WorldWideScience

Sample records for diet induced atherosclerosis

  1. Antiatherosclerotic and Cardioprotective Potential of Acacia senegal Seeds in Diet-Induced Atherosclerosis in Rabbits

    Directory of Open Access Journals (Sweden)

    Heera Ram

    2014-01-01

    Full Text Available Acacia senegal L. (Fabaceae seeds are essential ingredient of “Pachkutta,” a specific Rajasthani traditional food. The present study explored antiatherosclerotic and cardioprotective potential of Acacia senegal seed extract, if any, in hypercholesterolemic diet-induced atherosclerosis in rabbits. Atherosclerosis in rabbits was induced by feeding normal diet supplemented with oral administration of cholesterol (500 mg/kg body weight/day mixed with coconut oil for 15 days. Circulating total cholesterol (TC, HDL-cholesterol (HDL-C, LDL-cholesterol (LDL-C, triglycerides, and VLDL-cholesterol (VLDL-C levels; atherogenic index (AI; cardiac lipid peroxidation (LPO; planimetric studies of aortal wall; and histopathological studies of heart, aorta, kidney, and liver were performed. Apart from reduced atherosclerotic plaques in aorta (6.34±0.72 and increased lumen volume (51.65±3.66, administration with ethanolic extract of Acacia senegal seeds (500 mg/kg/day, p.o. for 45 days to atherosclerotic rabbits significantly lowered serum TC, LDL-C, triglyceride, and VLDL-C levels and atherogenic index as compared to control. Atherogenic diet-induced cardiac LPO and histopathological abnormalities in aorta wall, heart, kidney, and liver were reverted to normalcy by Acacia senegal seed extract administration. The findings of the present study reveal that Acacia senegal seed extract ameliorated diet-induced atherosclerosis and could be considered as lead in the development of novel therapeutics.

  2. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits.

    Science.gov (United States)

    Wang, Chuan; Nishijima, Kazutoshi; Kitajima, Shuji; Niimi, Manabu; Yan, Haizhao; Chen, Yajie; Ning, Bo; Matsuhisa, Fumikazu; Liu, Enqi; Zhang, Jifeng; Chen, Y Eugene; Fan, Jianglin

    2017-07-01

    Endothelial lipase (EL) is a key determinant in plasma high-density lipoprotein-cholesterol. However, functional roles of EL on the development of atherosclerosis have not been clarified. We investigated whether hepatic expression of EL affects plasma lipoprotein metabolism and cholesterol diet-induced atherosclerosis. We generated transgenic (Tg) rabbits expressing the human EL gene in the liver and then examined the effects of EL expression on plasma lipids and lipoproteins and compared the susceptibility of Tg rabbits with cholesterol diet-induced atherosclerosis with non-Tg littermates. On a chow diet, hepatic expression of human EL in Tg rabbits led to remarkable reductions in plasma levels of total cholesterol, phospholipids, and high-density lipoprotein-cholesterol compared with non-Tg controls. On a cholesterol-rich diet for 16 weeks, Tg rabbits exhibited significantly lower hypercholesterolemia and less atherosclerosis than non-Tg littermates. In Tg rabbits, gross lesion area of aortic atherosclerosis was reduced by 52%, and the lesions were characterized by fewer macrophages and smooth muscle cells compared with non-Tg littermates. Increased hepatic expression of EL attenuates cholesterol diet-induced hypercholesterolemia and protects against atherosclerosis. © 2017 American Heart Association, Inc.

  3. Early atherosclerosis and vascular inflammation in mice with diet-induced type 2 diabetes

    DEFF Research Database (Denmark)

    Bartels, E D; Bang, C A; Nielsen, L B

    2009-01-01

    and the median lesion area was 8.0 times higher than in fat-fed wild-type mice (P = 0.001). Intracellular adhesion molecule-1 staining of the aortic endothelium was most pronounced in the fat-fed apoB transgenic mice. CONCLUSIONS: Our findings suggest that diet-induced type 2 diabetes causes early......BACKGROUND: Obesity and type 2 diabetes increase the risk of atherosclerosis. It is unknown to what extent this reflects direct effects on the arterial wall or secondary effects of hyperlipidaemia. MATERIALS AND METHODS: The effect of obesity and type 2 diabetes on the development...

