WorldWideScience

Sample records for dietary n-3 fatty

  1. The effects of dietary supplementation with n-3 polyunsaturated fatty acids in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Nielsen, G L; Faarvang, K L; Thomsen, B S

    1992-01-01

    STUDY OBJECTIVE: To determine the effect of dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) on disease variables in patients with rheumatoid arthritis. DESIGN: Multicenter, randomized, placebo controlled, double blind. SETTING: Three Danish hospital Departments of Rheumato......STUDY OBJECTIVE: To determine the effect of dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) on disease variables in patients with rheumatoid arthritis. DESIGN: Multicenter, randomized, placebo controlled, double blind. SETTING: Three Danish hospital Departments...

  2. Erythrocyte levels compared with reported dietary intake of marine n-3 fatty acids in pregnant women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, H.S.; Sandstrom, B.

    1995-01-01

    It is well established that marine n-3 fatty acids measured in erythrocyte phospholipids of non-pregnant subjects reflect the subjects' intake of these fatty acids. In 135 pregnant women in the 30th week of gestation we compared intake of marine n-3 fatty acids and energy, estimated by a combined...... dietary self- administered questionnaire and interview, with fatty acids measured in erythrocyte phospholipids. Daily intake (g/d) and nutrient density of marine n-3 fatty acids (mg/MJ) correlated with the n-3 fatty acid: arachidonic acid ratio (FA-ratio) with correlation coefficients of 0.48 and 0.......54 respectively. In a linear regression model with three frequency questions about marine sandwiches, marine cooked meals and fish oil as explanatory variables, and the FA-ratio as dependent variable, the multiple correlation coefficient was 0.46. Conclusions from the study were (1) levels of erythrocyte fatty...

  3. Erythrocyte levels compared with reported dietary intake of marine n-3 fatty acids in pregnant women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sandstrom, B.

    1995-01-01

    It is web established that marine n-3 fatty acids measured in erythrocyte phospholipids of non-pregnant subjects reflect the subjects' intake of these fatty acids. In 135 pregnant women in the 30th week of gestation we compared intake of marine n-3 fatty acids and energy, estimated by a combined...... dietary self-administered questionnaire and interview, with fatty acids measured in erythrocyte phospholipids. Daily intake (g/d) and nutrient density of marine n-3 fatty acids (mg/MJ) correlated with the n-3 fatty acid: arachidonic acid ratio (FA-ratio) with correlation coefficients of 0.48 and 0.......54 respectively. In a linear regression model with three frequency questions about marine sandwiches, marine cooked meals and fish oil as explanatory variables, and the FA-ratio as dependent variable, the multiple correlation coefficient was 0.46. Conclusions from the study were (1) levels of erythrocyte fatty...

  4. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms.

    Science.gov (United States)

    Fan, Rong; Koehler, Karsten; Chung, Soonkyu

    2018-04-19

    Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Neuroinflammation and aging: influence of dietary n-3 polyunsaturated fatty acid*

    Directory of Open Access Journals (Sweden)

    Layé Sophie

    2011-11-01

    Full Text Available The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against noxious agents or lesions. Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed in the brain, leading to the development of altered emotional and cognitive behavior. These behavioral alterations cease along with the synthesis of brain cytokines. When the level of expression of these cytokines remains high, they become toxic to neurons possibly leading to neuronal death, as observed in neurodegenerative disorders such as Alzheimer’s disease. Omega-3 (n-3 type polyunsaturated fatty acids (PUFAs are essential nutrients and fundamental components of neuronal and glial cell membranes. Additionally, they have immunomodulatory properties. They accumulate in the brain during the perinatal period in a dietary supply-dependant fashion. Their brain levels diminish with age, but can be corrected by a diet enriched in n-3 PUFAs. The increasing exposure of the population to diets unbalanced in n-3 PUFAs could contribute to the deleterious effect of inflammatory cytokines in the brain.

  6. Effects of dietary n-3 and n-6 fatty acids levels on egg and larval quality of Eurasian perch

    DEFF Research Database (Denmark)

    Henrotte, E.; Overton, Julia Lynne; Kestemont, P.

    2008-01-01

    Three groups of 40 perch breeders were reared in order to study the effects of 3 different levels of dietary n-3 and n-6 fatty acids on egg quality. Two experimental diets, R1 and R2 (n-3/n-6 = 0.13 and 35.54, respectively), were compared to one commercial food, R3 (n-3/n-6 = 3.48.). Spawning and...

  7. Effect of Different Dietary n-6 to n-3 Fatty Acid Ratios on the Performance and Fatty Acid Composition in Muscles of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    G. P. Mandal

    2014-11-01

    Full Text Available The objective of this study was to investigate the different dietary ratios of n-6 to n-3 (n-6/n-3 fatty acid (FA on performance and n-6/n-3 FA in muscles of broiler chickens. A total of 300 one-day-old Cobb chicks were randomly assigned to 3 treatments of 10 replicates in each (10 birds/replicate. Birds were fed on a corn-soybean meal-based diet containing 1% oil during starter (day 1 to 21 and 2% oil during finisher (day 22 to 39 phases, respectively. Treatments of high, medium and low dietary n-6/n-3 FA were formulated by replacing rice bran oil with linseed oil to achieve n-6/n-3 FA close to >20:1, 10:1 and 5:1, respectively. Average daily gain, average daily feed intake, and feed conversion ratio were similar (p>0.05 among the treatments. Serum glucose, cholesterol and triglycerides concentrations were not affected (p>0.05 by dietary treatments. In breast, concentration of C18:3n-3 was significantly greater (p = 0.001 for medium and low vs high n-6/n-3 FA, while concentrations of C20:5n-3, C22:6n-3, total n-3 FA, and n-6/n-3 FA were significantly higher for low vs medium, and medium vs high dietary n-6/n-3 FA. In contrast, concentrations of C18:2 and mono-unsaturated FA (MUFA were lower for low vs high dietary n-6/n-3 FA. In thigh muscles, concentrations of C20:5n-3 were higher (p<0.05 for medium and low vs high dietary n-6/n-3 FA, and concentrations of C18:3n-3, C22:6, and n-3 FA were greater (p<0.05 for medium vs high, low vs medium dietary n-6/n-3 FA. However, concentrations of C18:1, MUFA, n-6/n-3 were lower (p<0.05 for low and medium vs high dietary n-6/n-3 FA. In conclusion, lowering the dietary n-6/n-3 FA did not affect the performance of chickens, but enhanced beneficial long-chain n-3 FA and decreased n-6/n-3 FA in chicken breast and thigh, which could be advantageous for obtaining healthy chicken products.

  8. Dietary (n-6 : n-3 Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Amira Abdulbari Kassem

    2012-01-01

    Full Text Available The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO: 50% cod liver oil (CLO (1 : 1, 84% SBO: 16% CLO (6 : 1, 96% SBO: 4% CLO (30 : 1. Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.

  9. Dietary (n-6 : n-3) fatty acids alter plasma and tissue fatty acid composition in pregnant Sprague Dawley rats.

    Science.gov (United States)

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.

  10. Dietary (n-6 : n-3) Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    Science.gov (United States)

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat. PMID:22489205

  11. Influence of dietary long-chain n-3 fatty acids from menhaden fish oil on plasma concentrations of alpha-tocopherol in geriatric beagles.

    Science.gov (United States)

    Hall, Jean A; Tooley, Katie A; Gradin, Joseph L; Jewell, Dennis E; Wander, Rosemary C

    2002-01-01

    To determine effects of dietary n-3 fatty acids from Menhaden fish oil on plasma alpha-tocopherol concentrations in Beagles. 32 female Beagles. For 82 days, dogs were fed diets that contained 1 of 2 ratios of n-6:n-3 fatty acids (40:1 [low n-3] and 1.4:1 [high n-3]) and 1 of 3 concentrations of all-rac-alpha-tocopheryl acetate (low, 17 mg/kg of diet; medium, 101 mg/kg; and high, 447 mg/kg) in a 2 X 3 factorial study. Diets high in n-3 fatty acids significantly increased total content of n-3 fatty acids in plasma (17.0 g/100 g of fatty acids), compared with low n-3 diets (2.02 g/100 g of fatty acids). Mean +/- SEM plasma concentration of cholesterol was significantly lower in dogs consuming high n-3 diets (4.59 +/- 0.48 mmol/L), compared with dogs consuming low n-3 diets (5.71 +/- 0.48 mmol/L). A significant interaction existed between the ratio for n-6 and n-3 fatty acids and amount of alpha-tocopheryl acetate in the diet (plasma alpha-tocopherol concentration expressed on a molar basis), because the plasma concentration of alpha-toco-pherol was higher in dogs consuming low n-3 diets, compared with those consuming high n-3 diets, at the 2 higher amounts of dietary alpha-tocopheryl acetate. Plasma alpha-tocopherol concentration expressed relative to total lipid content did not reveal effects of dietary n-3 fatty acids on concentration of alpha-tocopherol. Plasma alpha-tocopherol concentration is not dependent on dietary ratio of n-6 and n-3 fatty acids when alpha-tocopherol concentration is expressed relative to the total lipid content of plasma.

  12. C-reactive protein, dietary n-3 fatty acids, and the extent of coronary artery disease

    DEFF Research Database (Denmark)

    Madsen, Trine; Skou, Helle Aarup; Hansen, Vibeke Ellegaard

    2001-01-01

    The acute-phase reactant C-reactive protein (CRP) has emerged as an independent risk factor for coronary artery disease. Experimental and clinical studies provide evidence of anti-inflammatory effects of n-3 polyunsaturated fatty acids (PUFA) derived from fish. We have studied the effect of marin.......003). The inverse correlation between CRP and DHA may reflect an anti-inflammatory effect of DHA in patients with stable coronary artery disease and suggest a novel mechanism by which fish consumption may decrease the risk of coronary artery disease. (C) 2001 by Excerpta Medica, Inc....

  13. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  14. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Te-Chih Wong

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM, appendicular skeletal muscle mass (ASM, and its determinants in patients receiving standard hemodialysis (HD treatment for the management of end stage renal disease.In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI for both n-3 PUFAs and alpha-linolenic acid (ALA was 1.6 g/day and 1.1 g/day for men and women, respectively.The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047. No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients.Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  15. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Science.gov (United States)

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  16. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    Science.gov (United States)

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  17. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat

    Directory of Open Access Journals (Sweden)

    Sridhar Kalakuntla

    2017-12-01

    Full Text Available The present study was undertaken to investigate the effect of dietary replacement of commonly used vegetable oil (sunflower oil, SFO with n-3 polyunsaturated fatty acids (PUFA rich oil sources on broiler chicken performance, carcass yield, meat fatty acid composition, keeping quality and sensory attributes of meat. In the current experiment, 300 day-old Krishibro broiler chicks were randomly distributed to 5 dietary groups (50 replicates with 6 chicks in each prepared by replacing SFO (2% and 3% of diet during starter and finisher periods, respectively with n-3 PUFA rich soybean oil (SO, mustard oil (MO, linseed oil (LO or fish oil (FO on weight basis. Variation in oil sources had no influence (P > 0.05 on performance and carcass yield. Supplementation of MO, LO or FO significantly (P < 0.01 increased the n-3 PUFA, lowered the n-6 PUFA deposition and n-6:n-3 ratio in breast and thigh without affecting the organoleptic characters (appearance, flavour, juiciness, tenderness and overall acceptability of meat. However, thiobarbituric acid reacting substances concentration in meat was increased (P < 0.01 with LO and FO supplementation compared with SFO. It is concluded that, dietary incorporation of MO, LO or FO at 2% and 3% levels during starter and finisher phase can enrich broiler chicken meat with n-3 PUFA without affecting the bird's performance and sensory characters of meat.

  18. Effects of dietary n-3 and n-6 fatty acids on clinical outcome in a porcine model on postoperative infection

    DEFF Research Database (Denmark)

    Langerhuus, Sine Nygaard; Tønnesen, Else Kirstine; Jensen, Karin Hjelholt

    2012-01-01

    , daily body-weight gain was determined in both periods. The preoperative changes in plasma and erythrocyte n-3 and n-6 LC-PUFA concentrations reflected the fatty acid compositions of the dietary treatments given, and plasma PGE2 metabolite concentration decreased in the fish oil treatment (P ...The present study was performed to evaluate the effects of dietary n-3 and n-6 long-chain PUFA (LC-PUFA) on clinical outcome in a porcine model on early aortic vascular prosthetic graft infection (AVPGI). A total of eighty-four pigs were randomised to a 35 d dietary treatment with 10 % (w/w) fish......·001). In the post-operative period, feed intake (P = 0·004) and body-weight gain (P = 0·038) were higher in the fish oil treatment compared with the sunflower oil treatment. The dietary treatments did not affect the number of days pigs were showing fever, weakness in the hindquarters or impaired general appearance...

  19. Low dietary intake of n-3 fatty acids, niacin, folate, and vitamin C in Korean patients with schizophrenia and the development of dietary guidelines for schizophrenia.

    Science.gov (United States)

    Kim, Eun Jin; Lim, So Young; Lee, Hee Jae; Lee, Ju-Yeon; Choi, Seunggi; Kim, Seon-Young; Kim, Jae-Min; Shin, Il-Seon; Yoon, Jin-Sang; Yang, Soo Jin; Kim, Sung-Wan

    2017-09-01

    Inappropriate dietary intake and poor nutritional status are reported to be associated with metabolic syndrome and psychopathology in patients with schizophrenia. We hypothesized that inappropriate dietary habits and insufficient dietary intake of specific nutrients are associated with schizophrenia. To test the hypothesis, we assessed the dietary habits and nutritional intake of patients with schizophrenia and then developed suitable dietary guidelines. In total, 140 subjects (73 controls and 67 patients with schizophrenia from community mental health centers) were included, and dietary intakes were analyzed using a semi-quantitative food frequency questionnaire. As a result, the proportion of overweight or obese patients was significantly higher in schizophrenia subjects (64.2%) compared with control subjects (39.7%) (P=.004). The male schizophrenia patients had significantly lower dietary intakes of protein, polyunsaturated fatty acids (PUFAs), vitamin K, niacin, folate, and vitamin C than the male control subjects. In all multiple logistic regression models, subjects with the "low" dietary intake of protein, n-3 PUFAs, niacin, folate, and vitamin C had a significantly higher odds ratios for schizophrenia compared with those with the "high" dietary intake category of each nutrient. Therefore, maintenance of a healthy body weight and sufficient dietary intake of protein, PUFAs, niacin, folate, and vitamin C are recommended for Korean patients with schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of Dietary n-6:n-3 PUFA Ratios on Lipid Levels and Fatty Acid Profile of Cherry Valley Ducks at 15-42 Days of Age.

    Science.gov (United States)

    Li, Mengmeng; Zhai, Shuangshuang; Xie, Qiang; Tian, Lu; Li, Xiaocun; Zhang, Jiaming; Ye, Hui; Zhu, Yongwen; Yang, Lin; Wang, Wence

    2017-11-22

    The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.

  2. Effects of dietary conjugated linoleic acid (CLA), n-3 and n-6 fatty ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... or 7% CLA diets were found to have the most inferior weight gain in grower and finisher phases ... inflammatory response in the growing chicks (Cook et al., ..... broiler performance, serum lipoprotein content, muscle fatty sacid.

  3. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil.

    Science.gov (United States)

    Elkin, Robert G; Kukorowski, Alexandra N; Ying, Yun; Harvatine, Kevin J

    2018-02-01

    Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives. © 2018 AOCS.

  4. Effect of dietary n-6 to n-3 polyunsaturated fatty acid ratio on ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of different ratio n-6:n-3 on the PPAR expression of rats endometrial tissue. The findings obtained from this study showed significant induction of PPARδ mRNA levels in endomatral cells treatment 1:1 group by 1.38 fold compared with the PPARδ mRNA levels in ...

  5. Maternal and neonatal dietary intake of balanced n-6/n-3 fatty acids modulates experimental colitis in young adult rats.

    Science.gov (United States)

    Reddy, K Vijay Kumar; Naidu, K Akhilender

    2016-08-01

    The imbalance of n-6 and n-3 polyunsaturated fatty acids in the maternal diet impairs intestinal barrier development and sensitizes the colon response to inflammatory insults in the young rats. With a view to overcoming this issue, we designed this study to investigate the effect of maternal and neonatal intake of different proportions of n-6/n-3 fatty acids on colon inflammation in the young adult rats. Female Wistar rats were assigned into four groups, and each group fed one of four semisynthetic diets, namely n-6, low n-3, n-6/n-3 and n-3 fatty acids for 8 weeks prior to mating, during gestation and lactation periods. At weaning, the pups were separated from the dams and fed diet similar to the mothers. Colitis was induced on postnatal day 35, by administering 2 % dextran sulfate sodium in drinking water for 10 days. Colitis was assessed based on the clinical and inflammatory markers in the colon. Fatty acid analysis was done in liver, RBC, colon and spleen. A balanced n-6/n-3 PUFA diet significantly improved the body weight loss, rectal bleeding and mortality in rats. This was associated with lower myeloperoxidase activity, nitric oxide, prostaglandin E2, TNF-α and IL-6, IL-8, COX-2 and iNOS levels in the colon tissues. Fatty acid analysis has shown that the arachidonic acid/docosahexaenoic acid ratio was significantly lower in liver, RBC, colon and spleen in n-6/n-3 and n-3 diet groups. We demonstrate that balanced n-6/n-3 PUFA supplementation in maternal and neonatal diet alters systemic AA/DHA ratio and attenuates colon inflammation in the young adult rats.

  6. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Calon, Frédéric; Lim, Giselle P; Morihara, Takashi; Yang, Fusheng; Ubeda, Oliver; Salem, Norman; Frautschy, Sally A; Cole, Greg M

    2005-08-01

    Epidemiological data indicate that low n-3 polyunsaturated fatty acids (PFA) intake is a readily manipulated dietary risk factor for Alzheimer's disease (AD). Studies in animals confirm the deleterious effect of n-3 PFA depletion on cognition and on dendritic scaffold proteins. Here, we show that in transgenic mice overexpressing the human AD gene APPswe (Tg2576), safflower oil-induced n-3 PFA deficiency caused a decrease in N-methyl-D-aspartate (NMDA) receptor subunits, NR2A and NR2B, in the cortex and hippocampus with no loss of the presynaptic markers, synaptophysin and synaptosomal-associated protein 25 (SNAP-25). n-3 PFA depletion also decreased the NR1 subunit in the hippocampus and Ca2+/calmodulin-dependent protein kinase (CaMKII) in the cortex of Tg2576 mice. These effects of dietary n-3 PFA deficiency were greatly amplified in Tg2576 mice compared to nontransgenic mice. Loss of the NR2B receptor subunit was not explained by changes in mRNA expression, but correlated with p85alpha phosphatidylinositol 3-kinase levels. Most interestingly, n-3 PFA deficiency dramatically increased levels of protein fragments, corresponding to caspase/calpain-cleaved fodrin and gelsolin in Tg2576 mice. This effect was minimal in nontransgenic mice suggesting that n-3 PFA depletion potentiated caspase activation in the Tg2576 mouse model of AD. Dietary supplementation with docosahexaenoic acid (DHA; 22 : 6n-3) partly protected from NMDA receptor subunit loss and accumulation of fodrin and gelsolin fragments but fully prevented CaMKII decrease. The marked effect of dietary n-3 PFA on NMDA receptors and caspase/calpain activation in the cortex of an animal model of AD provide new insights into how dietary essential fatty acids may influence cognition and AD risk.

  7. Dietary supplementation with n-3 polyunsaturated fatty acids in early childhood: effects on blood pressure and arterial structure and function at age 8 y.

    Science.gov (United States)

    Ayer, Julian G; Harmer, Jason A; Xuan, Wei; Toelle, Brett; Webb, Karen; Almqvist, Catarina; Marks, Guy B; Celermajer, David S

    2009-08-01

    n-3 Fatty acid supplementation in adults results in cardiovascular benefits. However, the cardiovascular effects of n-3 supplementation in early childhood are unknown. The objective was to evaluate blood pressure (BP) and arterial structure and function in 8-y-old children who had participated in a randomized controlled trial of dietary n-3 and n-6 modification over the first 5 y of life. The children (n = 616; 49% girls) were randomly assigned antenatally to active (n = 312; increase in n-3 intake and decrease in n-6 intake) or control (n = 304) diet interventions implemented from the time of weaning or introduction of solids until 5 y of age. At age 8.0 +/- 0.1 y, BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, and brachial pulse wave velocity were measured in 405 of these children. Venous blood was collected for measurement of plasma fatty acids, lipoproteins, high-sensitivity C-reactive protein, and asymmetric dimethylarginine. Plasma fatty acid concentrations were also assessed during the intervention. Plasma concentrations of n-3 fatty acids were higher and of n-6 were lower in the active than in the control diet group at 18 mo and 3 and 5 y (P n-3 and n-6 fatty acids were similar at 8 y. At 8 y of age, no significant differences were found in BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, asymmetric dimethylarginine, high-sensitivity C-reactive protein, or lipoproteins between diet groups. A dietary supplement intervention to increase n-3 and decrease n-6 intakes from infancy until 5 y does not result in significant improvements in arterial structure and function at age 8 y. This trial was registered at the Australian Clinical Trials Registry as ACTRN012605000042640.

  8. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed experime......The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...... experimental diets from the 8(th) day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the offspring were fed the same diet as their dams. The experimental diets contained either a specific structured oil, linseed oil or fish oil. In the specific structured oil, a-linolenic acid (18...... fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...

  9. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    Science.gov (United States)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.

    Science.gov (United States)

    Ferraz, Anete Curte; Kiss, Agata; Araújo, Renata Lins Fuentes; Salles, Hélidy Maria Rossi; Naliwaiko, Katya; Pamplona, Juliana; Matheussi, Francesca

    2008-03-01

    In this work we investigated the effect from fish oil (FO) supplementation, rich in n-3 fatty acids, on an antidepressant effect on adult rats in Phase A (supplementation during pregnancy and lactation) and phase B (supplementation during post-weaning until adulthood). During Phase A, female rats, used as matrix to obtain male rats, were divided in three groups: FO (daily supplemented), CF (coconut fat daily supplemented) and control (not supplemented). Our results showed that adult rats whose mothers were supplemented with FO during Phase A and rats supplemented during phase B demonstrated a significantly decreased immobility time when compared to control and CF groups. There was no difference in neither motor activity nor anxiety behavior in the three groups excluding false positive results. Our results suggest that n-3 fatty acids supplementation during Phases A and B had a beneficial effect on preventing the development of depression-like behavior in adult rats.

  11. Dietary n-3 polyunsaturated fatty acid intake and all-cause and cardiovascular mortality in adults on hemodialysis: The DIET-HD multinational cohort study.

    Science.gov (United States)

    Saglimbene, Valeria M; Wong, Germaine; Ruospo, Marinella; Palmer, Suetonia C; Campbell, Katrina; Larsen, Vanessa Garcia; Natale, Patrizia; Teixeira-Pinto, Armando; Carrero, Juan-Jesus; Stenvinkel, Peter; Gargano, Letizia; Murgo, Angelo M; Johnson, David W; Tonelli, Marcello; Gelfman, Rubén; Celia, Eduardo; Ecder, Tevfik; Bernat, Amparo G; Del Castillo, Domingo; Timofte, Delia; Török, Marietta; Bednarek-Skublewska, Anna; Duława, Jan; Stroumza, Paul; Hoischen, Susanne; Hansis, Martin; Fabricius, Elisabeth; Wollheim, Charlotta; Hegbrant, Jörgen; Craig, Jonathan C; Strippoli, Giovanni F M

    2017-12-06

    Patients on hemodialysis suffer from high risk of premature death, which is largely attributed to cardiovascular disease, but interventions targeting traditional cardiovascular risk factors have made little or no difference. Long chain n-3 polyunsaturated fatty acids (n-3 PUFA) are putative candidates to reduce cardiovascular disease. Diets rich in n-3 PUFA are recommended in the general population, although their role in the hemodialysis setting is uncertain. We evaluated the association between the dietary intake of n-3 PUFA and mortality for hemodialysis patients. The DIET-HD study is a prospective cohort study (January 2014-June 2017) in 9757 adults treated with hemodialysis in Europe and South America. Dietary n-3 PUFA intake was measured at baseline using the GA 2 LEN Food Frequency Questionnaire. Adjusted Cox regression analyses clustered by country were conducted to evaluate the association of dietary n-3 PUFA intake with cardiovascular and all-cause mortality. During a median follow up of 2.7 years (18,666 person-years), 2087 deaths were recorded, including 829 attributable to cardiovascular causes. One third of the study participants consumed sufficient (at least 1.75 g/week) n-3 PUFA recommended for primary cardiovascular prevention, and less than 10% recommended for secondary prevention (7-14 g/week). Compared to patients with the lowest tertile of dietary n-3 PUFA intake (<0.37 g/week), the adjusted hazard ratios (95% confidence interval) for cardiovascular mortality for patients in the middle (0.37 to <1.8 g/week) and highest (≥1.8 g/week) tertiles of n-3 PUFA were 0.82 (0.69-0.98) and 1.03 (0.84-1.26), respectively. Corresponding adjusted hazard ratios for all-cause mortality were 0.96 (0.86-1.08) and 1.00 (0.88-1.13), respectively. Dietary n-3 PUFA intake was not associated with cardiovascular or all-cause mortality in patients on hemodialysis. As dietary n-3 PUFA intake was low, the possibility that n-3 PUFA supplementation might mitigate

  12. Dietary patterns, n-3 fatty acids intake from seafood and high levels of anxiety symptoms during pregnancy: findings from the Avon Longitudinal Study of Parents and Children.

    Directory of Open Access Journals (Sweden)

    Juliana dos Santos Vaz

    Full Text Available Little is known about relationships between dietary patterns, n-3 polyunsaturated fatty acids (PUFA intake and excessive anxiety during pregnancy.To examine whether dietary patterns and n-3 PUFA intake from seafood are associated with high levels of anxiety during pregnancy.Pregnant women enrolled from 1991-1992 in ALSPAC (n 9,530. Dietary patterns were established from a food frequency questionnaire using principal component analysis. Total intake of n-3 PUFA (grams/week from seafood was also examined. Symptoms of anxiety were measured at 32 weeks of gestation with the Crown-Crisp Experiential Index; scores ≥ 9 corresponding to the 85(th percentile was defined as high anxiety symptoms. Multivariate logistic regression models were used to estimate the OR and 95% CI, adjusted by socioeconomic and lifestyle variables.Multivariate results showed that women in the highest tertile of the health-conscious (OR 0.77; 0.65-0.93 and the traditional (OR 0.84; 0.73-0.97 pattern scores were less likely to report high levels of anxiety symptoms. Women in the highest tertile of the vegetarian pattern score (OR 1.25; 1.08-1.44 were more likely to have high levels of anxiety, as well as those with no n-3 PUFA intake from seafood (OR 1.53; 1.25-1.87 when compared with those with intake of >1.5 grams/week.The present study provides evidence of a relationship between dietary patterns, fish intake or n-3 PUFA intake from seafood and symptoms of anxiety in pregnancy, and suggests that dietary interventions could be used to reduce high anxiety symptoms during pregnancy.

  13. DietaryFish and Long-Chain n-3 Polyunsaturated Fatty Acids Intake and Risk of Atrial Fibrillation: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Fu-Rong Li

    2017-08-01

    Full Text Available Findings on the association between long-term intake of fish or long-chain n-3 polyunsaturated fatty acids (PUFAs and risk of atrial fibrillation (AF are inconsistent in observational studies. We conducted a meta-analysis of prospective studies to separately examine the associations between fish consumption and dietary intake of n-3 PUFAs with the risk of AF. A systematic search was conducted in PubMed and Embase to identify relevant studies. Risk estimates were combined using a random-effect model. Seven prospective cohort studies covering 206,811 participants and 12,913 AF cases were eligible. The summary relative risk of AF for the highest vs. lowest category of fish consumption and dietary intake of n-3 PUFAs was 1.01(95% confidence interval: 0.94–1.09 and 1.03 (95% confidence interval: 0.97–1.09, respectively. These null associations persisted in subgroup and dose-response analyses. There was little evidence of publication bias. This meta-analysis suggests that neither long-term intake of fish, nor of n-3 PUFAs were significantly associated with lower risk of AF.

  14. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice

    Science.gov (United States)

    Mingam, Rozenn; Moranis, Aurélie; Bluthé, Rose-Marie; De Smedt-Peyrusse, Véronique; Kelley, Keith W.; Guesnet, Philippe; Lavialle, Monique; Dantzer, Robert; Layé, Sophie

    2009-01-01

    Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cells membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice as compared to n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6 knock-out (IL-6 KO) mice and failed to induce STAT3 activation in the brain of IL-6 KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection. PMID:18973601

  15. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2011-10-01

    Full Text Available Abstract Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC n-3 polyunsaturated fatty acids (PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA or safflower oil (n-6 PUFA (both 10% [w/w] and either cholesterol-supplemented (0.1% cholesterol [w/w] or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]. Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL cholesterol and triglyceride concentrations (P Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  16. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  17. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Arnemo, Marianne; Kavaliauskis, Arturas; Andresen, Adriana Magalhaes Santos; Bou, Marta; Berge, Gerd Marit; Ruyter, Bente; Gjøen, Tor

    2017-08-01

    The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.

  18. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  19. Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; Weeks, Brad; Wu, Chaodong; McMurray, David N; Chapkin, Robert S

    2012-01-01

    Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site) and spleen (systemic inflammatory site), and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF) diet (59.2% kcal) alone or an isocaloric HF diet supplemented with fish oil (HF-FO) for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS) enema. The HF-FO diet improved the obese phenotype by reducing i) serum hormone concentrations (leptin and resistin), ii) adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNγ, IL-6, IL17F and IL-21) and iii) total (F4/80⁺ CD11b⁺) and inflammatory adipose tissue M1 (F4/80⁺ CD11c⁺) macrophage content compared to HF (Pdiet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master transcription factor (RORγτ) and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNγ) versus HF (P<0.05). Compared to HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P<0.05). Under ex vivo polarizing conditions, the percentage of HF-FO derived CD4⁺ T cells that reached Th17 cell effector status was suppressed (P = 0.05). Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.

  20. Dietary n-3 polyunsaturated fatty acids (PUFA decrease obesity-associated Th17 cell-mediated inflammation during colitis.

    Directory of Open Access Journals (Sweden)

    Jennifer M Monk

    Full Text Available Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site and spleen (systemic inflammatory site, and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF diet (59.2% kcal alone or an isocaloric HF diet supplemented with fish oil (HF-FO for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS enema. The HF-FO diet improved the obese phenotype by reducing i serum hormone concentrations (leptin and resistin, ii adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNγ, IL-6, IL17F and IL-21 and iii total (F4/80⁺ CD11b⁺ and inflammatory adipose tissue M1 (F4/80⁺ CD11c⁺ macrophage content compared to HF (P<0.05. In addition, the HF-FO diet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master transcription factor (RORγτ and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNγ versus HF (P<0.05. Compared to HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P<0.05. Under ex vivo polarizing conditions, the percentage of HF-FO derived CD4⁺ T cells that reached Th17 cell effector status was suppressed (P = 0.05. Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.

  1. Incorporation of eicosapentaenioic and docosahexaenoic acids into breast adipose tissue of women at high risk of breast cancer: a randomized clinical trial of dietary fish and n-3 fatty acid capsules.

    Science.gov (United States)

    Straka, Shana; Lester, Joanne L; Cole, Rachel M; Andridge, Rebecca R; Puchala, Sarah; Rose, Angela M; Clinton, Steven K; Belury, Martha A; Yee, Lisa D

    2015-09-01

    The fatty acid profile of dietary lipids is reflected in mammary adipose tissue and may influence mammary gland biology and cancer risk. To determine the effects of fish consumption on breast adipose tissue fatty acids, we conducted a study of fish versus n-3 PUFA supplements in women at increased risk of breast cancer. High risk women were randomized to comparable doses of marine n-3 PUFAs as canned salmon + albacore or capsules for 3 months. Pre- and posttreatment fatty acid profiles were obtained by GC. Dietary fish (n = 12) and n-3 PUFA capsules (n = 13) yielded increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma (p breast fat (p Women taking capsules had higher plasma and erythrocyte membrane EPA changes (∼four versus twofold, p = 0.002), without significant differences in DHA. Increases in breast adipose EPA, DHA were similar for both groups. Higher BMI correlated with smaller changes in plasma, erythrocyte membrane EPA, and breast adipose EPA, DHA. Adherence was excellent at 93.9% overall and higher in the fish arm (p = 0.01). Fish provides an excellent source of n-3 PUFAs that increases breast adipose EPA, DHA similar to supplements and represents a well-tolerated intervention for future studies of the impact of n-3 PUFAs and dietary patterns on breast cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice

    NARCIS (Netherlands)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-01-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the

  3. The dietary inclusion of Portulaca oleracea to the diet of laying hens increases the n-3 fatty acids content and reduces the cholesterol content in the egg yolk

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available The effect of n-3 polyunsaturated fatty acids (PUFA-enriched diet on yolk fatty acid profile and cholesterol content was evaluated. Dried Poutulaca oleracea (purslane: PO diet was added to a commercial diet (C diet at 20% of inclusion level. The effect of the supplemented diet was compared to that of C diet. Twenty-six laying hens were fed ad libitum for 21 days with the 2 diets, supplemented also with 300 mg α-tocopherol acetate/kg. Eggs were collected and then the fatty acids (FA profile and the cholesterol content were analysed. The PO diet significantly reduced the saturated FA content (P<0.05 and increased that of the polyunsaturated FA (PUFA: 18:2 n-6 (P<0.001, 18:3 n-3 (P<0.001 and 22:6 n-3 (DHA; P<0.01. Both n-6 and n-3 PUFA significantly increased with the PO diet and the n-6/n-3 ratio was improved (10.4 vs 11.3; P<0.05.

  4. Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Directory of Open Access Journals (Sweden)

    Kawabata Terue

    2011-08-01

    Full Text Available Abstract Background We reported that the compositions of arachidonic acid (ARA in erythrocytes and plasma phospholipids (PL in the elderly were lower than those in the young, though the ARA intake was nearly identical. Objective We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested. Methods One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed. Results No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA + docosahexaenoic acid (DHA intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects. Conclusions Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.

  5. The effect of fatty acid positioning in dietary triacylglycerols and intake of long-chain n-3 polyunsaturated fatty acids on bone mineral accretion in growing piglets

    DEFF Research Database (Denmark)

    Andersen, Anders Daniel; Ludvig, Stine E; Damsgaard, Camilla Trab

    2013-01-01

    compared with a control (CONT) and if increasing n-3LCPUFA intake giving fish oil (FO) compared with sunflower oil (SO) would affect bone parameters in piglets in two sets of controlled 14d-interventions (n=12/group). We assessed this by dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative...

  6. Influence of dietary triacylglycerol structure and level of n-3 fatty acids administered during development on brain phospholipids and memory and learning ability of rats

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Hougaard, K.S.

    2004-01-01

    of the nervous system. Methods: Pregnant rats were fed experimental diets from the 8th day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the pups were fed the same diet as their dams. The experimental diets contained either a structured oil, a linseed oil, or a fish oil...... and 22:6n-3 adding up to a total of 2 mol% n-3 fatty acids. The effects of the experimental diets were compared to the effect of a chow diet. Results: The amount of 22:6n-3 in brain phosphatidyl ethanolamine (PE) and phosphatidyl serine (PS) of dams and offspring (3 and 13 weeks of age) was not affected......The objective of this study was to examine the effects of triacylglycerol (TAG) structure and level of n-3 fatty acids on fatty acid profile of brain phospholipids (PL) of dams and offspring, and the memory and learning ability of the offspring, when administered during initial development...

  7. Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT).

    Science.gov (United States)

    Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David A; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Fleming, Jennifer A; Liu, Xiaoran; McCrea, Cindy E; Jones, Peter J

    2014-04-23

    The Canola Oil Multicenter Intervention Trial (COMIT) was a randomized controlled crossover study designed to evaluate the effects of five diets that provided different oils and/or oil blends on cardiovascular disease (CVD) risk factors in individuals with abdominal obesity. The present objective is to report preliminary findings on plasma fatty acid profiles in volunteers with abdominal obesity, following the consumption of diets enriched with n-3, n-6 and n-9 fatty acids. COMIT was conducted at three clinical sites, Winnipeg, Manitoba, Canada, Québec City, Québec, Canada and University Park, Pennsylvania, United States. Inclusion criteria were at least one of the followings: waist circumference (≥90 cm for males and ≥84 cm for females), and at least one other criterion: triglycerides ≥1.7 mmol/L, high density lipoprotein cholesterol safflower oil blend, and corn oil and safflower oil blend. A per protocol approach with a mixed model analysis was decided to be appropriate for data analysis. One hundred and seventy volunteers were randomized and 130 completed the study with a dropout rate of 23.5%. The mean plasma total DHA concentrations, which were analyzed among all participants as a measure of adherence, increased by more than 100% in the DHA-enriched phase, compared to other phases, demonstrating excellent dietary adherence. Recruitment and retention strategies were effective in achieving a sufficient number of participants who completed the study protocol to enable sufficient statistical power to resolve small differences in outcome measures. It is expected that the study will generate important data thereby enhancing our understanding of the effects of n-3, n-6, and n-9 fatty acid-containing oils on CVD risks. ClinicalTrials.gov NCT01351012.

  8. Antiatherogenic effects of n-3 fatty acids - evidence and mechanisms

    Directory of Open Access Journals (Sweden)

    Antonella Zampolli

    2006-12-01

    Full Text Available N-3 (omega-3 (polyunsaturated fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved. (Heart International 2006; 3-4: 141-54

  9. Alterations of Na,K-ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n-3 fatty acids.

    Science.gov (United States)

    Gerbi, A; Maixent, J M; Barbey, O; Jamme, I; Pierlovisi, M; Coste, T; Pieroni, G; Nouvelot, A; Vague, P; Raccah, D

    1998-08-01

    Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase alpha subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of alpha1- and alpha3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.

  10. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    Science.gov (United States)

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P abalone fed diet supplemented with 2% FO (P abalone fed diet supplemented with 1.5% FO (P abalone fed with diet containing 0.5% FO supplement (P abalone, with 1.5% being the most effective supplementation level.

  11. Dietary advice on Inuit traditional food use needs to balance benefits and risks of mercury, selenium, and n3 fatty acids.

    Science.gov (United States)

    Laird, Brian D; Goncharov, Alexey B; Egeland, Grace M; Chan, Hing Man

    2013-06-01

    Elevated concentrations of mercury (Hg) are commonly found in the traditional foods, including fish and marine mammals, of Inuit living in Canada's Arctic. As a result, Inuit often have higher dietary Hg intake and elevated Hg blood concentrations. However, these same traditional foods are excellent sources of essential nutrients. The goals of this study were 1) to identify the traditional food sources of Hg exposure for Inuit, 2) to estimate the percentage of Inuit who meet specific nutrient Dietary Reference Intakes and/or exceed the Toxicological Reference Values (TRVs), and 3) to evaluate options that maximize nutrient intake while minimizing contaminant exposure. A participatory cross-sectional survey was designed in consultation with Inuit in 3 Canadian Arctic jurisdictions (Nunatsiavut, Nunavut, and the Inuvialuit Settlement Region). Estimated intakes for EPA (20:5n3) and DHA (22:6n3) met suggested dietary targets, and estimated selenium (Se) intake fell within the Acceptable Range of Oral Intake. Estimated intakes of Hg (rs = 0.41, P Inuit.

  12. Dietary n-3 PUFA May Attenuate Experimental Colitis

    Directory of Open Access Journals (Sweden)

    Cloé Charpentier

    2018-01-01

    Full Text Available Background. Inflammatory bowel diseases (IBD occurred in genetically predisposed people exposed to environmental triggers. Diet has long been suspected to contribute to the development of IBD. Supplementation with n-3 polyunsaturated fatty acids (PUFA protects against intestinal inflammation in rodent models while clinical trials showed no benefits. We hypothesized that intervention timing is crucial and dietary fatty acid pattern may influence intestinal environment to modify inflammation genesis. The aim of this study was to evaluate the dietary effect of PUFA composition on intestinal inflammation. Methods. Animals received diet varying in their PUFA composition for four weeks before TNBS-induced colitis. Colon inflammatory markers and gut barrier function parameters were assessed. Inflammatory pathway PCR arrays were determined. Results. n-3 diet significantly decreased colon iNOS, COX-2 expression, IL-6 production, and LTB4 production but tended to decrease colon TNFα production (P=0.0617 compared to control diet. Tight junction protein (claudin-1, occludin expressions and MUC2 and TFF3 mRNA levels were not different among groups. n-9 diet also decreased colon IL-6 production (P<0.05. Conclusions. Dietary n-3 PUFA influence colitis development by attenuating inflammatory markers. Further research is required to better define dietary advice with a scientific rationale.

  13. Dietary n-3 long-chain polyunsaturated fatty acids modify phosphoenolpyruvate carboxykinase activity and lipid synthesis from glucose in adipose tissue of rats fed a high-sucrose diet.

    Science.gov (United States)

    Londero, Lisiane G; Rieger, Débora K; Hansen, Fernanda; Silveira, Simone L; Martins, Tiago L; Lulhier, Francisco; da Silva, Roselis S; Souza, Diogo O; Perry, Marcos L S; de Assis, Adriano M

    2013-12-01

    Long-chain polyunsaturated n-3 fatty acids (n-3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep-AT) and liver were investigated. Male rats were fed a high-sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU-FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n-3 LCPUFAs prevented sucrose-induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n-3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep-AT of rats fed the SU-FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n-3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Effect of dietary n-3 polyunsaturated fatty acid rich fish oil on the endometrial prostaglandin production in the doe (Capra hircus).

    Science.gov (United States)

    Chaudhari, Ravjibhai K; Mahla, Ajit Singh; Singh, Amit Kumar; Singh, Sanjay Kumar; Pawde, Abhijit M; Gandham, Ravi Kumar; Singh, Gyanendra; Sarkar, Mihir; Kumar, Harendra; Krishnaswamy, Narayanan

    2018-03-01

    Recently, we showed that dietary supplementation of n-3 PUFA rich fish oil (FO) decreased the metabolites of serum prostaglandin (PG) F 2α and E 2 during the window of pregnancy recognition in the doe. In this study, we investigated its effect on the changes on endometrial PG production in vitro. Cycling does (n = 12) of Rohilkhand region were divided into two equal groups and fed a concentrate diet supplemented with either FO containing 26% n-3 PUFA (TRT; n = 6) or palm oil (CON; n = 6) @ 0.6 mL/kg body weight for 57 days. Estrus was synchronized by two injections of PGF 2α analogue viz, on day 25 and 36 of supplementation and laparo-hysterotomy was performed to obtain endometrial tissue on day 16 of the synchronized estrus. Endometrial explant culture was done using a defined medium.The basal PG production was assayed at 6 and 12 h. Endometrial explant was stimulated with oxytocin (OXT) and/or recombinant ovine interferon tau (roIFN-τ) and PGs were assayed at 3 and 12 h post-treatment. The relative expression of genes related to PG metabolism in the endometrium was done by Quantitative Real Time PCR technique (qRT-PCR). There was a significant (P  0.05) effect on the PGF 2α and PGE 2 production in the TRT group. Similarly, the PG production in the OXT and roIFN-τ was comparable with the control in TRT. Expression of mRNA for cyclooxygenase-2 (COX-2), cytosolic phospholipase A 2 (cPLA 2 ) and PGF synthase (PGFS) was lower (P n-3 PUFA fed doe. In conclusion, dietary supplementation of FO decreased the endometrial production of PGF 2α and PGE 2 by downregulating the COX-2, cPLA 2 and PGFS transcripts in the doe. The findings suggest that n-3 PUFA influence embryo survival by modulating the endometrial PG. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. 不同智力水平人群n-3 PUFAs差异及膳食补充对体内脂肪酸组成的影响研究%Differences of fatty acid composition between children with high and low intelligence quotient and the influence of dietary supply of n-3 fatty adds on children with tow intelligence quotient in Yuyao

    Institute of Scientific and Technical Information of China (English)

    周婷婷; 彭咏梅; 王艳艳; 马丽萍; 元冬娟; 康景轩

    2011-01-01

    [目的]研究高智商(IQ>135)与低智商(IQ135的学生两组,采集静脉血分析其脂肪酸组成.采用随机对照研究方法,将IQ135的学生其体内花生四稀酸(arachidonic acid,AA)、二十碳五烯酸(eicosapentaenoic acid,EPA)、二十二碳六烯酸(docosahexaenoic acid,DHA)以及n-3 PUFAs水平明显高于IQ<90的学生(P<0.001或<0.05);而亚油酸(linoleic acid,LA)水平以及n-6/n-3 PUFAs比例明显低于IQ<90的学生(P<0.05或<0.01).同时,在对IQ<90的学生补充富含n-3PUFAs的食物后,其体内脂肪酸组成也发生显著变化,表现为:α-亚麻酸(α-linolenic acid,ALA)、EPA、DHA以及n-3 PUFAs水平显著提高(P<0.05或<0.001),而n-6/n-3 PUFAs比例明显下降(P<0.001).[结论]智商高的学生体内AA及DHA水平较高而n-6/n-3 PUFAs比例较低.同时,对智商低的学生补充n-3 PUFAs可以改变其体内的脂肪酸组成,使其更为接近高智商学生体内的脂肪酸组成.%[Objective] To investigate the differences of fatty acid(FA) composition between children with high(>135) and low(<90) intelligence quotient(IQ) and the influence of dietary supply of n-3 polyunsaturated fatty acids(PUFAs) on children with low IQ(<90) in Yuyao. [Methods] In two common primary schools of Yuyao, students from Grade two to Grade five were selected to two groups (IQ > 135 and IQ < 90) by intelligence test (Combined Raven Test,CRT). Their blood were collected and the FA composition was analyzed by capillary gas chromatography. In the IQ<90 group, students were randomly assigned to receive either control food or food supplemented with n-3 PUFAs according to the randomized controlled trial(RCT) rules. Data of fatty acid composition were collected before and after the dietary supplementation. [Results] There were significant differences of the long-chain polyunsaturated fatty acids(LC-PUFAs)composition in these students with high and low intelligence quotient. Among students with high lQ, arachidonic acid (AA

  16. Interaction between dietary marine-derived n-3 fatty acids intake and J-point elevation on the risk of cardiac death: a 24-year follow-up of Japanese men.

    Science.gov (United States)

    Hisamatsu, Takashi; Miura, Katsuyuki; Ohkubo, Takayoshi; Yamamoto, Takashi; Fujiyoshi, Akira; Miyagawa, Naoko; Kadota, Aya; Takashima, Naoyuki; Okuda, Nagako; Matsumura, Yasuhiro; Yoshita, Katsushi; Kita, Yoshikuni; Murakami, Yoshitaka; Nakamura, Yasuyuki; Okamura, Tomonori; Horie, Minoru; Okayama, Akira; Ueshima, Hirotsugu

    2013-07-01

    Higher marine-derived n-3 fatty acids (MDn3FAs) intake reduces the risk of sudden cardiac death via antiarrhythmic effects. The article evaluates whether MDn3FAs intake attenuates the increased risk of cardiac death associated with J-point elevation (JPE), characterised by an elevation of QRS-ST junction (J-point) ≥0.1 mV on electrocardiography. A prospective population-based cohort study. The National Survey on Circulatory Disorders and the National Nutrition Survey of Japan. A total of 4348 community-dwelling men (mean age 49.3 years), without cardiovascular diseases at baseline, from randomly selected areas across Japan. Cardiac death (200 men) during the 24-year follow-up. Dietary MDn3FAs intake was assessed using a dietary method to estimate individual intake of household-based weighed food records for 3 days. Cox models were used to calculate HRs and 95% CIs adjusted for possible confounding factors. JPE was present in 340 participants (7.8%). The median daily intake of MDn3FAs was 0.35%kcal (0.92 g/day). The risk of cardiac death was significantly higher in participants with JPE than in those without JPE in the low intake group (death was statistically significant (p=0.006). The increased risk of cardiac death associated with JPE may be attenuated by higher dietary MDn3FAs intake.

  17. Pregnancy, bovine somatotropin, and dietary n-3 fatty acids in lactating dairy cows: I. Ovarian, conceptus, and growth hormone-insulin-like growth factor system responses.

