WorldWideScience

Sample records for diet restricted rats

  1. The diet board: welfare impacts of a novel method of dietary restriction in laboratory rats

    DEFF Research Database (Denmark)

    Kasanen, I H E; Inhilä, K J; Vainio, O M

    2009-01-01

    Laboratory rats are commonly fed ad libitum (AL). Moderate dietary restriction (DR) decreases mortality and morbidity when compared with AL feeding, but there are several obstacles to the implementation of DR. Traditional methods of restricted feeding disrupt normal diurnal eating rhythms...... and are not compatible with group housing. We have designed a novel method, the diet board, to restrict the feeding of group-housed rats. Animals fed from the diet board had 15% lower body weight than the AL-fed animals at the age of 17 weeks. The welfare effects of diet board feeding were assessed by comparing...... the stress physiology of diet board fed animals with that of AL-fed animals. Diet board feeding was associated with higher serum corticosterone levels and lower faecal secretion of IgA, suggesting the diet board causes a stress reaction. However, the AL-fed group had larger adrenal glands with higher...

  2. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-01-01

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD 100 dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-α and plasma adiponectin increased cardiac fatty acid oxidation (666.9 ±14.0 nmol/min/g heart in ad libitum versus 1035.6 ± 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMPα2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 ± 2.1 μmol/g heart in ad libitum versus 26.7 ± 1.9 μmol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway

  3. Ouabain Attenuates Cardiac Hypertrophy of Male Rat Offspring Exposed to Intrauterine Growth Restriction Following High-Salt Diet Challenge.

    Science.gov (United States)

    Chen, Liang; Yue, Jing; Wu, Han; Yang, Jun; Han, Xiaojuan; Li, Juan; Hu, Yali

    2015-12-01

    Ouabain can normalize the blood pressure of the adult intrauterine growth restriction (IUGR) offspring through retaining the number of glomeruli of the IUGR newborn. However, the melioration of hemodynamic features coinciding with the improvement in cardiac structure and function is poorly understood. Intrauterine growth restriction was induced in pregnant rats with protein intake restriction, and ouabain was administrated using osmotic mini pumps from the second gestational day. The male offspring of the mothers with normal diet, low-protein diet, and low-protein diet added with ouabain treatment were randomly divided into 2 groups, one of which received normal diet and the other was treated with isocaloric 8% high-salt diet. We found that maternal malnutrition caused fetal growth retardation. At the end of a 40-week research, the offspring of the IUGR group presented high blood pressure and deteriorative cardiac performance and even worse in the offspring fed with 8% high-salt diet. Ouabain can normalize the blood pressure and improve the cardiac performance, even if following 8% high-salt diet challenge. Pathological and molecular analyses showed IUGR following 8% high-salt diet significantly increased the cardiac hypertrophy, whereas the unfavorable effects were ameliorated in the offspring treated with ouabain. Results suggest that the effects of ouabain on restoration of glomerular number in newborn and normalization of blood pressure during adulthood in IUGR male offspring can benefit the cardiac structure and function, especially under high-salt diet challenge. © The Author(s) 2015.

  4. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats

    Directory of Open Access Journals (Sweden)

    Lee M. Margolis

    2016-09-01

    Full Text Available The purpose of this investigation was to assess the influence of calorie restriction (CR alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL, and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL or CR (40% restriction, adequate (10%, or high (32% protein (PRO milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05 in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN, stearoyl-CoA destaurase-1 (SCD1 and pyruvate dehydrogenase kinase, isozyme 4 (PDK4 were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05, respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05 in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet.

  5. Insulin sensitivity is normalized in the third generation (F3 offspring of developmentally programmed insulin resistant (F2 rats fed an energy-restricted diet

    Directory of Open Access Journals (Sweden)

    Martin John F

    2008-10-01

    Full Text Available Abstract Background/Aims The offspring and grandoffspring of female rats fed low protein diets during pregnancy and lactation, but fed nutritionally adequate diets thereafter, have been shown to exhibit altered insulin sensitivity in adulthood. The current study investigates the insulin sensitivity of the offspring and grandoffspring of female rats fed low protein diets during pregnancy, and then maintained on energy-restricted diets post weaning over three generations. Methods Female Sprague Dawley rats (F0 were mated with control males and protein malnourished during pregnancy/lactation. F1 offspring were then weaned to adequate but energy-restricted diets into adulthood. F1 dams were fed energy-restricted diets throughout pregnancy/lactation. F2 offspring were also fed energy-restricted diets post weaning. F2 pregnant dams were maintained as described above. Their F3 offspring were split into two groups; one was maintained on the energy-restricted diet, the other was maintained on an adequate diet consumed ad libitum post weaning. Results F2 animals fed energy-restricted diets were insulin resistant (p ad libitum postweaning diets (p Conclusion Maternal energy-restriction did not consistently program reduced insulin sensitivity in offspring over three consecutive generations. The reasons for this remain unclear. It is possible that the intergenerational transmission of developmentally programmed insulin resistance is determined in part by the relative insulin sensitivity of the mother during pregnancy/lactation.

  6. Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets.

    Science.gov (United States)

    Boileau, Thomas W-M; Liao, Zhiming; Kim, Sunny; Lemeshow, Stanley; Erdman, John W; Clinton, Steven K

    2003-11-05

    Consumption of tomato products or lycopene and energy restriction have been hypothesized to reduce the risk of human prostate cancer. We investigated the effects of these dietary variables in a rat model of prostate carcinogenesis. Male rats (n = 194) treated with N-methyl-N-nitrosourea and testosterone to induce prostate cancer were fed diets containing whole tomato powder (13 mg lycopene/kg diet), lycopene beadlets (161 mg lycopene/kg diet), or control beadlets. Rats in each group were randomly assigned to either ad libitum feeding or 20% diet restriction. Differences between Kaplan-Meier survival curves for diet composition or restriction were tested with the log-rank test. Cox proportional hazards models were developed to examine the combined effect of diet composition and restriction on survival. Statistical tests were two-sided. Risk of death with prostate cancer was lower for rats fed the tomato powder diet than for rats fed control beadlets (hazard ratio [HR] = 0.74, 95% confidence interval [CI] = 0.59 to 0.93; P =.009). In contrast, prostate cancer-specific mortality of the control and lycopene-fed rats was similar (P =.63). The proportions of rats dying with prostate cancer in the control, lycopene, and tomato powder groups were 80% (95% CI = 68% to 89%), 72% (95% CI = 60% to 83%), and 62% (95% CI = 48% to 75%), respectively. Rats in the diet-restricted group experienced longer prostate cancer-free survival than rats in the ad libitum-fed group (HR = 0.68, 95% CI = 0.49 to 0.96; P =.029). The proportion of rats that developed prostate cancer was 79% (95% CI = 69% to 86%) for ad libitum-fed rats and 65% (95% CI = 54% to 74%) for rats fed restricted diets. No interactions were observed between diet composition and dietary restriction. Consumption of tomato powder but not lycopene inhibited prostate carcinogenesis, suggesting that tomato products contain compounds in addition to lycopene that modify prostate carcinogenesis. Diet restriction also reduced the

  7. [Effect of high-fat diet and food restriction on energy metabolism in obesity-prone and obesity-resistant rats].

    Science.gov (United States)

    Liu, Jianmin; Wang, Junxia; Zheng, Long; Lian, Weiguang; Liu, Shufeng

    2015-09-01

    To explore the effect of high-fat diet and food restriction on energy metabolism in obesity-prone (OP) and obesity-resistant (OR) rats. Sixty male Sprague-Dawley (SD) rats were divided into OP, OR and control groups according to their body weight gain after fed with high-fat diet for 3 wk. OP and OR groups were fed with high-fat diet in the following 12 wk to promote the development of obesity. Then one-half of the rats of each group began to food restriction and were allowed access to 50% of their individual baseline mean daily food intake each day, while the other half were maintained on ad libitum food for 2 wk. Basal metabolic rate (BMR), resting metabolic rate (RMR) of each group were measured by indirect calorimetry during the high-fat diet feeding and food restriction conditions. After the rats were sacrificed, body fat content was measured. OR rats had significantly higher BMR and RMR than the other two groups during high-fat diet feeding condition. There was no significant difference between OP and control group. Food restriction led to a reduction in BMR and RMR in all groups. OR rats showed a significantly greater reduction. OP group showed a significant decrease in body fat weight and fat content during the food restriction period, while there was no significant differences in OR rats. There are significant differences between OP and OR rats in BMR and RMR either in high-fat diet feeding condition or food restricted state. OR rat has the ability to sense and respond to energy imbalance more accurately than OP rat.

  8. Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

    OpenAIRE

    Reis, S?lvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, B?rbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, M?rcia Queiroz

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and ...

  9. Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet.

    Science.gov (United States)

    Berner, Laura A; Avena, Nicole M; Hoebel, Bartley G

    2008-09-01

    Prior research has shown that fasting alternated with a diet of standard rodent chow and a 10% sucrose solution produces bingeing on the sucrose, but animals remain at normal body weight. The present study investigated whether restricted access to a highly palatable combination of sugar and fat, without food deprivation, would instigate binge eating and also increase body weight. Male rats were maintained for 25 days on one of four diets: (i) sweet-fat chow for 2 h/day followed by ad libitum standard chow, (ii) 2-h sweet-fat chow only 3 days/week and access to standard chow the rest of the time, (iii) ad libitum sweet-fat chow, or (iv) ad libitum standard chow. Both groups with 2-h access to the sweet-fat chow exhibited bingeing behavior, as defined by excessively large meals. The body weight of these animals increased due to large meals and then decreased between binges as a result of self-restricted intake of standard chow following binges. However, despite these fluctuations in body weight, the group with 2-h access to sweet-fat chow every day gained significantly more weight than the control group with standard chow available ad libitum. These findings may have implications for the body weight fluctuations associated with binge-eating disorder, as well as the relationship between binge eating and the obesity epidemic.

  10. Diurnal rhythms of blood glucose, serum ghrelin, faecal IgA and faecal corticosterone in rats subjected to restricted feeding using the diet board

    DEFF Research Database (Denmark)

    Kasanen, Iiris; Inhilä, Katja; Savontaus, Eriika

    2018-01-01

    Laboratory rats are generally fed ad libitum, although this method is associated with obesity and an increased frequency of spontaneous tumours. It has been challenging looking for ways to limit feed consumption in group-housed rats without any setbacks to animal welfare and scientific results....... The diet board, as a method of dietary restriction, was used in the present study. Diet board feeding allows group housing and should result in enhanced welfare compared with traditional methods of dietary restriction. With respect to animal model robustness and translatability of results it is important...... that the feeding regime does not affect diurnal rhythmicity of biological parameters. In the present study the effects of diet board feeding on diurnal rhythms of blood glucose, serum ghrelin, faecal immunoglobulin A (IgA) and faecal corticosterone were assessed. The diet board did not alter diurnal rhythms...

  11. Effect of Exercise and Calorie Restriction on Tissue Acylcarnitines, Tissue Desaturase Indices, and Fat Accumulation in Diet-Induced Obese Rats

    OpenAIRE

    Gopalan, Venkatesh; Michael, Navin; Ishino, Seigo; Lee, Swee Shean; Yang, Adonsia Yating; Bhanu Prakash, K. N.; Yaligar, Jadegoud; Sadananthan, Suresh Anand; Kaneko, Manami; Zhou, Zhihong; Satomi, Yoshinori; Hirayama, Megumi; Kamiguchi, Hidenori; Zhu, Bin; Horiguchi, Takashi

    2016-01-01

    Both exercise and calorie restriction interventions have been recommended for inducing weight-loss in obese states. However, there is conflicting evidence on their relative benefits for metabolic health and insulin sensitivity. This study seeks to evaluate the differential effects of the two interventions on fat mobilization, fat metabolism, and insulin sensitivity in diet-induced obese animal models. After 4 months of ad libitum high fat diet feeding, 35 male Fischer F344 rats were grouped (...

  12. Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

    Directory of Open Access Journals (Sweden)

    Sílvia Regina de Lima Reis

    2015-01-01

    Full Text Available We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein in a percentage of 17% (control, C or 6% (low, L during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp. or soybean (CS and LS groups, resp. after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation.

  13. Nutritional recovery with a soybean diet after weaning reduces lipogenesis but induces inflammation in the liver in adult rats exposed to protein restriction during intrauterine life and lactation.

    Science.gov (United States)

    Reis, Sílvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, Bárbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, Márcia Queiroz

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation.

  14. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet.

    Science.gov (United States)

    Hennebelle, Marie; Roy, Maggie; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Fortier, Mélanie; Bouzier-Sore, Anne-Karine; Gallis, Jean-Louis; Beauvieux, Marie-Christine; Cunnane, Stephen C

    2015-03-01

    The aim of this study was to evaluate the effects of long-term energy restriction (ER) on plasma, liver, and skeletal muscle metabolite profiles in aging rats fed a Western-style diet. Three groups of male Sprague-Dawley rats were studied. Group 1 consisted of 2 mo old rats fed ad libitum; group 2 were 19 mo old rats also fed ad libitum; and group 3 were 19 mo old rats subjected to 40% ER for the last 11.5 mo. To imitate a Western-style diet, all rats were given a high-sucrose, very low ω-3 polyunsaturated fatty acid (PUFA) diet. High-resolution magic angle spinning-(1)H nuclear magnetic resonance spectroscopy was used for hepatic and skeletal muscle metabolite determination, and fatty acid profiles were measured by capillary gas chromatography on plasma, liver, and skeletal muscle. ER coupled with a Western-style diet did not prevent age-induced insulin resistance or the increase in triacylglycerol content in plasma and skeletal muscle associated with aging. However, in the liver, ER did prevent steatosis and increased the percent of saturated and monounsaturated fatty acids relative to ω-6 and ω-3 PUFA. Although steatosis was reduced, the beneficial effects of ER on systemic insulin resistance and plasma and skeletal muscle metabolites observed elsewhere with a balanced diet seem to be compromised by high-sucrose and low ω-3 PUFA intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Factors that Affect Pancreatic Islet Cell Autophagy in Adult Rats: Evaluation of a Calorie-Restricted Diet and a High-Fat Diet.

    Directory of Open Access Journals (Sweden)

    Qianqian Sun

    Full Text Available Aging may be a risk factor for type 2 diabetes in the elderly. Dietary intervention can affect glucose tolerance in adults, which may be due to body composition and islet cell autophagy. The aim of this study was to determine the effects of various dietary interventions on islet cell autophagy. Pancreatic tissue and blood samples were collected from Sprague Dawley rats (14-16 months old, n = 15 for each group that received a normal diet (ND, a high-fat diet (HFD, or a calorie-restricted diet (CRD. The body weight (BW, visceral fat, serum lipid levels, fasting serum glucose, insulin levels, and β/α cell area were determined in 14-16-(0-w, 16-18-(8-w, and 18-20(16-w-month-old rats. Pancreatic islet autophagy (LC3B and LAMP2, AP (Acid Phosphatase and apoptosis (apoptosis index, AI (TUNEL assay and cleaved caspase-3 were detected using immunohistochemistry, ELISA and western blot. At 16 weeks, the expressions of LC3B, LAMP2 and AP markedly increased in both the HFD (P<0.01 and CRD (P<0.05 groups; however, an increase in the AI (P<0.05, cleaved caspase-3 and Beclin1 expression and a decrease in the expressions of BCL2 and BCLXL (P<0.05 were observed in only the HFD group. FFA, triglyceride levels, HOMA-IR, insulin levels and glucagon levels were significantly increased in the HFD group but decreased in the CRD group at 16 weeks (P<0.05. The degree of islet cell autophagy was potentially regulated by the levels of FFA and islet cell insulin and glucagon, which may have been due to the effects of Beclin1/BCL2.

  16. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats

    Science.gov (United States)

    The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-...

  17. A comparative genotoxicity study of a supraphysiological dose of triiodothyronine (T₃ in obese rats subjected to either calorie-restricted diet or hyperthyroidism.

    Directory of Open Access Journals (Sweden)

    Maria Teresa De Sibio

    Full Text Available This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3 in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10 and obese (OB; n = 40. The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20 were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR, whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS given a supraphysiological dose of T3 (25 µg/100 g body weight along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10, and one that received the supraphysiological dose of T3 (25 µg/100 g body weight along with the hypercaloric diet (OS, n = 10 for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress.

  18. Effect of Exercise and Calorie Restriction on Tissue Acylcarnitines, Tissue Desaturase Indices, and Fat Accumulation in Diet-Induced Obese Rats.

    Science.gov (United States)

    Gopalan, Venkatesh; Michael, Navin; Ishino, Seigo; Lee, Swee Shean; Yang, Adonsia Yating; Bhanu Prakash, K N; Yaligar, Jadegoud; Sadananthan, Suresh Anand; Kaneko, Manami; Zhou, Zhihong; Satomi, Yoshinori; Hirayama, Megumi; Kamiguchi, Hidenori; Zhu, Bin; Horiguchi, Takashi; Nishimoto, Tomoyuki; Velan, S Sendhil

    2016-05-20

    Both exercise and calorie restriction interventions have been recommended for inducing weight-loss in obese states. However, there is conflicting evidence on their relative benefits for metabolic health and insulin sensitivity. This study seeks to evaluate the differential effects of the two interventions on fat mobilization, fat metabolism, and insulin sensitivity in diet-induced obese animal models. After 4 months of ad libitum high fat diet feeding, 35 male Fischer F344 rats were grouped (n = 7 per cohort) into sedentary control (CON), exercise once a day (EX1), exercise twice a day (EX2), 15% calorie restriction (CR1) and 30% calorie restriction (CR2) cohorts. Interventions were carried out over a 4-week period. We found elevated hepatic and muscle long chain acylcarnitines with both exercise and calorie restriction, and a positive association between hepatic long chain acylcarnitines and insulin sensitivity in the pooled cohort. Our result suggests that long chain acylcarnitines may not indicate incomplete fat oxidation in weight loss interventions. Calorie restriction was found to be more effective than exercise in reducing body weight. Exercise, on the other hand, was more effective in reducing adipose depots and muscle triglycerides, favorably altering muscle/liver desaturase activity and improving insulin sensitivity.

  19. Calorie Restriction with a High-Fat Diet Effectively Attenuated Inflammatory Response and Oxidative Stress-Related Markers in Obese Tissues of the High Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Seungae Park

    2012-01-01

    Full Text Available Obesity characterized by increased mass of adipose tissue leads to systemic inflammation. Calorie restriction (CR improves parameters associated with immune response and antioxidant defense. We hypothesized that CR with a high fat diet (HFCR regulates local and systemic inflammation and oxidative stress damage in a high fat diet induced obesity (HF group. We investigated effect of HFCR on inflammation and oxidative stress-related markers in liver and adipose tissues as well as adipokines in plasma. HFCR lowered liver triglyceride levels, total cholesterol levels, and the plasma leptin/adiponectin ratio to normal levels and improved glucose tolerance. HFCR also improved fatty liver and normalized adipocyte size and morphology. HFCR reduced lipid peroxidation and decreased the expression levels of inducible nitric oxide synthetase, cyclooxygenase-2, NF-E2-related factor, and heme oxygenase-1 in the liver. Moreover, HFCR suppressed the expression levels of C- reactive protein and manganese superoxide dismutase in the adipose tissue in the HF group. These results suggest that HFCR may have beneficial effects on inflammation and oxidative stress as well as lipid profiles in the HF diet induced obesity. Moreover, HFCR may be a good way to increase compliance in obese patients and to prevent obesity induced complications without changes in dietary pattern.

  20. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. [Vitamins in rat experimental diets].

    Science.gov (United States)

    Kodentsova, V M; Beketova, N A; Vrzhesinskaia, O A

    2012-01-01

    A comparison of full semisynthetic diets used in different laboratories has shown that its vitamin content covers physiological requirements of rats in these micronutrients. The significant fluctuations in group B vitamin concentrations may take place when one uses brewer's yeast as a source of these vitamins. A preliminary assessment of vitamin content in brewer's yeasts is required in this case. An essential contribution of basic components in diet vitamin content must be taken in consideration when one creates a vitamin-deficient diet. Casein contains substantial amounts of group B vitamins and vitamin D. Therefore decontamination of casein from water and / or fat-soluble vitamins or the use of commercial purified casein is required. Vegetable oils are usually used as a fatty component of a diet and they simultaneously serve as an additional source of vitamin E. A choice of naturally containing vitamin E oil as a fat component of a diet is crucial for the creating an alimentary deficiency of vitamin E. The content of fat-soluble vitamins in the diet of control group (group of comparison) and vitamin level in the diet of experimental group of animals must be equivalent in investigations with modified (quality and quantitative) fat diet component. Caloric restriction by simple reducing of food without increasing the amount of vitamins to an adequate level is incorrect. With these considerations in mind proper attention to the equivalence of vitamin content in the diet of animals in experimental and control groups should be paid during experiments scheduling. Otherwise, the studies carried out under deficient or excessive intake of vitamins can lead to incorrect interpretation of the results and difficulties in their comparison with the data obtained under different conditions.

  2. Counting Calories in Drosophila Diet Restriction

    Science.gov (United States)

    Min, Kyung-Jin; Flatt, Thomas; Kulaots, Indrek; Tatar, Marc

    2007-01-01

    The extension of life span by diet restriction in Drosophila has been argued to occur without limiting calories. Here we directly measure the calories assimilated by flies when maintained on full- and restricted-diets. We find that caloric intake is reduced on all diets that extend life span. Flies on low-yeast diet are long-lived and consume about half the calories of flies on high yeast diets, regardless of the energetic content of the diet itself. Since caloric intake correlates with yeast concentration and thus with the intake of every metabolite in this dietary component, it is premature to conclude for Drosophila that calories do not explain extension of life span. PMID:17125951

  3. Influences of dietary vitamin D restriction on bone strength, body composition and muscle in rats fed a high-fat diet: involvement of mRNA expression of MyoD in skeletal muscle.

    Science.gov (United States)

    Oku, Yuno; Tanabe, Rieko; Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Hoshino, Ayumi; Haraikawa, Mayu; Goseki-Sone, Masae

    2016-06-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation and development. The present study investigated the influences of vitamin D restriction on the body composition, bone and skeletal muscle in rats fed a high-fat diet. Sprague-Dawley strain male rats (11weeks old) were divided into four groups and fed experimental diets: a basic control diet (Cont.), a basic control diet with vitamin D restriction (DR), a high-fat diet (F) and a high-fat diet with vitamin D restriction (FDR). At 28days after starting the experimental diets, the visceral fat mass was significantly increased in the F group compared with Cont. group, and the muscle mass tended to decrease in the DR group compared with Cont. group. The total volume of the femur was significantly lower in the DR group compared with Cont. group, and the bone mineral density (BMD) of the femur was significantly lower in the FDR group compared with F group. MyoD is one of the muscle-specific transcription factors. The levels of mRNA expression of MyoD of the gastrocnemius and soleus muscles from the DR group were reduced markedly compared with those from the Cont. group. In conclusion, our findings revealed the influences of a vitamin D-restricted high-fat diet on the bone strength, body composition and muscle. Further studies on vitamin D insufficiency in the regulation of muscle as well as fat and bone metabolism would provide valuable data for the prevention of lifestyle-related disorders, including osteoporosis and sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner.

    Science.gov (United States)

    Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura; Rodríguez de Fonseca, Fernando

    2017-01-01

    Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid

  5. Differential effects of calorie restriction and involuntary wheel running on body composition and bone structure in diet-induced obese rats

    Science.gov (United States)

    Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...

  6. Leucine Supplementation in a Chronically Protein-Restricted Diet Enhances Muscle Weight and Postprandial Protein Synthesis of Skeletal Muscle by Promoting the mTOR Pathway in Adult Rats

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-10-01

    Full Text Available Low protein intake causes a decrease in protein deposition in most animal tissues. The purpose of this study was to investigate whether leucine supplementation would increase the synthesis rate of protein and muscle weight in adult rats, which chronically consume only 58.8% of their protein requirements. Thirty-six male Sprague-Dawley rats were assigned to one of three dietary treatments including a 20% casein diet (CON, a 10% casein + 0.44% alanine diet (R, and a 10% casein + 0.87% leucine diet (RL. After a 10 d dietary treatment, plasma amino acid levels were measured after feeding, the gastrocnemius muscles and soleus muscles were harvested and weighed, and the fractional synthesis rate (FSR and mammalian target of rapamycin (mTOR signaling proteins in skeletal muscle were measured. Regarding the plasma amino acid level, the RL group had the highest concentration of leucine (P < 0.05 and the lowest concentration of isoleucine (P < 0.05 among the three groups, and the CON group had a lower concentration of valine (P < 0.05 than the R and RL groups. Compared with the R and RL groups, the CON group diet significantly increased (P < 0.05 feed intake, protein synthesis rate, and the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, and decreased the weight of abdominal adipose. Compared with the R group, the RL group significantly increased in gastrocnemius muscle weight, protein synthesis rate, and phosphorylation of both ribosomal protein S6 kinase 1 (S6K1 and 4E-BP1. In conclusion, when protein is chronically restricted in adult rat diets, leucine supplementation moderately improves body weight gain and increases muscle protein synthesis through mTOR activation.

  7. Diet restriction by pregnant women in Nigeria.

    Science.gov (United States)

    Ojofeitimi, E O; Elegbe, I; Babafemi, J

    1982-04-01

    The reasons for food aversions given by selected low income, illiterate women during pregnancy fell into four categories: health, tradition, economy and religion. More than two thirds of these mothers strongly avoided milk, cowpea seeds and bournvita for fear of having big babies which they thought would lead to difficult labor and cesarean section. Only one of the respondents associated infantile rickets with nutrition. Nutritional counseling, coupled with a fear-mechanism technique for a minimum of four months, served to correct these erroneous assumptions. The effects of the counseling sessions were evaluated by monitoring patterns of maternal weight gain and the baby's weight. The experimental group had a significant pattern of monthly weight gain (P less than 0.02) and heavier babies (P less than 0.01) than the control group. The authors conclude that diet restrictions of this nature can be modified positively through regular nutritional counseling and, in extreme cases, by the use of a fear-mechanism technique.

  8. Rat Neutrophil Phagocytosis Following Feed Restriction

    Czech Academy of Sciences Publication Activity Database

    Slapničková, Martina; Berger, J.

    2002-01-01

    Roč. 11, č. 3 (2002), s. 172-177 ISSN 0938-7714 Institutional research plan: CEZ:AV0Z5052915 Keywords : circulating neutrophil * diet restriction * phagocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.167, year: 2001

  9. The influence of food restriction versus ad libitum feeding of chow and purified diets on variation in body weight, growth and physiology of female Wistar rats.

    NARCIS (Netherlands)

    Moraal, M.; Leenaars, P.P.A.M.; Arnts, H.F.G.; Smeets, K.; Savenije, B.; Curfs, J.H.A.J.; Ritskes-Hoitinga, M.

    2012-01-01

    Ad libitum (AL) supply of standard chow is the feeding method most often used for rodents in animal experiments. However, AL feeding is known to result in a shorter lifespan and decreased health as compared with restricted feeding. Restricted feeding and thus limiting calorie intake prevents many

  10. Effects of Antioxidants Supplemment, Astaxanthin, Vitamin E, C, in Rat Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    AA Vahidinia

    2010-10-01

    Full Text Available Introduction & Objective: obesity is independently associated with increased oxidative stress in men and women. Natural antioxidants showed substantial antioxidative and anti-inflammatory activities in vivo. In this study, we examined the preventive effect of antioxidants supplement and/or restricted diet on the development of obesity induced by feeding a high-fat (HF diet. Materials & Methods: The present study was conducted at Hamadan University of Medical Sciences in 2009. Forty-eight male Wistar rats were randomly assigned to HF purified diet (61% kcal from fat ad libitum, HF restricted (30%, HF supplemented with astaxanthin, vitamin E and C (HFS, HFS restricted (30% for 12 weeks. Daily food intake and weekly body weight gain were measured. The collected data were analyzed by the SPSS software using Colmogroph- Smirnov, One-Way ANOVA, and Two-Way ANOVA. Results: Dietary antioxidants suppressed body weight gain in the HF-diet ad libitum (-9.8%, and in HF restricted diet (-18.14%. Energy intake was not significant in HF with HFS (58.8 and 58.6 kcal/rat/d, respectively and in HF restricted with HFS restricted (41.7 and 41.6 kcal/rat/d, respectively. Conclusion: results of this study suggest that antioxidants supplement might be of value in reducing the likelihood of obesity in rats fed with high-fat diets, especially when accompanying with restricted diets.

  11. Physically active rats lose more weight during calorie restriction.

    Science.gov (United States)

    Smyers, Mark E; Bachir, Kailey Z; Britton, Steven L; Koch, Lauren G; Novak, Colleen M

    2015-02-01

    Daily physical activity shows substantial inter-individual variation, and low physical activity is associated with obesity and weight gain. Elevated physical activity is also associated with high intrinsic aerobic capacity, which confers considerable metabolic health benefits. Rats artificially selected for high intrinsic aerobic capacity (high-capacity runners, HCR) are more physically active than their low-capacity counterparts (low-capacity runners, LCR). To test the hypothesis that physical activity counters metabolic thriftiness, we measured physical activity and weight loss during three weeks of 50% calorie restriction (CR) in the HCR and LCR rat lines. At baseline, HCR ate more and were more active than LCR; this was seen in male rats, where LCR are considerably heavier than HCR, as well as in a set of female rats where body weight did not differ between the lines, demonstrating that this effect is consistent across sex and not secondary to body weight. We show for the first time that HCR lose more weight than LCR relative to baseline. Physical activity levels declined throughout CR, and this was more pronounced in HCR than in LCR, yet some aspects of activity remained elevated in HCR relative to LCR even during CR. This is consistent with the idea that low physical activity contributes to metabolic thriftiness during food restriction, allowing LCR to defend body mass, particularly lean mass. This has implications for physical activity during diet-induced weight loss, the genetic underpinnings of individual differences in weight loss during a diet, and the potential evolutionary opposition between metabolic thriftiness and aerobic capacity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Dietary restriction alters fine motor function in rats.

    Science.gov (United States)

    Smith, Lori K; Metz, Gerlinde A

    2005-08-07

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR.

  13. Effects of age and diet on rat skin histology.

    Science.gov (United States)

    Thomas, J Regan

    2005-03-01

    To document age-related histologic morphometric changes of rat skin and the effects of calorie restriction on such changes. Fischer 344 rats of three age groups (young, 4 mo; adult, 1 year; old, 24+ months) were procured from ad libitum (AL) diet and calorie-restricted (CR) colonies of the National Institute of Aging and were used for histologic study. Each study group consisted of six animals. Skin samples from the dorsum (DS) and footpad (FP) of these animals were excised and processed for histology with staining techniques for general morphology (hematoxylin-eosin-phloxine) and for differentiation of collagen bundles and elastic fibers (Verhoeff-van Gieson technique). Light microscopic morphometric and stereologic point counting procedures were applied manually to tissue sections to obtain quantitative data on the depth of the epidermis, dermis, and stratum corneum, epidermal nuclear number, and percentage fraction of collagen, elastic fibers, capillaries, and pilosebaceous units. Data were analyzed with two-way of analysis of variance (ANOVA) to determine significant effects of age, diet, and age-diet interaction on these parameters in AL rats and their age-matched cohorts. Significant effects of age, diet, or age-diet interaction were observed in respect of the thickness of epidermis, dermis, stratum corneum of FP, epidermal nuclear number, collagen percentage fraction, and area fraction of capillaries. DS epidermis showed increasing thickness in AL group, but this was reduced in CR rats. A similar trend in DS dermal depth was observed. Fewer capillaries were present in aging CR rats. The DS epidermal nuclear profiles and collagen area fraction also showed effects of diet and age-diet interaction. Aging changes, especially the effect of CR, was more evident in the measured parameters of dorsal skin. No alterations were observed in the distribution of pilosebaceous units and elastic fiber profiles of the skin. The Fischer 344 rat shows many age-related changes

  14. Protective effect of clenbuterol on duodenal epithelium during food restriction in rats

    Directory of Open Access Journals (Sweden)

    L.A. Cardoso

    2002-07-01

    Full Text Available The aim of the study was to examine the effect of the 2-adrenoceptor, clenbuterol, on the duodenal epithelium of food-restricted rats. Clenbuterol was administered as a dietary admixture (4 mg/kg diet to three groups of male Wistar rats (n =8 housed individually in metabolic cages and fed ad libitum for 15 days at 110 %and 160 %of the estimated requirement for energy maintenance. Untreated groups at each energy intake level were also included. Samples of the duodenum were examined by light microscopy. Compared with control animals, clenbuterol treatment significantly increased body mass in all diet groups, although it induced no changes in mean food intake. Gastrointestinal (GIT dry mass was increased by clenbuterol only in the most severely-restricted-diet group. In this group, clenbuterol treatment increased GIT tissue nitrogen (23 %, more than it did in the ad libitum group (13 %. In all treated groups, clenbuterol induced significant hypertrophy of duodenal enterocytes and circular muscle layers, and the diameter of lymphatic vessels increased. In the clenbuterol-treated, restricted-diet groups the height of the brush borders of enterocytes increased. It is concluded that clenbuterol has a protective effect on the intestinal structure in rats on restricted as well as ad libitum diets.

  15. Calorie restriction aggravated cortical and trabecular bone architecture in ovariectomy-induced estrogen-deficient rats.

    Science.gov (United States)

    Ahn, Hyejin; Seo, Dong-Hyun; Kim, Han Sung; Choue, Ryowon

    2014-08-01

    We hypothesized that calorie restriction (CR) and estrogen deficiency (ovariectomy [OVX]) would aggravate bone biomarkers and structural parameters in rats. Seven-week-old female Sprague-Dawley rats were randomized to sham-operated groups and fed either an ad libitum diet (SHAM-AL) or a CR diet (SHAM-CR); ovariectomy-operated groups were fed an ad libitum diet (OVX-AL) or a CR diet (OVX-CR). For 8 weeks, the OVX-AL and SHAM-AL groups were fed the same diet, whereas CR groups were fed a diet containing 50% fewer calories. Bone-related biomarkers and structural parameters (OC; deoxypyridinoline [DPD]; N-terminal telopeptide, NTx; architecture and mineralization; and microcomputed tomography images) were analyzed at the end of the experiment. The serum OC levels of calorie-restricted groups (SHAM-CR and OVX-CR) were significantly lower than those of the AL groups (SHAM-AL and OVX-AL) (P calorie-restricted and ovariectomized groups were higher than those of their counterparts (P calorie-restricted groups were higher than those of AL groups (P calorie-restricted and ovariectomized groups had lower values of bone volume to total volume, trabecular number, and bone mineral density, but higher values of trabecular separation than those of their counterparts (P calorie-restricted groups had reduced values of bone volume, mean polar moment of inertia, and cortical thickness compared to the AL groups (P < .05). In conclusion, severe CR with or without OVX during the growth period in rats is equally detrimental to bone; CR has detrimental effects on trabecular and cortical bone; and estrogen deficiency only had an effect on trabecular bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Calorie shifting diet versus calorie restriction diet: a comparative clinical trial study.

    Science.gov (United States)

    Davoodi, Sayed Hossein; Ajami, Marjan; Ayatollahi, Seyyed Abdulmajid; Dowlatshahi, Kamran; Javedan, Gholamali; Pazoki-Toroudi, Hamid Reza

    2014-04-01

    Finding new tolerable methods in weight loss has largely been an issue of interest for specialists. Present study compared a novel method of calorie shifting diet (CSD) with classic calorie restriction (CR) on weight loss in overweight and obese subjects. Seventy-four subjects (body mass index ≥25; 37) were randomized to 4 weeks control diet, 6 weeks CSD or CR diets, and 4 weeks follow-up period. CSD consisted of three phases each lasts for 2 weeks, 11 days calorie restriction which included four meals every day, and 4 h fasting between meals follow with 3 days self-selecting diet. CR subjects receive determined low calorie diet. Anthropometric and metabolic measures were assessed at different time points in the study. Four weeks after treatment, significant weight, and fat loss started (6.02 and 5.15 kg) and continued for 1 month of follow-up (5.24 and 4.3 kg), which was correlated to the restricted energy intake (P < 0.05). During three CSD phases, resting metabolic rate tended to remain unchanged. The decrease in plasma glucose, total cholesterol, and triacylglycerol were greater among subjects on the CSD diet (P < 0.05). Feeling of hunger decreased and satisfaction increased among those on the CSD diet after 4 weeks (P < 0.05). The CSD diet was associated with a greater improvement in some anthropometric measures, Adherence was better among CSD subjects. Longer and larger studies are required to determine the long-term safety and efficacy of CSD diet.

  17. Calorie Shifting Diet Versus Calorie Restriction Diet: A Comparative Clinical Trial Study

    OpenAIRE

    Davoodi, Sayed Hossein; Ajami, Marjan; Ayatollahi, Seyyed Abdulmajid; Dowlatshahi, Kamran; Javedan, Gholamali; Pazoki-Toroudi, Hamid Reza

    2014-01-01

    Background: Finding new tolerable methods in weight loss has largely been an issue of interest for specialists. Present study compared a novel method of calorie shifting diet (CSD) with classic calorie restriction (CR) on weight loss in overweight and obese subjects. Methods: Seventy-four subjects (body mass index ≥25; 37) were randomized to 4 weeks control diet, 6 weeks CSD or CR diets, and 4 weeks follow-up period. CSD consisted of three phases each lasts for 2 weeks, 11 days calorie re...

  18. Effects of Maternal Dietary Restriction of Vitamin B-6 on Neocortex Development in Rats

    Science.gov (United States)

    Groziak, Susan Marie

    The aim of this investigation was to quantitate the effects of a dietary restriction in Vitamin B-6 during gestation or gestation and lactation on neurogenesis, neuron longevity and neuron differentiation in the neocortex of rats. Sprague Dawley female rats were fed, ad libitum, a Vitamin B-6 free diet (AIN 76) supplemented with 0.0 or 0.6 mg pyridoxine (PN)/kg diet during gestation followed by a control level of 7.0 mg PN/kg diet during lactation, or were fed the Vitamin B-6 free diet supplemented with 0.6 or 7.0 mg PN/kg diet throughout gestation and lactation. The neocortex of progeny of these animals were examined at 30 days of age employing light and electron microscopy. Analyses of neurogenesis, neuron longevity and differentiation of neurons (size of somata, dendritic arborization and spine density in Golgi Cox preparations, and synaptic density in E.M. preparations) were conducted. Each of the Vitamin B-6 restricted treatments adversely affected neurogenesis, neuron longevity and neuron differentiation. The degree of adverse effects paralleled the severity (dose or duration) of the restriction imposed. Expressed as percentage reduction from control values, the findings indicated that neuron longevity and differentiation of neurons in the neocortex were more severely affected than neurogenesis by a maternal dietary restriction in Vitamin B-6.

  19. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy.

    Science.gov (United States)

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-02-01

    Recent studies confirm that dietary methionine restriction increases both mean and maximal lifespan in rats and mice, achieving "aging retardant" effects very similar to those of caloric restriction, including a suppression of mitochondrial superoxide generation. Although voluntary caloric restriction is never likely to gain much popularity as a pro-longevity strategy for humans, it may be more feasible to achieve moderate methionine restriction, in light of the fact that vegan diets tend to be relatively low in this amino acid. Plant proteins - especially those derived from legumes or nuts - tend to be lower in methionine than animal proteins. Furthermore, the total protein content of vegan diets, as a function of calorie content, tends to be lower than that of omnivore diets, and plant protein has somewhat lower bioavailability than animal protein. Whole-food vegan diets that moderate bean and soy intake, while including ample amounts of fruit and wine or beer, can be quite low in methionine, while supplying abundant nutrition for health (assuming concurrent B12 supplementation). Furthermore, low-fat vegan diets, coupled with exercise training, can be expected to promote longevity by decreasing systemic levels of insulin and free IGF-I; the latter effect would be amplified by methionine restriction - though it is not clear whether IGF-I down-regulation is the sole basis for the impact of low-methionine diets on longevity in rodents.

  20. [Effects of linggui zhugan decoction combined calorie restriction on the insulin resistance of model rats and mechanisms research].

    Science.gov (United States)

    Wang, Yuan-yuan; Jin, Ming-hua; Ke, Bin; Li, Su-hua; Shen, Yong-zhi; Zhai, Jia-yu; Chen, Chun-yu; Qin, Jian

    2013-03-01

    To explore the effects of Linggui Zhugan Decoction (LZD) combined calorie restriction on fasting plasma glucose (FPG), the insulin resistance (IR), and the peroxisome proliferator-activated receptor gamma (PPAR-gamma) of IR model rats. Totally 48 male Wistar rats were randomly divided into the control group, the model group, the calorie restriction group, and the TCM + calorie restriction group, 12 in each group. Ordinary forage was given to those in the control group, and high fat diet was fed to those in the rest 3 groups for 12 weeks to establish the IR model. After successful modeling, rats in the control group and the model group were continually fed with the original farage for 4 days. The normal saline at the daily dose of 20 mL/kg was given to them by gastrogavage. The normal saline at the daily dose of 20 mL/kg was given to rats in the calorie restriction group by gastrogavage after 4-day calorie restriction. LZD at the daily dose of 20 mL/kg was given to rats in the TCM +calorie restriction group by gastrogavage after 4-day calorie restriction. The body weight, FPG, serum fasting insulin (FINS), insulin resistance index (IRI), and the protein expression of PPAR-y in the omental adipose tissue were compared. After 4-day calorie restriction, the body weight obviously decreased in the calorie restriction group and the TCM +calorie restriction group, when compared with the model group (P 0.05). The FINS and IRI obviously decreased in the calorie restriction group (P calorie restriction group (P calorie restriction group and the TCM + calorie restriction group (P calorie restriction group. LZD combined calorie restriction could reduce the body weight, FPG, and IRI of IR rats. Besides, it showed better effects than calorie restriction alone. Its effects in improving IR might be correlated with inhibiting the activities of PPAR-gamma. Meanwhile, it might play a role in inhibiting the differentiation of fat cells.

  1. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome

    OpenAIRE

    Yao, Limei; Wei, Jingjing; Shi, Si; Guo, Kunbin; Wang, Xiangyu; Wang, Qi; Chen, Dingsheng; Li, Weirong

    2017-01-01

    Background Modified Lingguizhugan Decoction (MLD) came from famous Chinese medicine Linggui Zhugan Decoction. The MLD is used for the treatment of metabolic syndrome in the clinical setting. Our study focuses on the comprehensive treatment of MLD incorporated with dietary restriction and exercise in a rat model of the metabolic syndrome (MS). Methods Rats were divided into five groups: control group (Cont), high-fat diet group (HFD), high-fat diet incorporated with dietary restriction group (...

  2. Liver protein expression in young pigs in response to a high-fat diet and diet restriction

    DEFF Research Database (Denmark)

    Sejersen, Henrik; Sørensen, Martin Tang; Larsen, Torben

    2013-01-01

    We investigated the liver response in young pigs to a high-fat diet (containing 25% animal fat) and diet restriction (equivalent to 60% of maintenance) using differential proteome analysis. The objective was to investigate whether young pigs can be used to model the liver response in adolescents...... to a high-fat diet and diet restriction-induced BW loss. The high-fat diet increased (P diet had normal glucose tolerance and liver lipid content despite a general increase (P ....05) in plasma lipids (i.e., NEFA, triglycerides, phospholipids, total cholesterol, and lipoproteins). In addition, diet restriction in young pigs induced a modest BW loss (0.7 kg/d; P

  3. Comparison of a Restricted and Unrestricted Vegan Diet Plan with a Restricted Omnivorous Diet Plan on Health-Specific Measures.

    Science.gov (United States)

    Bloomer, Richard J; Gunnels, Trint A; Schriefer, JohnHenry M

    2015-07-14

    We have previously noted beneficial health outcomes when individuals follow a dietary restriction plan in accordance with the Daniel Fast (DF). This is true whether individuals eliminate all animal products or include small amounts of meat and dairy in their plan. The present study sought to compare anthropometric and biochemical measures of health in individuals following a traditional DF (i.e., restricted vegan) or modified DF (i.e., restricted omnivorous; inclusive of ad libitum meat and skim milk consumption), with those following an unrestricted vegan diet plan. 35 subjects (six men; 29 women; 33 ± 2 years; range: 18-67 years) completed a 21-day diet plan. Subjects reported to the lab for pre- (day 1) and post-intervention testing (day 22) in a 10 h fasted state. Blood samples were collected and assayed for complete blood count, metabolic panel, lipid panel, insulin, HOMA-IR, C-reactive protein, and oxidative stress biomarkers (malondialdehyde, advanced oxidation protein products, and nitrate/nitrite). Heart rate and blood pressure were measured and body composition was determined via dual energy X-ray absorptiometry. Subjects' self-reported compliance, mental and physical health, and satiety in relation to the dietary modification were recorded. No interaction effects were noted for our outcome measures (p > 0.05). However, subjects in the traditional DF group reported an approximate 10% increase in perceived mental and physical health, with a 25% reduction in malondialdehyde and a 33% reduction in blood insulin. Systolic BP was reduced approximately 7 mmHg in subjects assigned to the traditional DF, with an approximate 5 mmHg reduction in subjects assigned to the modified DF and the unrestricted vegan plan. A small (2 mmHg) reduction in diastolic BP was noted for subjects in both DF groups; a slight increase in diastolic BP was noted for subjects assigned to the unrestricted vegan group. An approximate 20% reduction was noted in total and LDL cholesterol

  4. Comparison of a Restricted and Unrestricted Vegan Diet Plan with a Restricted Omnivorous Diet Plan on Health-Specific Measures

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2015-07-01

    Full Text Available Background: We have previously noted beneficial health outcomes when individuals follow a dietary restriction plan in accordance with the Daniel Fast (DF. This is true whether individuals eliminate all animal products or include small amounts of meat and dairy in their plan. The present study sought to compare anthropometric and biochemical measures of health in individuals following a traditional DF (i.e., restricted vegan or modified DF (i.e., restricted omnivorous; inclusive of ad libitum meat and skim milk consumption, with those following an unrestricted vegan diet plan. Methods: 35 subjects (six men; 29 women; 33 ± 2 years; range: 18–67 years completed a 21-day diet plan. Subjects reported to the lab for pre- (day 1 and post-intervention testing (day 22 in a 10 h fasted state. Blood samples were collected and assayed for complete blood count, metabolic panel, lipid panel, insulin, HOMA-IR, C-reactive protein, and oxidative stress biomarkers (malondialdehyde, advanced oxidation protein products, and nitrate/nitrite. Heart rate and blood pressure were measured and body composition was determined via dual energy X-ray absorptiometry. Subjects’ self-reported compliance, mental and physical health, and satiety in relation to the dietary modification were recorded. Results: No interaction effects were noted for our outcome measures (p > 0.05. However, subjects in the traditional DF group reported an approximate 10% increase in perceived mental and physical health, with a 25% reduction in malondialdehyde and a 33% reduction in blood insulin. Systolic BP was reduced approximately 7 mmHg in subjects assigned to the traditional DF, with an approximate 5 mmHg reduction in subjects assigned to the modified DF and the unrestricted vegan plan. A small (2 mmHg reduction in diastolic BP was noted for subjects in both DF groups; a slight increase in diastolic BP was noted for subjects assigned to the unrestricted vegan group. An approximate 20

  5. Restricted calorie ketogenic diet for the treatment of glioblastoma multiforme.

    Science.gov (United States)

    Maroon, Joseph; Bost, Jeffrey; Amos, Austin; Zuccoli, Giulio

    2013-08-01

    Glioblastoma multiforme is the most common malignant primary brain tumor in adults and generally considered to be universally fatal. Glioblastoma multiforme accounts for 12% to 15% of all intracranial neoplasms and affects 2 to 3 adults per every 100,000 in the United States annually. In children glioblastoma multiforme accounts for only approximately 7% to 9% of central nervous system tumors. The mean survival rate in adults after diagnosis ranges from 12 to 18 months with standard therapy and 3 to 6 months without therapy. The prognosis in children is better compared to adult tumor onset with a mean survival of approximately 4 years following gross total surgical resection and chemotherapy. There have been few advances in the treatment of glioblastoma multiforme in the past 40 years beyond surgery, radiotherapy, chemotherapy, and corticosteroids. For this reason a restrictive calorie ketogenic diet, similar to that used in children to control drug resistant seizure activity, has been advanced as an alternative adjunctive treatment to help prolonged survival. This article reviews the science of tumor metabolism and discusses the mechanism of calorie restriction, cellular energy metabolism, and how dietary induced ketosis can inhibit cancer cell's energy supply to slow tumor growth.

  6. Influence of various carbohydrates on the utilization of low protein diet by the adult rat

    International Nuclear Information System (INIS)

    Khan, M. Akmal.