  4. The Ossabaw pig as a model for diet induced atherosclerosis and statin responsiveness

    Science.gov (United States)

    Background and Objectives: The Ossabaw pig has been established as a model for obesity, metabolic syndrome, atherosclerosis and non-alcoholic steatohepatitis, when fed an extreme diet (high trans fat and fructose) in caloric excess. To increase the translational nature of this model, we determined i...

  5. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB invivo

    NARCIS (Netherlands)

    Morrison, M.; Heijden, R. van der; Heeringa, P.; Kaijzel, E.; Verschuren, L.; Blomhoff, R.; Kooistra, T.; Kleemann, R.

    2014-01-01

    Objective: Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular

  6. Diet and Atherosclerosis

    African Journals Online (AJOL)

    1974-08-14

    Aug 14, 1974 ... Animal experiments have demonstrated the possibility of producing lesions ... countries. Mortality statistics, hospital records and necropsy ... opportunity to study possible associations between diet .... risk of American men.".

  7. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice.

    Directory of Open Access Journals (Sweden)

    Changchun Cao

    Full Text Available AIMS: Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS: C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1 wild-type (WT, (2 ApoE knockout (AK, (3 IKKε knockout (IK, (4 or both ApoE and IKKε knockout (DK. Each group of mice were fed with a high fat diet (HFD for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION: The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.

  8. Protective effects of Arctium lappa L. root extracts (AREs) on high fat diet induced quail atherosclerosis.

    Science.gov (United States)

    Wang, Zhi; Li, Ping; Wang, Chenjing; Jiang, Qixiao; Zhang, Lei; Cao, Yu; Zhong, Weizhen; Wang, Chunbo

    2016-01-08

    This study was designed to evaluate the protective effects of Arctium lappa L. root extracts (AREs) from different extraction methods (aqueous, ethanol, chloroform and flavone) on atherosclerosis. Quails (Coturnix coturnix) were subjected to high fat diet, with or without one of the four different AREs or positive control simvastatin. Blood samples were collected before treatment, after 4.5 weeks or ten weeks to assess lipid profile (Levels of total cholesterol (TC), Triacylglycerol (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL)). After ten weeks, the serum levels of nitric oxide (NO) as well as antioxidant and pro-oxidative status (Levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione peroxidase (GSH-Px)) were measured. Furthermore, aortas were collected after ten weeks treatment, aorta lipid contents (TC, TG and LDL) were assessed, and histology was used to confirm atherosclerotic changes. The results indicated that high fat diet significantly deteriorated lipid profile and antioxidant status in quail serum, while all the extracts significantly reverted the changes similar to simvastatin. Aorta lipid profile assessment revealed similar results. Histology on aortas from quails treated for ten weeks confirmed atherosclerotic changes in high fat diet group, while the extracts significantly alleviated the atherosclerotic changes similar to simvastatin. Among the different extracts, flavones fraction exerted best protective effects. Our data suggest that the protective effects of AREs were medicated via hypolipidemic and anti-oxidant effects. Underlying molecular mechanisms are under investigation.

  9. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Frida Fåk

    Full Text Available OBJECTIVE: To investigate whether the specific strains of Lactobacillus reuteri modulates the metabolic syndrome in Apoe-/- mice. METHODS: 8 week-old Apoe-/- mice were subdivided into four groups who received either L. reuteri ATCC PTA 4659 (ATCC, DSM 17938 (DSM, L6798, or no bacterial supplement in the drinking water for 12 weeks. The mice were fed a high-fat Western diet with 0.2% cholesterol and body weights were monitored weekly. At the end of the study, oral glucose and insulin tolerance tests were conducted. In addition, adipose and liver weights were recorded along with analyses of mRNA expression of ileal Angiopoietin-like protein 4 (Angptl4, the macrophage marker F4/80 encoded by the gene Emr1 and liver Acetyl-CoA carboxylase 1 (Acc1, Fatty acid synthase (Fas and Carnitine palmitoyltransferase 1a (Cpt1a. Atherosclerosis was assessed in the aortic root region of the heart. RESULTS AND CONCLUSIONS: Mice receiving L. reuteri ATCC gained significantly less body weight than the control mice, whereas the L6798 mice gained significantly more. Adipose and liver weights were also reduced in the ATCC group. Serum insulin levels were lower in the ATCC group, but no significant effects were observed in the glucose or insulin tolerance tests. Lipogenic genes in the liver were not altered by any of the bacterial treatments, however, increased expression of Cpt1a was found in the ATCC group, indicating increased β-oxidation. Correspondingly, the liver trended towards having lower fat content. There were no effects on inflammatory markers, blood cholesterol or atherosclerosis. In conclusion, the probiotic L. reuteri strain ATCC PTA 4659 partly prevented diet-induced obesity, possibly via a previously unknown mechanism of inducing liver expression of Cpt1a.