    Science.gov (United States)

    Bilby, T R; Sozzi, A; Lopez, M M; Silvestre, F T; Ealy, A D; Staples, C R; Thatcher, W W

    2006-09-01

    The objective was to examine effects of bovine somatotropin (bST), pregnancy, and dietary fatty acids on reproductive responses in lactating dairy cows. Beginning at approximately 17 d in milk (DIM), a comparison was made of isoenergetic diets comprising supplementary lipids of whole cottonseed vs. calcium salts of fish oil enriched lipid (FO). Ovulation was synchronized in cows with a presynchronization plus Ovsynch protocol, and cows were inseminated artificially by appointment or not inseminated (d 0 = time of synchronized ovulation; 77 +/- 12 DIM). On d 0 and 11, cows received bST (500 mg) or no bST. All cows were slaughtered on d 17. Number of cows in each group was as follows: control diet had 5 bST-treated cyclic (bST-C), 5 non-bST-treated cyclic (no bST-C), 4 bST-treated pregnant (bST-P), and 5 non-bST-treated pregnant (no bST-P) cows; and cyclic cows fed FO diet had 4 bST-treated (bST-FO) and 5 non-bST-treated cyclic (no bST-FO-C) cows. Feeding FO increased milk production, number of class 1 follicles (2 to 5 mm), and decreased insulin during the period before d 0 compared with control-fed cows. The bST increased milk production, pregnancy rate [83% (5/6) vs. 40% (4/10)], conceptus length (45 vs. 34 cm), and interferon-tau in the uterine luminal flushings (9.4 vs. 5.3 microg) with no effect on interferon-tau mRNA concentration in the conceptus. Treatment with bST increased plasma growth hormone (GH) and insulin-like growth factor (IGF)-I. Among control-fed cows (cyclic and pregnant), bST decreased progesterone concentration in plasma. Cows fed FO had less plasma insulin than control-fed cyclic cows, and FO altered the plasma GH (bST-FO > bST-C) and IGF-I (bST-C > bST-FO-C) responses to bST injections. Endometrial IGF-I mRNA was reduced in pregnant cows and tended to decrease in those fed FO. The IGF-II mRNA was increased in the endometrium of pregnant and bST-treated cows fed the control diet. Cows fed FO had increased concentrations of IGF-II mRNA, when b

  18. n-3 polyunsaturated fatty acid supplementation during cancer chemotherapy

    OpenAIRE

    Morland, Sarah Louise; Martins, Karen J.B.; Mazurak, Vera C.

    2016-01-01

    Evidence from several clinical trials suggests that n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation during cancer chemotherapy improves patient outcomes related to chemotherapy tolerability, regardless of the type of chemotherapy used. While the effects of n-3 PUFA supplementation during chemotherapy have been the subject of several reviews, the mechanisms by which n-3 PUFA improve patient responses through improved chemotherapy tolerability are unclear. There are several barriers c...

  19. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study

    DEFF Research Database (Denmark)

    Dyerberg, J.; Eskesen, D.C.; Andersen, P.W.

    2004-01-01

    weeks of a daily intake of 33 g of experimental fats from either partially hydrogenated soy oil containing 20 g of TFA, 12 g of fish oil with approximately 4 g of n-3 PUFA and 21 g of control fat, or 33 g of control fat. The experimental fats were incorporated into bakery products. Plasma lipids, blood...

  20. N-3 polyunsaturated fatty acids, body fat and inflammation

    DEFF Research Database (Denmark)

    Lund, Anne-Sofie Quist; Hasselbalch, Ann Louise; Gamborg, Michael

    2013-01-01

    BACKGROUND: Based on animal studies, n-3 polyunsaturated fatty acids (PUFAs) have been suggested to lower the risk of obesity and inflammation. We aimed to investigate if, among humans, intake of n-3 PUFAs was associated with i) total body fat, ii) body fat distribution and iii) obesity...... in relation to outcomes were performed and adjusted for potential confounders. RESULTS: Absolute n-3 PUFA intake, but not n-3/n-6, was inversely associated with the different measures of body fat. Among n-3 PUFA derivatives, only α-linolenic acid (ALA) was inversely associated with body fat measures...

  1. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how?

    Science.gov (United States)

    Das, U N

    2000-12-01

    fatty acids can be due to the suppression of TNFalpha and IL synthesis and release, modulation of hypothalamic-pituitary-adrenal anti-inflammatory responses, and an increase in acetylcholine release, the vagal neurotransmitter. Thus, there appears to be a close interaction between the central nervous system, endocrine organs, cytokines, exercise, and dietary n-3 fatty acids. This may explain why these fatty acids could be of benefit in the management of conditions such as septicemia and septic shock, Alzheimer's disease, Parkinson's disease, inflammatory bowel diseases, diabetes mellitus, essential hypertension and atherosclerosis.

  2. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sørensen, T.I.

    1986-01-01

    an important part in the timing of parturition in human beings. Dietary (n-3)-polyunsaturated fatty acids (PUFA) in high amounts influence endogenous prostaglandin metabolism. Owing to the large consumption of marine fat, the average intake of (n-3)-PUFA in the Faroes by far exceeds that in Denmark...

  3. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    Science.gov (United States)

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  4. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  5. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.

    Science.gov (United States)

    Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L

    2015-11-01

    The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P DHA treatment increased (P DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

  6. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  7. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Massimiliano Petracci

    2009-10-01

    Full Text Available Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA, conjugated linoleic acid (CLA, vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA for n-3 PUFA.

  8. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Directory of Open Access Journals (Sweden)

    João Varela

    2013-06-01

    Full Text Available The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.

  9. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  10. Role of n-3 Polyunsaturated Fatty Acids and Exercise in Breast Cancer Prevention: Identifying Common Targets

    Directory of Open Access Journals (Sweden)

    Salma A. Abdelmagid

    2016-01-01

    Full Text Available Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.

  11. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    Science.gov (United States)

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  12. The effect of n-6/n-3 fatty acid ratios on broiler breeder performance, hatchability, fatty acid profile and reproduction.

    Science.gov (United States)

    Khatibjoo, A; Kermanshahi, H; Golian, A; Zaghari, M

    2018-04-20

    This experiment was conducted to study the effect of dietary omega6 (n-6) to omega3 (n-3) fatty acid (FA) ratios on performance and reproduction of broiler breeders. In experiment 1, 400 females and 40 males (30 week age) of Ross 308 broiler breeder (20 females and two males in each pen) were randomly assigned to one of the four diets with n-6/n-3 FA ratios of 4, 6, 8 and 16 (control). As a measure of hatchability, fertility of eggs and general incubation traits, 1,200 eggs (60 eggs from each pen) were collected and incubated for 21 days and embryo liver and brain fatty acid profile in 14 and 21 days were determined. In experiment 2, 48 males (three males in each pen) randomly assigned to one of the four diets with n-6/n-3 FA ratios of 4, 6, 8 and 16 (control). Semen was collected twice weekly, and semen volume, spermatozoa concentration and motility and alive and dead spermatozoa were estimated. Egg production and egg mass were decreased by n-6/n-3 FA ratios of 4:1 and 6:1 (p n-3 of egg yolk, semen, testis and liver and brain of embryo and day-old chicken were increased while concentration of linoleic acid, arachidonic acid and docosatetraenoic acid of mentioned tissues were decreased by increasing n-6/n-3 FA ratios (p > .05). In conclusion, absolute amount of n-3 and n-6 FAs in broiler breeder diet may be more important than n-6/n-3 FA ratios and to consider reproductive and performance traits of breeders, it is necessary to supply higher levels of n-3 and n-6 FA with respect to n-6/n-3 FA ratios. © 2018 Blackwell Verlag GmbH.

  13. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiajie Liu

    2014-11-01

    Full Text Available Breast cancer (BC is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA, are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA, however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

  14. (N-3) fatty acids do not affect electrocardiographic characteristics of healthy men and women

    NARCIS (Netherlands)

    Geelen, A.; Brouwer, I.A.; Zock, P.L.; Kors, J.A.; Swenne, C.A.; Katan, M.B.; Schouten, E.G.

    2002-01-01

    (n-3) Fatty acids may reduce the risk of sudden death by preventing life-threatening cardiac arrhythmia. A standard electrocardiogram (ECG) may be used to detect clues as to the mechanism by which (n-3) fatty acids affect the electrophysiology of the heart. An earlier study showed that (n-3) fatty

  15. Effect of Enriched Feed by n-3 fatty acids and 2% of n-6 fatty acid on Danio rerio Reproduction

    Directory of Open Access Journals (Sweden)

    N.B.P Utomo

    2007-07-01

    Full Text Available This experiment was conducted to determine the optimum n-3 fatty acid level in the diet containing 2 % of n-6 fatty acid on the reproductive performance of zebra fish (Danio rerio. There experimental diets containing 0.0; 1.0; 1.5 % n-3 fatty acid with 2.0 % n-6 fatty acid was fed to the fish, three times daily, at satiation, for two months. In order to evaluate the gonadal development of the broodstock, two gonads og fish was used for histologis preparation in every 7 days. At the end of the second month, reproductive performance was evaluated through parameters of gonad somato indeks, fecundity, fertilization rate, hatching rate, yolk egg absorbtion rate, survival rate of 3 days old larvae. Sample of fish also was taken for proximate composition as the end of this experiment. Results shows that at the fifth weeks of this experiment, gonad of fish fed on 1.0 % of n-3 fatty acid and 2.0 % n-6 fatty acid already produce eggs with the some size, while others. Still produce small size of eggs. It was found also that the whole body of fish fed an diet with 1.0% n-3 fatty acid contain the highest protein level compare to two other diets. Based on the evaluation of reproduction performance parameters, it was concluded that the optimum dietary level of n-3 fatty acid with 2.0 % n-6 fatty acid for Danio rerio was 0.81 - 0.90 %. Keywords: essential fatty, acids, reproduction, zebra fish, Danio rerio   ABSTRAK Penelitian ini bertujuan untuk menentukan kadar asam lemak n-3 optimum dalam pakan yang mempunyai kadar asam lemak n-6 tetap. Tiga macam pakan dengan kadar asam lemak n-3 berbeda yaitu 0.0; 1.0; dan 2.0 % diberikan pada ikan dengan bobot rata-rata 0.12 g. Pakan diberikan secara at satiation, 4 kali sehari selama 60 hari. Setiap 7 hari sekali diambil sampel ikan untuk pembentukan preparat histologi gonad dengan tujuan untuk mengevaluasi perkembangan gonad. Pada akhir penelitian, induk dipijahkan dan dievaluasi performan reproduksi berdasarkan

  16. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... omega 3 (n-3), omega 6 (n-6) and omega 9 (n-9) fatty acids and are essential in the ... the maintenance of different physiological functions. (Aaes-Jorgensen .... was easier to recognize each one of these cellular types. Mating.

  17. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  18. Effect of gene transfer of Chlorella vulgaris n-3 fatty acid desaturase ...

    African Journals Online (AJOL)

    Chlorella vulgaris had the gene of n-3 fatty acid desaturase (CvFad3) which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or to convert n-6 to n-3 PUFAs. The objective of this study was to examine whether the CvFad3 gene from C. vulgaris can be functionally expressed in mammalian cells and ...

  19. Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2017-01-01

    Full Text Available The aim of the research was to enrich eggs with n-3 polyunsaturated fatty acids by using plant oils and fish oil as dietary supplements in laying hens’ feed. The focus was put on the effect of the daily consumption of 100 g of egg yolk, i.e. 100 g of egg mass, on the human health. The 1st group of laying hens was fed a diet containing soybean and fish oil, and the 2nd group was given feed containing a combination of linseed, rapeseed, soybean, and fish oils. Eggs laid by the 2nd group contained 4.73% α-linolenic acid, 0.20% eicosapentaenoic acid and 2.37% docosahexaenoic acid (% of total fatty acids in yolk lipids, P < 0.001, which marks an increase of × 4.04 for α-linolenic acid, × 3.33 for eicosapentaenoic acid, and × 1.75 for docosahexaenoic acid compared to eggs laid by the 1st group. Total n-3 polyunsaturated fatty acids in eggs of the 2nd group were × 2.8 higher than in the 1st first group. Calculated per 100 g of eggs of the 2nd group, the intake for the human body corresponds to 435 mg α-linolenic acid, 18.43 mg eicosapentaenoic acid, and 218.2 mg docosahexaenoic acid.

  20. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    Science.gov (United States)

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  1. Pork as a Source of Omega-3 (n-3) Fatty Acids

    Science.gov (United States)

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  2. Pork as a Source of Omega-3 (n-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Michael E.R. Dugan

    2015-12-01

    Full Text Available Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6 to omega-3 (n-3 fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices. A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  3. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    Science.gov (United States)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  4. Interaction of (n-3) and (n-6) fatty acids in desaturation and chain elongation of essential fatty acids in cultured glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1987-01-01

    Recent research in various biological systems has revived interest in interactions between the (n-6) and (n-3) essential fatty acids. We have utilized cultured glioma cells to show that linolenic acid, 18:3(n-3), is rapidly desaturated and chain elongated; 20:5(n-3) is the major product and accumulates almost exclusively in phospholipids. We examined effects of various (n-6), (n-3), (n-9) and (n-7) fatty acids at 40 microM concentration on desaturation and chain elongation processes using [1- 14 C]18:3(n-3) as substrate. In general, monoenoic fatty acids were without effect. The (n-6) fatty acids (18:2, 18:3, 20:3, 20:4 and 22:4) had little effect on total product formed. There was a shift of labeled product to triacylglycerol, and in phospholipids, slightly enhanced conversion of 20:5 to 22:5 was evident. In contrast, 22:6(n-3) was inhibitory, whereas 20:3(n-3) and 20:5(n-3) had much less effect. At concentrations less than 75 microM, all acids were inhibitory. Most products were esterified to phosphatidylcholine, but phosphatidylethanolamine also contained a major portion of 20:5 and 22:5. We provide a condensed overview of how the (n-6) and (n-3) fatty acids interact to modify relative rates of desaturation and chain elongation, depending on the essential fatty acid precursor. Thus, the balance between these dietary acids can markedly influence enzymes providing crucial membrane components and substrates for biologically active oxygenated derivatives

  5. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    Science.gov (United States)

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  6. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    DEFF Research Database (Denmark)

    Mahaffey, K. R.; Sunderland, E. M.; Chan, H. M.

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce...... risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption...... for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. (C) 2011...

  7. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    Science.gov (United States)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  8. Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice

    Directory of Open Access Journals (Sweden)

    Carpentier Yvon A

    2011-06-01

    Full Text Available Abstract Backround Western diet is characterized by an insufficient n-3 polyunsaturated fatty acid (PUFA consumption which is known to promote the pathogenesis of several diseases. We have previously observed that mice fed with a diet poor in n-3 PUFA for two generations exhibit hepatic steatosis together with a decrease in body weight. The gut microbiota contributes to the regulation of host energy metabolism, due to symbiotic relationship with fermentable nutrients provided in the diet. In this study, we have tested the hypothesis that perturbations of the gut microbiota contribute to the metabolic alterations occurring in mice fed a diet poor in n-3 PUFA for two generations (n-3/- mice. Methods C57Bl/6J mice fed with a control or an n-3 PUFA depleted diet for two generations were supplemented with prebiotic (inulin-type Fructooligosaccharides, FOS, 0.20 g/day/mice during 24 days. Results n-3/-mice exhibited a marked drop in caecum weight, a decrease in lactobacilli and an increase in bifidobacteria in the caecal content as compared to control mice (n-3/+ mice. Dietary supplementation with FOS for 24 days was sufficient to increase caecal weight and bifidobacteria count in both n-3/+ and n-3/-mice. Moreover, FOS increased lactobacilli content in n-3/-mice, whereas it decreased their level in n-3/+ mice. Interestingly, FOS treatment promoted body weight gain in n-3/-mice by increasing energy efficiency. In addition, FOS treatment decreased fasting glycemia and lowered the higher expression of key factors involved in the fatty acid catabolism observed in the liver of n-3/-mice, without lessening steatosis. Conclusions the changes in the gut microbiota composition induced by FOS are different depending on the type of diet. We show that FOS may promote lactobacilli and counteract the catabolic status induced by n-3 PUFA depletion in mice, thereby contributing to restore efficient fat storage.

  9. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary?

    Science.gov (United States)

    Mozaffarian, Dariush; Wu, Jason H Y

    2012-03-01

    Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially

  10. Antiarrhythmic effects of n-3 fatty acids: evidence from human studies

    NARCIS (Netherlands)

    Geelen, A.; Brouwer, I.A.; Zock, P.L.; Katan, M.B.

    2004-01-01

    Purpose of review N-3 fatty acids from fish reduce cardiovascular mortality including sudden cardiac death. In this paper, the authors discuss the results of human studies with regard to the hypothesis that n-3 fatty acids reduce the risk of fatal coronary heart disease through antiarrhythmic

  11. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    Science.gov (United States)

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  12. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  13. Fish, n-3 fatty acids, and cardiovascular diseases in women of reproductive age

    DEFF Research Database (Denmark)

    Strøm, Marin; Halldorsson, Thorhallur I; Mortensen, Erik L

    2012-01-01

    was associated with an increased risk of cardiovascular disease (adjusted hazard ratio for women in lowest versus highest LCn3FA intake group: 1.91 [95% CI: 1.26-2.90]). Restricting the sample to women who had consistently reported similar frequencies of fish intake across 3 different dietary assessment......Previous studies have indicated a protective effect of long-chain n-3 polyunsaturated fatty acids (LCn3FAs) against cardiovascular disease; however, women are underrepresented in cardiovascular research. The aim of this study was to explore the association between intake of LCn3FAs and the risk...... of cardiovascular disease in a large prospective cohort of young women (mean age at baseline: 29.9 years [range: 15.7-46.9]). Exposure information on 48 627 women from the Danish National Birth Cohort was linked to the Danish National Patients Registry for information on events of hypertensive, cerebrovascular...

  14. Role of n-3 fatty acids in muscle loss and myosteatosis.

    Science.gov (United States)

    Ewaschuk, Julia B; Almasud, Alaa; Mazurak, Vera C

    2014-06-01

    Image-based methods such as computed tomography for assessing body composition enables quantification of muscle mass and muscle density and reveals that low muscle mass and myosteatosis (fat infiltration into muscle) are common in people with cancer. Myosteatosis and low muscle mass have emerged as independent risk factors for mortality in cancer; however, the characteristics and pathogenesis of these features have not been resolved. Muscle depletion is associated with low plasma eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) in cancer and supplementation with n-3 fatty acids has been shown to ameliorate muscle loss and myosteatosis in clinical studies, suggesting a relationship between n-3 fatty acids and muscle health. Since the mechanisms by which n-3 fatty acids alter body composition in cancer remain unknown, related literature from other conditions associated with myosteatosis, such as insulin resistance and obesity is considered. In these noncancer conditions, it has been reported that n-3 fatty acids act by increasing insulin sensitivity, reducing inflammatory mediators, and altering adipokine profiles and transcription factors; therefore, the plausibility of these mechanisms of action in the neoplastic state are considered. The aim of this review is to summarize what is known about the effects of n-3 fatty acids with regards to muscle condition and to discuss potential mechanisms for effects of n-3 fatty acids on muscle health.

  15. n-3 Fatty acids combined with flavan-3-ols prevent steatosis and liver injury in a murine model of NAFLD.

    Science.gov (United States)

    Vauzour, David; Rodriguez-Ramiro, Ildefonso; Rushbrook, Simon; Ipharraguerre, Ignacio R; Bevan, Damon; Davies, Susan; Tejera, Noemi; Mena, Pedro; de Pascual-Teresa, Sonia; Del Rio, Daniele; Gavrilovic, Jelena; Minihane, Anne Marie

    2018-01-01

    Non-alcoholic fatty liver disease (NAFLD) affects 25% of adults and at present no licensed medication has been approved. Despite its complex patho-physiology, dietary strategies aiming at delaying or preventing NAFLD have taken a reductionist approach, examining the impact of single components. Accumulating evidence suggests that n-3 LC-PUFAs are efficacious in regulating lipogenesis and fatty acid oxidation. In addition, plant derived flavonoids are also emerging as a dietary strategy for NAFLD prevention, with efficacy attributed to their insulin sensitising and indirect antioxidant effects. Based on knowledge of their complementary molecular targets, we aimed to demonstrate that the combination of n-3 LC-PUFA (n-3) and flavan-3-ols (FLAV) prevents NAFLD. In a high-fat high-fructose (HF/HFr) fed C57Bl/6J mouse model, the independent and interactive impact of n-3 and FLAV on histologically defined NAFLD, insulin sensitivity, weight gain, intestinal and hepatic gene expression, intestinal bile acids were examined. Only the combination of FLAV and n-3 (FLAVn-3) prevented steatosis as evidenced by a strong reduction in hepatocyte ballooning. While FLAV reduced body (-28-30%), adipose tissue (-45-50%) weights and serum insulin (-22-25%) as observed following an intra-peritoneal glucose tolerance test, n-3 downregulated the expression of Srebf1 and the lipogenic genes (Acaca, Fasn). Significant impacts of interventions on intestinal bile acid metabolism, farnesoid X receptor (Fxr) signalling in the intestine and liver, and hepatic expression of fatty acid transporters (Fabp4, Vldlr, Cd36) were also evident. FLAVn-3 may be a novel intervention for NAFLD. Future research should aim to demonstrate its efficacy in the prevention and treatment of human NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Lin, Yu-Hong; Bazinet, Richard P

    2017-02-01

    n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

  17. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Meilan Xue

    2012-12-01

    Full Text Available Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3, which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells. Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  18. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China); Wang, Qing [Affiliated Hospital of Qingdao University, Qingdao Shandong (China); Hou, Lin [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China)

    2012-09-14

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  19. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    International Nuclear Information System (INIS)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu; Wang, Qing; Hou, Lin

    2012-01-01

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings

  20. Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function.

    Science.gov (United States)

    Kesse-Guyot, E; Péneau, S; Ferry, M; Jeandel, C; Hercberg, S; Galan, P

    2011-02-01

    Because of their structural, anti-inflammatory and antithrombic properties, long-chain n-3 fatty acids may be key factors in the aging process. We sought to elucidate the association between intake of long-chain n-3 fatty acids and/or fish and cognitive function evaluated 13 years after dietary assessment. Prospective population-based study. 3,294 adults from the SU.VI.MAX study (Supplementation with Antioxidant Vitamins and Minerals study). MEASUREMENTS/STATISTICAL ANALYSIS: Subjects underwent a standardized clinical examination which included cognitive tests and self-reported cognitive difficulties scale (2007-2009). Poor scores were defined using percentiles as cut-off. Dietary data were assessed through repeated 24-h dietary records. Odd ratio (OR), comparing the fourth (Q4) to the first quartile (Q1), of having a poor score were calculated using adjusted logistic regression. Self-reported cognitive difficulties were less frequent among subjects with higher intakes of total n-3 long chain fatty acids (OR = 0.72, CI 95%=0.56-0.92) and eicosapentaenoic acid (OR Q4 versus Q1 = 0.74, CI 95%=0.58-0.95), even after adjustment for depressive symptoms. A borderline significant association was also found with high fish consumption (OR Q4 versus Q1 = 0.80, CI 95%=0.63-1.01). Cognitive complaints, which may be an early indicator of cognitive decline, are less frequent among the elderly who have a high long-chain n-3 acids intake, as assessed 13 years earlier.

  1. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia

    DEFF Research Database (Denmark)

    Bosch, Jackie; Gerstein, Hertzel C; Dagenais, Gilles R

    2012-01-01

    The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown.......The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown....

  2. n-3 Fatty acids, Mediterranean diet and cognitive function in normal aging: A systematic review.

    Science.gov (United States)

    Masana, Maria F; Koyanagi, Ai; Haro, Josep Maria; Tyrovolas, Stefanos

    2017-05-01

    Intake of n-3 fatty acids and adherence to the Mediterranean diet (MedDiet) have been shown to slow the progression of age-related cognitive decline, but the results are mixed. We summarized and evaluated the effect of n-3 fatty acids and MedDiet on cognitive outcomes in a cognitively healthy aged population. Relevant published studies from January 2000 to May 2015 were identified by searching three electronic databases: Pubmed, Web of Science/MEDLINE, and CINHAL. Observational studies and randomized controlled trials (RCTs) were considered. Twenty-four studies were included for the systematic review. n-3 fatty acids were associated with better global cognition and some specific cognitive domains though some results were conflicting. Adherence to the MedDiet was also significantly associated with better cognitive performance and less cognitive decline. Finally, better cognitive performance was observed in men compared to women and mixed results were also found for the influence of APOE4 genotype on the association between n-3 fatty acids or MedDiet and cognition. Studies suggest that n-3 fatty acids in the diet and adherence to the MedDiet are beneficial in slowing age-related cognitive decline. However, more high-quality RCTs would be useful to clarify the effect of n-3 fatty acid supplements on cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. N-3 fatty acids from fish and markers of cardiac arrhythmia

    NARCIS (Netherlands)

    Geelen, A.

    2004-01-01

    N‑3 fatty acids from fish may protect against heart disease mortality by preventing fatal arrhythmias. The objective of this thesis was to investigate whether this possible antiarrhythmic effect of n-3 fatty acids is supported by short-term effects on electrophysiological markers. We performed two

  4. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    Science.gov (United States)

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  5. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action.

    Science.gov (United States)

    Baynes, Habtamu Wondifraw; Mideksa, Seifu; Ambachew, Sintayehu

    2018-03-14

    Polyunsaturated Fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. The n-3 Polyunsaturated Fatty acids prevent and reverse high-fat-diet induced adipose tissue inflammation and insulin resistance. Insulin secretion is stimulated by glucose, amino acids, and glucagon- like peptide-1 in tissue containing high levels of n-3 Polyunsaturated Fatty acids than lower level of n-3 Polyunsaturated Fatty acids. Also, n-3 Polyunsaturated Fatty acids led to decreased production of prostaglandin, which in turn contributed to the elevation of insulin secretion. N-3 polyunsaturated fatty acids prevent cytokine-induced cell death in pancreatic islets. Supplementation of n-3 Polyunsaturated Fatty acids for human subjects prevent beta cell destruction and insulin resistance. It also enhances insulin secretion, reduction in lipid profiles and glucose concentration particularly in type II diabetes patients. Therefore there should be a focus on the treatment mechanism of insulin related obesity and diabetes by n-3 polyunsaturated fatty acids.

  6. Influence of n-3 fatty acids on cardiac autonomic activity among Nunavik Inuit adults

    OpenAIRE

    Valera, Beatriz; Dewailly, Eric; Anassour-Laouan-Sidi, Elhadji; Poirier, Paul

    2012-01-01

    Objectives. Inuit from Nunavik (northern Quebec) consume large amounts of fish and marine mammals, which are important sources of n-3 polyunsaturated fatty acids (n-3 PUFAs). These substances have a beneficial impact on heart rate (HR) and heart rate variability (HRV). However, it is unknown if this beneficial impact remains significant in populations with high mercury exposure. The study assessed the impact of n-3 PUFAs (Docosahexaenoic [DHA] and Eicosapentaenoic acid [EPA]) on resting HR an...

  7. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  8. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Science.gov (United States)

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  9. n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Anne Barden

    2016-03-01

    Full Text Available DNA telomere shortening associates with the age-related increase cardiovascular disease (CVD risk. Reducing oxidative stress, could modify telomere erosion during cell replication, and CVD risk in patients with chronic kidney disease (CKD. The effect of n-3 fatty acids and coenzyme Q10 (CoQ on telomere length was studied in a double-blind placebo-controlled trial in CKD. Eighty-five CKD patients were randomized to: n-3 fatty acids (4 g; CoQ (200 mg; both supplements; or control (4 g olive oil, daily for 8 weeks. Telomere length was measured in neutrophils and peripheral blood mononuclear cells (PBMC at baseline and 8 weeks, with and without correction for cell counts. Main and interactive effects of n-3 fatty acids and CoQ on telomere length were assessed adjusting for baseline values. F2-isoprostanes were measured as markers of oxidative stress. There was no effect of n-3 fatty acids or CoQ on neutrophil or PBMC telomere length. However, telomere length corrected for neutrophil count was increased after n-3 fatty acids (p = 0.015. Post-intervention plasma F2-isoprostanes were negative predictors of post-intervention telomere length corrected for neutrophil count (p = 0.025.The effect of n-3 fatty acids to increased telomere length corrected for neutrophil count may relate to reduced oxidative stress and increased clearance of neutrophils with shorter telomeres from the circulation. This may be a novel mechanism of modifying CVD risk in CKD patients.

  10. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    Science.gov (United States)

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Plasma phospholipid long-chain n-3 polyunsaturated fatty acids and body weight change

    DEFF Research Database (Denmark)

    Jakobsen, Marianne Uhre; Dethlefsen, Claus; Due, Karen Margrete

    2011-01-01

    We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers.......We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers....

  12. Marine n-3 fatty acids in adipose tissue and development of atrial fibrillation

    DEFF Research Database (Denmark)

    Rix, Thomas Andersen; Joensen, Albert Marni; Riahi, Sam

    2013-01-01

    OBJECTIVE: Consumption of fish and marine n-3 polyunsaturated fatty acids (PUFA) may be associated with a lower risk of atrial fibrillation (AF), but results have been inconsistent. The aim was to investigate this further by measurements of marine n-3 PUFA in adipose tissue. DESIGN: Cohort study.......77, 95% CI 0.53 to 1.10) of marine n-3 PUFA compared with the lowest tertile. Similar trends, but also not statistically significant, were found separately for eicosapentaenoic, docosahexaenoic and docosapentaenoic acids. CONCLUSIONS: There was no statistically significant association between the content...

  13. Effect of n-3 and n-6 fatty acid supplementation on fetal, gestation ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... Essential fatty acids (EFAs) include two series of prostaglandin ... functions such as ovulation, luteolysis and parturition. Actions of PGF2α are ..... cations vary according to the type of polyunsaturated fat and the ratio of n-6: n-3 ...

  14. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers

    Directory of Open Access Journals (Sweden)

    CARVAJAL OCTAVIO

    1997-01-01

    Full Text Available Objective. The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Material and methods. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. Results. The hypertriglyceridemic group showed a statistically significant (p< 0.05 reduction of triglycerides and significant (p< 0.01 elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. Conclusions. The hipolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  15. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study.

    Science.gov (United States)

    Karimi, Mohsen; Vedin, Inger; Freund Levi, Yvonne; Basun, Hans; Faxén Irving, Gerd; Eriksdotter, Maria; Wahlund, Lars-Olof; Schultzberg, Marianne; Hjorth, Erik; Cederholm, Tommy; Palmblad, Jan

    2017-10-01

    Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described. Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients. Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo. Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites ( P DHA concentration, and were not related to apolipoprotein E-4 allele frequency. Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients with AD and in other patients taking n-3 FA supplements. This trial was registered at clinicaltrials.gov as NCT00211159. © 2017 American Society for Nutrition.

  16. Dietary fatty acids alter blood pressure, behavior and brain membrane composition of hypertensive rats

    NARCIS (Netherlands)

    de Wilde, MC; Hogyes, E; Kiliaan, AJ; Farkas, T; Luiten, PGM; Farkas, E; Wilde, Martijn C. de; Hőgyes, Endre; Kiliaan, Amanda J.

    2003-01-01

    The beneficial effect of dietary n-3 polyunsaturated fatty acids (PUFAs) on developing hypertension has been repeatedly demonstrated. However. related changes in brain membrane composition and its cognitive correlates have remained unclear. Our study aimed at a comprehensive analysis of behavior and

  17. (n-3) Fatty Acids and Cardiovascular Health: Are Effects of EPA and DHA Shared or Complementary?123

    Science.gov (United States)

    Mozaffarian, Dariush; Wu, Jason H. Y.

    2012-01-01

    Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially

  18. Effects of n-3 fatty acids from fish on premature ventricular complexes and heart rate in humans

    NARCIS (Netherlands)

    Geelen, A.; Brouwer, I.A.; Katan, M.B.; Schouten, E.G.; Maan, A.C.; Zock, P.L.

    2005-01-01

    Background: A large body of evidence suggests that n-3 fatty acids from fish prevent fatal heart disease. They may be an effective and safe alternative to drug treatment for reducing the risk of arrhythmia and sudden cardiac death. Objective: We investigated the effect of n-3 fatty acids on heart

  19. Selective enrichment of n-3 fatty acids in human plasma lipid motifs following intake of marine fish

    Science.gov (United States)

    Plasma levels of n-3 long chain polyunsaturated fatty acids (LCPUFA) are associated with a reduction in risk of cardiovascular disease and other chronic, age-related diseases like Alzheimer’s disease. In this work, we tested the hypothesis that n-3 LCPUFA fatty acids in human plasma are incorporated...

  20. Dietary fatty acids influence sperm quality and function.

    Science.gov (United States)

    Ferramosca, A; Moscatelli, N; Di Giacomo, M; Zara, V

    2017-05-01

    Recently, obesity has been linked to male infertility. In animal models the administration of a high-fat diet caused a reduction in sperm quality, by impairing gamete energy metabolism. The aim of this study was to investigate a possible effect of dietary fatty acids supplementation in the modulation of sperm energy metabolism and, in turn, in the improvement of sperm quality in rats fed a high-fat diet. Sexually mature male Sprague-Dawley rats were divided into four groups and fed for 4 weeks a standard diet (control group), a high-fat diet (enriched in 35% of fat and 15% sucrose), a high-fat diet supplemented with 2.5% olive oil (a source of monounsaturated fatty acids) or a high-fat diet supplemented with 2.5% krill oil (a source of n-3 polyunsaturated fatty acids). Liver and adipose tissue weight, plasma glucose, insulin and lipid concentrations were determined. Activities of enzymes involved in sperm energetic metabolism were evaluated by spectrophotometric assays. Sperm mitochondrial respiratory efficiency was also assayed. The obtained results suggest that olive oil partially counteracts the negative effects of a high-fat diet on sperm quality, by increasing gamete motility, by reducing oxidative stress and slightly improving mitochondrial respiration efficiency. On the other hand, krill oil determines an increase in sperm concentration and motility, an increase in the activities of lactate dehydrogenase, Krebs cycle enzymes and respiratory chain complexes; a parallel increase in the cellular levels of ATP and a reduction in oxidative damage were also observed. These results suggest that dietary fatty acids are able to positively influence sperm quality and function. © 2017 American Society of Andrology and European Academy of Andrology.

  1. The effect of n-3/n-6 polyunsaturated fatty acids on acute reflux esophagitis in rats.

    Science.gov (United States)

    Zhuang, Ze-Hao; Xie, Jing-Jing; Wei, Jing-Jing; Tang, Du-Peng; Yang, Li-Yong

    2016-10-04

    Polyunsaturated fatty acids (PUFAs) play various roles in inflammation. However, the effect of PUFAs in the development of reflux esophagitis (RE) is unclear. This study is to investigate the potential effect of n-3/n-6 PUFAs on acute RE in rats along with the underlying protective mechanisms. Forty Sprague Dawley rats were randomly divided into four groups (n = 10 in each group). RE model was established by pyloric clip and section ligation. Fish oil- and soybean oil-based fatty emulsion (n-3 and n-6 groups), or normal saline (control and sham operation groups) was injected intraperitoneally 2 h prior to surgery and 24 h postoperatively (2 mL/kg, respectively). The expressions of interleukin (IL)-1β, IL-8, IL-6 and myeloid differentiation primary response gene 88 (MyD88) in esophageal tissues were evaluated by Western blot and immunohistochemistry after 72 h. The malondialdehyde (MDA) and superoxide dismutase (SOD) expression in the esophageal tissues were determined to assess the oxidative stress. The mildest macroscopic/microscopic esophagitis was found in the n-3 group (P < 0.05). The expression of IL-1β, IL-8, IL-6 and MyD88 were increased in all RE groups, while the lowest and highest expression were found in n-3 and n-6 group, respectively (P < 0.05). The MDA levels were increased in all groups (P < 0.05), in an ascending trend from n-3, n-6 groups to control group. The lowest and highest SOD levels were found in the control and n-3 group, respectively (P < 0.05). n-3 PUFAs may reduce acute RE in rats, which may be due to inhibition of the MyD88-NF-kB pathway and limit oxidative damage.

  2. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    Directory of Open Access Journals (Sweden)

    Debora eCutuli

    2014-08-01

    Full Text Available As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations found in n-3 PUFA supplemented mice also pointed towards an effective neuroprotection.On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

  3. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    Science.gov (United States)

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    Science.gov (United States)

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Science.gov (United States)

    Ouldamer, Lobna; Goupille, Caroline; Vildé, Anne; Arbion, Flavie; Body, Gilles; Chevalier, Stephan; Cottier, Jean Philippe; Bougnoux, Philippe

    2016-01-01

    The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality. Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality. We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality. These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  6. Gestational age in relation to marine n-3 fatty acids in maternal erythrocytes

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sommer, S.

    1991-01-01

    Gestation is longer in Faroese than Danish women, possibly because of the high intake of marine long-chain n-3 fatty acids that down regulates formation of prostaglandins from arachidonic acid. Polyunsaturated fatty acids were quantified in erythrocytes obtained within 2 days of delivery from...... randomly selected groups of 62 Faroese and 37 Danish women with an assessable gestational age. Average ratio of long-chain n-3 fatty acids to arachidonic acid [(3/6) ratio] was 0.73 (SD = 0.11) in Faroese women and 0.61 (SD = 0.12) in Danish women (p ...-3 fatty acids in the Faroes. A 20% increase in the (3/6) ratio was associated with an increase in pregnancy duration of 5.7 days in Danish women (95% confidence interval, 1.4 to 10.1 days; p = 0.02) and 0.7 days in Faroese women (95% confidence interval, -2.0 to 3.3; p = 0.6). The hypothesized...

  7. Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake.

    Science.gov (United States)

    Jia, Xiaoming; Pakseresht, Mohammadreza; Wattar, Nour; Wildgrube, Jamie; Sontag, Stephanie; Andrews, Murphy; Subhan, Fatheema Begum; McCargar, Linda; Field, Catherine J

    2015-05-01

    The aim of the current study was to estimate total intake and dietary sources of eicosapentaenoic acid (EPA), docosapentanoic (DPA), and docosahexaenoic acid (DHA) and compare DHA intakes with the recommended intakes in a cohort of pregnant and lactating women. Twenty-four-hour dietary recalls and supplement intake questionnaires were collected from 600 women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort at each trimester of pregnancy and 3 months postpartum. Dietary intake was estimated in 2 ways: by using a commercial software program and by using a database created for APrON. Only 27% of women during pregnancy and 25% at 3 months postpartum met the current European Union (EU) consensus recommendation for DHA. Seafood, fish, and seaweed products contributed to 79% of overall n-3 long-chain polyunsaturated fatty acids intake from foods, with the majority from salmon. The estimated intake of DHA and EPA was similar between databases, but the estimated DPA intake was 20%-30% higher using the comprehensive database built for this study. Women who took a supplement containing DHA were 10.6 and 11.1 times more likely to meet the current EU consensus recommendation for pregnancy (95% confidence interval (CI): 6.952-16.07; PDHA during pregnancy and lactation, but taking a supplement significantly improved the likelihood that they would meet recommendations.

  8. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    of long-chain n-3 FA to arachidonic acid (the (3/6) ratio) was used as the most relevant single measure of exposure. In 18 women with certain gestational age and with spontaneous onset of delivery, gestational age was significantly associated with the (3/6) ratio quantified in PC (correlation coefficient......Dietary long-chain n-3 fatty acids (FA) may prolong gestation by inhibiting formation of prostaglandins from arachidonic acid. FA were quantified in phosphatidylcholine (PC), phosphatidylethanolamine (PE), and total lipids (TL) of red cells sampled during pregnancy from 29 Faroese women. The ratio...

  9. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  10. Four Models Including Fish, Seafood, Red Meat and Enriched Foods to Achieve Australian Dietary Recommendations for n-3 LCPUFA for All Life-Stages

    Directory of Open Access Journals (Sweden)

    Flavia Fayet-Moore

    2015-10-01

    Full Text Available Populations are not meeting recommended intakes of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA. The aim was (i to develop a database on n-3 LCPUFA enriched products; (ii to undertake dietary modelling exercise using four dietary approaches to meet the recommendations and (iii to determine the cost of the models. Six n-3 LCPUFA enriched foods were identified. Fish was categorised by n-3 LCPUFA content (mg/100 g categories as “excellent” “good” and “moderate”. The four models to meet recommended n-3 LCPUFA intakes were (i fish only; (ii moderate fish (with red meat and enriched foods; (iii fish avoiders (red meat and enriched foods only; and (iv lacto-ovo vegetarian diet (enriched foods only. Diets were modelled using the NUTTAB2010 database and n-3 LCPUFA were calculated and compared to the Suggested Dietary Targets (SDT. The cost of meeting these recommendations was calculated per 100 mg n-3 LCPUFA. The SDT were achieved for all life-stages with all four models. The weekly food intake in number of serves to meet the n-3 LCPUFA SDT for all life-stages for each dietary model were: (i 2 “excellent” fish; (ii 1 “excellent” and 1 “good” fish, and depending on life-stage, 3–4 lean red meat, 0–2 eggs and 3–26 enriched foods; (iii 4 lean red meat, and 20–59 enriched foods; (iv 37–66 enriched foods. Recommended intakes of n-3 LCPUFA were easily met by the consumption of fish, which was the cheapest source of n-3 LCPUFA. Other strategies may be required to achieve the recommendations including modifying the current food supply through feeding practices, novel plant sources and more enriched foods.

  11. Dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference

    DEFF Research Database (Denmark)

    Jakobsen, Marianne U.; Madsen, Lise; Skjøth, Flemming

    2017-01-01

    Background: Adding long-chain n-3 (ω-3) polyunsaturated fatty acids (PUFAs) to a rodent diet reduces fat mass and prevents the development of obesity, but evidence of a similar effect in humans is rather limited.Objectives: We investigated the associations between dietary intake and adipose tissue....... Dietary intake was assessed with the use of a validated 192-item semiquantitative food-frequency questionnaire. Adipose tissue content of fatty acids was determined by gas chromatography in a random sample of the cohort (n = 1660). Anthropometric measurements were taken at baseline and 5 y later...... acid, docosapentaenoic acid, and docosahexaenoic acid were observed. Intake of n-3 PUFAs was not associated with a 5-y change in waist circumference. For high (0.16%) compared with low (0.06%) adipose tissue content of EPA, the difference in 5-y weight change was -649.6 g (95% CI: -1254.2, -44.9 g); P...

  12. Influence of oilseed supplement ranging in n-6/n-3 ratio on fatty acid composition and Δ5-, Δ6-desaturase protein expression in steer muscles.

    Science.gov (United States)

    Turner, T D; Mitchell, A; Duynisveld, J; Pickova, J; Doran, O; McNiven, M A

    2012-12-01

    This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio.

  13. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  14. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    P.C. Calder

    1998-04-01

    Full Text Available 1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3. Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6, the precursor of arachidonic acid (20:4n-6. 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

  15. Are n-3 PUFA dietary recommendations met in in-hospital and school catering?

    Science.gov (United States)

    Molendi-Coste, O; Legry, V; Leclercq, I A

    2011-06-01

    Literature provides compelling evidence for the health benefits of n-3 polyunsaturated fatty acids (PUFA) consumption and low n-6/n-3 ratio, in particular, on inflammation and metabolic syndrome prevention and treatment. Consequently, recommendations were established for adequate n-3 PUFA supplies in the general population. The aim of our study was to evaluate the fatty acid (FA) profile in collective catering in relation to those recommendations. We obtained composition of lunches provided by the Township of Lille (France) to children and adults, and of "standard", "low-fat" and "for diabetic" menus from the catering service of St Luc university hospital (Brussels, Belgium). The average proportions of fish, meat, oils, and dairy were used to estimate total, saturated, monounsaturated and polyunsaturated (n-6 and n-3) FA contents. We used official tables of foodstuffs composition provided by the French Agency for Food Safety, the project "Nutritional Composition of Aquatic Products", the French Institute for Nutrition, and the USDA National Nutrient Database for Standard Reference. French guidelines were taken as reference for daily recommended intakes. n-3 PUFA content in lunches provided by municipal catering and in in-hospital menus were slightly below recommended intakes. In the latter, n-3 PUFA enriched margarine contributed for 50% to daily intakes. Despite, the n-6/n-3 ratio was too high, especially in municipal catering (around 20), related to excessive n-6 PUFA supply. Our results highlight that meeting n-3 PUFA nutritional recommendation remains challenging for collective catering. A detailed analysis of provided menus represents a powerful tool to increase awareness and foster improvement in practice.

  16. Dietary fatty acid metabolism in prediabetes.

    Science.gov (United States)

    Noll, Christophe; Carpentier, André C

    2017-02-01

    Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.

  17. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    Science.gov (United States)

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  18. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients

    Directory of Open Access Journals (Sweden)

    Calder P.C.

    2003-01-01

    Full Text Available Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6. Linoleic acid is the precursor of arachidonic acid (20:4n-6. In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

  19. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency.

    Science.gov (United States)

    Armitage, James A; Pearce, Adrian D; Sinclair, Andrew J; Vingrys, Algis J; Weisinger, Richard S; Weisinger, Harrison S

    2003-04-01

    Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Previous work in both animals and humans with high blood pressure has demonstrated the antihypertensive effects of n-3 polyunsaturated fatty acids (PUFA), although it is not known whether these nutrients are effective in preventing hypertension. The predominant n-3 PUFA in the mammalian nervous system, docosahexaenoic acid (DHA), is deposited into synaptic membranes at a high rate during the perinatal period, and recent observations indicate that the perinatal environment is important for the normal development of blood pressure control. This study investigated the importance of perinatal n-3 PUFA supply in the control of blood pressure in adult Sprague-Dawley rats. Pregnant rat dams were fed semisynthetic diets that were either deficient in (DEF) or supplemented with (CON) n-3 PUFA. Offspring were fed the same diets as their mothers until 9 wk; then, half of the rats from each group were crossed over to the opposite diet creating four groups, i.e., CON-CON; CON-DEF; DEF-DEF, DEF-CON. Mean arterial blood pressures (MAP) were measured directly, at 33 wk of age, by cannulation of the femoral artery. The phospholipid fatty acid profile of the hypothalamic region was determined by capillary gas-liquid chromatography. The tissue phospholipid fatty acid profile reflected the diet that the rats were consuming at the time of testing. Both groups receiving DEF after 9 wk of age (i.e., DEF-DEF and CON-DEF) had similar profiles with a reduction in DHA levels of 30%, compared with rats receiving CON (i.e., CON-CON and DEF-CON). DEF-DEF rats had significantly raised MAP compared with all other groups, with differences as great as 17 mm Hg. DEF-CON rats had raised MAP compared with CON-CON rats, and DEF-DEF rats had higher MAP than CON-DEF rats, despite the fact that their respective fatty acid profiles were not different. These findings indicate that inadequate levels of DHA in the perinatal

  20. Acetaminophen-induced Liver Injury is Attenuated in Transgenic fat-1 Mice Endogenously Synthesizing Long-chain n-3 Fatty Acids.

    Science.gov (United States)

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-caused hepatotoxicity is the most commonly cause of drugs-induced liver failurecharacterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1) / mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products.

    Science.gov (United States)

    Strobel, Claudia; Jahreis, Gerhard; Kuhnt, Katrin

    2012-10-30

    The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC) PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying) which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA.The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123). Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply.Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %), however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4) but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower n-3 PUFA portion in farmed fish can be offset by the

  2. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products

    Directory of Open Access Journals (Sweden)

    Strobel Claudia

    2012-10-01

    Full Text Available Abstract Background The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA. The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123. Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Results Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply. Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %, however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4 but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Conclusions Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower

  3. Decreased n-6/n-3 polyunsaturated fatty acid ratio reduces chronic reflux esophagitis in rats.

    Science.gov (United States)

    Wei, Jing-Jing; Tang, Du-Peng; Xie, Jing-Jing; Yang, Li-Yong; Zhuang, Ze-Hao

    2016-09-01

    To investigate the effect of dietary ratio of n-6/n-3 PUFAs on chronic reflux esophagitis (RE) and lipid peroxidation. Rat RE model were established and then fed on a diet contained different n-6/n-3 PUFA ratios (1:1.5, 5:1, 10:1) or received pure n-6 PUFA diet for 14 days. Esophageal pathological changes were evaluated using macroscopic examination and hematoxyline-eosin staining. IL-1β, IL-8, and TNFα mRNA and protein levels of were determined using RT-PCR and Western blotting, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using ELISA. The severity of esophagitis was lowest in the PUFA(1:1.5) group (P<0.05). IL-1β, IL-8, and TNFα mRNA and protein and MDA levels were significantly increased in model groups with the increasing n-6/n-3 PUFA ratios. SOD levels were significantly decreased in all RE PUFA groups (P<0.05). Esophageal injury and lipid peroxidation appeared to be ameliorated by increased n-3 PUFAs intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation.