    1975-01-01

    The effect of different dietary carbohydrates on food intake, body weight and nitrogen balance of adult rats fed 5 per cent protein diet ad-libitum for 14, 24, and 45 days or restricted to 70 per cent of their normal food intake for 10 and 31 days was studied. No significant difference in food intake and body weight on either of treatments was observed. Nitrogen balance studies indicated that rats fed ad-libitum or restricted diet having starch as a source of dietary carbohydrate utilized nitrogen more efficiently than sucrose fed animals. Possible explanations have been discussed. Regression equations were calculated and it was found from the regression lines that minimum calories and nitrogen intake to maintain nitrogen equilibrium under experimental conditions were 123 kcal and 270 mg N per kg 3/4/day on starch based diet compared with 136 kcal and 295 mg N per kg 3/4/day on sucrose diet respectively

  7. A Moderate Low-Carbohydrate Low-Calorie Diet Improves Lipid Profile, Insulin Sensitivity and Adiponectin Expression in Rats

    Directory of Open Access Journals (Sweden)

    Jie-Hua Chen

    2015-06-01

    Full Text Available Calorie restriction (CR via manipulating dietary carbohydrates has attracted increasing interest in the prevention and treatment of metabolic syndrome. There is little consensus about the extent of carbohydrate restriction to elicit optimal results in controlling metabolic parameters. Our study will identify a better carbohydrate-restricted diet using rat models. Rats were fed with one of the following diets for 12 weeks: Control diet, 80% energy (34% carbohydrate-reduced and 60% energy (68% carbohydrate-reduced of the control diet. Changes in metabolic parameters and expressions of adiponectin and peroxisome proliferator activator receptor γ (PPARγ were identified. Compared to the control diet, 68% carbohydrate-reduced diet led to a decrease in serum triglyceride and increases inlow density lipoprotein-cholesterol (LDL-C, high density lipoprotein-cholesterol (HDL-C and total cholesterol; a 34% carbohydrate-reduced diet resulted in a decrease in triglycerides and an increase in HDL-cholesterol, no changes however, were shown in LDL-cholesterol and total cholesterol; reductions in HOMA-IR were observed in both CR groups. Gene expressions of adiponectin and PPARγ in adipose tissues were found proportionally elevated with an increased degree of energy restriction. Our study for the first time ever identified that a moderate-carbohydrate restricted diet is not only effective in raising gene expressions of adiponectin and PPARγ which potentially lead to better metabolic conditions but is better at improving lipid profiles than a low-carbohydrate diet in rats.

  8. Weight loss by calorie restriction versus bariatric surgery differentially regulates the HPA axis in male rats

    Science.gov (United States)

    Grayson, Bernadette E.; Hakala-Finch, Andrew P.; Kekulawala, Melani; Laub, Holly; Egan, Ann E.; Ressler, Ilana B.; Woods, Stephen C.; Herman, James P.; Seeley, Randy J.; Benoit, Stephen C.; Ulrich-Lai, Yvonne M.

    2015-01-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we compared the HPA response to weight loss in 5 groups of male rats: (1) high-fat diet-induced obese (DIO) rats treated with Roux-en-Y gastric bypass surgery (RYGB, n=7), (2) DIO rats treated with vertical sleeve gastrectomy (VSG, n=11), (3) DIO rats given sham surgery and subsequently restricted to the food intake of the VSG/RYGB groups (Pair-fed, n=11), (4) ad libitum-fed DIO rats given sham surgery (Obese, n=11) and (5) ad libitum chow-fed rats given sham surgery (Lean, n=12). Compared to Lean controls, food-restricted rats exhibited elevated morning (nadir) non-stress plasma corticosterone concentrations and increased hypothalamic corticotropin releasing hormone and vasopressin mRNA expression, indicative of basal HPA activation. This was largely prevented when weight loss was achieved by bariatric surgery. DIO increased HPA activation by acute (novel environment) stress and this was diminished by bariatric surgery-, but not pair-feeding-, induced weight loss. These results suggest that the HPA axis is differentially affected by weight loss from caloric restriction versus bariatric surgery, and this may contribute to the differing long-term effectiveness of these two weight-loss approaches. PMID:25238021

  9. Does short-term diet restriction in mice precipitate the development of anorexia?

    Science.gov (United States)

    Bonne, Omer; Avraham, Yosepha; Bachar, Eitan; Katz, Maor; Berry, Elliot M

    2003-06-01

    Anorexia nervosa (AN) inevitably begins with dieting. Yet, it is unknown whether anyone who will ultimately suffer from anorexia is already ill upon "going on a diet", or whether disease begins during, and is perhaps triggered by, dieting. The objective of the following study was to precipitate anorexia by imposing diet restriction on animals, as a model for generating AN in humans. Three hundred young female Sabra mice were diet restricted to 40% of daily nutrient requirements for 12 days, lost 17% of body weight and were then re-fed ad-lib. All mice regained appetite and weight. Our conclusions are that diet restriction does not precipitate anorexia in mice. Our findings do not support a role for diet restriction per se in triggering AN.

  10. Effect of calorie restriction and refeeding on skin wound healing in the rat.

    Science.gov (United States)

    Hunt, Nicole D; Li, Garrick D; Zhu, Min; Miller, Marshall; Levette, Andrew; Chachich, Mark E; Spangler, Edward L; Allard, Joanne S; Hyun, Dong-Hoon; Ingram, Donald K; de Cabo, Rafael

    2012-12-01

    Calorie restriction (CR) is a reliable anti-aging intervention that attenuates the onset of a number of age-related diseases, reduces oxidative damage, and maintains function during aging. In the current study, we assessed the effects of CR and other feeding regimens on wound healing in 7-month-old Fischer-344 rats from a larger cohort of rats that had been fed either ad libitum (AL) or 40% calorie restricted based on AL consumption. Rats were assigned to one of three diet groups that received three skin punch wounds along the dorsal interscapular region (12-mm diameter near the front limbs) of the back as follows: (1) CR (n = 8) were wounded and maintained on CR until they healed, (2) AL (n = 5) were wounded and maintained on AL until wound closure was completed, and (3) CR rats were refed (RF, n = 9) AL for 48 h prior to wounding and maintained on AL until they healed. We observed that young rats on CR healed more slowly while CR rats refed for 48 h prior to wounding healed as fast as AL fed rats, similar to a study reported in aged CR and RF mice (Reed et al. 1996). Our data suggest that CR subjects, regardless of age, fail to heal well and that provision of increased nutrition to CR subjects prior to wounding enhances the healing process.

  11. Soybean diet breast tumor incidence in irradiated rats

    International Nuclear Information System (INIS)

    Troll, W.; Wiesner, R.

    1980-01-01

    The relationship between feeding a diet rich in protease inhibitors and the reduction of mammary cancer induced by x-irradiation in Sprague-Dawley rats was examined. Of a total of 145 irradiated animals, 44% of the 45 rats fed a raw soybean diet containing a high concentration of protease inhibitor developed mammary tumors as compared to 74% of 50 rats fed a casein diet containing no protease inhibitor. Animals fed Purina rat chow which contained low levels of protease inhibitor exhibited a 70% mammary tumor incidence. No spontaneous neoplasms were found in any of the non-irradiated animals on the raw soybean diet whereas about 10% of the animals on the protease-free diet developed tumors. Thus, soybeans which are rich in protease inhibitors reduced the induction of mammary cancer in x-irradiated rats. This suggested that diets rich in protease inhibitors may contribute to reducing cancer incidence in man. (author)

  12. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-05-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the (/sup 125/I)iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span.

  13. Leucine improves protein nutritional status and regulates hepatic lipid metabolism in calorie-restricted rats.

    Science.gov (United States)

    Pedroso, João Alfredo B; Nishimura, Luciana Sigueta; de Matos-Neto, Emídio Marques; Donato, Jose; Tirapegui, Julio

    2014-06-01

    Several studies have highlighted the potential of leucine supplementation for the treatment of metabolic diseases including type 2 diabetes and obesity. Caloric restriction is a common approach to improve the health in diabetic and obese subjects. However, very few studies assessed the effects of leucine supplementation in calorie-restricted animals. Rats were subjected to a 30% calorie-restricted diet for 6 weeks to study the effects of leucine supplementation on protein status markers and lipid metabolism. Caloric restriction reduced the body weight. However, increased leucine intake preserved body lean mass and protein mass and improved protein anabolism as indicated by the increased circulating levels of albumin and insulin-like growth factor-1 (IGF-1), and the liver expression of albumin and IGF-1 messenger RNA. Leucine supplementation also increased the circulating levels of interleukin-6 and leptin but did not affect the tumour necrosis factor-α and monocyte chemotactic protein-1 concentrations. Ketone bodies were increased in rats consuming a leucine-rich diet, but we observed no changes in cholesterol or triglycerides concentrations. Caloric restriction reduced the liver expression of peroxisome proliferator activated receptor-α and glucose-6-phosphatase, whereas leucine supplementation increased the liver expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA) reductase and sterol regulatory element-binding transcription factor 1. A leucine-rich diet during caloric restriction preserved whole body protein mass and improved markers of protein anabolism. In addition, leucine modulated the hepatic lipid metabolism. These results indicate that increased leucine intake may be useful in preventing excessive protein waste in conditions of large weight loss. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Improvement of glucose tolerance in rats fed with diets containing ...

    African Journals Online (AJOL)

    The effect of 5% and 10% dietary incorporation of leaves of Vernonia amygdalina (VA) on oral glucose tolerance was studied in normoglycemic male albino rats. The feeding of the vegetable incorporated diets (5% VA and 10%VA) resulted in marked improvement in oral glucose tolerance in rats. After one week of diet ...

  15. Dietary restriction of choline reduces hippocampal acetylcholine release in rats: in vivo microdialysis study.

    Science.gov (United States)

    Nakamura, A; Suzuki, Y; Umegaki, H; Ikari, H; Tajima, T; Endo, H; Iguchi, A

    2001-12-01

    We fed rats with a diet deficient in choline for 12 weeks and studied how dietary choline deficiency affected their behavior and their ability to release acetylcholine in discrete regions of rat brain using step-through passive avoidance task and in vivo microdialysis. In comparison with the control, rats fed the choline-deficient diet showed poorer retention of nociceptive memory in the passive avoidance task. Average choline level in cerebrospinal fluid in the choline-deficient group was significantly less (33.1%) than that of control rats. In vivo microdialysis showed no difference in the pattern of acetylcholine release enhanced by intraperitoneal administration of scopolamine hydrochloride (2 mg/kg) in the striatum between the two groups, whereas in the hippocampus, the maximum and subsequent increase of acetylcholine from the baseline by scopolamine injection was significantly lower in the choline-deficient group than in the control. From the results of our study, we speculate that long-term dietary restriction of choline can affect extra- and intracellular sources of substrates required for acetylcholine synthesis, and eventually limit the ability to release acetylcholine in the hippocampus. Reduced capacity to release acetylcholine in the hippocampus implies that the mechanism, maintaining acetylcholine synthesis on increased neuronal demand, may vary in discrete regions of the brain in response to dietary manipulation. The vulnerability of the mechanism in the hippocampus to dietary choline restriction is indicated by impaired mnemonic performance we observed.

  16. The Restriction Endonuclease Cleavage Map of Rat Liver Mitochondrial DNA

    NARCIS (Netherlands)

    Bakker, H.; Holtrop, M.; Terpstra, P.

    1977-01-01

    Mitochondrial DNA from rat liver contains six sites for cleavage by the restriction endonucleases Hind III and EcoRI. A large stretch of DNA, comprising about 40% of the mitochondrial genome is not cleaved by either of the enzymes; eight cleavage sites are located on a DNA stretch of 35% of the

  17. Diet induced gene expression in rat peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, Jaap; Palou, A.

    2009-01-01

    Gene expression of rat peripheral blood mononuclear cells was analyzed by microarray analysis in normoweight and in diet-induced obese rats (cafeteria rats). The aim of this study was to identify genes involved in energy homeostasis that are altered in the obese state.

  18. [Sodium restriction prevents cardiovascular remodeling associated with insulin-resistance in the rat].

    Science.gov (United States)

    Rugale, C; Oudot, C; Desmetz, C; Guzman, C; Lajoix, A; Jover, B

    2013-06-01

    In the present work, the objective was to evaluate the influence of a dietary sodium restriction on cardiovascular morphology changes associated with insulin-resistance. At 8 weeks of age, rats were fed for 12 weeks a 60%-fructose diet containing a regular sodium content (0.64%) or totally lacking in sodium chloride (resistance in fructose-fed rats. Concomitantly, an increase in cardiac mass and in cardiac collagen (Sirius red staining) was detected without obvious change in arterial pressure or cardiac aldosterone synthase mRNA expression. In addition, cross-sectional area of the carotid artery was higher in fructose-fed rats. Production of superoxide anion, equated with dihydroethidium (DHE) staining, was enhanced in cardiac tissue of rats with insulin-resistance. Withdrawal of sodium from the fructose diet prevented all the cardiovascular effects of fructose consumption, including DHE staining. These results are in favor of the participation of oxidative stress normalization in the beneficial influence of dietary sodium deprivation on cardiovascular remodeling in this model of insulin-resistance in rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    Science.gov (United States)

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  20. Bioavailability of lead in rats fed human diets

    International Nuclear Information System (INIS)

    Kostial, K.; Kello, D.

    1979-01-01

    The bioavailability of lead was studied in rats fed various baby foods (Babymix-turkey, Babymix-vegetables, Frutolino-fruit, Frutamix-bananas, Babyron-S-26, Truefood), cow's milk, bread, liver and standard rat diet. Lead absorption was determined by measuring the whole body retention of 203 Pb 6 days after a single oral application. Highest absorption values ranging from 17 to 20% were obtained in animals fed cow's milk and fruit foods. Rats on other human diets absorbed between 3 and 8% of the radioactive lead dose. Only in animals on rat diet lead absorption was below 1%. It is concluded that rats fed human diets show absorption values similar to those in humans. This might indicate that the bioavailability of lead is primarily dependent on dietary habits. This experimental model, if confirmed by further work, might be useful for obtaining preliminary data on the bioavailability of metals from various foods

  1. Developmental Programming of Cardiovascular Disease Following Intrauterine Growth Restriction: Findings Utilising A Rat Model of Maternal Protein Restriction

    Directory of Open Access Journals (Sweden)

    Vladislava Zohdi

    2014-12-01

    Full Text Available Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of “programming”. The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats, in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype.

  2. Protein restriction during intrauterine and lactation periods: effects on testicular development in pre-puberty rats

    Directory of Open Access Journals (Sweden)

    Jessica Santana de Oliveira

    2015-03-01

    Full Text Available Current study investigates the effects of maternal protein restriction during pregnancy and lactation on the testis of immature rats. Female Wistar rats were mated and, after confirming pregnancy, they were divided into two groups: undernourished group (UG fed on a diet with casein 8%, and control group (CG fed on a diet with casein 17 %, during pregnancy and lactation. After weaning, male offspring from the two experimental groups were fed on normal diet up to 35 days old when they were euthanized. Body and testicular weights decreased in UG when compared to those in CG. Volumetric density of seminiferous tubules was higher in CG whilst intertubular space increased in UG. The number of lumenated seminiferous tubules was higher in CG than in UG. Tubular diameter, seminiferous epithelium height and total length of seminiferous tubules were lower in UG. Round spermatids were frequently found in seminiferous tubules cross-section of CG. On the other hand, spermatocytes I in prophases was the germ cell commonly found in seminiferous tubules cross-sections of UG. Undernutrition during pregnancy and lactation period of the male Wistar rats altered the morphometric testicular parameters related to tubular compartment and delayed the onset of spermatogenesis.

  3. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction

    OpenAIRE

    Al-Wahab, Zaid; Mert, Ismail; Tebbe, Calvin; Chhina, Jasdeep; Hijaz, Miriana; Morris, Robert T.; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R.; Rattan, Ramandeep

    2015-01-01

    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse ...

  4. Phenylketonuria : tyrosine supplementation in phenylalanine-restricted diets

    NARCIS (Netherlands)

    van Spronsen, FJ; van Rijn, M; Bekhof, J; Koch, R; Smit, PGA

    Treatment of phenylketonuria (PKU) consists of restriction of natural protein and provision of a protein substitute that lacks phenylalanine but is enriched in tyrosine. Large and unexplained differences exist, however, in the tyrosine enrichment of the protein substitutes. Furthermore, some

  5. Ketogenic Diet suppresses Alcohol Withdrawal Syndrome in Rats

    DEFF Research Database (Denmark)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane

    2018-01-01

    , we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. METHODS: Male Sprague Dawley rats fed either ketogenic or regular diets were administered ethanol or water orally, twice daily for 6 days while the diet conditions were...... maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. RESULTS: Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms 'rigidity' and 'irritability'. CONCLUSION: Our preclinical pilot study suggests that a ketogenic...... diet may be a novel approach for treating alcohol withdrawal symptoms in humans. This article is protected by copyright. All rights reserved....

  6. Study of the evolution of the placenta and fetal pancreas in the pathophysiology of growth retardation intrauterine due to restricted maternal diet

    Directory of Open Access Journals (Sweden)

    Marilza Vieira Cunha Rudge

    1999-03-01

    Full Text Available CONTEXT: Intrauterine growth retard (IUGR continues to be a significant perinatology problem at the end of this century. The nature of the etiologic agent, the time when the attack occurred during pregnancy and its duration affect the type of IUGR. OBJECTIVE: To study the evolution of fetal pancreas and placenta between the 18th and 21st day of pregnancy in rats submitted to maternal protein-calorie restriction. DESIGN: Randomized controlled trial on laboratory animal. SAMPLE: Forty-one normoglycemic pregnant Wistar rats. INTERVENTION: Rats were divided into six experimental groups according to their access to food and date of cesarean section (18th or 21st day: control with free access to food; diet restricted to 25% introduced on 1st day of pregnancy; and diet restricted to 25% after the 3rd day of pregnancy. MAIN MEASUREMENTS: Newborn weight, placenta weight, histopathological study (morphological histochemistry RESULTS: Maternal protein-calorie malnutrition caused intrauterine growth retard (IUGR after the 18th day of pregnancy. Dietary restriction did not interfere with the morphology of the fetal pancreas and the immunohistochemical study of the placenta showed that glycogen stores were decreased between the 18th and 21st day in the control group and in a diet restricted to 25% from the first day of pregnancy. Dietary restriction after the 3rd day of pregnancy led to low placental glycogen concentrations on the 18th day and disappearance on the 21st day. CONCLUSION: The pathophysiology of IUGR due to maternal protein-calorie restriction in rats is related to lower placental weight and low placental glycogen stores.

  7. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report

    Directory of Open Access Journals (Sweden)

    Servadei Franco

    2010-04-01

    Full Text Available Abstract Background Management of glioblastoma multiforme (GBM has been difficult using standard therapy (radiation with temozolomide chemotherapy. The ketogenic diet is used commonly to treat refractory epilepsy in children and, when administered in restricted amounts, can also target energy metabolism in brain tumors. We report the case of a 65-year-old woman who presented with progressive memory loss, chronic headaches, nausea, and a right hemisphere multi-centric tumor seen with magnetic resonance imaging (MRI. Following incomplete surgical resection, the patient was diagnosed with glioblastoma multiforme expressing hypermethylation of the MGMT gene promoter. Methods Prior to initiation of the standard therapy, the patient conducted water-only therapeutic fasting and a restricted 4:1 (fat: carbohydrate + protein ketogenic diet that delivered about 600 kcal/day. The patient also received the restricted ketogenic diet concomitantly during the standard treatment period. The diet was supplemented with vitamins and minerals. Steroid medication (dexamethasone was removed during the course of the treatment. The patient was followed using MRI and positron emission tomography with fluoro-deoxy-glucose (FDG-PET. Results After two months treatment, the patient's body weight was reduced by about 20% and no discernable brain tumor tissue was detected using either FDG-PET or MRI imaging. Biomarker changes showed reduced levels of blood glucose and elevated levels of urinary ketones. MRI evidence of tumor recurrence was found 10 weeks after suspension of strict diet therapy. Conclusion This is the first report of confirmed GBM treated with standard therapy together with a restricted ketogenic diet. As rapid regression of GBM is rare in older patients following incomplete surgical resection and standard therapy alone, the response observed in this case could result in part from the action of the calorie restricted ketogenic diet. Further studies are needed

  8. The Restriction Fragment Map of Rat-Liver Mitochondrial DNA : A Reconsideration

    NARCIS (Netherlands)

    Pepe, G.; Bakker, H.; Holtrop, M.; Bollen, J.E.; Bruggen, E.F.J. van; Cantatore, P.; Terpstra, P.; Saccone, C.

    1977-01-01

    1. Rat-liver mitochondrial DNA (mtDNA) contains at least 8 cleavage sites for the restriction endonuclease Eco RI, 6 for the restriction endonuclease Hind III, 2 for the restriction endonuclease Bam HI and 11 for the restriction endonuclease Hap II. 2. The physical map of the restriction fragments

  9. Calorie shifting diet versus calorie restriction diet: A comparative clinical trial study

    Directory of Open Access Journals (Sweden)

    Sayed Hossein Davoodi

    2014-01-01

    Conclusions: The CSD diet was associated with a greater improvement in some anthropometric measures, Adherence was better among CSD subjects. Longer and larger studies are required to determine the long-term safety and efficacy of CSD diet.

  10. Impact of Western and Mediterranean Diets and Vitamin D on Muscle Fibers of Sedentary Rats.

    Science.gov (United States)

    Trovato, Francesca Maria; Castrogiovanni, Paola; Szychlinska, Marta Anna; Purrello, Francesco; Musumeci, Giuseppe

    2018-02-17

    The metabolic syndrome is associated with sarcopenia. Decreased serum levels of Vitamin D (VitD) and insulin-like growth factor (IGF)-1 and their mutual relationship were also reported. We aimed to evaluate whether different dietary profiles, containing or not VitD, may exert different effects on muscle molecular morphology. Twenty-eight male rats were fed for 10 weeks in order to detect early defects induced by different dietary regimens: regular diet (R); regular diet with vitamin D supplementation (R-DS) and regular diet with vitamin D restriction (R-DR); high-fat butter-based diets (HFB-DS and HFB-DR) with 41% energy from fat; high-fat extra-virgin olive oil-based diets (HFEVO-DS and HFEVO-DR) with 41% energy from fat. IL-1β, insulin-like growth factor (IGF)1, Dickkopf-1 (DKK-1), and VitD-receptor (VDR) expressions were evaluated by immunohistochemistry. Muscle fiber perimeter was measured by histology and morphometric analysis. The muscle fibers of the HEVO-DS rats were hypertrophic, comparable to those of the R-DS rats. An inverse correlation existed between the dietary fat content and the perimeter of the muscle fibers ( p < 0.01). In the HFB-DR rats, the muscle fibers appeared hypotrophic with an increase of IL-1β and a dramatic decrease of IGF-1 expression. High-fat western diet could impair muscle metabolism and lay the ground for subsequent muscle damage. VitD associated with a Mediterranean diet showed trophic action on the muscle fibers.

  11. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome.

    Science.gov (United States)

    Yao, Limei; Wei, Jingjing; Shi, Si; Guo, Kunbin; Wang, Xiangyu; Wang, Qi; Chen, Dingsheng; Li, Weirong

    2017-02-28

    Modified Lingguizhugan Decoction (MLD) came from famous Chinese medicine Linggui Zhugan Decoction. The MLD is used for the treatment of metabolic syndrome in the clinical setting. Our study focuses on the comprehensive treatment of MLD incorporated with dietary restriction and exercise in a rat model of the metabolic syndrome (MS). Rats were divided into five groups: control group (Cont), high-fat diet group (HFD), high-fat diet incorporated with dietary restriction group (HFD-DR), exercise incorporated with dietary restriction group (HFD-DR-Ex) and MLD incorporated with dietary restriction and exercise group (HFD-DR-Ex-MLD). Treatments were conducted for 1 week after feeding high-fat diet for 12 weeks. The effects of treatments on high fat diet-induced obesity, hyperglycemia, hyperlipidemia, hypertension, hepatic injury and insulin resistance in rats of MS were examined. In addition, the tumor necrosis factor-α (TNF-α), leptin and protein kinase B (PKB) in rats serum and liver were also examined by enzyme-linked immunosorbent assay (ELISA). After a week's intervention by dietary restriction, dietary restriction incorporated with exercise or MLD, compared with HFD rats, the relative weight of liver and fat, levels of triglyceride, total cholesterol, low-density lipoprotein, free fatty acid, aspartate aminotransferase, glutamic-pyruvic transaminase and alkaline phosphatase, insulin, were significantly decreased (p dietary restriction and exercise treatment exhibit effects in alleviating high-fat diet-induced obesity, hyperglycemia, hyperlipidemia, hypertension, hepatic injury and insulin resistance, which are possibly due to the down-regulation of TNF-α, leptin and PKB.

  12. Interaction of chronic food restriction and methylphenidate in sensation seeking of rats.

    Science.gov (United States)

    Talishinsky, Aleksandr D; Nicolas, Celine; Ikemoto, Satoshi

    2017-07-01

    It is necessary to understand better how chronic food restriction (CFR) and psychostimulant drugs interact in motivated behavior unrelated to food or energy homeostasis. We examined whether CFR augments methylphenidate (MPH)-potentiated responding reinforced by visual sensation (VS) and whether repeated MPH injections or prolonged CFR further augments such responses. Before starting the following experiments, rats on a CFR diet received a limited daily ration in such a way that their body weights decreased to 85-90% of their original weights over 2 weeks. In experiment 1, rats on CFR and ad libitum diet received four injections of varying MPH doses (0, 2.5, 5, and 10 mg/kg). In experiment 2, CFR and ad libitum groups received repeated injections of MPH (2.5 mg/kg). In experiment 3, half of CFR rats received repeated injections of MPH (2.5 mg/kg), and the other half received saline, and following a 7-day abstinence, they all received the 2.5-mg/kg dose of MPH. CFR rats increased VS-reinforced responding more than ad libitum rats when they received MPH. Repeated injections of MPH with prolonged CFR further increased VS-reinforced responding. We found a double dissociation where prolonged CFR (3 vs. 6 weeks) made VS-reinforced responding, but not locomotor activity, more responsive to MPH, whereas repeated MPH injections made locomotor activity, but not VS-reinforced responding, more responsive to MPH. CFR markedly potentiates effects of MPH on VS-reinforced responding. The present study demonstrates that the longer CFR continues, the greater psychostimulant drugs augment behavioral interaction with salient stimuli.

  13. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model......, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization...... including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia...

  14. Dieting in bulimia nervosa is associated with increased food restriction and psychopathology but decreased binge eating.

    Science.gov (United States)

    Lowe, Michael R; Witt, Ashley A; Grossman, Stephanie L

    2013-08-01

    The cognitive behavioral model of bulimia nervosa (BN) suggests that dieting is central to the maintenance of binge eating. However, correlational and experimental studies suggest that additional clarification is needed about the nature of this relationship. Dieting, weight, eating disorder psychopathology, and depression were assessed at admission among 166 patients with BN presenting for residential treatment. As in past research, a significant fraction (43%) of patients with BN reported not currently dieting. A comparison of weight loss dieters and non-dieters found greater food restriction and eating disorder psychopathology among weight loss dieters. However, dieters reported less frequent binge eating. There were no significant group differences in depression. Results suggest that 1) while many individuals with BN are attempting to restrict their food intake, the goal of losing weight fundamentally alters the effect of such restriction on binge eating, and 2) treatment may benefit from helping patients to establish a healthier approach to achieving long-term weight stability. © 2013.

  15. Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats.

    Science.gov (United States)

    Grayson, Bernadette E; Hakala-Finch, Andrew P; Kekulawala, Melani; Laub, Holly; Egan, Ann E; Ressler, Ilana B; Woods, Stephen C; Herman, James P; Seeley, Randy J; Benoit, Stephen C; Ulrich-Lai, Yvonne M

    2014-12-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we compared the HPA response to weight loss in five groups of male rats: (1) high-fat diet-induced obese (DIO) rats treated with Roux-en-Y gastric bypass surgery (RYGB, n = 7), (2) DIO rats treated with vertical sleeve gastrectomy (VSG, n = 11), (3) DIO rats given sham surgery and subsequently restricted to the food intake of the VSG/RYGB groups (Pair-fed, n = 11), (4) ad libitum-fed DIO rats given sham surgery (Obese, n = 11) and (5) ad libitum chow-fed rats given sham surgery (Lean, n = 12). Compared with Lean controls, food-restricted rats exhibited elevated morning (nadir) non-stress plasma corticosterone concentration and increased hypothalamic corticotropin-releasing hormone and vasopressin mRNA expression, indicative of basal HPA activation. This was largely prevented when weight loss was achieved by bariatric surgery. DIO increased HPA activation by acute (novel environment) stress and this was diminished by bariatric surgery-, but not pair-feeding-, induced weight loss. These results indicate that the HPA axis is differentially affected by weight loss from caloric restriction versus bariatric surgery, and this may contribute to the differing long-term effectiveness of these two weight-loss approaches.

  16. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle.

    Science.gov (United States)

    Larsen, Lea Hüche; Sandø-Pedersen, Sofie; Ørstrup, Laura Kofoed Hvidsten; Grunnet, Niels; Quistorff, Bjørn; Mortensen, Ole Hartvig

    2017-01-01

    Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could ameliorate changes in gene expression levels, properties of mitochondria, myogenesis, and nutrient transport and sensing, in male newborn skeletal muscle caused by a maternal low protein (LP) diet in Wistar rats.LP diet resulted in an 11% non-significant decrease in birth weight, which was not rescued by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32% of these changes, but with no distinct pattern as to which genes were rescued.Skeletal muscle taurine content in LP-Tau offspring was increased, but no changes in mRNA levels of the taurine synthesis pathway were observed. Taurine transporter mRNA levels, but not protein levels, were increased by LP diet.Nutrient sensing signaling pathways were largely unaffected in LP or LP-Tau groups, although taurine supplementation caused a decrease in total Akt and AMPK protein levels. PAT4 amino acid transporter mRNA was increased by LP, and normalized by taurine supplementation.In conclusion, gestational protein restriction in rats decreased genes involved in protein translation in newborn skeletal muscle and led to changes in nutrient transporters. Taurine partly rescued these changes, hence underscoring the importance of taurine in development.

  17. Effect of Diet on Metabolism of Laboratory Rats

    Science.gov (United States)

    Harrison, P. C.; Riskowski, G. L.; McKee, J. S.

    1996-01-01

    In previous studies when rats were fed a processed, semipurified, extruded rodent food bar (RFB) developed for space science research, we noted a difference in the appearance of gastrointestinal tissue (GI); therefore the following study evaluated GI characteristics and growth and metabolic rates of rats fed chow (C) or RFB. Two hundred and twenty-four rats (78 g mean body weight) were randomly assigned to 28 cages and provided C or RFB. Each cage was considered the experimental unit and a 95 percent level of significance, indicated by ANOVA, was used for inference. After each 30-, 60-, and 90-day period, eight cages were shifted from the C to RFB diet and housing density was reduced by two rats per cage. The two rats removed from each cage were sacrificed and used for GI evaluation. Metabolic rates of the rats in each cage were determined by indirect calorimetry. No differences in body weight were detected at 0, 30, 60 or 90 days between C and RFB. Heat production (kcal/hr/kg), CO2 production (L/hr/kg) and O2 consumption (L/hr/kg) were different by light:dark and age with no effect of diet. Respiratory quotient was different by age with no effect of light:dark or diet. Rats on the C diet ate less food and drank more water than those on RFB. C rats produced more fecal and waste materials than the RFB. GI lengths increased with age but were less in RFB than C. GI full and empty weights increased with age but weighed less in RFB than C. Gut-associated lymphoid tissue (GALT) numbers increased with age with no effect of diet. No differences in ileum-associated GALT area were detected between C and RFB. Switching C to RFB decreased GI length, GI full and empty weights, with no changes in GALT number or area. We concluded RFB decreased GI mass without affecting metabolic rate or general body growth.

  18. Breastfeeding, food choices, restrictive diets, and nutritional fads.

    Science.gov (United States)

    Lightdale, Jenifer R; Oken, Emily

    2002-06-01

    In the past year, a number of studies were published that illustrated the importance of dietary choices at all ages and singled out pediatricians as useful and vociferous advocates for healthy nutrition in children. Obesity continues to top the list as a major threat to the health of children and adults worldwide and is increasingly being recognized as a direct result of inappropriate nutritional intake. Parental misperceptions and misinformation about their children's diets beginning in infancy and stretching into the college-age years may represent prime targets for pediatricians ready and able to provide guidance. There are more reasons than ever to encourage breastfeeding and more formal studies to help direct the various stages of transition to adult eating habits after infancy. On the other hand, parents must be encouraged to take a well-balanced and reasonable approach to their children's food choices, lest we see increasing evidence of unnecessary nutritional deficiencies.

  19. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  20. Restrictive Diet Control as a Means of Child Abuse.

    Science.gov (United States)

    Kudek, Matthew R; Luyet, Francois; Herringa, Ryan J; Knox, Barbara L

    2018-03-01

    We have recently encountered a series of cases where an obese caretaker is juxtaposed to a severely starved, malnourished dependent. The cases described all share a common characteristic: that the primary perpetrator was an obese caretaker who tried to exert absolute control over their victim's daily life in a way that included either a severe restriction or complete denial of food. Because the pathophysiology of both child abuse and obesity are incredibly complex and multifactorial, these cases are presented to encourage further discussion and more rigorous investigation into the validity of a hypothesis that has been derived from this set of cases: that the obesity of a child's caretaker may be an additional risk factor for child maltreatment by starvation.

  1. Alterations of selected iron management parameters and activity in food-restricted female Wistar rats (animal anorexia models).

    Science.gov (United States)

    Wojciak, Rafal W

    2014-03-01

    The aim of this study was to assess the influence of food-restricted diets (anorexia models) on iron management and activity of rats. 48 rats were divided into 6 groups: 1 control (K) and 5 testing groups (K/2, GI, GII, GIII, GIV). K was fed ad libitum. K/2 received half the portion of the diet of K. The other groups received 100% of the diet eaten by K, but with different models of food restriction: GI-1 day on, 1 day starvation; GII-2 days on, 2 days starvation; GIII-3 days on, 3 days starvation; and GIV-4 days on, 4 days starvation. As a result, all testing groups ate half of the diet consumed by the control group. The concentrations of iron in selected tissues, ferritin, and selected iron management parameters in blood were examined, as well as the animals' activities associated with food craving. The animal anorexia models used in this study had a significant influence on the blood concentrations of hemoglobin (p anorexia more than on the quantity of food intake. The negative effect of food deprivation on iron deficiency and rat activities were observed in all groups; however, the strongest effect was noticed in those animals subject to chronic starvation. Acute deprivations caused the reduction of activity in the rats, however, chronic starvation caused an increase in the activity of the first phase of the experiment, followed by a decline in the subsequent phase. It is possible that stress and frustration as well as depression may be caused by insufficient food intake, and as a result, by iron deficiency in a diet similar to human anorexia. However, more animal/human comparison studies are necessary.

  2. Effects of exposure to dietary chromium on tissue mineral contents in rats fed diets with fiber.

    Science.gov (United States)

    Prescha, Anna; Krzysik, Monika; Zabłocka-Słowińska, Katarzyna; Grajeta, Halina

    2014-06-01

    This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5% cellulose (CEL), 5% pectin (PEC), or 2.5% cellulose and 2.5% pectin (CEL+PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL+PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL+PEC+Cr diet compared to the rats fed FF+Cr diet. The rats consuming the PEC+Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.

  3. The effect of four weeks restricted diet on serum soluble leptin receptor levels and adipocyte leptin receptor density in normoweight rattus norvegicus strain Wistar

    Directory of Open Access Journals (Sweden)

    M. R. Indra

    2006-09-01

    Full Text Available One of the five possible mechanisms of leptin resistance in human obesity is the defect in the leptin receptor (Ob-R. Evidence has accumulated that leptin-binding activity in human serum is related to a soluble form of the leptin receptor, and restriction of energy intake resulted a decrease in circulating leptin levels. Aim of this study is to examine the difference of serum soluble leptin receptor level and leptin receptor density in rat adipose tissue of adventitial aorta after four weeks treated with different restricted diets. Soluble leptin receptor level was measured by ELISA and leptin receptor density by using immuno-histochemistry. The soluble leptin receptor in group treated with 40% of normal daily calori diet was found significantly lower than control (p = 0.02. There were no any significant differences among group treated with 40 % of normal daily calori diet, “1 day fast-1day eat”, and ”1day fast-2 days eat” groups, and among 1 day fast-1 day eat”, ”day fast - 2 days eat” and control groups as well. On the other hand, leptin receptor density in adipose tissues was higher in restricted diet group than control. Diet of 40 % normal daily calorie for 4 weeks decreased soluble leptin receptor level, but increased adipocyte leptin receptor density of the adipose tissue of rat adventitial aorta. These changes may be resulted from an up regulation mechanism in relation with homeostatic maintenance. (Med J Indones 2006; 15:145-50 Keywords: restricted diet, leptin receptor, soluble leptin receptor, adipocyte, obesity

  4. Caloric restriction ameliorates acrolein-induced neurotoxicity in rats.

    Science.gov (United States)

    Huang, Ying-Juan; Zhang, Li; Shi, Lan-Ying; Wang, Yuan-Yuan; Yang, Yu-Bin; Ke, Bin; Zhang, Ting-Ying; Qin, Jian

    2018-03-01

    Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and oxidative damage induced by acrolein is hypothesized to involve in the etiology of Alzheimer's disease (AD). Calorie restriction (CR) is the only non-genetic intervention that has consistently been verified to retard aging by ameliorating oxidative stress. Therefore, we investigated the effects of CR on acrolein-induced neurotoxicity in Sprague-Dawley (SD) rats. A total of 45 weaned and specific-pathogen-free SD rats (male, weighing 180-220 g) were gavage-fed with acrolein (2.5 mg/kg/day) and fed ab libitum of 10 g/day or 7 g/day (representing 30% CR regimen), or gavage-fed with same volume of tap water and fed al libitum as vehicle control for 12 weeks. After behavioral test conducted by Morris Water Maze, SD rats were sacrificed and brain tissues were prepared for histochemical evaluation and Western blotting to detect alterations in oxidative stress, BDNF/TrkB pathway and key enzymes involved in amyloid precursor protein (APP) metabolism. Treatment with 30% CR in SD rats significantly attenuated acrolein-induced cognitive impairment. Oxidative damage including deletion of glutathione and superoxide dismutase and sharp rise in malondialdehyde were notably improved by 30% CR. Further study suggested that 30% CR showed protective effects against acrolein by modulating BDNF/TrkB signaling pathways. Moreover, 30% CR restored acrolein-induced changes of APP, β-secretase, α-secretase and receptor for advanced glycation end products. These findings suggest that CR may provide a promising approach for the treatment of AD, targeting acrolein. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. RELATION BETWEEN GLUCOLIPID PROFILE AND SMALL INTESTINE HISTOLOGICAL PATTERNS IN DIABETIC RATS EXPOSED TO AN INTERMITTENT DIETARY RESTRICTION

    Directory of Open Access Journals (Sweden)

    Noriyuki Hisano

    2009-01-01

    Full Text Available The effects of an intermittent and prolonged dietary restriction on biochemical variables and histological small intestinal patterns in 12-month-old male eSMT rats are examined. These spontaneously diabetic animals were separated in two groups after weaning: 10 rats fed ad libitum with standard rat chow and 10 rats fed a restricted diet by deprivation of the same food for 24 hours every 72. At 12 months of age, animals were weighed and euthanized after tail vein bleeding for plasma analysis (glycemia- both fasting and 120 minutes after an oral glucose challenge-, triglyceridemia and total cholesterolemia. Small intestines were removed, weighed and measured in length.Intestinal specimens were fixed, embedded in paraffin, semi serially cut at 6 µm and stained with PAS-Hematoxilyn and Hematoxilyn-Eosin. Histometry was performed through a linear devise attached to ocular lens and lectin histochemistry was accomplished employing Canavalis ensiformis, Dolichos biflorus, Arachis hypogea, Ulex europaeus-I, Triticum vulgaris, Ricinus communis and Soy Bean (Glicine Max Agglutinin. Essentially, eSMT rats, a suitable animal model for studying diabetes and/or its complications, revealed at 12 months of age after undergoing the dietary restriction: 1.- An expected improvement in body weight and determined biochemical variables (fasting and after glucose overload glycemias, triglyceridemia and total cholesterolemia without reaching euglycemic values. 2.- Changes in most of the analyzed histometric patterns with no relevant reflection on morphometric ones, and 3.- No modifications in lectinhistochemical patterns.

  6. Brain and behavioral perturbations in rats following Western diet access.

    Science.gov (United States)

    Hargrave, Sara L; Davidson, Terry L; Lee, Tien-Jui; Kinzig, Kimberly P

    2015-10-01

    Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of methionine restriction and endurance exercise on bones of ovariectomized rats: a study of histomorphometry, densitometry, and biomechanical properties.

    Science.gov (United States)

    Huang, Tsang-Hai; Su, I-Hsiu; Lewis, Jack L; Chang, Ming-Shi; Hsu, Ar-Tyan; Perrone, Carmen E; Ables, Gene P

    2015-09-01

    To investigate the effects of dietary methionine restriction (MetR) and endurance exercise on bone quality under a condition of estrogen deficiency, female Sprague-Dawley rats (36-wk-old) were assigned to a sham surgery group or one of five ovariectomized groups subjected to interventions of no treatment (Ovx), endurance exercise (Exe), methionine restriction (MetR), methionine restriction plus endurance exercise (MetR + Exe), and estrogen treatment (Est). Rats in the exercise groups were subjected to a treadmill running regimen. MetR and control diets contained 0.172 and 0.86% methionine, respectively. After the 12-wk intervention, all animals were killed, and serum and bone tissues were collected for analyses. Compared with estrogen treatment, MetR diet and endurance exercise showed better or equivalent efficiency in reducing body weight gain caused by ovariectomy (P bone turnover compared with the Ovx group, MetR diet and/or endurance exercise demonstrated efficiencies in downregulating serum insulin, leptin, triglyceride, and thiobarbituric acid reactive substances (P bone mineral density (vBMD), but only the Exe and Est groups preserved cancellous bone volume and/or vBMD of distal femora (P exercise improved cortical bone properties, but only endurance exercise preserved cancellous bone under estrogen deficiency. Copyright © 2015 the American Physiological Society.

  8. Hematology and plasma biochemistry in rats fed with diets enriched with fatty fishes from Amazon region

    OpenAIRE

    Souza, Francisca das Chagas do Amaral; Duncan, Wallice Paxiúba; Carvalho, Roasany Piccolotto

    2014-01-01

    OBJECTIVE: Rats fed diets enriched with fatty fish from the Amazon region had Hematology and plasma biochemistry analyzed. METHODS: Forty Wistar rats were divided into four groups: control group fed a standard diet; mapará group fed a diet enriched with Hypophthalmus edentatus; matrinxã group fed a diet enriched with Brycon spp.; and tambaqui group fed a diet enriched with Colossoma macropomum. After thirty days the rats had an red blood count and plasma biochemistry. RESULTS: Hematocrit and ...

  9. A low-fat diet has a higher potential than energy restriction to improve high-fat diet-induced insulin resistance in mice

    NARCIS (Netherlands)

    Muurling, M.; Jong, M.C.; Mensink, R.P.; Hornstra, G.; Dahlmans, V.E.H.; Pijl, H.; Voshol, P.J.; Havekes, L.M.

    2002-01-01

    Previous studies have shown that energy restriction (ER) or low-fat (LF) diets have beneficial effects on high-fat (HF) diet-induced obesity and non-insulin-dependent diabetes. However, comparison between ER and low-fat diet regarding the effect on insulin resistance and lipid metabolism has not

  10. Adherence to diet and fluid restriction of individuals on hemodialysis treatment and affecting factors in Turkey.

    Science.gov (United States)

    Efe, Dilek; Kocaöz, Semra

    2015-04-01

    This study was conducted to determine adherence to diet and fluid restriction in hemodialysis-treated individuals and the affecting factors in Turkey. This descriptive study was conducted between 15 October 2010 and 15 January 2011 in subjects who voluntarily agreed to participate in the study from three dialysis centers in a city located in the Central Anatolia Region of Turkey. One hundred and twenty-one individuals treated with hemodialysis made up the study sample. The data were collected using a questionnaire consisting of 41 questions and the Dialysis Diet and Fluid Non-adherence Questionnaire. The data were evaluated with percentage, median, Mann-Whitney U-test, Kruskal-Wallis test, Student's t-test in independent samples and Spearman's rank correlation coefficient. The authors found that 98.3% of the individuals experienced non-adherence to diet and 95.0% with fluid restriction. The authors found a weak and negative relationship between calcium levels and non-adherence to fluid restriction, a weak relationship between phosphorus levels and diet non-adherence frequency and degree and the fluid non-adherence frequency scores, and a moderate positive relationship between phosphorus levels and fluid restriction non-adherence degree scores (P diet and fluid restriction must be provided to individuals aged 21-35 years with no one in the family to help with their care, those who consumed salted food, or had interdialytic weight gain of 4.5 kg or more. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  11. Unlimited energy, restricted carbohydrate diet improves lipid parameters in obese children.

    Science.gov (United States)

    Dunlap, Brian S; Bailes, James R

    2008-03-01

    Childhood obesity is a leading health concern. We have previously demonstrated the effectiveness of a restricted-carbohydrate, unlimited energy diet for weight reduction in elementary school-aged children. To our knowledge, there are no studies that have looked at the effect of this diet on lipid profiles in elementary school-aged children. Therefore, the objective of this pilot study was to examine the effect of a restricted-carbohydrate, unlimited protein, unlimited energy diet on lipid profiles in obese children 6 to 12 years of age. Overweight children (body mass index >97%) referred to our obesity clinic were treated with a restricted-carbohydrate (unlimited protein, and unlimited energy diet. Weight, height, body mass index, and fasting lipid profiles were obtained at baseline and at 10 weeks on each patient. Twenty-seven patients were enrolled in our study, with a total of 18 patients returning for our 10 week follow-up (67%). The study group included 10 males and 8 females, with an age range of 6 to 12 years. Both total serum cholesterol and triglyceride levels showed a significant reduction; 24.2 (P = 0.018) and 56.9 (P = 0.015) mg/dL, respectively. We have demonstrated a significant decrease in total cholesterol and triglycerides in elementary school-aged children after 10 weeks of a restricted-carbohydrate, unlimited protein, and unlimited energy diet. We suggest that this diet may decrease cardiovascular risk factors in obese children. Long-term studies will be needed to substantiate these data.

  12. Responses of plasma lipids to edible mushroom diets in albino rats ...

    African Journals Online (AJOL)

    The potentials of two tropical edible mushrooms: Pleurtotus tuber-regium and Termitomycetes clypeatus in altering the plasma levels of some lipids in male albino rats fed high fat diets were investigated. Rats were randomly assigned to diet containing 20% fat, P. tuber-regium diet and T. clypeatus diet. Total body weight ...

  13. Nutrition and Healthy Ageing: Calorie Restriction or Polyphenol-Rich “MediterrAsian” Diet?

    Directory of Open Access Journals (Sweden)

    Kathrin Pallauf

    2013-01-01

    Full Text Available Diet plays an important role in mammalian health and the prevention of chronic diseases such as cardiovascular disease (CVD. Incidence of CVD is low in many parts of Asia (e.g., Japan and the Mediterranean area (e.g., Italy, Spain, Greece, and Turkey. The Asian and the Mediterranean diets are rich in fruit and vegetables, thereby providing high amounts of plant bioactives including polyphenols, glucosinolates, and antioxidant vitamins. Furthermore, oily fish which is rich in omega-3 fatty acids is an important part of the Asian (e.g., Japanese and also of the Mediterranean diets. There are specific plant bioactives which predominantly occur in the Mediterranean (e.g., resveratrol from red wine, hydroxytyrosol, and oleuropein from olive oil and in the Asian diets (e.g., isoflavones from soybean and epigallocatechin gallate from green tea. Interestingly, when compared to calorie restriction which has been repeatedly shown to increase healthspan, these polyphenols activate similar molecular targets such as Sirt1. We suggest that a so-called “MediterrAsian” diet combining sirtuin-activating foods (= sirtfoods of the Asian as well as Mediterranean diet may be a promising dietary strategy in preventing chronic diseases, thereby ensuring health and healthy ageing. Future (human studies are needed which take the concept suggested here of the MediterrAsian diet into account.

  14. Computed tomography in the evaluation of abdominal fat distribution associated with a hyperlipidic diet in previously undernourished rats

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carlos Alberto Soares da [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Ciencias Medicas. Program of Post-graduation in Clinical and Experimental Physiopathology; Alves, Erika Gomes; Gonzalez, Gabriele Paula; Barbosa, Thais Barcellos Cortez; Lima, Veronica Demarco; Nascimento, Renata; Moura, Egberto Gaspar de; Saba, Celly Cristina Alves do Nascimento [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. of Physiological Sciences]. E-mail: cellysaba@terra.com.br; Monteiro, Alexandra Maria Vieira [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Ciencias Medicas

    2007-09-15

    Objective: To study, by means of computed tomography, the repercussion of post-weaning dietary supplementation with soy oil or canola oil on the abdominal fat distribution in previously undernourished rats. Materials and methods: Dams submitted to 50% food restriction (FR) compared with dams receiving a standard diet (C). After weaning, undernourished rats received a diet supplemented with 19% soy oil (19% FR-soy) or 19% canola oil (19% FR-canola). Rats in the control group received a diet with 7% soy oil (7% C-soy) until the end of the experimental period. At the age of 60 days old, the rats were submitted to computed tomography for evaluation of total abdominal and visceral fat area. The rats' length and body mass were evaluated and, after their sacrifice, the abdominal fat depots were excised weighted. The data are reported as mean {+-} mean standard error, with p < 0.05 considered as significance level. Results: Rats in the group 19% FR presented similar length, body weight and visceral fat mass. As a whole, the evaluations have shower results significantly lower in relation to the control group (7% C-soy). However, computed tomography has found significant differences in abdominal fat distribution for the groups 19% FR-soy and 19% FR-canola. Conclusion: Computed tomography has demonstrated that the abdominal fat distribution may be dependent on the type of vegetable oil included in the diet. (author)

  15. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca‐based diet in alloxan‐induced diabetic rats

    OpenAIRE

    Ajiboye, Basiru O.; Oloyede, Hussein O. B.; Salawu, Musa O.