  10. Diet-Induced Abdominal Obesity, Metabolic Changes, and Atherosclerosis in Hypercholesterolemic Minipigs

    Directory of Open Access Journals (Sweden)

    Ahmed Ludvigsen Al-Mashhadi

    2018-01-01

    Full Text Available Background. Obesity and metabolic syndrome (MetS are major risk factors for atherosclerotic diseases; however, a causal link remains elusive. Animal models resembling human MetS and its complications, while important, are scarce. We aimed at developing a porcine model of human MetS. Methods. Forty pigs with familial hypercholesterolemia were fed a high fat + fructose diet for 30 weeks. Metabolic assessments and subcutaneous fat biopsies were obtained at 18 and 30 weeks, and fat distribution was assessed by CT-scans. Postmortem, macrophage density, and phenotype in fat tissues were quantified along with atherosclerotic burden. Results. During the experiment, we observed a >4-fold in body weight, a significant but small increase in fasting glucose (4.1 mmol/L, insulin (3.1 mU/L, triglycerides (0.5 mmol/L, and HDL cholesterol (2.6 mmol/L. Subcutaneous fat correlated with insulin resistance, but intra-abdominal fat correlated inversely with insulin resistance and LDL cholesterol. More inflammatory macrophages were found in visceral versus subcutaneous fat, and inflammation decreased in subcutaneous fat over time. Conclusions. MetS based on human criteria was not achieved. Surprisingly, visceral fat seemed part of a healthier metabolic and inflammatory profile. These results differ from human findings, and further research is needed to understand the relationship between obesity and MetS in porcine models.

  11. Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals

    DEFF Research Database (Denmark)

    Ludvigsen, Trine Pagh; Kirk, Rikke Kaae; Christoffersen, Berit Østergaard

    2015-01-01

    in human patients, inclusion of this disease aspect in the characterization of a such model, is highly relevant. The objective of this study was to evaluate the effect of mild streptozotocin-induced diabetes on ex- and in vivo end-points in a diet-induced atherosclerotic minipig model. Castrated male...... Göttingen minipigs were fed standard chow (CD), atherogenic diet alone (HFD) or with superimposed mild streptozotocin-induced diabetes (HFD-D). Circulating markers of inflammation (C-reactive protein (CRP), oxidized low-density lipoprotein (oxLDL), plasminogen activator inhibitor-1, lipid and glucose......From a pharmacological perspective, readily-available, well-characterized animal models of cardiovascular disease, including relevant in vivo markers of atherosclerosis are important for evaluation of novel drug candidates. Furthermore, considering the impact of diabetes mellitus on atherosclerosis...

  12. Diet and Atherosclerosis | Grande | South African Medical Journal

    African Journals Online (AJOL)

    Among the various factors affecting the development of atherosclerosis and its complications, the diet emerges as an important influence. This article reviews the evidence linking diet and atherosclerosis; the relation between serum cholesterol concentration and incidence of coronary heart disease, and the effect of various ...

  13. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties

    OpenAIRE

    Sendobry, Sandra M; Cornicelli, Joseph A; Welch, Kathryn; Bocan, Thomas; Tait, Bradley; Trivedi, Bharat K; Colbry, Norman; Dyer, Richard D; Feinmark, Steven J; Daugherty, Alan

    1997-01-01

    15-Lipoxygenase (15-LO) has been implicated in the pathogenesis of atherosclerosis because of its localization in lesions and the many biological activities exhibited by its products. To provide further evidence for a role of 15-LO, the effects of PD 146176 on the development of atherosclerosis in cholesterol-fed rabbits were assessed. This novel drug is a specific inhibitor of the enzyme in vitro and lacks significant non specific antioxidant properties.PD 146176 inhibited rabbit reticulocyt...