    Science.gov (United States)

    Tian, Chunyu; Fan, Chaonan; Liu, Xinli; Xu, Feng; Qi, Kemin

    2011-10-01

    N-3 polyunsaturated fatty acids (n-3 PUFAs) are essential for brain development and function, but the appropriate quantity of dietary n-3 PUFAs and ratio of n-6/n-3 PUFAs have not been clearly determined. In this study, we investigated the effects of different dietary ratios of n-6/n-3 PUFAs on the brain structural development in mice and the expression of associated transcription factors. C57 BL/6J mice were fed with one of two categories of n-3 PUFA-containing diets (a flaxseed oil diet and a flaxseed/fish oil mixed diet) or an n-3 PUFA-deficient diet. For each of the n-3 PUFA diets, flaxseed oil or flaxseed/fish oil was combined with other oils to yield three different n-6/n-3 ratios, which ranged from 15.7:1 to 1.6:1. The feeding regimens began two months before mouse conception and continued throughout lactation for new pups. As compared with the n-3 PUFA-deficient diet, both the flaxseed oil n-3 PUFA diets and the flaxseed/fish oil n-3 PUFA diets significantly increased the expression levels of brain neuron-specific enolase, glial fibrillary acidic protein and myelin basic protein, somewhat dose-dependently, in new pup mice at 21 d and 42 d of age. The expression of PPAR-γ in the brains of pup mice was increased only at 7 d of age with the n-3 PUFA diet, and no changes in the expression of PPAR-α and PPAR-β were found among all the diet groups. These results suggest that the higher intake amount of n-3 PUFAs with a low ratio of n-6/n-3 PUFAs at about 1-2:1, supplied during both maternal pregnancy and lactation, may be more beneficial for early brain development, and PPAR-γ may act in one of the pathways by which n-3 PUFAs promote early brain development. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Lobna Ouldamer

    Full Text Available The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality.Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality.We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality.These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  6. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    Directory of Open Access Journals (Sweden)

    Aaron A. Mehus

    2017-10-01

    Full Text Available Metallothioneins (MTs perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER and dietary n-3 polyunsaturated fatty acid (PUFA deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL intake of control rats provided diets consisting of either soybean oil (SO that is α-linolenic acid (ALA; 18:3n-3 sufficient or corn oil (CO; ALA-deficient. Fatty acids (FA and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3 and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2 and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50% and cerebral cortex (23%. In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  7. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    Science.gov (United States)

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  8. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Directory of Open Access Journals (Sweden)

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  9. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  10. Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1

    Directory of Open Access Journals (Sweden)

    Hill, Jr, Charles G.

    2008-12-01

    Full Text Available A commercial phospholipase A1 (Lecitase® Ultra was immobilized by physical adsorption on Duolite® and then used to mediate the incorporation of omega-3 fatty acids into lecithin. Adsorption isotherms showed that 12 h of contact were sufficient to deposit most of the enzyme onto the carrier. A pH of 7 and 50°C were the best conditions for adsorption. Reaction mixtures consisting of lecithin and a saponified fish oil concentrate (78.4 mol % EPA+DPA+DHA were prepared at molar ratios ranging from 1:2 to 1:10. Typically 2 g of total substrates and 200 mg of enzyme preparation were employed in batch reactor trials. The fastest reaction rates were observed when a substrate mole ratio of 1:8 (lecithin:total fatty acids was employed. Use of the enzyme preparation dried at pH 8 and reaction temperatures of 50 and 60°C produced the greatest extent of incorporation of the indicated n-3 fatty acids into the phospholipid after 24h of reaction.Una preparación comercial de fosfolipasa A1 (Lecitase® Ultra fue inmovilizada por adsorción sobre Duolite® y empleada para catalizar la incorporación de ácidos grasos n-3 en lecitina. Las isotermas de adsorción mostraron que en 12 horas de contacto se depositó la mayor cantidad de enzima sobre el soporte. Las mejores condiciones para la adsorción se encontraron a un valor de pH de 7 y 50°C. Las mezclas de reacción consistieron en lecitina y un saponificado de concentrado de aceite de pescado (78.4 mol % EPA+DPA+DHA a relaciones molares de 1:2 a 1:10. Una mezcla de reacción típica consistió de 2 g de sustratos y 200 mg del preparado enzimático en un reactor en lotes. Las velocidades de reacción mas altas se encontraron cuando se empleó una relación molar de sustratos de 1:8 (lecitina:ácidos grasos totales. El preparado enzimático secado a pH de 8.0 a 50 o 60°C produjo las más altas incorporaciones de ácidos grasos n-3 en el fosfolípido después de 24 h de reacción.

  11. Effect of Supplementation with n-3 Fatty Acids Extracted from Microalgae on Inflammation Biomarkers from Two Different Strains of Mice

    Directory of Open Access Journals (Sweden)

    L. E. Gutiérrez-Pliego

    2018-01-01

    Full Text Available Background. Diabetes mellitus is considered a chronic noncommunicable disease in which inflammation plays a main role in the progression of the disease and it is known that n-3 fatty acids have anti-inflammatory properties. One of the most recent approaches is the study of the fatty acids of microalgae as a substitute for fish oil and a source rich in fatty acids EPA and DHA. Objective. To analyze the effect of supplementation with n-3 fatty acids extracted from microalgae on the inflammatory markers from two different strains of mice. Methods. Mice of two strains, db/db and CD1, were supplemented with n-3 fatty acids extracted from microalgae in lyophilized form and added to food; the experiment was carried out from week 8 to 16 of life. Flow cytometry was performed to determine the percentage of TCD4+ cells producing Th1 and Th2 cytokines. Results. Supplementation with microalgae fatty acids decreased the percentage of TCD4+ cells producing IFN-γ and TNF-α and increased the ones producing IL-17A and IL-12 in both strains; on the other hand, supplementation decreased percentage of TCD4+ cells producing IL-4 and increased the ones producing TGF-β. Conclusions. Microalgae n-3 fatty acids could be a useful tool in the treatment of diabetes as well as in the prevention of the appearance of health complications caused by inflammatory states.

  12. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Overgaard, Jesper; Krogh, Anne Louise

    2007-01-01

    Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil...... Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma...... into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden...

  13. Effects of n-3 Polyunsaturated Fatty Acid Supplementation on Serum Leptin Levels, Appetite Sensations, and Intake of Energy and Macronutrients in Obese People: A Randomized Clinical Trial.

    Science.gov (United States)

    Payahoo, L; Ostadrahimi, A; Farrin, N; Khaje-Bishak, Y

    2017-10-05

    Obesity is a common health problem. Appetite is one of the main obesity-controlling factors that can be influenced by leptin. Leptin reduces food intake and accelerates energy expenditure. Leptin levels can be affected by dietary factors such as fats, special amino acids, and fructose. This study aimed to determine the effects of polyunsaturated fatty acid n-3 (PUFA n-3) supplementation on serum leptin levels, appetite sensations, and dietary intakes in obese people. This study was performed on 60 obese individuals with body mass index (BMI) 30 (kg/m 2 ) and above in 2012 in Tabriz, Iran. The participants were randomly allocated to the intervention (consumed two capsules containing 1 g/day n-3 fatty acids [180 mg EPA, 120 mg DHA] for 4 weeks) and control groups. Serum leptin levels were assessed by ELISA method, and visual analogue scale (VAS) questionnaire was completed for evaluating appetite sensations. The mean caloric [before = 1,575.39 (600), after = 1,236.14 (448.40)] and macronutrient intakes were decreased significantly in the intervention group (p macronutrient intakes, probably through the modulating of satiety. The short period of study caused the nonsignificant changes in BMI and circulatory leptin. Further studies are needed to confirm these results.

  14. Dietary habits, plasma polyunsaturated fatty acids and selected ...

    African Journals Online (AJOL)

    Dietary habits, plasma polyunsaturated fatty acids and selected coronary disease risk factors in Tanzania. ... Conclusion: Our results indicate that, there are significant differences in dietary patterns among the three study areas, and that the intake of fish is inversely associated with selected risk factors for coronary heart ...

  15. n-3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease.

    Science.gov (United States)

    Asbell, Penny A; Maguire, Maureen G; Pistilli, Maxwell; Ying, Gui-shuang; Szczotka-Flynn, Loretta B; Hardten, David R; Lin, Meng C; Shtein, Roni M

    2018-05-03

    Dry eye disease is a common chronic condition that is characterized by ocular discomfort and visual disturbances that decrease quality of life. Many clinicians recommend the use of supplements of n-3 fatty acids (often called omega-3 fatty acids) to relieve symptoms. In a multicenter, double-blind clinical trial, we randomly assigned patients with moderate-to-severe dry eye disease to receive a daily oral dose of 3000 mg of fish-derived n-3 eicosapentaenoic and docosahexaenoic acids (active supplement group) or an olive oil placebo (placebo group). The primary outcome was the mean change from baseline in the score on the Ocular Surface Disease Index (OSDI; scores range from 0 to 100, with higher scores indicating greater symptom severity), which was based on the mean of scores obtained at 6 and 12 months. Secondary outcomes included mean changes per eye in the conjunctival staining score (ranging from 0 to 6) and the corneal staining score (ranging from 0 to 15), with higher scores indicating more severe damage to the ocular surface, as well as mean changes in the tear break-up time (seconds between a blink and gaps in the tear film) and the result on Schirmer's test (length of wetting of paper strips placed on the lower eyelid), with lower values indicating more severe signs. A total of 349 patients were assigned to the active supplement group and 186 to the placebo group; the primary analysis included 329 and 170 patients, respectively. The mean change in the OSDI score was not significantly different between the active supplement group and the placebo group (-13.9 points and -12.5 points, respectively; mean difference in change after imputation of missing data, -1.9 points; 95% confidence interval [CI], -5.0 to 1.1; P=0.21). This result was consistent across prespecified subgroups. There were no significant differences between the active supplement group and the placebo group in mean changes from baseline in the conjunctival staining score (mean difference in

  16. Healthy yogurt fortified with n-3 fatty acids from vegetable sources.

    Science.gov (United States)

    Dal Bello, B; Torri, L; Piochi, M; Zeppa, G

    2015-12-01

    The concentration of n-3 polyunsaturated fatty acids (PUFA) in yogurt was increased using 5 different vegetable oils obtained from flaxseed, Camelina sativa, raspberry, blackcurrant, and Echium plantagineum. The vegetable oils were added to partially skim milk before lactic fermentation at a concentration adequate enough to cover at least 10% of the recommended daily intake of 2 g/d of α-linolenic acid according to EC regulation no. 432/2012. Microbiological (lactobacilli and streptococci, yeast, and molds), chemical (pH, syneresis, proximate composition, fatty acids, oxidation stability), and sensory evaluations were assessed for all of the fortified yogurts after 0, 7, 14, and 21 d of storage at 4°C. Sensory evaluations were conducted at 21 d of storage at 4°C. Among the yogurts produced, those that were supplemented with flaxseed and blackcurrant oils exhibited the highest α-linolenic acid content (more than 200mg/100 g of yogurt) at the end of storage. The addition of oil did not influence the growth of lactic acid bacteria that were higher than 10(7) cfu/g at 21 d of storage. All of the yogurts were accepted by consumers, except for those supplemented with raspberry and E. plantagineum oils due to the presence of off flavors. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. ANALYSIS OF ω-3 FATTY ACID CONTENT OF POLISH FISH OIL DRUG AND DIETARY SUPPLEMENTS.

    Science.gov (United States)

    Osadnik, Kamila; Jaworska, Joanna

    2016-07-01

    Study results indicate that a diet rich in polyunsaturated fatty acids ω-3 (PUFA n-3) exerts favorable effect on human health, accounting for reduced cardiovascular morbidity and mortality. PUFA n-3 contained in marine fish oils, particularly eicosapentaenoic (EPA, 20:5 n-3) and docosahexaenoic (DHA, 22:6 n-3) acids, are attributed antithrombotic, anti-inflammatory, anti-atherosclerotic and anti-arrhythmic effects. They have also beneficial effects on cognitive functions and immunological mechanisms of an organism. Considering the fact that marine fish are not abundant in Western diet, the pharmaceutical industry reacts with a broad selection of PUFA n-3 containing dietary supplements and drugs. Increased consumers' interest with those products has been observed recently. Therefore, their quality, understood as reliability of manufacturer's declaration of composition of offered dietary supplements, is highly important. We have tested 22 products available in pharmacies and supermarkets, manufacturers of which declared content of n-3 fatty acids (21 dietary supplements and I drug). Identity and content of DHA and EPA were assessed using ¹H NMR spectroscopy, based on characteristic signals from protons in methylene groups. Almost one in five of the examined dietary supplements contains content was consistent with the actual composition. It is notable that more cases of discrepancy between the declared and the actual content regarded DHA than EPA, which indicates a less favorable balance, considering the pro-health effect of those acids. Over a half of tested products provides the supplementary dose (250 mg/day) with one capsule taken daily, and in 27% of cases the daily dosage should be doubled. Only 10% of those products ensure the appropriate dose for cardiovascular patients (1 g/day) with the use of I capsule a day. Correct information provided by a manufacturer on a label regarding the total amount of DHA and EPA is a basis for selection of an appropriate

  18. Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants.

    Science.gov (United States)

    Carlson, S E; Rhodes, P G; Rao, V S; Goldgar, D E

    1987-05-01

    Very low birth weight infants demonstrate significant reductions in red blood cell membrane docosahexaenoic acid (DHA, 22:6n-3) following delivery unless fed human milk. The purpose of the present study was to determine if a dietary source of DHA (MaxEPA, R. P. Scherer Corporation, Troy, MI) could prevent the decline in red blood cell phospholipid DHA in very low birth weight infants whose enteral feeding consisted of a preterm formula without DHA. Longitudinal data were obtained on membrane phospholipid DHA in both unsupplemented and MaxEPA-supplemented infants by a combination of thin-layer and gas chromatography. These infants (n = 39) ranged in age from 10 to 53 days at enrollment (0 time). At enrollment, phospholipid DHA and arachidonic acid (20:4n-6) were inversely correlated with age in days. During the study, mean red blood cell phospholipid DHA declined without supplementary DHA as determined by biweekly measurement, but infants supplemented with MaxEPA maintained the same weight percent of phospholipid (phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine) DHA as at enrollment. The pattern of red blood cell phospholipid fatty acids in supplemented infants was similar to that reported for preterm infants fed human milk.

  19. n-3 Polyunsaturated Fatty Acids and Mechanisms to Mitigate Inflammatory Paracrine Signaling in Obesity-Associated Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-10-01

    Full Text Available Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.

  20. Association of Blood Fatty Acid Composition and Dietary Pattern with the Risk of Non-Alcoholic Fatty Liver Disease in Patients Who Underwent Cholecystectomy.

    Science.gov (United States)

    Shim, Poyoung; Choi, Dongho; Park, Yongsoon

    2017-01-01

    The relationship between diet and non-alcoholic fatty liver disease (NAFLD) in patients with gallstone disease and in those who have a high risk for NAFLD has not been investigated. This study was conducted to investigate the association between the risk of NAFLD and dietary pattern in patients who underwent cholecystectomy. Additionally, we assessed the association between erythrocyte fatty acid composition, a marker for diet, and the risk of NAFLD. Patients (n = 139) underwent liver ultrasonography to determine the presence of NAFLD before laparoscopic cholecystectomy, reported dietary intake using food frequency questionnaire, and were assessed for blood fatty acid composition. Fifty-eight patients were diagnosed with NAFLD. The risk of NAFLD was negatively associated with 2 dietary patterns: consuming whole grain and legumes and consuming fish, vegetables, and fruit. NAFLD was positively associated with the consumption of refined grain, meat, processed meat, and fried foods. Additionally, the risk of NAFLD was positively associated with erythrocyte levels of 16:0 and 18:2t, while it was negatively associated with 20:5n3, 22:5n3, and Omega-3 Index. The risk of NAFLD was negatively associated with a healthy dietary pattern of consuming whole grains, legumes, vegetables, fish, and fruit and with an erythrocyte level of n-3 polyunsaturated fatty acids rich in fish. © 2017 S. Karger AG, Basel.

  1. Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitis in the fat-1 mouse model

    Directory of Open Access Journals (Sweden)

    Diana Shefer-Weinberg

    2017-04-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD represents a spectrum of pathologies, ranging from hepatocellular steatosis to non-alcoholic steatohepatitis (NASH, fibrosis and cirrhosis. It has been suggested that fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFA induce beneficial effects in NAFLD. However, n-3 PUFA are sensitive to peroxidation that generate free radicals and reactive aldehydes. We aimed at determining whether changing the tissue ratio of n-3 to n-6 PUFA may be beneficial or alternatively harmful to the etiology of NAFLD. The transgenic Fat-1 mouse model was used to determine whether n-3 PUFA positively or negatively affect the development of NAFLD. fat-1mice express the fat-1 gene of Caenorhabditis elegans, which encodes an n-3 fatty-acid desaturase that converts n-6 to n-3 fatty acids. Wild-type C57BL/6 mice served as the control group. Both groups of mice were fed methionine and choline deficient (MCD diet, which induces NASH within 4 weeks. The study shows that NASH developed faster and was more severe in mice from the fat-1 group when compared to control C57BL/6 mice. This was due to enhanced lipid peroxidation of PUFA in the liver of the fat-1 mice as compared to the control group. Results of our mice study suggest that supplementing the diet of individuals who develop or have fatty livers with n-3 PUFA should be carefully considered and if recommended adequate antioxidants should be added to the diet in order to reduce such risk.

  2. Lowering dietary n-6 polyunsaturated fatty acids: interaction with brain arachidonic and docosahexaenoic acids.

    Science.gov (United States)

    Alashmali, Shoug M; Hopperton, Kathryn E; Bazinet, Richard P

    2016-02-01

    Arachidonic (ARA) and docosahexaenoic (DHA) acids are the most abundant polyunsaturated fatty acids (PUFA) in the brain, where they have many biological effects, including on inflammation, cell-signaling, appetite regulation, and blood flow. The Western diet contains a high ratio of n-6: n-3 PUFA. Although interest in lowering this ratio has largely focused on increasing intake of n-3 PUFA, few studies have examined lowering dietary n-6 PUFA. This review will evaluate the effect of lowering dietary n-6 PUFA on levels and metabolism of ARA and DHA in animal models and in humans, with a primary focus on the brain. In animal models, lowering dietary ARA or linoleic acid generally lowers levels of brain ARA and raises DHA. Lowering dietary n-6 PUFA can also modulate the levels of ARA and DHA metabolizing enzymes, as well as their associated bioactive mediators. Human studies examining changes in plasma fatty acid composition following n-6 PUFA lowering demonstrate no changes in levels of ARA and DHA, though there is evidence of alterations in their respective bioactive mediators. Lowering dietary n-6 PUFA, in animal models, can alter the levels and metabolism of ARA and DHA in the brain, but it remains to be determined whether these changes are clinically meaningful.

  3. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    Science.gov (United States)

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  4. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    Science.gov (United States)

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  5. Food frequency questionnaire as an indicator of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids in early pregnancy, according to body mass index.

    Science.gov (United States)

    Lepsch, J; Vaz, J S; Moreira, J D; Pinto, T J P; Soares-Mota, M; Kac, G

    2015-02-01

    We investigated whether food frequency questionnaire (FFQ) may be indicative of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids (PUFAs) in early pregnancy and if correlations are affected by body mass index (BMI). The present study comprised a prospective cohort conducted in Rio de Janeiro, Brazil. The sample was composed of 248 women, aged 20-40 years, between 6 and the 13 weeks of gestation. Dietary intake was assessed using a validated FFQ. Fatty acid serum compositions were determined in fasting serum samples, employing a high-throughput robotic direct methylation coupled with fast gas-liquid chromatography. Spearman's correlation (r(s)) was used to assess the relationship between fatty acid intake and corresponding serum composition. Women were classified according to BMI (kg m(-2) ) as underweight/normal weight (BMI < 25 kg m(-2) ; n = 139) or excessive weight (BMI ≥ 25 kg m(-2) ; n = 109). In the total sample, dietary report was significantly correlated with the serum composition of total polyunsaturated fatty acid (PUFA; r(s) = 0.232, P < 0.001), linoleic acid (LA; 18:2n-6; r(s) = 0.271, P < 0.001), eicosapentaenoic acid (EPA; 20:5n-3; r(s) = 0.263, P < 0.001) and docosahexaenoic acid (DHA; 22:6n-3; r(s) = 0.209, P = 0.001). When analyses were stratified by BMI, significant correlations between FFQ and serum composition among underweight/normal weight women were observed for total PUFA (r(s) = 0.323, P < 0.001), LA (r(s) = 0.322, P < 0.001), EPA (r(s) = 0.352, P < 0.001) and DHA (r(s) = 0.176, P = 0.039). Among women of excessive weight, significant correlations were observed only for alpha linolenic acid (ALA; 18:3n-3; r(s) = 0.199, P = 0.040) and DHA (r(s) = 0.236, P = 0.014). FFQ in early pregnancy may be used as a possible indicator of serum concentrations of fatty acids. Higher correlations were observed among underweight/normal weight women. © 2014 The British Dietetic Association Ltd.

  6. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle.

    Science.gov (United States)

    Oseikria, Mouhamad; Elis, Sébastien; Maillard, Virginie; Corbin, Emilie; Uzbekova, Svetlana

    2016-06-01

    The positive effect of n-3 polyunsaturated fatty acids (FAs) on fertility in ruminants seems to be partly mediated through direct effects on the oocyte developmental potential. We aimed to investigate whether supplementation with physiological levels of docosahexaenoic acid (DHA, C22:6 n-3 polyunsaturated fatty acids) during IVM has an effect on oocyte maturation and in vitro embryo development in cattle. We reported that DHA (0, 1, 10, or 100 μM) had no effect on oocyte viability or maturation rate after 22-hour IVM. Incubation of oocyte-cumulus complexes with 1-μM DHA during IVM significantly increased (P DHA during IVM also induced a significant increase in the blastocyst rate at Day 7 after IVF as compared with control (30.6% vs. 17.6%, respectively) and tended to increase the number of cells in the blastocysts (97.1 ± 4.9 vs. 81.2 ± 5.3, respectively; P = 0.08). On the contrary, 10-μM DHA had no effects, whereas 100-μM DHA significantly decreased the cleavage rate compared with control (69.5% vs.78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (19.5% vs. 29.7%). As was shown by real-time polymerase chain reaction, negative effects of 100-μM DHA were associated with significant increase of progesterone synthesis by oocyte-cumulus complexes, a three-fold increase in expression level of FA transporter CD36 and a two-fold decrease of FA synthase FASN genes in cumulus cells (CCs) of corresponding oocytes. Docosahexaenoic acid at 1 and 10 μM had no effect on expression of those and other key lipid metabolism-related genes in CC. In conclusion, administration of a low physiological dose of DHA (1 μM) during IVM may have beneficial effects on oocyte developmental competence in vitro without affecting lipid metabolism gene expression in surrounding CCs, contrarily to 100 μM DHA which diminished oocyte quality associated with perturbation of lipid and steroid metabolism in CC. Copyright © 2016

  7. Endogenous n-3 Polyunsaturated Fatty Acids Delay Progression of Pancreatic Ductal Adenocarcinoma in Fat-1-p48Cre/+-LSL-KrasG12D/+ Mice

    Directory of Open Access Journals (Sweden)

    Altaf Mohammed

    2012-12-01

    Full Text Available Preclinical studies suggest that diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs may be beneficial for prevention of pancreatic cancer. Nutritional intervention studies are often complex, and there is no clear evidence, without potential confounding factors, on whether conversion of n-6 PUFAs to n-3 PUFAs in pancreatic tissues would provide protection. Experiments were designed using n-3 fatty acid desaturase (Fat-1 transgenic mice, which can convert n-6 PUFA to n-3 FAs endogenously, to determine the impact of n-3 PUFAs on pancreatic intraepithelial neoplasms (PanINs and their progression to pancreatic ductal adenocarcinoma (PDAC. Six-weekold female p48Cre/+-LSL-KrasG12D/+ andcompoundFat-1-p48Cre/+-LSL-KrasG12D/+ mice were fed (AIN-76A diets containing 10% safflower oil for 35 weeks. Pancreata were evaluated histopathologically for PanINs and PDAC. Results showed a dramatic reduction in incidence of PDAC (84%; P 85%; P < .05–0.01 in pancreas of compound transgenic mice than in those of p48Cre/+-LSL-KrasG12D/+ mice. Molecular analysis of the pancreas showed a significant down-regulation of proliferating cell nuclear antigen, cyclooxygenase-2, 5-lipoxygenase (5-LOX, 5-LOX-activating protein, Bcl-2, and cyclin D1 expression levels in Fat-1-p48Cre/+-LSL-KrasG12D/+ mice compared to p48Cre/+-LSL-KrasG12D/+ mice. These data highlight the promise of dietary n-3 FAs for chemoprevention of pancreatic cancer in high-risk individuals.

  8. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  9. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    Science.gov (United States)

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  10. n-3 Polyunsaturated Fatty Acid Supplementation Has No Effect on Postprandial Triglyceride-Rich Lipoprotein Kinetics in Men with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    André J. Tremblay

    2016-01-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been proposed to modulate plasma lipids, lipoprotein metabolism, and inflammatory state and to reduce triglyceride (TG concentrations. The present double-blind, randomized, placebo-controlled, crossover study investigated the effects of n-3 PUFA supplementation at 3 g/d for 8 weeks on the intravascular kinetics of intestinally derived apolipoprotein (apo B-48-containing lipoproteins in 10 men with type 2 diabetes. In vivo kinetics of the TG-rich lipoprotein (TRL apoB-48 and VLDL apoB-100 were assessed using a primed-constant infusion of L-[5,5,5-D3] leucine for 12 hours in a fed state. Compared with the placebo, n-3 PUFA supplementation significantly reduced fasting TG concentrations by −9.7% (P=0.05 but also significantly increased plasma levels of cholesterol (C (+6.0%, P=0.05, LDL-C (+12.2%, P=0.04, and HDL-C (+8.4, P=0.007. n-3 PUFA supplementation had no significant impact on postprandial TRL apoB-48 and VLDL apoB-100 levels or on the production or catabolic rates of these lipoproteins. These data indicate that 8-week supplementation with n-3 PUFAs in men with type 2 diabetes has no beneficial effect on TRL apoB-48 and VLDL apoB-100 levels or kinetics.

  11. Dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference.

    Science.gov (United States)

    Jakobsen, Marianne U; Madsen, Lise; Skjøth, Flemming; Berentzen, Tina L; Halkjær, Jytte; Tjønneland, Anne; Schmidt, Erik B; Sørensen, Thorkild Ia; Kristiansen, Karsten; Overvad, Kim

    2017-05-01

    Background: Adding long-chain n-3 (ω-3) polyunsaturated fatty acids (PUFAs) to a rodent diet reduces fat mass and prevents the development of obesity, but evidence of a similar effect in humans is rather limited. Objectives: We investigated the associations between dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference in humans. Effect modification by the carbohydrate:protein ratio and glycemic index was also investigated. Design: A total of 29,152 participants included in the Diet, Cancer, and Health cohort were followed. Dietary intake was assessed with the use of a validated 192-item semiquantitative food-frequency questionnaire. Adipose tissue content of fatty acids was determined by gas chromatography in a random sample of the cohort ( n = 1660). Anthropometric measurements were taken at baseline and 5 y later. Associations were investigated with the use of a linear regression model. Results: For high (1.22 g/d) compared with low (0.28 g/d) total n-3 PUFA intake, the difference in 5-y weight change was 147.6 g (95% CI: -42.3, 337.5 g); P -trend = 0.088. No associations between the individual n-3 PUFAs eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid were observed. Intake of n-3 PUFAs was not associated with a 5-y change in waist circumference. For high (0.16%) compared with low (0.06%) adipose tissue content of EPA, the difference in 5-y weight change was -649.6 g (95% CI: -1254.2, -44.9 g); P -trend = 0.027. No associations between total n-3 PUFA, docosapentaenoic acid, and docosahexaenoic acid and 5-y weight change were observed. Adipose tissue content of n-3 PUFAs was not associated with 5-y change in waist circumference. No effect modification by carbohydrate:protein ratio or glycemic index was found. Conclusion: Dietary intake and adipose tissue content of long-chain n-3 PUFAs were neither consistently nor appreciably associated with change in body weight

  12. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    Science.gov (United States)

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from 20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  13. Metabolism of polyunsaturated (n-3) fatty acids by monkey seminal vesicles: isolation and biosynthesis of omega-3 epoxides.

    Science.gov (United States)

    Oliw, E H; Sprecher, H W

    1991-11-27

    Monooxygenases of monkey seminal vesicles can metabolize arachidonic acid (20:4(n-6)) by w3-hydroxylation to 18(R)-hydroxyeicosatetraenoic acid (18(R)-HETE) and eicosapentaenoic acid (20:5(n-3)) to 17,18-dihydroxyeicosatetraenoic acid (Oliw, E.H. (1989) J. Biol. Chem. 264, 17845-17853). The present study aimed to further characterize the oxygenation of (n-3) polyunsaturated fatty acids. 14C-Labelled 22:6(n-3), 20:5(n-3), 20:4-(n-3) and 18:3(n-3) were incubated with microsomes of seminal vesicles of the cynomolgus monkey, NADPH and a cyclooxygenase inhibitor, diclofenac, and the main metabolites were identified by capillary gas chromatography-mass spectrometry. 22:6(n-3) was slowly metabolized to 19,20-dihydroxy-4,7,10,13,16-docosapentaenoic acid, while 20:5(n-3), 20:4(n-3) and 18:3(n-3) were metabolized more efficiently to the corresponding w4,w3-diols. The w3 epoxides, which were obtained from 20:5(n-3) and 18:3(n-3), were isolated in the presence of an epoxide hydrolase inhibitor, 1(2)epoxy-3,3,3-trichloropropane, and the geometry of the epoxides was determined to be 17S, 18R and 15S, 16R, respectively. While 20:5(n-3) was metabolized almost exclusively to the epoxide and diol pair of metabolites, 18:3(n-3) was metabolized not only to the w3 epoxide and the corresponding diol, but also to the w2 alcohol, 17(R)-hydroxy-9,12,15-octadecatrienoic acid. 22:6(n-3) and 5,8,11,14-eicosatetraynoic acid inhibited the biosynthesis of 18(R)-HETE from arachidonic acid (IC50 0.16 and 0.14 mM, respectively). In comparison with 20:4 or 18:3(n-3), 18:1(n-9) and 22:5(n-6) appeared to be slowly metabolized by seminal monooxygenases, while 18:2(n-6) was converted to the w3 alcohol and to smaller amounts of the w2 alcohol (4:1). Together, the results indicate that the w3-hydroxylase and w3-epoxygenase enzyme(s) metabolize 20:4(n-6) and 20:5(n-3) almost exclusively to the w3(R) alcohol and the w3(R, S) epoxide, respectively, while longer and shorter fatty acids either are poor

  14. Marine n-3 Polyunsaturated Fatty Acids in Psoriatic Arthritis – Inflammation and Cardiac Autonomic and Hemodynamic Function

    DEFF Research Database (Denmark)

    Kristensen, Salome

    This thesis is based on three studies of patients with established psoriatic arthritis (PsA) aiming at investigating the effect of marine n-3 polyunsaturated fatty acids (PUFA) on clinical symptoms and selected measures of inflammation, cardiac autonomic and hemodynamic function in these patients...... with either 3 g of marine n-3 PUFA (6 capsules of fish oil) or 3 g of olive oil daily for 24 weeks. A total of 133 patients (92%) completed the study. The difference in the outcomes between baseline and 24 weeks was analysed within and between the two supplemented groups. In Study II, the effects of n-3 PUFA...

  15. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    Science.gov (United States)

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  16. Dietary monounsaturated fatty acids intake and risk of skin photoaging.

    Directory of Open Access Journals (Sweden)

    Julie Latreille

    Full Text Available Intake of monounsaturated fatty acids has been reported to reduce oxidative stress, insulin resistance and related inflammatory processes and may thus protect from skin photoaging. The objective of this study was to investigate the association between the risk of photoaging, monounsaturated fatty acids intake and the sources of monounsaturated fatty acids.A cross sectional study was conducted within the framework of the SUVIMAX cohort. The survey included 1264 women and 1655 men aged between 45 and 60 years old. Dietary monounsaturated fatty acids intakes were estimated by dietary source through at least ten 24-h diet records completed during the first 2.5 years of the follow-up period. Severity of facial skin photoaging was graded by trained investigators at baseline during a clinical examination using a 6-grade scale illustrated by photographs. A lower risk of severe photoaging was associated with higher intakes of monounsaturated fatty acids from olive oil in both sexes. Strikingly, no association was found with intake of monounsaturated fatty acids from animal sources whether from dairy products, meat or processed meat.These findings support the beneficial effect of dietary olive oil or healthy diet habits associated with olive oil consumption on the severity of facial photoaging.

  17. Intake of very long-chain n-3 fatty acids from fish and incidence of atrial fibrillation. The Rotterdam Study

    NARCIS (Netherlands)

    Brouwer, I.A.; Heeringa, J.; Geleijnse, J.M.; Zock, P.L.; Witteman, J.C.M.

    2006-01-01

    Background Atrial fibrillation is the most common sustained cardiac arrhythmia. It is a major cause of morbidity and mortality through an increased risk of thromboembolic stroke. Experimental as well as observational evidence suggests that n-3 polyunsaturated fatty acids may have antiarrhythmic

  18. Conclusions and recommendations from the symposium, Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids.

    Science.gov (United States)

    Deckelbaum, Richard J; Leaf, Alexander; Mozaffarian, Dariush; Jacobson, Terry A; Harris, William S; Akabas, Sharon R

    2008-06-01

    After the symposium "Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids," faculty who presented at the conference submitted manuscripts relating to their conference topics, and these are presented in this supplement. The content of these manuscripts was reviewed, and 2 conference calls were convened. The objective was to summarize existing evidence, gaps in evidence, and future research needed to strengthen recommendations for specific intakes of n-3 fatty acids for different conditions relating to cardiovascular disease. The following 2 questions were the main items discussed. What are the roles of n-3 fatty acids in primary versus secondary prevention of coronary heart disease? What are the roles of n-3 fatty acids in hypertriglyceridemia, in the metabolic syndrome and type 2 diabetes, and in sudden cardiac death, cardiac arrhythmias, and vulnerable plaque? Each area was summarized by using 2 general categories: 1) current knowledge for which general consensus exists, and 2) recommendations for research and policy. Additional references for these conclusions can be found in the articles included in the supplement.

  19. Habitual dietary intake of fatty acids are associated with leptin gene expression in subcutaneous and visceral adipose tissue of patients without diabetes.

    Science.gov (United States)

    Rostami, Hosein; Samadi, Mohammad; Yuzbashian, Emad; Zarkesh, Maryam; Asghari, Golaleh; Hedayati, Mehdi; Daneshafrooz, Afsoon; Mirmiran, Parvin; Khalaj, Alireza

    2017-11-01

    The purpose of the study was to investigate the association of leptin gene expression in visceral and subcutaneous adipose tissues with habitual fatty acid intake and its subtypes in adults. Visceral and subcutaneous adipose tissues were gathered from 97 participants aged ≥ 20, who had undergone elective abdominal surgery. Dietary fatty acid intakes including total fatty acids (TFA), saturated fatty acid (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-3, n-6, and n-9 fatty acids were collected using a valid and reliable food-frequency questionnaire (FFQ). The leptin gene expression in visceral and subcutaneous adipose tissues was measured by Real-Time PCR. After controlling for body mass index (BMI) and insulin, energy-adjusted dietary intake of SFA was positively and MUFA and n-3 fatty acids were negatively associated with subcutaneous and visceral adipose tissues leptin gene expression. Besides, a significant negative association of PUFA, n-6, and n-9 fatty acids with leptin mRNA from visceral adipose tissue were observed. In order to better interpretations of the results, the participants were allocated two groups including non-obese (BMI fatty acids had a negative association with visceral leptin gene expression. Habitual intake of SFA, MUFA, and n-3 fatty acids were associated with leptin gene expression in visceral and subcutaneous adipose tissues, suggesting an important role of quality and quantity of fatty acids intake in adipose tissue to regulate leptin expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    2011-02-01

    Full Text Available To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD contained equivalent levels of n-3 fatty acids (FA's and higher levels of n-6 FA's than the control diet (CTR, we found significant decreases in docosahexaenoic acid (DHA and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

  1. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    Science.gov (United States)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  2. Impairment of lysophospholipid metabolism in obesity: altered plasma profile and desensitization to the modulatory properties of n-3 polyunsaturated fatty acids in a randomized controlled trial.

    Science.gov (United States)

    Del Bas, Josep M; Caimari, Antoni; Rodriguez-Naranjo, Maria Isabel; Childs, Caroline E; Paras Chavez, Carolina; West, Annette L; Miles, Elizabeth A; Arola, Lluis; Calder, Philip C

    2016-08-01

    Plasma lysophospholipids have emerged as signaling molecules with important effects on inflammation, insulin resistance, and fatty liver disease, each of which is linked closely to obesity. Dietary n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may be able to improve these conditions. The objective of this study was to assess the response of plasma lysophospholipids to obesity, n-3 PUFA consumption, and a high-fat meal challenge to better understand the role of lysophospholipid metabolism in the progression of obesity-related disorders. We determined the concentrations of 8 lysophosphatidylcholines, 11 lysophosphatidylethanolamines, and 7 lysophosphatidylinositols in the plasma of 34 normal-weight and 38 obese subjects randomly assigned to consume corn oil (control) or n-3 PUFA-rich fish oil (3 g/d; n = 15-19/group) for 90 d. Blood samples were collected on the last day of the study under fasting conditions and 6 h after a high-fat meal (1135 kcal, 86 g fat) challenge. The profile of secreted lysophospholipids was studied in HepG2 cells under palmitate-induced steatosis. Obese and normal-weight subjects had different profiles of plasma lysophospholipids. A multivariate combination of the 26 lysophospholipids could discriminate between normal-weight and obese subjects with an accuracy of 98%. The high-fat meal challenge altered the concentration of plasma lysophosphatidylcholines in an oil treatment-dependent manner in normal-weight but not obese subjects, suggesting that obesity impairs the sensitivity of lysophospholipid metabolism to n-3 PUFAs. Noncytotoxic steatosis in HepG2 cells affected the secretion pattern of lysophospholipids, partially resembling the changes observed in the plasma of obese subjects. Obesity has a substantial impact on lysophospholipid metabolism, altering the plasma lysophospholipid profile and abolishing its sensitivity to dietary n-3 PUFAs. These effects could contribute to the onset or progression of alterations associated with obesity

  3. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis.

    Science.gov (United States)

    Li, Kelei; Huang, Tao; Zheng, Jusheng; Wu, Kejian; Li, Duo

    2014-01-01

    Previous studies did not draw a consistent conclusion about the effects of marine-derived n-3 polyunsaturated fatty acids (PUFAs) on fasting blood level of C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). A comprehensive search of Web of Science, PubMed, Embase and Medline (from 1950 to 2013) and bibliographies of relevant articles was undertaken. Sixty-eight RCTs with a total of 4601 subjects were included in the meta-analysis. Marine-derived n-3 PUFAs supplementation showed a lowering effect on Marine-derived n-3 PUFAs supplementation had a significant lowering effect on TNF-α, IL-6 and CRP in three groups of subjects (subjects with chronic non-autoimmune disease, subjects with chronic autoimmune disease and healthy subjects). A significant negative linear relationship between duration and effect size of marine-derived n-3 PUFAs supplementation on fasting blood levels of TNF-α and IL-6 in subjects with chronic non-autoimmune disease was observed, indicating that longer duration of supplementation could lead to a greater lowering effect. A similar linear relationship was also observed for IL-6 levels in healthy subjects. Restricted cubic spline analysis and subgroup analysis showed that the lowering effect of marine-derived n-3 PUFAs on CRP, IL-6 and TNF-α in subjects with chronic non-autoimmune disease became weakened when body mass index was greater than 30 kg/m². The effect of marine-derived n-3 PUFAs from dietary intake was only assessed in subjects with chronic non-autoimmune disease, and a significant lowering effect was observed on IL-6, but not on CRP and TNF-α. Marine-derived n-3 PUFAs supplementation had a significant lowering effect on CRP, IL-6 and TNF-α level. The lowering effect was most effective in non-obese subjects and consecutive long-term supplementation was recommended.

  4. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  5. Incorporation of n-3 polyunsaturated fatty acids of marine or vegetable origin into rat enterocyte phospholipids

    DEFF Research Database (Denmark)

    Poulsen, Christian; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    were: Palm oil diet (PD), 0.6 wt% n-3 PUFA; fish oil diet (FD), 32 wt% n-3 PUFA (C20-C22); and linseed oil diet (LD), 32 wt% n-3 PUFA (C18:3n-3). Forty weanling male Wistar rats were fed PD for 34 days and then divided into three groups. Two groups of sixteen rats each were then fed FD or LD...

  6. Effect of micro-encapsulated n-3 fatty acids on quality properties of two types of dry sausages

    Directory of Open Access Journals (Sweden)

    Zdeněk Pavlík

    2014-01-01

    Full Text Available Dry sausages are popular traditional meat products. As these products are a rich source of animal fat, there is an effort to improve their fatty acid ratio. The aim of this work was to study the effect of micro-encapsulated n-3 fatty acids added into dry sausages. Samples of dry sausages (Poličan and Vysočina enriched with unsaturated fatty acids (36 g for 6 kg of mixture and rosemary extract (0.3 g·kg-1 were made along with control samples. Physicochemical, instrumental analyses were performed, fatty acid profile was measured by gas chromatography, and oxidation processes were monitored by determination of thiobarbituric acid reactive substances. No significant differences (P ≥ 0.05 in quality indicators were found between samples, however, there were differences in oxidation processes. Sausages enriched with unsaturated fatty acids showed an increase in thiobarbituric acid reactive substances (> 2 mg·kg-1 and > 3 mg·kg-1 in Poličan and Vysočina, respectively, compared to control. Sausages enriched with unsaturated fatty acids and also with rosemary extract have the similar concentration of thiobarbituric acid reactive substances as the control. An increase in the proportion of monounsaturated fatty acids and polyunsaturated fatty acids was seen in samples of Poličan supplemented with unsaturated fatty acids in combination with rosemary extract. The addition of rosemary extract had also a significant effect in increasing the proportion of unsaturated fatty acids in samples of Vysočina. From the viewpoint of quality indicators, changes in the properties of the product were not seen in any samples.

  7. Food matrices affect the bioavailability of (n-3) polyunsaturated fatty acids in a single meal study in humans

    DEFF Research Database (Denmark)

    Schram, Laurine B; Nielsen, Carina J.; Porsgaard, Trine

    2007-01-01

    The aim of this study was to investigate the role of the food matrix on bioavailability of (n - 3) PUFA and oxidative stress in plasma. The study was a randomized, cross-over study and included 12 healthy male participants. The participants ingested a test meal, which consisted of a fitness bar...... products were absorbed differently from those simply administered as supplements alongside of food products, and yoghurt was the best matrix for providing fast absorption of lipids in general, including (n - 3) fatty acids. No significant difference was observed in the level of plasma alpha...

  8. Beneficial effects of enrichment of chicken meat with n-3 polyunsaturated fatty acids, vitamin E and selenium on health parameters: a study on male rats.

    Science.gov (United States)

    Konieczka, P; Rozbicka-Wieczorek, A J; Czauderna, M; Smulikowska, S

    2017-08-01

    Consumption of chicken meat enriched with bioactive compounds such as n-3 polyunsaturated fatty acids (PUFAn-3), vitamin E (vE) and selenium (Se) can help prevent many diseases and can be used to deliver those substances to humans. This might be of importance as chicken meat consumption is increasing worldwide. The effects of enriching chicken meat with PUFAn-3, vE and Se through dietary interventions were studied in rats. Four groups of Ross 308 female broilers from day 22 to day 35 of age were fed control diet (L) that contained lard and 80 mg vE and 0.3 mg Se/kg, or diets that contained rape seeds and fish oil with the same level of Se and vE as in the control diet, the same level of Se as in the control and 150 mg vE/kg, or 150 mg of vE and 0.7 mg Se/kg. Broiler carcasses were boiled, deboned, lyophilized and pooled by group. Boiled edible components of chicken carcass (BECC) were included (240 g/kg) in the diets fed to four groups of ten 10-week-old Wistar male rats for 8 weeks. Inclusion of BECCs modulated dietary fatty acid profile in the rat diets. Feeding these diets did not influence parameters related to growth or relative weights of internal organs in the rats. Feeding BECCs with lower PUFAn-6/n-3 decreased the n-6/n-3 ratio in the rat brain and liver, and increased the proportion of docosahexaenoic acid in the brain lipids. Liver cholesterol level was similar among the experimental groups, whereas the concentration of vE in the liver of rats fed BECC with increased vE levels was higher than that in the rats fed BECC with the basal vE level. Haematological and biochemical parameters in blood were within the normal range for rats, but a few rats showed a tendency towards increased levels because of the higher vE and Se level. The health-promoting effect of feeding rats PUFAn-3 enriched BECC was more pronounced when an increased dietary level of vE was used, but the increased level of Se did not provide the rats with additional benefits. Thus, the

  9. Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating IL-23–IL-17 signaling in macrophages

    NARCIS (Netherlands)

    Poland, Mieke; Klooster, ten Jean Paul; Wang, Zheng; Pieters, Raymond; Boekschoten, Mark; Witkamp, Renger; Meijerink, Jocelijn

    2016-01-01

    Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signaling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong

  10. Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating IL-23-IL-17 signaling in macrophages

    NARCIS (Netherlands)

    Poland, Mieke; Ten Klooster, Jean Paul; Wang, Zheng; Pieters, Raymond; Boekschoten, Mark; Witkamp, Renger; Meijerink, Jocelijn

    2016-01-01

    Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signaling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong

  11. Docosahexaenoyl Serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate, has anti-inflammatory properties by attenuating IL23–IL17 signalling in macrophages

    NARCIS (Netherlands)

    Poland, M.C.R.; Klooster, ten Jean Paul; Wang, Zheng; Pieters, Raymond; Boekschoten, M.V.; Witkamp, R.F.; Meijerink, J.

    2016-01-01

    Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signalling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong

  12. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  13. A randomised controlled trial investigating the effect of n-3 long-chain polyunsaturated fatty acid supplementation on cognitive and retinal function in cognitively healthy older people: the Older People And n-3 Long-chain polyunsaturated fatty acids (OPAL study protocol [ISRCTN72331636

    Directory of Open Access Journals (Sweden)

    Letley Louise

    2006-08-01

    Full Text Available Abstract The number of individuals with age-related cognitive impairment is rising dramatically in the UK and globally. There is considerable interest in the general hypothesis that improving the diet of older people may slow the progression of cognitive decline. To date, there has been little attention given to the possible protective role of n-3 long-chain polyunsaturated fatty acids (n-3 LCPs most commonly found in oily fish, in age-related loss of cognitive function. The main research hypothesis of this study is that an increased dietary intake of n-3 LCPs will have a positive effect on cognitive performance in older people in the UK. To test this hypothesis, a double-blind randomised placebo-controlled trial will be carried out among adults aged 70–79 years in which the intervention arm will receive daily capsules containing n-3 LCP (0.5 g/day docosahexaenoic acid and 0.2 g/day eicosapentaenoic acid while the placebo arm will receive daily capsules containing olive oil. The main outcome variable assessed at 24 months will be cognitive performance and a second major outcome variable will be retinal function. Retinal function tests are included as the retina is a specifically differentiated neural tissue and therefore represents an accessible window into the functioning of the brain. The overall purpose of this public-health research is to help define a simple and effective dietary intervention aimed at maintaining cognitive and retinal function in later life. This will be the first trial of its kind aiming to slow the decline of cognitive and retinal function in older people by increasing daily dietary intake of n-3 LCPs. The link between cognitive ability, visual function and quality of life among older people suggests that this novel line of research may have considerable public health importance.