    2017-01-01

    Abstract This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca‐based diets in alloxan‐induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata‐based diet, diabetic control rats fed D. rotundata‐based diet, diabetic rats fed D. rotundata‐based diet and administe...

  16. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet.

    Science.gov (United States)

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-09-01

    It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.

  17. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    Directory of Open Access Journals (Sweden)

    Zhou Weihua

    2007-02-01

    Full Text Available Abstract Background Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal®, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A and a human malignant glioma (U87-MG. Methods Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal® was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal® on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. Results KetoCal® administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal® diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate levels. Tumor microvessel density was less in the calorically restricted KetoCal® groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid Co

  18. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer.

    Science.gov (United States)

    Zhou, Weihua; Mukherjee, Purna; Kiebish, Michael A; Markis, William T; Mantis, John G; Seyfried, Thomas N

    2007-02-21

    Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. KetoCal administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal diet reduced plasma glucose levels while elevating plasma ketone body (beta-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, beta-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal

  19. Bowel preparation in CT colonography. Is diet restriction necessary? A randomised trial (DIETSAN)

    International Nuclear Information System (INIS)

    Bellini, Davide; De Santis, Domenico; Caruso, Damiano; Rengo, Marco; Biondi, Tommaso; Laghi, Andrea; Ferrari, Riccardo

    2018-01-01

    To investigate whether diet restriction affects quality of colon cleansing and patient tolerance during reduced bowel preparation for CT colonography (CTC). Asymptomatic and symptomatic patients were enrolled in this pragmatic, single-centre, randomised trial. All patients were randomly assigned (1:1 ratio, blocks of ten) to receive a reduced bowel preparation and faecal tagging with (Diet-Restriction-Group [DR]) or without (No-Diet-Restriction-Group [NDR]) dietary restriction. Five readers performed a blinded subjective image analysis, by means of 4-point Likert-scales from 0 (highest score) to 3 (worst score). Endpoints were the quality of large bowel cleansing and tolerance to the assigned bowel preparation regimen. The trial is registered at ClinicalTrial.gov (URomLSDBAL1). Ninety-five patients were randomly allocated to treatments (48 in NDR-group, 47 in DR-group). Both groups resulted in optimal colon cleansing. The mean residual stool (0.22, 95%CI 0.00-0.44) and fluid burden (0.39, 95%CI 0.25-0.53) scores for patients in DR-group were similar to those in patients in NDR-group (0.25, 95%CI 0.03-0.47 [p = 0.82] and 0.49, 95%CI 0.30-0.67 [p = 0.38], respectively). Tolerance was significantly better in NDR-group. A reduced bowel preparation in association with faecal tagging and without any dietary restriction demonstrated optimal colon cleansing effectiveness for CTC, providing better patient compliance compared with dietary restriction. (orig.)

  20. Bowel preparation in CT colonography. Is diet restriction necessary? A randomised trial (DIETSAN)

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, Davide; De Santis, Domenico; Caruso, Damiano; Rengo, Marco; Biondi, Tommaso; Laghi, Andrea [Rome Univ. ' ' Sapienza' ' (Italy). Dept. of Radiological Sciences, Oncology and Pathology; I.C.O.T. Hospital, Latina (Italy); Ferrari, Riccardo [San Camillo Forlanini Hospital, Rome (Italy). Dept. of Emergency Radiology

    2018-01-15

    To investigate whether diet restriction affects quality of colon cleansing and patient tolerance during reduced bowel preparation for CT colonography (CTC). Asymptomatic and symptomatic patients were enrolled in this pragmatic, single-centre, randomised trial. All patients were randomly assigned (1:1 ratio, blocks of ten) to receive a reduced bowel preparation and faecal tagging with (Diet-Restriction-Group [DR]) or without (No-Diet-Restriction-Group [NDR]) dietary restriction. Five readers performed a blinded subjective image analysis, by means of 4-point Likert-scales from 0 (highest score) to 3 (worst score). Endpoints were the quality of large bowel cleansing and tolerance to the assigned bowel preparation regimen. The trial is registered at ClinicalTrial.gov (URomLSDBAL1). Ninety-five patients were randomly allocated to treatments (48 in NDR-group, 47 in DR-group). Both groups resulted in optimal colon cleansing. The mean residual stool (0.22, 95%CI 0.00-0.44) and fluid burden (0.39, 95%CI 0.25-0.53) scores for patients in DR-group were similar to those in patients in NDR-group (0.25, 95%CI 0.03-0.47 [p = 0.82] and 0.49, 95%CI 0.30-0.67 [p = 0.38], respectively). Tolerance was significantly better in NDR-group. A reduced bowel preparation in association with faecal tagging and without any dietary restriction demonstrated optimal colon cleansing effectiveness for CTC, providing better patient compliance compared with dietary restriction. (orig.)

  1. Diet control to achieve euglycemia induces significant loss of heart and liver weight via increased autophagy compared with ad libitum diet in diabetic rats.

    Science.gov (United States)

    Lee, Jun-Ho; Lee, Ju-Han; Jin, Mingli; Han, Sang-Don; Chon, Gyu-Rak; Kim, Ick-Hee; Kim, Seonguk; Kim, Sung-Young; Choi, Soo-Bong; Noh, Yun-Hee

    2014-08-29

    Intensive glucose control increases the all-cause mortality in type 2 diabetes mellitus (T2DM); however, the underlying mechanisms remain unclear. We hypothesized that strict diet control to achieve euglycemia in diabetes damages major organs, increasing the mortality risk. To evaluate effects on major organs when euglycemia is obtained by diet control, we generated a model of end-stage T2DM in 13-week-old Sprague-Dawley rats by subtotal pancreatectomy, followed by ad libitum feeding for 5 weeks. We divided these rats into two groups and for the subsequent 6 weeks provided ad libitum feeding to half (AL, n=12) and a calorie-controlled diet to the other half (R, n=12). To avoid hypoglycemia, the degree of calorie restriction in the R group was isocaloric (g per kg body weight per day) compared with a sham-operated control group (C, n=12). During the 6-week diet control period, AL rats ate three times more than rats in the C or R groups, developing hyperglycemia with renal hyperplasia. R group achieved euglycemia but lost overall body weight significantly compared with the C or AL group (49 or 22%, respectively), heart weight (39 or 23%, respectively) and liver weight (50 or 46%, respectively). Autophagy levels in the heart and liver were the highest in the R group (Pdiabetes but may be deleterious even at isocaloric rate when insulin is deficient because of significant loss of heart and liver mass via increased autophagy.

  2. Body-mass, survival, and pairing consequences of winter-diet restriction in wood ducks

    Science.gov (United States)

    Demarest, D.W.; Kaminski, R.M.; Brennan, L.A.; Boyle, C.R.

    1997-01-01

    We conducted feeding experiments with captive, wild-strain wood ducks (Aix sponsa) during winters 1990-91 and 1991-92 to test effects of increasing levels of food restriction on body mass dynamics, mortality, and pair formation. Male and female wood ducks fed restricted diets (i.e., 5, 10, 15, or 20% less food [g] than consumed on the previous day by a control group fed ad libitum) weighed less (P ??? 0.037) than birds fed ad libitum; those on 15 and 20% restricted diets weighed least. Increased mortality and decreased pair formation occurred only within the 20% restricted group (P ??? 0.049). We concluded that food restriction ranging between 15 and 20% of ad libitum intake may signify a threshold above which survival and reproduction of captive wood ducks may be impaired. Because energy costs of free living are greater than in captivity, a lower threshold may exist for wild wood ducks. Research is needed to validate the threshold theory for free-ranging wood ducks and other waterfowl, and to evaluate its potential application for conservation of winter foraging habitat. Conservation of bottomland hardwood ecosystems, which provide important foraging habitat for migrating and wintering wood ducks, should be encouraged to prevent potential negative effects on wood duck life-cycle events.

  3. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  4. Ractopamine for finishing barrows fed restricted or ad libitum diets: performance and nitrogen balance

    OpenAIRE

    Cantarelli,Vinícius de Souza; Fialho,Elias Tadeu; Almeida,Erin Caperuto de; Zangeronimo,Márcio Gilberto; Rodrigues,Paulo Borges; Freitas,Rilke Tadeu Fonseca de

    2009-01-01

    Supplementation of 5 ppm of ractopamine, associated or not to feed restriction in diets with a high total lysine content (1.04%) was evaluated on performance and nitrogen balance. In experiment 1, 60 hybrid castrated male swine (76.2 ± 2.3 kg) were housed in pairs according to a randomized complete block design in a factorial treatment arrangement (2 ×2 + 1) with or without ractopamine supplementation, two forms of feeding, ad libitum and feed restriction with 1.04% lysine, and an...

  5. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  6. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus

    Science.gov (United States)

    Luchtman, Dirk W.; Chee, Melissa J. S.; Doslikova, Barbora; Marks, Daniel L.; Baracos, Vickie E.; Colmers, William F.

    2015-01-01

    Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint. PMID:26444289

  7. Pre-Existing Differences and Diet-Induced Alterations in Striatal Dopamine Systems of Obesity-Prone Rats

    Science.gov (United States)

    Vollbrecht, Peter J.; Mabrouk, Omar S.; Nelson, Andrew D.; Kennedy, Robert T.; Ferrario, Carrie R.

    2016-01-01

    Objective Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2/D3 dopamine receptor-mediated transmission prior to and after consumption of “junk-foods” in obesity-prone and obesity-resistant rats. Methods Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2/D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Results Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. Conclusions These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. PMID:26847484

  8. Persistence of binge-eating patterns after a history of restriction with intermittent bouts of refeeding on palatable food in rats: implications for bulimia nervosa.

    Science.gov (United States)

    Hagan, M M; Moss, D E

    1997-12-01

    To test the hypothesis that experience with food restriction produces persistent binge eating. The Minnesota semistarvation experiment and studies of prisoners-of-war show that chronic food restriction produces dramatic changes in eating behavior (including binge eating) that endure decades after restriction has ceased. Bulimia nervosa patients who restrict also binge. Restriction may be a risk factor in the etiology of binge eating and bulimia. Animals were subjected to four different patterns of 12-week restriction-refeeding cycles. The rats were either food restricted (dieting) or not restricted and refed regular or palatable food (binging). Thirty days after normalization (full feeding, no restriction cycling), rats with a history of cycles of restriction and hyperphagia continued to exhibit persistent binge eating. This effect was shown particularly with palatable food, in stated conditions, and in response to acute 24-hr deprivation. Results from this animal model implicate restriction and overeating on palatable food as biological determinants of binge-eating behaviors, including bulimia nervosa.

  9. Blueberry-enriched diet protects rat heart from ischemic damage.

    Directory of Open Access Journals (Sweden)

    Ismayil Ahmet

    2009-06-01

    Full Text Available to assess the cardioprotective properties of a blueberry enriched diet (BD.Reactive oxygen species (ROS play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables.Following 3-mo of BD or a regular control diet (CD, the threshold for mitochondrial permeability transition (t(MPT was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001 of ROS indexed t(MPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI in rats on BD was 22% less than in CD rats (p<0.01. Significantly less TUNEL(+ cardiomyocytes (2% vs 9% and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01. In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion.A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure.

  10. Diet and liver apoptosis in rats: a particular metabolic pathway.

    Science.gov (United States)

    Monteiro, Maria Emilia Lopes; Xavier, Analucia Rampazzo; Azeredo, Vilma Blondet

    2017-03-30

    Various studies have indicated an association between modifi cation in dietary macronutrient composition and liver apoptosis. To explain how changes in metabolic pathways associated with a high-protein, high-fat, and low-carbohydrate diet causes liver apoptosis. Two groups of rats were compared. An experimental diet group (n = 8) using a high-protein (59.46%), high-fat (31.77%), and low-carbohydrate (8.77%) diet versus a control one (n = 9) with American Institute of Nutrition (AIN)-93-M diet. Animals were sacrificed after eight weeks, the adipose tissue weighed, the liver removed for flow cytometry analysis, and blood collected to measure glucose, insulin, glucagon, IL-6, TNF, triglycerides, malondialdehyde, and β-hydroxybutyrate. Statistical analysis was carried out using the unpaired and parametric Student's t-test and Pearson's correlation coeffi ents. Significance was set at p triglycerides lower levels compared with the control group. The results show a positive and significant correlation between the percentage of nonviable hepatocytes and malondialdehyde levels (p = 0.0217) and a statistically significant negative correlation with triglycerides levels (p = 0.006). Results suggest that plasmatic malondialdehyde and triglyceride levels are probably good predictors of liver damage associated with an experimental low-carbohydrate diet in rats.

  11. Acute and chronic effects of dietary sodium restriction on renal tubulointerstitial fibrosis in cisplatin-treated rats.

    Science.gov (United States)

    Park, Joon-Sung; Jo, Chor Ho; Kim, Sua; Kim, Gheun-Ho

    2013-03-01

    Renal interstitial fibrosis is a major complication of cisplatin (CP) treatment, and increased sodium intake may accelerate its progression by stimulating transforming growth factor (TGF)-β/Smad signaling. However, it is not clear whether a low-sodium diet has beneficial effects on the development of interstitial fibrosis because it activates the renin-angiotensin-aldosterone system. Here, we tested whether the TGF-β/Smad signaling pathway is stimulated in CP-treated rats, and whether the development of tubulointerstitial fibrosis in CP nephropathy can be checked by dietary sodium restriction. Male Sprague Dawley rats were randomly divided into controls, CP treatment and CP treatment with low-sodium diet. The acute experiment lasted 7 days with a single intraperitoneal injection (6 mg/kg) of CP, and the chronic experiment involved weekly injections (2 mg/kg) for 7 weeks. In both sets of experiments, CP treatment produced pronounced tubulointerstitial injury, increased infiltration of ED1-positive cells and increased expression of monocyte chemotactic protein-1 (MCP-1), α-smooth muscle actin (SMA), TGF-β1, phosphorylated Smad3, fibronectin and collagen III proteins. In the acute experiment, the increases in expression of osteopontin, MCP-1, α-SMA, TGF-β and collagen III were significantly reduced by dietary sodium restriction. In the chronic experiment, however, none of the measurements were improved by a low-sodium diet. Examination of CP-treated rat kidneys revealed de novo vimentin expression in tubular epithelial cells and invasion of α-SMA-positive tubular epithelial cells through the basement membrane into the interstitium. The pro-fibrotic effect of TGF-β in CP nephropathy appears to be associated with the epithelial-mesenchymal transition and is ameliorated by dietary sodium restriction only during the acute phase.

  12. Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging

    Directory of Open Access Journals (Sweden)

    Zhuoran Yin

    2018-03-01

    Full Text Available Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD or low-fat diet (LFD during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS. Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32 in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline.

  13. Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein-restricted rats.

    Science.gov (United States)

    Maia, Aline R; Batista, Thiago M; Victorio, Jamaira A; Clerici, Stefano P; Delbin, Maria A; Carneiro, Everardo M; Davel, Ana P

    2014-01-01

    Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox

  14. Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein-restricted rats.

    Directory of Open Access Journals (Sweden)

    Aline R Maia

    Full Text Available INTRODUCTION: Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. METHODS AND RESULTS: Weaned male Wistar rats were fed normal- (12%, NP or low-protein (6%, LP diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively. LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. CONCLUSION: Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of

  15. Impact of diet restriction in the management of diabetes: evidences from preclinical studies.

    Science.gov (United States)

    Krishan, Pawan; Bedi, Onkar; Rani, Monika

    2018-03-01

    The inappropriate dietary habits lead to the onset of age-related pathologies which include diabetes and cardiovascular ailments. Dietary restriction and nutritional therapy play an important role in the prevention of these chronic ailments. Preclinical research provides a basis for the therapeutic exploration of new dietary interventions for the clinical trials to potentiate the scientific management of diabetes and its related complications which further help in translating these nutritional improvements from bench to bedside. Within the same context, numerous therapeutically proved preclinical dietary interventions like high-fiber diet, caloric restriction, soy isoflavone-containing diets, etc., have shown the promising results for the management of diabetes and the associated complications. The focus of the present review is to highlight the various preclinical evidences of diet restriction for the management of diabetes and which will be helpful for enlightening the new ideas of nutritional therapy for future research exploration. In addition, some potential approaches are also discussed which are associated with various nutritional interventions to combat progressive diabetes and the associated disorders. Graphical abstract ᅟ.

  16. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy

    Science.gov (United States)

    Diet intake in pregnant rats fed a low-protein (LP) diet was significantly reduced during late pregnancy despite elevated plasma levels of ghrelin. In this study, we hypothesized that ghrelin signaling in the hypothalamus is blunted under a low-protein diet condition and therefore, it does not stimu...

  17. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction.

    Science.gov (United States)

    Al-Wahab, Zaid; Mert, Ismail; Tebbe, Calvin; Chhina, Jasdeep; Hijaz, Miriana; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2015-05-10

    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse model of ovarian cancer. Mice either on RD or HED diet bearing ovarian tumors were treated with 200 mg/kg metformin in drinking water. Metformin treatment in RD and HED mice resulted in a significant reduction in tumor burden in the peritoneum, liver, kidney, spleen and bowel accompanied by decreased levels of growth factors (IGF-1, insulin and leptin), inflammatory cytokines (MCP-1, IL-6) and VEGF in plasma and ascitic fluid, akin to the CR diet mice. Metformin resulted in activation of AMPK and SIRT1 and inhibition of pAkt and pmTOR, similar to CR. Thus metformin can closely mimic CR's tumor suppressing effects by inducing similar metabolic changes, providing further evidence of its potential not only as a therapeutic drug but also as a preventive agent.

  18. Food restriction-induced augmentation of heroin seeking in female rats: manipulations of ovarian hormones.

    Science.gov (United States)

    Sedki, Firas; Gardner Gregory, James; Luminare, Adriana; D'Cunha, Tracey M; Shalev, Uri

    2015-10-01

    Food restriction augments heroin seeking in chronically food-restricted male rats under withdrawal, an effect not yet examined in female rats. Importantly, women and female rats possess an increased vulnerability to drugs of abuse, which may be mediated by fluctuations in ovarian hormones. We investigated the role of estradiol and progesterone in augmented heroin seeking in chronically food-restricted female rats, under withdrawal. Female rats self-administered heroin for 10-12 days and were then allowed unrestricted (sated) or restricted access to food (FDR; ∼10 % reduction in body weight) for 14 days. On day 14, rats underwent a heroin-seeking test. Exp. 1: Rats underwent ovariectomy or sham surgery and were treated with a low dose of estradiol (5.0 % in cholesterol; subcutaneous capsule). Exp. 2: Rats underwent ovariectomy and were administered with a high dose of estradiol (0.5 mg/kg; subcutaneous) for 8 days before testing. Exp. 3: Progesterone injections (2.0 mg/kg; subcutaneous) were administered 24 h and 2 h before testing. Food restriction resulted in augmented heroin seeking, compared to sated controls. While ovariectomy had no effect, estradiol replacement attenuated the food restriction effect. Injections of progesterone had no effect on heroin seeking in either the sated or FDR groups. The effect of food restriction on heroin seeking in female rats under withdrawal is as robust as previously found in males. Interestingly, estradiol replacement, but not progesterone, attenuates the food restriction effect in the ovariectomized rats, possibly due to its anorexic properties.

  19. Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy.

    Science.gov (United States)

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Moraes, Camila; Amaral, Maria Esmeria Corezola; Catisti, Rosana

    2013-12-01

    The placenta acts a regulator of nutrient composition and supply from mother to fetus and is the source of hormonal signals that affect maternal and fetal metabolism. Thus, appropriate development of the placenta is crucial for normal fetal development. We investigated the effect of gestational protein restriction (GPR) on placental morphology and mitochondrial function on day 19 of gestation. Pregnant dams were divided into two groups: normal (NP 17 % casein) or low-protein diet (LP 6 % casein). The placentas were processed for biochemical, histomorphometric and ultrastructural analysis. The integrity of rat placental mitochondria (RPM) isolated by conventional differential centrifugation was measured by oxygen uptake (Clark-type electrode). LP animals presented an increase in adipose tissue and triacylglycerol and a decrease in serum insulin levels. No alterations were observed in body, liver, fetus, or placenta weight. There was also no change in serum glucose, total protein, or lipid content. Gestational protein restriction had tissue-specific respiratory effects, with the observation of a small change in liver respiration (~13 %) and considerable respiratory inhibition in placenta samples (~37 %). The higher oxygen uptake by RPM in the LP groups suggests uncoupling between respiration and oxidative phosphorylation. In addition, ultrastructural analysis of junctional zone giant cells from LP placenta showed a disorganized cytoplasm, with loss of integrity of most organelles and intense vacuolization. The present results led us to hypothesize that GPR alters placental structure and morphology, induces sensitivity to insulin, mitochondrial abnormalities and suggests premature aging of the placenta. Further studies are needed to test this hypothesis.

  20. Diet as a system: an observational study investigating a multi-choice system of moderately restricted low-protein diets.

    Science.gov (United States)

    Piccoli, Giorgina Barbara; Nazha, Marta; Capizzi, Irene; Vigotti, Federica Neve; Scognamiglio, Stefania; Consiglio, Valentina; Mongilardi, Elena; Bilocati, Marilisa; Avagnina, Paolo; Versino, Elisabetta

    2016-12-07

    There is no single, gold-standard, low-protein diet (LPD) for CKD patients; the best compliance is probably obtained by personalization. This study tests the hypothesis that a multiple choice diet network allows patients to attain a good compliance level, and that, in an open-choice system, overall results are not dependent upon the specific diet, but upon the clinical characteristics of the patients. Observational study: Three LPD options were offered to all patients with severe or rapidly progressive CKD: vegan diets supplemented with alpha-ketoacids and essential aminoacids; protein-free food in substitution of normal bread and pasta; other (traditional, vegan non supplemented and tailored). Dialysis-free follow-up and survival were analyzed by Kaplan Meier curves according to diet, comorbidity and age. Compliance and metabolic control were estimated in 147 subjects on diet at March 2015, with recent complete data, prescribed protein intake 0.6 g/Kg/day. Protein intake was assessed by Maroni Mitch formula. Four hundreds and forty nine patients followed a LPD in December, 2007- March, 2015 (90% moderately restricted LPDs, 0.6 g/Kg/day of protein, 10% at lower targets); age (median 70 (19-97)) and comorbidity (Charlson index: 7) characterized our population as being in line with the usual CKD European population. Median e-GFR at start of the diet was 20 mL/min, 33.2% of the patients were diabetics. Baseline data differ significantly across diets: protein-free schemas are preferred by older, high-comorbidity patients (median age 76 years, Charlson index 8, GFR 20.5 mL/min, Proteinuria: 0.3 g/day), supplemented vegan diets by younger patients with lower GFR and higher proteinuria (median age 65 years, Charlson index 6, GFR 18.9 mL/min; Proteinuria: 1.2 g/day); other diets are chosen by an intermediate population (median age 71 years, Charlson index 6; GFR 22.5 mL/min; Proteinuria: 0.9 g/day); (p <0.001 for age, Charlson index, proteinuria, GFR

  1. Effects of maternal dietary restriction in vitamin B-6 on neocortex development in rats: B-6 vitamer concentrations, volume and cell estimates.

    Science.gov (United States)

    Groziak, S M; Kirksey, A

    1987-06-01

    Influence of the time of maternal restriction in dietary vitamin B-6 on vitamer concentrations and morphological development of neocortex was examined. Rats were fed ad libitum a vitamin B-6-free diet supplemented with 0.0 or 0.6 mg pyridoxine X hydrochloride (PN X HCl)/kg diet during gestation followed by a control diet (7.0 mg PN X HCl/kg) during lactation or were supplemented with 0.6 or 7.0 mg PN X HCl/kg diet throughout gestation and lactation. During postweaning offspring received the maternal diets fed during lactation. Neocortices of offspring were examined at 30 d of age by liquid chromatography and light microscopy. Vitamin restriction during gestation and 30 d postnatal was the only vitamin B-6-restricted treatment of the three administered that altered B-6 vitamer levels in neocortex; all vitamers were depressed equally. Brain weight and volume of neocortex were not changed significantly by the maternal restrictions imposed. However, each restriction adversely affected neurogenesis and neuron longevity of the neocortex and when expressed as percent reduction from control, neuron longevity was affected more severely than neurogenesis.

  2. Greater insulin sensitivity in calorie restricted rats occurs with unaltered circulating levels of several important myokines and cytokines

    Directory of Open Access Journals (Sweden)

    Sharma Naveen

    2012-10-01

    Full Text Available Abstract Calorie restriction (CR; ~60% of ad libitum, AL intake has been associated with substantial alterations in body composition and insulin sensitivity. Recently, several proteins that are secreted by nontraditional endocrine tissues, including skeletal muscle and other tissues, have been discovered to modulate energy metabolism, body composition, and insulin sensitivity. The aim of this study was to characterize the influence of CR by rats on plasma levels of six of these newly recognized metabolic hormones (BDNF, FGF21, IL-1β, myonectin, myostatin, and irisin. Body composition of 9-month old male Fischer-344/Brown Norway rats (AL and CR groups was determined by nuclear magnetic resonance. Blood sampled from the carotid artery of unanesthetized rats was used to measure concentrations of glucose and plasma proteins. As expected, CR versus AL rats had significantly altered body composition (reduced percent fat mass, increased percent lean mass and significantly improved insulin sensitivity (based on the homeostasis model assessment-estimated insulin resistance index. Also consistent with previous reports, CR compared to AL rats had significantly greater plasma levels of adiponectin and corticosterone. However, there were no significant diet-related differences in plasma levels of BDNF, FGF21, IL-1β, myonectin, myostatin, or irisin. In conclusion, these results indicate that alterations in plasma concentration of these six secreted proteins are not essential for the CR-related improvement in insulin sensitivity in rats.

  3. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  4. Differential effects of hypercaloric choice diets on insulin sensitivity in rats

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Eggels, Leslie; Ackermans, Mariëtte T.; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J.; la Fleur, Susanne E.

    2017-01-01

    We showed previously that rats on a free-choice high-fat, high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar

  5. Differential effects of hyper caloric choice diets on insulin sensitivity in rats

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Eggels, Leslie; Ackermans, Mariette T; Fliers, Eric; Kalsbeek, A.; Serlie, Mireille J; La Fleur, S.E.

    2017-01-01

    We previously showed that rats on a free-choice high-fat-high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar (fcHS)

  6. Alveolar wound healing in rats fed on high sucrose diet.

    Science.gov (United States)

    Baró, María A; Rocamundi, Marina R; Viotto, Javier O; Ferreyra, Ruth S

    2013-01-01

    The potential for bone repair is influenced by various biochemical, biomechanical, hormonal, and pathological mechanisms and factors such as diet and its components, all of which govern the behavior and function of the cells responsible for forming new bone. Several authors suggest that a high sucrose diet could change the calcium balance and bone composition in animals, altering hard tissue mineralization. The mechanism by which it occurs is unclear. Alveolar healing following tooth extraction has certain characteristics making this type of wound unique, in both animals and humans. The general aim of this study was to evaluate and quantify the biological response during alveolar healing following tooth extraction in rats fed on high sucrose diets, by means of osteocyte lacunae histomorphometry, counting empty lacunae and measuring areas of bone quiescence, formation and resorption. Forty-two Wistar rats of both sexes were divided into two groups: an experimental group fed on modified Stephan Harris diet (43% sucrose) and a control group fed on standard balanced diet. The animals were anesthetized and their left and right lower molars extracted. They were killed at 0 hours, 14, 28, 60 and 120 days. Samples were fixed, decalcified in EDTA and embedded in paraffin to prepare sections for optical microscopy which were stained with hematoxylin/eosin. Histomorphometric analysis showed significant differences in the size of osteocyte lacunae between groups at 28 and 60 days, with the experimental group having larger lacunae. There were more empty lacunae in the experimental group at 14 days, and no significant difference in the areas of bone activity. A high sucrose diet could modify the morphology and quality of bone tissue formed in the alveolus following tooth extraction.

  7. Age-related differences in norepinephrine kinetics: Effect of posture and sodium-restricted diet

    International Nuclear Information System (INIS)

    Supiano, M.A.; Linares, O.A.; Smith, M.J.; Halter, J.B.

    1990-01-01

    We used compartmental analysis to study the influence of age on the kinetics of norepinephrine (NE) distribution and metabolism. Plasma NE and [3H]NE levels were measured in 10 young (age 19-33 yr) and 13 elderly (age 62-73 yr) subjects in the basal supine position, during upright posture, and after 1 wk of a sodium-restricted diet. We found that the basal supine release rate of NE into the extravascular compartment, which is the site of endogenous NE release (NE2), was significantly increased in the elderly group (young, 9.6 +/- 0.5; elderly, 12.3 +/- 0.8 nmol.min-1.m-2; means +/- SE; P = 0.016), providing direct evidence for an age-related increase in sympathetic nervous system (SNS) tone. Although upright posture led to a greater increase in plasma NE in the young (0.90 +/- 0.07 to 2.36 +/- 0.16 nM) than in the elderly (1.31 +/- 0.11 to 2.56 +/- 0.31 nM; age group-posture interaction, P = 0.02), the increase in NE2 was similar between the young (9.6 +/- 0.6 to 16.2 +/- 1.5 nmol.min-1.m-2) and the elderly (11.6 +/- 1.4 to 16.1 +/- 2.4 nmol.min-1.m-2; posture effect, P = 0.001; age group-posture interaction, P = 0.15). Thus the increase in SNS tone resulting from upright posture was similar in young and elderly subjects. Plasma NE levels increased similarly in both groups after a sodium-restricted diet (diet effect, P = 0.001; age group-diet interaction, P = 0.23). However, NE2 did not increase significantly in either group (diet effect, P = 0.26), suggesting that SNS tone did not increase after a sodium-restricted diet. Compartmental analysis provides a description of age-related differences in NE kinetics, including an age-related increase in the extravascular NE release rate

  8. Age-related differences in norepinephrine kinetics: Effect of posture and sodium-restricted diet

    Energy Technology Data Exchange (ETDEWEB)

    Supiano, M.A.; Linares, O.A.; Smith, M.J.; Halter, J.B. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1990-09-01

    We used compartmental analysis to study the influence of age on the kinetics of norepinephrine (NE) distribution and metabolism. Plasma NE and (3H)NE levels were measured in 10 young (age 19-33 yr) and 13 elderly (age 62-73 yr) subjects in the basal supine position, during upright posture, and after 1 wk of a sodium-restricted diet. We found that the basal supine release rate of NE into the extravascular compartment, which is the site of endogenous NE release (NE2), was significantly increased in the elderly group (young, 9.6 +/- 0.5; elderly, 12.3 +/- 0.8 nmol.min-1.m-2; means +/- SE; P = 0.016), providing direct evidence for an age-related increase in sympathetic nervous system (SNS) tone. Although upright posture led to a greater increase in plasma NE in the young (0.90 +/- 0.07 to 2.36 +/- 0.16 nM) than in the elderly (1.31 +/- 0.11 to 2.56 +/- 0.31 nM; age group-posture interaction, P = 0.02), the increase in NE2 was similar between the young (9.6 +/- 0.6 to 16.2 +/- 1.5 nmol.min-1.m-2) and the elderly (11.6 +/- 1.4 to 16.1 +/- 2.4 nmol.min-1.m-2; posture effect, P = 0.001; age group-posture interaction, P = 0.15). Thus the increase in SNS tone resulting from upright posture was similar in young and elderly subjects. Plasma NE levels increased similarly in both groups after a sodium-restricted diet (diet effect, P = 0.001; age group-diet interaction, P = 0.23). However, NE2 did not increase significantly in either group (diet effect, P = 0.26), suggesting that SNS tone did not increase after a sodium-restricted diet. Compartmental analysis provides a description of age-related differences in NE kinetics, including an age-related increase in the extravascular NE release rate.

  9. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  10. Iodine Deficiency and Hypothyroidism From Voluntary Diet Restrictions in the US: Case Reports.

    Science.gov (United States)

    Booms, Stephanie; Hill, Elizabeth; Kulhanek, Leah; Vredeveld, Jennifer; Gregg, Brigid

    2016-06-01

    Iodine deficiency is rare in the United States today, and this is largely due to the effectiveness of iodization in the general food supply. Recent trends among specific populations of children in the United States include adopting food restrictions, such casein-free and gluten-free diets. Although the effect of these types of diets on overall nutrition status and certain micronutrients has been studied in children with autism spectrum disorder, the effect of these limitations on iodine levels in children has not been assessed. We present here 2 cases of iodine deficiency resulting from severe food restriction and associated primary hypothyroidism. In 1 case a classic presentation with a goiter was seen. These children were able to discontinue thyroid hormone treatment once iodine levels were normalized. There were no adverse events or unanticipated outcomes. The occurrence of these cases of iodine deficiency in the United States points to the need for thyroid function testing in children with severe food restrictions, especially those who have limited exposure to dairy, baked goods, and table salt. Copyright © 2016 by the American Academy of Pediatrics.

  11. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Freese, Kim; Waligora-Dupriet, Anne-Judith; Nubret, Esther; Butel, Marie-Jo; Bergheim, Ina; De Bandt, Jean-Pascal

    2016-07-01

    A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague-Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (PWestern diet alone. Cit improves Western diet-induced liver injuries via decreased lipid deposition, increased insulin sensitivity, lower inflammatory process and preserved antioxidant status. This may be related in part to its protective effects at the gut level.

  12. Ketogenic Diet Suppresses Alcohol Withdrawal Syndrome in Rats.

    Science.gov (United States)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane; Schlumberger, Chantal; Wortwein, Gitta; Weikop, Pia; Benveniste, Helene; Volkow, Nora D; Fink-Jensen, Anders

    2018-02-01

    Alcohol use disorder is underdiagnosed and undertreated, and up to 50% of alcohol-abstinent patients diagnosed with alcohol dependence relapse within the first year of treatment. Current treatments for the maintenance of alcohol abstinence in patients with alcohol use disorder have limited efficacy, and there is an urgent need for novel treatment strategies. Decreased cerebral glucose metabolism and increased brain uptake of acetate were recently reported in heavy drinkers, relative to controls. Given the switch of metabolic fuel from glucose to acetate in the alcohol-dependent brain, we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. Male Sprague Dawley rats fed either ketogenic or regular diet were administered ethanol or water orally, twice daily for 6 days while the diet conditions were maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms' "rigidity" and "irritability." Our preclinical pilot study suggests that a ketogenic diet may be a novel approach for treating alcohol withdrawal symptoms in humans. Copyright © 2017 by the Research Society on Alcoholism.

  13. Cytokine profile of rats fed a diet containing shrimp

    Directory of Open Access Journals (Sweden)

    Elizabeth Lage Borges

    2013-02-01

    Full Text Available OBJECTIVE: Studies have shown that shrimps reduced the tensile strength of scars in rat skin. The aim of the present study was to assess the cytokine profile of rats fed shrimp. METHODS: Group 1 (control received a regular diet and Group 2 (experimental received a diet containing 33% shrimp for nine days. The two diets contained the same amounts of proteins, fats and carbohydrates. Serum cytokine levels were determined by ELISA and a segment of the jejunum was taken to investigate its histological morphology and eosinophil infiltrate. RESULTS: The experimental group had lower serum levels of interleukin-4 (IL-4 (14.4±1.9 versus 18.11±2.6pg/mL; p<0.05 and IL-10 (5.0±0.98 versus 7.5±1.2pg/mL; p<0.05 and higher levels of IL-6 (17.8±2.3 versus 3.2±0.4pg/mL, p<0.001 than controls. Morphologically, the shrimp-based diet caused an architectural disorganization of the intestinal mucosa and a greater amount of eosinophils in the jejunal villus. CONCLUSION: Our data suggests that shrimp consumption leads to a significant increase in the cytokine IL-6, a decrease in the immunomodulatory cytokine IL-10 in the serum of rats, and high eosinophil infiltration in the jejunum. The cytokine profile typical of inflammation and the histological aspect of the jejunum are compatible with food allergy.

  14. What are the roles of calorie restriction and diet quality in promoting healthy longevity?

    Science.gov (United States)

    Rizza, Wanda; Veronese, Nicola; Fontana, Luigi

    2014-01-01

    Epidemiological and experimental data indicate that diet plays a central role in the pathogenesis of many age-associated chronic diseases, and in the biology of aging itself. Data from several animal studies suggest that the degree and time of calorie restriction (CR) onset, the timing of food intake as well as diet composition, play major roles in promoting health and longevity, breaking the old dogma that only calorie intake is important in extending healthy lifespan. Data from human studies indicate that long-term CR with adequate intake of nutrients results in several metabolic adaptations that reduce the risk of developing type 2 diabetes, hypertension, cardiovascular disease and cancer. Moreover, CR opposes the expected age-associated alterations in myocardial stiffness, autonomic function, and gene expression in the human skeletal muscle. However, it is possible that some of the beneficial effects on metabolic health are not entirely due to CR, but to the high quality diets consumed by the CR practitioners, as suggested by data collected in individuals consuming strict vegan diets. More studies are needed to understand the interactions among single nutrient modifications (e.g. protein/aminoacid, fatty acids, vitamins, phytochemicals, and minerals), the degree of CR and the frequency of food consumption in modulating anti-aging metabolic and molecular pathways, and in the prevention of age-associated diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  diet also increased the activity of hexokinase with significant reduction ( p  diet demonstrated significant reduction ( p  diabetic control group. Also, M. paradisiaca -based diet significantly ( p  diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.

  16. Supply of nutrients and productive responses in dairy cows given diets based on restrictively fermented silage

    Directory of Open Access Journals (Sweden)

    P. HUHTANEN

    2008-12-01

    Full Text Available The objective of this paper is to review research which has evaluated the feeding of dairy cows with diets containing large proportions of grass silage. In Finland, milk production systems evolved are based on the use of restrictively fermented silages. Higher potential yields, smaller production risks than with cereal grains, short grazing period and high digestibility of grasses grown in northern latitudes have facilitated this development. Factors affecting nutrient supply from these diets are discussed. Digestibility is determined mainly by the stage of maturity at harvesting and it is not markedly affected by the level of energy and protein supplementation. Intake of grass silage is influenced both by digestibility and fermentation characteristics. Efficiency of microbial synthesis is high in animals given diets based on restrictively fermented silage but rumen fermentation pattern is characterised by low molar proportions of propionate. Production responses to additional concentrate are relatively small, especially when the amount of concentrate exceeds 10 kg day-1. High substitution of silage dry matter (DM, negative associative effects on digestion and partitioning of energy towards body tissues account for small production responses. Protein supplementation has consistently increased milk protein yield but responses do not appear to be related to the level of milk production, silage crude protein content, amount of concentrate or stage of lactation. The new protein evaluation system provides an accurate prediction of protein yield with the typical Finnish dairy cow diets. The high slopes (ca. 0.5 between protein supply and milk protein yield within experiments suggest that protein supply is suboptimal and protein supplements are used with a high efficiency.;

  17. Modulatory role of chelating agents in diet-induced hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Heba M. Mahmoud

    2014-06-01

    Conclusion: Pretreatment of hypercholesterolemic rats with simvastatin, CaNa2EDTA or DMSA attenuated most of the changes induced by feeding rats with cholesterol-rich diet owing to their observed anti-hyperlipidemic and antioxidant properties.

  18. Lean rats gained more body weight than obese ones from a high-fibre diet.

    Science.gov (United States)

    Li, Shaoting; Zhang, Cheng; Gu, Yingyi; Chen, Long; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2015-10-28

    There is controversy over previous findings that a high ratio of Firmicutes to Bacteriodetes helps obese animals harvest energy from the diet. To further investigate the relationship between microbial composition and energy harvest, microbial adaptation to diet and time should be considered. In this study, lean and obese rats were successfully induced with low-fat and high-fat diets. An 8-week high soyabean fibre (HSF)-containing diet was then fed to investigate the interaction between the diet and the rats' gut microbiota, as well as their influence on rats' growth. Rats' body weight (BW) was recorded weekly; their plasma lipids and their gut microbiota at week 11, 15 and 19 were analysed. After the consumption of the HSF diet, BW of lean rats increased significantly (Pcontent of plasma cholesterol was lowered and that of TAG was upgraded in both the groups when fed the HSF diet. There was no significant difference observed at each period between lean and obese rats. In the group of lean rats, the diversity of gut microbiota was elevated strongly (Pbacterial diversity and composition in obese rats were less altered after the HSF diet control. In conclusion, the increased Firmicutes and Bacteriodetes might relate to lean rats' higher BW gain; 'obese microbiota' could not help the hosts harvest more energy from the HSF diet.

  19. THE EFFECT OF EARLY MOVEMENT RESTRICTION - AN EMG STUDY IN THE RAT

    NARCIS (Netherlands)

    WESTERGA, J; GRAMSBERGEN, A

    1993-01-01

    The effect of early immobilization upon the adult locomotor pattern was studied. One hindlimb of neonatal rats was immobilized during 20 days and the EMG pattern was studied 3-8 weeks after termination of movement restriction. All rats showed a fluent locomotion pattern at these ages, but the EMG

  20. Effect of diet on triolein absorption in weanling rats

    International Nuclear Information System (INIS)

    Flores, C.A.; Brannon, P.M.; Wells, M.A.; Morrill, M.; Koldovsky, O.

    1990-01-01

    To determine the effect of altered dietary fat intake on the rate of fat absorption in the intact animal, we fed male weanling rats either a high fat-low carbohydrate (HF-LC) (calories: 67% fat, 10% carbohydrate, 20% protein) or low fat-high carbohydrate (LF-HC) (calories: 10% fat, 67% carbohydrate, 20% protein) diet for 8 days. Absorption of [ 14 C]triolein was estimated by determining (1) 14 CO 2 expiration in breath, (2) intestinal triglyceride output using Triton WR-1339, an inhibitor of lipoprotein lipase, and (3) quantitating the disappearance of labeled triolein from the gastrointestinal tract. Changes in the activity of pancreatic lipase and amylase confirmed the adaptation to altered fat and carbohydrate intake. Animals fed the HF-LC diet exhibited approximately twofold greater triolein disappearance, oxidation, and intestinal triglyceride output compared with animals fed LF-HC. There was also a highly significant linear relationship between 14 CO 2 excretion and intestinal triglyceride output in both diet groups. These data show that high dietary fat content markedly enhances in vivo fat absorption in the weanling rat

  1. Grape skin improves antioxidant capacity in rats fed a high fat diet

    OpenAIRE

    Lee, Su-Jin; Choi, Soo-Kyong; Seo, Jung-Sook

    2009-01-01

    This study was conducted to investigate the effect of dietary grape skin on lipid peroxidation and antioxidant defense system in rats fed high fat diet. The Sprague-Dawley rats were fed either control (5% fat) diet or high fat (25% fat) diet which was based on AIN-93 diet for 2 weeks, and then they were grouped as control group (C), control + 5% grape skin group (CS), high-fat group (HF), high fat + 5% grape skin group (HFS) with 10 rats each and fed corresponding diets for 4 weeks. The hepat...

  2. Nociceptive Alteration by High Sucrose Diet in Hypoestrogenic Wistar Rats.

    Science.gov (United States)

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; Corona-Ramos, Janette Nallely; López-Muñoz, Francisco Javier

    2016-08-01

    Preclinical Research Obesity is a risk factor associated with alterations in pain perception. The aim of this study was to analyse a time-course of nociceptive responses (plantar test) in hypoestrogenic rats after the induction of obesity. Animals (hypoestrogenic and naïve) received either a hypercaloric or regular diet for 24 weeks. Thermal nociception and body weight were measured during this period. At the 4th and 17th weeks after treatment, oral glucose tolerance, blood insulin levels, abdominal fat weight, and uric acid levels were measured. The hypoestrogenic rats on a high sucrose diet had higher body weight and abdominal fat weight than control rats. A biphasic response was observed in the ovariectomized group fed with sucrose with thermal latency being decreased in the fourth week. During weeks 12-18, thermal latency increased compared to that of the hypoestrogenic control. There were no differences in basal blood glucose levels at the 4th and 17th weeks; however, oral glucose tolerance, insulin, and uric acid levels were altered. This indicated that increased body weight and fat as well as alteration sin glucose tolerance, hyperinsulinemia and hyperuricemia, may be associated with the biphasic nociceptive response. Drug Dev Res 77 : 258-266, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep

    OpenAIRE

    Kim, Youngsoo; Laposky, Aaron D.; Bergmann, Bernard M.; Turek, Fred W.

    2007-01-01

    Recent studies indicate that chronic sleep restriction can have negative consequences for brain function and peripheral physiology and can contribute to the allostatic load throughout the body. Interestingly, few studies have examined how the sleep–wake system itself responds to repeated sleep restriction. In this study, rats were subjected to a sleep-restriction protocol consisting of 20 h of sleep deprivation (SD) followed by a 4-h sleep opportunity each day for 5 consecutive days. In respo...

  4. Islet inflammation, hemosiderosis, and fibrosis in intrauterine growth-restricted and high fat-fed Sprague-Dawley rats.

    Science.gov (United States)

    Delghingaro-Augusto, Viviane; Madad, Leili; Chandra, Arin; Simeonovic, Charmaine J; Dahlstrom, Jane E; Nolan, Christopher J

    2014-05-01

    Prenatal and postnatal factors such as intrauterine growth restriction (IUGR) and high-fat (HF) diet contribute to type 2 diabetes. Our aim was to determine whether IUGR and HF diets interact in type 2 diabetes pathogenesis, with particular attention focused on pancreatic islet morphology including assessment for inflammation. A surgical model of IUGR (bilateral uterine artery ligation) in Sprague-Dawley rats with sham controls was used. Pups were fed either HF or chow diets after weaning. Serial measures of body weight and glucose tolerance were performed. At 25 weeks of age, rat pancreases were harvested for histologic assessment. The birth weight of IUGR pups was 13% lower than that of sham pups. HF diet caused excess weight gain, dyslipidemia, hyperinsulinemia, and mild glucose intolerance, however, this was not aggravated further by IUGR. Markedly abnormal islet morphology was evident in 0 of 6 sham-chow, 5 of 8 sham-HF, 4 of 8 IUGR-chow, and 8 of 9 IUGR-HF rats (chi-square, P = 0.007). Abnormal islets were characterized by larger size, irregular shape, inflammation with CD68-positive cells, marked fibrosis, and hemosiderosis. β-Cell mass was not altered by IUGR. In conclusion, HF and IUGR independently contribute to islet injury characterized by inflammation, hemosiderosis, and fibrosis. This suggests that both HF and IUGR can induce islet injury via converging pathways. The potential pathogenic or permissive role of iron in this process of islet inflammation warrants further investigation. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Sleep restriction acutely impairs glucose tolerance in rats

    NARCIS (Netherlands)

    Jha, Pawan K; Foppen, Ewout; Kalsbeek, A.; Challet, Etienne

    Chronic sleep curtailment in humans has been related to impairment of glucose metabolism. To better understand the underlying mechanisms, the purpose of the present study was to investigate the effect of acute sleep deprivation on glucose tolerance in rats. A group of rats was challenged by 4-h

  6. Irradiated diets and its effect on testes and adrenal gland of rats

    International Nuclear Information System (INIS)

    Kushwaha, A.K.S.; Hasan, S.S.

    1988-01-01

    The present investigation was undertaken to study the feeding effects of irradiated normal diet (consisting of equal parts of gram and wheat) and irradiated low protein diet (consisting one part of normal diet and three parts of wheat) on male rats for various periods starting from weaning time. Rats maintained on irradiated low protein diets showed decrease in the activity of androgen sensitive enzymes i.e., alkaline and acid phosphatase while an increase in the cholesterol content of the testes compared with irradiated normal controls. Diminution in androgen sensitive enzymes and accumulation of cholesterol in the rat testes suggest non-conversion of cholesterol into steriod hormones after feeding of irradiated low protein. Besides, rats fed on irradiated low protein diet showed increased cellular activity in the adrenal cortex and medulla as compared to rats fed on the irradiated normal diet. (author). 12 refs., 4 tabs

  7. A sucrose-rich diet induces mutations in the rat colon

    DEFF Research Database (Denmark)

    Dragsted, L.O.; Daneshvar, B.; Vogel, Ulla Birgitte

    2002-01-01

    A sucrose-rich diet has repeatedly been observed to have cocarcinogenic actions in the colon and liver of rats and to increase the number of aberrant crypt foci in rat colon. To investigate whether sucrose-rich diets might directly increase the genotoxic response in the rat colon or liver, we have...... added sucrose to the diet of Big Blue rats, a strain of Fischer rats carrying 40 copies of the lambda-phage on chromosome 4. Dietary sucrose was provided to the rats for 3 weeks at four dose levels including the background level in the purified diet [3.4% (control), 6.9%, 13.8%, or 34.5%] without...... of a sucrose-rich diet. No significant increase in mutations was observed in the liver. To seek an explanation for this finding, a variety of parameters were examined representing different mechanisms, including increased oxidative stress, changes in oxidative defense, effects on DNA repair, or changes...

