast Cancer in the Spanish Multicase-Control Study on Cancer (MCC-Spain)

    Science.gov (United States)

    Espejo-Herrera, Nadia; Gracia-Lavedan, Esther; Pollan, Marina; Aragonés, Nuria; Boldo, Elena; Perez-Gomez, Beatriz; Altzibar, Jone M.; Amiano, Pilar; Zabala, Ana Jiménez; Ardanaz, Eva; Guevara, Marcela; Molina, Antonio J.; Barrio, Juan Pablo; Gómez-Acebo, Ines; Tardón, Adonina; Peiró, Rosana; Chirlaque, Maria Dolores; Palau, Margarita; Muñoz, Montse; Font-Ribera, Laia; Castaño-Vinyals, Gemma; Kogevinas, Manolis; Villanueva, Cristina M.

    2016-01-01

    Background: Ingested nitrate leads to endogenous formation of N-nitroso compounds that are breast carcinogens in animals, but human evidence is limited. Objective: We evaluated ingested nitrate as a risk factor for breast cancer (BC) in a multicase–control study. Methods: Hospital-based incident BC cases and population-based controls were recruited in eight Spanish regions in 2008–2013; participants provided residential and water consumption from 18 years of age and information on known BC risk factors. Long-term nitrate levels (1940–2010) were estimated and linked with residential histories and water consumption to calculate waterborne ingested nitrate (milligrams/day). Dietary ingested nitrate (milligrams/day) was calculated using food frequency questionnaires and published dietary nitrate contents. Interactions with endogenous nitrosation factors and other variables were evaluated. A total of 1,245 cases and 1,520 controls were included in the statistical analysis. Results: Among the study regions, average ± SD waterborne ingested nitrate ranged from 2.9 ± 1.9 to 13.5 ± 7.5 mg/day, and dietary ingested nitrate ranged from 88.5 ± 48.7 to 154 ± 87.8 mg/day. Waterborne ingested nitrate was not associated with BC overall, but among postmenopausal women, those with both high nitrate (> 6 vs. Zabala AJ, Ardanaz E, Guevara M, Molina AJ, Barrio JP, Gómez-Acebo I, Tardón A, Peiró R, Chirlaque MD, Palau M, Muñoz M, Font-Ribera L, Castaño-Vinyals G, Kogevinas M, Villanueva CM. 2016. Ingested nitrate and breast cancer in the Spanish Multicase-Control Study on Cancer (MCC-Spain). Environ Health Perspect 124:1042–1049; http://dx.doi.org/10.1289/ehp.1510334 PMID:26942716

  16. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress and AMPK signaling in the liver

    Directory of Open Access Journals (Sweden)

    Maria ePeleli

    2015-08-01

    Full Text Available Rationale: Accumulating studies suggest that nitric oxide (NO deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes. Recent findings demonstrate therapeutic effects by boosting a nitrate-nitrite-NO pathway, an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A2B-/-, a genetic model of impaired metabolic regulation.Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT and A2B-/- mice. One hour after injection with nitrate or placebo, metabolic regulation was evaluated by glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR and NO signaling.Results: A2B-/- displayed increased body weight, reduced glucose clearance and attenuated overall insulin responses compared with age-matched WT. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in A2B-/-, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in A2B-/-, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A2B-/-, but not WT mice, was reduced by nitrate. Livers from A2B-/- displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A2B-/- as observed with nitrate. Conclusion: The A2B-/- mouse is a genetic model of metabolic syndrome. Acute treatment with nitrate improved the metabolic profile, at least partly via reduction in oxidative stress and improved AMPK signaling

  17. The nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.

    1993-01-01

    A new low-temperature (50--60 degrees C) process for the reduction of nitrate or nitrite to ammonia gas in a stirred, ethylene glycol led reactor has been developed. The process has nearly completed 2 years of bench-top testing in preparation for a pilot-scale demonstration in the fall of 1994. The nitrate to ammonia and ceramic (NAC) process utilizes the active metal Al (in powder or shot form) in alkaline solution to convert nitrate to ammonia gas with the liberation of heat. Between 0.8 and 1.6 kg of Al per kilogram of sodium nitrate is required to convert solutions of between 3.1 and 6.2 M nitrate to near zero concentration. Prior to feeding Al to the reactor, 40 μm quartz is added based upon the total sodium content of the waste. Upon adding the Al, a by-product of gibbsite precipitates in the reactor as the ammonia leaves the solution. At the end of the reaction, the alumina-silica-based solids are dewatered, calcined, pressed, and sintered into a hard ceramic. Comparing the volume of the final ceramic product with the volume of the starting waste solution, we obtain an ∼70% volume reduction. This compares with an expected 50% volume increase if the waste were immobilized in cement-based grout. The process is being developed for use at Hanford, where as much as 125,000 tonnes of nitrate salts is stored in 4 million liter tanks. DOE may be able to shred radioactively contaminated scrap aluminum, and use this metal to feed the NAC reactor

  18. Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation

    Science.gov (United States)

    Nowka, Boris; Daims, Holger

    2014-01-01

    Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863

  19. Reactions of nitrate salts with ammonia in supercritical water

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.; Gloyna, E.F.; Buelow, S.J.

    1997-01-01

    Reactions involving nitrate salts and ammonia were investigated in supercritical water at temperatures from 450 to 530 C and pressures near 300 bar. Reaction products included nitrite, nitrogen gas, and nitrous oxide. Observed reaction rates and product distributions provided evidence for a free-radical reaction mechanism with NO 2 , NO, and NH 2 · as the primary reactive species at supercritical conditions. In the proposed elementary mechanism, the rate-limiting reaction step was determined to be the hydrolysis of MNO 3 species, which resulted in the formation of nitric acid and subsequently NO 2 . A simple second-order reaction model was used to represent the data. In developing an empirical kinetic model, nitrate and nitrate were lumped as an NO x - reactant. Empirical kinetic parameters were developed for four MNO x /NH 3 reacting systems, assuming first orders in both NH 3 and NO x - . Observed MNO x /NH 3 reaction rates and mechanisms suggest immediately a practical significance of these reactions for nitrogen control strategies in supercritical water oxidation processes

  20. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process.

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-05-01

    A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.