  14. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells

    Energy Technology Data Exchange (ETDEWEB)

    Gill, R. [Department of Immunology and Microbiology, Wayne State University, Detroit, MI (United States); Jen, K.L. [Department of Nutrition and Food Science, Wayne State University, Detroit, MI (United States); Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI (United States); McCabe, M.J.J. [Department of Environmental Medicine, University of Rochester, Rochester, NY (United States); Rosenspire, A., E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit, MI (United States); Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI (United States)

    2016-10-15

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune

  15. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells

    International Nuclear Information System (INIS)

    Gill, R.; Jen, K.L.; McCabe, M.J.J.; Rosenspire, A.

    2016-01-01

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune

  16. Modulation of hepatic steatosis by dietary fatty acids.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-02-21

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the "case" of olive oil, since several studies have often provided different and/or conflicting results in animal models.

  17. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6-24 months), and pregnant and lactating women.

    Science.gov (United States)

    Michaelsen, Kim F; Dewey, Kathryn G; Perez-Exposito, Ana B; Nurhasan, Mulia; Lauritzen, Lotte; Roos, Nanna

    2011-04-01

    With increasing interest in the potential effects of n-6 and n-3 fatty acids in early life, there is a need for data on the dietary intake of polyunsaturated fatty acids (PUFA) in low-income countries. This review compiles information on the content in breast milk and in foods that are important in the diets of low-income countries from the few studies available. We also estimate the availability of fat and fatty acids in 13 low-income and middle-income countries based on national food balance sheets from the United Nations' Food and Agriculture Organization Statistical Database (FOASTAT). Breast milk docosahexaenoic acid content is very low in populations living mainly on a plant-based diet, but higher in fish-eating countries. Per capita supply of fat and n-3 fatty acids increases markedly with increasing gross domestic product (GDP). In most of the 13 countries, 70-80% of the supply of PUFA comes from cereals and vegetable oils, some of which have very low α-linolenic acid (ALA) content. The total n-3 fatty acid supply is below or close to the lower end of the recommended intake range [0.4%E (percentage of energy supply)] for infants and young children, and below the minimum recommended level (0.5%E) for pregnant and lactating women in the nine countries with the lowest GDP. Fish is important as a source of long-chain n-3 fatty acids, but intake is low in many countries. The supply of n-3 fatty acids can be increased by using vegetable oils with higher ALA content (e.g. soybean or rapeseed oil) and by increasing fish production (e.g. through fish farming). © 2011 Blackwell Publishing Ltd.

  18. Evaluation of negative and positive health effects of n-3 fatty acids as constituents of food supplements and fortified foods

    OpenAIRE

    Norwegian Scientific Committee for Food Safety

    2011-01-01

    The Norwegian Scientific Committee for Food Safety (VKM) has on request from The Norwegian Food Safety Authority evaluated negative and positive human health effects from intake of n-3 fatty acids from food supplements and fortified foods. The evidence presented in this evaluation show that it is possible to obtain positive health effects in the Norwegian population from intake of EPA and DHA, including from food supplements, without any appreciable risk of negative or adverse health ...

  19. Whole Rye Consumption Improves Blood and Liver n-3 Fatty Acid Profile and Gut Microbiota Composition in Rats.

    Science.gov (United States)

    Ounnas, Fayçal; Privé, Florence; Salen, Patricia; Gaci, Nadia; Tottey, William; Calani, Luca; Bresciani, Letizia; López-Gutiérrez, Noelia; Hazane-Puch, Florence; Laporte, François; Brugère, Jean-François; Del Rio, Daniele; Demeilliers, Christine; de Lorgeril, Michel

    2016-01-01

    Whole rye (WR) consumption seems to be associated with beneficial health effects. Although rye fiber and polyphenols are thought to be bioactive, the mechanisms behind the health effects of WR have yet to be fully identified. This study in rats was designed to investigate whether WR can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). The WR diet provided more fiber (+21%) and polyphenols (+29%) than the RR diet. Fat intake was the same in both diets and particularly involved similar amounts of essential (18-carbon) n-3 and n-6 LCFAs. The WR diet significantly increased the 24-hour urinary excretion of polyphenol metabolites-including enterolactone-compared with the RR diet. The WR rats had significantly more n-3 LCFA-in particular, eicosapentanoic (EPA) and docosahexanoic (DHA) acids-in their plasma and liver. Compared with the RR diet, the WR diet brought significant changes in gut microbiota composition, with increased diversity in the feces (Shannon and Simpson indices), decreased Firmicutes/Bacteroidetes ratio and decreased proportions of uncultured Clostridiales cluster IA and Clostridium cluster IV in the feces. In contrast, no difference was found between groups with regards to cecum microbiota. The WR rats had lower concentrations of total short-chain fatty acids (SCFA) in cecum and feces (pconsumption results in major biological modifications-increased plasma and liver n-3 EPA and DHA levels and improved gut microbiota profile, notably with increased diversity-known to provide health benefits. Unexpectedly, WR decreased SCFA levels in both cecum and feces. More studies are needed to understand the interactions between whole rye (fiber and polyphenols) and gut microbiota and also the mechanisms of action responsible for stimulating n-3 fatty acid metabolism.

  20. Effects of different n-6 to n-3 polyunsaturated fatty acids ratio on reproductive performance, fecal microbiota and nutrient digestibility of gestation-lactating sows and suckling piglets.

    Science.gov (United States)

    Yin, Jia; Lee, Kwang Yong; Kim, Jong Keun; Kim, In Ho

    2017-11-01

    This study was conducted to evaluate the effects of dietary ratios of n-6:n-3 polyunsaturated fatty acids (PUFA) on reproductive performance, fecal microbiota and nutrient digestibility of gestation-lactating sows and suckling piglets. Fifteen primiparous sows (Landrace × Yorkshire) were randomly allotted into three treatments. Fed diets contained different ratios of n-6:n-3 PUFA, including 20:1, 15:1 and 10:1. No differences were detected among the treatments for average daily feed intake (ADFI) of sows and the back fat levels during lactation (P > 0.05). Body weight (BW) loss of sows after farrowing to weanling was greater in the 10:1 treatment compared with 15:1 or 20:1 (P  0.05). A great significant difference for fecal microbiota was in the 10:1 treatment compared with 20:1 and 15:1 treatments (P < 0.01). In conclusion, altering the ratio of n-6:n-3 PUFA in gestation-lactating sow diet had no difference on nutrient digestibility in gestation-lactating sows, but it can partially improve reproductive performance. © 2017 Japanese Society of Animal Science.

  1. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    Science.gov (United States)

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  2. Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: a systematic review and meta-analysis.

    Science.gov (United States)

    Lohner, Szimonetta; Fekete, Katalin; Decsi, Tamás

    2013-07-01

    The mainstream of phenylketonuria (PKU) management is lifelong restriction of protein intake; however, this dietary restriction may be accompanied by insufficient dietary intake of long-chain polyunsaturated fatty acids (LCPUFA). The objective of this review was to assess whether significant depletion of LCPUFA can be detected in PKU patients on low-protein diet and whether LCPUFA supplementation is an effective way to increase the availability of LCPUFA in PKU patients. The method included structured search strategy on Ovid MEDLINE, Scopus, LILACS, and the Cochrane Library CENTRAL databases, with formal inclusion/exclusion criteria, data extraction procedure, and meta-analysis. We evaluated 9 case-control studies and 6 randomized controlled trials, dated from the inception of the databases to 2012. The meta-analysis of the case-control studies showed significantly lower values of both eicosapentaenoic acid and docosahexaenoic acid (DHA) in all biomarkers investigated and that of arachidonic acid in total plasma lipids in PKU patients as compared with healthy controls. There were sufficient data to demonstrate that dietary DHA supplementation of patients with PKU significantly increases the contribution of DHA to total plasma lipids. In summary, suboptimal LCPUFA status, especially that of n-3 LCPUFA, can be detected in PKU patients. Supplementing DHA to the diet of PKU patients may improve their LCPUFA status; however, further research is needed to determine the optimal supplementation dosage and to establish beneficial functional outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The effects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys

    DEFF Research Database (Denmark)

    Damsgaard, C. T.; Mølgaard, C.; Gyldenløve, S. N.

    2012-01-01

    NTRODUCTION: Animal studies indicate that n-3 long-chain polyunsaturated fatty acids (LCPUFAs) increase bone formation. To our knowledge, no studies have examined this in growing humans. This study investigated whether bone mass and markers of bone formation and growth were (i) associated...... with docosahexaenoic acid (DHA) status and (ii) affected by fish oil supplementation, in adolescent boys. METHODS: Seventy-eight healthy, slightly overweight 13- to 15-y-old boys were randomly assigned to breads with DHA-rich fish oil (1.1 g/d n-3 LCPUFA) or control for 16 wk. Whole-body bone mineral content (BMC......), bone area (BA), bone mineral density (BMD), plasma osteocalcin, and growth factors were measured at wk 0 and wk 16, as well as diet, physical activity, and n-3 LCPUFA status in erythrocytes. RESULTS: Fish oil strongly increased DHA status (P = 0.0001). No associations were found between DHA status...

  4. A randomized study of the effect of fish oil on n-3 fatty acid incorporation and nutritional status in lung cancer patients

    DEFF Research Database (Denmark)

    Andersen, Jens Rikardt; Dannerfjord, Stina Hjerrild; Nørgaard, Michael

    2015-01-01

    Long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFA) have been proposed to have beneficial effect on cancer cachexia. The aims of the present study were to a) determine the incorporation of n-3 LCPUFA in erythrocytes (RBC) as a measurement of compliance to fish oil (FO)-supplement in lung cancer...

  5. Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

    OpenAIRE

    Licciardi, Paul V.; Ververis, Katherine; Karagiannis, Tom C.

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions...

  6. Validity of food frequency questionnaire-based estimates of long-term long-chain n-3 polyunsaturated fatty acid intake.

    Science.gov (United States)

    Wallin, Alice; Di Giuseppe, Daniela; Burgaz, Ann; Håkansson, Niclas; Cederholm, Tommy; Michaëlsson, Karl; Wolk, Alicja

    2014-01-01

    To evaluate how long-term dietary intake of long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFAs), estimated by repeated food frequency questionnaires (FFQs) over 15 years, is correlated with LCn-3 PUFAs in adipose tissue (AT). Subcutaneous adipose tissue was obtained in 2003-2004 (AT-03) from 239 randomly selected women, aged 55-75 years, after completion of a 96-item FFQ (FFQ-03). All participants had previously returned an identical FFQ in 1997 (FFQ-97) and a 67-item version in 1987-1990 (FFQ-87). Pearson product-moment correlations were used to evaluate associations between intake of total and individual LCn-3 PUFAs as estimated by the three FFQ assessments and AT-03 content (% of total fatty acids). FFQ-estimated mean relative intake of LCn-3 PUFAs (% of total fat intake) increased between all three assessments (FFQ-87, 0.55 ± 0.34; FFQ-97, 0.74 ± 0.64; FFQ-03, 0.88 ± 0.56). Validity, in terms of Pearson correlations between FFQ-03 estimates and AT-03 content, was 0.41 (95% CI 0.30-0.51) for total LCn-3 PUFA and ranged from 0.29 to 0.48 for individual fatty acids; lower correlation was observed among participants with higher percentage body fat. With regard to long-term intake estimates, past dietary intake was also correlated with AT-03 content, with correlation coefficients in the range of 0.21-0.33 and 0.21-0.34 for FFQ-97 and FFQ-87, respectively. The correlations were improved by using average estimates from two or more FFQ assessments. Exclusion of fish oil supplement users (14%) did not alter the correlations. These data indicate reasonable validity of FFQ-based estimates of long-term (up to 15 years) LCn-3 PUFA intake, justifying their use in studies of diet-disease associations.

  7. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    Science.gov (United States)

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  8. Postpartum responses of dairy cows supplemented with n-3 fatty acids for different durations during the peripartal period.

    Science.gov (United States)

    Badiei, A; Aliverdilou, A; Amanlou, H; Beheshti, M; Dirandeh, E; Masoumi, R; Moosakhani, F; Petit, H V

    2014-10-01

    The objective of this study was to determine the effect of different durations of n-3 supplementation during the peripartal period on production and reproduction performance of Holstein dairy cows. Thirty-two Holstein dry cows (16 multiparous and 16 primiparous) were blocked within parity for similar expected calving dates 8 wk before calving. Cows within blocks were assigned randomly to 1 of 4 treatments: (1) control without n-3 fatty acid (FA) supplementation during the dry period; (2) n-3 FA supplementation during the whole dry period (8 wk); and (3) n-3 FA supplementation during the early dry period (first 5 wk; far-off), or (4) n-3 FA supplementation during the late dry period (last 3 wk; close-up). All cows received the same diet without n-3 FA after calving for the first 6 wk of lactation. Ovaries of each cow were examined 10, 17, 24, and 34 d from calving (calving=d 0) by transrectal ultrasonography to determine follicular development. Blood samples were collected at 14-d intervals starting on the first day of the dry period (8 wk before expected calving) to determine plasma concentrations of glucose, β-hydroxybutyrate, nonesterified fatty acids, urea N, aspartate aminotransferase, and insulin. Blood samples were also collected on d 1, 10, 17, 24, 31, and 38 postpartum for determination of progesterone concentration. Milk yield was recorded daily throughout the experiment and samples were taken twice weekly (Monday and Thursday mornings) for analysis of fat, protein, and lactose. Yields of milk and 4% fat-corrected milk and milk composition were similar among treatments except for fat proportion, which tended to be lower in cows that were fed n-3 FA throughout the dry period. We observed no differences among treatments for plasma concentrations of metabolites and hormones. The cows that were fed in the 3 n-3 FA treatments had larger ovulatory follicles compared with those fed the controlled diet. Treatments did not differ significantly in terms of the

  9. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Wenqing Cao

    Full Text Available Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6, eicosapentaenoic acid (EPA, C20:5 shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa MCF-7 and T47D cells. 17 β-estradiol (E2 enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2. E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0 as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1 may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  10. Mammary inflammation around parturition appeared to be attenuated by consumption of fish oil rich in n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Lin, Sen; Hou, Jia; Xiang, Fang; Zhang, Xiaoling; Che, Lianqiang; Lin, Yan; Xu, Shengyu; Tian, Gang; Zeng, Qiufeng; Yu, Bing; Zhang, Keying; Chen, Daiwen; Wu, De; Fang, Zhengfeng

    2013-12-31

    Mastitis endangers the health of domestic animals and humans, and may cause problems concerning food safety. It is documented that n-3 polyunsaturated fatty acids (PUFA) play significant roles in attenuating saturated fatty acids (SFA)-induced inflammation. This study was therefore conducted to determine whether mammary inflammation could be affected by consumption of diets rich in n-3 PUFA. Forty-eight rats after mating began to receive diets supplemented with 5% fish oil (FO) or 7% soybean oil (SO). Blood and mammary tissue samples (n = 6) at day 0 and 14 of gestation and day 3 postpartum were collected 9 hours after intramammary infusion of saline or lipopolysaccharide (LPS) to determine free fatty acids (FFA) concentration and FA composition in plasma and inflammation mediators in mammary tissues. At day 14 of gestation and day 3 postpartum, the FO-fed rats had lower plasma concentrations of C18:2n6, C20:4n6, total n-6 PUFA and SFA, and higher plasma concentrations of C20:5n3 and total n-3 PUFA than the SO-fed rats. Plasma C22:6n3 concentration was also higher in the FO-fed than in the SO-fed rats at day 3 postpartum. Compared with the SO-fed rats, the FO-fed rats had lower mammary mRNA abundance of xanthine oxidoreductase (XOR) and protein level of tumor necrosis factor (TNF)-α, but had higher mammary mRNA abundances of interleukin (IL)-10 and peroxisome proliferator-activated receptor (PPAR)-γ at day 14 of gestation. Following LPS infusion at day 3 postpartum, the SO-fed rats had increased plasma concentrations of FFA, C18:1n9, C18:3n3, C18:2n6 and total n-6 PUFA, higher mammary mRNA abundances of IL-1β, TNF-α and XOR but lower mammary mRNA abundance of IL-10 than the FO-fed rats. Mammary inflammation around parturition appeared to be attenuated by consumption of a diet rich in n-3 PUFA, which was associated with up-regulated expression of IL-10 and PPAR-γ.

  11. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Hopperton, Kathryn E; Orr, Sarah K; Bazinet, Richard P

    2016-08-15

    Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects. Copyright © 2016. Published by Elsevier B.V.

  12. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jana Orsavova

    2015-06-01

    Full Text Available Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC. Saturated (SFA, monounsaturated (MUFA and polyunsaturated fatty acids (PUFA, palmitic acid (C16:0; 4.6%–20.0%, oleic acid (C18:1; 6.2%–71.1% and linoleic acid (C18:2; 1.6%–79%, respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%–695.7% ERDI, PUFAs (10.6%–786.8% ERDI, n-3 FAs (4.4%–117.1% ERDI and n-6 FAs (1.8%–959.2% ERDI, expressed in % ERDI of 1 g oil to energy recommended dietary intakes (ERDI for total fat (ERDI—37.7 kJ/g. The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% ERDI for adults and mortality caused by coronary heart diseases (CHD and cardiovascular diseases (CVD in twelve countries has not been confirmed by Spearman’s correlations.

  13. The specificity of Several Kinds Lipases on n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jenny Elisabeth, T Yuliani, P M Tambunan, J M Purba

    2001-04-01

    Full Text Available Several lipases from microbial and plant, i.e Rhizomucor miehei, Pseudomonas sp., Candida antartica, rice bran, and Carica papaya latex (CPL were examined for synthesis of omega-3 (n-3 PUFA-rich glyceride by hydrolysis and acidolysis reaction. Tuna oil was used in hydrolysis reaction, whereas tuna and palm oils were used as source of triglyceride (TAG molecules and n-3 PUFA concentrate from tuna oil as source of EPA and DHA in acidolysis reaction.For hydrolysis reaction, the rice bran and CPL lipases showed the lowest hydrolytic activity of the tuna oil, whereas the R. miehei lipase showed the highest hydrolytic activity but was unable to hydrolyze EPA and DHA. On the contrary, the C. antartica and Pseudomonas sp. lipases acted stronger on hydrolysis of DHA ester bond than EPA.For acidolysis reaction, all the lipases showed ability to incorporate n-3 PUFA into tuna and palm oils. C. antartica lipase had the maximum DHA incorporation into tuna and palm oils, rice bran lipase had relatively similar ability with R. miehei lipase, and the CPL lipase had the lowest ability. This study proved that rice bran and CPL lipases also had transesterification activity and showed the feasibility of the rice bran lipase to be a biocatalyst for n-3 PUFA-rich glyceride production. Increasing the substrate ratio, of n-3 PUFA concentrate and tuna or palm oil, could increase the EPA and DHA incorporation. The R. miehei, rice bran, and CPL lipases unabled to incorporate DHA into DHA-containing glyceride molecule, whereas C. antartica lipase had the capability in high ratio of n-3 PUFA concentrate to oil. Therefore, the lipases were easier to incorporate n-3 PUFA into palm oil than tuna oil, since the TAG molecules of palm oil was not as complex as tuna oil. It could be suggested that the lipases did not only have acyl chain and positional specificity, but also the whole glyceride structure specificity.

  14. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study.

    Directory of Open Access Journals (Sweden)

    Nita G Forouhi

    2016-07-01

    Full Text Available Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs are related to type 2 diabetes (T2D is debated. Objectively measured plasma PUFAs can help to clarify these associations.Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC-InterAct study across eight European countries. Country-specific hazard ratios (HRs were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, α-linolenic acid (ALA was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98, but eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were not significantly associated. Among n-6 PUFAs, linoleic acid (LA (0.80; 95% CI 0.77-0.83 and eicosadienoic acid (EDA (0.89; 95% CI 0.85-0.94 were inversely related, and arachidonic acid (AA was not significantly associated, while significant positive associations were observed with γ-linolenic acid (GLA, dihomo-GLA, docosatetraenoic acid (DTA, and docosapentaenoic acid (n6-DPA, with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs.These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA but no convincing association of marine-derived n3 PUFAs (EPA and DHA with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA is inversely

  15. Insufficient intake of alpha-linolenic fatty acid (18:3n-3 during pregnancy and associated factors

    Directory of Open Access Journals (Sweden)

    Letícia Garcia VASCONCELOS

    Full Text Available ABSTRACT Objective: To analyze alpha-linolenic fatty acid intake in two cohorts of pregnant women, and to identify factors associated with alpha-linolenic acid intake. Methods: This is a cohort study involving pregnant women with low obstetric risk (N=353 in public health system from a municipality of São Paulo state, Brazil. In each trimester, two 24-hour food recalls were collected. Descriptive analyses of dietary lipid profiles were performed, followed by a multiple comparison test. According to the trimester of pregnancy, differences were assessed using the mean difference test. To evaluate the adequacy of linoleic fatty acid and alpha-linolenic acid intake, the adequate intake test was used. The association between alpha-linolenic acid intake adequacy and maternal characteristics was investigated using a binary logistic regression model. Results: Total lipids intake and the percentage contribution to dietary energy met recommended levels. One-third of the diets demonstrated a lower than daily recommended intake of alpha-linolenic acid. Overweight pregnant women were twice as likely to have inadequate alpha-linolenic acid intake. Pregnant women from a more disadvantaged socioeconomic situation had greater risks of inadequate intake. Conclusion: Over-intake of lipids is not problematic, but quality is an issue, with one third of the pregnant women and their fetuses exposed to adverse effects due to low intake of omega-3 fatty acids, indicating important nutritional vulnerability in this population.

  16. Differential partitioning of rumen-protected n-3 and n-6 fatty acids into muscles with different metabolism.

    Science.gov (United States)

    Wolf, C; Ulbrich, S E; Kreuzer, M; Berard, J; Giller, K

    2018-03-01

    Bioavailability of polyunsaturated fatty acids (PUFA) in ruminants is enhanced by their protection from ruminal biohydrogenation. Both n-3 and n-6 PUFA fulfil important physiological functions. We investigated potentially different incorporation patterns of these functional PUFA into three beef muscles with different activity characteristics. We supplemented 33 Angus heifers with rumen-protected oils characterized either by mainly C18:2 n-6 (linoleic acid (LA) in sunflower oil) or by C20:5 (eicosapentaenoic acid (EPA)) and C22:6 (docosahexaenoic acid (DHA)), both prevalent n-3 PUFA in fish oil. Contents and proportions of n-3 and n-6 PUFA of total fatty acids were elevated in the muscles of the respective diet group but they were partitioned differently into the muscles. For EPA and DHA, but not for LA, the diet effect was more distinct in the extensor carpi radialis compared to longissimus thoracis and biceps femoris. Partitioning of PUFA in metabolism could be related to muscle function. This has to be confirmed in other muscles, adipose tissues and organs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice.

    Directory of Open Access Journals (Sweden)

    Olga Horakova

    Full Text Available Insulin resistance, the key defect in type 2 diabetes (T2D, is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA and thiazolidinediones (TZDs, anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F, cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI, cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.

  18. B vitamins and n-3 fatty acids for brain development and function: review of human studies

    NARCIS (Netherlands)

    Rest, van de O.; Hooijdonk, L.W.A.; Doets, E.L.; Schiepers, O.J.G.; Eilander, J.H.C.; Groot, de C.P.G.M.

    2012-01-01

    Background: Nutrition is one of many factors that affect brain development and functioning, and in recent years the role of certain nutrients has been investigated. B vitamins and n–3 polyunsaturated fatty acids (PUFA) are two of the most promising and widely studied nutritional factors. Methods: In

  19. The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity

    Czech Academy of Sciences Publication Activity Database

    Flachs, Pavel; Rossmeisl, Martin; Kopecký, Jan

    2014-01-01

    Roč. 63, Suppl.1 (2014), S93-S118 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NT13763 Institutional support: RVO:67985823 Keywords : diabetes * obesity * inflammation * metabolic syndrome * omega-3 fatty acids Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.293, year: 2014

  20. N-3 polyunsaturated fatty acids do not affect the cytokine response to strenuous exercise

    DEFF Research Database (Denmark)

    Toft, A.D.; Thorn, Mette; Ostrowski, Kenneth

    2000-01-01

    (PUFA), for 6 wk or to receive no supplementation (n = 10) before participating in The Copenhagen Marathon 1998. Blood samples were collected before the race, immediately after, and 1.5 and 3 h postexercise. The fatty acid composition in blood mononuclear cells (BMNC) differed between the fish oil...

  1. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    Science.gov (United States)

    Straková, Nicol; Vaculová, Alena Hyršlová; Tylichová, Zuzana; Šafaříková, Barbora; Kozubík, Alois

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF-α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NFκB activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined. PMID:24876678

  2. Modulation of hepatic steatosis by dietary fatty acids

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the “case” of olive oil, since several studies have often provided different and⁄or conflicting results in animal models. PMID:24587652

  3. Lack of effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids on intestinal peptide release and adipokines in healthy female subjects

    Directory of Open Access Journals (Sweden)

    Ingunn Naverud

    2016-08-01

    Full Text Available Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3 fatty acids from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil and a combination of linseed and cod liver oil. The test days were separated by two weeks. Fasting and postprandial blood samples at three and six hours after intake were analysed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 fatty acids from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  4. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    Science.gov (United States)

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P  0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  5. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor α: A Meta-Analysis

    Science.gov (United States)

    Li, Kelei; Huang, Tao; Zheng, Jusheng; Wu, Kejian; Li, Duo

    2014-01-01

    Background Previous studies did not draw a consistent conclusion about the effects of marine-derived n-3 polyunsaturated fatty acids (PUFAs) on fasting blood level of C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). Methods and Findings A comprehensive search of Web of Science, PubMed, Embase and Medline (from 1950 to 2013) and bibliographies of relevant articles was undertaken. Sixty-eight RCTs with a total of 4601 subjects were included in the meta-analysis. Marine-derived n-3 PUFAs supplementation showed a lowering effect on Marine-derived n-3 PUFAs supplementation had a significant lowering effect on TNF-α, IL-6 and CRP in three groups of subjects (subjects with chronic non-autoimmune disease, subjects with chronic autoimmune disease and healthy subjects). A significant negative linear relationship between duration and effect size of marine-derived n-3 PUFAs supplementation on fasting blood levels of TNF-α and IL-6 in subjects with chronic non-autoimmune disease was observed, indicating that longer duration of supplementation could lead to a greater lowering effect. A similar linear relationship was also observed for IL-6 levels in healthy subjects. Restricted cubic spline analysis and subgroup analysis showed that the lowering effect of marine-derived n-3 PUFAs on CRP, IL-6 and TNF-α in subjects with chronic non-autoimmune disease became weakened when body mass index was greater than 30 kg/m2. The effect of marine-derived n-3 PUFAs from dietary intake was only assessed in subjects with chronic non-autoimmune disease, and a significant lowering effect was observed on IL-6, but not on CRP and TNF-α. Conclusions Marine-derived n-3 PUFAs supplementation had a significant lowering effect on CRP, IL-6 and TNF-α level. The lowering effect was most effective in non-obese subjects and consecutive long-term supplementation was recommended. PMID:24505395

  6. Effects of long-term thyroid hormone level alterations, n-3 polyunsaturated fatty acid supplementation and statin administration in rats

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš

    2014-01-01

    Roč. 63, Suppl.1 (2014), S119-S131 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) LH12058; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) 7AMB14SK123 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional support: RVO:67985823 Keywords : thyroid hormones * n-3 polyunsaturated fatty acids (n-3 PUFA) * statin s * rat muscle proteins * cardiac remodeling Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  7. Changes in Fatty Acid Composition and Distribution of N-3 Fatty Acids in Goat Tissues Fed Different Levels of Whole Linseed

    Science.gov (United States)

    Zakaria, Md. Zuki Abu Bakar; Meng, Goh Yong; Sazili, Awis Qurni

    2014-01-01

    The effects of feeding different levels of whole linseed on fatty acid (FA) composition of muscles and adipose tissues of goat were investigated. Twenty-four Crossed Boer bucks were assigned randomly into three treatment diets: L0, L10, or L20, containing 0%, 10%, or 20% whole linseed, respectively. The goats were slaughtered after 110 days of feeding. Samples from the longissimus dorsi, supraspinatus, semitendinosus, and subcutaneous fat (SF) and perirenal fat (PF) were taken for FA analyses. In muscles, the average increments in α-linolenic (ALA) and total n-3 PUFA were 6.48 and 3.4, and 11.48 and 4.78 for L10 and L20, respectively. In the adipose tissues, the increments in ALA and total n-3 PUFA were 3.07- and 6.92-fold and 3.00- and 7.54-fold in SF and PF for L10 and L20, respectively. The n-6 : n-3 ratio of the muscles was decreased from up to 8.86 in L0 to 2 or less in L10 and L20. The PUFA : SFA ratio was increased in all the tissues of L20 compared to L0. It is concluded that both inclusion levels (10% and 20%) of whole linseed in goat diets resulted in producing meat highly enriched with n-3 PUFA with desirable n-6 : n-3 ratio. PMID:25478601

  8. MODIFICATION OF THE N-3 POLYUNSATURATED FATTY ACIDS CONTENT IN MUSCLE TISSUE OF PIGS

    Directory of Open Access Journals (Sweden)

    Miljenko Ernoić

    2013-12-01

    Full Text Available The objective of the research was to find out which combinations of oils give a desirable effect on n-3 PUFA content modification and total values increase in pigs’ meat without negative effects on fattening characteristics and carcass and meat quality of. The standard daily fattening pigs’ diet was supplemented with combinations of fish, linseed and rapeseed oils. The control group (A received 3% of animal (pork fat in their diet while 4 experimental groups received the following oil combinations: fish oil 0.5% + rapeseed oil 2.5% (B; fish oil 0.5% + linseed oil 2.5% (C; fish oil 1.0% + rapeseed oil 2.0% (D, and fish oil 1.0% + linseed oil 2.0% (E. The experiment was carried out in the last 4 weeks of fattening. A random sample of 50 pigs (Duroc x Swedish Landrace x Pietrain was divided into 5 groups with 10 pigs each of the equal ratio of both sexes. The results showed that the treatment and the sex statistically did not significantly influence daily gains whereas the interaction of the treatment and the sex did have a significant influence (p0.05 between the content of DHA in MLD in treatments A, B, and C. Increasing the content of fish oil in meals from 0.5% to 1% (treatments D and E produced a statistically significant increase of the DHA content compared to other groups (A, B, and C. The supplement of rapeseed oil (2% and fish oil (1% in pigs’ meals (treatment D influenced significantly higher disposal of n-3 PUFA in MLD compared to pigs fed with the supplement of 3% animal fat (treatment A. The ratio n-6/n-3 PUFA u MLD was statistically highly influenced (p<0.001 by the feeding treatment. The n-6/n-3 PUFA ratio ranged from 4.65:1 (barrows in treatment C to 20.14:1 (barrows in treatment A. The best n-6/n-3 PUFA ratio was observed in fattening pigs of both sexes from treatment C (5.00:1. Fattening pigs fed the combination of linseed oil and fish oil (treatments C and E had a better n-6/n-3 PUFA ratio in MLD (p<0.05, 5.00:1 and 6

  9. Short communication: Feeding linseed oil to dairy goats with competent reticular groove reflex greatly increases n-3 fatty acids in milk fat.

    Science.gov (United States)

    Martínez Marín, A L; Gómez-Cortés, P; Carrión Pardo, D; Núñez Sánchez, N; Gómez Castro, G; Juárez, M; Pérez Alba, L; Pérez Hernández, M; de la Fuente, M A

    2013-01-01

    A crossover experiment was designed to compare the effects of 2 ways of feeding linseed oil on milk fat fatty acid (FA) composition. Ten lactating goats, trained to keep competent their inborn reticular groove reflex, received a daily dose of linseed oil (38 g/d) either with their solid (concentrate) feed (CON) or emulsified in skim milk and bottle-fed (BOT). Two groups of 5 goats received alternative and successively each of the treatments in two 15-d periods. α-Linolenic acid in milk fat rose up to 13.7% in the BOT versus 1.34% in the CON treatment. The n-6 to n-3 FA ratio was significantly reduced in goats receiving bottle-fed linseed oil (1.49 vs. 0.49). Contents of rumen biohydrogenation intermediates of dietary unsaturated FA were high in milk fat of goats under the CON treatment but low in those in the BOT treatment. These results point to a clear rumen bypass of the bottle-fed linseed oil. This strategy allows obtaining milk fat naturally very rich in n-3 FA and very low in trans FA. Translating this approach into practical farm conditions could enable farmers to produce milk enriched in specific FA. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Polymorphism in the fatty acid desaturase genes and diet are important determinants of infant n-3 fatty acid status

    DEFF Research Database (Denmark)

    Harsløf, L.B.S.; Larsen, L.H.; Ritz, C.

    and polymorphism in the genes that encodes the fatty acid desaturases (FADS) has little effect on DHA-status in adults. It is however unclear to what extent endogenous DHA-synthesis contributes to infant DHA-status. Aim: To investigate the role of diet and FADS polymorphism on DHA-status at 9 months and 3 years...... breastfeeding was obtained by questionnaires and fish intake was assessed by 7-day pre-coded food diaries. Results: FADS-genotype, breastfeeding, and fish intake were found to explain 25% of the variation in infant RBC DHA-status (mean±SD: 6.6±1.9% of the fatty acids (FA%)). Breastfeeding was the most important......Background and objectives: Tissue docosahexaenoic acid (DHA) accretion in early infancy has been shown to be supported by the DHA-content of breast-milk and thus may decrease once complementary feeding takes over. Endogenous synthesis of DHA from alpha-linolenic acid has been shown to be very low...

  11. Lower inter-partum interval and unhealthy life-style factors are inversely associated with n-3 essential fatty acids changes during pregnancy: a prospective cohort with Brazilian women.

    Science.gov (United States)

    Pinto, Thatiana J P; Farias, Dayana R; Rebelo, Fernanda; Lepsch, Jaqueline; Vaz, Juliana S; Moreira, Júlia D; Cunha, Geraldo M; Kac, Gilberto

    2015-01-01

    To analyze serum fatty acids concentrations during healthy pregnancy and evaluate whether socioeconomic, demographic, obstetric, nutritional, anthropometric and lifestyle factors are associated with their longitudinal changes. A prospective cohort of 225 pregnant women was followed in the 5th-13th, 20th-26th and 30th-36th weeks of gestation. Serum samples were collected in each trimester of pregnancy and analyzed to determine the fatty acids composition using a high-throughput robotic direct methylation method coupled with fast gas-liquid chromatography. The independent variables comprised the subjects' socioeconomic and demographic status, obstetric history, early pregnancy body mass index (BMI), dietary and lifestyle parameters. Analyses were performed using linear mixed-effects models. The overall absolute concentrations of fatty acids increased from the 1st to the 2nd trimester and slightly increased from the 2nd to the 3rd trimester. Early pregnancy BMI, inter-partum interval and weekly fish intake were the factors associated with changes in eicosapentaenoic + docosahexaenoic acids (EPA+DHA) and total n-3 polyunsaturated fatty acids (PUFAs). Early pregnancy BMI, age and monthly per-capita income were inversely associated with the changes in the n-6/n-3 ratio. Alcohol consumption was positively associated with the n-6/n-3 ratio. Early pregnancy BMI was positively associated with EPA+DHA and total n-3 PUFAs, while presenting a reduced weekly fish intake and a lower inter-partum interval were associated with lower levels of n-3 PUFAs. A lower per-capita family income and a drinking habit were factors that were positively associated with a higher n-6/n-3 ratio.

  12. Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Hunsche, Caroline; Hernandez, Oskarina; Gheorghe, Alina; Díaz, Ligia Esperanza; Marcos, Ascensión; De la Fuente, Mónica

    2018-04-01

    Obesity is associated with impaired immune defences and chronic low levels of inflammation and oxidation. In addition, this condition may lead to premature aging. The aim of the study was to evaluate the effects of a nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids on several functions and oxidative stress parameters in peritoneal immune cells of obese mice, as well as on the life span of these animals. Obesity was induced in adult female ICR/CD1 by the administration of a high-fat diet (HFD) for 14 weeks. During the last 6 weeks of HFD feeding, one group of obese mice received the same HFD, supplemented with 1500 mg of 2-hydroxyoleic acid (2-OHOA) and another with 3000 mg of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Several functions and oxidative stress parameters of peritoneal leukocytes were evaluated. The groups of obese mice treated with 2-OHOA or with EPA and DHA showed a significant improvement in several functions such as chemotaxis, phagocytosis, digestion capacity, Natural killer activity and lymphoproliferation in response to mitogens. All of these functions, which were decreased in obese mice, increased reaching similar levels to those found in non-obese controls. Both treatments also improved oxidative stress parameters such as xanthine oxidase activity, which decreased, catalase activity and glutathione levels, which increased. These data suggest that dietary supplementation with monounsaturated and n-3 polyunsaturated fatty acids could be an effective nutritional intervention to restore the immune response and oxidative stress state, which are impaired in obese mice.

  13. Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat

    Directory of Open Access Journals (Sweden)

    Grace G. Abdukeyum

    2016-03-01

    Full Text Available Reactive oxygen species paradoxically underpin both ischaemia/reperfusion (I/R damage and ischaemic preconditioning (IPC cardioprotection. Long-chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA are highly susceptible to peroxidation, but are paradoxically cardioprotective. This study tested the hypothesis that LCn-3 PUFA cardioprotection is underpinned by peroxidation, upregulating antioxidant activity to reduce I/R-induced lipid oxidation, and the mechanisms of this nutritional preconditioning contrast to mechanisms of IPC. Rats were fed: fish oil (LCn-3 PUFA; sunflower seed oil (n-6 PUFA; or beef tallow (saturated fat, SF enriched diets for six weeks. Isolated hearts were subject to: 180 min normoxic perfusion; a 30 min coronary occlusion ischaemia protocol then 120 min normoxic reperfusion; or a 3 × 5 min global IPC protocol, 30 min ischaemia, then reperfusion. Dietary LCn-3 PUFA raised basal: membrane docosahexaenoic acid (22:6n-3 DHA; fatty acid peroxidisability index; concentrations of lipid oxidation products; and superoxide dismutase (MnSOD activity (but not CuZnSOD or glutathione peroxidase. Infarct size correlated inversely with basal MnSOD activity (r2 = 0.85 in the ischaemia protocol and positively with I/R-induced lipid oxidation (lipid hydroperoxides (LPO, r2 = 0.475; malondialdehyde (MDA, r2 = 0.583 across ischaemia and IPC protocols. While both dietary fish oil and IPC infarct-reduction were associated with reduced I/R-induced lipid oxidation, fish oil produced nutritional preconditioning by prior LCn-3 PUFA incorporation and increased peroxidisability leading to up-regulated mitochondrial SOD antioxidant activity.

  14. Growth Performance, Meat Quality and Fatty Acid Metabolism Response of Growing Meat Rabbits to Dietary Linoleic Acid

    Directory of Open Access Journals (Sweden)

    R. G. Li

    2012-08-01

    Full Text Available An experiment was conducted to determine the effects of different amounts of dietary linoleic acid (LA on growth performance, serum biochemical traits, meat quality, fatty acids composition of muscle and liver, acetyl-CoA carboxylase (ACC and carnitine palmitoyl transferase 1 (CPT 1 mRNA expression in the liver of 9 wks old to 13 wks old growing meat rabbits. One hundred and fifty 9 wks old meat rabbits were allocated to individual cages and randomly divided into five groups. Animals in each group were fed with a diet with the following LA addition concentrations: 0, 3, 6, 9 and 12 g/kg diet (as-fed basis and LA concentrations were 0.84, 1.21, 1.34, 1.61 and 1.80% in the diet, respectively. The results showed as follows: the dietary LA levels significantly affected muscle color of LL included a* and b* of experimental rabbits (p<0.05. The linear effect of LA on serum high density lipoprotein cholesterol was obtained (p = 0.0119. The saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs contents of LL decreased and the polyunsaturated fatty acids (PUFAs content of LL increased with dietary LA increase (p<0.0001. The PUFA n-6 content and PUFA n-3 content in the LL was significantly affected by the dietary LA levels (p<0.01, p<0.05. The MUFAs content in the liver decreased and the PUFAs contents in the liver increased with dietary LA increase (p<0.0001. The PUFA n-6 content and the PUFA n-6/n-3 ratio in the liver increased and PUFA n-3 content in the liver decreased with dietary LA increase (p<0.01. The linear effect of LA on CPT 1 mRNA expression in the liver was obtained (p = 0.0081. In summary, dietary LA addition had significant effects on liver and muscle fatty acid composition (increased PUFAs of 9 wks old to 13 wks old growing meat rabbits, but had little effects on growth performance, meat physical traits and mRNA expression of liver relative enzyme of experimental rabbits.

  15. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products.

    Science.gov (United States)

    Salminen, Hanna; Herrmann, Kurt; Weiss, Jochen

    2013-03-01

    The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood.

    Science.gov (United States)

    Gunaratne, Anoja W; Makrides, Maria; Collins, Carmel T

    2015-07-22

    Allergies have become more prevalent globally over the last 20 years. Dietary consumption of n-3 (or omega 3) long chain polyunsaturated fatty acids (LCPUFA) has declined over the same period of time. This, together with the known role of n-3 LCPUFA in inhibiting inflammation, has resulted in speculation that n-3 LCPUFA may prevent allergy development. Dietary n-3 fatty acids supplements may change the developing immune system of the newborn before allergic responses are established, particularly for those with a genetic predisposition to the production of the immunoglobulin E (IgE) antibody. Individuals with IgE-mediated allergies have both the signs and symptoms of the allergic disease and a positive skin prick test (SPT) to the allergen. To assess the effect of n-3 LCPUFA supplementation in pregnant and/or breastfeeding women on allergy outcomes (food allergy, atopic dermatitis (eczema), allergic rhinitis (hay fever) and asthma/wheeze) in their children. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), PubMed (1966 to 01 August 2014), CINAHL via EBSCOhost (1984 to 01 August 2014), Scopus (1995 to 01 August 2014), Web of Knowledge (1864 to 01 August 2014) and ClinicalTrials.gov (01 August 2014) and reference lists of retrieved studies. We included randomised controlled trials (RCTs) evaluating the effect of n-3 LCPUFA supplementation of pregnant and/or lactating women (compared with placebo or no treatment) on allergy outcomes of the infants or children. Trials using a cross-over design and trials examining biochemical outcomes only were not eligible for inclusion. Two review authors independently assessed eligibility and trial quality and performed data extraction. Where the review authors were also investigators on trials selected, an independent reviewer assessed trial quality and performed data extraction. Eight trials involving 3366 women and their 3175 children were included in the review. In these trials, women

  17. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake.

    Science.gov (United States)

    Leaf, Alexander; Albert, Christine M; Josephson, Mark; Steinhaus, David; Kluger, Jeffrey; Kang, Jing X; Cox, Benjamin; Zhang, Hui; Schoenfeld, David

    2005-11-01

    The long-chain n-3 fatty acids in fish have been demonstrated to have antiarrhythmic properties in experimental models and to prevent sudden cardiac death in a randomized trial of post-myocardial infarction patients. Therefore, we hypothesized that these n-3 fatty acids might prevent potentially fatal ventricular arrhythmias in high-risk patients. Four hundred two patients with implanted cardioverter/defibrillators (ICDs) were randomly assigned to double-blind treatment with either a fish oil or an olive oil daily supplement for 12 months. The primary end point, time to first ICD event for ventricular tachycardia or fibrillation (VT or VF) confirmed by stored electrograms or death from any cause, was analyzed by intention to treat. Secondary analyses were performed for "probable" ventricular arrhythmias, "on-treatment" analyses for all subjects who had taken any of their oil supplements, and "on-treatment" analyses only of those subjects who were on treatment for at least 11 months. Compliance with double-blind treatment was similar in the 2 groups; however, the noncompliance rate was high (35% of all enrollees). In the primary analysis, assignment to treatment with the fish oil supplement showed a trend toward a prolonged time to the first ICD event (VT or VF) or of death from any cause (risk reduction of 28%; P=0.057). When therapies for probable episodes of VT or VF were included, the risk reduction became significant at 31%; P=0.033. For those who stayed on protocol for at least 11 months, the antiarrhythmic benefit of fish oil was improved for those with confirmed events (risk reduction of 38%; P=0.034). Although significance was not achieved for the primary end point, this study provides evidence that for individuals at high risk of fatal ventricular arrhythmias, regular daily ingestion of fish oil fatty acids may significantly reduce potentially fatal ventricular arrhythmias.

  18. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    Science.gov (United States)

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  19. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  20. Genetic loci associated with plasma phospholipid N-3 fatty acids: A Meta-Analysis of Genome-Wide association studies from the charge consortium

    NARCIS (Netherlands)

    R.N. Lemaitre (Rozenn); T. Tanaka (Toshiko); W. Tang (Weihong); A. Manichaikul (Ani); M. Foy (Millennia); E.K. Kabagambe (Edmond); J.A. Nettleton (Jennifer ); I.B. King (Irena); L.-C. Weng; S. Bhattacharya (Sayanti); S. Bandinelli (Stefania); J.C. Bis (Joshua); S.S. Rich (Stephen); D.R. Jacobs (David); A. Cherubini (Antonio); B. McKnight (Barbara); S. Liang (Shuang); X. Gu (Xiangjun); K.M. Rice (Kenneth); C.C. Laurie (Cathy); T. Lumley (Thomas); B.L. Browning (Brian); B.M. Psaty (Bruce); Y.D.I. Chen (Yii-Der Ida); Y. Friedlander (Yechiel); L. Djousse (Luc); J.H.Y. Wu (Jason); D.S. Siscovick (David); A.G. Uitterlinden (André); L. Ferrucci (Luigi); M. Fornage (Myriam); M.Y. Tsai (Michael); D. Mozaffarian (Dariush); L.M. Steffen (Lyn); D.K. Arnett (Donna)

    2011-01-01

    textabstractLong-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide

  1. n-3 polyunsaturated fatty acid supplementation reduces insulin resistance in hepatitis C virus infected patients: a randomised controlled trial.

    Science.gov (United States)

    Freire, T O; Boulhosa, R S S B; Oliveira, L P M; de Jesus, R P; Cavalcante, L N; Lemaire, D C; Toralles, M B P; Lyra, L G C; Lyra, A C

    2016-06-01

    Insulin resistance promotes liver disease progression and may be associated with a lower response rate in treated hepatitis C virus (HCV) infected patients. n-3 polyunsaturated fatty acid (PUFA) supplementation may reduce insulin resistance. The present study aimed to evaluate the effect of n-3 PUFA supplementation on insulin resistance in these patients. In a randomised, double-blind clinical trial, 154 patients were screened. After applying inclusion criteria, 52 patients [homeostasis model assessment index of insulin resistance (HOMA-IR ≥2.5)] were randomly divided into two groups: n-3 PUFA (n = 25/6000 mg day(-1) of fish oil) or control (n = 27/6000 mg day(-1) of soybean oil). Both groups were supplemented for 12 weeks and underwent monthly nutritional consultation. Biochemical tests were performed at baseline and after intervention. Statistical analysis was performed using the Wilcoxon Mann-Whitney test for comparisons and the Wilcoxon test for paired data. Statistical package r, version 3.02 (The R Project for Statistical Computing) was used and P resistance in genotype 1 HCV infected patients. © 2015 The British Dietetic Association Ltd.

  2. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    Science.gov (United States)

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protein (CRP) and fasting TG prior to n-3 supplementation in two studies (Study 1: n = 115, aged 20–44 years, body mass index (BMI) 20–30 kg/m2, TG = 34–176 mg/dL; Study 2: n = 28, aged 22–65 years, BMI 24–37 kg/m2, TG = 141–339 mg/dL). We also characterized the dose-response effects of n-3 fatty acid supplementation on RBC n-3 DPA after five months of supplementation with fish oil (Study 1: 0, 300, 600, 900, and 1800 mg/day EPA + DHA) and eight weeks of prescription n-3 ethyl esters (Study 2: 0, 850, and 3400 mg/day EPA + DHA). In Study 1, RBC n-3 DPA was inversely correlated with CRP (R2 = 36%, p < 0.001) and with fasting TG (r = −0.30, p = 0.001). The latter finding was replicated in Study 2 (r = −0.33, p = 0.04). In both studies, n-3 supplementation significantly increased RBC n-3 DPA dose-dependently. Relative increases were greater for Study 1, with increases of 29%–61% vs. 14%–26% for Study 2. The associations between RBC n-3 DPA, CRP, and fasting TG may have important implications for the prevention of atherosclerosis and chronic inflammatory diseases and warrant further study. PMID:26247967

  3. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    OpenAIRE

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protei...