  8. Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats

    Directory of Open Access Journals (Sweden)

    Boschero Antonio C

    2009-08-01

    Full Text Available Abstract Background Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet. Methods Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA and insulin by radioimmunoassay (RIA. Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA. Results The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC

  9. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil.

    Science.gov (United States)

    do Amaral, Cátia Lira; Milagro, Fermín I; Curi, Rui; Martínez, J Alfredo

    2014-01-01

    Dietary factors modulate gene expression and are able to alter epigenetic signatures in peripheral blood mononuclear cells (PBMC). However, there are limited studies about the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on the epigenetic mechanisms that regulate gene expression. This research investigates the effects of n-3-rich fish oil supplementation on DNA methylation profile of several genes whose expression has been reported to be downregulated by n-3 PUFA in PBMC: CD36, FFAR3, CD14, PDK4, and FADS1. Young overweight women were supplemented with fish oil or control in a randomized 8-week intervention trial following a balanced diet with 30% energy restriction. Fatty acid receptor CD36 decreased DNA methylation at CpG +477 due to energy restriction. Hypocaloric diet-induced weight loss also reduced the methylation percentages of CpG sites located in CD14, PDK4, and FADS1. The methylation patterns of these genes were only slightly affected by the fish oil supplementation, being the most relevant to the attenuation of the weight loss-induced decrease in CD36 methylation after adjusting by baseline body weight. These results suggest that the n-3 PUFA-induced changes in the expression of these genes in PBMC are not mediated by DNA methylation, although other epigenetic mechanisms cannot be discarded.

  10. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Science.gov (United States)

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose

  11. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Directory of Open Access Journals (Sweden)

    Raphael Johannes Morscher

    Full Text Available Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system.Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content.Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention.Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens

  12. Combined effects of resistance training and carbohydrate-restrictive or conventional diets on weight loss, blood variables and endothelium function

    Directory of Open Access Journals (Sweden)

    Claudia Mello MEIRELLES

    Full Text Available ABSTRACT Objective: To compare the effects of either a carbohydrate-restrictive diets or a conventional hypoenergetic diet combined with resistance training. Methods: Twenty-one overweight and obese adults participated in an eight-week program consisting of progressive resistance training combined with carbohydrate-restrictive diets (initially set at <30 g carbohydrate; n=12 or conventional hypoenergetic diet (30% energetic restriction; carbohydrate/protein/lipid: 51/18/31% of total energy consumption; n=9. It was hypothesized that the carbohydrate-restrictive diets would induce greater weight loss but that both diets would elicit similar effects on selected health markers. Body mass, and body composition, blood variables and flow-mediated brachial artery dilation (flow-mediated brachial artery dilation; by ultrasound were used to assess changes due to the interventions. Results: Significant within-group reductions in body mass (-5.4±3.5%; p=0.001 versus -3.7±3.0%; p=0.015 and body fat (body fat; -10.2±7.0%; p=0.005 versus -9.6±8.8%; p=0.017 were identified for carbohydrate-restrictive diets and conventional hypoenergetic diet, respectively, but there were no significant differences between groups as the result of the interventions. Fat free mass, blood variables and flow-mediated brachial artery dilation did not significantly change, except for the total cholesterol/high-density lipoprotein ratio, which was reduced 10.4±16.9% in carbohydrate-restrictive diets (p=0.037 and 0.5±11.3% in conventional hypoenergetic diet (p=0.398. Conclusion: Carbohydrate-restrictive diets associated with resistance training was as effective as conventional hypoenergetic diet in decreasing body mass and body fat, as well as maintaining fat free mass, blood variables and flow-mediated brachial artery dilation, however it was more effective at lowering the total cholesterol/low density lipoprotein ratio.

  13. Effect of restricted access to food on metabolic changes in lethally X-irradiated rats. I

    International Nuclear Information System (INIS)

    Toropila, M.; Ahlers, I.; Ahlersova, E.; Praslicka, M.

    1982-01-01

    Differences in the reaction of glucose in blood and in that of glycogen in liver in animals with free access to food and in those with restricted food intake to lethal irradiation by X-rays were studied. SPF bred male rats of the Wistar strain were fed by common laboratory diet and by tap water ad libitum (AL group) or food was accessible to them (in unlimited amounts) only in the period between 09.00 a. m. and 11.00 a. m. (meal-fed group, MF), all under standard laboratory conditions. After more than three weeks of adaptation to the nutrition patterns and 22 h after the last food intake, animals of both groups were irradiated with a single whole-body 14.35 Gy dose of X-rays and/or sham irradiated, respectively. Glucose concentration in blood was increased in both groups during the experiment; terminal hyperglycaemia was more expressed in the MF group. Due to the high initial glycogen concentration in the liver of MF irradiated animals the accumulation of glycogen was substantially lower and started later than in irradiated AL animals. (author)

  14. Very high alpha-tocopherol diet diminishes oxidative stress and hypercoagulation in hypertensive rats but not in normotensive rats.

    Science.gov (United States)

    Frenoux, Jean-Marie R; Noirot, Beatrice; Prost, Emmanuelle D; Madani, Sihem; Blond, Jean Paul; Belleville, Jacques L; Prost, Josiane L

    2002-10-01

    Oxidative stress is closely related to cardiovascular diseases, such as atherosclerosis. Increasing dietary antioxidants, such as alpha-tocopherol, may prevent these diseases. However, in some pathologies, such as hypertension, oxidative stress is enhanced, thus alpha-tocopherol requirements may be raised. In eleven-week-old spontaneously hypertensive rats and normotensive Wistar Kyoto rats, we investigated the effects of a four-week very high alpha-tocopherol dietary enrichment (1,200 mg/kg diet, VH) on blood pressure, resistance to free radical aggression, and VLDL+LDL resistance to lipid peroxidation. Platelet aggregation and plasma lipid profile were also investigated. With either diet, hypertensive rats were more protected against oxidative stress than normotensive rats. Their capacity to withstand free radical aggression was better, and their VLDL+LDL particles were less sensitive to lipid peroxidation. In either group, the VH diet did not modify blood pressure values when resistance to free radical aggression was increased, but not the resistance of VLDL+LDL to lipid peroxidation. With the control diet, platelet aggregation was faster and higher in hypertensive rats vs. normotensive rats. It was decreased with the VH diet in hypertensive rats but increased in normotensive rats, when compared to their respective controls. Whatever the diet, plasma triacylglycerol, phospholipid and cholesterol concentrations were lower in hypertensive than in normotensive rats. Only cholesterol concentrations were diminished with the VH diet in hypertensive rats, but not in normotensive rats. These results indicate that very high alpha-tocopherol dietary amounts decrease cardiovascular risk in hypertensive rats with high oxidative stress, but have less effect on normotensive rats.

  15. THE EFFECTS OF THE DASH DIET ALONE AND IN COMBINATION WITH EXERCISE AND CALORIC RESTRICTION ON INSULIN SENSITIVITY AND LIPIDS

    OpenAIRE

    Blumenthal, James A.; Babyak, Michael A.; Sherwood, Andrew; Craighead, Linda; Lin, Pao-Hwa; Johnson, Julie; Watkins, Lana L.; Wang, Jenny T.; Kuhn, Cynthia; Feinglos, Mark; Hinderliter, Alan

    2010-01-01

    This study examined the effects of the Dietary Approaches to Stop Hypertension (DASH) diet on insulin sensitivity and lipids. In a randomized control trial, 144 overweight (body mass index 25–40) men (N= 47) and women (N= 97) with high blood pressure (130–159/85–99 mm Hg) were randomly assigned to either: (1) DASH diet alone (DASH-A); (2) DASH diet with aerobic exercise and caloric restriction (DASH-WM); or usual diet controls (UC). Body composition, fitness, insulin sensitivity, and fasting ...

  16. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

    Directory of Open Access Journals (Sweden)

    Johnson Ginger C

    2011-07-01

    Full Text Available Abstract Background Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF diet. Methods Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats. Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3% or high (5.9% levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight. Results Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health. Conclusions These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences.

  17. Diet-induced metabolic syndrome model in rats

    Directory of Open Access Journals (Sweden)

    Reza Homayounfar

    2013-03-01

    Full Text Available Background & Objective: Risk for heart disease, diabetes, and stroke increases with the number of the metabolic risk factors. In general, a person who has the metabolic syndrome is twice as likely to develop heart disease and five times as likely to develop diabetes as someone who does not have the metabolic syndrome. High-calorie-diet rodent models have contributed significantly to the analysis of the pathophysiology of the metabolic syndrome, but their phenotype varies distinctly between different studies and maybe is not very similar to a model of the metabolic syndrome in humans. We sought to create a model in this study close to the disease in humans.   Materials & Methods: Twenty male, Wistar rats were randomly assigned to the high-calorie diet group with 416 calories per 100 grams (researcher made or the control diet group for 12 weeks. Weight changes, lipid profile, glucose, insulin levels, and QUICKI index (an indicator of insulin sensitivity were measured. Weight changes were compared using the repeated measures and the independent t-test, and serum factors were compared using the independent t-test.   Results: There was a significant change in weight, glucose, insulin, and lipid profile except for HDL at the end of the study. The QUICKI index (0.34 ± 0.02 vs. 0.40 ± 0.01; p value <0.0001 suggested that insulin resistance had been created in the high-calorie diet group.   Conclusion: The present study demonstrates the ability to make diet-induced metabolic syndrome domestically.

  18. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  19. Small crumbled diet versus powdered diet in restricted feeding management of juvenile Nile tilapia - doi: 10.4025/actascianimsci.v35i2.16767

    Directory of Open Access Journals (Sweden)

    José Nacélio Oliveira-Segundo

    2013-03-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The pellet size of the diet can affect both fish growth performance and the water quality of the rearing units. The present work assessed the effects of feeding juvenile Nile tilapia, Oreochromis niloticus (L. a small crumbled diet (SCD; 0.8 mm on water quality and growth performance. Fish were reared for six weeks in twenty 250-L polyethylene outdoor tanks at a density of 10 juveniles tank-1 (40 fish m-3. There were two feeding rates (standard and restricted and two types of artificial fish diet (powdered and SCD. The standard feeding rates were reduced by 30% for restricted feeding. The concentrations of free CO2, reactive phosphorus, total ammonia nitrogen (TAN and nitrite were higher in the full-fed tanks relative to the restricted-fed tanks. In the standard feeding rate groups, those tanks fed SCD had lower TAN and nitrite concentrations than tanks fed a powdered diet. The final body weight and specific growth rate of fish fed a restricted SCD were higher than the full-fed tanks. The higher levels of food waste in the powdered-diet tanks lead to impairment of fish growth performance.  

  20. Effect of a Low Iodine Diet vs. Restricted Iodine Diet on Postsurgical Preparation for Radioiodine Ablation Therapy in Thyroid Carcinoma Patients.

    Science.gov (United States)

    Lim, Chi Young; Kim, Jung-Yeon; Yoon, Mi-Jin; Chang, Hang Seok; Park, Cheong Soo; Chung, Woong Youn

    2015-07-01

    The radioiodine ablation therapy is required for patients who underwent a total thyroidectomy. Through a comparative review of a low iodine diet (LID) and a restricted iodine diet (RID), the study aims to suggest guidelines that are suitable for the conditions of Korea. The study was conducted with 101 patients. With 24-hour urine samples from the patients after a 2-week restricted diet and after a 4-week restricted diet, the amount of iodine in the urine was estimated. The consumed radioiodine amounts for 2 hours and 24 hours were calculated. This study was conducted with 47 LID patients and 54 RID patients. The amounts of iodine in urine, the 2-week case and 4-week case for each group showed no significant differences. The amounts of iodine in urine between the two groups were both included in the range of the criteria for radioiodine ablation therapy. Also, 2 hours and 24 hours radioiodine consumption measured after 4-week restrictive diet did not show statistical differences between two groups. A 2-week RID can be considered as a type of radioiodine ablation therapy after patients undergo a total thyroidectomy.

  1. Effect of L-arginine supplementation on the hepatic phosphatidylinositol 3-kinase signaling pathway and gluconeogenic enzymes in early intrauterine growth-restricted rats.

    Science.gov (United States)

    Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao

    2017-09-01

    The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats.

  2. Reproductive parameters and oxidative stress status of male rats fed with low and high salt diet

    Directory of Open Access Journals (Sweden)

    Bolanle O Iranloye

    2013-01-01

    Full Text Available Background: Deficiency of minerals and micronutrients has been reported to impair the process of spermatogenesis. Historically, salt has been used by women on their husbands to increase their libido, however, the role of salt diet on sperm parameters are yet to be ascertained. AIM: The present study was designed to determine the effect of low and high salt diet on sperm parameters, oxidative status and reproductive hormone levels of male rats. Materials and Methods: A total of 18 rats were divided into three groups: Group I: (control received 0.3% salt diet, Group II: low salt (received 0.14% salt diet and Group III: high salt (received 8% salt diet. All animals were treated for 6 weeks; after which epididymal sperm parameters; oxidative stress markers (malondialdehyde, glutathione, catalase and superoxide dismutase in the testes and epididymal tissues, as well as follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone levels were determined. Results: The results showed decreased sperm count in the low salt diet rats while increased sperm count was observed in the high salt diet treated rats. Both low salt and high salt diet fed rats exhibited increased abnormal sperm cells and increased epididymal oxidative stress when compared with their respective control. FSH and testosterone levels were increased in the high salt fed rats while LH level was decreased when compared with the control values. Conclusion: This study suggests that both low and high salt diet play a negative role in the fertility of male rats.

  3. Effect of Cassava based diet on lipids concentration in albino rats ...

    African Journals Online (AJOL)

    Michael Horsfall

    albino rats fed crude oil contaminated diets by feeding diet contaminated with various concentrations of crude oil mixed with 20% gari to albino rats to determine .... phenol and peroxides (Allain et al 1974) . Ten microlitre (10 lμ ) of sample, control, ... concentration of standard. Low density lipoproteins (LDL and VLDL) and.

  4. Coconut oil on biochemical and morphological parameters in rats submitted to normolipidic and hyperlipidic diets

    OpenAIRE

    Schumacher,Bianca de Oliveira; Preuss,Edcarlos Maurino; Vargas,Carolina Galarza; Helbig,Elizabete

    2016-01-01

    ABSTRACT: This study aimed to evaluate the influence of replacing soybean oil with extra virgin coconut oil in normolipidic and hyperlipidic diets, on the lipid metabolism of Wistar rats. In the first stage of the experiment (30 days), 36 rats were divided into 2 groups and fed with a control or a hyperlipidic diet. Six animals from each group were then killed, and the remaining rats were redistributed into 4 new groups: 2 groups remained on the control and hyperlipidic diets, and in the diet...

  5. Telmisartan prevents high-fat diet-induced hypertension and decreases perirenal fat in rats

    OpenAIRE

    Wang, Yaping; Song, Yan; Suo, Meng; Jin, Xin; Tian, Gang

    2012-01-01

    We sought to investigate the effects of telmisartan on high-fat diet-induced hypertension and to explore the possible underlying mechanisms. Rats receiving high-fat diet were randomly divided into two groups, the telmisartan group (n = 9) and the high-fat diet group (n = 10). The control group consisted of age-matched rats on a regular diet (n = 10). At the end of the treatment, the body weight, blood pressure, insulin sensitivity and serum adiponectin levels of all rats were examined, and th...

  6. Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    Directory of Open Access Journals (Sweden)

    Xiao Xie

    2017-05-01

    Full Text Available Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR or dietary polyphenols such as green tea polyphenols (GTPs can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD, DR, high-fat diet (HFD, and three diets plus 200 mg/kg(bw/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA-treated human proximal tubular epithelial cells (HK-2, which was ameliorated by epigallocatechin-3-gallate (EGCG. Furthermore, GTPs (or EGCG elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression.

  7. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  8. Dietary Egg Yolk Supplementation Improves Low-Protein-Diet-Induced Fatty Liver in Rats.

    Science.gov (United States)

    Erami, Kazuo; Tanaka, Yasutake; Kawamura, Sayaka; Miyago, Motonori; Sawazaki, Ai; Imaizumi, Katsumi; Sato, Masao

    2016-01-01

    Egg yolk is an important source of nutrients and contains different bioactive substances. In the present study, we studied the benefits of egg yolk in preventing low-protein-diet-induced fatty liver in rats. Rats were fed the following diets, which were based on the AIN-76 formula, for 2 wk: an adequate-protein diet containing 20% casein (C), a low-protein diet containing 5% casein (LP-C), a low-protein diet supplemented with 12.5% egg yolk (LP-EY), and a low-protein diet supplemented with 4.1% egg yolk oil (LP-EYO). The low-protein diets were adjusted to contain 4.13% protein and 4.7% lipids. The LP-C diet resulted in a greater increase in the liver trigriceride (TG) and the vacuolation and a greater decrease in the serum TG and free fatty acid (FFA) than did the C diet. These deviations in the serum and liver TG, serum FFA levels and the liver histopathology were corrected in rats fed the LP-EY diet but not in those fed the LP-EYO diet. Compared to rats fed the LP-C diet, although the activities of lipogenesis-related enzymes (fatty acid synthase, glucose-6-phosphate dehydrogenase, and malic enzyme) decreased in rats fed both of the LP-EY and LP-EYO diets, the level of the microsomal TG transfer protein (MTP) increased only in rats fed the LP-EY diet. Collectively, these results suggest that dietary egg yolk supplementation decreases the LP diet-induced accumulation of TG in the liver by increasing transport of TG in the liver, and egg yolk oil alone is not sufficient enough to bring about these benefits.

  9. Rodent malaria in rats exacerbated by milk protein, attenuated by low-protein vegetable diet

    NARCIS (Netherlands)

    Doorne, C.W. van; Eling, W.M.C.; Luyken, R.

    1998-01-01

    Young male Wistar rats were fed a purified, vegetable, low-protein diet containing 6% protein from maize gluten and 2% from soy protein isolate, or comparable diets in which maize gluten was replaced partly or completely by the equivalent amount of a milk protein concentrate. Diets with adequate

  10. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet.

    Science.gov (United States)

    Moreno, Cesar L; Mobbs, Charles V

    2017-11-05

    Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms. Copyright © 2016. Published by Elsevier B.V.

  11. Improved leptin sensitivity as a potential candidate responsible for the spontaneous food restriction of the Lou/C rat.

    Directory of Open Access Journals (Sweden)

    Christelle Veyrat-Durebex

    Full Text Available The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3 ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3, known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF and thyrotropin-releasing hormone (TRH.

  12. Can overeating induce conditioned taste avoidance in previously food restricted rats?

    Science.gov (United States)

    Hertel, Amanda; Eikelboom, Roelof

    2010-03-30

    While feeding is rewarding, the feeling of satiation has been theorized to have a mixed affect. Using a food restriction model of overeating we examined whether bingeing was capable of supporting conditioned taste avoidance (CTA). Adult male Sprague-Dawley rats were maintained on either an ad lib (n=8) or restricted (50% of regular consumption; n=24) food access for 20 days. On Days 9, 14, and 19 all rats were given access to a novel saccharin solution in place of water, and two groups of food restricted rats were given access to either 100% of regular food consumption or ad lib food. Ad lib access in the restricted rats induced significant overeating on all three exposures. After all rats were returned to ad lib feeding, a 24h two-bottle saccharin/water choice test displayed significantly reduced saccharin consumption in the overeating rats, compared to those in the other 3 groups. To determine whether this avoidance was due to a learned association, a second experiment used a latent inhibition paradigm, familiarizing half the rats with the saccharin for 8 days prior to pairing it with overeating. Using the design of Experiment 1, with only the continuously ad lib and the restricted to ad lib feeding groups, it was found that the overeating-induced saccharin avoidance was attenuated by the pre-exposure. These results suggest that self-induced overeating is capable of supporting a learned avoidance of a novel solution suggestive of a conditioned satiety or taste avoidance. (c) 2009 Elsevier Inc. All rights reserved.

  13. Relationship between sleep pattern and efficacy of calorie-restricted Mediterranean diet in overweight/obese subjects.

    Science.gov (United States)

    Pagliai, Giuditta; Dinu, Monica; Casini, Alessandro; Sofi, Francesco

    2018-02-01

    The association between the sleep pattern and the effectiveness of a calorie-restricted Mediterranean diet in people with overweight/obesity has been investigated in this study. Four hundred and three subjects were provided with a calorie-restricted Mediterranean diet and followed for 9 months. Personal information, including sleep pattern, was obtained at the baseline. Body weight and composition were measured every 3 months. Poor sleepers reported to have significantly (p sleeping 6-8 or >8 h/day had an increased probability of losing fat mass than women who reported sleeping sleep pattern is necessary to maintain body weight and optimal body composition.

  14. Effect of exercise and feed restriction on body weight and lipogenesis in the male Wistar rat

    International Nuclear Information System (INIS)

    Dellwo, M.; Wright, D.L.; Beauchene, R.E.

    1986-01-01

    Male Wistar rats were swum for either 1.5 or 3.0 hours per day from 6 through 32 weeks of age. At 32 weeks of age, the rats were injected intraperitoneally with 3 H 2 O and sacrificed 1 hour later. Liver activities of glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (MF) were also measured. Feed intakes of exercised rats were slightly higher, whereas their body weights were slightly lower when compared to those of non-exercised ad libitum-fed rats (controls). Liver ME and G6PD activities of exercised rats were 30% and 50% higher, respectively, than those of control rats. Non-exercised rats, whose body weights were controlled by feed restriction to match those of exercised rats, also showed increases in liver ME and G6PD activities (30%). The relationship between rates of incorporation of 3 H 2 O into liver fat and activities of liver ME and G6PD as affected by exercise and feed restriction will be discussed

  15. Effect of exercise and feed restriction on body weight and lipogenesis in the male Wistar rat

    Energy Technology Data Exchange (ETDEWEB)

    Dellwo, M.; Wright, D.L.; Beauchene, R.E.

    1986-03-01

    Male Wistar rats were swum for either 1.5 or 3.0 hours per day from 6 through 32 weeks of age. At 32 weeks of age, the rats were injected intraperitoneally with /sup 3/H/sub 2/O and sacrificed 1 hour later. Liver activities of glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (MF) were also measured. Feed intakes of exercised rats were slightly higher, whereas their body weights were slightly lower when compared to those of non-exercised ad libitum-fed rats (controls). Liver ME and G6PD activities of exercised rats were 30% and 50% higher, respectively, than those of control rats. Non-exercised rats, whose body weights were controlled by feed restriction to match those of exercised rats, also showed increases in liver ME and G6PD activities (30%). The relationship between rates of incorporation of /sup 3/H/sub 2/O into liver fat and activities of liver ME and G6PD as affected by exercise and feed restriction will be discussed.

  16. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats.

    Science.gov (United States)

    Attakpa, E S; Bertin, G A; Chabi, N W; Ategbo, J-M; Seri, B; Khan, N A

    2017-11-24

    Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.

  17. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats.

    Science.gov (United States)

    Sen, Sarbattama; Simmons, Rebecca A

    2010-12-01

    Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS; Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring.

  18. Distinct Effects of Calorie Restriction and Resveratrol on Diet-Induced Obesity and Fatty Liver Formation

    Directory of Open Access Journals (Sweden)

    Eveliina Tauriainen

    2011-01-01

    Full Text Available The potential of resveratrol to mimic beneficial effects of calorie restriction (CR was investigated. We compared the effects of both CR (70% of ad libitum energy intake or resveratrol (2 g/kg or 4 g/kg food on high-fat diet-induced obesity and fatty liver formation in C57Bl/6J mice, and we examined their effects on calorimetry, metabolic performance, and the expressions of inflammatory genes and SIRT proteins. We found that resveratrol with 4 g/kg dose partially prevented hepatic steatosis and hepatocyte ballooning and induced skeletal muscle SIRT1 and SIRT4 expression while other examined parameter were unaffected by resveratrol. In contrast, CR provided superior protection against diet-induced obesity and fatty liver formation as compared to resveratrol, and the effects were associated with increased physical activity and ameliorated adipose tissue inflammation. CR increased expressions of SIRT3 in metabolically important tissues, suggesting that the beneficial effects of CR are mediated, at least in part, via SIRT3-dependent pathways.

  19. Energy expenditure of rats subjected to long-term food restriction.

    Science.gov (United States)

    Santos-Pinto, F N; Luz, J; Griggio, M A

    2001-03-01

    Food restriction, even when expressed per unit of metabolic mass, leads to energy conservation as seen by decreased oxygen consumption. The objective of the present study was to verify whether the energy conservation mechanism reduces energy expenditure for as long as food restriction lasts or whether a return to basal level may occur without realimentation, mainly in mildly food-restricted rats. Wistar rats were brought to the laboratory on weaning. They were then assigned to control group that received ad libitum food intake, R10 and R20 groups that received 90 and 80%, respectively, of the food eaten by control group and RM group that received an amount of food enough only to keep body weight. The food restriction period lasted for 3 months and was followed by another month during which all groups received ad libitum food intake. The results showed that even in animals subjected to mild food restriction (10%) there was a sustained decrease in oxygen consumption that lasted until refeeding of the animals. The results led to the conclusion that the energy conservation mechanism is active from little food restriction until more stronger levels of restriction, in a proportional manner, and the decreased energy expenditure is maintained during the whole food restriction period.

  20. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    OpenAIRE

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Abstract Background: The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives: The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods: Pregnant Wistar rats were fed...

  1. Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators.

    Science.gov (United States)

    Shiraev, T; Chen, H; Morris, M J

    2009-07-01

    The rapid rise in obesity has been linked to altered food consumption patterns. There is increasing evidence that, in addition to total energy intake, the macronutrient composition of the diet may influence the development of obesity. The present study aimed to examine the impact of high dietary fat content, under both isocaloric and hypercaloric conditions, compared with a low fat diet, on adiposity, glucose and lipid metabolism, and brain appetite regulators in rats. Male Sprague-Dawley rats were exposed to one of three diets: control (14% fat), ad lib high-fat palatable (HFD, 35% fat) or high-fat palatable restricted (HFD-R, matched to the energy intake of control) and were killed in the fasting state 11 weeks later. Body weight was increased by 28% in unrestricted HFD fed rats, with an almost tripling of caloric intake and fat mass (P < 0.001) and double the plasma triglycerides of controls. Glucose intolerance and increased insulin levels were observed. HFD-R animals calorie matched to control had double their fat mass, plasma insulin and triglycerides (P < 0.05). Only ad lib consumption of the HFD increased the hypothalamic mRNA expression of the appetite-regulating peptides, neuropeptide Y and pro-opiomelanocortin. Although restricted consumption of palatable HFD had no significant impact on hypothalamic appetite regulators or body weight, it increased adiposity and circulating triglycerides, suggesting that the proportion of dietary fat, independent of caloric intake, affects fat deposition and the metabolic profile.

  2. The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins

    Directory of Open Access Journals (Sweden)

    Cornock Ruth

    2010-08-01

    Full Text Available Abstract Background Maternal protein restriction during rat pregnancy is known to impact upon fetal development, growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics and plasma volume during pregnancy, in the context of both normal and reduced plasma volume expansion. The study focused on expression of renal angiotensin receptors (ATR and vasopressin-related aquaporins (AQP, hypothesising that an alteration in the balance of these proteins would be associated with pregnancy per se and with compromised plasma volume expansion in rats fed a low-protein diet. Methods Female Wistar rats were mated and fed a control (18% casein or low-protein (9% casein diet during pregnancy. Animals were anaesthetised on days 5, 10, 15 and 20 of gestation (n = 8/group/time-point for determination of plasma volume using Evans Blue dye, prior to euthanasia and collection of tissues. Expression of the ATR subtypes and AQP2, 3 and 4 were assessed in maternal kidneys by PCR and western blotting. 24 non-pregnant Wistar rats underwent the same procedure at defined points of the oestrous cycle. Results As expected, pregnancy was associated with an increase in blood volume and haemodilution impacted upon red blood cell counts and haemoglobin concentrations. Expression of angiotensin II receptors and aquaporins 2, 3 and 4 was stable across all stages of the oestrus cycle. Interesting patterns of intra-renal protein expression were observed in response to pregnancy, including a significant down-regulation of AQP2. In contrast to previous literature and despite an apparent delay in blood volume expansion in low-protein fed rats, blood volume did not differ significantly between groups of pregnant animals. However, a significant down-regulation of AT2R protein expression was observed in low-protein fed animals

  3. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats.

    Science.gov (United States)

    Goyarzu, Pilar; Malin, David H; Lau, Francis C; Taglialatela, Giulio; Moon, William D; Jennings, Ryan; Moy, Edward; Moy, Deborah; Lippold, Stephen; Shukitt-Hale, Barbara; Joseph, James A

    2004-04-01

    It has been reported that an antioxidant-rich, blueberry-supplemented rat diet may retard brain aging in the rat. The present study determined whether such supplementation could prevent impaired object recognition memory and elevated levels of the oxidative stress-responsive protein, nuclear factor-kappa B (NF-kappaB) in aged Fischer-344 rats. Twelve aged rats had been fed a 2% blueberry supplemented diet for 4 months prior to testing. Eleven aged rats and twelve young rats had been fed a control diet. The rats were tested for object recognition memory on the visual paired comparison task. With a 1-h delay between training and testing, aged control diet rats performed no better than chance. Young rats and aged blueberry diet rats performed similarly and significantly better than the aged control diet group. Levels of NF-kappaB in five brain regions of the above subjects were determined by western blotting assays. In four regions, aged control diet rats had significantly higher average NF-kappaB levels than young animals on the control diet. In four regions, aged blueberry diet rats had significantly lower levels of NF-kappaB than aged control diet rats. Normalized NF-kappaB levels (averaged across regions and in several individual regions) correlated negatively and significantly with the object memory scores.

  4. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability.

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-06-01

    To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Adolescent and adult rats. Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats.

  5. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    Science.gov (United States)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P rats were twice that of R rats. S rats fed 2% salt had higher plasma 1,25-dihydroxyvitamin D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P rats was three times that of the R rats, suggesting kidney damage in the S rats. Low plasma 25-OHD and 24,25-dihydroxyvitamin D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  6. Effects of dietary education, followed by a tailored fructose-restricted diet in adults with fructose malabsorption.

    Science.gov (United States)

    Bonfrate, Leonilde; Krawczyk, Marcin; Lembo, Antony; Grattagliano, Ignazio; Lammert, Frank; Portincasa, Piero

    2015-07-01

    Fructose is absorbed by GLUT transporters in the small intestine. If this process is inadequate, abdominal symptoms because of fructose intolerance may arise. The effect of a tailored fructose-restricted diet on gastrointestinal complaints was assessed in patients with fructose intolerance. Following an abnormal fructose breath test (50 g), 107 patients (64 also with lactose intolerance) entered three study periods: weeks 0-32 (free diet), weeks 32-36 (progressive increasing amount of fructose up to quantity inducing symptoms, 'trigger dose'), and weeks 36-48 (tailored fructose-restricted diet according to the 'trigger dose'). A subgroup of 15 patients underwent additional fructose breath tests (35, 25 g) to compare three different doses. At baseline, the most frequent symptoms were bloating and abdominal pain, and were more severe with combined fructose and lactose intolerance. During the free diet, patients reported eliminating (48%) or reducing (52%) fructose-containing foods, with a significant improvement in symptoms (abdominal pain from 79.7 ± 1.3 to 19.3 ± 1.8 mm; bloating from 83.1 ± 1.3 to 19.4 ± 1.8 mm; number of evacuations/day from 3.9 ± 0.16 to 1.1 ± 0.04; Bristol score from 5.1 ± 0.14 to 3.8 ± 0.1, P fructose-restricted diet, the consistent improvement in symptoms persisted and was similar to the improvement on free diet (abdominal pain 23.6 ± 1.9 mm; bloating 19.4 ± 1.8 mm; number of evacuations/day 1.7 ± 0.07; Bristol score 3.5 ± 0.06, Pfructose was observed on symptoms during the fructose breath test. In our setting, individuals with fructose intolerance show an inappropriate dietary self-management. By contrast, a tailored fructose-restricted diet improves gastrointestinal symptoms without senseless food deprivation.

  7. Kidney gene expression analysis in a rat model of intrauterine growth restriction reveals massive alterations of coagulation genes.

    Science.gov (United States)

    Buffat, Christophe; Boubred, Farid; Mondon, Françoise; Chelbi, Sonia T; Feuerstein, Jean-Marc; Lelièvre-Pégorier, Martine; Vaiman, Daniel; Simeoni, Umberto

    2007-11-01

    In this study, low birth weight was induced in rats by feeding the dams with a low-protein diet during pregnancy. Kidneys from the fetuses at the end of gestation were collected and showed a reduction in overall and relative weight, in parallel with other tissues (heart and liver). This reduction was associated with a reduction in nephrons number. To better understand the molecular basis of this observation, a transcriptome analysis contrasting kidneys from control and protein-deprived rats was performed, using a platform based upon long isothermic oligonucleotides, strengthening the robustness of the results. We could identify over 1800 transcripts modified more than twice (772 induced and 1040 repressed). Genes of either category were automatically classified according to functional criteria, making it possible to bring to light a large cluster of genes involved in coagulation and complement cascades. The promoters of the most induced and most repressed genes were contrasted for their composition in putative transcription factor binding sites, suggesting an overrepresentation of the AP1R binding site, together with the transcription induction of factors actually binding to this site in the set of induced genes. The induction of coagulation cascades in the kidney of low-birth-weight rats provides a putative rationale for explaining thrombo-endothelial disorders also observed in intrauterine growth-restricted human newborns. These alterations in the kidneys have been reported as a probable cause for cardiovascular diseases in the adult.

  8. Similar metabolic responses to calorie restriction in lean and obese Zucker rats.

    Science.gov (United States)

    Chiba, Takuya; Komatsu, Toshimitsu; Nakayama, Masahiko; Adachi, Toshiyuki; Tamashiro, Yukari; Hayashi, Hiroko; Yamaza, Haruyoshi; Higami, Yoshikazu; Shimokawa, Isao

    2009-10-15

    Calorie restriction (CR), which is thought to be largely dependent on the neuroendocrine system modulated by insulin/insulin-like growth factor-I (IGF-I) and leptin signaling, decreases morbidity and increases lifespan in many organisms. To elucidate whether insulin and leptin sensitivities are indispensable in the metabolic adaptation to CR, we investigated the effects of CR on obese Zucker (fa/fa) rats and lean control (+/+) rats. CR did not fully improve insulin resistance in (fa/fa) rats. Nonetheless, CR induced neuropeptide Y (NPY) expression in the hypothalamic arcuate nucleus and metabolism related gene expression changes in the liver in (fa/fa) rats and (+/+) rats. Up-regulation of NPY augmented plasma corticosterone levels and suppressed pituitary growth hormone (GH) expression, thereby modulating adipocytokine production to induce tissue-specific insulin sensitivity. Thus, central NPY activation via peripheral signaling might play a crucial role in the effects of CR, even in insulin resistant and leptin receptor deficient conditions.

  9. Altered lipid metabolism in rat offspring of dams fed a low-protein diet containing soy protein isolate.

    Science.gov (United States)

    Yoon, Mi; Won, Sae Bom; Kwon, Young Hye

    2017-04-01

    Substantial studies have reported that maternal protein restriction may induce later development of cardiovascular disease in offspring by impairing antioxidant system and lipid metabolism. Because a unique amino acid composition of soy protein isolate has been shown to provide health benefits, including hypolipidemic effects, we investigated effects of maternal low-protein diet composed of low-isoflavone soy protein isolate (SPI) on oxidative stress and lipid metabolism in offspring. Sprague-Dawley dams were fed 20% or 10% SPI diet throughout pregnancy and lactation. On postnatal day 21, male offspring and their dams were studied. Maternal consumption of low-protein diet composed of SPI did not induce hepatic oxidative stress in offspring. Although serum triacylglycerol and cholesterol levels in dams were not different between groups, serum triacylglycerol levels were lower in offspring of dams fed a 10% SPI diet (10% SPI group) compared to offspring of dams fed a 20% SPI diet (20% SPI group). Maternal protein restriction also reduced serum HDL/total cholesterol levels. The mRNA levels of apolipoprotein A1, which is required for HDL formation, were lower in 10% SPI group compared to 20% SPI group and were positively correlated with serum HDL-cholesterol levels. Although maternal consumption of low-protein diet containing SPI did not induce oxidative stress and hypertriglyceridemia, the present study indicates that it may disturb cholesterol metabolism of rat offspring on postnatal day 21. Further studies are warranted to investigate the effect of maternal diet composed of soy protein isolate on later development of cardiovascular disease in offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats.

    Science.gov (United States)

    Morita, Ippei; Tanimoto, Keiichi; Akiyama, Nobuteru; Naya, Noriyuki; Fujieda, Kumiko; Iwasaki, Takanori; Yukioka, Hideo

    2017-04-01

    Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats. Copyright © 2017 the American Physiological Society.

  11. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  12. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  13. Hematology and plasma biochemistry in rats fed with diets enriched with fatty fishes from Amazon region

    Directory of Open Access Journals (Sweden)

    Francisca das Chagas do Amaral Souza

    2014-10-01

    Full Text Available OBJECTIVE: Rats fed diets enriched with fatty fish from the Amazon region had Hematology and plasma biochemistry analyzed. METHODS: Forty Wistar rats were divided into four groups: control group fed a standard diet; mapará group fed a diet enriched with Hypophthalmus edentatus; matrinxã group fed a diet enriched with Brycon spp.; and tambaqui group fed a diet enriched with Colossoma macropomum. After thirty days the rats had an red blood count and plasma biochemistry. RESULTS: Hematocrit and hemoglobin levels were higher in rats fed tambaqui and matrinxã than in those fed the standard diet of mapará. However, mapará increased cholesterol, especially low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. All fish-enriched diets reduced triacylglycerols. CONCLUSION: Diets enriched with fatty fish from the Amazon region reduce triacylglycerol and increase high-density lipoprotein cholesterol, especially the diet enriched with tambaqui. Tambaqui and matrinxã affected hematocrit and hemoglobin levels, but not mapará. Further research is needed to determine the benefits of diets enriched with fatty fish from the Amazon region.

  14. Impact of a moderately energy-restricted diet on energy metabolism and body composition in non-obese men

    NARCIS (Netherlands)

    Velthuis-te Wierik, E.J.M.; Westerterp, K.R.; Berg, H. van den

    1995-01-01

    Objective: Since little information is available on the capacity of the non-obese to adapt to a moderate decrease in energy intake, the effect of a 10-week moderately energy-restricted diet (ER) on energy expenditure and body composition was studied. Design: A controlled intervention study. After a

  15. Chronic maternal vitamin B12 restriction induced changes in body composition & glucose metabolism in the Wistar rat offspring are partly correctable by rehabilitation.

    Directory of Open Access Journals (Sweden)

    Kalle Anand Kumar

    Full Text Available Maternal under-nutrition increases the risk of developing metabolic diseases. We studied the effects of chronic maternal dietary vitamin B12 restriction on lean body mass (LBM, fat free mass (FFM, muscle function, glucose tolerance and metabolism in Wistar rat offspring. Prevention/reversibility of changes by rehabilitating restricted mothers from conception or parturition and their offspring from weaning was assessed. Female weaning Wistar rats (n = 30 were fed ad libitum for 12 weeks, a control diet (n = 6 or the same with 40% restriction of vitamin B12 (B12R (n = 24; after confirming deficiency, were mated with control males. Six each of pregnant B12R dams were rehabilitated from conception and parturition and their offspring weaned to control diet. While offspring of six B12R dams were weaned to control diet, those of the remaining six B12R dams continued on B12R diet. Biochemical parameters and body composition were determined in dams before mating and in male offspring at 3, 6, 9 and 12 months of their age. Dietary vitamin B12 restriction increased body weight but decreased LBM% and FFM% but not the percent of tissue associated fat (TAF% in dams. Maternal B12R decreased LBM% and FFM% in the male offspring, but their TAF%, basal and insulin stimulated glucose uptake by diaphragm were unaltered. At 12 months age, B12R offspring had higher (than controls fasting plasma glucose, insulin, HOMA-IR and impaired glucose tolerance. Their hepatic gluconeogenic enzyme activities were increased. B12R offspring had increased oxidative stress and decreased antioxidant status. Changes in body composition, glucose metabolism and stress were reversed by rehabilitating B12R dams from conception, whereas rehabilitation from parturition and weaning corrected them partially, highlighting the importance of vitamin B12 during pregnancy and lactation on growth, muscle development, glucose tolerance and metabolism in the offspring.

  16. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats

    Directory of Open Access Journals (Sweden)

    Shanshan Zhan

    2016-12-01

    Full Text Available Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle.

  17. Sleep restriction in rats leads to changes in operant behaviour indicative of reduced prefrontal cortex function

    NARCIS (Netherlands)

    Kamphuis, Jeanine; Baichel, Swetlana; Lancel, Marike; De Boer, Sietse F.; Koolhaas, Jaap M.; Meerlo, Peter

    Sleep deprivation has profound effects on cognitive performance, and some of these effects may be mediated by impaired prefrontal cortex function. In search of an animal model to investigate this relationship we studied the influence of restricted sleep on operant conditioning in rats, particularly

  18. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    Science.gov (United States)

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  19. PPARγ agonists diminish serum VEGF elevation in diet-induced insulin resistant SD rats and ZDF rats

    International Nuclear Information System (INIS)

    Yang Baichun; Lin Peiyuan; Carrick, Kevin M.; McNulty, Judi A.; Clifton, Lisa G.; Winegar, Deborah A.; Strum, Jay C.; Stimpson, Stephen A.; Pahel, Greg L.

    2005-01-01

    We investigated the effect of peroxisome proliferator-activated receptor gamma (PPARγ) agonists on serum vascular endothelial growth factor (VEGF) in diet-induced insulin resistant SD rats and ZDF rats. SD rats fed a high fat/sucrose diet showed increases in serum insulin and VEGF (both p < 0.01). Treatment with a PPARγ agonist GI262570 normalized the diet-elevated insulin and VEGF (both p < 0.01). There was a positive correlation between serum insulin and VEGF (p < 0.05) in SD rats. ZDF rats had higher serum glucose, insulin, and VEGF than Zucker lean rats (all p < 0.01). Treatment of ZDF rats with PPARγ agonist pioglitazone decreased serum glucose and VEGF (both p < 0.01). There was a positive correlation between glucose and VEGF in ZDF rats (p < 0.05). In 3T3-L1 adipocytes, GI262570 did not affect insulin-stimulated VEGF secretion. These studies demonstrated that hyperinsulinemia in SD rats and hyperglycemia in ZDF rats were associated with increased serum VEGF; PPARγ agonists normalized serum insulin, glucose, and VEGF, but did not affect VEGF secretion in vitro

  20. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats.

    Science.gov (United States)

    de Vries, E M; van Beeren, H C; Ackermans, M T; Kalsbeek, A; Fliers, E; Boelen, A

    2015-01-01

    A variety of illnesses that leads to profound changes in the hypothalamus-pituitary-thyroid (HPT) are axis collectively known as the nonthyroidal illness syndrome (NTIS). NTIS is characterized by decreased tri-iodothyronine (T3) and thyroxine (T4) and inappropriately low TSH serum concentrations, as well as altered hepatic thyroid hormone (TH) metabolism. Spontaneous caloric restriction often occurs during illness and may contribute to NTIS, but it is currently unknown to what extent. The role of diminished food intake is often studied using experimental fasting models, but partial food restriction might be a more physiologically relevant model. In this comparative study, we characterized hepatic TH metabolism in two models for caloric restriction: 36 h of complete fasting and 21 days of 50% food restriction. Both fasting and food restriction decreased serum T4 concentration, while after 36-h fasting serum T3 also decreased. Fasting decreased hepatic T3 but not T4 concentrations, while food restriction decreased both hepatic T3 and T4 concentrations. Fasting and food restriction both induced an upregulation of liver D3 expression and activity, D1 was not affected. A differential effect was seen in Mct10 mRNA expression, which was upregulated in the fasted rats but not in food-restricted rats. Other metabolic pathways of TH, such as sulfation and UDP-glucuronidation, were also differentially affected. The changes in hepatic TH concentrations were reflected by the expression of T3-responsive genes Fas and Spot14 only in the 36-h fasted rats. In conclusion, limited food intake induced marked changes in hepatic TH metabolism, which are likely to contribute to the changes observed during NTIS. © 2015 Society for Endocrinology.

  1. Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles.

    Science.gov (United States)

    Sharma, Naveen; Sequea, Donel A; Castorena, Carlos M; Arias, Edward B; Qi, Nathan R; Cartee, Gregory D

    2014-01-01

    Calorie restriction (CR) (consuming ~60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344 x Brown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (~140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [(14)C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160 kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (Pmuscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (Pmuscles without a CR-related increase in glucose uptake, only the soleus had significant (Pmuscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.

  2. Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles

    Science.gov (United States)

    Sharma, Naveen; Sequea, Donel A.; Castorena, Carlos M.; Arias, Edward B.; Qi, Nathan R.; Cartee, Gregory D.

    2013-01-01

    Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [14C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (Pmuscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (Pmuscles without a CR-related increase in glucose uptake, only the soleus had significant (Pmuscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo. PMID:23755179

  3. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

    Science.gov (United States)

    Hattori, Satoshi; Park, Jong-Hoon; Agata, Umon; Oda, Masaya; Higano, Michito; Aikawa, Yuki; Akimoto, Takayuki; Nabekura, Yoshiharu; Yamato, Hideyuki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

  4. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring.

    Science.gov (United States)

    de Oliveira, Júlio Cezar; Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; Mathias, Paulo Cezar de Freitas; de Moura, Egberto Gaspar

    2016-05-01

    Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol.

  5. Diet supplementation with acai (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats.

    OpenAIRE

    Souza, Melina Oliveira de; Silva, Maísa; Silva, Marcelo Eustáquio; Oliveira, Riva de Paula; Pedrosa, Maria Lúcia

    2010-01-01

    Objective: We investigated the antioxidant potential and hypocholesterolemic effects of acai (Euterpe oleracea Mart.) pulp ingestion in rats fed a standard or hypercholesterolemic diet. Methods: Female Fischer rats were fed a standard AIN-93 M diet (control) or a hypercholesterolemic diet that contained 25% soy oil and 1% cholesterol. The test diet was supplemented with 2% acai pulp (dry wt/wt) for control (group CA) and hypercholesterolemic rats (group HA) for 6 wk. At the end of the experim...

  6. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  7. Effect of Restriction Vegan Diet's on Muscle Mass, Oxidative Status and Myocytes Differentiation: a Pilot Study.

    Science.gov (United States)

    Vanacore, D; Messina, G; Lama, S; Bitti, G; Ambrosio, P; Tenore, G C; Messina, A; Monda, V; Zappavigna, S; Boccellino, M; Novellino, E; Monda, M; Stiuso, P

    2018-01-10

    This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians and vegans) with similar age, weight and BMI and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H 2 O 2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO 2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian and omnivore sera on the morphological changes induced by H 2 O 2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Dell'Ova Carly

    2006-05-01

    Full Text Available Abstract Background Increasing evidence supports carbohydrate restricted diets (CRD for weight loss and improvement in traditional markers for cardiovascular disease (CVD; less is known regarding emerging CVD risk factors. We previously reported that a weight loss intervention based on a CRD (% carbohydrate:fat:protein = 13:60:27 led to a mean weight loss of 7.5 kg and a 20% reduction of abdominal fat in 29 overweight men. This group showed reduction in plasma LDL-cholesterol and triglycerides and elevations in HDL-cholesterol as well as reductions in large and medium VLDL particles and increases in LDL particle size. In this study we report on the effect of this intervention with and without fiber supplementation on plasma homocysteine, lipoprotein (a [Lp(a], C-reactive protein (CRP, interleukin-6 (IL-6, and tumor necrosis factor alpha (TNF-α. Methods Twenty nine overweight men [body mass index (BMI 25–35 kg/m2] aged 20–69 years consumed an ad libitum CRD (% carbohydrate:fat:protein = 13:60:27 including a standard multivitamin every other day for 12 wk. Subjects were matched by age and BMI and randomly assigned to consume 3 g/d of either a soluble fiber supplement (n = 14 or placebo (n = 15. Results There were no group or interaction (fiber × time main effects, but significant time effects were observed for several variables. Energy intake was spontaneously reduced (-30.5%. This was accompanied by an increase in protein intake (96.2 ± 29.8 g/d to 107.3 ± 29.7 g/d and methionine intake (2.25 ± 0.7 g/d, to 2.71 ± 0.78 g/d; P P P P Conclusion A diet based on restricting carbohydrates leads to spontaneous caloric reduction and subsequent improvement in emerging markers of CVD in overweight/obese men who are otherwise healthy.

  9. Diets containing corn oil, coconut oil and cholesterol alter ventricular hypertrophy, dilatation and function in hearts of rats fed copper-deficient diets.

    Science.gov (United States)

    Jenkins, J E; Medeiros, D M

    1993-06-01

    Cardiac hypertrophy and function were evaluated in rats fed diets containing deficient, marginal or adequate levels of copper. The fat concentration of the diets was either 10 g/100 g corn oil, 10 g/100 g coconut oil or 10 g/100 g coconut oil + 1 g/100 g added cholesterol. Left ventricular (LV) wall thickening of hearts in rats fed copper-deficient diets was characterized by greater (P oil. Rats fed the copper-deficient diet with coconut oil + cholesterol had LV chamber volumes that were twofold larger than those of rats fed the copper-deficient diet with coconut oil or corn oil. Copper deficiency reduced LV chamber volume only in rats fed coconut oil + cholesterol. Cardiac LV end diastolic pressure in rats fed copper-deficient diets was twofold larger than in copper-adequate and copper-marginal groups fed corn oil or coconut oil. Hearts from rats fed the copper-deficient diet with corn oil compared with those from rats fed the copper-deficient diet with coconut oil + cholesterol had greater right ventricular (RV) and LV end diastolic pressures, LV pressures and LV and RV maximal rates of positive pressure development. Our data suggest that cardiac adaptations in rats fed copper-deficient diets are influenced by dietary fat type: 1) hearts of rats fed the copper-deficient diet with corn oil were concentrically hypertrophied, whereas cardiac contractility was maintained in the presence of high preload; 2) preload and contractility in hearts of coconut oil-fed rats was greater than cardiac response to cholesterol addition to the coconut oil diet; 3) hearts in copper-deficient rats fed coconut oil + cholesterol exhibited eccentric hypertrophy and ventricular dysfunction.

  10. Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a Maternal Low-Protein Diet

    Directory of Open Access Journals (Sweden)

    Sarah Engeham

    2012-01-01

    Full Text Available Maternal protein restriction in rat pregnancy is associated with impaired renal development and age-related loss of renal function in the resulting offspring. Pregnant rats were fed either control or low-protein (LP diets, and kidneys from their male offspring were collected at 4, 13, or 16 weeks of age. Mitochondrial state 3 and state 4 respiratory rates were decreased by a third in the LP exposed adults. The reduction in mitochondrial function was not explained by complex IV deficiency or altered expression of the complex I subunits that are typically associated with mitochondrial dysfunction. Similarly, there was no evidence that LP-exposure resulted in greater oxidative damage to the kidney, differential expression of ATP synthetase β-subunit, and ATP-ADP translocase 1. mRNA expression of uncoupling protein 2 was increased in adult rats exposed to LP in utero, but there was no evidence of differential expression at the protein level. Exposure to maternal undernutrition is associated with a decrease in mitochondrial respiration in kidneys of adult rats. In the absence of gross disturbances in respiratory chain protein expression, programming of coupling efficiency may explain the long-term impact of the maternal diet.

  11. Leptin signal transduction underlies the differential metabolic response of LEW and WKY rats to cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, N; González-Abuín, N; Ardévol, A; Pinent, M; Petretto, E; Behmoaras, J; Blay, M

    2016-01-01

    Although the effect of genetic background on obesity-related phenotypes is well established, the main objective of this study is to determine the phenotypic responses to cafeteria diet (CAF) of two genetically distinct inbred rat strains and give insight into the molecular mechanisms that might be underlying. Lewis (LEW) and Wistar-Kyoto (WKY) rats were fed with either a standard or a CAF diet. The effects of the diet and the strain in the body weight gain, food intake, respiratory quotient, biochemical parameters in plasma as well as in the expression of genes that regulate leptin signalling were determined. Whereas CAF diet promoted weight gain in LEW and WKY rats, as consequence of increased energy intake, metabolic management of this energy surplus was significantly affected by genetic background. LEW and WKY showed a different metabolic profile, LEW rats showed hyperglycaemia, hypertriglyceridemia and high FFA levels, ketogenesis, high adiposity index and inflammation, but WKY did not. Leptin signalling, and specifically the LepRb-mediated regulation of STAT3 activation and Socs3 gene expression in the hypothalamus were inversely modulated by the CAF diet in LEW (upregulated) and WKY rats (downregulated). In the present study, we show evidence of gene-environment interactions in obesity exerted by differential phenotypic responses to CAF diet between LEW and WKY rats. Specifically, we found the leptin-signalling pathway as a divergent point between the strain-specific adaptations to diet. © 2016 Society for Endocrinology.

  12. Fresh garlic amelioration of high-fat-diet induced fatty liver in albino rats.

    Science.gov (United States)

    Qamar, Aisha; Siddiqui, Asma; Kumar, Hemant

    2015-10-01

    To observe the effect of fresh garlic on high-fat-diet-induced fatty liver changes. The experimental study was conducted at the Jinnah Postgraduate Medical Centre, Karachi, from October to November 2008, and comprised adult albino rats weighing 200-240g each. The rats were divided into 5 groups according to dietary regimen for eight weeks each. Group A received control diet; Group B received high saturated fat diet; Group C received high unsaturated fat diet; Group D received high saturated fat diet with fresh garlic; and Group E received high unsaturated fat diet with garlic for 8 weeks. Liver tissue slides were stained with Oil red-O and haematoxylin and Periodic acid-Schiff-haematoxylin. The 50 rats in the study were divided into five groups of 10(20%) each. There was marked deposition of fat in hepatocyte along with marked decrease in glycogen content in liver of rats in Groups B and C, with Group B showing more marked changes. The changes in fat and glycogen content were reversed and ameliorated close to Group A in rats belonging to Groups D and E. Fresh garlic minimised the high-fat-diet-induced fatty liver changes in rats.

  13. Effect of a low-protein diet supplemented with ketoacids on skeletal muscle atrophy and autophagy in rats with type 2 diabetic nephropathy.

    Science.gov (United States)

    Huang, Juan; Wang, Jialin; Gu, Lijie; Bao, Jinfang; Yin, Jun; Tang, Zhihuan; Wang, Ling; Yuan, Weijie

    2013-01-01

    A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.

  14. Relatively high-protein or 'low-carb' energy-restricted diets for body weight loss and body weight maintenance?

    Science.gov (United States)

    Soenen, Stijn; Bonomi, Alberto G; Lemmens, Sofie G T; Scholte, Jolande; Thijssen, Myriam A M A; van Berkum, Frank; Westerterp-Plantenga, Margriet S

    2012-10-10

    'Low-carb' diets have been suggested to be effective in body weight (BW) management. However, these diets are relatively high in protein as well. To unravel whether body-weight loss and weight-maintenance depends on the high-protein or the 'low-carb' component of the diet. Body-weight (BW), fat mass (FM), blood- and urine-parameters of 132 participants (age=50 ± 12 yr; BW=107 ± 20 kg; BMI=37 ± 6 kg/m(2); FM=47.5 ± 11.9 kg) were compared after 3 and 12 months between four energy-restricted diets with 33% of energy requirement for the first 3 months, and 67% for the last 9 months: normal-protein normal-carbohydrate (NPNC), normal-protein low-carbohydrate (NPLC); high-protein normal-carbohydrate (HPNC), high-protein low-carbohydrate (HPLC); 24h N-analyses confirmed daily protein intakes for the normal-protein diets of 0.7 ± 0.1 and for the high-protein diets of 1.1 ± 0.2g/kg BW (pweight-loss. Body-weight loss and weight-maintenance depends on the high-protein, but not on the 'low-carb' component of the diet, while it is unrelated to the concomitant fat-content of the diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Coconut oil on biochemical and morphological parameters in rats submitted to normolipidic and hyperlipidic diets

    Directory of Open Access Journals (Sweden)

    Bianca de Oliveira Schumacher

    Full Text Available ABSTRACT: This study aimed to evaluate the influence of replacing soybean oil with extra virgin coconut oil in normolipidic and hyperlipidic diets, on the lipid metabolism of Wistar rats. In the first stage of the experiment (30 days, 36 rats were divided into 2 groups and fed with a control or a hyperlipidic diet. Six animals from each group were then killed, and the remaining rats were redistributed into 4 new groups: 2 groups remained on the control and hyperlipidic diets, and in the diets of the other 2 groups, the soybean oil was replaced with coconut oil (30 days. At the end of the assay, the biological models were decapitated for blood collection and removal of organs and peritoneal fat. Although the diet intake differed among groups during both stages of the experiment, no differences were noted with regard to weight gain and peritoneal fat. Replacing soybean oil with coconut oil in the rat diet lowered triglyceride and low-density lipoprotein serum concentrations in both groups. Liver parameters, namely, total cholesterol and triacylglycerols, increased with the substitution of soybean oil by coconut oil in the normolipidic diet and decreased in the hyperlipidic diet. Thus, replacing soybean oil by coconut oil may improve serum and liver lipid levels in Wistar rats.

  16. Aerobic capacity of rats recovered from fetal malnutrition with a fructose-rich diet.

    Science.gov (United States)

    Cambri, Lucieli Teresa; Dalia, Rodrigo Augusto; Ribeiro, Carla; Rostom de Mello, Maria Alice

    2010-08-01

    The objective of this study was to analyze the aerobic capacity, through the maximal lactate steady-state (MLSS) protocol, of rats subjected to fetal protein malnutrition and recovered with a fructose-rich diet. Pregnant adult Wistar rats that were fed a balanced (17% protein) diet or a low-protein (6% protein) diet were used. After birth, the offspring were distributed into groups according to diet until 60 days of age: balanced (B), balanced diet during the whole experimental period; balanced-fructose (BF), balanced diet until birth and fructose-rich diet (60% fructose) until 60 days; low protein-balanced (LB), low-protein diet until birth and balanced diet until 60 days; and low protein-fructose (LF), low protein diet until birth and fructose-rich diet until 60 days. It was verified that the fructose-rich diet reduced body growth, mainly in the BF group. There was no difference among the groups in the load corresponding to the MLSS (B, 7.5+/-0.5%; BF, 7.4+/-0.6%; LB, 7.7+/-0.4%; and LF, 7.7+/-0.6% relative to body weight). However, the BF group presented higher blood lactate concentrations (4.8+/-0.9 mmol.L(-1)) at 25 min in the load corresponding to the MLSS (B, 3.2+/-0.9 mmol.L(-1); LB, 3.4+/-0.9 mmol.L(-1); and LF, 3.2+/-1.0 mmol.L(-1)). Taken together, these results indicate that the ability of young rats to perform exercise was not altered by intrauterine malnutrition or a fructose-rich diet, although the high fructose intake after the balanced diet in utero increased blood lactate during swimming exercises in rats.

  17. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    Science.gov (United States)

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-05

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet.

    Science.gov (United States)

    Seyfried, B Thomas N; Kiebish, Michael; Marsh, Jeremy; Mukherjee, Purna

    2009-09-01

    Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect), malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (beta-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  19. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  20. Diet restriction in Ramadan and the effect of fasting on glucose levels in pregnancy.

    Science.gov (United States)

    Baynouna Al Ketbi, Latifa Mohammad; Niglekerke, Nico J D; Zein Al Deen, Sanna M; Mirghani, Hisham

    2014-06-24

    Maternal diet restriction might be associated with adverse maternal and perinatal outcomes due to metabolic changes. This study aimed to investigate the prevalence of changes in glucose levels due to Ramadan fasting in Emirati pregnant women. We conducted a cross-sectional observational study of 150 women from the United Arab Emirates, (76 during Ramadan and 74 after Ramadan), with uncomplicated pregnancies at a gestational age between 20 and 36 weeks. The two groups of pregnant women had similar physiological parameters. Using the oral glucose tolerance test, the mean random blood glucose level after 1 hour of breaking the fast was significantly higher (p = 0.002) in the Ramadan fasting group than in the control group, and this was not affected by the number of fasting days. In 50% of patients after Ramadan and 70.5% during Ramadan, this value was more than 6.7 mmol/l, which is high and not an acceptable postprandial level in pregnancy. Caregivers need to consider the 1-hour postprandial glucose level response after fasting in Muslim pregnant women. Research of an interventional design is required to determine remedial actions for this issue.

  1. The effects of irradiation on the periodontal tissues of rats with the low calcium diet

    International Nuclear Information System (INIS)

    Choi, Mun Cheol; Lee, Sang Rae

    1992-01-01

    The purpose of this study was to investigate the changes of periodontal tissues in the irradiated mandibular bone in rats which were fed normal diet and low calcium diet. In order to carry out this experiment, 64 seven-week old Sprague-Dawley strain rats weighing about 150 gms were selected and equally divided into one experimental group of 32 rats and one control group with the remainder. The experimental group and the control group were then subdivided into two groups when the rats reached the age of 10 weeks, 16 rats were allotted for each subdivided group was composed of 16 rats and exposed to irradiation. The two groups were irradiated a single dose of 20 Gy on the only jaw area and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were warily dissected by fours on the 3rd, 7th, the 14th, and the 21st day after irradiation. After each dissection, both sides of the dead rat mandibular bodies were removed and fixed with 10% neutral formalin. The specimens sectioned and observed in histopathological, histochemical, and immunocellular chemical methods. The obtained results were as follows: 1. In the mandibles of rats with low calcium diet the increased number of fibroblasts of periodontal ligaments, many small capillaries and irregular arrangement of loose collagen fibers were detected and the partial resorption of dentin and cementum could be found by the microscopic studies. 2. In the group of irradiated rats, deaerated periodontal tissues led to the condition of irregular arrangement of collagen fibers and the decreased number of fibroblasts. But this condition was somewhat restored after 21 days of experiment. 3. Periodontal tissues of the irradiated rat group with low calcium diet were destroyed earlier than those of the irradiated rat group with normal diet. Soon this condition was restored and then high cellularity and dense collagen fibers were observed. 4. Many periodontal cells bearing tumor necrosis factor

  2. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    Science.gov (United States)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P salt had higher plasma 1,25-dihydroxyvitamin D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P salt. Proteinuria of the S rats was three times that of the R rats, suggesting kidney damage in the S rats. Low plasma 25-OHD and 24,25-dihydroxyvitamin D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  3. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens

    2018-01-01

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/-) rats fed either a Western diet or a low-fat control...... diet with or without gluten, which is known to promote gut microbiota changes, until 20 weeks of age. We hypothesized that the manifestation of atherosclerosis would be more severe in Apoe -/- rats fed the Western high-fat diet, as compared with rats fed the low-fat diet, and that atherosclerosis would...... be accelerated by gluten. Both Western diet-feeding and gluten resulted in significant changes in gut microbiota, but the microbiota impact of gluten was transient. Compared with Apoe -/- rats fed a low-fat diet, Western diet-fed Apoe -/- rats were heavier and became glucose intolerant with increased levels...

  4. Experimental diets for the study of lipid influence on the induced mammary carcinoma in rats: I--Diet definition.

    Science.gov (United States)

    Escrich, E; Solanas, M; Segura, R

    1994-01-01

    There is a considerable variation in the diets used in studies on the influence of dietary fat on rat mammary cancer. In view of the fact that diet is the most remarkable factor in these studies, the aim of this work was to define two experimental diets, one of them normal (N3) and another hyperlipidic (HL20), both allowing the normal growth of the rat and neither of them containing factors that could unspecifically affect mammary carcinogenesis. Semisynthetic diets were selected instead of natural ones. A normal diet (3% corn oil, 18% casein, 67.9% dextrose) and a hyperlipidic diet (20% corn oil, 23% casein, 45.9% dextrose) were defined for the rat. Both diets also contain 5% cellulose, 5.9% salt mix and 0.24% vitamin mix. In order to avoid the influence of the above mentioned unspecific factors, the control of specificity and quality of nutrients is proposed as an essential measure. Moreover, it is also necessary to adopt measures to avoid the presence of fatty acid metabolites, including the calculation of the necessary vitamin E, selenium and sulfur amino acid and the determination of factors potentially able to stimulate or inhibit carcinogenesis such as phenolic antioxidants, retinoids or the trans isomer of fatty acids. On the other had, casein, dextrose, choline and folic acid contents were modified in order to equilibrate the lipid increase experimentally introduced in the HL20 diet or to ensure the normal maintenance of the animals' metabolism. The method used is based on the concept of quality assurance.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Reproductive parameters and oxidative stress status of male rats fed with low and high salt diet

    OpenAIRE

    Iranloye, Bolanle O.; Oludare, Gabriel O.; Morakinyo, Ayodele O.; Esume, Naomi A.; Ekeh, Lucy C.

    2013-01-01

    Background: Deficiency of minerals and micronutrients has been reported to impair the process of spermatogenesis. Historically, salt has been used by women on their husbands to increase their libido, however, the role of salt diet on sperm parameters are yet to be ascertained. AIM: The present study was designed to determine the effect of low and high salt diet on sperm parameters, oxidative status and reproductive hormone levels of male rats. Materials and Methods: A total of 18 rats were di...

  6. Diet composition determines course of hyperphagia in developing Zucker obese rats.

    Science.gov (United States)

    Vasselli, J R; Maggio, C A

    1990-12-01

    Previous observations from this laboratory indicate that, during growth, the hyperphagia of the male genetically obese Zucker rat reaches a peak or "breakpoint" and then declines. To examine the effect of dietary macronutrient content on the course of hyperphagia, groups of male lean and obese rats were maintained from 5-28 weeks of age on powdered chow, or isocaloric diets (3.6 kcal/g) containing 72% of calories as corn oil, dextrose, or soy isolate protein (n = 5 lean and obese rats/diet). On chow, hyperphagia was maintained at a level of 7-8 g above lean control intake until a "breakpoint" was reached at 17 weeks, and obese intake declined to lean control level. On the fat diet, hyperphagia was increased to 10 g/day when a breakpoint was reached at 8 weeks. On the dextrose and protein diets, hyperphagia at a level of 3-4 g/day reached breakpoints at weeks 18 and 16, respectively. On all diets, the intakes of obese rats were precisely equal to the intakes of lean control rats by weeks 19-20. These data show that the magnitude and duration of hyperphagia in the developing obese rat are influenced by diet composition. Previously, we have proposed that the obese rat's hyperphagia arises from rapid adipocyte filling. Since high-fat diets facilitate adipocyte enlargement, the early "breakpoint" of hyperphagia seen with the high-fat diet may indicate that this feeding stimulation decreases as the fat cells of the obese rat approach maximal size.

  7. Maternal Antioxidant Supplementation Prevents Adiposity in the Offspring of Western Diet?Fed Rats

    OpenAIRE

    Sen, Sarbattama; Simmons, Rebecca A.

    2010-01-01

    OBJECTIVE Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. RESEARCH DESIGN AND METHODS Female Sprague Dawley rats were started on the designated diet at ...

  8. The effect of food restriction on learning and memory of male Wistar rats: A behavioral analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Vaez Mahdavi

    2010-01-01

    Full Text Available Introduction: Social inequality may have a significant negative effect on health. There are some evidences that social inequality and stressful conditions could lead to development and progression of various disorders. On the other hand, the results of some research studies have shown that reducing the consumed calorie could prolong the lifetime. In addition, limiting the consumed calorie could produce beneficial changes in the level of some hormones including blood insulin and may reduce body temperature. Meanwhile, food restriction could reduce genetic damage and may have protective effect against external toxins. Therefore, the aim of the present study was to evaluate the effect of food restriction on learning and memory of male rats using passive avoidance and Y-maze tests. Methods: For this purpose, male Wistar rats (n = 48 were divided into control, 3 experimental, and two negative and positive control groups. Control group received normal rat regimen for 6 weeks. The group with full restriction and non-isolated received 1/3 of the food regimen. The group with full restriction and isolation received 1/3 of the food regimen. The experimental group with two-weeks food restriction and non-isolated received 1/3 of the food regimen only for two weeks. Streptozotocin-diabetic rats with blood glucose higher than 250 mg/dl was considered as negative and positive control received vitamin E (10 mg/kg/day i.p. as an antioxidant. For evaluation of learning and memory, initial and step-through latencies and alternation behavior were analyzed using passive avoidance and Y-maze tests. Results: Regarding initial latency, there was a reduction in diabetic, vitamin-E treated, and group with 2-weeks food restriction and there was an increase in groups with full restriction and isolated and with full restriction as compared to control. Meanwhile, there were no significant differences among the groups, indicating that there were no changes in behavior

  9. Dietary restriction of mice on a high-fat diet induces substrate efficiency and improves metabolic health.

    Science.gov (United States)

    Duivenvoorde, Loes P M; van Schothorst, Evert M; Bunschoten, Annelies; Keijer, Jaap

    2011-08-01

    High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on an ad libitum basis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.

  10. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2010-07-01

    Full Text Available Abstract Background Calorie restriction (CR and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat, low-fat diet with 30% calorie restriction (LR, high-fat diet (HC, 60% fat, high-fat diet with 30% calorie restriction (HR, high-fat diet with voluntary running exercise (HE, and high-fat diet with a combination of 30% calorie restriction and exercise (HRE. The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression. Results Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal. Conclusions CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.

  11. Diet composition alters the satiety effect of cholecystokinin in lean and obese Zucker rats.

    Science.gov (United States)

    Maggio, C A; Haraczkiewicz, E; Vasselli, J R

    1988-01-01

    Although exogenous administration of the peptide cholecystokinin (CCK) has been shown to reduce food intake in a variety of experimental situations, few studies have examined the influence of dietary content upon CCK's effectiveness, particularly in obese states. To evaluate the effectiveness of CCK administration in animals consuming high fat diets, groups of obese and lean Zucker rats were maintained on laboratory chow (CH), a high fat diet isocaloric to chow (IF), or a hypercaloric fat diet (HF). After a 17 hr fast, rats were given intraperitoneal injections of saline or ascending doses of 0.06 to 2.0 micrograms/kg of the synthetic octapeptide of CCK. On all diets, obese rats required higher doses of CCK to significantly reduce feeding and showed smaller intake reductions than lean rats (p less than 0.001). Despite higher baseline caloric intakes (p less than 0.001), rats of both genotypes maintained on HF displayed larger reductions of intake than those fed IF or CH (p less than 0.001). Intake reductions by either genotype maintained on IF or CH were not reliably different. The manner in which the satiety effect of CCK was enhanced in rats consuming the calorically dense, palatable HF diet is unclear but may be related to orosensory and/or postingestive attributes of the diet.

  12. Influence of integral and decaffeinated coffee brews on metabolic parameters of rats fed with hiperlipidemic diets

    Directory of Open Access Journals (Sweden)

    Júlia Ariana de Souza Gomes

    2013-10-01

    Full Text Available The objective of this study was to evaluate the influence of integral and decaffeinated coffee brews (Coffea arabica L and C. canephora Pierre on the metabolic parameters of rats fed with hyperlipidemic diet. Thirty male Wistar rats (initial weight of 270 g ± 20 g were used in the study, which were divided into six groups five each. The treatments were normal diet, hyperlipidemic diet, hyperlipidemic diet associated with integral coffee arabica or canephora brews (7.2 mL/kg/day and hyperlipidemic diet associated to decaffeinated arabica, or canephora brews, using the same dosage. After 41 days, performance analyses were conducted.The rats were then euthanized and the carcasses were used for the analysis of dried ether extract and crude protein. Fractions of adipose tissue were processed for histological analysis. There was a reduction in weight gain and accumulation of lipids in the carcasses, lower diameter of adipocytes and a lower relative weight of the liver and kidneys of rats fed with hyperlipidemic diet associated with integral coffee brew. Integral coffee brew reduced the obesity in the rats receiving hyperlipidemic diet, but the same effect did not occur with the decaffeinated types.

  13. Delayed development, death and abnormal thyroglobulin in rats maintained on low-iodine diets

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1976-01-01

    Rats weaned on Remington Low Iodine Diet (0.006 to 0.009 μgI/g) grew poorly, were very slow to breed, and 83% of their pups died in the neonatal period. A large iodide supplement (100μgI/d) improved growth of the females to almost normal but did not improve growth of males. With the iodide supplement they bred at an earlier age than rats fed the low iodide Remington diet but still 73% of the pups died before weaning. The addition of a vitamin mixture (biotin, vitamin B 12 , E, patothenic acid, riboflavin, thiamine and pyridoxine) to Remington Diet resulted in delayed pregnancies but 86% survival of offspring. A more nutritious low-iodine diet with a 'complete' mineral and vitamin supplement improved growth and survival, and the litters were delivered at the normal time. However, this more complete diet contained more iodine than the Remington diet. During the neonatal period, all the low iodine diets resulted in offspring that were unable to make T 3 as readily as adults fed the same diet. Pups from dams fed the Remington diet had thyroblobulin with lower sedimentation constants (18S and 12S) than was found in normal newborns. This unfolded and dissociated thyroglobulin may be an inadequate source of thyroid hormones, but it may hydrolyse more rapidly than normal 19S thyroglobulin. It is concluded that rats raised on a diet severely deficient in iodine were unable to litter until they were older than normal rats, and the survival of the offspring was poor unless the diet was supplemented with a vitamin mixture. The synthesis of thyroid hormones in low iodine neonatal rats was more severely impaired than in adults. (author)

  14. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  15. Effects of high fat diet on incidence of spontaneous tumors in Wistar rats

    DEFF Research Database (Denmark)

    KRISTIANSEN, E.; Madsen, Charlotte Bernhard; Meyer, Otto A.

    1993-01-01

    In a 2.5-year carcinogenicity study, two groups, both including male and female Wistar rats, were fed two different diets with 4% and 16% fat. In addition to 4% soybean oil, the high-fat diet contained 12% mono- and diglycerides, of which 85% was stearic acid and 13% palmitic acid...

  16. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    Science.gov (United States)

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Effect of Coleus forskohlii extract on cafeteria diet-induced obesity in rats.

    Science.gov (United States)

    Shivaprasad, Hebbani Nagarajappa; Gopalakrishna, Sushma; Mariyanna, Bhanumathy; Thekkoot, Midhun; Reddy, Roopa; Tippeswamy, Boreddy Shivanandappa

    2014-01-01

    Obesity is a metabolic disorder that can lead to adverse metabolic effects on blood pressure, cholesterol, triglycerides and insulin resistance and also increases the risk of coronary heart disease, ischemic stroke and type 2 diabetes mellitus. This study was designed to determine the effect of Coleus forskohlii on obesity and associated metabolic changes in rats fed with cafeteria diet. The aim of this study was to evaluate antiobesogenic and metabolic benefits of C. forskohlii in cafeteria diet induced obesity rat model. RATS WERE RANDOMLY DIVIDED INTO FIVE GROUPS OF SIX ANIMALS IN EACH GROUP AND AS FOLLOWS: Normal pellet diet group; cafeteria diet group; cafeteria diet followed by 50 mg/kg/d Coleus forskohlii extract (CFE), 100 mg/kg/d CFE and 45 mg/kg/d orlistat groups, respectively. Indicators of obesity such as food intake, body weight and alteration in serum lipid profiles were studied. Feeding of cafeteria diet induced obesity in rats. Administration of CFE significantly halted increase in food intake and weight gain associated with cafeteria diet. Development of dyslipidemia was also significantly inhibited. The observed effects validate that supplementation of CFE with cafeteria diet could curb the appetite and mitigate the development of dyslipidemia.

  18. Biovailability of Iron to rats fed with Iron Fortified Cassava Gari Diets ...

    African Journals Online (AJOL)

    The need for eradication of nutritional anemia with the local diet is important for a successful intervention at the community level in Nigeria. ari samples separetely fortified with iron sulphate, iron fumarate and sodium iron EDTAat three concentrations, 25, 35 and 45 mg/kg were used as starch based rat diets. The samples ...

  19. The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats.

    Science.gov (United States)

    Freije, William A; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U

    2015-04-01

    Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. © 2014 Wiley Periodicals, Inc.

  20. Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus: a novel model for diet-induced type 2 diabetes and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Maslova Ekaterina

    2010-04-01

    Full Text Available Abstract Background The prevalence of Metabolic Syndrome and related chronic diseases, among them non-insulin-dependent (type 2 diabetes mellitus, are on the rise in the United States and throughout the world. Animal models that respond to environmental stressors, such as diet, are useful for investigating the outcome and development of these related diseases. Objective Within this context, growth and energy relationships were characterized in the Nile rat, an exotic African rodent, as a potential animal model for diet-induced type 2 diabetes mellitus and Metabolic Syndrome. Methods Compiled data from several studies established the relationship between age, body weight gain (including abdominal adiposity, food and water consumption, and blood glucose levels as determinants of diabetes in male and female Nile rats. Glucose Tolerance Testing, insulin, HbA1c, blood pressure measurements and plasma lipids further characterized the diabetes in relation to criteria of the Metabolic Syndrome, while diet modification with high-fat, low-fiber or food restriction attempted to modulate the disease. Results The Nile rat fed lab chow demonstrates signs of the Metabolic Syndrome that evolve into diet-induced non-insulin-dependent (type 2 diabetes mellitus characterized by hyperinsulinemia with rising blood glucose (insulin resistance, abdominal adiposity, and impaired glucose clearance that precedes increased food and water intake, as well as elevated HbA1c, marked elevation in plasma triglycerides and cholesterol, microalbuminuria, and hypertension. Males are more prone than females with rapid progression to diabetes depending on the challenge diet. In males diabetes segregated into early-onset and late-onset groups, the former related to more rapid growth and greater growth efficiency for the calories consumed. Interestingly, no correlation was found between blood glucose and body mass index (overall adiposity in older male Nile rats in long term studies

  1. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    Directory of Open Access Journals (Sweden)

    Megan C. Hallam

    2016-01-01

    Full Text Available The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF had lower body weight and adiposity than animals re-matched to a high protein (HP or control (C diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05. Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones. The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation.

  2. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    Science.gov (United States)

    Hallam, Megan C.; Reimer, Raylene A.

    2016-01-01

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation. PMID:26784224

  3. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  4. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    Science.gov (United States)

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (pvegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products.

  5. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  6. A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat.

    Science.gov (United States)

    Gomez-Smith, Mariana; Karthikeyan, Sudhir; Jeffers, Matthew S; Janik, Rafal; Thomason, Lynsie A; Stefanovic, Bojana; Corbett, Dale

    2016-12-01

    Many promising findings from pre-clinical research have failed to translate to the clinic due to their inability to incorporate human disease co-morbidity. A variety of rodent diets and feeding durations are currently used in models of human metabolic syndrome, obesity and diabetes. One model, the Cafeteria (CAF) diet, makes use of grocery store-purchased food items that more closely approximate the human ultra-processed diet than commercial high-fat or high-sugar rodent diets. The present study describes the development of metabolic syndrome in rats fed a CAF diet as well as the recovery of metabolic syndrome following a healthy "lifestyle" change. In addition, we explored the effects of CAF diet on spatial learning and memory and on neuroinflammation. Three-week old male Sprague-Dawley rats were fed a CAF diet for three months that consisted of 16 highly palatable human food items along with standard chow and a 12% sucrose solution to mimic soda consumption. Thereafter, a sub-group of CAF diet rats was switched to a chow diet (SWT) for one month. Both CAF and SWT groups were compared to control rats maintained on a standard chow diet (SD). Prior to the diet switch, CAF and SWT animals developed features akin to metabolic syndrome. Both groups of rats displayed significant abdominal obesity with increased visceral adiposity, hyperinsulinemia, glucose intolerance and dyslipidemia with elevated serum triglyceride levels and reduced HDL cholesterol. Switching to a chow diet for one month completely reversed these features in SWT animals. Although acquisition of the Barnes maze was not affected by the CAF diet, these animals exhibited greater hippocampal neuroinflammation compared to both SD and SWT rats as assessed by Iba1 staining. These results demonstrate that the CAF diet is very effective in creating metabolic syndrome with hippocampal inflammation in rats over a relatively short time span. This model may be of great heuristic importance in determining potential

  7. Diet Composition Exacerbrates or Attenuates Soman Toxicity in Rats: Implied Metabolic Control of Nerve Agent Toxicity

    Science.gov (United States)

    2011-01-01

    R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet : role of glucose and...anti-epileptic efficacy of the ketogenic diet . Epilepsy Res 1999;37:171–80. Schwechter EM, Veliskova J, Velisek L. Correlation between extracellular...the ketogenic diet : what havewe learned, what canwe learn? Epilepsy Res 1999;37:241–59. Stone WS, Cottrill KL, Walker DL, Gold PE. Blood glucose and

  8. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: Involvement of skeletal muscle and liver

    Science.gov (United States)

    This study aimed to determine whether pterostilbene improved glycaemic control in rats showing insulin resistance induced by an obesogenic diet. Rats were divided into 3 groups: control group and two groups treated with either 15 mg/kg/d (PT15) or 30 mg/kg/d of pterostilbene (PT30). HOMA-IR was decr...

  9. Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet.

    Directory of Open Access Journals (Sweden)

    Fanny Giudicelli

    Full Text Available Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring.

  10. Testicular damage in rats fed on irradiated diets

    International Nuclear Information System (INIS)

    Kushwaha, A.K.S.; Hasan, S.S.

    1986-01-01

    Feeding effect of irradiated diets was studied on the pups born to mother fed either on irradiated normal diet or irradiated low protein diet. The study indicated that pups born to mother fed on the irradiated low protein diet had fewer spermatogonial cells in the testes than those given irradiated normal diet and unirradiated low protein diet. Similarly, pups maintained on the irradiated low protein diet showed marked decrease in alkaline phosphatase and cholesterol contents in the testes rather than in the pups fed irradiated normal as well as unirradiated low protein diets. The irradiated low protein diet fed pups showed increased depletion and vacuolization of adrenocortical and medullary cells. 13 refs., 15 figures. (author)

  11. Effect of omnivorous and vegan diets with different protein and carbohydrate content on growth and metabolism of growing rats.

    Science.gov (United States)

    Giuberti, Gianluca; Morlacchini, Mauro; Crippa, Luca; Capraro, Jessica; Paganini, Beatrice; Gallo, Antonio; Rossi, Filippo

    2017-11-05

    The purpose of this study was to observe, in a rat animal model, the short and medium term effects of vegan (VEG) or omnivorous (OMNI) diets with different energy partition between nutrients (zone or classic). Six different diets were administered, for 72 days to 120 growing male Sprague-Dawley rats: (i) VEG zone diet; (ii) VEG classic diet; (iii) OMNI zone diet; (iv) OMNI classic diet; (v) OMNI zone diet with added fibre and (vi) OMNI classic diet with added fibre. Zone diets (high protein and low carbohydrates), resulted in better growth , feed efficiency, lower blood glucose and insulin responses. VEG diets have lowered cholesterol blood level. Histopathological analysis evidenced no damage to liver and kidney tissue by the intake of any of the diet types. Further longer animal and human duration studies should be performed to exclude detrimental effect of higher protein diet.

  12. Changes in the Total Fecal Bacterial Population in Individual Horses Maintained on a Restricted Diet Over 6 Weeks

    Directory of Open Access Journals (Sweden)

    Kirsty Dougal

    2017-08-01

    Full Text Available Twelve mature (aged 5–16 years horses and ponies of mixed breed and type were fed restricted (1.25% BM Dry matter quantities of one of two fiber based diets formulated to be iso-caloric. Diet 1 comprised of 0.8% body mass (BM of chaff based complete feed plus 0.45% BM low energy grass hay (the same hay used for both diets. Diet 2 comprised 0.1% BM of a nutrient balancer plus 1.15% BM grass hay. Fecal samples were collected at week 10 and week 16. DNA was extracted and the V1-V2 regions of 16SrDNA were 454-pyrosequenced to investigate the bacterial microbiome of the horse. The two most abundant phyla found in both diets and sampling periods were the Firmicutes and Bacteroidetes. There was a clear reduction in Bacteroidetes with a concordant increase in Firmicutes over time. There was a limited degree of stability within the bacterial community of the hindgut of horses, with 65% of bacteria retained, over a 6 week period whilst on a uniform diet. The presence of a core community defined by being present in all samples (each animal/diet combination included in the study and being present at 0.1% relative abundance (or greater was identified. In total 65 operational taxonomic units (OTUs were identified that fit the definition of core making up 21–28% of the total sequences recovered. As with total population the most abundant phyla were the Bacteroidetes followed by the Firmicutes, however there was no obvious shift in phyla due to period. Indeed, when the relative abundance of OTUs was examined across diets and periods there was no significant effect of diet or period alone or in combination on the relative abundance of the core OTUs.

  13. Short-term calorie restriction improves glucose homeostasis in old rats: involvement of AMPK.

    Science.gov (United States)

    Pires, Rogério C; Souza, Eder E; Vanzela, Emerielle C; Ribeiro, Rosane A; Silva-Santos, Júnia C; Carneiro, Everardo M; Boschero, Antonio C; Amaral, Maria Esméria C

    2014-08-01

    The occurrence of metabolic disorders, such as diabetes, obesity, atherosclerosis, and hypertension, increases with age. Inappropriate food intake, when combined with genetic and hormonal factors, can trigger the occurrence of these diseases in aged organisms. This study investigated whether short-term calorie restriction (CR; 40% of the intake of control animals (CTL) for 21 days) benefits 1-year-old (CR1yr) and 2-year-old (CR2yr) Wistar rats, with regard to insulin secretion and action. Plasma insulin and the insulin secreted by isolated islets were measured with radioimmunoassay, and the insulin sensitivity of peripheral tissues was assessed with the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test, and hepatic and muscle adenosine monophosphate-activated protein kinase (AMPK) phosphorylation measurements. Body weight, epididymal fat pad, epididymal fat pad/body weight index, plasma glucose, and insulin were lower in the CR1yr than in the control (CTL1yr) rats. Serum cholesterol, triglycerides, and protein, as well as hepatic and muscle glycogen content, were similar between the CR and CTL groups. The IPGTT was higher in CR2yr and CTL2yr rats than in CR1yr and CTL1yr rats, and insulin sensitivity was higher in CR1yr and CR2yr rats than in their respective CTLs. This was associated with an increase in hepatic and muscle AMPK phosphorylation. No differences in glucose-induced insulin secretion in the isolated islets were observed between CRs and their respective CTL rats. In conclusion, short-term calorie restriction provoked more severe alterations in CR1yr than CR2yr rats. The normoglycemia observed in both CR groups seems to be due to an increase in insulin sensitivity, with the involvement of liver and muscle AMPK.

  14. Eggs modulate the inflammatory response to carbohydrate restricted diets in overweight men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2008-02-01

    Full Text Available Abstract Background Carbohydrate restricted diets (CRD consistently lower glucose and insulin levels and improve atherogenic dyslipidemia [decreasing triglycerides and increasing HDL cholesterol (HDL-C]. We have previously shown that male subjects following a CRD experienced significant increases in HDL-C only if they were consuming a higher intake of cholesterol provided by eggs compared to those individuals who were taking lower concentrations of dietary cholesterol. Here, as a follow up of our previous study, we examined the effects of eggs (a source of both dietary cholesterol and lutein on adiponectin, a marker of insulin sensitivity, and on inflammatory markers in the context of a CRD. Methods Twenty eight overweight men [body mass index (BMI 26–37 kg/m2] aged 40–70 y consumed an ad libitum CRD (% energy from CHO:fat:protein = 17:57:26 for 12 wk. Subjects were matched by age and BMI and randomly assigned to consume eggs (EGG, n = 15 (640 mg additional cholesterol/day provided by eggs or placebo (SUB, n = 13 (no additional dietary cholesterol. Fasting blood samples were drawn before and after the intervention to assess plasma lipids, insulin, adiponectin and markers of inflammation including C-reactive protein (CRP, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, monocyte chemoattractant protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1(VCAM-1. Results Body weight, percent total body fat and trunk fat were reduced for all subjects after 12 wk (P Conclusion A CRD with daily intake of eggs decreased plasma CRP and increased plasma adiponectin compared to a CRD without eggs. These findings indicate that eggs make a significant contribution to the anti-inflammatory effects of CRD, possibly due to the presence of cholesterol, which increases HDL-C and to the antioxidant lutein which modulates certain inflammatory responses.

  15. Characterization of six rat strains (Rattus norvegicus by mitochondrial DNA restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Hilsdorf A.W.

    1999-01-01

    Full Text Available Restriction fragment length polymorphism (RFLP was used to examine the extent of mtDNA polymorphism among six strains of rats (Rattus norvegicus - Wistar, Wistar Munich, Brown Norway, Wistar Kyoto, SHR and SHR-SP. A survey of 26 restriction enzymes has revealed a low level of genetic divergence among strains. The sites of cleavage by EcoRI, NcoI and XmnI were shown to be polymorphic. The use of these three enzymes allows the 6 strains to be classified into 4 haplotypes and identifies specific markers for each one. The percentage of sequence divergence among all pairs of haplotypes ranged from 0.035 to 0.33%, which is the result of a severe population constriction undergone by the strains. These haplotypes are easily demonstrable and therefore RFLP analysis can be employed for genetic monitoring of rats within animal facilities or among different laboratories.

  16. Changes of pituitary and penile structure in male adult rats following castration and high-fat diet.

    Science.gov (United States)

    Lu, Y L; Jiang, B R; Xia, F Z; Zhai, H L; Chen, Y; Yu, J; Zhao, L J; Wang, N J; Qiao, J; Yang, L Z

    2011-02-01

    To investigate the influence of low androgen levels and high-fat diet on the structure of pituitary and penis in male rats. Ten-week-old adult male Sprague-Dawley rats were randomly divided into 2 groups, one fed a high-fat diet the other fed a normal diet; each group consisted of 3 subgroups: controls, castrated rats (with low androgen), and castrated rats given undecanoate replenishment. After 11 weeks, the structure of pituitary and penis were observed under light microscopy. Immunohistochemistry was used to assess the expression of FSH in pituitary and cyclooxygenase-2 (COX-2) in corpora cavernosa penis. The structures of pituitary and penis in castrated rats were injured, and were more damaged in castration together with high-fat diet. Immunohistochemistry showed FSH expression in castrated rats pituitary while castrated rats on a high-fat diet had less positive staining than those on a normal diet. Vascular structure of corpora cavernosa penis, showed a strongly positive COX-2 expression in high-fat diet rats. Castration and high-fat diet could induce structural damages of pituitary and penis in male rats. Replacement with testosterone could partially restore the impaired structure. The positive expression of COX-2 implied inflammatory pathway existence on vascular structure of penis in high-fat diet and low-androgen male rats.

  17. Failure of lactose-restricted diets to prevent radiation-induced diarrhea in patients undergoing whole pelvis irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Stryker, J.A.; Bartholomew, M.

    1986-05-01

    Sixty-four patients were randomized prior to pelvic radiotherapy into one of three dietary groups: the control group maintained a regular diet except that they drank at least 480 cc of milk daily; the lactose-restricted group was placed on a lactose-restricted diet; and the lactase group drank at least 480 cc of milk with lactase enzyme added to hydrolyze 90% of the lactose. The patients kept records of their stool frequency and the number of diphenoxylate tablets required to control their diarrhea during a 5 week course of standard whole pelvis irradiation. The data does not support the concept that one of the mechanisms of radiation-induced diarrhea associated with pelvic irradiation is a reduction the ability of the intestine to hydrolyze ingested lactose due to the effect of the radiation on the small intestine. There was not a significant difference in stool frequency or diphenoxylate usage among the dietary groups.

  18. Failure of lactose-restricted diets to prevent radiation-induced diarrhea in patients undergoing whole pelvis irradiation

    International Nuclear Information System (INIS)

    Stryker, J.A.; Bartholomew, M.

    1986-01-01

    Sixty-four patients were randomized prior to pelvic radiotherapy into one of three dietary groups: the control group maintained a regular diet except that they drank at least 480 cc of milk daily; the lactose-restricted group was placed on a lactose-restricted diet; and the lactase group drank at least 480 cc of milk with lactase enzyme added to hydrolyze 90% of the lactose. The patients kept records of their stool frequency and the number of diphenoxylate tablets required to control their diarrhea during a 5 week course of standard whole pelvis irradiation. The data does not support the concept that one of the mechanisms of radiation-induced diarrhea associated with pelvic irradiation is a reduction the ability of the intestine to hydrolyze ingested lactose due to the effect of the radiation on the small intestine. There was not a significant difference in stool frequency or diphenoxylate usage among the dietary groups

  19. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    Science.gov (United States)

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  20. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

    OpenAIRE

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, Ren? Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Introduction Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer?s oxidative phosphorylation system. Methods Xenografts were established in CD-1 nude mice by subcutaneous injection of two ne...

  1. Nitrogen excretion in rats on a protein-free diet and during starvation

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Niemiec, Tomasz

    2008-01-01

    with protein, demonstrating a major influence of protein content in a diet on N excretion during starvation. Consequently, the impact of former protein supply on N losses during starvation ought to be considered when evaluating minimum N requirement necessary to sustain life.......Nitrogen balances (six days) were determined in male Wistar rats during feeding a diet with sufficient protein or a nearly protein-free diet (n = 2 x 24), and then during three days of starvation (n = 2 x 12). The objective was to evaluate the effect of protein withdrawal on minimum nitrogen...... excretion in urine (UN), corresponding to endogenous UN, during feeding and subsequent starvation periods. The rats fed the protein free-diet had almost the same excretion of urinary N during feeding and starvation (165 and 157 mg/kg W(0.75)), while it was 444 mg/kg W(0.75) in rats previously fed...

  2. Effect of a soluble cocoa fiber-enriched diet in Zucker fatty rats.

    Science.gov (United States)

    Sánchez, David; Moulay, Leila; Muguerza, Begoña; Quiñones, Mar; Miguel, Marta; Aleixandre, Amaya

    2010-06-01

    The effects of a soluble cocoa fiber (SCF) were studied in Zucker fatty rats. Two groups of Zucker fatty rats were fed the following diets: standard diet and 5% SCF-enriched diet. A group of Zucker lean rats fed the standard diet was used for results comparison with obese Zucker animals. Solid and liquid intakes, body weight, plasma glucose, lipid profile, and systolic (SBP) and diastolic (DBP) blood pressure were recorded weekly. At the end of the experimental period insulin was determined, and fat apparent digestibility (FAD) and insulin resistance were calculated. The Zucker fatty rats fed 5% SCF-enriched diet showed less weight gain and food intake than those fed the standard diet. The group fed the fiber-enriched diet showed lower values of the total cholesterol/high-density lipoprotein cholesterol ratio and triglyceride levels than the standard group. FAD was also lower in the fiber group. Both SBP and DBP were decreased. In addition, SCF reduced plasma glucose and insulin, and as a consequence the insulin resistance was also decreased. Our data demonstrate that SCF resulted in an improvement of the studied risk factors associated with cardiometabolic disorders.

  3. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  4. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet.

    Science.gov (United States)

    Mangge, Harald; Prüller, Florian; Zelzer, Sieglinde; Ainödhofer, Herwig; Pailer, Sabine; Kieslinger, Petra; Haybaeck, Johannes; Obermayer-Pietsch, Barbara; Cvirn, Gerhard; Gruber, Hans-Jürgen

    2015-07-10

    Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP), a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66) were grouped into normal diet (ND; n = 30) and high-fat diet (HFD; n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased-and hyperthyroid animals significantly decreased-ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  5. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    Science.gov (United States)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  6. The effect of abdominal resistance training and energy restricted diet on lateral abdominal muscles thickness of overweight and obese women.

    Science.gov (United States)

    Noormohammadpour, Pardis; Kordi, Ramin; Dehghani, Saeed; Rostami, Mohsen

    2012-07-01

    The role of transabdominal muscles (external oblique, internal oblique and transversus abdominis) on core stability has been shown previously. Energy restricted diet and abdominal resistance training are commonly used by overweight and obese people to reduce their weight. In this study we investigated the impact of 12 weeks concurrent energy restricted diet and abdominal resistance training on the thickness of the lateral abdominal muscles of 19 obese and overweight women employing ultrasonography in resting and drawing-in maneuvers. The results showed significant increase of the muscle thicknesses during drawing-in maneuver after 12 weeks intervention. Based on our findings, it can be concluded that 12 weeks concurrent abdominal resistance training and energy restricted diet in addition to weight loss lead to improvement of transabdominal muscles thickness in obese and overweight people. Considering the role of these muscles in core stability, using this therapeutic protocol in obese people, particularly in those who have weakness of these muscles might be helpful. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of Antioxidants on Testicular iNOS and eNOS after High-Fat Diet in Rat.