  4. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    DEFF Research Database (Denmark)

    Houthuijzen, Julia M; Oosterom, Ilse; Hudson, Brian D

    2017-01-01

    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts....... M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance....

  5. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    Science.gov (United States)

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  6. Effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to lactating sows on growth and indicators of stress in post-weaned pig

    Science.gov (United States)

    Dietary n-3 PUFA are precursors for lipid metabolites that reduce inflammation. Two experiments were conducted to test the hypothesis that enriching the sow diet in n-3 PUFA during late gestation and throughout lactation reduces stress and inflammation, and promotes growth in weaned pigs. A protecte...

  7. Histone deacetylase inhibition and dietary short-chain Fatty acids.

    Science.gov (United States)

    Licciardi, Paul V; Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.

  8. Transcriptomic Changes in Liver of Young Bulls Caused by Diets Low in Mineral and Protein Contents and Supplemented with n-3 Fatty Acids and Conjugated Linoleic Acid.

    Directory of Open Access Journals (Sweden)

    Sara Pegolo

    Full Text Available The aim of the present study was to identify transcriptional modifications and regulatory networks accounting for physiological and metabolic responses to specific nutrients in the liver of young Belgian Blue × Holstein bulls using RNA-sequencing. A larger trial has been carried out in which animals were fed with different diets: 1] a conventional diet; 2] a low-protein/low-mineral diet (low-impact diet and 3] a diet enriched in n-3 fatty acids (FAs, conjugated linoleic acid (CLA and vitamin E (nutraceutical diet. The initial hypothesis was that the administration of low-impact and nutraceutical diets might influence the transcriptional profiles in bovine liver and the resultant nutrient fluxes, which are essential for optimal liver function and nutrient interconversion. Results showed that the nutraceutical diet significantly reduced subcutaneous fat covering in vivo and liver pH. Dietary treatments did not affect overall liver fat content, but significantly modified the liver profile of 33 FA traits (out of the total 89 identified by gas-chromatography. In bulls fed nutraceutical diet, the percentage of n-3 and CLA FAs increased around 2.5-fold compared with the other diets, whereas the ratio of n6/n3 decreased 2.5-fold. Liver transcriptomic analyses revealed a total of 198 differentially expressed genes (DEGs when comparing low-impact, nutraceutical and conventional diets, with the nutraceutical diet showing the greatest effects on liver transcriptome. Functional analyses using ClueGo and Ingenuity Pathway Analysis evidenced that DEGs in bovine liver were variously involved in energy reserve metabolic process, glutathione metabolism, and carbohydrate and lipid metabolism. Modifications in feeding strategies affected key transcription factors regulating the expression of several genes involved in fatty acid metabolism, e.g. insulin-induced gene 1, insulin receptor substrate 2, and RAR-related orphan receptor C. This study provides noteworthy

  9. The interaction between ApoA2 -265T>C polymorphism and dietary fatty acids intake on oxidative stress in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zamani, Elham; Sadrzadeh-Yeganeh, Haleh; Sotoudeh, Gity; Keramat, Laleh; Eshraghian, Mohammadreza; Rafiee, Masoumeh; Koohdani, Fariba

    2017-08-01

    Apolipoprotein A2 (APOA2) -265T>C polymorphism has been studied in relation to oxidative stress and various dietary fatty acids. Since the interaction between APOA2 polymorphism and dietary fatty acids on oxidative stress has not yet discussed, we aimed to investigate the interaction on oxidative stress in type 2 diabetes mellitus (T2DM) patients. The subjects were 180 T2DM patients with known APOA2 genotype, either TT, TC or CC. Superoxide dismutase (SOD) activity was determined by colorimetric method. Total antioxidant capacity (TAC) and serum level of 8-isoprostane F2α were measured by spectrophotometry and ELISA, respectively. Dietary intake was collected through a food frequency questionnaire. Based on the median intake, fatty acids intake was dichotomized into high or low groups. The interaction between APOA2 polymorphism and dietary fatty acids intake was analyzed by ANCOVA multivariate interaction model. Higher than median intake of omega-6 polyunsaturated fatty acids (n-6 PUFA) was associated with increased serum level of 8-isoprostane F2α in subjects with TT/TC genotype (p = 0.004), and higher than median intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) was associated with increased serum SOD activity in CC genotype (p fatty acids intake on oxidative stress. More investigations on different populations are required to confirm the interaction.

  10. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI.

    Science.gov (United States)

    Rudolph, M C; Young, B E; Lemas, D J; Palmer, C E; Hernandez, T L; Barbour, L A; Friedman, J E; Krebs, N F; MacLean, P S

    2017-04-01

    Excessive infant weight gain in the first 6-month of life is a powerful predictor of childhood obesity and related health risks. In mice, omega-6 fatty acids (FAs) serve as potent ligands driving adipogenesis during early development. The ratio of omega-6 relative to omega-3 (n-6/n-3) FA in human milk (HM) has increased threefold over the last 30 years, but the impact of this shift on infant adipose development remains undetermined. This study investigated how maternal obesity and maternal dietary FA (as reflected in maternal red blood cells (RBCs) composition) influenced HM n-6 and n-3 FAs, and whether the HM n-6/n-3 ratio was associated with changes in infant adipose deposition between 2 weeks and 4 months postpartum. Forty-eight infants from normal weight (NW), overweight (OW) and obese (OB) mothers were exclusively or predominantly breastfed over the first 4 months of lactation. Mid-feed HM and maternal RBC were collected at either transitional (2 weeks) or established (4 months) lactation, along with infant body composition assessed using air-displacement plethysmography. The FA composition of HM and maternal RBC was measured quantitatively by lipid mass spectrometry. In transitional and established HM, docosahexaenoic acid (DHA) was lower (P=0.008; 0.005) and the arachidonic acid (AA)/DHA+eicosapentaenoic acid (EPA) ratio was higher (P=0.05; 0.02) in the OB relative to the NW group. Maternal prepregnancy body mass index (BMI) and AA/DHA+EPA ratios in transitional and established HM were moderately correlated (P=0.018; 0.001). Total infant fat mass was increased in the upper AA/DHA+EPA tertile of established HM relative to the lower tertile (P=0.019). The amount of changes in infant fat mass and percentage of body fat were predicted by AA/EPA+DHA ratios in established HM (P=0.038; 0.010). Perinatal infant exposures to a high AA/EPA+DHA ratio during the first 4 months of life, which is primarily reflective of maternal dietary FA, may significantly contribute to

  11. Effect of dietary oil supplementation on fatty acid profile of backfat and intramuscular fat in finishing pigs

    Directory of Open Access Journals (Sweden)

    Giuseppe Pulina

    2010-01-01

    Full Text Available Two groups of finishing gilts were fed, for 4 weeks, a commercial feed enriched (2% with either rapeseed oil or sunflower oil. Pig growth was monitored bi-weekly and the fatty acid composition of backfat and Longissimus muscle was determined after slaughtering. Type of dietary oil affected significantly the fatty acid profile of pork fat, especially the C18:3n-3 concentration which was higher in pigs fed rapeseed oil than in those fed sunflower oil. The content of monounsaturated fatty acids (MUFA of Longissimus muscle was significantly higher than that of backfat, due to the its higher concentration of C18:1cis9 and C16:1. Differently, the long-chain n-3 polyunsaturated fatty acids (PUFA content was higher in backfat than in Longissimus muscle. These results confirm that it is possible to manipulate the fatty acid composition of the diet, in order to improve the health properties of the adipose tissues of pork meat.

  12. Dietary long-chain n-3 PUFA, gut microbiota and fat mass in early postnatal piglet development—exploring a potential interplay

    DEFF Research Database (Denmark)

    Andersen, A.D.; Mølbak, Lars; Thymann, T.

    2011-01-01

    Dietary n-3PUFA and gut bacteria, particularly Bacteroidetes, have been suggested to be related to adiposity. We investigated if n-3PUFA affected fat storage and cecal bacteria in piglets. Twenty-four 4-day-old piglets were allocated to formula rich in n-3PUFA (∼3E%) from fish oil (FO) or n-6PUFA...... from sunflower oil (SO) for 14 days. We assessed body weight, fat accumulation by dual-energy X-ray absorptiometry and microbial molecular fingerprints. Dietary PUFA-composition was reflected in higher erythrocyte n-3PUFA in the FO- than the SO-group (P...

  13. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    Science.gov (United States)

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization.

    Science.gov (United States)

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Balle, Thomas; Chen, Bilian; Guo, Zheng

    2017-01-01

    This work examined catalytic specificity and fatty acid selectivity of five liquid lipases C. antarctica lipase A and B (CAL-A/B), and lipase TL (T. lanuginosus), Eversa Transfrom and NS in ethanolysis of fish oil with the aim to concentrate n-3 PUFAs into monoacylglycerols (MAGs) products. Lipase TL, Eversa Transform & NS entail a much faster reaction and produce higher MAGs yield (>30%); whereas CAL-A obtains the highest concentration of n-3 PUFAs/DHA/EPA into MAGs products (88.30%); followed by lipase NS (81.02%). 13 C NMR analysis indicates that CAL-B and lipase TL are sn-1,3 specific; but CAL-A and lipase Eversa Transform are non-regiospecific or weak sn-2 specific; which plausibly explains high enrichment effect of the latter two lipases. All liquid lipases are observed reusable for a certain times (lipase Eversa Transform up to 12 times), demonstrating their competitive advantage over immobilized form for industrial application because of their higher activity and cheaper operation cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dietary intakes and food sources of fatty acids in Guatemalan schoolchildren: A cross-sectional study

    LENUS (Irish Health Repository)

    Bermudez, Odilia I.

    2010-04-23

    Abstract Background Consumption of healthy diets that contribute with adequate amounts of fat and fatty acids is needed for children. Among Guatemalan children, there is little information about fat intakes. Therefore, the present study sought to assess intakes of dietary fats and examine food sources of those fats in Guatemalan children. Methods The study subjects consisted of a convenience sample of 449 third- and fourth-grade schoolchildren (8-10 y), attending public or private schools in Quetzaltenango City, Guatemala. Dietary data was obtained by means of a single pictorial 24-h record. Results The percentages of total energy (%E) from total fat, saturated fat (SFA) and monounsaturated fat (MUFA) reached 29%E for total fat and 10%E for each SFA and MUFA, without gender differences. %E from fats in high vs. low-socio economic status (SES) children were significantly higher for boys, but not for girls, for total fat (p = 0.002) and SFA (p < 0.001). Large proportions of the children had low levels of intakes of some fatty acids (FA), particularly for n-3 FA, with >97% of all groups consuming less than 1%E from this fats. Fried eggs, sweet rolls, whole milk and cheese were main sources of total fat and, SFA. Whole milk and sweet bread were important sources of n-3 FA for high- and low-SES boys and girls, respectively. Fried plantain was the main source of n-3 FA for girls in the high-SES group. Fried fish, seafood soup, and shrimp, consumed only by boys in low amounts, were sources of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, which may explain the low intakes of these nutrients. Conclusions α-linolenic acid, EPA and DHA were the most limiting fatty acids in diets of Guatemalan schoolchildren, which could be partially explained by the low consumption of sources of these nutrients, particularly fish and seafood (for EPA and DHA). This population will benefit from a higher consumption of culturally acceptable foods that are rich in these limiting

  16. Effects of supplementation with n-3 polyunsaturated fatty acids on cognitive performance and cardiometabolic risk markers in healthy 51 to 72 years old subjects: a randomized controlled cross-over study

    Directory of Open Access Journals (Sweden)

    Nilsson Anne

    2012-11-01

    Full Text Available Abstract Background Higher plasma n-3 polyunsaturated fatty acids (PUFA have been associated with a lower risk of age related cognitive decline, and to beneficially affect cardiometabolic risk factors. A relation exists between metabolic disorders such as diabetes type 2 and cognitive decline. Results regarding the potential effects of n-3 PUFA on risk factors in healthy subjects are divergent, and studies regarding the possible relation between cardiometabolic parameters and cognitive performance are scarce. The objective was to evaluate the effects of five weeks intake of long chain n-3 PUFA on cognitive performance in healthy individuals, and to exploit the possible relation between outcomes in cognitive tests to cardiometabolic risk parameters. Methods Fish oil n-3 PUFA (3g daily were consumed during 5weeks separated by a 5 week washout period in a cross-over placebo controlled study, including 40 healthy middle aged to elderly subjects. Cognitive performance was determined by tests measuring working memory (WM and selective attention. Results Supplementation with n-3 PUFA resulted in better performance in the WM-test compared with placebo (p p p p = 0.05, and s-TNF-α (p = 0.05, were inversely related to the performance in cognitive tests. Conclusions Intake of n-3 PUFA improved cognitive performance in healthy subjects after five weeks compared with placebo. In addition, inverse relations were obtained between cardiometabolic risk factors and cognitive performance, indicating a potential of dietary prevention strategies to delay onset of metabolic disorders and associated cognitive decline.

  17. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  18. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Joshua Hakimian

    Full Text Available Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA, could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2-enriched indirect pathway but not of genes found in dopamine receptor 1(D1-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and

  19. Inter-tissue differences in fatty acid incorporation as a result of dietary oil manipulation in Port Jackson sharks (Heterodontus portusjacksoni).

    Science.gov (United States)

    Beckmann, Crystal L; Mitchell, James G; Stone, David A J; Huveneers, Charlie

    2014-06-01

    Fatty acid profile analysis is a tool for dietary investigation that may complement traditional stomach contents analysis. While recent studies have shown that the liver of sharks fed different diets have differing fatty acid profiles, the degree to which diet is reflected in shark blood serum and muscle tissue is still poorly understood. An 18-week controlled feeding experiment was undertaken using captive Port Jackson sharks (Heterodontus portusjacksoni). Sharks were fed exclusive diets of artificial pellets treated with fish or poultry oil and sampled every 6 weeks. The fatty acid profiles from liver, blood serum, and muscle were affected differently, with the period from which significant differences were observed varying by tissue and diet type. The total fatty acid profiles of fish oil and poultry oil fed sharks were significantly different from week 12 onwards in the liver and blood serum, but significant differences were only observed by week 18 in the muscle tissue of sharks fed different diets. The drivers of dissimilarity which aligned with dietary input were 14:0, 18:2n-6, 20:5n-3, 18:1n-9 and 22:6n-3 in the liver and blood serum. Dietary fatty acids accumulated more consistently in the liver than in the blood plasma or muscle, likely due to its role as the central organ for fat processing and storage. Blood serum and muscle fatty acid profiles were influenced by diet, but fluctuated over-time. The low level of correlation between diet and muscle FA profiles is likely a result of low levels of fat (shark muscle tissues. Our findings describe inter-tissue differences in the incorporation of fatty acids from the diet to consumer, which should be taken into account when interpreting dietary patterns from fatty acid profiles.

  20. Dietary influence on the m. longissimus dorsi fatty acid composition of lambs in relation to protein source.

    Science.gov (United States)

    Turner, T D; Karlsson, L; Mapiye, C; Rolland, D C; Martinsson, K; Dugan, M E R

    2012-08-01

    Dietary lipid effect, as a consequence of protein supplement, on lamb m. longissimus dorsi fatty acid composition was investigated, with emphasis on biohydrogenation intermediates. Crossbred lambs (White Swedish Landrace × Texel) were fed a barley-based diet without (CON) or with protein supplements including peas (PEA), rapeseed cake (RC) or hempseed cake (HC). The HC diet resulted in the highest muscle 22:6n-3 proportion, with the RC diet being similar (Pmaking the RC diet the preferred protein supplement; however the magnitude of the changes in the present experiment may not be sufficient to have an impact on human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model.

    Science.gov (United States)

    Kendall, Alexandra C; Kiezel-Tsugunova, Magdalena; Brownbridge, Luke C; Harwood, John L; Nicolaou, Anna

    2017-09-01

    Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis. Supplementation with the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise as therapeutic agents in a number of inflammatory skin conditions, altering the lipid profile of the skin and production of bioactive lipids such as the eicosanoids, docosanoids and endocannabinoids. In this study we wished to investigate whether EPA and DHA could also affect the ceramide profile in epidermis and dermis, and, in this way, contribute to formation of a robust lipid barrier and ceramide-mediated regulation of skin functions. Ex vivo skin explants were cultured for 6days, and supplemented with EPA or DHA (50μM). Liquid chromatography coupled to tandem mass spectrometry with electrospray ionisation was used to assess the prevalence of 321 individual ceramide species, and a number of sphingoid bases, phosphorylated sphingoid bases, and phosphorylated ceramides, within the dermis and epidermis. EPA augmented dermal production of members of the ceramide families containing Non-hydroxy fatty acids and Sphingosine or Dihydrosphingosine bases (CER[NS] and CER[NDS], respectively), while epidermal CER[EOH], CER[EOS] and CER[EOP] ceramides were not affected. DHA did not significantly affect ceramide production. Ceramide-1-phosphate levels in

  2. Effects of dietary conjugated linoleic acid (CLA), n-3 and n-6 fatty ...

    African Journals Online (AJOL)

    An experiment was conducted on broiler chickens to study the effects of conjugated linoleic acid (CLA), fish oil, soybean oil or their mixtures (at 7% for single and 3.5% + 3.5% for mixtures) as well as up 12% dosage of palm oil, on the performance and carcass traits of broiler chickens. The chicks fed 7% fish oil or 7% CLA ...

  3. Neuroinflammation and aging: influence of dietary n-3 polyunsaturated fatty acid*

    OpenAIRE

    Layé Sophie; Delpech Jean-Christophe; De Smedt-Peyrusse Véronique; Joffre Corinne; Larrieu Thomas; Madore Charlotte; Nadjar Agnès; Capuron Lucile

    2011-01-01

    The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against noxious agents or lesions. Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed in the brain, leading to the development of altered emotional and cognitive behavior. These behavioral alterations cease along with the synthesis of brain cytokines. When the level of expression of these cytokines remains ...

  4. Dietary (n-3)-fatty acids, prostaglandins, and prolonged gestation in humans

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Olsen, S.F.

    1988-01-01

    fluid probably is of uterine origin. Women in the Faroe Islands have longer gestation and are giving birth to infants with higher birth weight than women in Denmark. The Faroe Islands is a fishing community with an old cultural tradition for eating pilot whales. Fish and marine mammals are rich in long...

  5. Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes

    Directory of Open Access Journals (Sweden)

    Nuernberg Karin

    2011-08-01

    Full Text Available Abstract Background Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue. Methods The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6 leading to rapid obesity development, or selected for high treadmill performance (DUhTP leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein, or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways. Results Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue. Conclusions A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.

  6. N-3 polyunsaturated fatty acids supplementation does not affect changes of lipid metabolism induced in rats by altered thyroid status.

    Science.gov (United States)

    Rauchová, H; Vokurková, M; Pavelka, S; Behuliak, M; Tribulová, N; Soukup, T

    2013-07-01

    Epidemiological studies have demonstrated that n-3 polyunsaturated fatty acid (PUFA) consumption is associated with a reduced risk of atherosclerosis and hyperlipidemia. It is well known that lipid metabolism is also influenced by thyroid hormones. The aim of our study was to test whether n-3 PUFA supplementation (200 mg/kg of body weight/day for 6 weeks given intragastrically) would affect lipid metabolism in Lewis male rats with altered thyroid status. Euthyroid, hypothyroid, and hyperthyroid status of experimental groups was well defined by plasma levels of triiodothyronine, the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase, and by relative heart weight. Fasting blood glucose levels were significantly higher in the hyperthyroid compared to the euthyroid and hypothyroid rats (5.0±0.2 vs. 3.7±0.4 and 4.4±0.2 mmol/l, respectively). In hyperthyroid animals, the concentration of plasma postprandial triglycerides was also increased compared to euthyroid and hypothyroid rats (0.9±0.1 vs. 0.5±0.1 and 0.4±0.1 mmol/l, respectively). On the other hand, hypothyroidism compared to euthyroid and hyperthyroid status was associated with elevated plasma levels of total cholesterol (2.6±0.2 vs. 1.5±0.1 and 1.6±0.1 mmol/l, respectively), LDL cholesterol (0.9±0.1 vs. 0.4±0.1 and 0.2±0.1 mmol/l, respectively) as well as HDL cholesterol (1.6±0.1 vs. 1.0±0.1 and 1.3±0.1 mmol/l, respectively). Supplementation of n-3 PUFA in the present study did not significantly modify either relative heart weight or glucose and lipid levels in any thyroid status. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  8. Ready-to-use therapeutic food with elevated n-3 polyunsaturated fatty acid content, with or without fish oil, to treat severe acute malnutrition: a randomized controlled trial.

    LENUS (Irish Health Repository)

    Jones, Kelsey D J

    2015-01-01

    Ready-to-use therapeutic foods (RUTF) are lipid-based pastes widely used in the treatment of acute malnutrition. Current specifications for RUTF permit a high n-6 polyunsaturated fatty acid (PUFA) content and low n-3 PUFA, with no stipulated requirements for preformed long-chain n-3 PUFA. The objective of this study was to develop an RUTF with elevated short-chain n-3 PUFA and measure its impact, with and without fish oil supplementation, on children\\'s PUFA status during treatment of severe acute malnutrition.

  9. Effects of Different Ratio of n-6/n-3 Polyunsaturated Fatty Acids on the PI3K/Akt Pathway in Rats with Reflux Esophagitis.

    Science.gov (United States)

    Zhuang, Jia-Yuan; Chen, Zhi-Yao; Zhang, Tao; Tang, Du-Peng; Jiang, Xiao-Yin; Zhuang, Ze-Hao

    2017-01-30

    BACKGROUND We designed this study to investigate the influence of different ratios of n-6/n-3 polyunsaturated fatty acid in the diet of reflux esophagitis (RE) rats' and the effect on the PI3K/Akt pathway. MATERIAL AND METHODS RE rats were randomly divided into a sham group and modeling groups of different concentrations of n-6/n-3 polyunsaturated fatty acid (PUFA): 12:1 group, 10:1 group, 5:1 group, and 1:1 group. RT-PCR and Western-blot were used to detect the expression of PI3K, Akt, p-Akt, NF-κBp50, and NF-κBp65 proteins in esophageal tissue. RESULTS In the n-6/n-3 PUFAs groups the expression of PI3K, Akt, p-Akt, nf-κbp50, and NF-κBp65 mRNA decreased with the decrease in n-6/n-3 ratios in the diet. The lowest expression of each indicator occurred in the 1:1 n-6/n-3 group compared with other n-6/n-3 groups, the difference was statistically significant (p<0.05). CONCLUSIONS The inhibition of n-3 PUFAs in the development of esophageal inflammation in rats with RE was attributed to the function of PI3K/Akt-NF-κB signaling pathway.

  10. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, N.G.; Imamura, Fumiaki; Sharp, S.J.; Koulman, A.; Schulze, M.B.; Feskens, E.J.M.

    2016-01-01

    Background
    Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations.

    Methods and Findings
    Plasma phospholipid PUFAs were measured by gas chromatography

  11. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes : The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, Nita G.; Imamura, Fumiaki; Sharp, Stephen J.; Koulman, Albert; Schulze, Matthias B.; Zheng, Jusheng; Ye, Zheng; Sluijs, Ivonne; Guevara, Marcela; Huerta, José María; Kröger, Janine; Wang, Laura Yun; Summerhill, Keith; Griffin, Julian L.; Feskens, Edith J M; Affret, Aurélie; Amiano, Pilar; Boeing, Heiner; Dow, Courtney; Fagherazzi, Guy; Franks, Paul W.; Gonzalez, Carlos; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay Tee; Kühn, Tilman; Mortensen, Lotte Maxild; Nilsson, Peter M.; Overvad, Kim; Pala, Valeria; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rodriguez-Barranco, Miguel; Rolandsson, Olov; Sacerdote, Carlotta; Scalbert, Augustin; Slimani, Nadia; Spijkerman, Annemieke M W; Tjonneland, Anne; Tormo, Maria Jose; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Langenberg, Claudia; Riboli, Elio; Wareham, Nicholas J.

    2016-01-01

    Background: Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations. Methods and Findings: Plasma phospholipid PUFAs were measured by gas chromatography among 12,132

  12. Effects of n-3 fatty acids on cognitive decline: A randomized double-blind, placebo-controlled trial in stable myocardial infarction patients

    NARCIS (Netherlands)

    Geleijnse, J.M.; Giltay, E.J.; Kromhout, D.

    2012-01-01

    Background Epidemiological studies suggest a protective effect of n-3 fatty acids derived from fish (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) against cognitive decline. For a-linolenic acid (ALA) obtained from vegetable sources, the effect on cognitive decline is unknown. We

  13. The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia

    NARCIS (Netherlands)

    Stalenhoef, A. F.; de Graaf, J.; Wittekoek, M. E.; Bredie, S. J.; Demacker, P. N.; Kastelein, J. J.

    2000-01-01

    We evaluated in a double-blind randomized trial with a double-dummy design in 28 patients with primary hypertriglyceridemia, the effect of gemfibrozil (1200 mg/day) versus Omacor (4 g/day), a drug containing the n-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), on lipid and

  14. n-3 fatty acid-based parenteral nutrition improves postoperative recovery for cirrhotic patients with liver cancer: A randomized controlled clinical trial.

    Science.gov (United States)

    Zhang, Binhao; Wei, Gang; Li, Rui; Wang, Yanjun; Yu, Jie; Wang, Rui; Xiao, Hua; Wu, Chao; Leng, Chao; Zhang, Bixiang; Chen, Xiao-Ping

    2017-10-01

    A new lipid emulsion enriched in n-3 fatty acid has been reported to prevent hepatic inflammation in patients following major surgery. However, the role of n-3 fatty acid-based parenteral nutrition for postoperative patients with cirrhosis-related liver cancer is unclear. We investigated the safety and efficacy of n-3 fatty acid-based parenteral nutrition for cirrhotic patients with liver cancer followed hepatectomy. A prospective randomized controlled clinical trial (Registered under ClinicalTrials.gov Identifier no. NCT02321202) was conducted for cirrhotic patients with liver cancer that underwent hepatectomy between March 2010 and September 2013 in our institution. We compared isonitrogenous total parenteral nutrition with 20% Structolipid and 10% n-3 fatty acid (Omegaven, Fresenius-Kabi, Germany) (treatment group) to Structolipid alone (control group) for five days postoperatively, in the absence of enteral nutrition. We enrolled 320 patients, and 312 (97.5%) were included in analysis (155 in the control group and 157 in the treatment group). There was a significant reduction of morbidity and mortality in the treatment group, when compared with the control group (total complications 78 [50.32%] vs. 46 [29.30%]; P parenteral nutrition significantly improved postoperative recovery for cirrhotic patients with liver cancer following hepatectomy, with a significant reduction in overall mortality and length of hospital stay. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    International Nuclear Information System (INIS)

    An, Lei; Pang, Yun-Wei; Gao, Hong-Mei; Tao, Li; Miao, Kai; Wu, Zhong-Hong

    2012-01-01

    Highlights: ► Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. ► fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. ► fat-1 reduces lipid deposition in 3T3-L1 adipocytes. ► The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  16. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  17. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    Science.gov (United States)

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Trans fatty acids in dietary fats and oils from 14 European countries : the TRANSFAIR study

    NARCIS (Netherlands)

    Aro, A.; Amelsvoort, J. van; Becker, W.; Erp-Baart, M.A. van; Kafatos, A.; Leth, T.; Poppel, G. van

    1998-01-01

    The fatty acid composition of dietary fats and oils from 14 European countries was analyzed with particular emphasis on isomerictransfatty acids. The proportion oftransfatty acids in typical soft margarines and low-fat spreads ranged between 0.1 and 17% of total fatty acids and that

  19. Cardiorespiratory fitness modifies the association between dietary fat intake and plasma fatty acids.

    Science.gov (United States)

    König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R

    2003-07-01

    To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.

  20. Modulation of the chicken immune cell function by dietary polyunsaturated fatty acids

    NARCIS (Netherlands)

    Sijben, J.W.C.

    2002-01-01

    Polyunsaturated fatty acids (PUFA) possess a wide range of biological properties, including immunomodulation. The amount, type, and ratio of dietary PUFA determine the types of fatty acids that are incorporated into immune cell membranes. Consequently, the physiological properties of immune cells

  1. Dietary fatty acids and risk factors for coronary heart disease : controlled studies in healthy volunteers

    NARCIS (Netherlands)

    Zock, P.L.

    1995-01-01

    High levels of LDL cholesterol, blood pressure and Lp(a), and low levels of HDL cholesterol increase the risk for coronary heart disease (CHD). This thesis describes the effects of dietary fatty acids on these risk factors. In each of three trials we fed diets with tailored fatty acid

  2. Fatty acids profile and quality characteristics of broiler chicken meat fed different dietary oil sources with some additives

    Directory of Open Access Journals (Sweden)

    Engy Fayz Zaki

    2018-04-01

    Full Text Available The study was carried out to investigate the effect of feeding broiler chicken on different vegetable oils with feed additives on the quality characteristics of chicken meat. A total of 216 one-day-old chicks of (Hubbard strain were randomly assigned to six dietary treatments as (2×3 factorial designs where two sources of dietary oil with three levels of commercial multi-enzyme feed additives. Treatments were: soybean oil only (T1, soybean oil+ ZAD (T2, soybean oil+ AmPhi-BACT (T3, palm oil only (T4, palm oil + ZAD (T5 and palm oil + AmPhi- BACT (T6.  Results showed that feeding broiler chicken on different types of dietary oils had significant effect on the fatty acid profile of broiler chicken meat. UFA/SFA ration of broiler chicken groups (T4, T5adT6 were significantly lower compared with (T1, T2 and T3 groups. Broiler fed on soybean oil had significantly higher n-6: n-3 ration compared with broiler fed on palm oil. Regardless of the source of dietary oil, significant differences were observed in the most of fatty acid profile in the chicken meat among levels of commercial multi- enzyme feed additives. Meat of T5and T6 had the higher pH value, followed by meat of T1and T3 groups, while the lowest pH value found in meat of T2 and T4. The higher cooking loss was found in meat of T4 while, meat of T5had the lowest value. Data of chilling loss indicated that the differences between dietary treatments were not significantly different except for meat of T6 which had the higher chilling loss. No significant differences were found in color measurements between dietary treatments.

  3. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves

    NARCIS (Netherlands)

    Hendriks, I.E.; Van Duren, L.A.; Herman, P.M.J.

    2003-01-01

    The pre-spawning condition of adult bivalves is influenced by quantity and quality of available food. For bivalves, the essential polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3) are presumed to determine the nutritional value of

  4. The association between n-3 fatty acids in erythrocyte membranes and insulin resistance: The Inuit Health in Transition Study

    DEFF Research Database (Denmark)

    Thorseng, Trine; Witte, Daniel R; Vistisen, Dorte

    2009-01-01

    and ethnicity were answered. Insulin resistance was estimated using the HOMA-IR index based on fastingglucose and fasting-insulin. Results. We found an inverse association between C20:5 n-3 (EPA), C22:3 n-3, the n-3/n-6 ratio and HOMA-IR and a positive association between C18:3 n-3 cis and HOMA-IR. When...

  5. Dietary fat, fatty acid intakes and colorectal cancer risk in Chinese adults: a case-control study.

    Science.gov (United States)

    Zhong, Xiao; Fang, Yu-Jing; Pan, Zhi-Zhong; Li, Bin; Wang, Lian; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia

    2013-09-01

    The associations between dietary fat intakes and the risk of colorectal cancer have been examined in many epidemiological studies, but the results have remained inconsistent. This study aimed to examine the associations of total fat and fatty acid intakes with the risk of colorectal cancer in Guangzhou, China. A case-control study was carried out between July 2010 and May 2012 in Guangzhou, China. Four hundred and eighty-nine consecutively recruited colorectal cancer cases were frequency matched to 976 controls by age (5-year interval) and sex. A validated food frequency questionnaire was used to collect dietary information by face-to-face interviews. Multivariate logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs). The total fat intake was not related to the risk of colorectal cancer, with an OR (95% CI) of 0.95 (0.68-1.32) comparing the highest with the lowest quartiles. Intakes of saturated fat, monounsaturated fat, and n-6 polyunsaturated fat were also not associated with the risk of colorectal cancer. However, a significant inverse association was found between total n-3 polyunsaturated fat, α-linolenic acid, and long-chain n-3 polyunsaturated fat consumption and the risk of colorectal cancer. The adjusted ORs of the highest versus the lowest quartile were 0.45 (95% CI=0.32-0.64, Ptrendcolorectal cancer. However, increased consumption of n-3 polyunsaturated fat might reduce the risk.

  6. Stearoyl-CoA desaturase indexes and n-6/n-3 fatty acids ratio as biomarkers of cardiometabolic risk factors in normal-weight rabbits fed high fat diets.

    Science.gov (United States)

    Alarcón, Gabriela; Roco, Julieta; Medina, Analia; Van Nieuwenhove, Carina; Medina, Mirta; Jerez, Susana

    2016-01-20

    Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. Thus, the aim of this work was to analyze stearoyl-CoA desaturase (SCD) indexes and n-6/n-3 fatty acids (FA) ratio as biomarkers of CMR induced by feeding rabbits on high fat diets (HFDs). Rabbits were fed either regular diet or 18 % fat in regular diet (HFD) or 1 % cholesterol diet (HD) or diet containing 1 % cholesterol and 18 % fat (HFD-HD) during 6 weeks. Body weights (BW), blood pressure, visceral abdominal fat (VAF) and glucose tolerance test were determined. Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), and FA levels from plasma were measured. SCD indexes were calculated as product/precursor ratios of individual FA. BW was similar in all diet groups. HD increased TC, LDL-C, HDL-C, and TG. HFD increased TG, VAF and FG, and decreased HDL-C. The addition of HFD to HD joined to dyslipidemia increased VAF and FG. SCD indexes were increased and n-6/n-3 was unchanged in HD. SCD indexes were reduced and n-6/n-3 FA ratio was increased in HFD and HFD-HD. CMR factors were correlated positively with n-6/n-3 FA ratio. Although VAF had a stronger correlation with n-6/n-3 FA ratio than with SCD indexes, VAF was associated independently to both markers. HFD simulating lipid composition of the average Western-style diet induced experimental rabbit models of normal-weight metabolic syndrome (MS). SCD indexes and n-6/n-3 were modified according to the type of dietary fat. Considering that VAF and CMR factors appear to be stronger associated to n-6/n-3 FA ratio than to SCD indexes, n-6/n-3 FA ratio may be a better biomarker of MS and CMR in normal-weight subjects than SCD indexes.

  7. What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids—Daily vs. Weekly Administration of Fish Oil?

    Directory of Open Access Journals (Sweden)

    Samaneh Ghasemifard

    2015-07-01

    Full Text Available The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA vary from eating oily fish (“once to twice per week” to consuming specified daily amounts of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (“250–500 mg per day”. It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment, representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment, representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA, for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA + DHA was towards catabolism (β-oxidation accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose, compared with the Spike treatment (75% of dose. Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose, than from the Constant treatment (15% of dose. These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.

  8. Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation.

    Directory of Open Access Journals (Sweden)

    Ramez Alhazzaa

    Full Text Available This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18:3n-3 (ALA bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA, and to determine the overall pathway kinetics. Using rat hepatocytes (FaO as model cells, it was established that a maximum 20:5n-3 (EPA production from 50 µM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125 µM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22:5n-3 (DPA and 22:6n-3 (DHA in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB method on cell culture system (cells with medium enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km of the theoretical maximal (V max = 3654 µmol.g(-1 of cell protein.hour(-1 Fads2 activity on ALA can be achieved with 81 µM initial ALA. Interestingly, the apparent activity of Elovl2 (20:5n-3 elongation was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.

  9. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation

    Science.gov (United States)

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-01-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA. PMID:23016130

  10. What health professionals should know about omega-3 fatty acid ...

    African Journals Online (AJOL)

    Western diets are often deficient in n-3 fatty acids because of an insufficient intake of cold water oily fish. The main n-3 fatty acids in fatty fish are ... To date, no formally accepted dietary reference intakes for EPA and DHA exist, while international intake recommendations differ widely. Supplementation is an easy and ...

  11. Toxicity of fatty acid 18:5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and K+ uptake in isolated trout hepatocytes.

    Science.gov (United States)

    Fossat, B; Porthé-Nibelle, J; Sola, F; Masoni, A; Gentien, P; Bodennec, G

    1999-01-01

    Effects of octadecapentaenoic acid 18:5n3 and other related polyunsaturated fatty acids present in gymnodinium cf. mikimotoi were tested in isolated trout hepatocytes. These exotoxins decreased intracellular pH followed by a slow recovery to initial value and alkalinization of acidic compartments, suggesting an inhibition of vacuolar H(+)-ATPases. Moreover, addition of 18:5n3 to the extracellular medium induced a decrease of K+ uptake into hepatocytes as a result of Na,K-ATPase inhibition. However, high concentrations (10(-5)-10(-3) M) are necessary to induce these effects.

  12. Effects of similar intakes of marine n-3 fatty acids from enriched food products and fish oil on cardiovascular risk markers in healthy human subjects.

    Science.gov (United States)

    Kirkhus, Bente; Lamglait, Amandine; Eilertsen, Karl-Erik; Falch, Eva; Haider, Trond; Vik, Hogne; Hoem, Nils; Hagve, Tor-Arne; Basu, Samar; Olsen, Elisabeth; Seljeflot, Ingebjørg; Nyberg, Lena; Elind, Elisabeth; Ulven, Stine M

    2012-05-01

    There is convincing evidence that consumption of fish and fish oil rich in long-chain (LC) n-3 PUFA (n-3 LCPUFA), EPA (20 : 5n-3) and DHA (22 : 6n-3) reduce the risk of CHD. The aim of the present study was to investigate whether n-3 LCPUFA-enriched food products provide similar beneficial effects as fish oil with regard to incorporation into plasma lipids and effects on cardiovascular risk markers. A parallel 7-week intervention trial was performed where 159 healthy men and women were randomised to consume either 34 g fish pâté (n 44), 500 ml fruit juice (n 38) or three capsules of concentrated fish oil (n 40), all contributing to a daily intake of approximately 1 g EPA and DHA. A fourth group did not receive any supplementation or food product and served as controls (n 37). Plasma fatty acid composition, serum lipids, and markers of inflammation and oxidative stress were measured. Compared with the control group, plasma n-3 LCPUFA and EPA:arachidonic acid ratio increased equally in all intervention groups. However, no significant changes in blood lipids and markers of inflammation and oxidative stress were observed. In conclusion, enriched fish pâté and fruit juice represent suitable delivery systems for n-3 LCPUFA. However, although the dose given is known to reduce the risk of CVD, no significant changes were observed on cardiovascular risk markers in this healthy population.

  13. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    Science.gov (United States)

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  14. Effects of Fish Oil Supplementation during the Suckling Period on Auditory Neural Conduction in n-3 Fatty Acid-Deficient Rat Pups

    Directory of Open Access Journals (Sweden)

    vida rahimi

    2014-07-01

    Full Text Available Abstract Introduction: Omega 3 fatty acid especially in the form of fish oil, has structural and biological role in the body's various systems especially nervous system. Numerous studies have tried to research about it. Auditory is one of the affected systems. Omega 3 deficiency can have devastating effects on the nervous system and auditory. This study aimed to evaluate neural conduction in n-3 fatty acid-deficient rat pups following the supplementation of fish oil consumption during the suckling period Materials and Methods: In this interventional and experimental study, one sources of omega3 fatty acid (fish oil were fed to rat pups of n-3 PUFA-deficient dams to compare changes in their auditory neural conduction with that of control and n-3 PUFA-deficient groups, using Auditory Brainstem Response (ABR. The parameters of interest were P1, P3, P4 absolute latency, P1-P3, P1-P4 and P3-P4 IPL , P4/P1 amplitude ratio . The rat pups were given oral fish oil, 5 Ml /g weight for 17 days, between the age of 5 and 21 days. Results There were no significant group differences in P1 and P3 absolute latency (p > 0.05. but the result in P4 was significant(P ≤ 0.05 . The n-3 PUFA deficient +vehicle had the most prolonged (the worst P1-P4 IPL and P3-P4 IPL compared with control and n-3 PUFA deficient + FO groups. There was no significant difference in P1-P4 IPL and P3-P4 IPL between n-3 PUFA deficient + FO and control groups (p > 0.05.There was a significant effect of diet on P1-P4 IPL and P3-P4 IPL between groups (P ≤ 0.05. Conclusion: The results of present study showed the effect of omega3 deficiency on auditory neural structure during pregnancy and lactation period. Additionally, we observed the reduced devastating effects on neural conduction in n-3 fatty acid-deficient rat pups following the supplementation of fish oil during the suckling period

  15. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  16. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers Efecto de los ácidos grasos polinsaturados n-3 en el perfil lipídico de mexicanos voluntarios

    Directory of Open Access Journals (Sweden)

    OCTAVIO CARVAJAL

    1997-05-01

    Full Text Available Objective. The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Material and methods. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. Results. The hypertriglyceridemic group showed a statistically significant (pObjetivo. Estudiar el efecto de los ácidos grasos polinsaturados n-3 en el perfil lipídico sérico de una población mexicana. Material y métodos. La ingesta diaria del suplemento de aceite de salmón fue de 3 gramos durante cuatro semanas. Se evaluaron los niveles de colesterol total, triglicéridos, lipoproteínas de baja densidad, lipoproteínas de alta densidad y la composición en ácidos grasos de los eritrocitos. Resultados. Muestran una reducción significativa (p< 0.05 en los niveles de triglicéridos y un aumento significativo (p< 0.01 en los niveles de lipoproteínas de alta densidad en los sujetos con hipertrigliceridemia. El grupo con hipercolesterolemia presentó reducción en los niveles de colesterol total y triglicéridos y aumento significativo en los niveles de lipoproteínas de alta densidad (p< 0.01. Conclusiones. El efecto hipolipidemiante de los ácidos grasos polinsaturados n-3 se puso de manifiesto en voluntarios mexicanos bajo las condiciones aquí evaluadas.

  17. Ruminal Biohydrogenation Pattern of Poly-Unsaturated Fatty Acid as Influenced by Dietary Tannin

    Directory of Open Access Journals (Sweden)

    Anuraga Jayanegara

    2013-09-01

    Full Text Available Large amounts of polyunsaturated fatty acids undergo transformation processes in the rumen through microbial biohydrogenation to form fatty acids with higher saturation degree. The respective process explains the high content of saturated fatty acids in products of ruminants and the potential risk of consumers’ health by consuming such products. Various nutritional approaches have been attempted to modulate biohydrogenation process in order to obtain healthier fatty acid profile from consumers’ perspective. The present paper is aimed to review the influence of dietary tannin, a naturally produced plant secondary compound, on the pattern of polyunsaturated fatty acids biohydrogenation occurring in the rumen. The effect of tannin on some key fatty acids involved in biohydrogenation process is presented together with the underlying mechanisms, particularly from up-to-date research results. Accordingly, different form of tannin as well as different level of the application are also discussed.

  18. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  19. Marine n-3 polyunsaturated fatty acids in patients with end-stage renal failure and in subjects without kidney disease: a comparative study.

    Science.gov (United States)

    Madsen, Trine; Christensen, Jeppe H; Svensson, My; Witt, Petra M; Toft, Egon; Schmidt, Erik B

    2011-03-01

    Patients with end-stage renal disease treated with chronic hemodialysis (HD) are reported to have low levels of marine n-3 polyunsaturated fatty acids (PUFA) in plasma and cell membranes compared with healthy subjects. The aim of this study was to investigate whether n-3 PUFA levels in plasma and cells are lower in HD patients as compared with subjects without kidney disease. A comparative study was carried out. This study was carried out at the Departments of Nephrology and Cardiology, Aalborg Hospital, Aarhus University Hospital, Denmark. This study consisted of 2 study populations comprising HD patients and 5 study populations comprising subjects without kidney disease. The fatty acid distribution in plasma phospholipids and platelet phospholipids was measured using gas chromatography. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) levels in plasma or serum phospholipids and platelet phospholipids in HD patients were compared with n-3 PUFA levels in subjects without kidney disease. EPA and DHA were lower and AA/EPA was higher in plasma/serum phospholipids in HD patients than in subjects without kidney disease. Similarly, higher AA and AA/EPA and lower EPA and DHA levels were found in platelet phospholipids of HD patients. Adjustment for gender, age, and habitual intake of fish and fish oil supplements did not change these results. HD patients have lower n-3 PUFA levels in plasma and cells compared with subjects without kidney disease. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Fish and long-chain n-3 polyunsaturated fatty acid intakes during pregnancy and risk of postpartum depression: a prospective study based on a large national birth cohort

    DEFF Research Database (Denmark)

    Strøm, Marin; Mortensen, Erik Lykke; Halldorsson, Thorhallur I

    2009-01-01

    BACKGROUND: Mothers may be reluctant to receive medical treatment of postpartum depression (PPD), despite the detrimental consequences the disorder can impose on mother and child. Research on alternative methods of prevention and treatment of PPD is warranted. Previous studies have suggested...... that long-chain n-3 polyunsaturated fatty acids (PUFAs) might have a beneficial effect on depression. OBJECTIVE: The objective was to explore the association between intake of fish and n-3 PUFAs during pregnancy and PPD in the Danish National Birth Cohort (DNBC). DESIGN: Exposure information from the DNBC...... was linked to the Danish patient and prescription registries for data on clinically identified cases of depression up to 1 y postpartum. Intake of fish and n-3 PUFAs was assessed in midpregnancy with a food-frequency questionnaire. Admission to the hospital for PPD (PPD-admission) and prescription...

  1. [Comparative study between two different sources of n-3 poliunsaturated fatty acids and it effect on thymus and lipid profile in rats].

    Science.gov (United States)

    Fernandez, Inés; Pallaro, Anabel N; Slobodianik, Nora H

    2007-06-01

    In the present paper we analyzed the effect caused by different recovery diets enriched with n-3 polyunsaturated fatty acids (PUFA n-3) on thymus and serum lipid pattern. Severe depleted weanling Wistar rats (D) were divided in three groups that received during 10 days a 20% casein diet supplemented with EPA+DHA (group Cas), a 20% protein milk diet prepared using a commercial reduced-fat product enriched with linolenic and linoleic acids (group L) and a 20% casein diet as control group C. Cas and L gave each other 24 mg/day of PUFA n-3 being the ratio n-6/n-3 8.1/1 and 7.6/1, respectively. Thymus was removed and weighted and cell number were determined; blood was recollected and Total cholesterol, triacylglycerol, HDL and LDL-cholesterol fractions and myristic, palmitic, stearic, oleic, linoleic, linolenic, araquidonic, EPA and DHA fatty acid concentrations were measured in serum. Statistical analysis was performed using Anova test. Cell number were higher (p<0.01) in Cas (44.48+/-8.20) and in L (56.45+/-14.72) when compared to group D (1.80+/-0.70) and group C (23.70+/-4.04). L presented lower values of cholesterol, HDL and LDL-cholesterol (p<0.01) and higher values of triacylglycerol (p<0.05) when compared to Cas, being EPA (p<0.05) and DHA (p<0.01) higher in Cas. Being PUFA n-3 contribution the same in Cas and L, both diets were able to reverse the thymic athropy presenting a different hipolipemic behavior due to the different sources of PUFA n-3 used in the diets.

  2. Dietary fatty acids were not independently associated with lipoprotein subclasses in elderly women.

    Science.gov (United States)

    Alaghehband, Fatemeh Ramezan; Lankinen, Maria; Värri, Miika; Sirola, Joonas; Kröger, Heikki; Erkkilä, Arja T

    2017-07-01

    Dietary fatty acids are known to affect serum lipoproteins; however, little is known about the associations between consumption of dietary fatty acids and lipoprotein subclasses. In this study, we hypothesized that there is an association between dietary fatty acids and lipoprotein subclasses and investigated the cross-sectional association of dietary fat intake with subclasses of lipoproteins in elderly women. Altogether, 547 women (aged ≥65 years) who were part of OSTPRE cohort participated. Dietary intake was assessed by 3-day food records, lifestyle, and health information obtained through self-administrated questionnaires, and lipoprotein subclasses were determined by nuclear magnetic resonance spectroscopy. To analyze the associations between fatty acids and lipoprotein subclasses, we used Pearson and Spearman correlation coefficients and the analysis of covariance (ANCOVA) test with, adjustment for physical activity, body mass index, age, smoking status, and intake of lipid-lowering drugs. There were significant correlations between saturated fatty acids (SFA; % of energy) and concentrations of large, medium, and small low-density lipoproteins (LDL); total cholesterol in large, medium, and small LDL; and phospholipids in large, medium, and small LDL, after correction for multiple testing. After adjustment for covariates, the higher intake of SFA was associated with smaller size of LDL particles (P = .04, ANCOVA) and lower amount of triglycerides in small very low-density lipoproteins (P = .046, ANCOVA). However, these associations did not remain significant after correction for multiple testing. In conclusion, high intake of SFA may be associated with the size of LDL particles, but the results do not support significant, independent associations between dietary fatty acids and lipoprotein subclasses. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  4. The effect of n-3 fatty acids and coenzyme Q10 supplementation on neutrophil leukotrienes, mediators of inflammation resolution and myeloperoxidase in chronic kidney disease.