    Science.gov (United States)

    Sohrabi, Maryam; Hosseini, Mahnaz; Inan, Sevinc; Alizadeh, Zohreh; Vahabian, Mehrangiz; Vahidinia, Ali Asghar; Lahoutian, Hosein

    2017-01-01

    Spermatogenesis is a process by which germ cells produce spermatozoa and can be disturbed at every level. Nitric Oxide Synthases (NOS), implicate in interactions with Oxidative Stress (OS) which is one of the main factors in the etiology of male infertility. The High Fat Diet (HFD) is a major factor of obesity which in turn is important for enhancing OS. Antioxidants and garlic could attenuate or reverse effects of HFD. The aim of the study was to investigate the effects of dietary antioxidants and garlic on testicular inducible NOS (iNOS) and endothelial NOS (eNOS) in Wistar albino rats fed on HFD. Groups (each n = 8) were: SD (100% access to standard diet), F-HFD, (100% access to HFD) and R-HFD (70% access to HFD), F-HFD +antioxidants, F-HFD+garlic and R-HFD+antioxidants. The HFD consisted of a 60% fatty diet in 3 forms: Without antioxidants, with antioxidants and with garlic. The testicular iNOS and eNOS were studied by immunohistochemical (IHC) method. Also used ANOVA, repeated measures ANOVA, t-tests and Tukey's test (where necessary) to analyze the data (pantioxidants groups. The eNOS increased in R-HFD,F-HFD and F-HFD+garlic groups. The H-E evaluation in R-HFD group showed a decrease in spermatogenesis score count and seminiferous tubules diameters (μm) in comparison with the SD and F-HFD groups. R-HFD+antioxidants group had lower score than F-HFD+antioxidants and F-HFD+garlic groups. Restricted fat diet consumption causes increase in weight and impairs spermatogenesis. Results of this study reveal that adding the antioxidants can't improve histological changes of testis. The iNOS expression in seminiferous tubules in restricted fat diet along with antioxidants, suggest a potential role of iNOS in spermatogenesis and male infertility.

  8. Therapeutic effect of an elemental diet on proline absorption across the irradiated rat small intestine

    International Nuclear Information System (INIS)

    Mohiuddin, M.; Kramer, S.

    1978-01-01

    Active absorption of [ 3 H]L-proline across the intestinal wall was used to measure functional change following irradiation of the exteriorized rat small intestine and to see whether an elemental amino acid diet would modify these changes. Segments (15 cm) of the exteriorized upper ileum of male Wistar rats were exposed to 1000 rad. Active transport against a concentration gradient of [ 3 H]L-proline from this irradiated segment was measured using the everted sac technique on days 1, 3, 7, 10, 14, 21, and 30 post-irradiation. Irradiated rats maintained on a normal diet showed depression of absorptive function with only partial recovery by day 30. Irradiated rats maintained on an elemental amino acid diet also showed an initial drop in function but then recovered absorptive function completely by day 7

  9. Effect of pinealectomy and prolonged melatonin administration on circadian testicular function in food restricted rats

    International Nuclear Information System (INIS)

    Ostrowska, Z.; Zwirska-Korczala, K.; Kajdaniuk, D.; Gorski, J.; Buntner, B.

    1995-01-01

    The effect of pinealectomy and exogenous melatonin on the circadian testosterone variations was investigated (using the radioimmunoassay method) after 3 weeks of 50% food restriction in sexually mature male Wistar rats at 3-h intervals under 12:12 light-dark cycle. The circadian periodicity of testosterone secretion was maintained after caloric deprivation, however its mean 24-h concentration was lower and rhythm disturbances appeared in the form of acrophase shifts from 18.00 to 0.50 h. In pinealectomized animals the mean 24-h testosterone level and amplitude values were significantly increased without the rhythm disturbances. As compared to the control animals, underfed pinealectomized rats had a partial recovery of reduced testosterone levels during the 24-h cycle and showed a normalization of the rhythm acrophase. Melatonin administration was found to inhibit the testosterone mesor value in pinealectomized rats with acrophase shifts from 16.58 to 14.51 h. In comparison with the pinealectomized ones the underfed pinealectomized rats had a greater reduction of the mesor and amplitude values after the melatonin administration. These findings indicate that long-term food restriction sensitizes the circadian testicular axis to antigonadotropic action of the pineal gland. (author). 42 refs, 3 figs, 1 tab

  10. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.

    Science.gov (United States)

    Marwitz, Shannon E; Woodie, Lauren N; Blythe, Sarah N

    2015-11-01

    The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical

  12. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  13. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice

    Science.gov (United States)

    2014-01-01

    Background Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. Methods We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. Results The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. Conclusions These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition. PMID:24910707

  14. Effects of a cafeteria diet on delay discounting in adolescent and adult rats: Alterations on dopaminergic sensitivity.

    Science.gov (United States)

    Robertson, Stephen H; Rasmussen, Erin B

    2017-11-01

    Diet-induced obesity is a laboratory procedure in which nonhuman animals are chronically exposed to a high-fat, high-sugar diet (i.e. cafeteria diet), which results in weight gain, altered sensitivity to reward, and alterations in the dopamine D 2 system. To date, few (if any) studies have examined age-related diet-induced obesity effects in a rat model or have used an impulsive choice task to characterize diet-induced behavioral alterations in reward processes. We exposed rats to a cafeteria-style diet for eight weeks starting at age 21 or 70 days. Following the diet exposures, the rats were tested on a delay discounting task - a measure of impulsive choice in which preference for smaller, immediate vs larger, delayed food reinforcers was assessed. Acute injections of haloperidol (0.03-0.3 mg/kg) were administered to assess the extent to which diet-induced changes in dopamine D 2 influence impulsive food choice. Across both age groups, rats fed a cafeteria diet gained the most weight and consumed more calories than rats fed a standard diet, with rats exposed during development showing the highest weight gain. No age- or diet-related baseline differences in delay discounting were revealed, however, haloperidol unmasked subtle diet-related differences by dose-dependently reducing choice for the larger, later reinforcer. Rats fed a cafeteria diet showed a leftward shift in the dose-response curve, suggesting heightened sensitivity to haloperidol, regardless of age, compared to rats fed a standard diet. Results indicate that chronic exposure to a cafeteria diet resulted in changes in underlying dopamine D 2 that manifested as greater impulsivity independent of age at diet exposure.

  15. The comparative effect of fasting with and without caloric restriction in Rat on oxidative stress parameters

    Directory of Open Access Journals (Sweden)

    Nurina Tyagita

    2016-09-01

    Full Text Available Introduction: Fasting, like Islamic Ramadan Fasting, has been associated with health benefits. Islamic Ramadan fasting, a form of caloric restriction (CR or alternate day fasting that. Studies suggest a comparable effect of ADF and caloric restriction. Despite the fact that fasting can be considered as a form of dietary restriction, fasters tend to have difficulty to reduce their food intake during non-fasting period by overeating leading to the excessive calorie intake. To compare the effect of fasting with and without caloric restriction in Sprague Dawley rats. Methods: The rats were assigned to one of three groups: ADF with 70 % calorie intake (30% CR, ADF with 100 % calorie intake (0% CR, and ADF with 140 % calorie intake (excessive calorie intake and AL (fed ad libitum. All groups were subjected to 6 hour fasting per day (9 a.m. until 3 p.m. or 15 days. The plasma sample was taken for MDA level assessment. Urinary 8-oxodG levels were determined by using ELISA. Results: ADF with 30% calorie restriction (F70 group had the lowest MDA level. Measurement of 8-oxodG level showed that group F70 had the highest production of 8-oxodG. There was an inverse relationship between MDA level and 8-oxodG level meaning the lower MDA level, the lower 8-oxodG levels were produced. Conclusion: ADF fasting with 30% caloric restriction reduce the MDA level but increase 8-oxodG levels. This study suggest the beneficial effect of fasting requires decrease in overall caloric intake.

  16. Caloric restriction in lean and obese strains of laboratory rat: effects on body composition, metabolism, growth and overall health

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data related to obese and lean strains of rat commonly used in the laboratory that are calorically restricted and its effects on physiologic parameters (Body...

  17. A Calcium-Deficient Diet in Rat Dams during Gestation Decreases HOMA-β% in 3 Generations of Offspring.

    Science.gov (United States)

    Takaya, Junji; Yamanouchi, Sohsaku; Tanabe, Yuko; Kaneko, Kazunari

    2016-01-01

    Prenatal malnutrition can affect the phenotype of offspring by altering epigenetic regulation. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. We hypothesized that a Ca-deficient diet during pregnancy would alter insulin resistance and secretion in more than 1 generation of offspring. Female Wistar rats consumed either a Ca-deficient or a control diet ad libitum from 3 weeks before conception to 21 days after parturition and were mated with control males. Randomly selected F1 and F2 females were mated with males of each generation on postnatal day 70. The F1 and F2 dams were fed a control diet ad libitum during pregnancy and lactation. All offspring were fed a control diet starting at the time of weaning and were sacrificed on day 180. HOMA-β% decreased in F1 through F3, and levels in F2 and F3 males and females were significantly lower than in controls. The mean levels of insulin and HOMA-IR were higher in F1 males but lower in F3 males than in control males. The HOMA-IR did not differ between any of the female offspring and controls. Maternal Ca restriction during pregnancy and/or lactation influences insulin secretion in 3 generations of offspring. © 2017 S. Karger AG, Basel.

  18. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Kathleen Kauter

    2013-02-01

    Full Text Available Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats.

  19. Yogurt protects against growth retardation in weanling rats fed diets high in phytic acid

    Science.gov (United States)

    Gaetke, Lisa M.; McClain, Craig J.; Toleman, C. Jean; Stuart, Mary A.

    2010-01-01

    The purpose of this study was to determine the affects of adding yogurt to animal diets which were high in phytic acid (PA) and adequate in zinc (38 μg Zn/g). The PA:Zn molar ratio was 60:1. Zinc status was determined by documenting growth and measuring the zinc concentration in bone (tibia) and plasma. For 25 days, 6 groups (n=6) of Sprague-Dawley weanling rats were fed one of the following AIN-76 diets. Half of the diets contained PA. Four of the diets contained yogurt with either active or heat-treated (inactive) cultures added at 25% of the diet. Diets: (without PA) 1) AIN, 2) AIN with active yogurt, 3) AIN and inactive yogurt; and (with PA) 4) AIN with PA, 5) AIN with PA plus active yogurt, and 6) AIN with PA plus inactive yogurt. Body weight, weight gain, and zinc concentration in bone and plasma were measured, and feed efficiency ratio (FER) was calculated. Rats fed diets with PA and yogurt had normal growth compared to the control group. Growth retardation was evident in the group fed the diet with PA and no yogurt. This group had significantly lower body weight compared to all other groups (p<0.05). Rats fed diets with PA, with or without yogurt, had significantly lower zinc concentration in bone and plasma (p<0.05). Adding yogurt to diets high in PA resulted in normal growth in weanling rats, however, zinc concentration in bone and plasma was still sub-optimal. PMID:19269152

  20. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet.

    Science.gov (United States)

    Camargo, Rafael L; Batista, Thiago M; Ribeiro, Rosane A; Branco, Renato C S; Da Silva, Priscilla M R; Izumi, Clarice; Araujo, Thiago R; Greene, Lewis J; Boschero, Antonio C; Carneiro, Everardo M

    2015-11-01

    Malnutrition programs the neuroendocrine axis by disruption of food-intake control, leading to obesity. Taurine (Tau) is neuroprotective and improves anorexigenic actions in the hypothalamus. We evaluated the hypothalamic gene-expression profile and food-intake control in protein-restricted mice submitted to a high-fat diet (HFD) and Tau supplementation. Mice were fed on a control (14 % protein-C) or a protein-restricted diet (6 % protein-R) for 6 weeks. Thereafter, mice received, or not, HFD for 8 weeks (CH and RH) with or without 5 % Tau supplementation (CHT and RHT). Protein restriction led to higher food intake, but calories were matched to controls. Excessive calorie intake occurred in HFD mice and this was prevented by Tau supplementation only in the CH group. Additionally, RH and CH mice developed hypothalamic leptin resistance, which was prevented by Tau. Global alterations in the expressions of genes involved in hypothalamic metabolism, cellular defense, apoptosis and endoplasmic reticulum stress pathways were induced by dietary manipulations and Tau treatment. The orexigenic peptides NPY and AgRP were increased by protein restriction and lowered by the HFD. The anorexigenic peptide Pomc was increased by HFD, and this was prevented by Tau only in CH mice. Thus, food intake was disrupted by dietary protein restriction and obesity. HFD-induced alterations were not enhanced by previous protein deficiency, but the some beneficial effects of Tau supplementation upon food intake were blunted by protein restriction. Tau effects upon feeding behavior control are complex and involve interactions with a vast gene network, preventing hypothalamic leptin resistance.

  1. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  2. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  3. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  4. Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats

    Science.gov (United States)

    Stephen Adeyemi, Oluyomi; Sokolayemji Aroge, Cincin; Adewumi Akanji, Musbau

    2017-01-01

    Multiple health-promoting effects have been attributed to the consumption of Moringa oleifera leaves, as part of diet without adequate scientific credence. This study evaluated the effect of M. oleifera-based diets on nickel (Ni) - induced hepatotoxicity in rats. Male rats assigned into six groups were given oral administration of 20 mg/kg body weight nickel sulfate in normal saline and either fed normal diet orM. oleifera-based diets for 21 days. All animals were sacrificed under anesthesia 24 hours after the last treatment. Ni exposure elevated the rat plasma activities of alanine transaminase, aspartate transaminase and alkaline phosphatase significantly. Ni exposure also raised the levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol while depleting the high-density lipoprotein cholesterol concentration. Further, Ni exposure raised rat plasma malondialdehyde but depleted reduced glutathione concentrations. The histopathological presentations revealed inflammation and cellular degeneration caused by Ni exposure. We show evidence thatM. oleifera-based diets protected against Ni-induced hepatotoxicity by improving the rat liver function indices, lipid profile as well as restoring cellular architecture and integrity. Study lends credence to the health-promoting value ofM. oleifera as well as underscores its potential to attenuate hepatic injury. PMID:28808207

  5. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Science.gov (United States)

    Adeyemi, O. S.; Elebiyo, T. C.

    2014-01-01

    Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4) in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity. PMID:25295181

  6. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4 in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity.

  7. Reduced Cerebrovascular Reactivity and Increased Resting Cerebral Perfusion in Rats Exposed to a Cafeteria Diet.

    Science.gov (United States)

    Gomez-Smith, Mariana; Janik, Rafal; Adams, Conner; Lake, Evelyn M; Thomason, Lynsie A M; Jeffers, Matthew S; Stefanovic, Bojana; Corbett, Dale

    2018-02-10

    To better understand the effects of a diet high in fat, sugar, and sodium on cerebrovascular function, Sprague Dawley rats were chronically exposed to a Cafeteria diet. Resting cerebral perfusion and cerebrovascular reactivity was quantified using continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI). In addition, structural changes to the cerebrovasculature and susceptibility to ischemic lesion were examined. Compared to control animals fed standard chow (SD), Cafeteria diet (CAF) rats exhibited increased resting brain perfusion in the hippocampus and reduced cerebrovascular reactivity in response to 10% inspired CO 2 challenges in both the hippocampus and the neocortex. CAF rats switched to chow for one month (SWT) exhibited improved resting perfusion in the hippocampus as well as improved cerebrovascular reactivity in the neocortex. However, the diet switch did not correct cerebrovascular reactivity in the hippocampus. These changes were not accompanied by alterations in the structural integrity of the cerebral microvasculature, examined using rat endothelial cell antigen-1 (RECA-1) and immunoglobulin G (IgG) immunostaining. Also, the extent of tissue damage induced by endothelin-1 injection into sensorimotor cortex was not affected by the Cafeteria diet. These results demonstrate that short-term consumption of an ultra-processed diet reduces cerebrovascular reactivity. This effect persists after dietary normalization despite recovery of peripheral symptomatology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Ginsenoside Re rapidly reverses insulin resistance in muscles of high-fat diet fed rats.

    Science.gov (United States)

    Han, Dong-Ho; Kim, Sang Hyun; Higashida, Kazuhiko; Jung, Su-Ryun; Polonsky, Kenneth S; Klein, Samuel; Holloszy, John O

    2012-11-01

    In a previous study, it was found that a ginseng berry extract with a high content of the ginsenoside Re normalized blood glucose in ob/ob mice. The objective of this study was to evaluate the effect of the ginsenoside Re on insulin resistance of glucose transport in muscles of rats made insulin resistant with a high-fat diet. Rats were fed either rat chow or a high-fat diet for 5 weeks. The rats were then euthanized, and insulin stimulated glucose transport activity was measured in epitrochlearis and soleus muscle strips in vitro. Treatment of muscles with Re alone had no effect on glucose transport. The high-fat diet resulted in ~50% decreases in insulin responsiveness of GLUT4 translocation to the cell surface and glucose transport in epitrochlearis and soleus muscles. Treatment of muscles with Re in vitro for 90 min completely reversed the high-fat diet-induced insulin resistance of glucose transport and GLUT4 translocation. This effect of Re is specific for insulin stimulated glucose transport, as Re treatment did not reverse the high-fat diet-induced resistance of skeletal muscle glucose transport to stimulation by contractions or hypoxia. Our results show that the ginsenoside Re induces a remarkably rapid reversal of high-fat diet-induced insulin resistance of muscle glucose transport by reversing the impairment of insulin-stimulated GLUT4 translocation to the cell surface. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  10. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    Science.gov (United States)

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  11. A diet enriched with cocoa prevents IgE synthesis in a rat allergy model.

    Science.gov (United States)

    Abril-Gil, Mar; Massot-Cladera, Malén; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Angels; Castell, Margarida

    2012-06-01

    Previous studies in young rats reported the impact of cocoa intake on healthy immune status and allow suggesting it may have a role in the prevention of some immune-mediated diseases. The aim of this study was to ascertain the effect of a cocoa diet in a model of allergy in young rats. Three-week-old Brown Norway rats were immunized by i.p. injection of ovalbumin (OVA) with alum as adjuvant and Bordetella pertussis toxin. During the next 4 weeks rats received either a cocoa diet (containing 0.2% polyphenols, w/w) or a standard diet. Animals fed a standard diet showed high concentrations of anti-OVA IgG1, IgG2a, IgG2b and high anti-OVA IgE titres, which is the antibody involved in allergic response. In contrast, animals fed a cocoa diet showed significantly lower concentrations of anti-OVA IgG1 and IgG2a antibodies. Interestingly, the cocoa diet prevented anti-OVA IgE synthesis and decreased total serum IgE concentration. Analysis of cytokine production in lymph node cells at the end of the study revealed that, in this compartment, the cocoa diet decreased the tumor necrosis factor (TNF)-α and the interleukin (IL)-10 secretion but not IL-4 production. In conclusion, a cocoa-enriched diet in young rats produces an immunomodulatory effect that prevents anti-allergen IgE synthesis, suggesting a potential role for cocoa flavonoids in the prevention or treatment of allergic diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil

    Directory of Open Access Journals (Sweden)

    Edgar Weigand

    2017-01-01

    Full Text Available The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each, were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ and 22% cocoa butter (CB or 22% safflower oil (SF for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control. The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  13. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil.

    Science.gov (United States)

    Weigand, Edgar; Egenolf, Jennifer

    2017-01-01

    The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each), were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ) and 22% cocoa butter (CB) or 22% safflower oil (SF) for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control). The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  14. Pancreas and liver uptake of new radiolabeled incretins (GLP-1 and Exendin-4) in models of diet-induced and diet-restricted obesity

    International Nuclear Information System (INIS)

    Seo, Daniele; Faintuch, Bluma Linkowski; Aparecida de Oliveira, Erica; Faintuch, Joel

    2017-01-01

    Introduction: Radiolabeled GLP-1 and its analog Exendin-4, have been employed in diabetes and insulinoma. No protocol in conventional Diet-Induced Obesity (DIO), and Diet-Restricted Obesity (DRO), has been identified. Aiming to assess pancreatic beta cell uptake in DIO and DRO, a protocol was designed. Methods: GLP-1-βAla-HYNIC and HYNIC-βAla-Exendin-4 were labeled with technetium-99m. Four Swiss mouse models were adopted: Controls (C), Alloxan Diabetes Controls (ADC), DIO and DRO. Biodistribution and ex-vivo planar imaging were documented. Results: Radiolabeling yield was in the range of 97% and both agents were hydrophilic. Fasting Blood Glucose (FBG) was 79.2 ± 8.2 mg/dl in C, 590.4 ± 23.3 mg/dl in ADC, 234.3 ± 66.7 mg/dl in DIO, and 96.6 ± 9.3 in DRO (p = 0.010). Biodistribution confirmed predominantly urinary excretion. DIO mice exhibited depressed uptake in liver and pancreas, for both radiomarkers, in the range of ADC. DRO only partially restored such values. 99m Tc-HYNIC-βAla-Exendin-4 demonstrated better results than GLP-1-βAla-HYNIC- 99m Tc. Conclusions: 1) Diet-induced obesity remarkably depressed beta cell uptake; 2) Restriction of obesity failed to normalize uptake, despite robust improvement of FBG; 3) HYNIC-βAla-Exendin-4 was the most useful marker; 4) Further studies are recommended in obesity and dieting, including bariatric surgery.

  15. Lipid composition of liver in rats fed diets supplemented with egg yolks of modified composition

    Directory of Open Access Journals (Sweden)

    Hodžić Aida

    2012-01-01

    Full Text Available The aim of this study was to examine the effects of diets supplemented with egg yolks of modified composition on the fatty-acid composition and lipid content in rat’s liver. During four weeks of the experiment 64 Wistar rats were divided into four groups of 16 individuals each (eight individuals of both sexes and fed a commercial feed mixture for rats (group C or diet containing 70% commercial mixture for rats and 30% freshly cooked egg yolks from laying hens fed diets with 3% fish oil (group F, 3% palm olein (group P or 3% lard (group L. Dietary supplementation with egg yolks significantly increased the hepatic cholesterol pool in rats, regardless of the type of fat in the diet of laying hens from which the eggs originated. The content of α-linolenic acid in the liver of male rats in group P was 4-6 times higher compared to males in the other groups. Liver lipids and their fatty-acid composition differ by both, sex and dietary modified egg yolk composition in rats.

  16. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  17. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    International Nuclear Information System (INIS)

    Ventrucci, Gislaine; Mello, Maria Alice Roston de; Gomes-Marcondes, Maria Cristina Cintra

    2002-01-01

    It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein): pregnant (N), tumor-bearing (WN), pair-fed rats (Np). Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine): leucine (L), tumor-bearing (WL) and pair-fed with leucine (Lp). Non pregnant rats (C), which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones

  18. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    Directory of Open Access Journals (Sweden)

    de Mello Maria

    2002-04-01

    Full Text Available Abstract Background It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. Methods To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein: pregnant (N, tumor-bearing (WN, pair-fed rats (Np. Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine: leucine (L, tumor-bearing (WL and pair-fed with leucine (Lp. Non pregnant rats (C, which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Results Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Conclusions Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones.

  19. High-fat diet reduces levels of type I tropocollagen and hyaluronan in rat skin.

    Science.gov (United States)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi; Takita, Toshichika

    2010-05-01

    Although it is known that nutritional conditions affect the skin function, little information is available on the effect of a high-fat (HF) diet on skin. In this study, Sprague-Dawley rats were fed HF diets for 28 days, and we investigated the effect of this diet on type I tropocollagen and hyaluronan in rat skin. The HF diets reduced the levels of type I tropocollagen, COL1A1 mRNA, hyaluronan, and rat hyaluronan synthase (rhas)2 mRNA, which play a primary role in hyaluronan synthase in the dermis. However, rhas3 mRNA level in the skin was increased. The HF diets also decreased the skin mRNA expression of transforming growth factor (TGF)-beta1, which enhances the expression of COL1A1 and rhas2 mRNA and decreases rhas3 mRNA expression, and decreased the hepatic mRNA expression of insulin-like growth factor (IGF)-I, which enhances COL1A1, rhas2, and TGF-beta1 mRNA expression. The serum level of adiponectin, which promotes the syntheses of type I collagen and hyaluronan, was decreased in the HF diet groups. These findings suggest that an HF diet reduces the levels of type I tropocollagen and hyaluronan in the skin by suppressing the action of TGF-beta1, IGF-I and adiponectin, and these effects are deleterious for skin function.

  20. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health

    Science.gov (United States)

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improv...

  1. Large neutral amino acid supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria : evidence from adult Pah-enu2 mice

    NARCIS (Netherlands)

    van Vliet, Danique; van der Goot, Els; Bruinenberg, Vibeke M.; van Faassen, Martijn; de Blaauw, Pim; Kema, Ido P.; Heiner-Fokkema, M. Rebecca; van der Zee, Eddy A.; van Spronsen, Francjan J.

    Phenylketonuria treatment mainly consists of a phenylalanine-restricted diet but still results in suboptimal neuropsychological outcome, which is at least partly based on cerebral monoamine deficiencies, while, after childhood, treatment compliance decreases. Supplementation of large neutral amino

  2. Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    Full Text Available Calorie restriction (CR (consuming ~60% of ad libitum, AL, intake improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old Fischer 344 x Brown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (~140 µU/ml in each diet group. Glucose uptake (assessed by infusion of [(14C]-2-deoxyglucose, 2-DG, phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160 kDa, AS160, abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris and two predominantly slow-twitch (soleus, adductor longus muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05 concomitant with significantly (P<0.05 elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior, without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05 increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05 CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The

  3. [Effects-of combined calories restriction and polyunsaturated fatty acids on colitis in rats].

    Science.gov (United States)

    Qian, Yan; Zhang, Ying; Liu, Hui; Wang, Lei; Li, Xiuhua; Qiu, Fubin

    2014-09-01

    To explore the effect of n-6 and n-3 polyunsaturated fatty acids combined with calorie restriction( CR) in DSS induced ulcerative colitis rats. Forty female rats were randomly divided into five groups, control group, model group, CR group, 5:1 PUFA ad libitum group, 5: 1 PUFA CR group. CR groups provided with a limited daily food allotment of 60% of that eaten by the ad libitum animals for 14 weeks. Ulcerative colitis model in rats were given 5. 0% dextran sulfate sodium in their drinking water for 7 days. 5:1 PUFA CR group significantly decreased body weight, disease activity index, macroscopic and histological score compared to model group. In addition, administration of 5: 1 PUFA CR effectively inhibited MPO activity. The levels of TNF-α and IL-6 in the serum with colitis were decreased by 5: 1 PUFA CR (P calories restriction and n-6/n-3 =5:1 PUFA may be more beneficial in attenuating the progression of DSS induced ulcerative colitis.

  4. Effects of leptin replacement alone and with exendin-4 on food intake and weight regain in weight-reduced diet-induced obese rats

    Science.gov (United States)

    Haver, Alvin; Chelikani, Prasanth K.; Apenteng, Bettye; Perriotte-Olson, Curtis; Anders, Krista; Steenson, Sharalyn; Blevins, James E.

    2012-01-01

    Weight loss in obese humans produces a relative leptin deficiency, which is postulated to activate potent orexigenic and energy conservation mechanisms to restrict weight loss and promote weight regain. Here we determined whether leptin replacement alone or with GLP-1 receptor agonist exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced diet-induced obese (DIO) rats. Forty percent restriction in daily intake of a high-fat diet in DIO rats for 4 wk reduced body weight by 12%, body fat by 29%, and plasma leptin by 67% and normalized leptin sensitivity. When food restriction ended, body weight, body fat, and plasma leptin increased rapidly. Daily administration of leptin [3-h intraperitoneal (ip) infusions (4 nmol·kg−1·h−1)] at onset and end of dark period for 3 wk did not attenuate hyperphagia and weight regain, nor did it affect mean daily meal sizes or meal numbers. Exendin-4 (50 pmol·kg−1·h−1) infusions during the same intervals prevented postrestriction hyperphagia and weight regain by normalizing meal size. Coadministration of leptin and exendin-4 did not reduce body weight more than exendin-4 alone. Instead, leptin began to attenuate the inhibitory effects of exendin-4 on food intake, meal size, and weight regain by the end of the second week of administration. Plasma leptin in rats receiving leptin was sevenfold greater than in rats receiving vehicle and 17-fold greater than in rats receiving exendin-4. Together, these results do not support the hypothesis that leptin replacement alone or with exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced DIO rats. PMID:22510712

  5. Diet-induced obesity suppresses ghrelin in rat gastrointestinal tract and serum.

    Science.gov (United States)

    Sahin, Ibrahim; Aydin, Suleyman; Ozkan, Yusuf; Dagli, Adile Ferda; Akin, Kadir Okhan; Guzel, Saadet Pilten; Catak, Zekiye; Ozercan, Mehmet Resat

    2011-09-01

    The aims of the present study were to examine ghrelin expression in serum and gastrointestinal tract (GIT) tissues, and to measure tissue ghrelin levels and obesity-related alterations in some serum biochemical variables in rats with diet-induced obesity (DIO). The study included 12 male rats, 60 days old. The rats were randomly allocated to two groups (n = 6). Rats in the DIO group were fed a cafeteria-style diet to induce obesity, while those in the control group were fed on standard rat pellets. After a 12 week diet program including an adaptation period all rats were decapitated, tissues were individually fixed, ghrelin expression was examined by immunohistochemistry , and tissue and serum ghrelin levels were measured by radioimmunoassay. Serum biochemical variables were measured using an autoanalyzer. When the baseline and week 12 body mass index and GIT ghrelin expression were compared between DIO and control rats, BMI had increased and ghrelin expression decreased due to obesity. The RIA results were consistent with these findings. Serum glucose, LDL cholesterol, and total cholesterol levels were elevated and HDL cholesterol significantly decreased in the DIO group. A comparison of GIT tissues between the control and obese groups demonstrated that ghrelin was decreased in all tissues of the latter. This decrease was brought about a decline in the circulating ghrelin pool. This suggests that rather than being associated with a change in a single tissue, obesity is a pathological condition in which ghrelin expression is changed in all tissues.

  6. Bioavailability of cadmium from infant diets in newborn rats

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, G.; Oskarsson, A. [Dept. of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Petersson Grawe, K. [Toxicology Div., National Food Administration, Uppsala (Sweden)

    2001-11-01

    Infants are exposed to higher levels of cadmium (Cd) from infant and follow-on formulas than from breast milk. We studied the bioavailability of {sup 109}CdCl{sub 2} from cows' milk formula, soy formula, wheat/oat/milk formula, wholemeal/milk formula and water in 11-day-old rat pups. The pups received a single oral dose of one diet labelled with {sup 109}Cd, 0.1 or 0.3 mg Cd/kg body weight. After 2 or 24 h or 4, 9 or 12 days the fractional retention of {sup 109}Cd in the whole body, in segments of rinsed small intestine and in tissue was measured in a gamma counter. Pups receiving {sup 109}Cd in water or cows' milk formula had the highest mean whole-body retention. It ranged from 67% of the dose in the water group to 52% in the wholemeal/milk formula group 4 days after dosing. The retention of {sup 109}Cd in the rinsed small intestine was significantly higher in the water group and the cows' milk formula group than in the cereal-based formula groups at 24 h and 4 days after dosing. It was still high in all groups on day 9, ranging from 26 to 11%. Initially most of the {sup 109}Cd was retained in the duodenum but by day 4 it had moved further down into the jejunum. In the liver, the highest and lowest retention on day 4 was 16 permille and 3 permille of the dose in the water group and wholemeal/milk formula group, respectively. In the kidney, {sup 109}Cd was still increasing 12 days after exposure in all groups. Whole-body retention and tissue levels were higher than previously reported in adult animals. The lower bioavailability of {sup 109}Cd from the cereal-based formulas compared to water and cows' milk formula on the longer survival times is most likely explained by Cd binding to dietary fibre and phytic acid in the cereal-based formulas reducing the intestinal binding and decreasing the bioavailability of Cd. The high retention of {sup 109}Cd in the small intestine, leading to a prolonged absorption period, emphasizes the importance of

  7. Effect of Argyreia speciosa root extract on cafeteria diet-induced obesity in rats.

    Science.gov (United States)

    Kumar, Shiv; Alagawadi, K R; Rao, M Raghavendra

    2011-04-01

    To evaluate the antiobesity effects of the ethanolic extract of Argyreia speciosa roots in rats fed with a cafeteria diet (CD). Obesity was induced in albino rats by feeding them a CD daily for 42 days, in addition to a normal diet. Body weight and food intake was measured initially and then every week thereafter. On day 42, the serum biochemical parameters were estimated and the animals were sacrificed with an overdose of ether. The, liver and parametrial adipose tissues were removed and weighed immediately. The liver triglyceride content was estimated. The influence of the extract on the pancreatic lipase activity was also determined by measuring the rate of release of oleic acid from triolein. The body weight at two-to-six weeks and the final parametrial adipose tissue weights were significantly lowered (P cafeteria diet-induced obesity in rats.

  8. RYGB progressively increases avidity for a low-energy, artificially sweetened diet in female rats.

    Science.gov (United States)

    Geary, Nori; Bächler, Thomas; Whiting, Lynda; Lutz, Thomas A; Asarian, Lori

    2016-03-01

    Weight re-gain within 2 y after Roux-en-Y gastric bypass (RYGB) is significantly associated with increased intake of and cravings for sweet foods. Here we describe a novel model of this late increase in sweet appetite. Ovariectomized RYGB and Sham-operated rats, with or without estradiol treatment, were maintained on Ensure liquid diet and offered a low-energy, artificially sweetened diet (ASD) 2 h/d. First, we tested rats more than six months after RYGB. ASD meals were larger in RYGB than Sham rats, whereas Ensure meals were smaller. General physical activity increased during ASD meals in RYGB rats, but not during Ensure meals. Second, new rats were adapted to ASD before surgery, and were then offered ASD again during 4-10 wk following surgery. Estradiol-treated RYGB rats lost the most weight and progressively increased ASD intake to >20 g/2 h in wk 9-10 vs. ∼3 g/2 h in Sham rats. Finally, the same rats were then treated with leptin or saline for 8 d. Leptin did not affect body weight, Ensure intake, or activity during meals, but slightly reduced ASD intake in estradiol-treated RYGB rats. Food-anticipatory activity was increased in estradiol-treated RYGB rats during the saline-injection tests. Because increased meal-related physical activity together with larger meals is evidence of hunger in rats, these data suggest that (1) RYGB can increase hunger for a low-energy sweet food in rats and (2) low leptin levels contribute to this hunger, but are not its only cause. This provides a unique rat model for the increased avidity for sweets that is significantly associated with weight recidivism late after RYGB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The effects of X-ray radiation on mandibular bone of low-calcium diet rats

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Akihiko (Nippon Dental Univ., Tokyo (Japan))

    1991-08-01

    In an attempt to examine the effects of X-ray on osteoporosis, a single dose of 30 Gy was delivered to the mandible in rats given low-calcium diet. Serum levels of calcium (Ca) and inorganic phosphorus (P) were measured; and changes in bone salt were determined by autoradiography, microradiography, and roentgenography using an electron probe microanalyzer. Body weight was lower in the irradiated group than the non-irradiated group, irrespective of types of diet. The serum Ca levels in the irradiated group given a normal diet were significantly decreased on Days 3, 7, and 14 days after irradiation. When given a low-Ca diet, these levels tended to be lower in the irradiated group than the non-irradiated group on Day 7 or later. The serum levels of inorganic P were significantly lower in the irradiated group given a normal diet than the non-irradiated group on Day 3. Rats given a low-Ca diet had the same levels, irrespective of irradiation. Autoradiography revealed that Ca-45 retention in the whole jaw was slightly greater in the irradiated group than the non-irradiated group On Days 7 and 21. Rats given a low-Ca diet in both irradiated and non-irradiated groups had a greater Ca-45 retention than those given a normal diet. Microradiography revealed that bone formation-like changes, such as flat surface of the periodontal membrane at the intra-alveolar septum, were slightly noticeable in the irradiated group of rats given a normal diet on Day 21. Thinning of the intra-alveolar septum and decrease of the trabecula at the diaphysis were also noticeable in the irradiated group of rats given a low-Ca diet. Variation of X-ray intensity was more marked on Day 7 than on Day 21 in the irradiated group given a normal diet. When given a low-Ca diet, both the irradiated and non-irradiated group had noticeable X-ray intensity variation. (N.K.).

  10. Fatty Acid de Novo Synthesis in Adult Intrauterine Growth-Restricted Offspring, and Adult Male Response to a High Fat Diet.

    Science.gov (United States)

    Yee, Jennifer K; Han, Guang; Vega, Juan; Lee, Wai-Nang P; Ross, Michael G; Desai, Mina

    2016-12-01

    Intrauterine growth restriction (IUGR) with rapid catch-up growth leads to adult obesity and insulin resistance. We have previously shown that IUGR male rats demonstrated increased de novo fatty acid synthesis in the subcutaneous (SC) fat, but not the visceral fat, during the nursing period prior to the onset of obesity. Young IUGR females do not exhibit the same increase. We further hypothesized that in male IUGR offspring, de novo synthesis is a programmed intrinsic effect that persists to adulthood and does not suppress in response to a high fat diet. We measured fatty acid de novo synthesis in IUGR adult males (6 months) using deuterium-enriched drinking water as a stable isotope tracer, then further studied the response after consumption of an isocaloric high fat diet. Baseline de novo synthesis in adult females was also studied at age 9 months. Males demonstrated increased baseline de novo synthesis in both SC fat and visceral fat. Correspondingly, SC and visceral fat protein expression of lipogenic enzymes acetyl-coA carboxylase-α (ACCα) and fatty acid synthase were upregulated. After the isocaloric high fat diet, de novo synthesis was suppressed such that no differences remained between the two groups, although, IUGR SC fat demonstrated persistently increased lipogenic protein expression. In contrast, de novo synthesis among adult females is not impacted in IUGR. In conclusion, enhancement of male IUGR SC fat de novo synthesis appears to be an early consequence of metabolic programming, whereas enhancement in visceral fat appears to be a later consequence.

  11. Serum and liver lipids in rats and chicks fed with diets containing different oils.

    Science.gov (United States)

    Feoli, Ana M; Roehrig, Cíntia; Rotta, Liane N; Kruger, Adriane H; Souza, Karine B; Kessler, Alexandre M; Renz, Sandro V; Brusque, Ana M; Souza, Diogo O; Perry, Marcos L S

    2003-09-01

    Because dietary fat composition is determinant for serum cholesterol level, which is related to cardiovascular disease, we evaluated the effects of diets containing saturated (coconut oil) or polyunsaturated fatty acids (soybean oil) supplemented or not with dietary cholesterol on serum and liver lipid composition in two animal species. Male Wistar rats (21 d old) were assigned to one of seven groups and fed with commercial diet or diets containing 5% or 20% soybean oil or 20% coconut oil with or without 1% cholesterol. Chicks were assigned to one of four groups and fed with diets containing 15% soybean oil or 15% coconut oil with or without 1% cholesterol. In rats, the accumulations of hepatic cholesterol and triacylglycerols were higher in the group fed 20% soybean oil and 1% cholesterol than in the group fed 20% coconut fat and 1% cholesterol. The highest serum levels of cholesterol and triacylglycerols were observed in the group fed coconut oil and cholesterol, compared with the group fed soybean oil and cholesterol. Triacylglycerol, high-density lipoprotein, and total cholesterol serum levels increased with diet containing coconut oil and cholesterol. In chicks, the highest hepatic cholesterol accumulation occurred in the group fed 15% coconut fat and 1% cholesterol. Total and high-density lipoprotein cholesterol levels increased with diet containing coconut oil and cholesterol, although none of these diets modified serum triacylglycerol levels. The type of experimental animal model and the diet composition influence lipid metabolism.

  12. Obesity induced by cafeteria diet disrupts fertility in the rat by affecting multiple ovarian targets.

    Science.gov (United States)

    Bazzano, M V; Torelli, C; Pustovrh, M C; Paz, D A; Elia, E M

    2015-11-01

    Obesity constitutes a health problem of increasing worldwide prevalence. Among the health detriments caused by obesity, reproduction is disrupted. However, the mechanisms involved in this disruption are not fully understood. Animals fed a cafeteria diet constitute the model for the study of obesity that most closely reflects Western diet habits. The aims of this study were to evaluate whether a cafeteria diet affects ovarian function and to contribute to the understanding of the mechanisms involved. For that purpose, 22-day-old female Wistar rats were fed ad libitum with a standard diet (control group; n = 20) or cafeteria diet (CAF group; n = 20). The cafeteria diet induced obesity and hyperglycaemia, without altering serum triglycerides, cholesterol or C-reactive protein concentrations. This diet also altered ovarian function: the rats showed prolonged dioestrous phases, decreased serum oestradiol concentrations and increased number of antral atretic follicles. Moreover, follicular cysts were detected in the CAF group, concomitantly with a decrease in the number of anti-Müllerian hormone immunoreactive pre-antral follicles and COX-2-positive antral and pre-ovulatory follicles. The authors conclude that a cafeteria diet reduces ovarian reserve, induces the presence of follicular cysts and disturbs the ovulatory process, leading to the delayed pregnancy observed in these animals. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. A miso (Japanese soybean paste) diet conferred greater protection against hypertension than a sodium chloride diet in Dahl salt-sensitive rats.

    Science.gov (United States)

    Watanabe, Hiromitsu; Kashimoto, Naoki; Kajimura, Junko; Kamiya, Kenji

    2006-09-01

    The purpose of this study was to compare the effects of miso and sodium chloride (NaCl) on blood pressure in both sexes of Dahl and SD rats. The systolic and diastolic blood pressures (SBP/DBP) were measured at 2, 4, 8 and 12 weeks of treatment with a miso diet including 2.3% NaCl, a high-sodium diet including 2.3% or 1.9% NaCl, or a normal diet including 0.3% NaCl (MF diet; Oriental Yeast Co., Tokyo, Japan). The rats were autopsied after 12 weeks on a diet. DBP in male Dahl rats was significantly increased by the 2.3% NaCl diet as compared with that in the MF group (p high NaCl groups were significantly increased when compared with the MF or miso group. SBP in female Dahl rats on 2.3% NaCI was significantly increased from 8 weeks after treatment. Nephropathy was observed in both sexes of Dahl rats but not SD rats. These results show that blood pressure was not increased by the miso diet.

  14. Short-Term Caloric Restriction Does Not Reduce Bone Mineral Density in Rats with Early Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Yun Kyung Jeon

    2014-03-01

    Full Text Available BackgroundThe effect of caloric restriction (CR in the setting of diabetes on bone metabolism has not yet been fully studied. The aim of this study is to determine if short-term CR alters bone mass and metabolism in Otsuka Long-Evans Tokushima fatty (OLETF rats, an animal model of type 2 diabetes.MethodsFour groups (n=5 were created: OLETF rats with food ad libitum (AL, OLETF rats with CR, Long-Evans Tokusima Otsuka (LETO rats with food AL, and LETO rats with CR. The CR condition was imposed on 24-week-old male rats using a 40% calorie reduction for 4 weeks. The effect of CR on femoral bone mineral density (BMD was assessed by dual-energy X-ray absorptiometry. Serum markers were measured by immunoassay.ResultsAfter 4 weeks of CR, body weight decreased in both strains. The BMD decreased in LETO rats and was maintained in OLETF rats. After adjustment for body weight, BMD remained lower in LETO rats (P=0.017 but not OLETF rats (P=0.410. Bone-specific alkaline phosphatase levels decreased in LETO rats (P=0.025 but not in OLEFT rats (P=0.347. Serum leptin levels were reduced after CR in both strains, but hyperleptinemia remained in OLETF rats (P=0.009. CR increased 25-hydroxyvitamin D levels in OLETF rats (P=0.009 but not in LETO rats (P=0.117. Additionally, interleukin-6 and tumor necrosis factor-α levels decreased only in OLETF rats (P=0.009.ConclusionShort-term CR and related weight loss were associated with decreases of femoral BMD in LETO rats while BMD was maintained in OLETF rats. Short-term CR may not alter bone mass and metabolism in type 2 diabetic rats.

  15. Short-term caloric restriction does not reduce bone mineral density in rats with early type 2 diabetes.

    Science.gov (United States)

    Jeon, Yun Kyung; Kim, Won Jin; Shin, Myung Jun; Chung, Hae-Young; Kim, Sang Soo; Kim, Bo Hyun; Kim, Seong-Jang; Kim, Yong Ki; Kim, In Joo

    2014-03-01

    The effect of caloric restriction (CR) in the setting of diabetes on bone metabolism has not yet been fully studied. The aim of this study is to determine if short-term CR alters bone mass and metabolism in Otsuka Long-Evans Tokushima fatty (OLETF) rats, an animal model of type 2 diabetes. Four groups (n=5) were created: OLETF rats with food ad libitum (AL), OLETF rats with CR, Long-Evans Tokusima Otsuka (LETO) rats with food AL, and LETO rats with CR. The CR condition was imposed on 24-week-old male rats using a 40% calorie reduction for 4 weeks. The effect of CR on femoral bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry. Serum markers were measured by immunoassay. After 4 weeks of CR, body weight decreased in both strains. The BMD decreased in LETO rats and was maintained in OLETF rats. After adjustment for body weight, BMD remained lower in LETO rats (P=0.017) but not OLETF rats (P=0.410). Bone-specific alkaline phosphatase levels decreased in LETO rats (P=0.025) but not in OLEFT rats (P=0.347). Serum leptin levels were reduced after CR in both strains, but hyperleptinemia remained in OLETF rats (P=0.009). CR increased 25-hydroxyvitamin D levels in OLETF rats (P=0.009) but not in LETO rats (P=0.117). Additionally, interleukin-6 and tumor necrosis factor-α levels decreased only in OLETF rats (P=0.009). Short-term CR and related weight loss were associated with decreases of femoral BMD in LETO rats while BMD was maintained in OLETF rats. Short-term CR may not alter bone mass and metabolism in type 2 diabetic rats.

  16. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats.

    Science.gov (United States)

    Boussenna, Ahlem; Goncalves-Mendes, Nicolas; Joubert-Zakeyh, Juliette; Pereira, Bruno; Fraisse, Didier; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2015-12-01

    Dextran sodium sulphate (DSS)-induced colitis is a widely used model for inflammatory bowel disease. However, various factors including nutrition may affect the development of this colitis. This study aimed to compare and characterize the impact of purified and non-purified basal diets on the development of DSS-induced colitis in the rat. Wistar rats were fed a non-purified or a semi-synthetic purified diet for 21 days. Colitis was then induced in half of the rats by administration of DSS in drinking water (4% w/v) during the last 7 days of experimentation. At the end of the experimental period, colon sections were taken for histopathological examination, determination of various markers of inflammation (myeloperoxidase: MPO, cytokines) and oxidative stress (superoxide dismutase: SOD, catalase: CAT, glutathione peroxidase: GPx and glutathione reductase: GRed activities), and evaluation of the expression of various genes implicated in this disorder. DSS ingestion induced a more marked colitis in animals receiving the purified diet, as reflected by higher histological score and increased MPO activity. A significant decrease in SOD and CAT activities was also observed in rats fed the purified diet. Also, in these animals, administration of DSS induced a significant increase in interleukin (IL)-1α, IL-1β and IL-6. In addition, various genes implicated in inflammation were over-expressed after ingestion of DSS by rats fed the purified diet. These results show that a purified diet promotes the onset of a more severe induced colitis than a non-purified one, highlighting the influence of basal diet in colitis development.

  17. Plasticity of lifelong calorie-restricted C57BL/6J mice in adapting to a medium-fat diet intervention at old age

    NARCIS (Netherlands)

    Rusli, Fenni; Boekschoten, Mark V.; Borelli, Vincenzo; Sun, Chen; Lute, Carolien; Menke, Aswin L.; Heuvel, van den Joost; Salvioli, Stefano; Franceschi, Claudio; Müller, Michael; Steegenga, Wilma T.

    2017-01-01

    Calorie restriction (CR) is a dietary regimen that supports healthy aging. In this study, we investigated the systemic and liver-specific responses caused by a diet switch to a medium-fat (MF) diet in 24-month-old lifelong, CR-exposed mice. This study aimed to increase the knowledge base on dietary

  18. Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): a randomised controlled trial

    NARCIS (Netherlands)

    Pelsser, L.M.; Frankena, K.; Toorman, J.; Savelkoul, H.F.J.; Dubois, A.E.; Rodrigues Pereira, R.; Haagen, T.A.; Rommelse, N.N.; Buitelaar, J.K.

    2011-01-01

    Background The effects of a restricted elimination diet in children with attention-deficit hyperactivity disorder (ADHD) have mainly been investigated in selected subgroups of patients. We aimed to investigate whether there is a connection between diet and behaviour in an unselected group of

  19. Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study) : a randomised controlled trial

    NARCIS (Netherlands)

    Pelsser, Lidy M.; Frankena, Klaas; Toorman, Jan; Savelkoul, Huub F.; Dubois, Anthony E.; Pereira, Rob Rodrigues; Haagen, Ton A.; Rommelse, Nanda N.; Buitelaar, Jan K.

    2011-01-01

    Background The effects of a restricted elimination diet in children with attention-deficit hyperactivity disorder (ADHD) have mainly been investigated in selected subgroups of patients. We aimed to investigate whether there is a connection between diet and behaviour in an unselected group of

  20. Quality of diets with fluidized bed combustion residue treatment: I. Rat trials

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, N.J.; Reid, R.L.; Head, M.K.; Hern, J.L.; Bennett, O.L.

    Feeding trials were conducted with rats (Rattus rattus) to examine effects of soil application, or dietary inclusion, of fluidized bed combustion residue (FBCR) on the composition and quality of foods. Four diets (vegetable protein, egg protein, chicken, chicken + dietary FBCR) prepared with either FBCR or lime (control) treatments, were fed to weanling, female rats in three growth and reproduction trials. Intake, growth rate, and composition of body and organs of rats were measured. Rats in one trial were bred, their litters maintained on dietary treatments, and the offspring rebred. Treatment (FBCR vs. lime) x diet interactions on food composition and animal responses generally were not significant. Treatment had little effect on element composition of diets; mineral concentrations were in normal ranges. Diet treatment with FBCR depressed (P<0.01) food intake and growth of rats in one trial, but not in others, and had no effect (P<0.05) on body water, protein, ether extract, or gross energy composition. Some differences in element concentrations in the carcass and organs of rats and pups resulted from FBCR treatment, but effects were small and inconsistent. Litters from the first reproductive cycle appeared normal, except for animals fed the chicken + dietary FBCR treatment, on which pups showed poor growth and anemia. Offspring from certain diets were rebred and litters showed a high mortality, although this was not associated specifically with FBCR treatment. Results indicated no major detrimental effects on food composition, or growth, tissue element accumulation, and reproduction in the rat relating to use of FBCR as a soil amendment. 20 refs., 9 tabs.

  1. The influence of nutrition (diet treatment in streptozotocin – induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Chrcheva-Nikolovska Radmila

    2013-07-01

    Full Text Available The present study was designated to evaluate the effect of special antidiabetic diet treatment upon oxidative stress parameters in the initial stages of the development of diabetes. Male Wistar strain rats were used as an experimental model, divided into five groups: group 1, control rats; group 2, antidiabetic diet group; group 3, rats with induced diabetes mellitus – diabetic control; group 4, rats with induced diabetes mellitus and diet food, and group 5, rats with induced diabetes mellitus and insulin treatment.A significant decrease in superoxide dismutase (SOD and total glutathione (GSH activities were observed in the liver of diabetic rats when compared with control animals. There was simple evidence that elevation in glucose concentration depress natural antioxidant defense such as SOD and GSH. The observed decrease in SOD activity could result from inactivation by H2O2 or by glycation of the enzyme, which have been reported to occur in diabetes. The possible source of oxidative stress in diabetes includes shifts in redox balance resulting from altered carbohydrate and lipid metabolism, increased generation of reactive oxygen species, and decreased level of antioxidant defences such as GSH and SOD. The plasma level of aminotransferases (ALT, AST, creatine kinase (CK, lactate dehydrogenase (LDH and urea were significantly increased after induction of diabetes, in all groups under treatment. In contrast, rats fed special diet food, have shown slight different, but not significant changes. The decrease in total protein and albumin fraction may be due to microproteinuria and albuminuria, which are important clinical markers of diabetic nephro­pathy, and­/or may be due to increased protein catabolism.The findings of the present study suggest that special diet formula useful for prevention of progressive hyperglycaemia in age induced diabetes in dogs, could not restore the imbalance of cellular defence mechanism provoked by streptozotocin.

  2. Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats.

    Science.gov (United States)

    Espitia-Bautista, Estefania; Velasco-Ramos, Mario; Osnaya-Ramírez, Iván; Ángeles-Castellanos, Manuel; Buijs, Ruud M; Escobar, Carolina

    2017-07-01

    Modern lifestyle promotes shifted sleep onset and shifted wake up time between weekdays and weekends, producing a condition termed "social-jet lag." Disrupted sleep promotes increased appetite for carbohydrate and fat-rich food, which in long term leads to overweight, obesity and metabolic syndrome. In order to mimic the human situation we produced an experimental model of social-jet lag (Sj-l). With this model, we explored the link between shifted sleep time with consumption of a cafeteria diet (CafD) and the development of obesity and metabolic syndrome. The first experiment was designed to create and confirm the model of Sj-l. Rats (n=8-10/group) were exposed to a shifted sleep time protocol achieved by placing the rats in slow rotating wheels from Monday to Friday during the first 4h of the light period, while on weekends they were left undisturbed. The second experiment (n=8-12/group) explored the combined effect of Sj-l with the opportunity to ingest CafD. All protocols lasted 12weeks. We evaluated the development of overweight and indicators of metabolic syndrome. The statistical significance for all variables was set at P<0.05. Sj-l alone did not affect body weight gain but induced significant changes in cholesterol in metabolic variables representing a risk factor for metabolic syndrome. Daily restricted access to CafD in the day or night induced glucose intolerance and only CafD during the day led to overweight. Sj-l combined with CafD induced overconsumption of the diet, potentiated body weight gain (16%) and promoted 5 of the criteria for metabolic syndrome including high insulin and dislipidemia. Present data provide an experimental model of social-jet lag that combined with overconsumption of CafD, and maximized the development of obesity and metabolic syndrome. Importantly, access to CafD during the night did not lead to overweight nor metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Murat, Dogru [Department of Ocular Surface and Visual Optics, Keio University School of Medicine, Tokyo (Japan); Nakamura, Shigeru; Nakashima, Hideo [Research Center, Ophtecs Corporation, Hyogo (Japan); Shimmura, Shigeto [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Shinmura, Ken [Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Tsubota, Kazuo, E-mail: tsubota@sc.itc.keio.ac.jp [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan)

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  4. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    International Nuclear Information System (INIS)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-01-01

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  5. Small increases in dietary calcium above normal requirements exacerbate magnesium deficiency in rats fed a low magnesium diet.

    Science.gov (United States)

    Bertinato, Jesse; Lavergne, Christopher; Plouffe, Louise J; El Niaj, Hiba Abou

    2014-01-01

    In North America, the calcium (Ca):magnesium (Mg) intake ratio has increased over the last several decades raising concerns about possible adverse effects of Ca intakes on Mg status. The primary objective of this study was to investigate whether small decreases or increases in dietary Ca from normal requirements worsen Mg status in rats fed a low Mg diet. Weanling male Sprague-Dawley rats were fed 1 of 8 diets for 6 weeks. The 7 test diets were supplemented with low Mg (0.18 g/kg diet) and either 1 (1Ca), 3 (3Ca), 5 (5Ca), 7.5 (7.5Ca), 10 (10Ca), 15 (15Ca) or 20 (20Ca) g Ca/kg diet. The control diet was supplemented with normal Mg (0.5 g/kg) and Ca (5 g/kg). Rats fed higher Ca gained less weight and had lower fat mass and energy efficiency. Compared to rats fed normal Ca (5Ca), Mg concentrations in serum and femur were lower in rats fed the higher Ca diets. Haemoglobin and haematocrit were also lower in rats fed the 15Ca and 20Ca diets. Rats fed the 10Ca, 15Ca and 20Ca diets had higher urine Ca compared to rats fed the 5Ca diet. Increase in urine Ca was associated with a rise in urine Mg. The higher Ca diets increased the Ca:Mg molar ratio in serum, femur, heart and kidney. These results suggest that small increases in dietary Ca exacerbate Mg deficiency in rats fed an inadequate Mg diet by reducing intestinal Mg absorption and also by impairing renal Mg reabsorption at higher Ca intakes.

  6. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats.

    Science.gov (United States)

    Goodspeed, Danielle; Seferovic, Maxim D; Holland, William; Mcknight, Robert A; Summers, Scott A; Branch, D Ware; Lane, Robert H; Aagaard, Kjersti M

    2015-03-01

    Intrauterine growth restriction (IUGR) confers heritable alterations in DNA methylation, rendering risk of adult metabolic syndrome (MetS). Because CpG methylation is coupled to intake of essential nutrients along the one-carbon pathway, we reasoned that essential nutrient supplementation (ENS) may abrogate IUGR-conferred multigenerational MetS. Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation causing IUGR in F1. Among the F2 generation, IUGR lineage rats were underweight at birth (6.7 vs. 8.0 g, P adulthood (p160: 613 vs. 510 g; P 30% elevated, P 5-fold less central fat mass, normal hepatic glucose efflux, and >70% reduced circulating triglycerides and very-LDLs compared with IUGR control-fed F2 offspring (P supplementation along the one-carbon pathway abrogates adult morbidity and associated epigenomic modifications of IGF-1 in a rodent model of multigenerational MetS. © FASEB.

  7. Effect of diet containing Zataria multiflora leaves on anxiety behavior in rats

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Results: The results indicated that the diet containing 10% thyme had significantly increased the presence of the animal in the open arms of maze compared to the control group (P <0.01 and also a decrease was observed in the assessment of cortisol hormone compared to the control group(p <0.05. Conclusions: The findings of this study showed that diet containing thyme was effective in reducing anxiety reactions in rats.

  8. Vitamin K deficiency in SPF-rats fed a semisynthetic irradiated diet

    International Nuclear Information System (INIS)

    Juhr, N.C.; Dietzel, L.; Horn, J.

    1975-01-01

    A case of vitamin K deficiency in male SPF-rats fed an irradiated semisynthetic diet (24% Soyprotein, 0.25% DL-Methionin, 48% Cornstarch, 10% Sucrose, 5% Soyoil and 7% Cellulose and a vitamin- and mineralmixture) with a vitamin K content of 0.63 mg/kg diet is reported including clinical symptoms, pathological findings, coagulation parameters and investigations of intestinal flora. The deficiency could be reproduced experimentally in SPF- and germfree male rats and prevented by vitamin K supplementation (K 3 in the water or K 1 parenterally). Monoassoziation with an E. coli strain as well as conventionalization of SPF-rats were effective to prevent deficiency symptoms. The significance of a stable intestinal flora for intestinal vitamin K synthesis is emphasized. Nutrients and their influence on the intestinal flora are discussed with special reference to the mechanism of coprophagy, which makes intestinal vitamin K synthesis available to the rat

  9. The effect of different milk diets upon strontium-85 absorption in young rats

    International Nuclear Information System (INIS)

    Gruden, N.; Mataushicj, S.

    1988-01-01

    Radiostrontium absorption and distribution in selected tissues was studied in young white rats which were fed, for one or four days, on plain cow's milk or on one of the following experimental diets: yogurt, sour milk, or acidophilus milk. The yogurt diet exhibited a slight, but statistically significant, decreasing effect upon radiostrontium deposition in the carcass and femur of neonatals and in the body, carcass, femur and brain of the weanling rats receiving the four day treatment. There was an inhibitory effect on strontium deposition in the weanling's brain to sour milk, and none to acidophilus milk. (author). 12 refs.; 1 tab

  10. Comparison of growth, nitrogen metabolism and organ weights in piglets and rats fed on diets containing Phaseolus vulgaris beans

    NARCIS (Netherlands)

    Huisman, J.; Poel, A.F.B. van der; Leeuwen, P. van; Verstegen, M.W.A.

    1990-01-01

    The effects of lectins in the diet have been mainly studied in rats. An important question is whether results obtained in rats can be extrapolated to larger animals like the pig. Phaseolus vulgaris beans are rich in toxic lectins. Therefore a study was carried out to compare the effects of diets

  11. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  12. A comparative study of myocardial function and morphology during fasting/refeeding and food restriction in rats.

    Science.gov (United States)

    Pinotti, Matheus Fécchio; Leopoldo, André Soares; Silva, Maeli Dal-Pai; Sugizaki, Mário Mateus; do Nascimento, André Ferreira; Lima-Leopoldo, Ana Paula; Aragon, Flávio Ferrari; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2010-01-01

    This study compared the influence of fasting/refeeding cycles and food restriction on rat myocardial performance and morphology. Sixty-day-old male Wistar rats were submitted to food ad libitum (C), 50% food restriction (R50), and fasting/refeeding cycles (RF) for 12 weeks. Myocardial function was evaluated under baseline conditions and after progressive increase in calcium and isoproterenol. Myocardium ultrastructure was examined in the papillary muscle. Fasting/refeeding cycles maintained rat body weight and left ventricle weight between control and food-restricted rats. Under baseline conditions, the time to peak tension (TPT) was more prolonged in R50 than in RF and C rats. Furthermore, the maximum tension decline rate (-dT/dt) increased less in R50 than in RF with calcium elevation. While the R50 group showed focal changes in many muscle fibers, such as the disorganization or loss of myofilaments, polymorphic mitochondria with disrupted cristae, and irregular appearance or infolding of the plasma membrane, the RF rats displayed few alterations such as loss or disorganization of myofibrils. Food restriction promotes myocardial dysfunction, not observed in RF rats, and higher morphological damage than with fasting/refeeding. The increase in TPT may be attributed possibly to the disorganization and loss of myofibrils; however, the mechanisms responsible for the alteration in -dT/dt in R50 needs to be further clarified. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    Science.gov (United States)

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  14. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats.

    Science.gov (United States)

    Sadeghipour, Alireza; Eidi, Maryam; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia.

  15. Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Stephen Wanyonyi

    2017-11-01

    Full Text Available The red seaweed, Kappaphycus alvarezii, was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6% and salt (predominantly potassium (K 20% with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H diet, alone or supplemented with a 5% (w/w dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus-treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats.

  16. Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Maharshi Bhaswant

    2015-09-01

    Full Text Available Both black (B and green (G cardamom are used as flavours during food preparation. This study investigated the responses to B and G in a diet-induced rat model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-rich diet (C or a high-carbohydrate, high-fat diet with increased simple sugars along with saturated and trans fats (H for 16 weeks. H rats showed signs of metabolic syndrome leading to visceral obesity with hypertension, glucose intolerance, cardiovascular remodelling and nonalcoholic fatty liver disease. Food was supplemented with 3% dried B or G for the final eight weeks only. The major volatile components were the closely related terpenes, 1,8-cineole in B and α-terpinyl acetate in G. HB (high-carbohydrate, high-fat + black cardamom rats showed marked reversal of diet-induced changes, with decreased visceral adiposity, total body fat mass, systolic blood pressure and plasma triglycerides, and structure and function of the heart and liver. In contrast, HG (high-carbohydrate, high-fat + green cardamom rats increased visceral adiposity and total body fat mass, and increased heart and liver damage, without consistent improvement in the signs of metabolic syndrome. These results suggest that black cardamom is more effective in reversing the signs of metabolic syndrome than green cardamom.

  17. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghipour

    2014-01-01

    Full Text Available Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L. was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP, aspartate aminotransferase (AST, and alanine aminotransferase (ALT in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia.

  18. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Science.gov (United States)

    Sadeghipour, Alireza; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  19. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    Science.gov (United States)

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  20. Influence of hyperpolarization caused by high salt diet on β-adrenoceptor-mediated responses in rat pulmonary artery.

    Science.gov (United States)

    Mahajan, Puneet; Tabrizchi, Reza

    2012-07-01

    The effect of high salt diet on β-adrenoceptor-mediated response was assessed in rat-isolated pulmonary arteries. Isoprenaline-induced relaxations were not different in tissues from rats on either, high salt or regular diets. However, acidic buffer (pH 6.4) alone and in combination with Ba2+ or Nω-nitro-L-arginine methyl ester (L-NAME) significantly attenuated isoprenaline-induced relaxations in tissues from rats on high salt compared with those on a regular diet. Also, Ba2+ and ouabain together produced a significantly greater inhibition of isoprenaline-induced relaxation in tissues from rats on high salt when compared with those on the regular diet. The resting membrane potential of smooth muscle cells of pulmonary arteries of rats on high salt diet compared with regular diet was more negative (ie, hyperpolarized) than that on the regular diet. This hyperpolarization was reversed on exposure of blood vessels to acidic buffer and/or Ba2+ and ouabain combined but not L-NAME. Treatment with isoprenaline did not cause further hyperpolarization of smooth muscle cells of arteries from rats on the high salt diet. Taken together, the electrical changes due to the high salt diet can be attributed to the opening of K+ channels (2 pore acid-sensitive K+ channels and K(ir2.1)) and the activation of Na+/K+-ATPase. Furthermore, hyperpolarization observed after consumption of high salt diet seems to preserve β-adrenoceptor-mediated vasorelaxation.

  1. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    Science.gov (United States)

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  2. Telmisartan prevents high-fat diet-induced hypertension and decreases perirenal fat in rats.

    Science.gov (United States)

    Wang, Yaping; Song, Yan; Suo, Meng; Jin, Xin; Tian, Gang

    2012-05-01

    We sought to investigate the effects of telmisartan on high-fat diet-induced hypertension and to explore the possible underlying mechanisms. Rats receiving high-fat diet were randomly divided into two groups, the telmisartan group (n = 9) and the high-fat diet group (n = 10). The control group consisted of age-matched rats on a regular diet (n = 10). At the end of the treatment, the body weight, blood pressure, insulin sensitivity and serum adiponectin levels of all rats were examined, and their visceral fat was extracted and weighed. Our results showed that telmisartan improved insulin resistance and dyslipidemia and increased serum adiponectin levels. Telmisartan also lowered both systolic blood pressure and diastolic blood pressure, and decreased the accumulation of perirenal fat associated with high-fat diet. Furthermore, telmisartan increased adiponectin mRNA expression in the perirenal fat. Correlation analysis showed that both systolic blood pressure and diastolic blood pressure were positively correlated with perirenal fat. These effects of telmisartan may be mediated through decreases in perirenal fat and contributed to the improvement of perirenal fat function. Our findings suggested a strong link between perirenal fat and high-fat diet-induced hypertension, and identified telmisartan as a potential drug for the treatment of obesity-related hypertension.

  3. The effects of the calcium-restricted diet of urolithiasis patients with absorptive hypercalciuria type II on risk factors for kidney stones and osteopenia

    NARCIS (Netherlands)

    Faassen, A. van; Ploeg, E.M.C. van der; Habets, H.M.L.; Meer, R. van der; Hermus, R.J.J.; Janknegt, R.A.

    1998-01-01

    The calcium (Ca)-restricted diet of urolithiasis patients with absorptive hypercalciuria type II may decrease Ca excretion but increase biochemical markers of risk for osteopenia. We randomly allocated 25 patients from six hospitals into an experimental group (Ca restriction to 500 mg/day,

  4. Ovariectomized Highly Fit Rats Are Protected against Diet-Induced Insulin Resistance.

    Science.gov (United States)

    Park, Young-Min; Kanaley, Jill A; Zidon, Terese M; Welly, Rebecca J; Scroggins, Rebecca J; Britton, Steven L; Koch, Lauren G; Thyfault, John P; Booth, Frank W; Padilla, Jaume; Vieira-Potter, Victoria J

    2016-07-01

    In the absence of exercise training, rats selectively bred for high intrinsic aerobic capacity (high-capacity running (HCR)) are protected against ovariectomy (OVX)-induced insulin resistance (IR) and obesity compared with those bred for low intrinsic aerobic capacity (low-capacity running (LCR)). This study determined whether OVX HCR rats remain protected with exposure to high-fat diet (HFD) compared with OVX LCR rats. Female HCR and LCR rats (n = 36; age, 27-33 wk) underwent OVX and were randomized to a standard chow diet (NC, 5% kcal fat) or HFD (45% kcal fat) ad libitum for 11 wk. Total energy expenditure, resting energy expenditure, spontaneous physical activity (SPA), and glucose tolerance were assessed midway, whereas fasting circulating metabolic markers, body composition, adipose tissue distribution, and skeletal muscle adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial markers were assessed at sacrifice. Both HCR and LCR rats experienced HFD-induced increases in total and visceral adiposity after OVX. Despite similar gains in adiposity, HCR rats were protected from HFD-induced IR and reduced total energy expenditure observed in LCR rats (P activity in HCR; however, HFD significantly reduced SPA and AMPK activity in LCR (P activity, gene expression of markers of mitochondrial biogenesis (tFAM, NRF1, and PGC-1α), and protein levels of mitochondrial oxidative phosphorylation complexes I, II, IV, and V in skeletal muscle (all P physical activity compensation" likely confers protection from HFD-induced IR and reduced energy expenditure in HCR rats.

  5. Germinated brown rice ameliorates obesity in high-fat diet induced obese rats.

    Science.gov (United States)

    Lim, See Meng; Goh, Yong Meng; Mohtarrudin, Norhafizah; Loh, Su Peng

    2016-05-23

    Germinated brown rice (GBR) is a novel functional food that is high in fiber and bioactive compounds with health-promoting properties. This study aims to evaluate anti-obesity effects of GBR in obese rats fed high-fat diet (HFD). Male Sprague-Dawley rats were fed HFD for 8 weeks to induce obesity. The rats were then administrated with GBR where the source of dietary carbohydrate of HFD was replaced by either 25 % GBR, 50 % GBR or 100 % GBR for another 8 weeks. Changes in anthropometry, dietary status, biochemical parameters and histopathology of liver and adipose tissue were measured. Rats fed with HFD were showed elevation in body weight gain and in white adipose tissue mass compared with rats consumed commercial diet. The GBR administration in 50 % GBR and 100 % GBR were significantly decreased body weight gains and food intakes as well as improved lipid profiles in obese rats. In addition, the administration of GBR  had reduced adiposity by showing declination in white adipose tissue mass, adipocytes size and leptin level concomitantly with a higher ratio of fat excretion into feces. Micro- and macrovesicular steatosis were evidently attenuated in obese rats fed GBR. These findings demonstrated that GBR exhibited anti-obesity effects through suppression of body weight gain and food intake, improvement of lipid profiles and reduction of leptin level and white adipose tissue mass in obese rats fed HFD.

  6. Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: role of hepatic triglyceride utilization.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Browne, Veron; Mendez-Garcia, Claudia; Yablonski, Elizabeth; Pontiggia, Laura; D'Mello, Anil P

    2015-04-01

    We have previously demonstrated that protein restriction throughout gestation and lactation reduces liver triglyceride content in adult rat offspring. However, the mechanisms mediating the decrease in liver triglyceride content are not understood. The aim of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty-acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content. Pregnant Sprague-Dawley rats received either a control or a low protein diet throughout pregnancy and lactation. Pups were weaned onto laboratory chow on day 28 and killed on day 65. Liver triglyceride content was reduced in male, but not female, low-protein offspring, both in the fed and fasted states. The reduction was accompanied by a trend towards higher liver carnitine palmitoyltransferase-1a activity, suggesting increased fatty-acid transport into the mitochondrial matrix. However, medium-chain acyl coenzyme A dehydrogenase activity within the mitochondrial matrix, expression of nuclear peroxisome proliferator activated receptor-α, and plasma levels of β-hydroxybutyrate were similar between low protein and control offspring, indicating a lack of change in fatty-acid oxidation. Hepatic triglyceride secretion, assessed by blocking peripheral triglyceride utilization and measuring serum triglyceride accumulation rate, and the activity of microsomal transfer protein, were similar between low protein and control offspring. Because enhanced triglyceride utilization is not a significant contributor, the decrease in liver triglyceride content in male low-protein offspring is likely due to alterations in liver fatty-acid transport or triglyceride biosynthesis. © 2015 Wiley Publishing Asia Pty Ltd.

  7. Inaccessible food cues affect stress and weight gain in calorically-restricted and ad lib fed rats.

    Science.gov (United States)

    Coelho, Jennifer S; Polivy, Janet; Fleming, Alison; Hargreaves, Duane; Herman, C Peter; Lao, Grace

    2010-02-01

    Research suggests that caloric restriction (CR) is beneficial; however, the effects of CR in the context of food cues are unclear. A 2 (food cue vs. no cue)x2 (CR vs. ad lib) between-subjects design was employed to test these effects in 40 rats. It was predicted that cue exposure and CR would induce stress, and that these factors might interact synergistically. The results demonstrated that cue-exposed CR rats weighed less than did non-exposed CR rats. A blunted stress response was evident in CR rats relative to ad lib rats. Finally, cue-exposed rats had higher corticosterone levels and body weight during ad lib feeding than did non-cued rats. These results suggest that both CR and chronic food-cue exposure can be stressful, and the implications of this research are discussed in the context of humans' 'obesigenic' environment. 2009 Elsevier Ltd. All rights reserved.

  8. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks

    Directory of Open Access Journals (Sweden)

    Paul de Goede

    2018-01-01

    Full Text Available The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT, but hardly in other metabolic tissues such as skeletal muscle (SM and brown adipose tissues (BAT. We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS diet in combination with time restricted feeding (TRF to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver.

  9. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 3

    International Nuclear Information System (INIS)

    Simon, O.; Wilke, A.; Bergner, H.

    1984-01-01

    Mal rats received during a 8 days experimental feeding period diets with different contents in glutamic acid. The daily feed intake was restricted to the energy maintenance level of 460 kJ/kg/sup 0.75/. The diet contained a mixture of L-amino acids corresponding to the pattern of egg protein except glutamic acid. Glutamic acid was added successively at 10 levels (0 to 14.8 % of dry matter) and the resulting diets were fed to groups of 4 animals each. At the end of the experimental feeding period 14 C- and 15 N-labelled glutamic acid were applied by intragastric infusion. CO 2 and 14 CO 2 excretion was measured during the following 4 hours and the urinary N and 15 N excretion during the following 24 hours. The CO 2 excretion decreased from 53 to 44 mmol CO 2 /100g body weight with increasing levels of dietary glutamic acid. This change seems to result from the increasing proportion of amino acids as an energetic fuel. While the amount of oxidized glutamic acid increased with increasing supplements of glutamic acid the relative 14 CO 2 excretion decreased from 57 to 48 % of the applied radioactivity. The urinary 15 N excretion during 24 hours was 31 % of the given amount of 15 N if no glutamic acid was included in the diet. This proportion increased successively up to 52 % in the case of the highest supply of glutamic acid. Because the total N excretion increased at the same extent as the 15 N excretion a complete mixing of the NH 2 groups resulting from glutamic acid due to desamination with the ammonia pool was assumed. No correlation between glutamic acid content of the diet and specific radioactivity of CO 2 or atom-% 15 N excess of urinary N was observed. (author)

  10. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  11. Development of jaw muscles' function in rats fed a kneaded diet

    OpenAIRE

    Koichi, IKEDA; Department of Orthodontics, Kagoshima University Dental School

    1998-01-01

    To clarify the effect of chewing foods on the development of jaw muscles' function, 41 Wister male rats were divided into the solid (group S, n=20) and the kneaded (group K, n=21) diet groups at 16 days of age and fed their respective diets till the end of the experiment. At 5, 8 and 11 weeks of age, electromyograms of the masseter (Ma), medial pterygoid (Mp), temporal (Tm) and digastric muscles (Di) were recorded when both groups intook and chewed the solid diet. Results indicated that : 1) ...

  12. Roles of Caloric Restriction, Ketogenic Diet and Intermittent Fasting during Initiation, Progression and Metastasis of Cancer in Animal Models: A Systematic Review and Meta-Analysis

    OpenAIRE

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    Background The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Methods Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensivel...

  13. Assessment of the haematological indices of albino rats fed diets ...

    African Journals Online (AJOL)

    suggest that diet supplementation with 10% jackfruit bulb or the seed-bulb blend is likely to provide some anti- anaemic ... Most of the available nutrition reports ..... J. Biol. Chem. Sci., 6(4): 1905-1909. DOI: 10.4314/ijbcs.v6i4.43. Donaldson MS. 2004. Nutrition and cancer: A review of the evidence for an anti-cancer diet.

  14. Measurement of S-nitrosylated Proteins in Tissues of Rats Fed Diets with Differing Levels of Nitrite

    Science.gov (United States)

    2011-12-01

    in tissue samples provided by Dr. Atkins . Overall, there were 4 groups of rats (1-control; 2-low nitrite/nitrate diet for 7 days; 3-low N/N diet ...DMPO) Measurement of S-nitrosylated Proteins in Tissues of Rats Fed Diets with Differing Levels of Nitrite Dr. Valerian Kagan University of...3 Introduction: According to the work accomplished by Dr. James Atkins at Walter Reed Army Institute of Research

  15. Strain differences among rats in response to Remington iodine-deficient diets

    International Nuclear Information System (INIS)

    Okamura, K.; Taurog, A.; Krulich, L.

    1981-01-01

    Male rats of five different strains (Simonsen albino, Wistar, Long-Evans, Holtzman Sprague-Dawley, and Charles River Sprague-Dawley) were tested for their response to the U.S. Biochemical Corp. Remington low iodine diet containing 15-18 microgram I/kg. Measurements made after the diet had been fed for 28-30 days indicated that Simonsen albino and Wistar strains consistently showed the greatest response, based on degree of thyroid enlargement, depletion of thyroidal iodine, reduction in serum T4, and elevation of serum TSH. Long-Evans and Holtzman Sprague-Dawley rats responded relatively poorly to the low iodine diet. One experiment included female rats, and the limited data suggested that within a given strain there was no significant sex difference. With more prolonged feeding (84 days), the difference between a rapidly responding strain (Simonsen albino) and a more slowly responding strain (Holtzman Sprague-Dawley) was not so marked. Our results indicate that given sufficient time and a diet sufficiently low in iodine, even a more slowly responding strain will ultimately develop signs of extreme iodine deficiency. However, it is inconvenient and expensive to maintain rats on a Remington low iodine diet for 3 months, and studies on the effect of severe iodine deficiency are much more rapidly performed using a rapidly responding strain such as the Simonsen albino. Our observation that rats of different strains differ markedly in their responses to an iodine-deficient diet suggests that hereditary factors play an important role in this response

  16. Toxicity and carcinogenicity of acidogenic or alkalogenic diets in rats; effects of feeding NH4Cl, KHCO3 or KCl

    NARCIS (Netherlands)

    Lina, B.A.R.; Kuijpers, M.H.M.

    2004-01-01

    The effects of diet-induced acid-base disturbances were examined in 4-week, 13-week and 18-month toxicity studies, and in a 30-month carcinogenicity study. Rats were fed a natural ingredient diet (controls), supplemented with 2% or 4% KHCO3 (base-forming diets), or with 1% or 2.1% NH4Cl

  17. Effects of cafeteria diet and high fat diet intake on anxiety, learning and memory in adult male rats.

    Science.gov (United States)

    Pini, Renata Tavares Beschizza; Ferreira do Vales, Lucas Duarte Manhas; Braga Costa, Telma Maria; Almeida, Sebastião Sousa

    2017-09-01

    The effects of cafeteria and high fat diets were investigated on animal models of behavior. Male Wistar rats were treated with Control (C), Cafeteria (CD) and High Fat (FD) diets and tested in the Elevated Plus-Maze (EPM) and Morris Water Maze (MWM) procedures. Body weight, length, abdominal circumference, retroperitoneal and epididymal adipose tissues were recorded. Physical parameters, weight of tissues, EPM, and MWM data were subjected to ANOVA followed by Newman-Keuls test (P < 0.05). There were no differences on weight and length parameters between CD and C rats up to 98 days of age. However, abdominal circumferences were higher in CD as compared to C at 35 and 70 days of age, respectively, the 5th and the 7th weeks. FD presented lower measures of weight and abdominal circumference; nevertheless there was an increase on those parameters at the end of the nutritional treatment. Even without an apparent weight gain of CD and FD these animals presented a greater accumulation of retroperitoneal and epididymal adipose tissues. In addition, CD and FD demonstrated behaviors that can suggest lower anxiety. CD showed a better learning performance and FD showed better recall of previous learned information in the memory retention test. According to those data it was concluded that hypercaloric diet ingestion was capable of triggering metabolic alterations and possibly lowering anxiety associated to learning or memory improvement on a spatial task.

  18. Comparison of hydrogenated vegetable shortening and nutritionally complete high fat diet on limited access-binge behavior in rats

    OpenAIRE

    Davis, Jon F.; Melhorn, Susan J.; Heiman, Justin U.; Tschöp, Matthias H.; Clegg, Deborah J.; Benoit, Stephen C.

    2007-01-01

    Previous studies have suggested that intermittent exposure to hydrogenated vegetable shortening yields a binge/compensate pattern of feeding in rats. The present study was designed to assess whether rats would exhibit similar patterns of intake when given intermittent access to a nutritionally complete high-fat diet. Four groups of rats received varying exposure to either hydrogenated vegetable shortening or high-fat diet for 8 consecutive weeks. Animals were given daily and intermittent acce...

  19. Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats.

    Directory of Open Access Journals (Sweden)

    Emmanuel Somm

    Full Text Available Poor fetal growth, also known as intrauterine growth restriction (IUGR, is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious "metabolic programming." In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN. Physiological (glucose and insulin tolerance, morphometric (automated tissue image analysis and transcriptomic (quantitative PCR approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.

  20. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics.

    Science.gov (United States)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens; Nielsen, Dennis Sandris; Krych, Łukasz; Kanter, Jenny E; Bornfeldt, Karin E; Kihl, Pernille; Buschard, Karsten; Josefsen, Knud; Fels, Johannes Josef; Mortensen, Alan; Christoffersen, Berit; Kirk, Rikke Kaae; Hansen, Axel Kornerup

    2018-04-03

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/- ) rats fed either a Western diet or a low-fat control diet with or without gluten, which is known to promote gut microbiota changes, until 20 weeks of age. We hypothesized that the manifestation of atherosclerosis would be more severe in Apoe -/- rats fed the Western high-fat diet, as compared with rats fed the low-fat diet, and that atherosclerosis would be accelerated by gluten. Both Western diet-feeding and gluten resulted in significant changes in gut microbiota, but the microbiota impact of gluten was transient. Compared with Apoe -/- rats fed a low-fat diet, Western diet-fed Apoe -/- rats were heavier and became glucose intolerant with increased levels of oxidative stress. They developed early fatty streak lesions in their aortic sinus, while there was no evidence of atherosclerosis in the thoracic aorta. No conclusions could be made on the impact of gluten on atherosclerosis. Although Western diet-fed Apoe -/- rats exhibited a more human-like LDL dominated blood lipid profile, signs of obesity, type 2 diabetes and cardiovascular disease were modest.

  1. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep.

    Science.gov (United States)

    Kim, Youngsoo; Laposky, Aaron D; Bergmann, Bernard M; Turek, Fred W

    2007-06-19

    Recent studies indicate that chronic sleep restriction can have negative consequences for brain function and peripheral physiology and can contribute to the allostatic load throughout the body. Interestingly, few studies have examined how the sleep-wake system itself responds to repeated sleep restriction. In this study, rats were subjected to a sleep-restriction protocol consisting of 20 h of sleep deprivation (SD) followed by a 4-h sleep opportunity each day for 5 consecutive days. In response to the first 20-h SD block on day 1, animals responded during the 4-h sleep opportunity with enhanced sleep intensity [i.e., nonrapid eye movement (NREM) delta power] and increased rapid eye movement sleep time compared with baseline. This sleep pattern is indicative of a homeostatic response to acute sleep loss. Remarkably, after the 20-h SD blocks on days 2-5, animals failed to exhibit a compensatory NREM delta power response during the 4-h sleep opportunities and failed to increase NREM and rapid eye movement sleep times, despite accumulating a sleep debt each consecutive day. After losing approximately 35 h of sleep over 5 days of sleep restriction, animals regained virtually none of their lost sleep, even during a full 3-day recovery period. These data demonstrate that the compensatory/homeostatic sleep response to acute SD does not generalize to conditions of chronic partial sleep loss. We propose that the change in sleep-wake regulation in the context of repeated sleep restriction reflects an allostatic process, and that the allostatic load produced by SD has direct effects on the sleep-wake regulatory system.

  2. Honey improves lipid profile of diet-induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Titis Nurmasitoh

    2016-04-01

    Honey supplementation was able to reduce the blood levels of total cholesterol, triglycerides, and LDL. Honey supplementation accompanied by non-cholesterol feeds could more effectively lower total cholesterol, triglycerides, and LDL serum levels in Wistar rats.

  3. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats.

    Science.gov (United States)

    Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A

    2011-03-01

    Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Treatment of young rats with cholestyramine or a hypercholesterolemic diet does not influence the response of serum cholesterol to dietary cholesterol in later life

    NARCIS (Netherlands)

    Beynen, A.C.; Bruijne, J.J. de; Katan, M.B.

    1985-01-01

    Groups of 10 female Wistar rats (aged 4 weeks) were fed for 29 days either a low-cholesterol commercial diet, a commercial diet containing 2% (w/w) cholesterol, 0.5% cholate and 5% olive oil or a diet containing 2% cholestyramine. The rats were then fed the low-cholesterol commercial diet for the

  5. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    2010-01-01

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  6. Brain lipids in rats fed a diet supplemented with hen eggs of modified lipid content

    Directory of Open Access Journals (Sweden)

    Hodžić Aida

    2012-01-01

    Full Text Available The aim of this study was to research the impact of a diet supplemented with egg yolks of modified content, having in mind the type of fat added to the laying hens diet, on the brain lipids and their fatty acid composition in rats. During four weeks of the experiment, 64 Wistar rats, divided into four groups of 16 animals each (eight animals of both sexes, were fed the commercial rat feed (group C, or the feed that contained 70% of the commercial rat feed and 30% of freshly boiled yolks from the eggs originating from laying hens fed with 3% fish oil (group F, 3% palm olein (group P or 3% lard (group L. Concentration and content of total lipids and total cholesterol, as well as the fatty-acid composition of the total brain lipids were determined in the lipid extracts of the rats brains. Under unfavourable conditions, which in our case could be high dietary intake of the total fat due to egg yolk addition, the amount of total fat in the brain tissue or the mass of the organ itself can be changed. Applied dietary treatments could also influence the level of de novo synthesis of total cholesterol in the rat brain. High dietary fat intake, as well as the fat quality regarding its fatty acid composition, appear to be able to significantly influence the fatty acid profile of the total brain lipids in adult rats, whereas the level and quality of the changes also depend on sex.

  7. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  8. Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats

    DEFF Research Database (Denmark)

    Caillaud, Corinne; Mechta, Mie; Ainge, Heidi

    2015-01-01

    Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose leve...

  9. Diet-induced modification of the acid-base balance in rats: toxicological implications

    NARCIS (Netherlands)

    Lina, Berend Adriaan Rene

    2004-01-01

    The composition of the diet can strongly affect the acid-base balance of the body. The studies described in this thesis deal with toxicological implications of dietary modulation of the acid-base balance in rats. These studies included 4-wk, 13-wk and 18-month toxicity studies, and a 30-month

  10. Protective effects of some fruit juices with low-fat diet on rat testis ...

    African Journals Online (AJOL)

    Protective effects of some fruit juices with low-fat diet on rat testis damaged by carbon tetrachloride: A genetic and histological study. Medhat R. Rehan, Amina M. G. Zedan, Samah A. El-Hashash, Mona A. Farid, Gehan A. El-Shafie ...

  11. Effect of Cassava based diet on hepatic proteins in albino rats fed ...

    African Journals Online (AJOL)

    Michael Horsfall

    oil hepatotoxicity in albino rats by feeding diet contaminated with various concentrations of crude oil mixed with. 20% gari to determine the protective effect of gari. The hepatic enzymes aspartate amino transferase (AST), alanine amino transferase (ALT), gamma glutamyl transpeptidase (GGT) and alkaline phosphatase ...

  12. Subchronic toxicity experiment with rats fed a diet containing ergotamine-tartrate

    NARCIS (Netherlands)

    Speijers GJA; Wester PW; van Leeuwen FXR; de la Fonteyne-Blankestijn LJJ; Post W; van Egmond HP; Sizoo EA; Janssen GB

    1993-01-01

    In a subchronic toxicity study 4 groups of 10 Sprague-Dawley rats/group/sex received 0, 5, 20 and 80 mg ergotamine tartrate (EAT)/kg diet respectively during 13 weeks. Food intake and water intake were measured twice a week. Body weight gain was recorded weekly. After 7 weeks and 12 weeks urine

  13. Pattern of fecal endogenous nitrogen excretion in rats fed leguminous diets.

    Science.gov (United States)

    Domene, S M; de Oliveira, A C

    1996-02-01

    The main objective of this investigation was to establish the pattern in relation to time of the rat fecal endogenous nitrogen excretion by continuous feeding of balanced diets containing common peas, cowpeas or common beans as the protein sources (10% protein), labeled with 1.000 atoms % of 15N-excess. Nitrogen of endogenous origin was measured by the isotope dilution method in a 6-day experiment. Fecal excretion of endogenous nitrogen of rats fed the leguminous diets was roughly twice that of rats fed the non-protein diet (88 mg, 42 mg), and the excretion of total fecal nitrogen did not differ among leguminous diets. From the third to the sixth day of the experiment, the endogenous nitrogen excretion, either as a percentage of quantity (mg), attained a statistically non different value (p > 0.05). A common pattern of excretion of fecal endogenous nitrogen as a function of time was expressed by a strong negative (r nitrogen did not show a common pattern as a function of time for all experimental diets.

  14. EFFECT OF HIGH FAT DIETS ON INTESTINAL MICROFLORA AND SERUM CHOLESTEROL IN RATS.

    Science.gov (United States)

    GRABER, C D; O'NEAL, R M; RABIN, E R

    1965-01-01

    Graber, C. D. (Baylor University College of Medicine, Houston, Tex.), R. M. O'Neal, and E. R. Rabin. Effect of high fat diets on intestinal microflora and serum cholesterol in rats. J. Bacteriol. 89:47-51. 1965.-Differential bacterial counts of feces and total plasma cholesterol determinations were performed on 60 Wistar rats fed several high lipid diets for a period of approximately 6 months. Fecal flora remained relatively stable irrespective of diet, but cholesterol levels rose in animals fed butter and sodium cholate. The six most commonly cultured organisms in all diets were enterococci, Proteus, lactobacilli, Escherichia coli, Staphylococcus aureus, and other micrococci. No enteric pathogens which did not ferment lactose or fermented it slowly were grown. Fungi and yeasts were rare. Aerobes generally outnumbered anaerobes in proportions which were sometimes as high as 300:1. Clostridium perfringens isolations were consistently high in animals given the butter diets, particularly when sodium cholate was added. Evidence is reviewed which indicates that this organism may play a role in bile salt and cholesterol metabolism. This experiment would seem to demonstrate that differences in plasma-cholesterol levels among the various dietary groups of rats were the result of dietary factors rather than alteration in intestinal flora.

  15. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seppen, Jurgen, E-mail: j.seppen@amc.uva.nl

    2012-11-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  16. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    International Nuclear Information System (INIS)

    Seppen, Jurgen

    2012-01-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  17. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  18. Ketogenic diet-fed rats have increased fat mass and phosphoenolpyruvate carboxykinase activity.

    Science.gov (United States)

    Ribeiro, Letícia C; Chittó, Ana L; Müller, Alexandre P; Rocha, Juliana K; Castro da Silva, Mariane; Quincozes-Santos, André; Nardin, Patrícia; Rotta, Liane N; Ziegler, Denize R; Gonçalves, Carlos-Alberto; Da Silva, Roselis S M; Perry, Marcos L S; Gottfried, Carmem

    2008-11-01

    The ketogenic diet (KD), characterized by high fat and low carbohydrate and protein contents, has been proposed to be beneficial in children with epilepsy disorders not helped by conventional anti-epileptic drug treatment. Weight loss and inadequate growth is an important drawback of this diet and metabolic causes are not well characterized. The aim of this study was to examine body weight variation during KD feeding for 6 wk of Wistar rats; fat mass and adipocyte cytosolic phosphoenolpyruvate carboxykinase (PEPCK) activity were also observed. PEPCK activity was determined based on the [H(14)CO(3) (-)]-oxaloacetate exchange reaction. KD-fed rats gained weight at a less rapid rate than normal-fed rats, but with a significant increment in fat mass. The fat mass/body weight ratio already differed between ketogenic and control rats after the first week of treatment, and was 2.4 x higher in ketogenic rats. The visceral lipogenesis was supported by an increment in adipocyte PEPCK, aiming to provide glycerol 3-phosphate to triacylglycerol synthesis and this fat accumulation was accompanied by glucose intolerance. These data contribute to our understanding of the metabolic effects of the KD in adipose tissue and liver and suggest some potential risks of this diet, particularly visceral fat accumulation.

  19. Rosiglitazone Improves Insulin Sensitivity and Baroreflex Gain in Rats with Diet-Induced Obesity

    Science.gov (United States)

    Zhao, Ding; McCully, Belinda H.

    2012-01-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity. PMID:22815534

  20. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring.

    Science.gov (United States)

    Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosarío Noemí; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Ouro, Daniel; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring.

  1. [Hematologic indices in different age wistar rats, receiving a balanced semi-synthetic vivary diet].

    Science.gov (United States)

    Mustafina, O K; Trushina, É N; Shumakova, E A; Arianova, E A; Tyshko, N V; Pashorina, V A

    2013-01-01

    This paper presents the results of research of hematologic parameters of male Wistar rats 1, 2, 3, 4 and 6 months age, which received a balanced semisynthetic diet. Studies were carried out at the Hematology analyzer Coulter AC TTM 5 diff OV (Beckman Coulter, USA) with the program, specially developed for the study of rats' blood. According to the results of research, was found a statistically significant increased of the number of red blood cells; the concentration of hemoglobin and hematocrit in animals 2-6 months compared with rats, 1 month age. With age, there is a decrease of the mean corpuscular volume and the mean corpuscular hemoglobin. The number of white blood cells in rats of 2-4 months age are significantly higher than in rats of 1 and 6 months age. The number of neutrophils and eosinophils in rats of to the 2 month are of is lover than once in rats of 1 month age, and increases values in animals of 6 months age. The number of lymphocytes has the highest value in the rat of 2-3 months age and the minimum value is that in animals of 6 months age. With increasing of the age of the animals the reduction of contents of monocytes was noted. The content of platelets and the platelet crit in the blood of rats 6 months age is statistically greater than those in 1-month age animals. The average volume of platelet is the stable index, with age does not change.

  2. Consumption of diets high in prebiotic fiber or protein during growth influences the response to a high fat and sucrose diet in adulthood in rats

    Directory of Open Access Journals (Sweden)

    Taylor Kim

    2010-09-01

    Full Text Available Abstract Background Early dietary exposure can influence susceptibility to obesity and type 2 diabetes later in life. We examined the lasting effects of a high protein or high prebiotic fiber weaning diet when followed by a high energy diet in adulthood. Methods At birth, litters of Wistar rats were culled to 10 pups. At 21 d pups were weaned onto control (C, high prebiotic fiber (HF or high protein (HP diet. Rats consumed the experimental diets until 14 wk when they were switched to a high fat/sucrose (HFHS diet for 6 wk. Body composition and energy intake were measured and an oral glucose tolerance test (OGTT performed. Blood was analyzed for satiety hormones and tissues collected for real-time PCR. Results Weight gain was attenuated in male rats fed HF from 12 wk until study completion. In females there were early reductions in body weight that moderated until the final two wk of HFHS diet wherein HF females weighed less than HP. Final body weight was significantly higher following the high fat challenge in male and female rats that consumed HP diet from weaning compared to HF. Lean mass was higher and fat mass lower with HF compared to HP and compared to C in males. Energy intake was highest in HP rats, particularly at the start of HFHS feeding. Plasma glucose was higher in HP rats compared to HF during an OGTT. Plasma amylin was higher in HF females compared to C and glucagon-like peptide-1 (GLP-1 was higher in HF rats during the OGTT. Leptin was higher in HP rats during the OGTT. HF upregulated GLUT 5 mRNA expression in the intestine and downregulated hepatic hydroxymethylglutaryl coenzyme A reductase. Male rats fed HP had higher hepatic triglyceride content than C or HF. Conclusion These data suggest that while a long-term diet high in protein predisposes to an obese phenotype when rats are given a high energy diet in adulthood, consumption of a high fiber diet during growth may provide some protection.

  3. Targeting specific nutrient deficiencies in protein-restricted diets: some practical facts in PKU dietary management.

    Science.gov (United States)

    Pimentel, Filipa B; Alves, Rita C; Oliva-Teles, M Teresa; Costa, Anabela S G; Fernandes, Telmo J R; Almeida, Manuela F; Torres, Duarte; Delerue-Matos, Cristina; Oliveira, M Beatriz P P

    2014-12-01

    Among aminoacidopathies, phenylketonuria (PKU) is the most prevalent one. Early diagnosis in the neonatal period with a prompt nutritional therapy (low natural-protein and phenylalanine diet, supplemented with phenylalanine-free amino acid mixtures and special low-protein foods) remains the mainstay of the treatment. Data considering nutrient contents of cooked dishes is lacking. In this study, fourteen dishes specifically prepared for PKU individuals were analysed, regarding the lipid profile and iron and zinc contents. These dishes are poor sources of essential nutrients like Fe, Zn or n-3 fatty acids, reinforcing the need for adequate supplementation to cover individual patients' needs. This study can contribute to a more accurate adjustment of PKU diets and supplementation in order to prevent eventual nutritional deficiencies. This study contributes to a better understanding of nutrient intake from PKU patients' meals, showing the need for dietary supplementation.

  4. Vegetarian, Gluten-Free, and Energy Restricted Diets in Female Athletes

    OpenAIRE

    Lynn Cialdella-Kam; Danielle Kulpins; Melinda M. Manore

    2016-01-01

    Female athletes who follow a diet that fails to meet energy and nutrient needs are at risk for musculoskeletal injuries, menstrual disturbances, and poor sports performance. Common nutritional concerns for the female athlete include low energy availability (EA) (i.e., energy intake from food remaining for metabolic processes after accounting for energy expended during exercise) and inadequate dietary intakes (i.e., not meeting sports nutrition guidelines) of carbohydrates, protein, essential ...

  5. Calorie or Carbohydrate Restriction? The Ketogenic Diet as Another Option for Supportive Cancer Treatment

    OpenAIRE

    Klement, Rainer J.

    2013-01-01

    The author agrees with Champ et al. that calorie reduction (CR) is a good supportive intervention for patients undergoing radiotherapy or chemotherapy. However, for those with cachexia or for those who are at risk for cachexia, CR may be problematic. Additionally, less food consumed means fewer nutrients. For these patients, the author suggests the addition of the ketogenic diet, which could be designed to include high-quality foods and could be combined with anticancer neutraceuticals.

  6. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  7. Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?