    Science.gov (United States)

    Barden, Anne E; Shinde, Sujata; Burke, Valerie; Puddey, Ian B; Beilin, Lawrence J; Irish, Ashley B; Watts, Gerald F; Mori, Trevor A

    2018-03-22

    Neutrophils release leukotriene (LT)B 4 and myeloperoxidase (MPO) that may be important mediators of chronic inflammation in chronic kidney disease (CKD). The n-3 fatty acids (n-3 FA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have the potential to attenuate inflammation through production of LTB 5 and the Specialized Proresolving Lipid Mediators (SPM) that promote the resolution of inflammation. In animal models, coenzyme Q10 (CoQ) also attenuates inflammation by reducing MPO and LTB 4 . This study evaluated the independent and combined effects of n-3 FA and CoQ supplementation on neutrophil leukotrienes, the pro-inflammatory eicosanoid 5-hydroxyeicosatetraenoic acid (5-HETE), SPM, and plasma MPO, in patients with CKD. In a double-blind, placebo-controlled intervention of factorial design, 85 patients with CKD were randomized to either n-3 FA (4 g), CoQ (200 mg), both supplements, or control (4 g olive oil), daily for 8 weeks. Plasma MPO and calcium ionophore-stimulated neutrophil release of LTs, 5-HETE and SPM were measured at baseline and after 8 weeks. Seventy four patients completed the intervention. n-3 FA, but not CoQ, significantly increased neutrophil LTB 5 (P n-3 FA or CoQ. Plasma MPO was significantly reduced with n-3 FA alone (P = 0.013) but not when given in combination with CoQ. n-3 FA supplementation in patients with CKD leads to increased neutrophil release of LTB 5 and several SPM, as well as a reduction in plasma MPO that may have important implications for limiting chronic inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Serum long-chain n-3 polyunsaturated fatty acids, mercury, and risk of sudden cardiac death in men: a prospective population-based study.

    Directory of Open Access Journals (Sweden)

    Jyrki K Virtanen

    Full Text Available OBJECTIVES: Fish consumption has been associated with reduced risk of cardiovascular diseases (CVD, especially sudden cardiac death (SCD. Fish is the major source of long-chain n-3 polyunsaturated fatty acids (PUFA eicosapentaenoic acid and docosahexaenoic acid. It is also a major source of methylmercury, which was associated with increased risk of CVD in this study population. Impact of interaction between long-chain n-3 PUFA and methylmercury on the SCD risk is unknown. METHODS: A total of 1857 men from the prospective, population-based Kuopio Ischaemic Heart Disease Risk Factor study, aged 42-60 years and free of CVD at baseline in 1984-1989, were studied. Serum long-chain n-3 PUFA was used as the marker for long-chain n-3 PUFA intake and hair mercury as the marker for mercury exposure. RESULTS: During the mean follow-up of 20.1 years, 91 SCD events occurred. In the multivariate Cox proportional hazards regression models, serum long-chain n-3 PUFA concentration was not associated with the risk of SCD until hair mercury was accounted for; then the hazard ratio (HR in the highest vs. lowest tertile was 0.54 [95% confidence interval (CI 0.32 to 0.91, p for trend = 0.046]. When the analyses were stratified by hair mercury content, among those with lower hair mercury, each 0.5 percentage unit increase in the serum long-chain n-3 PUFA was associated with HR of 0.77 (95% CI 0.64 to 0.93, whereas no association was seen among those with higher hair mercury (p for interaction = 0.01. Among the individual long-chain n-3 PUFA, docosahexaenoic acid was most strongly associated with the risk. CONCLUSION: High exposure to mercury may reduce the benefits of long-chain n-3 PUFA on SCD.

  6. Serum Long-Chain n-3 Polyunsaturated Fatty Acids, Mercury, and Risk of Sudden Cardiac Death in Men: A Prospective Population-Based Study

    Science.gov (United States)

    Virtanen, Jyrki K.; Laukkanen, Jari A.; Mursu, Jaakko; Voutilainen, Sari; Tuomainen, Tomi-Pekka

    2012-01-01

    Objectives Fish consumption has been associated with reduced risk of cardiovascular diseases (CVD), especially sudden cardiac death (SCD). Fish is the major source of long-chain n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid and docosahexaenoic acid. It is also a major source of methylmercury, which was associated with increased risk of CVD in this study population. Impact of interaction between long-chain n-3 PUFA and methylmercury on the SCD risk is unknown. Methods A total of 1857 men from the prospective, population-based Kuopio Ischaemic Heart Disease Risk Factor study, aged 42–60 years and free of CVD at baseline in 1984–1989, were studied. Serum long-chain n-3 PUFA was used as the marker for long-chain n-3 PUFA intake and hair mercury as the marker for mercury exposure. Results During the mean follow-up of 20.1 years, 91 SCD events occurred. In the multivariate Cox proportional hazards regression models, serum long-chain n-3 PUFA concentration was not associated with the risk of SCD until hair mercury was accounted for; then the hazard ratio (HR) in the highest vs. lowest tertile was 0.54 [95% confidence interval (CI) 0.32 to 0.91, p for trend  = 0.046]. When the analyses were stratified by hair mercury content, among those with lower hair mercury, each 0.5 percentage unit increase in the serum long-chain n-3 PUFA was associated with HR of 0.77 (95% CI 0.64 to 0.93), whereas no association was seen among those with higher hair mercury (p for interaction  = 0.01). Among the individual long-chain n-3 PUFA, docosahexaenoic acid was most strongly associated with the risk. Conclusion High exposure to mercury may reduce the benefits of long-chain n-3 PUFA on SCD. PMID:22815906

  7. The n-3 Polyunsaturated Fatty Acids Supplementation Improved the Cognitive Function in the Chinese Elderly with Mild Cognitive Impairment: A Double-Blind Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Yacong Bo

    2017-01-01

    Full Text Available Objective: Intake of n-3 polyunsaturated fatty acids (n-3 PUFAs may protect against mild cognitive impairment (MCI. However, there is still a lack of the n-3 PUFAs intervention in the elderly with MCI in China. The aim of the present study was to investigate the effect of n-3 PUFA supplementation on cognitive function in the Chinese elderly with MCI. Methods: Eighty six MCI individuals aged 60 years or older were randomly assigned to receive either n-3 PUFAs (480 mg DHA and 720 mg EPA per day, n = 44 or placebo (olive oil, n = 42 capsules. The changes of cognitive functions were assessed using Basic Cognitive Aptitude Tests (BCAT. Results: The mean age of participants was 71 years old, and 59% of the participants were men. n-3 PUFA supplementation was associated with improved total BCAT scores, perceptual speed, space imagery efficiency, and working memory (p < 0.01, but not with mental arithmetic efficiency or recognition memory (p > 0.05. Subgroup analysis by sex showed that n-3 PUFAs significantly improved perceptual speed (p = 0.001, space imagery efficiency (p = 0.013, working memory (p = 0.018, and total BCAT scores (p = 0.000 in males. However, in females, the significant beneficial effects can only be observed in perceptual speed (p = 0.027, space imagery efficiency (p = 0.006, and total BCAT scores (p = 0.015—not working memory (p = 0.113. Conclusion: n-3 PUFAs can improve cognitive function in people with MCI. Further studies with different fish oil dosages, longer intervention periods, and larger sample sizes should be investigated before definite recommendations can be made.

  8. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    Directory of Open Access Journals (Sweden)

    Hetland Harald

    2007-10-01

    Full Text Available Abstract Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle. The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5, DPA (22:5 and DHA (22:6, thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form may increase the concentration of very long-chain omega-3 fatty acids in muscle.

  9. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans

    Directory of Open Access Journals (Sweden)

    Hamilton Gavin

    2008-04-01

    Full Text Available Abstract Background This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder. Methods Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30. Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 × 70 × 70 mm3 voxel. The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra. Results The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (rs = 0.714, p Conclusion Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak.

  10. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking.

    Science.gov (United States)

    Valencak, Teresa G; Gamsjäger, Lisa; Ohrnberger, Sarah; Culbert, Nicole J; Ruf, Thomas

    2015-06-27

    Intensive farming of livestock along with recent food scandals and consumer deception have increased awareness about risks for human nutrition. In parallel, the demand for meat obtained under more natural conditions from animals that can freely forage has largely increased. Interestingly, the consumption of game meat has not become more common despite its excellent quality and content of polyunsaturated fatty acids (PUFAs). We addressed the question if game meat fatty acid composition is modified through kitchen preparation. By analysing muscle fatty acid (FA) composition (polar and total lipids) of five European game species in a raw and a processed state, we aimed to quantify the proportion of PUFA that are oxidised and hydrogenated during processing. All game meat species originated from local hunters and free-living individuals. To mimic a realistic situation a professional chef prepared the meat samples with gentle use of heat in a standardised way. Expectedly, the overall content of polyunsaturated fatty acids declined during the cooking process but the decrease size was cooking does not substantially alter its favourable fatty acid composition. Further research is needed to elucidate species-specific differences and the role of habitat quality and locomotion for tissue composition.

  11. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women.

    Science.gov (United States)

    García-Alonso, F J; Jorge-Vidal, V; Ros, G; Periago, M J

    2012-06-01

    We compared the effects of consumption of n-3 polyunsaturated fatty acids (PUFA)-enriched tomato juice versus plain tomato juice on the serum lipid profile and levels of biomarkers related to antioxidant status and cardiovascular disease (CVD) risk in women. Eighteen healthy women participated in a 2-week intervention trial involving the daily intake of 500 mL of n-3 PUFA-enriched juice (n = 11) or plain tomato juice (n = 7). Each serving of enriched juice provided 250 mg of eicosapentaenoic acid (EPA) plus docosahexanoic acid (DHA). Both juices provided natural antioxidant compounds such as phenolics (181 mg) and lycopene (26.5 mg). Intervention with the enriched juice had no effect on the lipid profile, and serum levels of triglycerides and cholesterol (total, LDL, and HDL) remained unchanged. The serum antioxidant status improved following juice intake, as revealed by an increase in total antioxidant capacity and a slight decrease in lipid peroxidation. The serum levels of homocysteine, a cardiovascular risk factor, decreased following n-3 PUFA-enriched juice consumption. A decrease in vascular adhesion molecule 1 (VCAM-1) levels was also noted after intake of either plain or enriched tomato juice, whereas intercellular adhesion molecule 1 (ICAM-1) levels only decreased following intake of the enriched juice. Overall, stronger positive amelioration of CVD risk factors was observed following the intake of n-3 PUFA-enriched juice than after plain tomato juice consumption, which suggested a possible synergistic action between n-3 PUFAs and tomato antioxidants.

  12. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial.

    Science.gov (United States)

    Pawełczyk, Tomasz; Grancow-Grabka, Marta; Trafalska, Elżbieta; Szemraj, Janusz; Żurner, Natalia; Pawełczyk, Agnieszka

    2018-04-20

    Schizophrenia is associated with shortening of the lifespan mainly due to cardiovascular events, cancer and chronic obstructive pulmonary disease. Both telomere attrition and decrease of telomerase levels were observed in schizophrenia. Polyunsaturated fatty acids (PUFA) influence multiple biochemical mechanisms which are postulated to accelerate telomere shortening and limit the longevity of patients with schizophrenia. Intervention studies based on add-on therapy with n-3 polyunsaturated fatty acids (n-3 PUFA) in patients with schizophrenia did not assess the changes in telomerase levels. A randomized placebo-controlled trial named OFFER was designed to compare the efficacy of a 26-week intervention composed of either 2.2g/day of n-3 PUFA or olive oil placebo with regard to symptom severity in first-episode schizophrenia patients. The secondary outcome measure of the study was to describe the association between the clinical effect of n-3 PUFA and changes in telomerase levels. Seventy-one patients aged 16-35 were enrolled in the study and randomly assigned to the study arms. The Positive and Negative Syndrome Scale (PANSS) was used to assess the change in symptom severity. Telomerase levels of peripheral blood mononuclear cells (PBMC) were assessed at three points: at baseline and at weeks 8 and 26 of the intervention. A significantly greater increase in PBMC telomerase levels in the intervention group compared to placebo was observed (p<0.001). Changes in telomerase levels significantly and inversely correlated with improvement in depressive symptoms and severity of the illness. The efficacy of a six-month intervention with n-3 PUFA observed in first-episode schizophrenia may be related to an increase in telomerase levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. N-3 polyunsaturated fatty acids improve lipoprotein particle size and concentration in Japanese patients with type 2 diabetes and hypertriglyceridemia: a pilot study.

    Science.gov (United States)

    Ide, Kana; Koshizaka, Masaya; Tokuyama, Hirotake; Tokuyama, Takahiko; Ishikawa, Takahiro; Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2018-03-15

    Patients with type 2 diabetes are at high risk for cardiovascular disease. Although hydroxymethylglutaryl-CoA reductase inhibitors (statins) can reduce cardiovascular events, residual risk remains even after target low-density lipoprotein cholesterol (LDL-C) levels have been achieved. Lipoprotein particle size and fraction changes are thought to contribute to such risks. The purpose of this study was to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid and docosahexaenoic acid, on lipoprotein particle size, concentration, and glycemic control in Japanese patients with type 2 diabetes and hypertriglyceridemia. This was a multicenter, prospective, open-label, single arm study. We enrolled 14 patients with type 2 diabetes and hypertriglyceridemia treated with statins and dipeptidyl peptidase-4 inhibitors with glycated hemoglobin (HbA1c) n-3 PUFAs for 12 weeks. Lipoprotein particle sizes, concentrations, lipoprotein insulin resistance (LPIR) scores, lipid profiles, HbA1c, and fasting plasma glucose (FPG) were measured before and after treatment. Lipoprotein profiles were measured by nuclear magnetic resonance spectroscopy. Data were analyzed using Wilcoxon signed-rank tests. Concentrations of total cholesterol (P n-3 PUFA administration. N-3 PUFAs decreased the size of very low-density lipoprotein (VLDL; P N-3 PUFAs partly improved atherogenic lipoprotein particle size and concentration, and produced less atherogenic lipoprotein subclass ratios in patients that achieved target LDL-C levels and glycemic control. These results suggest that n-3 PUFAs may reduce residual cardiovascular risk factors in statin-treated patients with type 2 diabetes and hypertriglyceridemia. The study was registered at UMIN-ID: UMIN000013776 .

  14. Marine fish oil is more potent than plant-based n-3 polyunsaturated fatty acids in the prevention of mammary tumors.

    Science.gov (United States)

    Liu, Jiajie; Abdelmagid, Salma A; Pinelli, Christopher J; Monk, Jennifer M; Liddle, Danyelle M; Hillyer, Lyn M; Hucik, Barbora; Silva, Anjali; Subedi, Sanjeena; Wood, Geoffrey A; Robinson, Lindsay E; Muller, William J; Ma, David W L

    2017-12-27

    Marine-derived n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to inhibit mammary carcinogenesis. However, evidence regarding plant-based α-linolenic acid (ALA), the major n-3 PUFA in the Western diet, remains equivocal. The objective of this study was to examine the effect of lifelong exposure to plant- or marine-derived n-3 PUFAs on pubertal mammary gland and tumor development in MMTV-neu(ndl)-YD5 mice. It is hypothesized that lifelong exposure to n-3 PUFA reduces terminal end buds during puberty leading to delayed tumor onset, volume and multiplicity. It is further hypothesized that plant-derived n-3 PUFAs will exert dose-dependent effects. Harems of MMTV-FVB males were bred with wild-type females and fed either a (1) 10% safflower (10% SF, n-6 PUFA, control), (2) 10% flaxseed (10% FS), (3) 7% safflower plus 3% flaxseed (3% FS) or (4) 7% safflower plus 3% menhaden (3% FO) diet. Female offspring were maintained on parental diets. Compared to SF, 10% FS and 3% FO reduced (P<.05) terminal end buds at 6 weeks and tumor volume and multiplicity at 20 weeks. A dose-dependent reduction of tumor volume and multiplicity was observed in mice fed 3% and 10% FS. Antitumorigenic effects were associated with altered HER2, pHER-2, pAkt and Ki-67 protein expression. Compared to 10% SF, 3% FO significantly down-regulated expression of genes involved in eicosanoid synthesis and inflammation. From this, it can be estimated that ALA was 1/8 as potent as EPA+DHA. Thus, marine-derived n-3 PUFAs have greater potency versus plant-based n-3 PUFAs. Copyright © 2018. Published by Elsevier Inc.

  15. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse.

    Directory of Open Access Journals (Sweden)

    James J Pestka

    Full Text Available Mortality from systemic lupus erythematosus (SLE, a prototypical autoimmune disease, correlates with the onset and severity of kidney glomerulonephritis. There are both preclinical and clinical evidence that SLE patients may benefit from consumption of n-3 polyunsaturated fatty acids (PUFA found in fish oil, but the mechanisms remain unclear. Here we employed the NZBWF1 SLE mouse model to compare the effects of dietary lipids on the onset and severity of autoimmune glomerulonephritis after consuming: 1 n-3 PUFA-rich diet containing docosahexaenoic acid-enriched fish oil (DFO, 2 n-6 PUFA-rich Western-type diet containing corn oil (CRN or 3 n-9 monounsaturated fatty acid (MUFA-rich Mediterranean-type diet containing high oleic safflower oil (HOS. Elevated plasma autoantibodies, proteinuria and glomerulonephritis were evident in mice fed either the n-6 PUFA or n-9 MUFA diets, however, all three endpoints were markedly attenuated in mice that consumed the n-3 PUFA diet until 34 wk of age. A focused PCR array was used to relate these findings to the expression of 84 genes associated with CD4+ T cell function in the spleen and kidney both prior to and after the onset of the autoimmune nephritis. n-3 PUFA suppression of autoimmunity in NZBWF1 mice was found to co-occur with a generalized downregulation of CD4+ T cell-related genes in kidney and/or spleen at wk 34. These genes were associated with the inflammatory response, antigen presentation, T cell activation, B cell activation/differentiation and leukocyte recruitment. Quantitative RT-PCR of representative affected genes confirmed that n-3 PUFA consumption was associated with reduced expression of CD80, CTLA-4, IL-10, IL-18, CCL-5, CXCR3, IL-6, TNF-α and osteopontin mRNAs in kidney and/or spleens as compared to mice fed n-6 PUFA or n-9 MUFA diets. Remarkably, many of the genes identified in this study are currently under consideration as biomarkers and/or biotherapeutic targets for SLE and other

  16. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status.

    Science.gov (United States)

    Lassale, Camille; Castetbon, Katia; Laporte, François; Deschamps, Valérie; Vernay, Michel; Camilleri, Géraldine M; Faure, Patrice; Hercberg, Serge; Galan, Pilar; Kesse-Guyot, Emmanuelle

    2016-03-01

    It is of major importance to measure the validity of self-reported dietary intake using web-based instruments before applying them in large-scale studies. This study aimed to validate self-reported intake of fish, fruit and vegetables, and selected micronutrient intakes assessed by a web-based self-administered dietary record tool used in the NutriNet-Santé prospective cohort study, against the following concentration biomarkers: plasma beta carotene, vitamin C, and n-3 polyunsaturated fatty acids. One hundred ninety-eight adult volunteers (103 men and 95 women, mean age=50.5 years) were included in the protocol: they completed 3 nonconsecutive-day dietary records and two blood samples were drawn 3 weeks apart. The study was conducted in the area of Paris, France, between October 2012 and May 2013. Reported fish, fruit and vegetables, and selected micronutrient intakes and plasma beta carotene, vitamin C, and n-3 polyunsaturated fatty acid levels were compared. Simple and adjusted Spearman's rank correlation coefficients were estimated after de-attenuation for intra-individual variation. Regarding food groups in men, adjusted correlations ranged from 0.20 for vegetables and plasma vitamin C to 0.49 for fruits and plasma vitamin C, and from 0.40 for fish and plasma c20:5 n-3 (eicosapentaenoic acid [EPA]) to 0.55 for fish and plasma c22:6 n-3 (docosahexaenoic acid). In women, correlations ranged from 0.13 (nonsignificant) for vegetables and plasma vitamin C to 0.41 for fruits and vegetables and plasma beta carotene, and from 0.27 for fatty fish and EPA to 0.54 for fish and EPA+docosahexaenoic acid. Regarding micronutrients, adjusted correlations ranged from 0.36 (EPA) to 0.58 (vitamin C) in men and from 0.32 (vitamin C) to 0.38 (EPA) in women. The findings suggest that three nonconsecutive web-based dietary records provide reasonable estimates of true intake of fruits, vegetables, fish, beta carotene, vitamin C, and n-3 fatty acids. Along with other validation

  17. Fibroblast Growth Factor-21 and the Beneficial Effects of Long-Chain n-3 Polyunsaturated Fatty Acids

    Czech Academy of Sciences Publication Activity Database

    Villarroya, J.; Flachs, Pavel; Redondo-Angulo, I.; Giralt, M.; Medříková, Daša; Villarroya, F.; Kopecký, Jan; Planavila, A.

    2014-01-01

    Roč. 49, č. 11 (2014), s. 1081-1089 ISSN 0024-4201 R&D Projects: GA ČR(CZ) GA13-00871S Institutional support: RVO:67985823 Keywords : fibroblast growth factor-21 * long-chain n-3 polyunsaturated fat ty acids Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.854, year: 2014

  18. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues

    Czech Academy of Sciences Publication Activity Database

    Schneedorferová, Ivana; Tomčala, Aleš; Valterová, Irena

    2015-01-01

    Roč. 176, JUN 1 2015 (2015), s. 205-211 ISSN 0308-8146 Institutional support: RVO:60077344 ; RVO:61388963 Keywords : n-3 PUFA * n-6 PUFA * Heat treatment * Fish tissue * HPLC/MS * GC/MS Subject RIV: CE - Biochemistry; CB - Analytical Chemistry, Separation (UOCHB-X) Impact factor: 4.052, year: 2015

  19. Effects of dietary flaxseed oil on the muscle fatty acid composition in ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the effects of dietary flaxseed oil on the fatty acid (FA) composition of two types of muscles, longissimus dorsi (LD) and semitendinosus (ST), of Mangalitsa pigs reared in an extensive system. Fourteen Mangalitsa castrated pigs, 55 ± 8 kg, 240 ± 12 days of age, were randomly assigned ...

  20. Effect of dietary fat source on fatty acid profile and lipid oxidation of ...

    African Journals Online (AJOL)

    This study investigated the effects of supplementary dietary lipid sources on the fatty acid profile and lipid oxidation of eggs. Five isoenergetic (12.6 MJ AME/kg DM) and isonitrogenous (170 g CP/kg DM) diets were formulated, using a control diet (50 : 50 blend of fish- and linseed oil), fish oil, sunflower oil, high oleic acid ...

  1. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows

    DEFF Research Database (Denmark)

    Vargas-Bello-Pérez, Einar; Íñiguez-González, Gonzalo; Cancino-Padilla, Nathaly

    2016-01-01

    ABSTRACT: The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were...

  2. Dietary fatty acids and the stress response of fish. Arachidonic acid in seabream and tilapia

    NARCIS (Netherlands)

    Anholt, R.D. van

    2004-01-01

    A key factor in the production of fish in commercial aquaculture is the optimization of the artificial diets, not only to achieve optimal growth, but also to maximize fish health. Evidence is accumulating that dietary lipids, particularly the fatty acid composition, can have a direct effect on the

  3. DIETARY OMEGA-3 FATTY ACIDS MODIFIED THE ASSOCIATION OF PULMONARY FUNCTION WITH AIR POLLUTION IN ADOLESCENTS

    Science.gov (United States)

    Previous children's studies in North America and Germany have shown that ambient sulfate particles are associated with an increased prevalence of bronchitis and decreased lung function. We have now investigated the ability of dietary intake of anti-inflammatory omega-3 fatty aci...

  4. Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk

    NARCIS (Netherlands)

    Wanders, A.J.; Alssema, M.; Koning, de E.J.P.; Cessie, Le S.; Vries, de J.H.; Zock, P.L.; Rosendaal, F.R.; Heijer, den M.; Mutsert, de R.

    2017-01-01

    Objective: The aim of this study was to examine the relations between intakes of total, saturated, mono-unsaturated, poly-unsaturated and trans fatty acids (SFA, MUFA, PUFA and TFA), and their dietary sources (dairy, meat and plant) with markers of type 2 diabetes risk. Subjects/Methods: This was

  5. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity in obese subjects: A randomized placebo controlled trial.

    Science.gov (United States)

    Razny, Urszula; Kiec-Wilk, Beata; Polus, Anna; Goralska, Joanna; Malczewska-Malec, Malgorzata; Wnek, Dominika; Zdzienicka, Anna; Gruca, Anna; Childs, Caroline E; Kapusta, Maria; Slowinska-Solnica, Krystyna; Calder, Philip C; Dembinska-Kiec, Aldona

    2015-12-01

    Caloric restriction and n-3 polyunsaturated fatty acid (PUFA) supplementation protect from some of the metabolic complications. The aim of this study was to assess the influence of a low calorie diet with or without n-3 PUFA supplementation on glucose dependent insulinotropic polypeptide (GIP) output and insulin sensitivity markers in obese subjects. Obese, non-diabetic subjects (BMI 30-40 kg/m(2)) and aged 25-65 yr. were put on low calorie diet (1200-1500 kcal/day) supplemented with either 1.8 g/day n-3 PUFA (DHA/EPA, 5:1) (n = 24) or placebo capsules (n = 24) for three months in a randomized placebo controlled trial. Insulin resistance markers and GIP levels were analysed from samples obtained at fasting and during an oral glucose tolerance test (OGTT). Caloric restriction with n-3 PUFA led to a decrease of insulin resistance index (HOMA-IR) and a significant reduction of insulin output as well as decreased GIP secretion during the OGTT. These effects were not seen with caloric restriction alone. Changes in GIP output were inversely associated with changes in red blood cell EPA content whereas fasting GIP level positively correlated with HOMA-IR index. Blood triglyceride level was lowered by caloric restriction with a greater effect when n-3 PUFA were included and correlated positively with fasting GIP level. Three months of caloric restriction with DHA + EPA supplementation exerts beneficial effects on insulin resistance, GIP and triglycerides. Combining caloric restriction and n-3 PUFA improves insulin sensitivity, which may be related to a decrease of GIP levels.

  6. The effect of n-3 long chain fatty acids supplementation on plasma peroxisome proliferator activated receptor gamma and thyroid hormones in obesity

    Directory of Open Access Journals (Sweden)

    Parizad Taraghijou

    2012-01-01

    Full Text Available Background: Peroxisome proliferator-activated receptor gamma (PPAR γ is a transcription factor, which is abundantly expressed in adipose tissue and has a direct link to adiposity. It seems that long-chain polyunsaturated fatty acids (LC-PUFAs can regulate PPAR γ expression. The purpose of this study was to investigate the effects of n-3LC PUFA supplementation on plasma levels of PPAR γ and thyroid hormones in obesity. Materials and Methods: In a randomized double-blind controlled trial, 66 subjects with obesity were assigned to 2 groups. Participants in intervention group consumed omega3 capsules contained 1000 mg n-3 fatty acids (180 mg of eicosapentaenoic acid [EPA] and 120 mg of docosahexaenoic acid [DHA] and placebo group consumed placebo capsules contained paraffin twice a day for 4 wk. Fasting blood samples and weight measurements were collected at the baseline and at the end of the trial. Plasma PPAR γ and thyroid hormones were measured by ELISA. Data were analyzed using a repeated measure model-two factor for comparing two groups in two times. Results: No significant changes were observed in PPAR γ levels between and within the groups after supplementation (P>0.05. N-3LC PUFA supplementation significantly increased T4 levels after 4 wk (P<0.05 but T3 and TSH did not change significantly. Conclusion: Our study showed that n-3LC PUFAs supplementation increased T4 levels. However, no significant changes in T3, TSH and PPAR γ plasma levels were observed in obese adults.

  7. Randomized Controlled Trial Examining the Effects of Fish Oil and Multivitamin Supplementation on the Incorporation of n-3 and n-6 Fatty Acids into Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Andrew Pipingas

    2014-05-01

    Full Text Available The present randomized, placebo-controlled, double-blind, parallel-groups clinical trial examined the effects of fish oil and multivitamin supplementation on the incorporation of n-3 and n-6 fatty acids into red blood cells. Healthy adult humans (n = 160 were randomized to receive 6 g of fish oil, 6 g of fish oil plus a multivitamin, 3 g of fish oil plus a multivitamin or a placebo daily for 16 weeks. Treatment with 6 g of fish oil, with or without a daily multivitamin, led to higher eicosapentaenoic acid (EPA composition at endpoint. Docosahexaenoic acid (DHA composition was unchanged following treatment. The long chain LC n-3 PUFA index was only higher, compared to placebo, in the group receiving the combination of 6 g of fish oil and the multivitamin. Analysis by gender revealed that all treatments increased EPA incorporation in females while, in males, EPA was only significantly increased by the 6 g fish oil multivitamin combination. There was considerable individual variability in the red blood cell incorporation of EPA and DHA at endpoint. Gender contributed to a large proportion of this variability with females generally showing higher LC n-3 PUFA composition at endpoint. In conclusion, the incorporation of LC n-3 PUFA into red blood cells was influenced by dosage, the concurrent intake of vitamin/minerals and gender.

  8. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials

    Directory of Open Access Journals (Sweden)

    Hajar Mazahery

    2017-02-01

    Full Text Available Omega-3 long chain polyunsaturated fatty acid supplementation (n-3 LCPUFA for treatment of Autism Spectrum Disorder (ASD is popular. The results of previous systematic reviews and meta-analyses of n-3 LCPUFA supplementation on ASD outcomes were inconclusive. Two meta-analyses were conducted; meta-analysis 1 compared blood levels of LCPUFA and their ratios arachidonic acid (ARA to docosahexaenoic acid (DHA, ARA to eicosapentaenoic acid (EPA, or total n-6 to total n-3 LCPUFA in ASD to those of typically developing individuals (with no neurodevelopmental disorders, and meta-analysis 2 compared the effects of n-3 LCPUFA supplementation to placebo on symptoms of ASD. Case-control studies and randomised controlled trials (RCTs were identified searching electronic databases up to May, 2016. Mean differences were pooled and analysed using inverse variance models. Heterogeneity was assessed using I2 statistic. Fifteen case-control studies (n = 1193 were reviewed. Compared with typically developed, ASD populations had lower DHA (−2.14 [95% CI −3.22 to −1.07]; p < 0.0001; I2 = 97%, EPA (−0.72 [95% CI −1.25 to −0.18]; p = 0.008; I2 = 88%, and ARA (−0.83 [95% CI, −1.48 to −0.17]; p = 0.01; I2 = 96% and higher total n-6 LCPUFA to n-3 LCPUFA ratio (0.42 [95% CI 0.06 to 0.78]; p = 0.02; I2 = 74%. Four RCTs were included in meta-analysis 2 (n = 107. Compared with placebo, n-3 LCPUFA improved social interaction (−1.96 [95% CI −3.5 to −0.34]; p = 0.02; I2 = 0 and repetitive and restricted interests and behaviours (−1.08 [95% CI −2.17 to −0.01]; p = 0.05; I2 = 0. Populations with ASD have lower n-3 LCPUFA status and n-3 LCPUFA supplementation can potentially improve some ASD symptoms. Further research with large sample size and adequate study duration is warranted to confirm the efficacy of n-3 LCPUFA.

  9. Effect of Dietary Marine Microalgae ( Powder on Egg Production, Blood Lipid Profiles, Egg Quality, and Fatty Acid Composition of Egg Yolk in Layers

    Directory of Open Access Journals (Sweden)

    J. H. Park

    2015-03-01

    Full Text Available Two hundred and sixteen Institut de Sélection Animale (ISA brown layers (40 wks of age were studied for 6 wks to examine the effect of microalgae powder (MAP on egg production, egg quality, blood lipid profile, and fatty acid concentration of egg yolk. Dietary treatments were as follows: i CON (basal diet, ii 0.5% MAP (CON+0.5% Schizochytrium powder, and iii 1.0% MAP (CON+1.0% Schizochytrium powder. From 44 to 46 wks, egg production was higher in 1.0% MAP treatment than in control treatment (linear, p = 0.034; however, there was no difference on the egg production from 40 to 43 wks (p>0.05. Serum triglyceride and total cholesterol were significantly reduced in the groups fed with MAP, compared to those in groups fed with control diets (Quadratic, p = 0.034 and p = 0.039, respectively. Inclusion of 0.5% MAP in the diet of layers improved egg yolk color, compared with hens fed with basal diet at 46 wks (quadratic, p = 0.044. Eggshell thickness was linearly increased in MAP-fed treatments at 46th wk (p<0.05. Concentration of yolk docosahexaenoic acid (DHA; C22:6n-3 was increased in treatment groups fed with MAP (linear, p<0.05. The n-6 fatty acids, n-6/n-3 fatty acid, and unsaturated fatty acid/saturated fatty acid were decreased in treatment groups fed with MAP (linear, p<0.05. These results suggest that MAP improved the egg production and egg quality, and may affect serum lipid metabolites in the layers. In addition, MAP increases yolk DHA levels, and deceases n-6/n-3 fatty acid ratio.

  10. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Lisanne C [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Yeo, Heegook; Kaelin, Brenna R; Lang, Anna L; Bushau, Adrienne M; Douglas, Amanda N [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Cave, Matt [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Robley Rex Louisville VAMC, Louisville, KY 40206 (United States); Arteel, Gavin E [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); McClain, Craig J [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Robley Rex Louisville VAMC, Louisville, KY 40206 (United States); and others

    2016-11-15

    Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE

  11. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice

    International Nuclear Information System (INIS)

    Anders, Lisanne C; Yeo, Heegook; Kaelin, Brenna R; Lang, Anna L; Bushau, Adrienne M; Douglas, Amanda N; Cave, Matt; Arteel, Gavin E; McClain, Craig J

    2016-01-01

    Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE

  12. Effect of Dietary Omega-3 to Omega-6 Ratio on Growth Performance, Immune Response, Carcass Traits and Meat Fatty Acids Profile of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    El-Katcha MI

    2014-12-01

    Full Text Available This experiment was conducted to study the effect of dietary n-3 to n-6 ratio on performance, immune response, blood parameters and fatty acids profile of broiler chickens. A total number of 192 one day old broiler chicks were randomly alloctted into 6 groups. Chicks of groups 1, 2, 3, 4, 5 and 6 were fed balanced corn-soybean diets containing n-3 to n-6 ratios of 1:1, 1:3, 1:5, 1:7, 1:9 and 1:11, respectively. Different n-3 to n-6 ratioes had no significant effect on growth performance parameters. The best dressing percentage was recorded in group 3 while no significant difference was noticed in the weight of organs except for a significant increase in the weight of gizzard in group 4. There was a variable effect of the n-3 to n-6 ratio on parameters of innate immunity. The highest lymphocyte percentage was detected in group 5. Antibody titers against Newcastle disease (ND and Avian Influenza (AI increased in wider ratio groups. The lowest glucose level was detected in group 4. Though serum albumin and total protein were decreased in group 3, serum globulin increased in groups 2 and 3. The lowest cholesterol content of breast meat was detected in group 3 and the highest content was detected in group 6. The cholesterol content of the thigh recorded opposite results. Narrow dietary n-3 to n-6 groups tended to record higher n-3 PUFAs content especially DHA in breast meat. While wider n-3 to n-6 ratio groups tended to deposit more SFAS, MUFAs and n-6 PUFAs than the narrower ratio groups. The best n-3 to n-6 ratio of breast meat was recorded in group 2 receiving dietary n-3 to n-6 ratio of 1:3. From the results of this study, it could be concluded that the dietary n-3 to n-6 ratio had no significant effect on growth performance of broiler chickens. The best dressing percentage was detected in group with the ratio of 1:5. The ratio of 1:3 recorded the best health state parameters.

  13. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    Science.gov (United States)

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P fatty acids in plasma. Alfalfa and CSFA had mutual interaction effect on fat digestion and plasma triglycerides.

  14. Effect of dietary lipid on the growth, fatty acid composition and Δ5 Fads expression of abalone ( Haliotis discus hannai Ino) hepatopancreas

    Science.gov (United States)

    Li, Mingzhu; Mai, Kangsen; Ai, Qinghui; He, Gen; Xu, Wei; Zhang, Wenbing; Zhang, Yanjiao; Zhou, Huihui; Liufu, Zhiguo

    2015-04-01

    This study investigated the effect of dietary lipid on the growth, fatty acid composition and Δ5 fatty acyl desaturase genes ( Fads) expression of juvenile abalone ( Haliotis discus hannai Ino) hepatopancreas. Six purified diets were formulated to contain tripalmitin (TP), olive oil (OO, 72.87% 18:1n-9), grape seed oil (GO, 68.67% 18:2n-6), linseed oil (LO, 70.48% 18:3n-3), ARA oil (AO, 41.81% ARA) or EPA oil (EO, 44.09% EPA and 23.67% DAH). No significant difference in survival rate was observed among abalone fed with different diets. Weight gain rate ( WGR) and daily growth rate of shell length ( DGR SL) were significantly increased in abalone fed with diets containing OO, AO and EO, but decreased in abalone fed with LO diet ( P abalone fed with GO than those fed with TP, OO, LO and EO ( P abalone fed with LO was significantly higher than those in abalone fed with TP, OO, GO and AO ( P abalone fed with OO. The expression of Δ5 Fads in hepatopancreas of abalone was enhanced by high concentration of 18:3n-3 and suppressed by dietary LC-PUFAs; however it was not affected by dietary high concentration of 18:1n-9 or 18:2n-6. These results provided valuable information for understanding the synthesis of LC-PUFAs and nutritional regulation of Δ5 Fads expression in abalone.

  15. Dietary supplementation with dimethylglycine affects broiler performance and plasma metabolites depending on dose and dietary fatty acid profile.

    Science.gov (United States)

    Kalmar, I D; Cools, A; Verstegen, M W A; Huyghebaert, G; Buyse, J; Roose, P; Janssens, G P J

    2011-04-01

    The effect of dietary supplementation with N,N-dimethylglycine sodium salt (Na-DMG) was evaluated in a feeding trial with 1500 1-day-old broiler chicks (Cobb 500). DMG was supplemented at 0, 0.1, 0.2, 0.5 or 1 g Na-DMG/kg feed to a ration with either animal fat (chicken fat) or vegetal fat (soy oil) as main fat source. In the vegetal fat diets, production value was significantly linearly improved by supplementation with DMG up to 11%. Irrespective of dietary fat source, abdominal fat percentage was significantly linearly reduced up to 24% and meat yield tended to increase linearly with DMG level up to 4%. In the vegetal fat groups, DMG significantly lowered abdominal fat pad by up to 38% and tended to increase meat yield up to 6% at the highest dose. Fasted non-esterified fatty acid level significantly decreased with increasing DMG level up to 36% and thiobarbituric acid reactive species (TBARS) decreased with a statistical trend up to 46% at the highest dose. In vegetal fat diets, addition of DMG resulted in significant lower TBARS level by 56% at the highest dose. Finally, a significant quadratic effect on ascites heart index was present in the vegetal fat diets, with a minimal value at 0.5 g Na-DMG/kg. In conclusion, dietary supplementation with DMG may improve technical and slaughter performance, and may reduce oxidative stress and pulmonary hypertension, but the degree of effects is modulated by fatty acid profile of the diet. Herewith, effects are more pronounced in a diet rich in polyunsaturated fatty acids compared with a diet rich in saturated and monounsaturated fatty acids. © 2010 Blackwell Verlag GmbH.

  16. The free fractions of circulating docosahexaenoic acid and eicosapentenoic acid as optimal end-point of measure in bioavailability studies on n-3 fatty acids.

    Science.gov (United States)

    Scarsi, Claudia; Levesque, Ann; Lisi, Lucia; Navarra, Pierluigi

    2015-05-01

    The high complexity of n-3 fatty acids absorption process, along with the huge amount of endogenous fraction, makes bioavailability studies with these agents very challenging and deserving special consideration. In this paper we report the results of a bioequivalence study between a new formulation of EPA+DHA ethyl esters developed by IBSA Institut Biochimique and reference medicinal product present on the Italian market. Bioequivalence was demonstrated according to the criteria established by the EMA Guideline on the Investigation of Bioequivalence. We found that the free fractions represent a better and more sensitive end-point for bioequivalence investigations on n-3 fatty acids, since: (i) the overall and intra-subject variability of PK parameters was markedly lower compared to the same variability calculated on the total DHA and EPA fractions; (ii) the absorption process was completed within 4h, and the whole PK profile could be drawn within 12-15 h from drug administration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Plasma levels of n-3 fatty acids and risk of coronary heart disease among Japanese: The Japan Public Health Center-based (JPHC) study.

    Science.gov (United States)

    Hamazaki, Kei; Iso, Hiroyasu; Eshak, Ehab S; Ikehara, Satoyo; Ikeda, Ai; Iwasaki, Motoki; Hamazaki, Tomohito; Tsugane, Shoichiro

    2018-05-01

    Higher intake of fish or n-3 polyunsaturated fatty acids (PUFAs) has been associated with reduced risk of coronary heart disease (CHD). However, it is unclear whether increased blood levels of n-3 PUFAs are associated with reduced risk of CHD in the Japanese population. The relationship between circulating levels of n-3 PUFAs (eicosapentaenoic acid + docosapentaenoic acid + docosahexaenoic acid) and risk of CHD was examined in a nested case-control study among participants in the Japan Public Health Center (JPHC)-based Study Cohort. Plasma n-3 PUFA phospholipid levels were measured at baseline by gas chromatography in 209 cases with CHD and 418 controls matched for sex, age, date of blood draw, time elapsed since last meal before blood collection, and study location. The CHD cases (n = 209) comprised 168 cases of myocardial infarction and 41 of sudden cardiac death, otherwise classified as 157 non-fatal and 52 fatal coronary events, respectively. Mean duration of follow-up was 13.5 years. Multivariate conditional logistic analysis showed no significant association between n-3 PUFAs and risk of total CHD. The odds ratio (OR) for the highest versus lowest quartiles of plasma n-3 PUFAs was 0.79 (95% confidence interval [95% CI]: 0.41-1.51, p for trend = 0.51). Subtype analysis of CHD revealed that the multivariate ORs for the highest versus lowest quartiles for n-3 PUFAs were 0.91 (95% CI: 0.43-1.89, p for trend = 0.90) for myocardial infarction, 0.08 (95% CI: 0.01-0.88, p for trend = 0.04) for sudden cardiac death, 0.89 (95% CI: 0.42-1.89, p for trend = 0.97) for nonfatal coronary events, and 0.12 (95% CI: 0.02-0.75, p for trend = 0.03) for fatal coronary events. Plasma n-3 PUFA levels were not associated with risk of total CHD but were inversely associated with risks of sudden cardiac death and fatal coronary events among middle-aged Japanese individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dietary structured triacylglycerols containing docosahexaenoic acid given from birth affect visual and auditory performance and tissue fatty acid profiles of rats

    DEFF Research Database (Denmark)

    Christensen, M. M.; Lund, S. P.; Simonsen, L.

    1998-01-01

    To examine whether it is possible to enhance the level of 22:6(n-3) in the central nervous system, newborn rats were fed dietary supplements containing oils with either specific or random triacylglycerol structure, but similar concentrations of polyunsaturated fatty acids. In the specific structu...... in differences in learning ability, but caused changes in visual function, evidenced by higher latency of the b-wave and lower oscillatory potential, and in auditory brainstem response, evidenced by generally greater amplitude of wave la in the group fed specific structured oil....

  19. Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients

    Science.gov (United States)

    Jacobo-Cejudo, M. Gorety; Valdés-Ramos, Roxana; Guadarrama-López, Ana L.; Pardo-Morales, Rosa-Virgen; Martínez-Carrillo, Beatriz E.; Harbige, Laurence S.

    2017-01-01

    Background: Type 2 diabetes mellitus (T2DM) is accompanied by chronic low-grade inflammation, with an imbalance in the secretion of adipokines and, worsening insulin resistance. Supplementation with n-3 PUFA in T2DM decreases inflammatory markers, the purpose of the study was to investigate the effect of n-3 PUFA supplementation on adipokines, metabolic control, and lipid profile in T2DM Mexican adults. Methods: In a randomized, single-blind, placebo-controlled pilot study, 54 patients with T2DM received 520 mg of DHA + EPA-enriched fish-oil (FOG) or a placebo (PG) daily. Baseline and 24-week anthropometric and biochemical measurements included glucose, insulin, glycosylated hemoglobin (Hb1Ac), leptin, adiponectin, resistin, and lipid profile; n-3 PUFA intake was calculated in g/day. Results: Waist circumference and blood glucose showed significant reductions in the FOG group (p = 0.001 and p = 0.011, respectively). Hb1Ac (p = 0.009 and p = 0.004), leptin (p < 0.000 and p < 0.000), and leptin/adiponectin ratio (p < 0.000 and p < 0.000) decreased significantly in both groups after 24 weeks (FOG and PG respectively). Serum resistin (FOG p < 0.000 and PG p = 0.001), insulin (FOG p < 0.000 and PG p < 0.000), and HOMA-IR (FOG p = 0.000 and PG p < 0.000) increased significantly in both groups. FOG had an overall improvement in the lipid profile with a significant decrease in triacylgycerols (p = 0.002) and atherogenic index (p = 0.031); in contrast, the PG group had increased total cholesterol (p < 0.000), non-HDL cholesterol (p < 0.000), and atherogenic index (p = 0.017). Conclusions: We found a beneficial effect of n-3 PUFA supplementation on waist circumference, glucose, Hb1Ac, leptin, leptin/adiponectin ratio, and lipid profile, without significant changes in adiponectin, and increases in resistin, insulin, and HOMA-IR in both groups. PMID:28587203

  20. Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients

    Directory of Open Access Journals (Sweden)

    M. Gorety Jacobo-Cejudo

    2017-06-01

    Full Text Available Background: Type 2 diabetes mellitus (T2DM is accompanied by chronic low-grade inflammation, with an imbalance in the secretion of adipokines and, worsening insulin resistance. Supplementation with n-3 PUFA in T2DM decreases inflammatory markers, the purpose of the study was to investigate the effect of n-3 PUFA supplementation on adipokines, metabolic control, and lipid profile in T2DM Mexican adults. Methods: In a randomized, single-blind, placebo-controlled pilot study, 54 patients with T2DM received 520 mg of DHA + EPA-enriched fish-oil (FOG or a placebo (PG daily. Baseline and 24-week anthropometric and biochemical measurements included glucose, insulin, glycosylated hemoglobin (Hb1Ac, leptin, adiponectin, resistin, and lipid profile; n-3 PUFA intake was calculated in g/day. Results: Waist circumference and blood glucose showed significant reductions in the FOG group (p = 0.001 and p = 0.011, respectively. Hb1Ac (p = 0.009 and p = 0.004, leptin (p < 0.000 and p < 0.000, and leptin/adiponectin ratio (p < 0.000 and p < 0.000 decreased significantly in both groups after 24 weeks (FOG and PG respectively. Serum resistin (FOG p < 0.000 and PG p = 0.001, insulin (FOG p < 0.000 and PG p < 0.000, and HOMA-IR (FOG p = 0.000 and PG p < 0.000 increased significantly in both groups. FOG had an overall improvement in the lipid profile with a significant decrease in triacylgycerols (p = 0.002 and atherogenic index (p = 0.031; in contrast, the PG group had increased total cholesterol (p < 0.000, non-HDL cholesterol (p < 0.000, and atherogenic index (p = 0.017. Conclusions: We found a beneficial effect of n-3 PUFA supplementation on waist circumference, glucose, Hb1Ac, leptin, leptin/adiponectin ratio, and lipid profile, without significant changes in adiponectin, and increases in resistin, insulin, and HOMA-IR in both groups.