    Science.gov (United States)

    Seyfried, Thomas N; Marsh, Jeremy; Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna

    2012-07-01

    Malignant brain cancer persists as a major disease of morbidity and mortality. The failure to recognize brain cancer as a disease of energy metabolism has contributed in large part to the failure in management. As long as brain tumor cells have access to glucose and glutamine, the disease will progress. The current standard of care provides brain tumors with access to glucose and glutamine. The high fat low carbohydrate ketogenic diet (KD) will target glucose availability and possibly that of glutamine when administered in carefully restricted amounts to reduce total caloric intake and circulating levels of glucose. The restricted KD (RKD) targets major signaling pathways associated with glucose and glutamine metabolism including the IGF-1/PI3K/Akt/Hif pathway. The RKD is anti-angiogenic, anti-invasive, anti-inflammatory, and pro-apoptotic when evaluated in mice with malignant brain cancer. The therapeutic efficacy of the restricted KD can be enhanced when combined with drugs that also target glucose and glutamine. Therapeutic efficacy of the RKD was also seen against malignant gliomas in human case reports. Hence, the RKD can be an effective non-toxic therapeutic option to the current standard of care for inhibiting the growth and invasive properties of malignant brain cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats.

    Science.gov (United States)

    Scichilone, John M; Yarraguntla, Kalyan; Charalambides, Ana; Harney, Jacob P; Butler, David

    2016-09-01

    For decades, the ketogenic diet has been an effective treatment of intractable epilepsy in children. Childhood epilepsy is pharmacoresistant in 25-40 % of patients taking the current prescribed medications. Chronic seizure activity has been linked to deficits in cognitive function and behavioral problems which negatively affect the learning abilities of the child. Recent studies suggest the ketogenic diet (KD), a high fat with low carbohydrate and protein diet, has adverse effects on cognition in weanling rats. The diet reduces circulating glucose levels to where energy metabolism is converted from glycolysis to burning fat and generating ketone bodies which has been suggested as a highly efficient source of energy for the brain. In contrast, when weanling rats are placed in an enriched environment, they exhibit increased spatial learning, memory, and neurogenesis. Thus, this study was done to determine if weanling rats being administered a KD in an environmental enrichment (EE) would still exhibit the negative cognitive effects of the diet previously observed. The present study suggests that an altered environment is capable of reducing the cognitive deficits in weanling rats administered a KD. Learning was improved with an EE. The effect of diet and environment on anxiety and depression suggests a significant reduction in anxiety with enrichment rearing. Interestingly, circulating energy substrate levels were increased in the EE groups along with brain-derived neurotrophic factor despite the least changes in weight gain. In light of numerous studies using KDs that seemingly have adverse effects on cognition, KD-induced reductions in excitotoxic events would not necessarily eliminate that negative aspect of seizures.

  9. Vegetarian, Gluten-Free, and Energy Restricted Diets in Female Athletes

    Directory of Open Access Journals (Sweden)

    Lynn Cialdella-Kam

    2016-10-01

    Full Text Available Female athletes who follow a diet that fails to meet energy and nutrient needs are at risk for musculoskeletal injuries, menstrual disturbances, and poor sports performance. Common nutritional concerns for the female athlete include low energy availability (EA (i.e., energy intake from food remaining for metabolic processes after accounting for energy expended during exercise and inadequate dietary intakes (i.e., not meeting sports nutrition guidelines of carbohydrates, protein, essential fatty acids (EFAs, B-vitamins, calcium, iron, and vitamin D. Low EA and the associated nutrient deficiencies are more common in athletes who compete in weight-sensitive sports (i.e., aesthetic, gravitational, and weight category sports because low body fat and mass confer a competitive advantage. Other athletes at risk for energy and nutrient deficits include athletes following a vegetarian or gluten-free diet (GFD. Careful dietary planning can help an athlete meet energy and nutrient needs. This review covers the nutrition issues associated with low EA and special diets (i.e., vegetarian and GFD and describes strategies to help female athletes meet their energy and nutrient needs.

  10. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats

    OpenAIRE

    Mitra, Anaya; Alvers, Kristin M.; Crump, Erica M.; Rowland, Neil E.

    2008-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet con...

  11. Development of a new diet-induced obesity (DIO) model using Wistar lean rats.

    Science.gov (United States)

    Kimura, Yoriko; Yamada, Atsushi; Takabayashi, Yoko; Tsubota, Tsunehiko; Kasuga, Hisao

    2017-11-17

    Obesity is an increasingly severe socioeconomic health issue worldwide. Rodents with diet-induced obesity (DIO) are widely used as models of obesity. The main aim of this study was to establish a DIO model using Wistar lean (+/+ or +/-) rats by feeding a high-fat diet (45 kcal% fat) to dams during the latter term of gestation and the lactation period. A second aim was to examine the effect of post-weaning nutrition independently of maternal nutrition. Some pups (group D) were fed the same high-fat diet after weaning, while others (group C) were fed a chow diet after weaning. In the control groups, the dams were fed only the chow diet and the pups were fed either the chow diet (group A) or high-fat diet (group B) after weaning. Between 16-21 weeks of age, group D showed the heaviest body weight and visceral adipose tissue weight among groups, in addition to glucose intolerance and high concentrations of glucose and cholesterol in plasma. Group B showed mild obesity with dysfunctions in glucose and lipid metabolism. Interestingly, group C showed mild obesity and impaired glucose tolerance, similar to the phenotype of group B. In summary, the high-fat diet challenge of dams during gestation and lactation caused an increase in adipose tissue weight and abnormalities of glucose and lipid metabolism in their adult offspring. Our results suggest the importance of both maternal and post-weaning nutrition for DIO production and provide useful DIO models.

  12. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats

    Directory of Open Access Journals (Sweden)

    Arzu Kabasakal Cetin

    2015-12-01

    Full Text Available Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old were mated and maintained on either a chow diet with 20% casein (n = 6 as the control group (C, or a low quality protein diet with 20% wheat gluten (n = 7 as the experimental group (WG through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring’s plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring’s plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development.

  13. Antiobesity effect of Safoof Mohazzil, a polyherbal formulation, in cafeteria diet induced obesity in rats.

    Science.gov (United States)

    Gupta, Pooja; Mehla, Jogender; Gupta, Yogendra Kumar

    2012-11-01

    Obesity is reaching epidemic proportions all over the world yet it lacks adequate treatment. Most of the drugs have failed either due to ineffectiveness or adverse effects. Complementary and alternative system of medicine is being used since ancient times. However, many of them have not been tested for efficacy and safety using modern scientific methods. Therefore, the antiobesity effect of Safoof Mohazzil, a polyherbal formulation, was evaluated in cafeteria diet induced obesity in female Sprague Dawley rats. Animals weighing 100-150 g were divided into four groups (n = 8) i.e. standard pellet diet, cafeteria diet control, cafeteria diet + Safoof Mohazzil and standard pellet diet plus Safoof Mohazzil. The formulation was administered orally at a dose of 1 g/kg/day for 14 weeks. At the end of study, cafeteria diet significantly increased body weight, Lee's index, lipid profile (cholesterol and triglycerides), insulin and leptin levels as compared to standard pellet diet control group. Fourteen week treatment with Safoof Mohazzil significantly prevented the increase in body weight, Lee's index, lipid profile, insulin and leptin levels as compared to cafeteria diet control group without affecting food and water intake. Safoof Mohazzil had no adverse effect on hepatic transaminases, locomotor activity and motor coordination. The study provides evidence for antiobesity effect of Safoof Mohazzil.

  14. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. in rats fed a high-cholesterol diet.

    Science.gov (United States)

    Cho, Il Jin; Lee, Chan; Ha, Tae Youl

    2007-02-21

    Soluble fibers isolated from the seeds of Cassia tora Linn. (SFC) have attracted considerable attention in recent years due to their phenomenal rheological behavior. In this study were investigated the effects of SFC on lipid metabolism. Male Sprague-Dawley rats were fed one of three experimental diets, a normal diet, a high-cholesterol diet, or a high-cholesterol diet with 5% SFC, for 5 weeks. The serum concentration of total cholesterol in rats fed SFC was 27% lower (p < 0.05) compared to that of the control group, but the serum high-density lipoprotein cholesterol level was increased in the SFC group. Liver total cholesterol and triglyceride levels were reduced significantly (p < 0.05) in rats fed the SFC diet. In addition, fecal bile acid and lipid excretion was significantly increased by SFC consumption. These results indicate that SFC enhances fecal lipid excretion and may cause a reduction in serum and hepatic lipid concentrations in rats.

  15. Insulin Resistance Induced by a High Fructose Diet in Rats Due to Hepatic Disturbance

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.; Kelada, N.A.H.

    2013-01-01

    High consumption of dietary fructose is accused of being responsible for the development of the insulin resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Therefore, this experiment was designed to evaluate the role of high fructose diet on metabolic syndrome in rats. The experimental animals were divided into two batches. The control batch received a control diet; the second batch was given a high-fructose diet as the sole source of carbohydrate. The rats were continued on the dietary regimen for 1, 2 and 3 months. After the experimental periods, fructose fed rats groups showed significant elevations in the levels of glucose, insulin sensitivity, liver function tests, nitric oxide and tumor necrosis factor-α when compared to their corresponding values in the rats fed normal diet. Moreover, liver lipid peroxidation [thiobarbituric acid-reactive substance (TBARS) and lipid hydroperoxide concentrations were remarkably increased in high-fructose-fed rats according to the time of administration (1, 2 and 3 months). On the other hand, the activities of enzymatic antioxidants (glutathione reductase and glutathione peroxidase) and glyoxalase I and II were significantly declined in this group. In conclusion, high fructose feeding raises liver dysfunction and causes the features of metabolic syndrome (insulin resistance) in rats dependent on the time of administration due to different mechanisms which were discussed in this work according to available recent researches

  16. Profound Haemaological Changes In Rats Fed On Different Diet ...

    African Journals Online (AJOL)

    At the end of six weeks feeding period, blood samples were obtained and total leukocyte count was done. The results of total court show that animals fed in protein supplemented diet had a profound increase in their leukocyte court when compered with the control. The study shows that specific dietary elements can induce ...

  17. Effects of Short-Term Carbohydrate Restrictive and Conventional Hypoenergetic Diets and Resistance Training on Strength Gains and Muscle Thickness

    Directory of Open Access Journals (Sweden)

    Claudia M. Meirelles, Paulo S.C. Gomes

    2016-12-01

    Full Text Available Hypoenergetic diets and resistance training (RT have been suggested to be important components of weight loss strategy programs; however, there is little evidence as to the chronic effects of different macronutrient compositions on strength performance and muscle mass with RT. The purpose of this study was to compare the effects of carbohydrate restrictive (CRD and conventional (CONV diets combined with RT on strength performance and muscle thicknesses in overweight and obese participants already involved in RT programs. Twenty-one volunteers engaged in an eight-week progressive RT program three times per week were assigned to a CRD (< 30 g carbohydrate; n = 12; 30.7 ± 3.9 km·m-2 or a CONV (30% energy deficit; 55%, 15% and 30% energy from carbohydrate, protein and fat, respectively; n=9; 27.7±2.5 km·m-2. Method: At baseline and week 8, the participants underwent body composition assessment by anthropometry, measurement of muscle thickness by ultrasound, and three strength tests using isotonic equipment. Both groups had similar reductions in body mass and fat mass as well as maintenance of fat-free mass. Muscle strength increased 14 ± 6% in the CRD group (p = 0.005 and 19 ± 9% in the CONV group (p = 0.028, with no significant differences between the groups. No significant differences were detected in muscle thicknesses within or between the groups. In conclusion, hypoenergetic diets combined with RT led to significant increases in muscle strength and were capable of maintaining muscle thicknesses in the upper and lower limbs of overweight and obese participants, regardless of the carbohydrate content of the diets.

  18. Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat

    Directory of Open Access Journals (Sweden)

    Gerbaix Maude

    2012-07-01

    Full Text Available Abstract Background The relationships between fat mass and bone tissue are complex and not fully elucidated. A high-fat/high-sucrose diet has been shown to induce harmful effects on bone micro architecture and bone biomechanics of rat. When such diet leads to obesity, it may induce an improvement of biomechanical bone parameters in rodent. Here, we examined the impact of a high-fat/high-sucrose diet on the body composition and its resulting effects on bone density and structure in male rats. Forty three Wistar rats aged 7 months were split into 3 groups: 1 sacrificed before diet (BD, n = 14; 1 subjected to 16 weeks of high-fat/high-sucrose diet (HF/HS, n = 14; 1 subjected to standard diet (Control, n = 15. Abdominal circumference and insulin sensitivity were measured and visceral fat mass was weighed. The bone mineral density (BMD was analyzed at the whole body and tibia by densitometry. Microcomputed tomography and histomorphometric analysis were performed at L2 vertebrae and tibia to study the trabecular and cortical bone structures and the bone cell activities. Osteocalcin and CTX levels were performed to assess the relative balance of the bone formation and resorption. Differences between groups have been tested with an ANOVA with subsequent Scheffe post-hoc test. An ANCOVA with global mass and global fat as covariates was used to determine the potential implication of the resulting mechanical loading on bone. Results The HF/HS group had higher body mass, fat masses and abdominal circumference and developed an impaired glucose tolerance (p  Conclusions The HF/HS diet had induced obesity and impaired glucose tolerance. These changes resulted in an improvement of quantitative, qualitative and metabolic bone parameters. The fat mass increase partly explained these observations.

  19. Type of diet modulates the metabolic response to sleep deprivation in rats

    Directory of Open Access Journals (Sweden)

    Martins Paulo JF

    2011-12-01

    Full Text Available Abstract Background Evidence suggests that sleep loss is associated with an increased risk of obesity and diabetes; however, animal models have failed to produce weight gain under sleep deprivation (SD. Previous studies have suggested that this discrepancy could be due to more extreme SD conditions in experimental animals, their higher resting metabolic rate than that of humans, and the decreased opportunity for animals to ingest high-calorie foods. Thus, our objective was to determine whether diets with different textures/compositions could modify feeding behavior and affect the metabolic repercussions in SD in rats. Methods Three groups of male rats were used: one was designated as control, one was sleep deprived for 96 h by the platform technique (SD-96h and one was SD-96h followed by a 24-h recovery (rebound. In the first experiment, the animals were fed chow pellets (CPs; in the second, they received high-fat diet and in the third, they were fed a liquid diet (LD. Results We observed that SD induces energy deficits that were related to changes in feeding behavior and affected by the type of diet consumed. Regardless of the diet consumed, SD consistently increased animals' glucagon levels and decreased their leptin and triacylglycerol levels and liver glycogen stores. However, such changes were mostly avoided in the rats on the liquid diet. SD induces a wide range of metabolic and hormonal changes that are strongly linked to the severity of weight loss. Conclusions The LD, but not the CP or high-fat diets, favored energy intake, consequently lessening the energy deficit induced by SD.

  20. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    Science.gov (United States)

    Ruskin, David N; Kawamura, Masahito; Masino, Susan A

    2009-12-23

    The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.

  1. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    2009-12-01

    Full Text Available The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow or ketogenic diet (79% fat ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.

  2. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle

    DEFF Research Database (Denmark)

    Larsen, Lea Hüche; Sandø-Pedersen, Sofie; Ørstrup, Laura Kofoed Hvidsten

    2017-01-01

    Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could...... by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32......% of these changes, but with no distinct pattern as to which genes were rescued.Skeletal muscle taurine content in LP-Tau offspring was increased, but no changes in mRNA levels of the taurine synthesis pathway were observed. Taurine transporter mRNA levels, but not protein levels, were increased by LP diet...

  3. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  4. Fibrogenic response of hepatic stellate cells in ovariectomised rats exposed to ketogenic diet.

    Science.gov (United States)

    Bobowiec, R; Wojcik, M; Jaworska-Adamu, J; Tusinska, E

    2013-02-01

    The discrepancy about the role of estrogens in hepatic fibrogenesis and lack of studies addressed of ketogenic diet (KD) on hepatic stellate cells (HSC), prompted us to investigate the activity of HSC in control, KD- and thioacetamide (TAA)-administrated rats with different plasma concentration of estradiol (E2). HSC were isolated by the collagenase perfusion methods and separated by the Percoll gradient centrifugation. After the 4(th) and 8(th) day of incubation, lysates of HSC and the media were collected for further analysis. The HSC derived from KD-rats released remarkably more transforming growth factor (TGF)-β1 than cells obtained from animals fed with a standard diet. The ovariectomy of KD-rats markedly intensified the secretion of this fibrogenic cytokine on the 8(th) day of incubation (201.33 ±1 7.15 pg/ml). In HSC of rats exposed to E2, the TGF-β1 concentration did not exceed 157 ± 34.39 pg/ml. In respect to the collagen type I, the HSC obtained from ovariectomised KD-rats released an augmented amount of this ECM protein after the 8(th) day of culture (1.83 ± 0.14 U/ml). In the same time, higher quantities of ASMA appeared in the KD rats (1.41 ± 0.3 pg/mg protein). Exposition of rats to E2 did not markedly decrease the amount of ASMA. In summary, KD was able to induce morphological and functional changes in HSC, especially derived from rats deprived of ovarian estrogens. However, the preservation of E2 in ovariectomised rats didn't substantially alter the activation of HSC.

  5. Cassava Diets and Performance of Rats over Two Reproductive ...

    African Journals Online (AJOL)

    ... growth on the sundried chips, rather than influence of its hydrocyanic acid content. Histopathological examination of thyroid tissue revealed that thyroidal epithetial heights were significantly (P<0.05) lower in the second litter offspring of the fresh cassava group than in others. Alopecia was also observed in these rats.

  6. Effects of high-fat diet and fructose-rich diet on obesity, dyslipidemia and hyperglycemia in the WBN/Kob-Leprfa rat, a new model of type 2 diabetes mellitus.

    Science.gov (United States)

    Namekawa, Junichi; Takagi, Yoshiichi; Wakabayashi, Kaoru; Nakamura, Yuki; Watanabe, Ayaka; Nagakubo, Dai; Shirai, Mitsuyuki; Asai, Fumitoshi

    2017-06-10

    Obesity and type 2 diabetes mellitus (T2DM) are occurring at epidemic-like rates, and these epidemics appear to have emerged largely from changes in daily diet. In the present study, we compared effects of high-fat diet (HFD) and fructose-rich diet (FRD) in WBN/Kob-Lepr fa (WBKDF) rats that spontaneously develop obesity, dyslipidemia and T2DM. After a 4-week feeding of each diet, WBKDF-HFD and WBKDF-FRD rats exhibited aggravated obesity and dyslipidemia compared with WBKDF rats fed standard diet (STD). In contrast, hyperglycemia developed in WBKDF-STD rats was significantly inhibited in WBKDF-FRD rats, but not in WBKDF-HFD rats. The present study demonstrated that the 4-week feeding of HFD and FRD caused diet-induced obesity with a distinct phenotype in the glucose metabolism in WBKDF rats.

  7. Energy dense, protein restricted diet increases adiposity and perturbs metabolism in young, genetically lean pigs.

    Directory of Open Access Journals (Sweden)

    Kimberly D Fisher

    Full Text Available Animal models of obesity and metabolic dysregulation during growth (or childhood are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12, containing 15% tallow, 35% refined sugars and 9.1-12.9% crude protein, or a control corn-based diet (n = 11 with 12.2-19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001 energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT; blood glucose increased (P<0.05 in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01, even 4 h post-challenge. During OGTT, glucose area under the curve (AUC was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001. Chronic HED intake increased (P<0.05 subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7 was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs.

  8. Vitamin B deficiencies in a critically ill autistic child with a restricted diet.

    Science.gov (United States)

    Baird, J Scott; Ravindranath, Thyyar M

    2015-02-01

    An 11-year-old male with autism became less responsive and was hospitalized with hepatomegaly and liver dysfunction, as well as severe lactic acidosis. His diet for several years was self-limited exclusively to a single "fast food"-a particular type of fried chicken-and was deficient in multiple micronutrients, including the B vitamins thiamine and pyridoxine. Lactic acidosis improved rapidly with thiamine; 2 weeks later, status epilepticus-with low serum pyridoxine-resolved rapidly with pyridoxine. Dietary B vitamin deficiencies complicated the care of this critically ill autistic child and should be considered in this setting. © 2014 American Society for Parenteral and Enteral Nutrition.

  9. A Canola Oil-Supplemented Diet Prevents Type I Diabetes-Caused Lipotoxicity and Renal Dysfunction in a Rat Model.

    Science.gov (United States)

    Cano-Europa, Edgar; Ortiz-Butron, Rocio; Camargo, Estela Melendez; Esteves-Carmona, María Miriam; Oliart-Ros, Rosa Maria; Blas-Valdivia, Vanessa; Franco-Colin, Margarita

    2016-11-01

    We investigated the effect of a canola oil-supplemented diet on the metabolic state and diabetic renal function of a type I diabetes experimental model. Male Sprague-Dawley rats were randomly divided into four groups: (1) normoglycemic+chow diet, (2) normoglycemic+a canola oil-supplemented chow diet, (3) diabetic+chow diet, and (4) diabetic+a canola oil-supplemented chow diet. For 15 weeks, animals were fed a diet of Purina rat chow alone or supplemented with 30% canola oil. Energetic intake, water intake, body weight, and adipose tissue fat pad were measured; renal function, electrolyte balance, glomerular filtration rate, and the plasmatic concentration of free fatty acids, cholesterol, triglycerides, and glucose were evaluated. The mesenteric, retroperitoneal, and epididymal fat pads were dissected and weighed. The kidneys were used for lipid peroxidation (LP) and reactive oxygen species (ROS) quantifications. Diabetic rats fed with a canola oil-supplemented diet had higher body weights, were less hyperphagic, and their mesenteric, retroperitoneal, and epididymal fat pads weighed more than diabetic rats on an unsupplemented diet. The canola oil-supplemented diet decreased plasmatic concentrations of free fatty acids, triglycerides, and cholesterol; showed improved osmolarity, water clearances, and creatinine depuration; and had decreased LP and ROS. A canola oil-supplemented diet decreases hyperphagia and prevents lipotoxicity and renal dysfunction in a type I diabetes mellitus model.

  10. Cocoa Flavonoid-Enriched Diet Modulates Systemic and Intestinal Immunoglobulin Synthesis in Adult Lewis Rats

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez-Cano

    2013-08-01

    Full Text Available Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect.

  11. Long-term consumption of fish oil-enriched diet impairs serotonin hypophagia in rats.

    Science.gov (United States)

    Watanabe, Regina L H; Andrade, Iracema S; Telles, Mônica M; Albuquerque, Kelse T; Nascimento, Cláudia M O; Oyama, Lila M; Casarini, Dulce E; Ribeiro, Eliane B

    2010-10-01

    Hypothalamic serotonin inhibits food intake and stimulates energy expenditure. High-fat feeding is obesogenic, but the role of polyunsaturated fats is not well understood. This study examined the influence of different high-PUFA diets on serotonin-induced hypophagia, hypothalamic serotonin turnover, and hypothalamic protein levels of serotonin transporter (ST), and SR-1B and SR-2C receptors. Male Wistar rats received for 9 weeks from weaning a diet high in either soy oil or fish oil or low fat (control diet). Throughout 9 weeks, daily intake of fat diets decreased such that energy intake was similar to that of the control diet. However, the fish group developed heavier retroperitoneal and epididymal fat depots. After 12 h of either 200 or 300 μg intracerebroventricular serotonin, food intake was significantly inhibited in control group (21-25%) and soy group (37-39%) but not in the fish group. Serotonin turnover was significantly lower in the fish group than in both the control group (-13%) and the soy group (-18%). SR-2C levels of fish group were lower than those of control group (50%, P = 0.02) and soy group (37%, P = 0.09). ST levels tended to decrease in the fish group in comparison to the control group (16%, P = 0.339) and the soy group (21%, P = 0.161). Thus, unlike the soy-oil diet, the fish-oil diet decreased hypothalamic serotonin turnover and SR-2C levels and abolished serotonin-induced hypophagia. Fish-diet rats were potentially hypophagic, suggesting that, at least up to this point in its course, the serotonergic impairment was either compensated by other factors or not of a sufficient extent to affect feeding. That fat pad weight increased in the absence of hyperphagia indicates that energy expenditure was affected by the serotonergic hypofunction.

  12. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mengmeng Lv

    Full Text Available The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies.Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction.Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI of 0.20 (0.12, 0.34 relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer.Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  13. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Science.gov (United States)

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  14. Isoflavone and protein constituents of lactic acid-fermented soy milk combine to prevent dyslipidemia in rats fed a high cholesterol diet.

    Science.gov (United States)

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-12-10

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein.

  15. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Maki Kobayashi

    2014-12-01

    Full Text Available A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet, a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet, a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet, or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet for five weeks. The plasma total cholesterol (TC level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein.

  16. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid...... [18:1 n-9], M = caprylic acid [8:0]) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of C-13-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43......% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol...

  17. Postnatal maternal separation modifies the response to an obesogenic diet in adulthood in rats

    Directory of Open Access Journals (Sweden)

    Laura Paternain

    2012-09-01

    An early-life adverse environment has been implicated in the susceptibility to different diseases in adulthood, such as mental disorders, diabetes and obesity. We analyzed the effects of a high-fat sucrose (HFS diet for 35 days in adult female rats that had experienced 180 minutes daily of maternal separation (MS during lactancy. Changes in the obesity phenotype, biochemical profile, levels of glucocorticoid metabolism biomarkers, and the expression of different obesity- and glucocorticoid-metabolism-related genes were analyzed in periovaric adipose tissue. HFS intake increased body weight, adiposity and serum leptin levels, whereas MS decreased fat pad masses but only in rats fed an HFS diet. MS reduced insulin resistance markers but only in chow-fed rats. Corticosterone and estradiol serum levels did not change in this experimental model. A multiple gene expression analysis revealed that the expression of adiponutrin (Adpn was increased owing to MS, and an interaction between HFS diet intake and MS was observed in the mRNA levels of leptin (Lep and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a. These results revealed that early-life stress affects the response to an HFS diet later in life, and that this response can lead to phenotype and transcriptomic changes.

  18. Postnatal maternal separation modifies the response to an obesogenic diet in adulthood in rats.

    Science.gov (United States)

    Paternain, Laura; Martisova, Eva; Milagro, Fermín I; Ramírez, María J; Martínez, J Alfredo; Campión, Javier

    2012-09-01

    An early-life adverse environment has been implicated in the susceptibility to different diseases in adulthood, such as mental disorders, diabetes and obesity. We analyzed the effects of a high-fat sucrose (HFS) diet for 35 days in adult female rats that had experienced 180 minutes daily of maternal separation (MS) during lactancy. Changes in the obesity phenotype, biochemical profile, levels of glucocorticoid metabolism biomarkers, and the expression of different obesity- and glucocorticoid-metabolism-related genes were analyzed in periovaric adipose tissue. HFS intake increased body weight, adiposity and serum leptin levels, whereas MS decreased fat pad masses but only in rats fed an HFS diet. MS reduced insulin resistance markers but only in chow-fed rats. Corticosterone and estradiol serum levels did not change in this experimental model. A multiple gene expression analysis revealed that the expression of adiponutrin (Adpn) was increased owing to MS, and an interaction between HFS diet intake and MS was observed in the mRNA levels of leptin (Lep) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a). These results revealed that early-life stress affects the response to an HFS diet later in life, and that this response can lead to phenotype and transcriptomic changes.

  19. Corticosterone administration in drinking water decreases high-fat diet intake but not preference in male rats.

    Science.gov (United States)

    Boersma, Gretha J; Tamashiro, Kellie L; Moran, Timothy H; Liang, Nu-Chu

    2016-04-15

    One of the mechanisms through which regular exercise contributes to weight maintenance could be by reducing intake and preference for high-fat (HF) diets. Indeed, we previously demonstrated that wheel-running rats robustly reduced HF diet intake and preference. The reduced HF diet preference by wheel running can be so profound that the rats consumed only the chow diet and completely avoided the HF diet. Because previous research indicates that exercise activates the hypothalamic-pituitary-adrenal axis and increases circulating levels of corticosterone, this study tested the hypothesis that elevation of circulating corticosterone is involved in wheel running-induced reduction in HF diet preference in rats.Experiment 1 measured plasma corticosterone levels under sedentary and wheel-running conditions in the two-diet-choice (high-carbohydrate chow vs. HF) feeding regimen. The results revealed that plasma corticosterone is significantly increased and positively correlated with the levels of running in wheel-running rats with two-diet choice.Experiments 2 and 3 determined whether elevated corticosterone without wheel running is sufficient to reduce HF diet intake and preference. Corticosterone was elevated by adding it to the drinking water. Compared with controls, corticosterone-drinking rats had reduced HF diet intake and body weight, but the HF diet preference between groups did not differ. The results of this study support a role for elevated corticosterone on the reduced HF diet intake during wheel running. The elevation of corticosterone alone, however, is not sufficient to produce a robust reduction in HF diet preference. Copyright © 2016 the American Physiological Society.

  20. The eicosapentaenoic to docosahexaenoic acid ratio of diets affects the pathogenesis of arthritis in Lew/SSN rats.

    Science.gov (United States)

    Volker, D H; FitzGerald, P E; Garg, M L

    2000-03-01

    Dietary-induced changes in tissue levels of polyunsaturated fatty acids modify inflammatory reactions through changes in the synthesis of lipid and peptide mediators of inflammation. Four semipurified 20% fat diets, based on beef tallow (BT), safflower oil (SFO), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were provided. The DHA and EPA ratios of the (n-3) fatty acid-based diets were 1.1 and 3.4, respectively. The effect of prefeeding diets differing in EPA to DHA ratios prior to the induction of streptococcal cell wall (SCW) arthritis in female Lew/SSN rats was examined. Weanling rats were fed diets for 5 wk before arthritis induction and 5 wk post-arthritis induction. Footpad thickness, hock circumference, plasma and macrophage fatty acids and histological assessment were compared. There were no differences in food intake and final body weights among the groups. Footpad inflammation, reported as percentage change (adjusted for growth) was greatest for rats fed the BT-based diet, intermediate in those fed the SFO-based diet and least for the rats fed the EPA- and DHA-based diets (P < 0.05). Macrophage phospholipids revealed cellular incorporation of EPA and DHA from the fish-oil based diets which modified lipid and peptide mediators of inflammation. Histological sections of rat hocks ranked by severity of arthritis-related changes suggested that the SFO- and EPA-based diets were more successful in ameliorating the destructive arthritic phase in hock joints than the BT- and DHA-based diets (P = 0.09) in this model of arthritis. The course of SCW-induced arthritis can be altered by diet-induced changes in macrophage fatty acid composition. The EPA-based diet is more effective in suppression of inflammation than the DHA-based diet.

  1. Restricted diffusion of CrEDTA and cyanocobalamine across the exchange vessels in rat hindquarters.

    Science.gov (United States)

    Haraldsson, B; Rippe, B

    1986-07-01

    The degree of diffusional restriction of skeletal muscle capillary walls to small solutes was estimated from the permeability surface area products (PS) of CrEDTA (MW = 341) and cyanocobalamine (MW = 1355), using computerized 'on-line' recordings of venous single injection indicator dilution curves. Experiments were performed on isolated perfused maximally vasodilated rat hindquarters during largely isogravimetric conditions and the arrangements allowed for measurements of capillary filtration coefficients (CFC). Extraction of tracer varied markedly as a function of transit time and, furthermore, PS increased with increasing flows, both these phenomena indicating tissue and flow heterogeneity. At maximal flows the disturbing influence of heterogeneity will be minimal and hence the diffusion capacities obtained by extrapolating PS area to infinite flows, so called PS tot values, were considered to give the best estimation of the 'true' capillary diffusion capacities. The value of PS tot was 12.9 +/- 0.5 for CrEDTA and 5.1 +/- 0.3 ml min-1 per 100 g for vitamin B12. The calculated PS tot ratio of 2.59 +/- 0.11 indicates restricted diffusion through equivalent pores of radius 53 A, whereas the ratio of the free diffusion coefficients for these solutes is 1.79. Using PS peak for the calculations (totally neglecting heterogeneity) the pore radius was, however, markedly overestimated. Thus, for a PS-ratio of 1.89 +/- 0.04 for CrEDTA vs. B12 an equivalent pore radius of 300 A was calculated. Also, using PS area (only partly correcting for heterogeneity) overestimated the pore radius (70 A) from a mean PS-ratio of 2.33 +/- 0.05. It was concluded that the equivalent pore radius in rat hindquarter microvascular walls is 53 A or even smaller in essential agreement with data from osmotic transient experiments in the same preparation (r approximately 40 A).

  2. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet.

    Science.gov (United States)

    Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark

    2015-03-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (Pwatermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (Pwatermelon was consumed (Pwatermelon group without DSS (Pwatermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Butter improves glucose tolerance compared with at highly polyunsaturated diet in the rat

    DEFF Research Database (Denmark)

    Hellgren, Lars

    -fat on glucose-tolerance in intervention studies. Methods: 16 rats were divided into two groups and fed a semisynthetic diet containing 31 E-% fat, either as butter or highly polyunsaturated grapeseed oil. After 12 weeks on the diets, glucose-tolerance was assayed with the oral-glucose tolerance test (OGTT......). Results and Discussion: The OGTT revealed that the rats on the butter-containing diet, had a substantially higher glucose tolerance than the rats, which were fed grapeseed oil (area under the curve =195  31 mM*min-2 vs. 310  13 mM*min-2, n= 8, p=0.004). There were no differences in serum triacylglycerol...... (TAG), serum free fatty acid and leptin between the groups. However, the butter-fed rats had a lower content of TAG in the white gastrocnemius muscle (7.7  1.5 vs. 23.1  6.2 mg/g tissue, p=0.01), and a much higher n-3 PUFA content (total n-3 PUFAs 1,43  0.06 vs 0.73  0.02g/mg tissue, p

  4. Low carbohydrate ketogenic diet prevents the induction of diabetes using streptozotocin in rats.

    Science.gov (United States)

    Al-Khalifa, A; Mathew, T C; Al-Zaid, N S; Mathew, E; Dashti, H

    2011-11-01

    Diabetes continues to be an overwhelmingly prevalent endocrine disorder that leads to several micro- and macrocomplications. It has been widely accepted that changes in dietary habits could induce or prevent the onset of diabetes. It is shown that low carbohydrate ketogenic diet (LCKD) is effective in the amelioration of many of the deleterious consequences of diabetes. However, its role in preventing the onset of diabetes is not understood. Therefore, this study is focused on the effect of LCKD in preventing the induction of diabetes using streptozotocin (STZ) in rats by biochemical and histological methods. Forty-two Wistar rats weighing 150-250 g were used in this study. The animals were divided into three groups: normal diet (ND), low carbohydrate ketogenic diet (LCKD), and high carbohydrate diet (HCD). Specific diets ad libitum were given to each group of animals for a period of 8 weeks. Each group was further subdivided into normal control, sham control and diabetic groups. Animals in the diabetic group were given a single intraperitoneal injection of STZ (55 mg/kg). All the animals were sacrificed 4 weeks after the injection of STZ. Daily measurements of food and water intake as well as weekly measurement of body weight were taken during the whole 12 weeks of the experiment. After injecting with STZ, the blood glucose level of all the groups increased significantly except for the group fed on LCKD (p valuediabetic rats, there were no change in the number of β cells in the LCKD treated diabetic animals as compared to LCKD control group. The results presented in this study, therefore, suggests that LCKD prevents the development of diabetes using streptozotocin in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Restriction of rapid eye movement sleep during adolescence increases energy gain and metabolic efficiency in young adult rats.

    Science.gov (United States)

    Ribeiro-Silva, Neila; Nejm, Mariana Bocca; da Silva, Sylvia Maria Affonso; Suchecki, Deborah; Luz, Jacqueline

    2016-02-01

    What is the central question of this study? Sleep curtailment in infancy and adolescence may lead to long-term risk for obesity, but the mechanisms involved have not yet been determined. This study examined the immediate and long-term metabolic effects produced by sleep restriction in young rats. What is the main finding and its importance? Prolonged sleep restriction reduced weight gain (body fat stores) in young animals. After prolonged recovery, sleep-restricted rats tended to save more energy and to store more fat, possibly owing to increased gross food efficiency. This could be the first step to understand this association. Sleep curtailment is associated with obesity and metabolic changes in adults and children. The aim of the present study was to evaluate the immediate and long-term metabolic alterations produced by sleep restriction in pubertal male rats. Male Wistar rats (28 days old) were allocated to a control (CTL) group or a sleep-restricted (SR) group. This was accomplished by the single platform technique for 18 h per day for 21 days. These groups were subdivided into the following four time points for assessment: sleep restriction and 1, 2 and 4 months of recovery. Body weight and food intake were monitored throughout the experiment. At the end of each time period, blood was collected for metabolic profiling, and the carcasses were processed for measurement of body composition and energy balance. During the period of sleep restriction, SR animals consumed less food in the home cages. This group also displayed lower body weight, body fat, triglycerides and glucose levels than CTL rats. At the end of the first month of recovery, despite eating as much as CTL rats, SR animals showed greater energy and body weight gain, increased gross food efficiency and decreased energy expenditure. At the end of the second and fourth months of recovery, the groups were no longer different, except for energy gain and gross food efficiency, which remained higher in SR

  6. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  7. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  8. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  9. Growth performance of weanling Wistar rats fed on accessions of cooked Colocasia esculenta-based diets.

    Science.gov (United States)

    Lewu, Muinat N; Yakubu, Toyin M; Adebola, Patrick O; Afolayan, Anthony J

    2011-09-01

    The growth performance of weanling albino rats (Rattus norvegicus) maintained on different accessions (offspring of a variety that was planted/collected at a specific location and time but differing in certain morphologic characteristics) of cooked Colocasia esculenta (cocoyam)-based diets (UFCe1-UFCe7) for 28 days was investigated. Proximate analysis of the formulated diets revealed that UFCe3, UFCe4, UFCe5, UFCe6, and UFCe7 had significantly (P<.05) higher moisture contents than the corn starch-based diet (control). All the accession-based diets of C. esculenta had higher ash contents. Similarly, all the accessions of the C. esculenta-based diet had lower crude lipid content, whereas UFCe3-UFCe7 had significantly lower protein content. Although the crude fiber content was significantly higher in UFCe2, UFCe4, and UFCe5, only UFCe3 had significantly higher carbohydrate content among all the accessions of C. esculenta-based diets. UFCe1, UFCe2, UFCe4, UFCe5, and UFCe6 increased the average weekly water intake, feed consumption, total body weight, liver-body weight ratio, and kidney-body weight ratio of the animals; UFCe3 and UFCe7 decreased these measures. Overall, UFCe1, UFCe2, UFCe4, UFCe5, and UFCe6 are recommended as diets with promise to enhance growth performance in the animals.

  10. Lipid metabolism in rats fed diets containing different types of lipids

    Directory of Open Access Journals (Sweden)

    Águila Márcia Barbosa

    2002-01-01

    Full Text Available OBJECTIVE: To assess the effect of different types of lipid diets on the lipid metabolism of aging rats. METHODS: Fifty male Wistar rats were studied from the time of weaning to 12 and 18 months of age. Their diets were supplemented as follows: with soybean oil (S, canola oil (CA, lard and egg yolk (LE, and canola oil + lard and egg yolk (CA + LE. Blood pressure (BP was measured every month, and the heart/body ratio (H/BR was determined. The rats were euthanized at the age of 12 and 18 months, and blood samples were collected for lipid analysis as follows: total cholesterol (TC, LDL-C, VLDL-C, HDL-C, triglycerides (TG, and glucose. RESULTS: The type of oil ingested by the animals significantly altered BP, H/BR, and serum lipid levels in rats at 12 and 18 months. No difference was observed in the survival curve of the animals in the different groups. The LE group had the highest BP, and the CA group was the only one in which BP did not change with aging. A reduction in the H/BR was observed in the LE and CA+LE animals. At the age of 12 months, differences in TC, HDL-C, LDL-C, VLDL-C, TG, and glucose were observed. At the age of 18 months, a significant difference in TC, HDL-C, and glucose was observed. The highest TC value was found in the CA group and the lowest in the S group. CONCLUSION: No increase in BP occurred, and an improvement was evident in the lipid profile of rats fed a diet supplemented with CA, in which an elevation in HDL-C levels was observed, as compared with levels with the other types of diet.

  11. Hypermethylation of the CaSR and VDR genes in the parathyroid glands in chronic kidney disease rats with high-phosphate diet.

    Science.gov (United States)

    Uchiyama, Taketo; Tatsumi, Norifumi; Kamejima, Sahoko; Waku, Tsuyoshi; Ohkido, Ichiro; Yokoyama, Keitaro; Yokoo, Takashi; Okabe, Masataka

    2016-10-01

    Chronic kidney disease (CKD) disrupts mineral homeostasis and its representative pathosis is defined as secondary hyperparathyroidism (SHPT). SHPT occurs during the early course of progressive renal insufficiency, and is associated with mortality and cardiovascular events. SHPT results in reduction of calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) in the parathyroid glands during CKD. However, the precise mechanism of CaSR and VDR reduction is largely unknown. CKD was induced through two-step 5/6 nephrectomy, and then CKD rats and sham-operated rats were maintained for 8 weeks on diets containing 0.7 % phosphorus (normal phosphate) or 1.2 % phosphorus (high phosphate). In gene expression analysis, TaqMan probes were used for quantitative real-time polymerase chain reaction. Finally, CaSR and VDR protein expressions were analyzed using immunohistochemistry. DNA methylation analysis was performed using a restriction digestion and quantitative PCR. CaSR and VDR mRNA were reduced only in CKD rats fed the high-phosphorus diets (CKD HP), then CaSR and VDR immunohistochemical expressions were compatible with gene expression assay. SHPT was then confirmed only in CKD HP rats. Furthermore, sole CKD HP rats showed the hypermethylation in CaSR and VDR genes; however, the percentage methylation of both genes was low. Although CaSR and VDR hypermethylation was demonstrated in PTGs of CKD HP rats, the extent of hypermethylation was insufficient to support the relevance between hypermethylation and down-regulation of gene expression because of the low percentage of methylation. Consequently, our data suggest that mechanisms, other than DNA hypermethylation, were responsible for the reduction in mRNA and protein levels of CaSR and VDR in PTGs of CKD HP rats.

  12. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, Neus; González-Abuín, Noemi; Terra, Ximena; Ardévol, Ana; Pinent, Montserrat; Petretto, Enrico; Behmoaras, Jacques; Blay, Mayte

    2016-10-01

    Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity. © 2016. Published by The Company of Biologists Ltd.

  13. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Micaelo

    2016-10-01

    Full Text Available Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY and Lewis (LEW show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2 as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity.

  14. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  15. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    Science.gov (United States)

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Ovariectomized High Fit Rats Are Protected against Diet-Induced Insulin Resistance

    Science.gov (United States)

    Park, Young-Min; Kanaley, Jill A.; Zidon, Terese M.; Welly, Rebecca J.; Scroggins, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Thyfault, John P.; Booth, Frank W.; Padilla, Jaume; Vieira-Potter, Victoria J.

    2016-01-01

    Introduction In the absence of exercise training, rats selectively bred for high intrinsic aerobic capacity (HCR) are protected against ovariectomy (OVX)-induced insulin resistance and obesity compared to those bred for low intrinsic aerobic capacity (LCR). Purpose This study determined whether OVX HCR rats remain protected with exposure to high fat diet (HFD) compared to OVX LCR rats. Methods Female HCR and LCR rats (n=36; age 27-33 weeks) underwent OVX and were randomized to a standard chow diet (NC; 5% kcal fat) or HFD (45% kcal fat), ad libitum for 11 weeks. Total energy expenditure (TEE), resting energy expenditure (REE), spontaneous physical activity (SPA), and glucose tolerance were assessed midway, while fasting circulating metabolic markers, body composition, adipose tissue distribution, and skeletal muscle AMPK and mitochondrial markers were assessed at sacrifice. Results Both HCR and LCR experienced HFD-induced increases in total and visceral adiposity following OVX. Despite similar gains in adiposity, HCR rats were protected from HFD-induced insulin resistance and reduced TEE observed in LCR rats (P<0.05). This metabolic protection was likely attributed to a compensatory increase in SPA and associated preservation of skeletal muscle AMPK activity in HCR; whereas, HFD significantly reduced SPA and AMPK activity in LCR (P<0.05). In both lines, HFD reduced citrate synthase activity, gene expression of markers of mitochondrial biogenesis (tFAM, NRF1, and PGC-1α), and protein levels of mitochondrial oxidative phosphorylation complexes I, II, IV, and V in skeletal muscle (all P<0.05). Conclusion Following OVX, HCR and LCR rats differentially respond to HFD such that HCR increase while LCR decrease SPA. This “physical activity compensation” likely confers protection from HFD-induced insulin resistance and reduced energy expenditure in HCR rats. PMID:26885638

  17. Effects of Caloric Restriction and Exercise Training on Skeletal Muscle Histochemistry in Aging Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    David T. Lowenthal

    2006-01-01

    Full Text Available The purpose of this study was to determine the effects of calorie restriction and exercise on hindlimb histochemistry and fiber type in Fischer 344 rats as they advanced from adulthood through senescence. At 10 months of age, animals were divided into sedentary fed ad libitum, exercise (18 m/min, 8% grade, 20 min/day, 5 days/week fed ad libitum, and calorie restricted by alternate days of feeding. Succinic dehydrogenase, myosin adenosine triphosphatase (mATPase at pH 9.4, nicotine adenonine dinucleotide reductase, and Periodic Acid Shiff histochemical stains were performed on plantaris and soleus muscles. The results indicated that aging resulted in a progressive decline in plantaris Type I muscle fiber in sedentary animals, while exercise resulted in maintenance of these fibers. The percent of plantaris Type II fibers increased between 10 and 24 months of age. Exercise also resulted in a small, but significant, increase in the percentage of plantaris Type IIa fibers at 24 months of age. The soleus fiber distribution for Type I fibers was unaffected by increasing age in all groups of animals. The implications of these results suggest the implementation of exercise as a lifestyle modification as early as possible.

  18. High salt-diet reduces SLC14A1 gene expression in the choroid plexus of Dahl salt sensitive rats.

    Science.gov (United States)

    Guo, Lirong; Meng, Jie; Xuan, Chengluan; Ge, Jingyan; Sun, Wenzhu; O'Rourke, Stephen T; Sun, Chengwen

    2015-05-29

    Elevated Na(+) concentration ([Na(+)]) in the cerebrospinal fluid (CSF) contributes to the development of salt-sensitive hypertension. CSF is formed by the choroid plexus (CP) in cerebral ventricles, and [Na(+)] in CSF is controlled by transporters in CP. Here, we examined the effect of high salt diet on the expression of urea transporters (UTs) in the CP of Dahl S vs Dahl R rats using real time PCR. High salt intake (8%, for 2 weeks) did not alter the mRNA levels of UT-A (encoded by SLC14A2 gene) in the CP of either Dahl S or Dahl R rats. In contrast, the mRNA levels of UT-B (encoded by SLC14A1 gene) were significantly reduced in the CP of Dahl S rats on high salt diet as compared with Dahl R rats or Dahl S rats on normal salt diet. Reduced UT-B expression was associated with increased [Na(+)] in the CSF and elevated mean arterial pressure (MAP) in Dahl S rats treated with high salt diet, as measured by radiotelemetry. High salt diet-induced reduction in UT-B protein expression in the CP of Dahl S rats was confirmed by Western blot. Immunohistochemistry using UT-B specific antibodies demonstrated that UT-B protein was expressed on the epithelial cells in the CP. These data indicate that high salt diet induces elevations in CSF [Na(+)] and in MAP, both of which are associated with reduced UT-B expression in the CP of Dahl S rats, as compared with Dahl R rats. The results suggest that altered UT-B expression in the CP may contribute to an imbalance of water and electrolytes in the CSF of Dahl S rats on high salt diet, thereby leading to alterations in MAP. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effects of dietary boron in rats fed a vitamin D-deficient diet.

    OpenAIRE

    Dupre, J N; Keenan, M J; Hegsted, M; Brudevold, A M

    1994-01-01

    Although boron has long been known to be a required nutrient for plants, it was not until recently that there was any suggestion of a nutritional requirement for animals and humans. Addition of boron to the diet of vitamin D-deficient chicks indicated that boron may play a role in animal nutrition. Studies with rats have demonstrated that supplemental dietary boron has most marked effects when the diet is deficient in known nutrients. We observed higher apparent-balance values of calcium, mag...

  20. Chronic high-fat diet in fathers programs ß-cell dysfunction in female rat offspring

    DEFF Research Database (Denmark)

    Ng, Sheau-Fang; Lin, Ruby C Y; Laybutt, D Ross

    2010-01-01

    The global prevalence of obesity is increasing across most ages in both sexes. This is contributing to the early emergence of type 2 diabetes and its related epidemic. Having either parent obese is an independent risk factor for childhood obesity. Although the detrimental impacts of diet......-induced maternal obesity on adiposity and metabolism in offspring are well established, the extent of any contribution of obese fathers is unclear, particularly the role of non-genetic factors in the causal pathway. Here we show that paternal high-fat-diet (HFD) exposure programs ß-cell 'dysfunction' in rat F(1...