  1. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    Science.gov (United States)

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, PDHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Science.gov (United States)

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  3. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Directory of Open Access Journals (Sweden)

    Annie Bouchard-Mercier

    2014-03-01

    Full Text Available A large inter-individual variability in the plasma triglyceride (TG response to an omega-3 polyunsaturated fatty acid (n-3 PUFA supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208 participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA. Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187 and ACOX1 (rs17583163 genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation.

  4. The beneficial effects of n-3 polyunsaturated fatty acids on diet induced obesity and impaired glucose control do not require Gpr120.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available GPR120 (Ffar4 has been postulated to represent an important receptor mediating the improved metabolic profile seen upon ingestion of a diet enriched in polyunsaturated fatty acids (PUFAs. GPR120 is highly expressed in the digestive system, adipose tissue, lung and macrophages and also present in the endocrine pancreas. A new Gpr120 deficient mouse model on pure C57bl/6N background was developed to investigate the importance of the receptor for long-term feeding with a diet enriched with fish oil. Male Gpr120 deficient mice were fed two different high fat diets (HFDs for 18 weeks. The diets contained lipids that were mainly saturated (SAT or mainly n-3 polyunsaturated fatty acids (PUFA. Body composition, as well as glucose, lipid and energy metabolism, was studied. As expected, wild type mice fed the PUFA HFD gained less body weight and had lower body fat mass, hepatic lipid levels, plasma cholesterol and insulin levels and better glucose tolerance as compared to those fed the SAT HFD. Gpr120 deficient mice showed a similar improvement on the PUFA HFD as was observed for wild type mice. If anything, the Gpr120 deficient mice responded better to the PUFA HFD as compared to wild type mice with respect to liver fat content, plasma glucose levels and islet morphology. Gpr120 deficient animals were found to have similar energy, glucose and lipid metabolism when fed HFD PUFA compared to wild type mice. Therefore, GPR120 appears to be dispensable for the improved metabolic profile associated with intake of a diet enriched in n-3 PUFA fatty acids.

  5. Association of n3 and n6 polyunsaturated fatty acids in red blood cell membrane and plasma with severity of normal tension glaucoma

    Directory of Open Access Journals (Sweden)

    Man Yu

    2015-06-01

    Full Text Available AIM:To determine whether red blood cell (RBC membrane and plasma lipids, particularly long-chain polyunsaturated fatty acids such as eicosapentaenoic acid (EPA, docosahexaenoic acid (DHA, arachidonic acid (AA are significantly correlated with severity of normal tension glaucoma (NTG.METHODS:This study included 35 patients with NTG and 12 healthy normal control subjects, matched for age and sex with the study group. The stage of glaucoma was determined according to the Hodapp-Parrish-Anderson classification. Lipids were extracted from RBC membranes and plasma, and fatty acid methyl esters prepared and analyzed by gas chromatography-mass spectrometry (GC-MS.RESULTS:When RBC lipids were analyzed, the levels of EPA, the levels of DHA and the ratio of n3 to n6 were positively associated with the Humphrey Perimetry mean deviation (MD score (r=0.617, P<0.001; r=0.727, P<0.001 and r=0.720, P<0.001, respectively, while the level of AA was negatively associated with the MD score (r=-0.427, P=0.001. When plasma lipids were analyzed, there was a significant positive relationship between the levels of EPA and the MD score (r=0.648, P<0.001, and the levels of AA were inversely correlated with the MD score (r=-0.638, P<0.001.CONCLUSION:The levels of n3 and n6 polyunsaturated fatty acids in RBC membrane and plasma lipids were associated with severity of NTG.

  6. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids

    Directory of Open Access Journals (Sweden)

    Somoza Veronika

    2009-02-01

    Full Text Available Abstract Background Conversion of linoleic acid (LA and alpha-linolenic acid (ALA to their higher chain homologues in humans depends on the ratio of ingested n6 and n3 fatty acids. Design and methods In order to determine the most effective ratio with regard to the conversion of ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, human hepatoma cells were incubated with varying ratios of [13C] labeled linoleic acid ([13C]LA- and alpha-linolenic acid ([13C]ALA-methylesters. Regulative cellular signal transduction pathways involved were studied by determinations of transcript levels of the genes encoding delta-5 desaturase (D5D and delta-6 desaturase (D6D, peroxisome proliferator-activated receptor alpha (PPARα and sterol regulatory element binding protein 1c (SREBP-1c. Mitogen-activated protein kinase kinase 1 (MEK1 and mitogen-activated protein kinase kinase kinase 1 (MEKK1 were also examined. Results Maximum conversion was observed in cells incubated with the mixture of [13C]LA/[13C]ALA at a ratio of 1:1, where 0.7% and 17% of the recovered [13C]ALA was converted to DHA and EPA, respectively. Furthermore, differential regulation of enzymes involved in the conversion at the transcript level, dependent on the ratio of administered n6 to n3 fatty acids in human hepatocytes was demonstrated. Conclusion Formation of EPA and DHA was highest at an administered LA/ALA ratio of 1:1, although gene expression of PPARα, SREBP-1c and D5D involved in ALA elongation were higher in the presence of ALA solely. Also, our findings suggest that a diet-induced enhancement of the cell membrane content of highly unsaturated fatty acids is only possible up to a certain level.

  7. Maternal fish oil supplementation in lactation: Effect on visual acuity and n-3 fatty acid content of infant erythrocytes

    DEFF Research Database (Denmark)

    Lauritzen, L.; Jørgensen, M.H.; Mikkelsen, T.B.

    2004-01-01

    of fish oil (FO) supplements in lactating mothers. In this double-blinded randomized trial, Danish mothers with habitual fish intake below the 50th percentile of the Danish National Birth Cohort were randomized to microencapsulated FO [1.3 g/d long-chain n-3 FA (n-3 LCPUFA)] or olive oil (00......). The intervention started within a week after delivery and lasted 4 mon. Mothers with habitual high fish intake and their infants were included as a reference group. Ninety-seven infants completed the trial (44 OO-group, 53 FO-group) and 47 reference infants were followed up. The primary outcome measures were: DHA...... content of milk samples (0, 2, and 4 mon postnatal) and of infant red blood cell (RBC) membranes (4 mon postnatal), and infant visual acuity (measured by swept visual evoked potential at 2 and 4 mon of age). FO supplementation gave rise to a threefold increase in the DHA content of the 4-mon milk samples...

  8. Mining microarray datasets in nutrition: expression of the GPR120 (n-3 fatty acid receptor/sensor) gene is down-regulated in human adipocytes by macrophage secretions.

    Science.gov (United States)

    Trayhurn, Paul; Denyer, Gareth

    2012-01-01

    Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity.

  9. Antioxidant status, lipoprotein profile and liver lipids in rats fed on high-cholesterol diet containing currant oil rich in n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Vecera, R; Skottová, N; Vána, P; Kazdová, L; Chmela, Z; Svagera, Z; Walterá, D; Ulrichová, J; Simánek, V

    2003-01-01

    Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu(2+) induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern.

  10. Dietary intake and food sources of fatty acids in Australian adolescents.

    Science.gov (United States)

    O'Sullivan, Therese A; Ambrosini, Gina; Beilin, Lawrie J; Mori, Trevor A; Oddy, Wendy H

    2011-02-01

    Dietary fat consumed during childhood and adolescence may be related to the development of cardiovascular and other chronic diseases in adulthood; however, there is a lack of information on specific fatty acid intakes and food sources in these populations. Our study aimed to assess fatty acid intakes in Australian adolescents, compare intakes with national guidelines, and identify major food sources of fatty acids. Dietary intake was assessed using measured 3-d records in 822 adolescents aged 13-15 y participating in The Western Australian Pregnancy Cohort (Raine) Study, Australia. Mean daily total fat intakes were 90 ± 25 g for boys and 73 ± 20 g for girls, with saturated fat contributing 14% of total energy intake. Mean contribution to daily energy intake for linoleic, alpha-linolenic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids were 3.0%, 0.40%, 0.02%, 0.01%, and 0.04%, respectively, for boys, and 3.3%, 0.42%, 0.02%, 0.01%, and 0.05% for girls. To meet guidelines for chronic disease prevention, consumption of long-chain omega-3 fatty acids in this population may need to increase up to three-fold and the proportion of saturated fat decrease by one-third. Girls were more likely to achieve the guidelines. Major food sources were dairy products for total fat, saturated fat and alpha-linolenic acid, margarines for linoleic acid, and fish for long-chain omega-3 fatty acids. Results suggest that for this population, a higher dietary intake of long-chain omega-3 fatty acids, particularly for boys, and lower proportion of saturated fat is required to meet recommendations for prevention of chronic disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Dietary counseling to improve fat quality during pregnancy alters maternal fat intake and infant essential fatty acid status.

    Science.gov (United States)

    Niinivirta, Katri; Isolauri, Erika; Laakso, Päivi; Linderborg, Kaisa; Laitinen, Kirsi

    2011-07-01

    To explore the effect of maternal dietary intervention on infant essential fatty acid (FA) status, we conducted a prospective, single-blind, randomized nutrition intervention study. At the first trimester of pregnancy, 90 women from families with a history of allergy were randomized either to receive intensive dietary counseling to modify dietary intake according to current recommendations or as controls. Infants' cord and 1-mo isolated serum phospholipid FA were identified and quantified by GC. Detectable levels of eicosatrienoic acid [ETA, 20:3(n-9)] were taken as a biochemical marker for essential FA deficiency, and the DHA sufficiency index [22:6(n-3):22:5(n-6)] and the DHA deficiency index [22:5(n-6):22:4(n-6)] were taken as markers for DHA [22:6(n-3)] status. The concentration of ETA was lower in cord blood in the intervention (I) group [median 0.64 (IQR 0.40-0.78) mg/L; 2.09 (1.31-2.54) μmol/L] than in the control (C) group [0.92 (0.54-1.20) mg/L; 3.00 (1.76-3.92) μmol/L] (P = 0.048). The proportion of ETA in total FA in the I group [0.73% (0.48-0.85%)] was lower than in the C group [0.93% (0.78-1.22%)] (P = 0.003). A higher DHA sufficiency index and lower DHA deficiency index were detected in cord blood in the I group than in the C group, although the groups did not differ in the DHA concentration or proportion of the total FA. There were no differences among groups at 1 mo for any of the variables measured. Our findings suggest a better supply of essential FA, particularly important during the period of rapid development, in infants whose mothers received dietary counseling. The results thus highlight the importance of maternal diet for child health, calling for dietary counseling for pregnant women in primary health care.

  12. Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsions.

    Science.gov (United States)

    Cofrades, Susana; Bou, Ricard; Flaiz, Linda; Garcimartín, Alba; Benedí, Juana; Mateos, Raquel; Sánchez-Muniz, Francisco J; Olivero-David, Raúl; Jiménez-Colmenero, Francisco

    2017-06-01

    This study examines the influence of different food-grade n-3 PUFA-enriched simple emulsion (SE), double emulsion (DE) and gelled double emulsion (GDE) delivery systems on the extent of lipolysis, antioxidant capacity and the bioaccessibility of hydroxytyrosol (HTy). GDE emulsion offered better protection for HTy (89%) than the other systems (79% in SE and DE). The reducing capacity of the emulsions containing HTy were not altered during oral digestion. However, "in vitro" gastric and intestinal phases significantly reduced the antioxidant activity of all systems. The structural and physical state of GDE entailed a slowing-down of triacylglyceride hydrolysis (36.4%) in comparison with that of SE and DE (22.7 and 24.8% for SE and DE, respectively).

  13. Different kinetic in incorporation and depletion of n-3 fatty acids in erythrocytes and leukocytes of mice

    DEFF Research Database (Denmark)

    Mu, Huiling; Thogersen, Regitze Louise; Maaetoft-Udsen, Kristina

    2006-01-01

    during a 6-wk feeding period. Over the first 3-wk period (the incorporation period) the mice were fed a special diet with a high n-3/n-6 PUFA ratio. In the following 3-wk period (the depletion period) the mice were fed a standard chow diet. A linear increase of the concentration of EPA and DHA...... in erythrocyte membranes was observed during the incorporation period, whereas a stagnation was observed after the second week for leukocytes. The level of EPA did not fall to the background level after the depletion period, and the level of DHA was kept almost constant during the depletion period...... in the erythrocyte membranes. In leukocytes the concentration of both EPA and DHA decreased during the depletion period, but did not reach the background level after the 3-wk depletion. In conclusion, the kinetics of EPA and DHA in the different cells are different. The rate of incorporation is faster than...

  14. Effects of foal presence at milking and dietary extra virgin olive oil on jennet milk fatty acids profile

    Directory of Open Access Journals (Sweden)

    Marco Alabiso

    2010-01-01

    Full Text Available TwelveRagusanajennetswerestudiedtoinvestigatetheeffectsof dietaryextra Twelve Ragusana jennets were studiedtoinvestigatetheeffectsof dietaryextra studied to investigatetheeffectsof dietaryextra the effects of dietaryextra dietary extra virgin olive oil and thepresenceofthefoal duringmilkingonmilkfattyacids(FAprofile.At20, 50 thepresenceofthefoal duringmilkingonmilkfattyacids(FAprofile.At20, 50 he presence of the foal during milking on milk fatty acids (FA profile. At 20, 50 and 90 days post-foaling, each jennet was milked 4 times per day. The feeding system and the milking procedures are given by Alabiso et al. (2009. FA profiles of the composites from milkings without foals (1MNF+3MNF and with foals (2MYF+4MYF were analyzed by gas chromatography. Dietary oil had no significant effect on milk yield or fat content but increased the proportion of C18:1 (n-9 in milk. Jen- net milk had a beneficial FA profile compared to bovine milk and thus would be suitable for consump- tion by infants suffering from cows milk protein allergy, however, augmentation of the long-chain n-3 polyunsaturated FA content warrants further study.

  15. Healthy dietary pattern is inversely associated with non-alcoholic fatty liver disease in elderly.

    Science.gov (United States)

    Adriano, Lia Silveira; Sampaio, Helena Alves de Carvalho; Arruda, Soraia Pinheiro Machado; Portela, Clarissa Lima de Melo; de Melo, Maria Luisa Pereira; Carioca, Antônio Augusto Ferreira; Soares, Nadia Tavares

    2016-06-01

    The prevalence of non-alcoholic fatty liver disease (NAFLD) is rising, an increase that may be associated with changes in lifestyle such as unhealthy dietary patterns. Although advanced age is a risk factor for NAFLD, no studies reporting this association in the elderly population were found. In the present study, the association between dietary patterns and NAFLD in the elderly was assessed. A study including 229 older adults was conducted. NAFLD diagnosis was defined as individuals whose ultrasound examination disclosed hepatic steatosis at any stage, in the absence of excess intake of alcoholic beverages. Dietary patterns were obtained by principal components analysis. Mean scores and standard errors of each dietary pattern were calculated for the groups with and without NAFLD, and mean scores of the two groups were compared using the Mann-Whitney U test. The prevalence ratios and 95 % CI were estimated for each tertile of the dietary pattern adherence scores using Poisson multiple regression models with robust variance. A total of 103 (45 %) elderly with NAFLD and four dietary patterns were identified: traditional, regional snacks, energy dense and healthy. Mean scores for adherence to the healthy pattern in the groups with and without NAFLD differed. NAFLD was inversely associated with greater adherence to the healthy pattern and directly associated with the regional snacks, after adjustment for confounders. In conclusion, healthy dietary pattern is inversely associated with NAFLD in elderly.

  16. Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension

    DEFF Research Database (Denmark)

    Nielsen, Gorm; Wandall-Frostholm, Christine; Sadda, Veeranjaneyulu

    2013-01-01

    Polyunsaturated fatty acid (PUFA)-activated two-pore domain potassium channels (K2P ) have been proposed to be expressed in the pulmonary vasculature. However, their physiological or pathophysiological roles are poorly defined. Here, we tested the hypothesis that PUFA-activated K2P are involved...... in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension. Expression of PUFA-activated K2P in the murine lung was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), by patch...... clamp (PC) and myography. K2P -gene expression was examined in chronic hypoxic mice. qRT-PCR showed that the K2P 2.1 and K2P 6.1 were the predominantly expressed K2P in the murine lung. IHC revealed protein expression of K2P 2.1 and K2P 6.1 in the endothelium of pulmonary arteries and of K2P 6...

  17. A meta-analysis of n-3 polyunsaturated fatty acids effects on circulating acute-phase protein and cytokines in gastric cancer.

    Science.gov (United States)

    Mocellin, Michel C; Fernandes, Ricardo; Chagas, Thayz R; Trindade, Erasmo B S M

    2018-06-01

    Chronic inflammation is related with cancer and leads to worsening prognosis in cancer patients. n-3 polyunsaturated fatty acids (PUFAs) supplementation has been proposed as adjuvant treatment in cancer due anti-inflammatory properties. In the present meta-analysis, we pooled randomized clinical trials (RCTs) assessing the effects of n-3 PUFAs (from fish oil isolated or added in an immunonutrition formula) on inflammatory markers in gastric cancer. A comprehensive literature search was performed in Medline, Scopus, Cochrane library, Science Direct and Web of Science, besides GOOGLE Scholar and a hand searching of reference lists, through July 2016. We pooled the effect size from individual studies using a random-effect model and carried out heterogeneity and sensitivity analyses. Nine trials (698 patients) fulfilled the entry criteria and were included in the synthesis of the systematic review. Eight were carried out in surgical patients and one in patients that received chemotherapy. Four used only fish oil as intervention and five used an immunonutrition formula. Global meta-analysis demonstrated higher albumin (7 studies, SMD 0.28; 95% CI 0.07, 0.48) and prealbumin (4 studies, SMD 0.56; 95% CI 0.12, 1.00) concentrations, and lower IL-6 (2 studies, SMD -0.71; 95% CI -1.15, -0.27) and TNF-α (2 studies, SMD -0.92; 95% CI -1.58, -0.26) concentrations in patients of the intervention group as compared to control group. However, total protein, transferrin and CRP concentrations were not improved by n-3 PUFAs supplementation. This study provides evidence that n-3 PUFAs supplementation from fish oil or added an immunonutrition formula has favorable effects on inflammatory markers in gastric cancer patients undergoing surgical procedures. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation.

    Science.gov (United States)

    Hou, Tim Y; Monk, Jennifer M; Fan, Yang-Yi; Barhoumi, Rola; Chen, Yong Q; Rivera, Gonzalo M; McMurray, David N; Chapkin, Robert S

    2012-04-01

    n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.

  19. Effect of Dietary Omega-3 Polyunsaturated Fatty Acids on Heart Rate and Heart Rate Variability in Animals Susceptible or Resistant to Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    George E Billman

    2012-03-01

    Full Text Available The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs has been reported to reduce cardiac mortality following myocardial infarction as well as to decrease resting heart rate (HR and increase heart rate variability (HRV. However, it has not been established whether n-3 PUFAs exhibit the same actions on HR and HRV in individuals known to be either susceptible or resistant to ventricular fibrillation (VF. Therefore, HR and HRV (high frequency and total R-R interval variability were evaluated before and 3 months after n-3 PUFA treatment in dogs with healed myocardial infarction that were either susceptible (VF+, n = 31 or resistant (VF-, n = 31 to ventricular tachyarrhythmias induced by a 2 min coronary artery occlusion during the last minute of a submaximal exercise test. HR and HRV were evaluated at rest, during submaximal exercise and in response to acute myocardial ischemia at rest before and after either placebo (1 g/day, corn oil, VF+, n = 9; VF- n = 8 or n-3 PUFA (docosahexaenoic acid + eicosapentaenoic acid ethyl esters, 1-4g/day, VF+, n = 22; VF-, n = 23 treatment for 3 months. The n-3 PUFA treatment elicited similar increases in red blood cell membrane, right atrial, and left ventricular n-3 PUFA levels in both the VF+ and VF- dogs. The n-3 PUFA treatment also provoked similar reductions in baseline HR and increases in baseline HRV in both groups that resulted in parallel shifts in the response to either exercise or acute myocardial ischemia (that is, the change in these variables induced by physiological challenges was not altered after n-3 PUFA treatment. These data demonstrate that dietary n-3 PUFA decreased HR and increased HRV to a similar extent in animals known to be prone to or resistant to malignant cardiac tachyarrhythmias.

  20. Fish intake, erythrocyte n-3 fatty acid status and metabolic health in Danish adolescent girls and boys

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Harsløf, Laurine B. S.; Hellgren, Lars

    2012-01-01

    the effects of n-3 LCPUFA in adolescence. The present study examines associations between fish intake (assessed by a 7 d pre-coded food diary), erythrocyte (RBC) DHA status (analysed by GC) and metabolic syndrome measures (anthropometry, blood pressure and plasma lipids, insulin and glucose) in 109 17-year......-old children from the Copenhagen Birth Cohort Study. Of the children, 8% were overweight or obese and few showed signs of the metabolic syndrome, but all the metabolic syndrome variables were correlated. Median fish intake was 10·7 (interquartile range 3·6–21·2) g/d. Boys tended to have a higher fish intake (P......¼0·052), but girls had significantly higher RBC levels of DHA (P¼0·001). Sex and fish intake explained 37% of the variance in RBC-DHA (P,0·001). After adjusting for confounders, high DHA status was found to be significantly correlated with higher systolic blood pressure (P¼0·014) and increased...

  1. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2011-01-01

    this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture...... mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked...... enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from...

  2. n-3 Fatty Acid Supplementation in Mothers, Preterm Infants, and Term Infants and Childhood Psychomotor and Visual Development: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shulkin, Masha; Pimpin, Laura; Bellinger, David; Kranz, Sarah; Fawzi, Wafaie; Duggan, Christopher; Mozaffarian, Dariush

    2018-03-01

    Epidemiologic studies link maternal seafood and n-3 (ω-3) polyunsaturated fatty acid (PUFA) consumption with improved childhood cognitive development; trials show mixed results. We investigated effects of n-3 PUFA supplementation on child cognitive and visual outcomes. We systematically reviewed and meta-analyzed randomized controlled trials of n-3 PUFA supplementation in mothers or infants (age ≤2 y) and evaluated standardized measures of cognitive or visual development up to age 18 y. Of 6286 abstracts and 669 full-text articles, 38 trials with 53 intervention arms were included. Data were extracted independently in duplicate. Findings were pooled using random-effects meta-analysis across supplementation periods (maternal, preterm, term infant); we also explored subgroup analyses stratified by supplementation period. Heterogeneity was explored using I2, stratified analysis, and meta-regression. Cognitive development was assessed by Bayley Scales of Infant Development mental and psychomotor developmental indexes (MDI, PDI) and intelligence quotient (IQ); visual acuity was assessed by electrophysiological or behavioral measures. The 38 trials (mothers: n = 13; preterm infants: n = 7; term infants: n = 18) included 5541 participants. When we explored effects during different periods of supplementation, n-3 PUFA supplementation improved MDI in preterm infants (3.33; 95% CI: 0.72, 5.93), without statistically significant effects on PDI or IQ in different intervention period subgroups. Visual acuity [measured as the logarithm of the minimum angle of resolution (logMAR)] was improved by supplementation in preterm (-0.08 logMAR; 95% CI: -0.14, -0.01 logMAR) and term infants (-0.08 logMAR; 95% CI: -0.11, -0.05 logMAR), with a nonsignificant trend for maternal supplementation (-0.02 logMAR; 95% CI: -0.04, 0.00 logMAR). In main analyses pooling all supplementation periods, compared with placebo, n-3 PUFA supplementation improved MDI (n = 21 trials; 0.91; 95% CI

  3. n3 and n6 polyunsaturated fatty acids differentially modulate prostaglandin E secretion but not markers of lipogenesis in adipocytes

    Directory of Open Access Journals (Sweden)

    Saxton Arnold M

    2009-01-01

    Full Text Available Abstract A dramatic rise in the incidence of obesity in the U.S. has accelerated the search for interventions that may impact this epidemic. One recently recognized target for such intervention is adipose tissue, which secretes a variety of bioactive substances including prostaglandins. Prostaglandin E2 (PGE2 has been shown to decrease lipolysis in adipocytes, but limited studies have explored alternative mechanisms by which PGE2 might impact obesity, such as adipogenesis or lipogenesis. Studies conducted on ApcMin/+ mice indicated that selective inhibition of the cyclooxygenase (COX-2 enzyme led to significant reductions in fatty acid synthase (FAS activity in adipose tissue suggesting lipogenic effects of PGE2. To further investigate whether these lipid mediators directly regulate lipogenesis, we used 3T3-L1 adipocytes to determine the impact of eicosapentaenoic acid (EPA and celecoxib on PGE2 formation and FAS used as a lipogenic marker. Both arachidonic acid (AA and EPA dose-dependently increased PGE secretion from adipocytes. AA was expectedly more potent and exhibiting at 150 uM dose a 5-fold increase in PGE2 secretion over EPA. Despite higher secretion of PGE by EPA and AA compared to control, neither PUFA significantly altered FAS activity. By contrast both AA and EPA significantly decreased FAS mRNA levels. Addition of celecoxib, a selective COX-2 inhibitor, significantly decreased PGE2 secretion (p 2 and celecoxib further decreased the FAS activity compared to PGE2 alone or untreated controls. In conclusion, EPA-mediated inhibition of AA metabolism did not significantly alter FAS activity while both AA and EPA significantly decreased FAS mRNA expression. COX-2 inhibition significantly decreased PGE2 production resulting in a decrease in FAS activity and expression that was not reversed with the addition of exogenous PGE2, suggesting an additional mechanism that is independent of COX-2.

  4. Effects of dietary intake of red palm oil on fatty acid composition and ...

    African Journals Online (AJOL)

    Little is known about the effects of the dietary intake of red palm oil (RPO) on fatty acid composition in the liver of rats. Male Wistar rats randomly divided into four groups were fed with different doses of red palm oil. The control group received no red palm oil; while the experimental groups were fed with 1 ml, 2 ml and 4 ml of ...

  5. Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease.

    Science.gov (United States)

    Larter, Claire Z; Yeh, Matthew M; Haigh, W Geoffrey; Van Rooyen, Derrick M; Brooling, John; Heydet, Deborah; Nolan, Christopher J; Teoh, Narci C; Farrell, Geoffrey C

    2013-06-01

    Alms1 mutant (foz/foz) mice develop hyperphagic obesity, diabetes, metabolic syndrome, and fatty liver (steatosis). High-fat (HF) feeding converts pathology from bland steatosis to nonalcoholic steatohepatitis (NASH) with fibrosis, which leads to cirrhosis in humans. We sought to establish how dietary composition contributes to NASH pathogenesis. foz/foz mice were fed HF diet or chow 24 weeks, or switched HF to chow after 12 weeks. Serum ALT, NAFLD activity score (NAS), fibrosis severity, neutrophil, macrophage and apoptosis immunohistochemistry, uncoupling protein (UCP)2, ATP, NF-κB activation/expression of chemokines/adhesion molecules/fibrogenic pathways were determined. HF intake upregulated liver fatty acid and cholesterol transporter, CD36. Dietary switch expanded adipose tissue and decreased hepatomegaly by lowering triglyceride, cholesterol ester, free cholesterol and diacylglyceride content of liver. There was no change in lipogenesis or fatty acid oxidation pathways; instead, CD36 was suppressed. These diet-induced changes in hepatic lipids improved NAS, reduced neutrophil infiltration, normalized UCP2 and increased ATP; this facilitated apoptosis with a change in macrophage phenotype favoring M2 cells. Dietary switch also abrogated NF-κB activation and chemokine/adhesion molecule expression, and arrested fibrosis by dampening stellate cell activation. Reversion to a physiological dietary composition after HF feeding in foz/foz mice alters body weight distribution but not obesity. This attenuates NASH severity and fibrotic progression by suppressing NF-κB activation and reducing neutrophil and macrophage activation. However, adipose inflammation persists and is associated with continuing apoptosis in the residual fatty liver disease. Taken together, these findings indicate that other measures, such as weight reduction, may be required to fully reverse obesity-related NASH. Copyright © 2013 The Obesity Society.

  6. Developmental programming of adult adrenal structure and steroidogenesis: effects of fetal glucocorticoid excess and postnatal dietary omega-3 fatty acids.

    Science.gov (United States)

    Waddell, Brendan J; Bollen, Maike; Wyrwoll, Caitlin S; Mori, Trevor A; Mark, Peter J

    2010-05-01

    Fetal glucocorticoid excess programs a range of detrimental outcomes in the adult phenotype, at least some of which may be due to altered adult adrenocortical function. In this study, we determined the effects of maternal dexamethasone treatment on offspring adrenal morphology and function, as well as the interactive effects of postnatal dietary omega-3 (n-3) fatty acids. This postnatal dietary intervention has been shown to alleviate many of the programming outcomes in this model, but whether this is via the effects on adrenal function is unknown. Dexamethasone acetate was administered to pregnant rats (0.75 microg/ml drinking water) from day 13 to term. Cross-fostered offspring were raised on either a standard or high-n-3 diet. Adrenal weight (relative to body weight) at 6 months of age was unaffected by prenatal dexamethasone, regardless of postnatal diet, and stereological analysis showed no effect of dexamethasone on the volumes of adrenal components (zona glomerulosa, zona fasciculata/reticularis or adrenal medulla). Expression of key steroidogenic genes (Cyp11a1 and Star) was unaffected by either prenatal dexamethasone or postnatal diet. In contrast, adrenal expression of Mc2r mRNA, which encodes the ACTH receptor, was higher in offspring of dexamethasone-treated mothers, an effect partially attenuated by the Hn3 diet. Moreover, stress-induced levels of plasma and urinary corticosterone and urinary aldosterone were elevated in offspring of dexamethasone-treated mothers, indicative of enhanced adrenal responsiveness. In conclusion, this study shows that prenatal exposure to dexamethasone does not increase basal adrenocortical activity but does result in a more stress-responsive adrenal phenotype, possibly via increased Mc2r expression.

  7. Relationship Between Dietary Fatty Acids and Reproductive Functions in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Ercan Soydan

    2017-12-01

    Full Text Available Selection of dairy cattle for higher milk yield, without considering important non-production traits, has decreased reproductive efficiency. Thus, low reproductive performance is a major problem in high yielding dairy cattle. Previous studies showed that dietary manipulation to improve fertility holds much promise and dietary fats have positive effects on reproductive functions in high yielding dairy cattle. Positive effects of fats on reproductive performance due to the fatty acids, which are the precursors of progesterone and prostaglandins. Progesterone and prostaglandins hormones are most important factors that play a role on the control of reproductive functions. The amount of linoleic, linolenic and arachidonic fattty acids in ration can be increase or decrease progesterone and prostaglandins synthesis especially PGF2α from ovary and uterus, respectively. Also fatty acids can be influence follicular development, ovulation, embryonic implantation and maternal recognition of pregnancy. This review focuses on the relationships between dietary fatty acids and reproductive functions such as hormone profiles, ovarian function and follicular development, oocyte quality, embryo development, embryonic implantation and maternal recognition of pregnancy in dairy cattle.

  8. VARIATIONS IN MATERNAL DIETARY FATTY ACID COMPOSITION AFFECTS THE NEURODEVELOPMENT OF RAT PUPS.

    Directory of Open Access Journals (Sweden)

    2017-01-01

    Full Text Available Fatty acids are part of the structural matrix of cellular and subcellular membranes. Alterations in tissue fatty acid composition can affect nerve tissue function by altering membrane thickness or by changing properties of the lipid phase. In this study, the appearance of specific neurodevelopment responses was observed on rap pups whose dams were fed on varied dietary fatty acid composition. Three dietary treatments of corn oil, fish oil and reference meals were administered on these groups of pregnant dams. From postnatal day 5 to 30, littered pups were assessed daily for the appearance of neurodevelopmental reflexes based on the Smart- Dobbing method. The neurodevelopmental attributes of Righting reflex, Cliff avoidance, Negative geotaxis, Auditory startle, Vibrissa placing, Free-fall righting and Visual placing was observed in experimental pups between day 5 and 30. Tests were conducted between 1200 and 1400h. A 30 seconds time limit was employed in testing of the cliff-avoidance and negative-geotaxis appearance. The time appearance of auditory-startle and vibrissa-placing responses were significantly delayed (P and lt;0.05 in pups of dietary fish oil and ndash; fed dams than those of corn oil fed dams. The delay in auditory-startle response may be due to negative myelination of the auditory brainstem pathway.

  9. Protective effects of prescription n-3 fatty acids against impairment of spatial cognitive learning ability in amyloid β-infused rats.

    Science.gov (United States)

    Hashimoto, Michio; Tozawa, Ryuichi; Katakura, Masanori; Shahdat, Hossain; Haque, Abdul Md; Tanabe, Yoko; Gamoh, Shuji; Shido, Osamu

    2011-07-01

    Deposition of amyloid β peptide (Aβ) into the brain causes cognitive impairment. We investigated whether prescription pre-administration of n-3 fatty acids improves cognitive learning ability in young rats and whether it protects against learning ability impairments in an animal model of Alzheimer's disease that was prepared by infusion of Aβ(1-40) into the cerebral ventricles of rats. Pre-administration of TAK-085 (highly purified and concentrated n-3 fatty acids containing eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester) at 300 mg kg(-1) day(-1) for 12 weeks significantly reduced the number of reference memory errors in an 8-arm radial maze, suggesting that long-term administration of TAK-085 improves cognitive leaning ability in rats. After pre-administration, the control group was divided into the vehicle and Aβ-infused groups, whereas the TAK-085 pre-administration group was divided into the TAK-085 and TAK-085 + Aβ groups (TAK-085-pre-administered Aβ-infused rats). Aβ(1-40) or vehicle was infused into the cerebral ventricle using a mini osmotic pump. Pre-administration of TAK-085 to the Aβ-infused rats significantly suppressed the number of reference and working memory errors and decreased the levels of lipid peroxide and reactive oxygen species in the cerebral cortex and hippocampus of Aβ-infused rats, suggesting that TAK-085 increases antioxidative defenses. The present study suggests that long-term administration of TAK-085 is a possible therapeutic agent for protecting against Alzheimer's disease-induced learning deficiencies. This journal is © The Royal Society of Chemistry 2011

  10. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  11. Dietary patterns in Brazilian patients with nonalcoholic fatty liver disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Silvia Marinho Ferolla

    2013-01-01

    Full Text Available OBJECTIVE: Recent evidence suggests that non-alcoholic fatty liver disease is associated with diet. Our aim was to investigate the dietary patterns of a Brazilian population with this condition and compare them with the recommended diet. METHODS: A cross-sectional study was conducted on 96 non-alcoholic fatty liver disease patients before any dietetic counseling. All patients underwent abdominal ultrasound, biochemical tests, dietary evaluations, and anthropometric evaluations. Their food intake was assessed by a semi-quantitative food-frequency questionnaire and 24-hour food recall. RESULTS: The median patient age was 53 years, and 77% of the individuals were women. Most (67.7% participants were obese, and a large waist circumference was observed in 80.2% subjects. Almost 70% of the participants had metabolic syndrome, and 62.3% presented evidence of either insulin resistance or overt diabetes. Most patients (51.5, 58.5, and 61.7%, respectively exceeded the recommendations for energy intake, as well as total and saturated fat. All patients consumed less than the amount of recommended monounsaturated fatty acids, and 52.1 and 76.6% of them consumed less polyunsaturated fatty acids and fiber, respectively, than recommended. In most patients, the calcium, sodium, potassium, pyridoxine, and vitamin C intake did not meet the recommendations, and in 10.5-15.5% of individuals, the tolerable upper limit intake for sodium was exceeded. The patients presented a significantly high intake of meats, fats, sugars, legumes (beans, and vegetables and a low consumption of cereals, fruits, and dairy products compared with the recommendations. CONCLUSIONS: Although patients with non-alcoholic fatty liver disease exhibited high energy and lipid consumption, most of them had inadequate intake of some micronutrients. The possible role of nutrient-deficient intake in the development of non-alcoholic fatty liver disease warrants investigation.

  12. Nonalcoholic Fatty Liver Disease Management: Dietary and Lifestyle Modifications.

    Science.gov (United States)

    Nguyen, Vi; George, Jacob

    2015-08-01

    Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of abnormalities that can range from bland liver fat (steatosis), to hepatic inflammation and liver injury (steatohepatitis). It is estimated that NAFLD will become the principal cause of liver disease in Western nations and the leading indication for liver transplantation. Advancements in disease recognition and management are therefore paramount. Although the development of new, reliable drug therapies is vital, lifestyle interventions remain the most effective treatment modality. In addition to weight loss as a primary measure of treatment success, there is growing recognition that other endpoints, including the prevention or delay of diabetes onset, reduced cardiovascular events, prevention of cancer, and improved overall mortality, are equally important outcomes that can be independently modified by lifestyle change. Moreover, NAFLD is inextricably part of a complex, systemic disease process that is linked with deeply entrenched maladaptive lifestyle behaviors. Thus, a holistic, multidisciplinary, and individualized approach to disease management will be the key to achieving any realistic population-level change. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. A systematic review and meta-analysis of the n-3 polyunsaturated fatty acids effects on inflammatory markers in colorectal cancer.

    Science.gov (United States)

    Mocellin, Michel C; Camargo, Carolina Q; Nunes, Everson Araujo; Fiates, Giovanna M R; Trindade, Erasmo B S M

    2016-04-01

    Cancer and inflammation are closely related and an exacerbated inflammatory process can lead to tumor progression and a worse prognosis for the patient with cancer. Scientific literature has shown evidence that n-3 polyunsaturated fatty acids (PUFA) have anti-inflammatory action, and for this reason could be useful as an adjuvant in the treatment of some cancers. A systematic review and meta-analysis of the literature was conducted until September, 2014, to evaluate the effects of n-3 PUFA on inflammatory mediators in colorectal cancer (CRC) patients. Clinical trials were systematically searched in three electronic databases and screening reference lists. Random meta-analysis model was used to calculate the overall and stratified effect sizes. Nine trials, representing 475 patients with CRC, evaluated effects of n-3 PUFA on cytokines (n = 6) and/or acute phase proteins (n = 5) levels. n-3 PUFA reduce the levels of IL-6 (SMD -2.34; 95% CI -4.37, -0.31; p = 0.024) and increase albumin (SMD 0.31; 95% CI 0.06, 0.56; p = 0.014) in overall analyses. In stratified analyses, reduction in IL-6 levels occurs in surgical patients that received 0.2 g/kg of fish oil parenterally at postoperative period (SMD -0.65; 95% CI -1.06, -0.24; p = 0.002), while, increase in albumin concentration occurs in surgical patients that received ≥ 2.5 g/d of EPA + DHA orally at preoperative period (SMD 0.34; 95% CI 0.02, 0.66; p = 0.038). In patients undergoing chemotherapy, the supplementation of 0.6 g/d of EPA + DHA during 9 week reduces CRP levels (SMD -0.95; 95% CI -1.73, -0.17; p = 0.017), and CRP/albumin ratio (SMD -0.95; 95% CI -1.73, -0.18; p = 0.016). The results suggest benefits on some inflammatory mediators with the use of n-3 PUFA on CRC patients, but these benefits are specific to certain supplementation protocols involving duration, dose and route of administration, and also, the concomitant anti-cancer treatment adopted. Copyright © 2015 Elsevier Ltd and

  14. Mind-body interface: the role of n-3 fatty acids in psychoneuroimmunology, somatic presentation, and medical illness comorbidity of depression.

    Science.gov (United States)

    Su, Kuan-Pin

    2008-01-01

    With the unsatisfaction of monoamine-based pharmacotherapy and the high comorbidity of other medical illness in depression, the serotonin hypothesis seems to fail in approaching the aetiology of depression. Based upon the evidence from epidemiological data, case-control studies of phospholipid polyunsaturated fatty acids (PUFAs) levels in human tissues, and antidepressant effect in clinical trials, PUFAs have shed a light to discover the unsolved of depression and connect the mind and body. Briefly, the deficit of n-3 PUFAs has been reported to be associated with neurological, cardiovascular, cerebrovascular, autoimmune, metabolic diseases and cancers. Recent studies revealed that the deficit of n-3 PUFAs is also associated with depression. For example, societies that consume a small amount of omega-3 PUFAs appear to have a higher prevalence of major depressive disorder. In addition, depressive patients had showed a lower level of omega-3 PUFAs; and the antidepressant effect of PUFAs had been reported in a number of clinical trials. The PUFAs are classified into n-3 (or omega-3) and n-6 (or omega-6) groups. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the major bioactive components of n-3 PUFAs, are not synthesized in human body and can only be obtained directly from the diet, particularly by consuming fish. DHA deficit is associated with dysfunctions of neuronal membrane stability and transmission of serotonin, norepinephrine and dopamine, which might connect to the aetiology of mood and cognitive dysfunction of depression. On the other hand, EPA is important in balancing the immune function and physical healthy by reducing arachidonic acid (AA, an n-6 PUFA) level on cell membrane and prostaglandin E2 (PGE2) synthesis. Interestingly, animals fed with high AA diet or treated with PGE2 were observed to present sickness behaviours of anorexia, low activity, change in sleep pattern and attention, which are similar to somatic symptoms of depression in

  15. Effect of dietary lignocellulose on ileal and total tract digestibility of fat and fatty acids in broiler chickens.

    Science.gov (United States)

    Bogusławska-Tryk, M; Piotrowska, A; Szymeczko, R; Burlikowska, K

    2016-12-01

    The study was conducted to determine the effect of a lignocellulose supplemented diet on apparent ileal and total tract digestibility of fat and fatty acids (FA) in broiler chickens. A total of 48 21-day-old male Ross 308 chickens were divided into four treatment groups (n = 12) with six replicates per treatment. From 21 to 42 days of age, the broilers were fed experimental diets varied in the amount of lignocellulose: 0%, 0.25%, 0.5% and 1%. Total excreta were gathered during the last 3 days of the feeding trial and digesta was collected from the ileum at 42 days of the bird age. Digestibility was determined by the indicator method. The ether extract content in diet/digesta/excreta was determined by the gravimetric method, and fatty acid methyl esters were analysed by gas chromatography-mass spectrometry. Fat digestibility measured to the end of the small intestine and in the whole gastrointestinal tract in birds was high and exceeded 90% and 87% respectively. Addition of lignocellulose (1%) increased (p digestibility but had no significant effect on total tract fat digestion. Absorption of total fatty acids (TFA) as well as myristic (C14:0), palmitoleic (C16:1) and α-linolenic (C18:3n-3) acids, estimated by both methods, was significantly higher in birds fed the diets supplemented with lignocellulose, especially at a dose of 1%. Total tract absorption of some dietary polyunsaturated fatty acids (PUFA) (C20:2, C20:4n-6) was significantly lower from diet supplemented with 0.5% and 0.25% lignocellulose. There was observed a decrease in apparent digestibility of fat and most examined fatty acids, when measured between terminal ileum and total gastrointestinal tract. The results suggest that lignocellulose can affect digestion and FA absorption in broilers but, as the effect of lignocellulose was not studied previously, further investigations are necessary to confirm the results of the present experiment. Journal of Animal Physiology and Animal Nutrition © 2016

  16. Fish oil-derived long-chain n-3 polyunsaturated fatty acids reduce expression of M1-associated macrophage markers in an ex vivo adipose tissue culture model, in part through adiponectin

    OpenAIRE

    Anna A. De Boer; Jennifer M. Monk; Jennifer M. Monk; Danyelle M. Liddle; Krista A. Power; David W.L. Ma; Lindsay E. Robinson

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an es...

  17. Effects of dietary fatty acid composition on metabolic rate and responses to hypoxia in the European eel (Anguilla anguilla)

    DEFF Research Database (Denmark)

    McKenzie, D.J.; Piraccini, G.; Piccolella, M.

    2000-01-01

    European eels (Anguilla anguilla, L.) were fed on a commercial diet supplemented either with 15% by dry feed weight of menhaden oil (MO), an oil rich in highly unsaturated fatty acids of the n-3 series (n-3 HUFA), or with 15% by dry feed weight of coconut oil (CO), an oil composed primarily...... of saturated fatty acids (SFA). Following 90 days of feeding, the mean final masses of eels fed the two different oil supplements were similar, and higher than the mean final mass of a group fed the commercial diet alone. The diets created two distinct phenotypes of eels, distinguished by the fatty acid (FA...

  18. Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b(+) macrophages.

    Science.gov (United States)

    De Boer, Anna A; Monk, Jennifer M; Liddle, Danyelle M; Hutchinson, Amber L; Power, Krista A; Ma, David W L; Robinson, Lindsay E

    2016-08-01

    Adipocyte-macrophage cross-talk propagates immune responses in obese adipose tissue (AT). Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) mitigate inflammation, partly through up-regulation of adiponectin; however, specific mechanisms are unclear. We determined if adipocyte-macrophage cross-talk could be mitigated by dietary LC n-3 PUFA and if this was dependent on adiponectin-mediated signaling. We utilized an in vitro co-culture model mimicking the ratio of adipocytes:macrophages in obese AT, whereby 3T3-L1 adipocytes were co-cultured with splenic CD11b(+) macrophages from C57BL/6 mice fed high-fat control (HF-CON; 34% w/w fat) or fish oil diets (HF-FO; 34% w/w fat containing 7.6% w/w FO), as well as mice fed low-fat control (LF-CON; 10% w/w fat) or FO diets (LF-FO; 10% w/w fat containing 3% w/w FO). Co-culture conditions tested effects of soluble mediator-driven mechanisms (trans-well system), cell contact and low-dose lipopolysaccharide (LPS) mimicking acute or chronic inflammatory conditions. HF-FO macrophages from acute LPS-stimulated trans-well co-cultures had decreased mRNA expression of Casp1, Il1β and Il18, as well as cellular caspase-1 activity compared to HF-CON macrophages (P≤.05). Moreover, adipocytes from acute LPS-stimulated HF-FO co-cultures had decreased caspase-1 activity and decreased IL-1β/IL-18 levels following chronic LPS pretreatment compared to HF-CON co-cultures (P≤.05). Additionally, in contact co-cultures with adiponectin-neutralizing antibody, the FO-mediated modulation of NFκB activity and decrease in phosphorylated p65 NFκB, expression of NLRP3 inflammasome genes, M1 macrophage marker genes and inflammatory cytokine/chemokine secretion were controlled partly through adiponectin, while cellular caspase-1 activity and IL-1β/1L-18 levels were decreased independently of adiponectin (P≤.05). LC n-3 PUFA may decrease the intensity of adipocyte-macrophage cross-talk to mitigate obesity-associated pathologies. Copyright

  19. Effect of fortification with multiple micronutrients and n-3 fatty acids on growth and cognitive performance in Indian schoolchildren: the CHAMPION (Children's Health and Mental Performance Influenced by Optimal Nutrition) Study.

    Science.gov (United States)

    Muthayya, Sumithra; Eilander, Ans; Transler, Catherine; Thomas, Tinku; van der Knaap, Henk C M; Srinivasan, Krishnamachari; van Klinken, B Jan Willem; Osendarp, Saskia J M; Kurpad, Anura V

    2009-06-01

    Fortification with multiple micronutrients has been shown to improve growth and cognitive performance among children in developing countries, but it is unknown whether higher concentrations are more effective than lower concentrations. We compared the effect of 2 different concentrations of a combination of micronutrients and n-3 (omega-3) fatty acids on indicators of growth and cognitive performance in low-income, marginally nourished schoolchildren in Bangalore, India. In a 2-by-2 factorial, double-blind, randomized controlled trial, 598 children aged 6-10 y were individually allocated to 1 of 4 intervention groups to receive foods fortified with either 100% or 15% of the Recommended Dietary Allowance of micronutrients in combination with either 900 mg alpha-linolenic acid plus 100 mg docosahexaenoic acid or 140 mg alpha-linolenic acid for 12 mo. Anthropometric and biochemical assessments were performed at baseline and 12 mo. Cognitive performance was measured at baseline and at 6 and 12 mo. The high micronutrient treatment significantly improved linear growth at 12 mo (0.19 cm; 0.01, 0.36) and short-term memory at 6 mo (0.11 SD; 0.01, 0.20) and was less beneficial on fluid reasoning at 6 (-0.10 SD; -0.17, -0.03) and 12 (-0.12 SD; -0.20, -0.04) mo than was the low micronutrient treatment, whereas no differences were observed on weight, retrieval ability, cognitive speediness, and overall cognitive performance. No significant differences were found between the n-3 treatments. The high micronutrient treatment was more beneficial for linear growth than was the low micronutrient treatment. However, with some small differential effects, higher micronutrient concentrations were as effective as lower concentrations on cognitive performance. This trial was registered at clinicaltrials.gov as NCT00467909.

  20. Sex-specific effects of dietary fatty acids on saliva cortisol and social behavior in guinea pigs under different social environmental conditions.

    Science.gov (United States)

    Nemeth, Matthias; Millesi, Eva; Puehringer-Sturmayr, Verena; Kaplan, Arthur; Wagner, Karl-Heinz; Quint, Ruth; Wallner, Bernard

    2016-01-01

    related to a general sex difference in the n-3 PUFA bioavailability and cortisol responses, which may indicate that males are more susceptible to changing environmental conditions, and shows how dietary fatty acids can shape social systems.

  1. Effects of vitamins, fatty acids, minerals, and other dietary supplements on schizophrenic symptoms in people with schizophrenia

    OpenAIRE

    Smedslund, Geir; Berg, Rigmor C.

    2011-01-01

    ENGLISH: There is considerable scientific disagreement about the possible effects of dietary supplements on mental health and illness. Do dietary supplements (possibly in megadoses) have an effect on symptoms and consequences of schizophrenia? We critically appraised randomized controlled trials about supplemental vitamins, fatty acids and other dietary supplements given to people diagnosed with schizophrenia. The primary outcome was symptoms of schizophrenia. We evaluated the evidence to be ...

  2. Effects of dietary vitamin B6 supplementation on fillet fatty acid composition and fatty acid metabolism of rainbow trout fed vegetable oil based diets.

    Science.gov (United States)

    Senadheera, Shyamalie D; Turchini, Giovanni M; Thanuthong, Thanongsak; Francis, David S

    2012-03-07

    Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

  3. Dietary fatty acids and lipoproteins on progression of age-related macular degeneration

    International Nuclear Information System (INIS)

    Montserrat-de la Paz, S.; Naranjo, M.C.; Bermúdez, B.; López, S.; Abia, R.; Muriana, F.J.G.

    2017-01-01

    Age-related macular degeneration (AMD) is a medical condition of central loss vision and blindness. Numerous studies have revealed that changes on certain dietary fatty acids (FAs) could have useful for AMD management. This review summarizes the effects of dietary omega-3 long-chain PUFAs, MUFAs, and SFAs, and lipoproteins on AMD. Findings are consistent with the beneficial role of dietary omega-3 long-chain PUFAs, while the effects of dietary MUFAs and SFAs appeared to be ambiguous with respect to the possible protection from MUFAs and to the possible adverse impact from SFAs on AMD. Some of the pathological mechanisms associated with lipoproteins on AMD share those observed previously in cardiovascular diseases. It was also noticed that the effects of FAs in the diet and lipoprotein on AMD could be modulated by genetic variants. From a population health perspective, the findings of this review are in favour of omega-3 long-chain FAs recommendations in a preventive and therapeutic regimen to attain lower AMD occurrence and progression rates. Additional long-term and short-term nutrigenomic studies are required to clearly establish the role and the relevance of interaction of dietary FAs, lipoproteins, and genes in the genesis and progression of AMD. [es

  4. Dietary fatty acids and lipoproteins on progression of age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    S. Montserrat-de la Paz

    2017-06-01

    Full Text Available Age-related macular degeneration (AMD is a medical condition of central loss vision and blindness. Numerous studies have revealed that changes on certain dietary fatty acids (FAs could have useful for AMD management. This review summarizes the effects of dietary omega-3 long-chain PUFAs, MUFAs, and SFAs, and lipoproteins on AMD. Findings are consistent with the beneficial role of dietary omega-3 long-chain PUFAs, while the effects of dietary MUFAs and SFAs appeared to be ambiguous with respect to the possible protection from MUFAs and to the possible adverse impact from SFAs on AMD. Some of the pathological mechanisms associated with lipoproteins on AMD share those observed previously in cardiovascular diseases. It was also noticed that the effects of FAs in the diet and lipoprotein on AMD could be modulated by genetic variants. From a population health perspective, the findings of this review are in favour of omega-3 long-chain FAs recommendations in a preventive and therapeutic regimen to attain lower AMD occurrence and progression rates. Additional long-term and short-term nutrigenomic studies are required to clearly establish the role and the relevance of interaction of dietary FAs, lipoproteins, and genes in the genesis and progression of AMD.

  5. The role of n-3 LCPUFA in pregnancy

    Directory of Open Access Journals (Sweden)

    Makrides Maria

    2011-09-01

    Full Text Available The metabolic demand for n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA, particularly docosahexaenoic acid (22: 6 n-3, DHA is increased during pregnancy because of the extra needs of the fetus, expanded maternal cell mass and placenta. However, in Western countries maternal dietary n-3 LCPUFA intake in pregnancy is low and it is not clear whether adaptive metabolic mechanisms, such as increased DHA synthesis from precursor fatty acids, are capable of meeting the increased need in pregnancy. Consequently randomized controlled trials have been important to determine whether additional dietary n-3 LCPUFA in pregnancy modifies pregnancy, maternal and infant health outcomes. Supplementation with at least 1g n-3 LCPUFA per day results in a modest increase in the duration of gestation that may be most evident at the extremes of gestation. Additionally, n-3 LPUFA supplementation of well nourished pregnant women has little benefit in preventing maternal postnatal depression and is unlikely to result in major benefits to the developmental outcomes of young children. Further work in needed to identify the specific ‘‘at risk’’ groups who are most likely to benefit from supplementation.

  6. Alterations in fatty acid metabolism in response to obesity surgery combined with dietary counseling.

    Science.gov (United States)

    Walle, P; Takkunen, M; Männistö, V; Vaittinen, M; Käkelä, P; Ågren, J; Schwab, U; Lindström, J; Tuomilehto, J; Uusitupa, M; Pihlajamäki, J

    2017-09-04

    The effects of obesity surgery on serum and adipose tissue fatty acid (FA) profile and FA metabolism may modify the risk of obesity-related diseases. We measured serum (n=122) and adipose tissue (n=24) FA composition and adipose tissue mRNA expression of genes regulating FA metabolism (n=100) in participants of the Kuopio Obesity Surgery Study (KOBS, age 47.2±8.7 years, BMI 44.6±6.0, 40 men, 82 women) before and one year after obesity surgery. As part of the surgery protocol, all the subjects were instructed to add sources of unsaturated fatty acids, such as rapeseed oil and fatty fish, into their diet. The results were compared with changes in serum FA composition in 122 subjects from the Finnish Diabetes Prevention study (DPS) (age 54.3±7.1 years, BMI 32.2±4.6, 28 men, 94 women). The proportion of saturated FAs decreased and the proportion of n-3 and n-6 FAs increased in serum triglycerides after obesity surgery (all Pobesity surgery in all lipid fractions (all Pobesity surgery and lifestyle intervention, except for the change in the absolute amounts of n-3 FAs between the two studies (P=0.044). Beneficial changes in serum and adipose tissue FAs after obesity surgery could be associated with changes in endogenous metabolism and diet.

  7. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs.

    Science.gov (United States)

    Nemeth, Matthias; Millesi, Eva; Siutz, Carina; Wagner, Karl-Heinz; Quint, Ruth; Wallner, Bernard

    2017-01-01

    Dietary saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can highly affect reproductive functions by providing additional energy, modulating the biochemical properties of tissues, and hormone secretions. In precocial mammals such as domestic guinea pigs the offspring is born highly developed. Gestation might be the most critical reproductive period in this species and dietary fatty acids may profoundly influence the gestational effort. We therefore determined the hormonal status at conception, the reproductive success, and body mass changes during gestation in guinea pigs maintained on diets high in PUFAs or SFAs, or a control diet. The diets significantly affected the females' plasma fatty acid status at conception, while cortisol and estrogen levels did not differ among groups. SFA females exhibited a significantly lower body mass and litter size, while the individual birth mass of pups did not differ among groups and a general higher pup mortality rate in larger litters was diminished by PUFAs and SFAs. The gestational effort, determined by a mother's body mass gain during gestation, increased with total litter mass, whereas this increase was lowest in SFA and highest in PUFA individuals. The mother's body mass after parturition did not differ among groups and was positively affected by the total litter mass in PUFA females. While SFAs reduce the litter size, but also the gestational effort as a consequence, PUFA supplementation may contribute to an adjustment of energy accumulations to the total litter mass, which may both favor a mother's body condition at parturition and perhaps increase the offspring survival at birth.

  8. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Dreassi, Elena; Cito, Annarita; Zanfini, Assunta; Materozzi, Lara; Botta, Maurizio; Francardi, Valeria

    2017-03-01

    Fat is the second most abundant component of the nutrient composition of the mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) that represents also an interesting source of PUFA, especially n-6 and n-3 fatty acids, involved in prevention of cardiovascular diseases. This study investigated the possibility of modifying the fat content and the FA composition of yellow mealworms through feeding and how this would be influenced by developmental stages, pupal sex, and generation with the future aim of applying this coleopteran as a diet supplement for human health. Growth rate and cumulative mortality percentage on the different feeding substrates were also evaluated to select the optimal conditions for a mass-raising of this insect species. Despite the different fat content in the six different breeding substrates used, T. molitor larvae and pupae contained a constant fat percentage (>34% in larvae and >30% in pupae). A similar total fat content was found comparing larvae and male and female pupae of the second generation to those of the first generation. On the contrary, FA composition differed both in larvae and pupae reared on the different feeding substrates. However, the exemplars reared on the diets based on 100% bread and 100% oat flour showed SFA, PUFA percentages, and an n-6/n-3 ratio more suitable for human consumption; the diet based on beer yeast, wheat flour, and oat flour resulted in a contemporary diet that most satisfied the balance between a fat composition of high quality and favorable growth conditions.

  9. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    Science.gov (United States)

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  10. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    Science.gov (United States)

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Interaction between Marine-Derived n-3 Long Chain Polyunsaturated Fatty Acids and Uric Acid on Glucose Metabolism and Risk of Type 2 Diabetes Mellitus: A Case-Control Study.

    Science.gov (United States)

    Li, Kelei; Wu, Kejian; Zhao, Yimin; Huang, Tao; Lou, Dajun; Yu, Xiaomei; Li, Duo

    2015-08-26

    The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = -0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.

  12. An Investigation into the Association between DNA Damage and Dietary Fatty Acid in Men with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Karen S. Bishop

    2015-01-01

    Full Text Available Prostate cancer is a growing problem in New Zealand and worldwide, as populations adopt a Western style dietary pattern. In particular, dietary fat is believed to be associated with oxidative stress, which in turn may be associated with cancer risk and development. In addition, DNA damage is associated with the risk of various cancers, and is regarded as an ideal biomarker for the assessment of the influence of foods on cancer. In the study presented here, 20 men with prostate cancer adhered to a modified Mediterranean style diet for three months. Dietary records, blood fatty acid levels, prostate specific antigen, C-reactive protein and DNA damage were assessed pre- and post-intervention. DNA damage was inversely correlated with dietary adherence (p = 0.013 and whole blood monounsaturated fatty acids (p = 0.009 and oleic acid (p = 0.020. DNA damage was positively correlated with the intake of dairy products (p = 0.043, red meat (p = 0.007 and whole blood omega-6 polyunsaturated fatty acids (p = 0.015. Both the source and type of dietary fat changed significantly over the course of the dietary intervention. Levels of DNA damage were correlated with various dietary fat sources and types of dietary fat.

  13. Dietary fatty acid enrichment increases egg size and quality of yellow seahorse Hippocampus kuda.

    Science.gov (United States)

    Saavedra, M; Masdeu, M; Hale, P; Sibbons, C M; Holt, W V

    2014-02-01

    Seahorses populations in the wild have been declining and to restore them a better knowledge of seahorse reproduction is required. This study examines the effect of dietary quality on seahorse fecundity and egg quality. Two different diets were tested with Hippocampus kuda females: frozen mysis (control) and frozen mysis enriched with a liposome spray containing essential fatty acids. Diets were given to females (two groups of five) over a seven week period. After this period, males (fed the control diet) and females were paired and the eggs dropped by the females were collected. Fatty acid profile were analysed and eggs were counted and measured. Results showed that females fed on enriched mysis had larger eggs and that these had a higher content of total polyunsaturated fatty acids. The size of the egg was especially affected in the first spawn, where egg size for females fed the enriched diet was significantly higher than the egg size from control females. This effect was reduced in the following spawning where no significant differences were found. Egg size is an important quality descriptor as seahorse juveniles originating from smaller eggs and/or eggs of poor quality will have less chances of overcoming adverse conditions in the wild and consequently have lower survival and growth rates. This study shows that enriching frozen mysis with polyunsaturated fatty acids increases egg size and egg quality of H. kuda. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Dietary polyunsaturated fatty acid supplementation ameliorates the ionizing radiation induced cognitive deterioration

    International Nuclear Information System (INIS)

    Bekal, Mahesh; Suchetha Kumari

    2016-01-01

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 Poly Unsaturated Fatty Acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore, this study was undertaken to establish the role of Omega-3 Poly Unsaturated Fatty Acids on Memory, Learning ability and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on memory and learning ability was investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of 8 and 6 Gy of EBR and also the Fish oil and Flax seed extract (300 mg/kg body weight) were given orally to the irradiated mice

  15. Acute effects of dietary fatty acids on osteclastogenesis via RANKL/RANK/OPG system.

    Science.gov (United States)

    Naranjo, M Carmen; Garcia, Indara; Bermudez, Beatriz; Lopez, Sergio; Cardelo, Magdalena P; Abia, Rocio; Muriana, Francisco J G; Montserrat-de la Paz, Sergio

    2016-11-01

    Postprandial state is directly linked with chronic diseases. We hypothesized that dietary fats may have acute effects on health status by modulating osteoclast differentiation and activation in a fatty acid-dependent manner. In healthy subjects, a fat-enriched meal increased plasma levels of the RANKL (receptor activator of nuclear factor κB ligand)/OPG (osteoprotegerin) ratio (SFAs > MUFAs = PUFAs) in the postprandial state. Postprandial TRL-SFAs enhanced tartrate-resistant acid phosphatase (TRAP) activity and the expression of osteoclast marker genes (TRAP, OSCAR, RANK, and CATHK) while downregulated the expression of OPG gene in human monocyte-derived osteoclasts. These effects were not observed with monounsaturated fatty acid (MUFA)-enriched postprandial triglyceride-rich lipoproteins (TRLs). Moreover, postprandial TRL-SFAs increased the release of osteoclastogenic cytokines (TNF-α, IL-1β, and IL-6) meanwhile TRL-MUFAs and TRL-PUFAs increased the release of anti-osteoclastogenic cytokines (IL-4 and IL-10) in the medium of human monocyte-derived osteoclasts. For the first time, we show that postprandial TRLs are metabolic entities with osteoclastogenic activity and that this property is related to the type of dietary fatty acid in the meal. The osteoclastogenic potency was as follows: SFAs > MUFAs = PUFAs. These exciting findings open opportunities for developing nutritional strategies with olive oil as the principal dietary source of MUFAs, notably oleic acid, to prevent development and progression of osteoclast-related diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology.

    Science.gov (United States)

    Khadge, Saraswoti; Sharp, John Graham; Thiele, Geoffrey M; McGuire, Timothy R; Klassen, Lynell W; Duryee, Michael J; Britton, Holly C; Dafferner, Alicia J; Beck, Jordan; Black, Paul N; DiRusso, Concetta C; Talmadge, James

    2018-02-01

    Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile.

    Science.gov (United States)

    Moran, Colm A; Morlacchini, Mauro; Keegan, Jason D; Fusconi, Giorgio

    2018-05-01

    The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. A total of 144 Pig Improvement Company (PIC)×Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (±13.1) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

  18. Dietary fat intake, circulating and membrane fatty acid composition of healthy Norwegian men and women.

    Science.gov (United States)

    Min, Y; Blois, A; Geppert, J; Khalil, F; Ghebremeskel, K; Holmsen, H

    2014-02-01

    The present study aimed to assess the dietary fat intake and blood fatty acid status of healthy Norwegian men and women living in Bergen whose habitual diet is known to be high in long-chain omega-3 fat. Healthy men (n = 41) and women (n = 40) aged 20-50 years who were regular blood donors completed 7-day food diaries and their nutrient intake was analysed by Norwegian food database software, kbs, version 4.9 (kostberegningssystem; University of Oslo, Oslo, Norway). Blood samples were obtained before blood donation and assessed for the fatty acid composition of plasma triglycerides and cholesterol esters, phosphatidylcholine, and red cell phosphatidylcholine and phosphatidylethanolamine. There was no difference in dietary fat intake between men and women. Total and saturated fat intakes exceeded the upper limits of the recommendations of the National Nutrition Council of Norway. Although polyunsaturated fat intake was close to the lower limit of the recommended level, the intake varied greatly among individuals, partly as a result of the use of supplementary fish oil. Moreover, the proportional fatty acid composition of plasma and red cell lipids was similar between men and women. Enrichment of docosahexaenoic acid in red cell phosphatidylethanolamine was found in fish oil users. The results of the present study provide a snapshot of the current nutritional status of healthy Norwegian adults. Moreover, the detailed blood fatty acid composition of men and women whose habitual diet constitutes high long-chain polyunsaturated omega-3 fat as well as saturated fat could be used as reference value for population studies. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  19. Comparison of Fatty Acid Composition in Selected Dietary Supplements Containing Conjugated Linoleic Acid.

    Science.gov (United States)

    Derewiaka, Dorota; Nestorowicz, Klara; Wołosiak, Rafał

    2017-07-04

    The market of pharmaceutical products is offering a wide range of supplements. Most of the consumers believe that these products will improve their state of health, but are they getting what they want and what they are paying for? The aim of the study was to evaluate the quality of selected dietary supplements containing conjugated linoleic acid (CLA). All supplements were available in the Warsaw markets and bought from pharmacies. Assessment of the quality of food supplements was achieved by analysis of fatty acid using gas chromatography coupled with a mass spectrometer. On the basis of the investigations carried out, it was found that content of CLA in selected dietary supplements ranged between 282 and 528 mg by weight of a single capsule. The content of bioactive ingredients found in three of the four product supplements assessed was lower than was claimed by the manufacturer.

  20. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice.

    Science.gov (United States)

    Heerwagen, Margaret J R; Stewart, Michael S; de la Houssaye, Becky A; Janssen, Rachel C; Friedman, Jacob E

    2013-01-01

    Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (Pmaternal insulin resistance (r = 0.59, Pmaternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (Pmaternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.

  1. (n-3) Fatty acid content of red blood cells does not predict risk of future cardiovascular events following an acute coronary syndrome.

    Science.gov (United States)

    Aarsetoey, Hildegunn; Pönitz, Volker; Grundt, Heidi; Staines, Harry; Harris, William S; Nilsen, Dennis W T

    2009-03-01

    A reduced risk of fatal coronary artery disease has been associated with a high intake of (n-3) fatty acids (FA) and a direct cardioprotective effect by their incorporation into myocardial cells has been suggested. Based on these observations, the omega-3 index (eicosapentaenoic acid + docosahexaenoic acid in cell membranes of RBC expressed as percent of total FA) has been suggested as a new risk marker for cardiac death. In this study, our aim was to evaluate the omega-3 index as a prognostic risk marker following hospitalization with an acute coronary syndrome (ACS). The omega-3 index was measured at admission in 460 patients with an ACS as defined by Troponin-T (TnT) > or = 0.02 microg/L. During a 2-y follow-up, recurrent myocardial infarctions (MI) (defined as TnT > 0.05 microg/L with a typical MI presentation) and cardiac and all-cause mortality were registered. Cox regression analyses were used to relate the risk of new events to the quartiles of the omega-3 index at inclusion. After correction for age, sex, previous heart disease, hypertension, diabetes, smoking, high-sensitivity C-reactive protein, brain natriuretic peptide, creatinine, total cholesterol, HDL-cholesterol, triacylglycerol, homocysteine, BMI, and medication, there was no significant reduction in risk for all-cause mortality, cardiac death, or MI with increasing values of the index. In conclusion, we could not confirm the omega-3 index as a useful prognostic risk marker following an ACS.

  2. Prescription Omega-3 Fatty Acid Products and Dietary Supplements Are Not Interchangeable.

    Science.gov (United States)

    Hilleman, Daniel; Smer, Aiman

    2016-01-01

    To provide an overview of prescription and dietary supplement omega-3 fatty acid (OM3-FA) products and considerations for clinical use. Narrative review. The PubMed database was searched for cardiovascular-related investigations focused on eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) (limit: English-only articles). Additional regulatory information on prescription and dietary supplements was obtained from United States Food and Drug Administration online sources. Prescription QM3-FA products are supported by robust clinical development and safety monitoring programs, whereas dietary supplements are not required to demonstrate safety or efficacy prior to marketing. There are no over-the-counter OM3-FA products available in the United States. Investigations of OM3-FA dietary supplements show that quantities of EPA and DHA are highly variable within and between brands. Dietary supplements also may contain potentially harmful components, including oxidized OM3-FA, other lipids, cholesterol, and toxins. Prescription OM3-FA products may contain DHA and EPA or EPA alone. All prescription OM3-FA products have demonstrated statistically significant triglyceride reduction as monotherapy or in combination with statins in patients with hypertriglyceridemia. Differential effects between products containing EPA and DHA compared with a high-purity EPA product (icosapent ethyl) have clinical implications: Increases in low-density lipoprotein cholesterol associated with DHA have the potential to confound strategies for managing patients with dyslipidemia. Cardiovascular outcomes studies of prescription CM3-FA products are ongoing. OM3-FA dietary supplements should not be substituted for prescription products, and prescription OM3-FA products that contain DHA are not equivalent to or interchangeable with high-purity EPA (icosapent ethyl) and should not be substituted for it.

  3. Practical Dietary Recommendations for the Prevention and Management of Nonalcoholic Fatty Liver Disease in Adults.

    Science.gov (United States)

    George, Elena S; Forsyth, Adrienne; Itsiopoulos, Catherine; Nicoll, Amanda J; Ryan, Marno; Sood, Siddharth; Roberts, Stuart K; Tierney, Audrey C

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. In the absence of effective pharmacotherapies, clinical guidelines focus primarily on weight loss to treat this condition. Established consensus, evidence-based, and clinical dietary recommendations for NAFLD are currently lacking. The aim of this paper is to provide evidence-based practical dietary recommendations for the prevention and management of NAFLD in adults. A literature review focusing on established principles for the development of clinical practice recommendations was employed using the following criteria: based on substantial evidence, ensures risk minimization, is flexible for an individual patient approach, and is open to further modification as evidence emerges. The Practice-based Evidence in Nutrition classification system was used to grade these principles. Five key dietary recommendations were developed: 1) follow traditional dietary patterns, such as the Mediterranean diet; 2) limit excess fructose consumption and avoid processed foods and beverages with added fructose; 3) PUFAs, especially long-chain omega-3 rich foods and MUFAs, should replace SFAs in the diet; 4) replace processed food, fast food, commercial bakery goods, and sweets with unprocessed foods high in fiber, including whole grains, vegetables, fruits, legumes, nuts, and seeds; and 5) avoid excess alcohol consumption. Improving diet quality may reduce the incidence and progression of NAFLD and associated risk factors. Many of the benefits are likely to result from the collective effect of dietary patterns. High-quality research-in particular, randomized clinical trials assessing dietary interventions that focus on liver-specific endpoints-are needed as a priority. © 2018 American Society for Nutrition. All rights reserved.

  4. Dietary Composition Independent of Weight Loss in the Management of Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Tannaz Eslamparast

    2017-07-01

    Full Text Available Poor dietary composition is an important factor in the progression of non-alcoholic fatty liver disease (NAFLD. The majority of NAFLD patients follow diets with overconsumption of simple carbohydrates, total and saturated fat, with reduced intake of dietary fiber and omega-3 rich foods. Although lifestyle modifications including weight loss and exercise remain the keystone of NAFLD management, modifying dietary composition with or without a calorie-restricted diet may also be a feasible and sustainable strategy for NAFLD treatment. In the present review article, we highlight the potential therapeutic role of a “high quality healthy diet” to improve hepatic steatosis and metabolic dysfunction in patients with NAFLD, independent of caloric restriction and weight loss. We provide a literature review evaluating the evidence behind dietary components including fiber-, meat- and omega-3-rich diets and, pending further evidence, we concur with the EASL-EASD-EASO Clinical Guidelines recommendation of the Mediterranean diet as the diet of choice in these patients.

  5. Effects of dietary fat on the saturated and monounsaturated fatty acid metabolism in growing pigs.

    Science.gov (United States)

    Raj, Stanisława; Skiba, Grzegorz; Sobol, Monika; Pastuszewska, Barbara

    2017-08-01

    The effect of dietary fats differing in fatty acid (FA) composition on the metabolism of saturated FA (SFA) and monounsaturated FA (MUFA) in growing pigs was investigated. The deposition of FA in the body and the fate of individual dietary FA were assessed after slaughter. Gilts with an initial body weight (BW) of 60 kg were used as experimental animals. Six pigs were slaughtered at 60 kg BW, while further 18 pigs received three isoenergetic and isonitrogen experimental diets containing linseed oil, rapeseed oil or beef tallow at 50 g/kg diet until they reached 105 kg (six pigs per group). The chemical composition and the content of FA in the whole body were determined and compared across groups. Regardless of dietary treatment, the whole body contained similar amounts of protein, fat and total FA. The total accumulation (percentage of net intake and de novo production) of SFA and MUFA was similar in all groups, but the processes of elongation and desaturation of SFA and MUFA depended upon the type of FA added to the diet. A high dietary content and intake of MUFA inhibits desaturation compared to SFA- and PUFA-rich diets, whereas a high SFA content and intake lowers elongation rate. The increasing net intake of total SFA and MUFA was associated with a lower total de novo production of these FA in the whole body of pigs.

  6. Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings.

    Science.gov (United States)

    Nayak, Madhusmita; Saha, Ashis; Pradhan, Avinash; Samanta, Mrinal; Giri, Shiba Shankar

    2017-03-01

    Silver barb (Puntius gonionotus) is considered a promising medium carp species for freshwater aquaculture in Asia. This study in silver barb was carried out to evaluate the effects of total or partial substitution of dietary fish oil (FO) with linseed oil (LO) on growth, nutrient utilization, whole-body composition, muscle and liver fatty acid composition. Fish (12.1±0.4g of initial body weight) were fed for 60days with five experimental iso-proteinous, iso-lipidic and iso-caloric diets in which FO (control diet) was replaced by 33.3%, 50%, 66.7% and 100% LO. Final weight, weight gain, percent weight gain, SGR decreased linearly (p0.05) affect the feed conversion ratio (FCR), protein efficiency ratio (PER) and whole body proximate composition. Furthermore, enhanced level of LO increased α-linolenic acid (ALA; 18:3n3) and linoleic acid (LA; 18:2n6) and decreased eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) in muscle and liver. To understand the molecular mechanism of long chain-polyunsaturated fatty acid (LC-PUFA) biosynthesis, we cloned and characterized the fatty acyl Δ6 desaturase (Δ6 fad) cDNA and investigated its expression in various organs/tissues following replacement of FO with LO in the diet. The full-length Δ6 fad cDNA was 2056bp encoding 444 amino acids and was widely expressed in various organs/tissues. Replacement of FO with LO increased the expression of Δ6 fad mRNA in liver, muscle and intestine but no significant difference was found in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: Design and baseline characteristics of the Alpha Omega Trial

    NARCIS (Netherlands)

    Geleijnse, J.M.; Giltay, E.J.; Schouten, E.G.; Goede, de J.; Oude Griep, L.M.; Teitsma-Jansen, A.M.; Katan, M.B.; Kromhout, D.

    2010-01-01

    Background Weekly fish consumption has been related to a lower risk of fatal coronary heart disease (CHD) and incident stroke in populations with a low fish intake. This relation has mainly been attributed to n-3 fatty acids in fish, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid

  8. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: design and baseline characteristics of the Alpha Omega Trial

    NARCIS (Netherlands)

    Geleijnse, Johanna M.; Giltay, Erik J.; Schouten, Evert G.; de Goede, Janette; Oude Griep, Linda M.; Teitsma-Jansen, Anna M.; Katan, Martijn B.; Kromhout, Daan; Kromhout, D.; Schouten, E. G.; Geleijnse, J. M.; Giltay, E. J.; de Goede, J.; Oude Griep, L. M.; Mulder, B. J. M.; Mulder, J. W.; Zock, P. L.; de Boer, M. J.; de Leeuw, H.; Boersma, E.; Jukema, J. W.; van Binsbergen, J. J.; van der Kuip, D. A. M.; Thomas, K.; Rivero-Ayerza, M.; Vollaard, A. M.; Fieren, C. J.; van Kempen, L. H. J.; Bakx, A.; Sedney, M. I.; Hertzberger, D. P.; Michels, H. R.; de Rotte, A. A.; van Rugge, R. P.; Klootwijk, A.; Verheul, J. A.; Nicastia, D. M.; Robles de Medina, R.; van Rossem, M.; Leenders, C. M.; van der Meer, P.; Uppal, S. C.; Blok, J. G.; Visser, R. F.; Mosterd, A.; Umans, V. A.; Reichert, C. L. A.; Louwerenburg, J. W.; Liem, A. H.; van Rees, C.

    2010-01-01

    BACKGROUND: Weekly fish consumption has been related to a lower risk of fatal coronary heart disease (CHD) and incident stroke in populations with a low fish intake. This relation has mainly been attributed to n-3 fatty acids in fish, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid

  9. Effects of n-3 and n-6 polyunsaturated fatty acid-enriched diets on lipid metabolism in periportal and pericentral compartments of female rat liver lobules and the consequences for cell proliferation after partial hepatectomy

    NARCIS (Netherlands)

    van Noorden, C. J.

    1995-01-01

    The effects of a low fat diet or diets enriched with either n-6 or n-3 polyunsaturated fatty acids (safflower or fish oil, respectively) on lipid metabolism in periportal and pericentral zones of female rat liver lobules were investigated in relation with cell proliferation after partial

  10. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  11. Changes in short-chain fatty acid plasma profile incurred by dietary fiber composition

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach; Jørgensen, Henry Johs. Høgh; Theil, Peter Kappel

    2016-01-01

    Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery and w...... higher net absorption of butyrate (2.4–4.0 vs. 1.6 mmol/h; P ...Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery...... >> arabinoxylan >> β-glucan, whereas in the WWG, WAF, and RAF, diets it was arabinoxylan >> cellulose > β-glucan. The diets were fed to the pigs during 3 wk in a crossover design. Within an experimental week, WFL was supplied on Days 1 through 3 and WWG, WAF, or RAF was supplied during Days 4 through 7. Fasting...

  12. Isocaloric Dietary Changes and Non-Alcoholic Fatty Liver Disease in High Cardiometabolic Risk Individuals

    Directory of Open Access Journals (Sweden)

    Giuseppe Della Pepa

    2017-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD incorporates an extensive spectrum of histologic liver abnormalities, varying from simple triglyceride accumulation in hepatocytes non-alcoholic fatty liver (NAFL to non-alcoholic steatohepatitis (NASH, and it is the most frequent chronic liver disease in the industrialized world. Beyond liver related complications such as cirrhosis and hepatocellular carcinoma, NAFLD is also an emerging risk factor for type 2 diabetes and cardiovascular disease. Currently, lifestyle intervention including strategies to reduce body weight and to increase regular physical activity represents the mainstay of NAFLD management. Total caloric intake plays a very important role in both the development and the treatment of NAFLD; however, apart from the caloric restriction alone, modifying the quality of the diet and modulating either the macro- or micronutrient composition can also markedly affect the clinical evolution of NAFLD, offering a more realistic and feasible treatment alternative. The aim of the present review is to summarize currently available evidence from randomized controlled trials on the effects of different nutrients including carbohydrates, lipids, protein and other dietary components, in isocaloric conditions, on NAFLD in people at high cardiometabolic risk. We also describe the plausible mechanisms by which different dietary components could modulate liver fat content.

  13. Dietary structured lipids for post-weaning piglets: fat digestibility, nitrogen retention and fatty acid profiles of tissues

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Danielsen, V.; Høy, Carl-Erik

    2006-01-01

    In four groups of post-weaning piglets the effects of triacylglycerol structure and fatty acid profiles of four dietary fats on apparent faecal nutrient digestibility, nitrogen retention and fatty acid profiles of platelet and erythrocyte membranes, liver, adipose tissue and skeletal muscle were...... examined. Dietary fats included as 10% (w/w) of the diets were two structured fats of rapeseed oil interesterified with tridecanoin (R1) or coconut oil (R2), respectively, one mixture of rapeseed oil and coconut oil (R3) and rapeseed oil as control (R4). Faeces and urine from piglets weaned at 28 days...

  14. Establishment of the fatty acid profile of the brain of the king penguin (Aptenodytes patagonicus) at hatch: effects of a yolk that is naturally rich in n-3 polyunsaturates.

    Science.gov (United States)

    Speake, Brian K; Decrock, Frederic; Surai, Peter F; Wood, Nicholas A R; Groscolas, René

    2003-01-01

    Because the yolk lipids of the king penguin (Aptenodytes patagonicus) contain the highest concentrations of long-chain n-3 polyunsaturated fatty acids yet reported for an avian species, the consequences for the establishment of the brain's fatty acid profile in the embryo were investigated. To place the results in context, the fatty acid compositions of yolk lipid and brain phospholipid of the king penguin were compared with those from three other species of free-living birds. The proportions of docosahexaenoic acid (22:6n-3; DHA) in the total lipid of the initial yolks for the Canada goose (Branta canadensis), mallard (Anas platyrhynchos), moorhen (Gallinula chloropus), and king penguin were (% w/w of fatty acids) 1.0+/-0.1, 1.9+/-0.2, 3.3+/-0.1, and 5.9+/-0.2, respectively. The respective concentrations of DHA (% w/w of phospholipid fatty acids) in brains of the newly hatched chicks of these same species were 18.5+/-0.2, 19.6+/-0.7, 16.9+/-0.4, and 17.6+/-0.1. Thus, the natural interspecies diversity in yolk fatty acid profiles does not necessarily produce major differences in the DHA content of the developing brain. Only about 1% of the amount of DHA initially present in the yolk was recovered in the brain of the penguin at hatch. There was no preferential uptake of DHA from the yolk during development of the king penguin.

  15. The effect of dietary fatty acid composition on the hepatic fatty acid content and plasma lipid profile in rats

    Directory of Open Access Journals (Sweden)

    Tomáš Komprda

    2015-01-01

    Full Text Available The objective of the present study was to evaluate in a model organism the effect of different dietary lipids on plasma concentration of total cholesterol (TC, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C and triacylglycerols (TAG. One hundred adult male rats (Wistar Albino were divided into 10 groups with 10 animals each and fed for 7 weeks either basic feed mixture (control diet, C or basic feed mixture with 5% of palm oil (P, safflower oil (SF, salmon oil (S, fish oil (F, Schizochytrium microalga oil (A, and 20% of beef tallow (T; four groups, respectively. The T-groups were fed for another 7 weeks T-, SF-, F- and A-diet, respectively. At the end of both the first and the second 7-week fattening period, plasma lipid concentration and hepatic fatty acid content was determined. Both A and F diets fed for 7 weeks decreased (P -1 compared to control (1.19 mmol∙l-1. The highest (P -1. A-diet had the most positive (decreasing effect on TAG concentrations (0.68–0.86 mmol∙l-1 compared to 1.22 and 2.88 mmol∙l-1 found in the C and T diets, respectively; P P Schizochytrium microalga oil (with high DHA content may have the potential for decreasing the risk of cardiovascular diseases.

  16. Nutritional enrichment of vegetable oils with long-chain n-3 fatty acids through enzymatic interesterification with a new vegetable lipase

    Directory of Open Access Journals (Sweden)

    Sousa, J. S.

    2015-06-01

    Full Text Available The aim of the present work was to produce vegetable oils enriched with long-chain n-3 fatty acids of nutraceutical interest, through an enzyme-catalyzed interesterification with a new lipase, from physic nut (Jatropha curcas L.. The Vegetable Lipase Powder (biocatalyst called VLP, which has never been applied in functional foods, was obtained from the physic nut seed, and efficiently hydrolyzed the 95% of waste fish oil in 24 h. Urea precipitation was used to concentrate polyunsaturated fatty acids (PUFA and was further interesterified with oils of different sources by means of enzymatic catalysis. After the interesterification reaction, which was also catalyzed by the VLP, the PUFA content in coconut oil increased almost ten-fold from 1.8% to 17.7%. In palm oil, the PUFA content increased two-fold from 10.5% to 21.8%, while in olive oil the level of PUFA increased from 8.6% to 21.3%. The mixture of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (3.7% to 3.9% was incorporated into the triacylglycerol fraction of each of the coconut, palm and olive oils. Through the hydroesterification (hydrolysis followed by interesterification all the interesterified vegetable oils tested presented sufficient EPA and DHA levels to satisfy the levels recommended for intake by human adults in one tablespoon.El objetivo del presente trabajo fue producir aceites vegetales enriquecidos con ácidos grasos n-3 de cadena larga de interés nutraceutico, por interesterificación catalizada mediante una nueva lipasa, una enzima de semilla de Jatropha curcas L. La lipasa vegetal en polvo (biocatalizador llamada VLP, nunca ha sido aplicada en alimentos funcionales, se obtuvo mediante procedimientos físicos con semillas de nueces, e hidrolizó eficientemente el 95% de aceites de residuos de pescado en 24 h. La precipitación con urea se utilizó para concentrar los ácidos grasos poliinsaturados (PUFA que fueron posteriormente interesterificados con aceites de

  17. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: a randomised clinical trial.

    Science.gov (United States)

    Mokkala, K; Pussinen, P; Houttu, N; Koivuniemi, E; Vahlberg, T; Laitinen, K

    2018-02-27

    A disruption in intestinal barrier integrity may predispose individuals to metabolic aberrations, particularly during the vulnerable period of pregnancy. We investigated whether intestinal permeability, as measured by serum zonulin concentration, changes over the duration of pregnancy and whether this change is reflected in lipopolysaccharide (LPS) activity. Second, we tested in a randomised double-blind placebo controlled clinical trial the impact of consuming dietary probiotics and/or long chain polyunsaturated fatty acid (LC-PUFA) supplements in lowering serum zonulin concentration and LPS activity. The probiotic supplement was a combination of two bacteria, Bifidobacterium animalis ssp. lactis 420 and Lactobacillus rhamnosus HN001. This study included 200 overweight pregnant women participating in an on-going study; participants were randomised to consume either (1) probiotics, (2) LC-PUFA, (3) probiotics and LC-PUFA, or (4) placebo for each supplement. Blood samples were obtained at early, the baseline, and late pregnancy (mean 14 and 35 weeks of gestation, respectively). Serum zonulin concentration increased from early (mean (standard deviation): 62.7 (12.9) ng/ml) to late pregnancy by 5.3 (95%CI 3.7-6.9) ng/ml, and LPS activity increased from (0.16 (0.04) EU/ml) by 0.04 (95%CI 0.03-0.05) EU/ml. No differences among the intervention groups were detected in the change from early to late pregnancy in serum zonulin concentration (P=0.8) or LPS activity (P=0.2). The change in serum zonulin concentration during the pregnancy was associated with the weeks of follow up (r=0.25, Pzonulin concentration or LPS activity.

  18. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    Science.gov (United States)

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  19. Influence of different levels of n-3 supplemented (fish oil) diet on ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate fish oil as n-3 fatty acids source on some performance, carcass and serum parameters in broilers. One-day old Ross strain male broiler chickens (n = 120) were randomly arranged in four dietary treatments (0, 1.5, 3 and 4.5 percent fish oil), with three replicates for each treatment.

  20. Dietary omega 6 fatty acids and the effects of hyperthyroidism in mice.

    Science.gov (United States)

    Deshpande, N; Hulbert, A J

    1995-03-01

    The influence of the type of dietary fat on the effects of thyroid hormones was investigated in mice. Hyperthyroidism was achieved by providing thyroid hormones (T3 and T4) in the drinking water. Both hyperthyroid and euthyroid mice (Mus musculus) were fed isoenergetic diets containing 18% (w/w) total lipid but differing in fatty acid composition. Diets were either low in the polyunsaturated linoleic acid (18:2, omega 6) and high in saturated fatty acids (SFAs) or low in saturated fats and high in the polyunsaturated fatty acid (PUFA), linoleic acid. Treatments were maintained for 21-22 days. Plasma thyroid hormone levels, standard metabolic rate (SMR), changes in body mass, specific activities of malic enzyme (ME), Na-K-ATPase and glycerolphosphate dehydrogenase (GPDH) of the liver were measured. Fatty acid composition of the liver phospholipids was also determined. Levels of T3 (15-17 nM) and T4 (250-255 nM) were significantly higher in the respective hyperthyroid groups. There was no significant influence of the diet on hormone levels. Hyperthyroidism increased the SMR 37-44% above the euthyroid levels. A significant body weight loss of 14-18% was observed in hyperthyroid mice on the PUFA diet but not in those on the SFA diet. PUFA diet significantly reduced the activity of ME but had no effect on Na-K-ATPase or GPDH activity. Activities of Na-K-ATPase and GPDH were significantly elevated in all hyperthyroid groups. Mice on T4 and PUFA diet showed a highly significant 399% increase in GPDH activity above the euthyroid level.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Distribution and mobility of omega 3 fatty acids in rainbow trout fed varying levels and types of dietary lipid.

    Science.gov (United States)

    Castledine, A J; Buckley, J T

    1980-04-01

    The availability of essential fatty acids in fish neutral lipid to tissue phospholipids was determined under conditions of adequate and inadequate essential fatty acid intake as well as during fasting. Juvenile rainbow trout were fed a semi-purified diet containing varying levels of cod liver oil, with or without supplementary olein. Fatty acid analysis indicated that in all treatments the neutral lipid pool was not turned over during feeding but was enhanced by exogenous or endogenously synthesized fatty acids. Fish that received diets devoid of essential fatty acids maintained virtually all of the docosahexenoic acid originally present in each lipid pool. Fish fed diets containing essential fatty acids deposited them in proportion to the dietary levels. After a 4-week fast, no change was noted in the relative levels of fatty acids in neutral lipid indicating that all fatty acids in neutral lipid were catabolized equally--including essential fatty acids. During fasting there was a selective retention of docosahexenoic and linoleic acids in the phospholipid pool.

  2. Relationship Between Circulating Fatty Acids and Fatty Acid Ethanolamide Levels After a Single 2-h Dietary Fat Feeding in Male Sprague-Dawley Rats : Elevated levels of oleoylethanolamide, palmitoylethanolamide, linoleoylethanolamide, arachidonoylethanolamide and docosahexanoylethanolamide after a single 2 h dietary fat feeding in male Sprague Dawley rats.

    Science.gov (United States)

    Olatinsu, Anthonia O; Sihag, Jyoti; Jones, Peter J H

    2017-11-01

    Previous studies show that long term variations in dietary fat consumption impact circulating fatty acid ethanolamide (FAE) concentrations, however, few studies have investigated short term effects of dietary fat feeding on FAE levels. The trial's objective was to explore the effect of acute feeding of varying amounts of dietary n-9 and n-3 fatty acids on plasma and organ levels of FAE. Sixty-four rats were assigned to four groups fed meals containing 40% of energy as either safflower oil (control), canola oil (CO), or DHA rich oil (DRO), each consumed as a bolus within a 2-h window. Plasma and tissue FAE levels were measured at 3, 6, 12 and 24 h following the bolus. FAE profiles over time exhibited patterns that were specific both to FAE and to dietary fat type provided. At 3 h, plasma and liver OEA levels were higher (p < 0.05) in the 95% CO:5% DRO compared with other groups. At 12 h, plasma PEA levels were lower (p < 0.05) in the 50% CO:50% DRO group compared to the 95% CO group. Plasma DEA levels showed an increase (p < 0.05) only after 24 h of feeding. All four dietary groups manifested increased DEA levels in a dose-dependent manner. Data demonstrate that a single meal feeding of diets with different ratios of fat types impacts tissue levels of FAE within a short time frame, which could further influence the physiological roles of FAE on appetite regulation and energy expenditure.

  3. Fatty acid profile and oxidative stability of pork as influenced by duration and time of dietary linseed or fish oil supplementation.

    Science.gov (United States)

    Haak, L; De Smet, S; Fremaut, D; Van Walleghem, K; Raes, K

    2008-06-01

    In this experiment, the effect of duration and time of feeding n-3 PUFA sources on the fatty acid composition and oxidative stability of the longissimus thoracis (LT) muscle was investigated. Linseed (L) and fish oil (F), rich in alpha-linolenic acid and eicosapentaenoic and docosahexaenoic acid (EPA and DHA), respectively, were supplied equivalent to a level of 1.2% oil (as fed), either during the whole fattening period or only during the first (P1; 8 wk) or second (P2; 6 to 9 wk until slaughter) fattening phase. All diets were based on barley, wheat, and soybean meal and were fed ad libitum. Crossbred pigs (n = 154; Topigs 40 x Piétrain) were randomly allotted to the 7 feeding groups. In the basal diet (B), only animal fat was used as the supplementary fat source. Three dietary groups were supplied the same fatty acid source during both fattening phases (i.e., group BB, LL, and FF). For the other 4 dietary groups, the fatty acid source was switched after the first phase (groups BL, BF, LF, and FL; the first and second letter indicating the diet in P1 and P2, respectively). Twelve animals per feeding group were selected based on average live BW. The LT was analyzed for fatty acid composition; lipid stability (thiobarbituric acid-reactive substances) and color stability (a* value, % of myoglobin pigments) were determined on the LT after illuminated chill storage for up to 8 d. The alpha-linolenic acid, EPA, and docosapentaenoic acid incorporation was independent of the duration of linseed feeding (1.24, 0.54, and 0.75% of total fatty acids, respectively, for group LL). Supplying fish oil during both phases resulted in the greatest EPA and DHA proportions (1.37 and 1.02% of total fatty acids; P fish oil was administered during P2 compared with P1 (P < 0.05). There was no effect of diet on meat ultimate pH and drip loss or on lipid or color oxidation.

  4. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows.

    Science.gov (United States)

    Vargas-Bello-Pérez, Einar; Íñiguez-González, Gonzalo; Cancino-Padilla, Nathaly; Loor, Juan J; Garnsworthy, Philip C

    2016-08-01

    The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p lipoprotein (HDL). Total saturated FA were increased (p lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO.

  5. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    NARCIS (Netherlands)

    Mach Casellas, N.; Jacobs, A.A.A.; Kruijt, L.; Baal, van J.; Smits, M.C.J.

    2014-01-01

    The aim of this study was to determine the effects of unprotected dietary unsaturated fatty acids (UFA) from different plant oils on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in grazing dairy cows

  6. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    NARCIS (Netherlands)

    Mach Casellas, N.; Jacobs, A.A.A.; Kruijt, L.; Baal, van J.; Smits, M.A.

    2011-01-01

    The aim of this study was to determine the effects of supplementing unprotected dietary unsaturated fatty acids (UFAs) from different plant oils on gene expression in the mammary gland of grazing dairy cows. A total of 28 Holstein–Friesian dairy cows in mid-lactation were blocked according to

  7. Effect of dietary polyunsaturated fatty acids and Vitamin E on serum oxidative status in horses performing very light exercise

    Directory of Open Access Journals (Sweden)

    Liviana Prola

    2010-01-01

    Full Text Available In sporting horses the use of dietary polyunsaturated fatty acids (PUFAs could enhance performance because these fatty acids are very important in membrane permeability, and in particular they seem to increase the possibility of long chain fatty acids entering mythochondria to be burnt. The composition of cellular membranes and lipoprotein fatty acids com- position is strictly related to dietary fat quality; percentages of polyunsaturated fatty acids and amount of antioxidants also affect tissue susceptibility to lipid peroxidation. Six horses were used in a latin square design in which three homogeneous groups were subsequently assigned three dif- ferent dietary treatments for one month each: Control group (C: basic diet; Oil group (O: Basic diet + 200g/day oil rich in PUFAs (Crossential GLA TG20, Croda ®; Vitamin E group (O+E: basic diet + 200 g/day oil rich in PUFAs (Crossential GLA TG20, Croda ® + 5 g/day α-toco- pheryl-acetate (Egon-E, Acme ®. At the end of each experimental period blood samples were taken by jugular vein puncture. Serum oxidative status was evaluated by TBARs and d-ROMs assessment. Oxidative markers showed the high- est mean values for the oil group, even if no statistically significant differences were found.

  8. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus.

    Science.gov (United States)

    Alashmali, Shoug M; Kitson, Alex P; Lin, Lin; Lacombe, R J Scott; Bazinet, Richard P

    2017-09-13

    The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compa