  14. Chronic Intermittent Hypoxia Induces Atherosclerosis

    OpenAIRE

    Savransky, Vladimir; Nanayakkara, Ashika; Li, Jianguo; Bevans, Shannon; Smith, Philip L.; Rodriguez, Annabelle; Polotsky, Vsevolod Y.

    2007-01-01

    Rationale: Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established.

  15. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice.

    Science.gov (United States)

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-11-08

    Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE -/- ) mice. LGG or TLM supplementation to HF diet was studied. Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.

  16. Effect of 7-Difluoromethyl-5, 4΄-dimethoxygenistein on aorta atherosclerosis in hyperlipidemia ApoE-/- mice induced by a cholesterol-rich diet

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-04-01

    Full Text Available Yong Zhang,1,2 Lesai Li,3 Jiliang You,2 Jianguo Cao,2 Xiaohua Fu2 1Department of Hematology, Xiangya Hospital, Central South University, Changsha, People's Republic of China; 2College of Medicine, Hunan Normal University, Changsha, People's Republic of China; 3Department of Gynecologic Oncology, Tumor Hospital Xiangya School of Medicine of Central South University, Changsha, People's Republic of China Purpose: 7-Difluoromethyl-5, 4΄-dimethoxygenistein (DFMG, prepared by the difluoromethylation and alkylation of Genistein, is an active new chemical entity. Its anti-atherosclerosis effect was found in a series of studies in vitro. In this article, we explored and evaluated the anti-atherosclerosis effect via its protection of endothelial function in ApoE-/- mice that were fed a high-fat diet. Methods: Five C57BL/6J mice were selected as a control group and were fed a 1% high-fat diet (control group, n = 5. Five ApoE-/- mice that were fed a high-fat diet for 16 weeks were selected as the atherosclerosis model group (model group, n = 5. In the phase I study, 25 ApoE-/- mice were provided a prophylactic treatment with different drugs at the beginning of the 16 week high-fat diet: 5 mg/gk genistein (genistein 1 group, n = 5, 5 mg/kg lovastatin (lovastatin1 group, n = 5, 2.5 mg/kg DFMG (DFMG L1 group, n = 5, 5 mg/kg DFMG (DFMG M1 group, n = 5, and 10 mg/kg DFMG (DFMG H1 group, n = 5. In the phase II study, 25 atherosclerosis model, ApoE-/- mice were treated with different drugs and fed a high-fat diet for 16 weeks: 5 mg/gk genistein (genistein 2 group, n = 5, 5 mg/kg lovastatin (lovastatin 2 group, n = 5, 2.5 mg/kg DFMG (DFMG L2 group, n = 5, 5 mg/kg DFMG (DFMG M2 group, n = 5, and 10 mg/kg DFMG (DFMG H2 group, n = 5. The plasma levels of lipids, von Willebrand factor (vWF, and nitrite were compared between phases I and II. Endothelium-dependent relaxation (EDR, aortic lesion development, and quantification in thoracic aortas were measured during

  17. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    International Nuclear Information System (INIS)

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-01-01

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: → Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. → Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs

  18. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  19. Diet induced thermogenesis

    NARCIS (Netherlands)

    Westerterp, K.R.

    2004-01-01

    OBJECTIVE: Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. METHODS: Measuring

  20. Diet induced thermogenesis

    OpenAIRE

    Westerterp KR

    2004-01-01

    Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Resu...

  1. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  2. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet.

    Science.gov (United States)

    Uchida, Masashi; Ishii, Itsuko; Inoue, Chika; Akisato, Yoshie; Watanabe, Kenta; Hosoyama, Saori; Toida, Toshihiko; Ariyoshi, Noritaka; Kitada, Mitsukazu

    2010-09-30

    Kefiran is an exopolysaccharide produced by Lactobacillus kefiranofaciens, and has been proposed to have many health-promoting properties. We investigated the antiatherogenic effect of kefiran on rabbits fed a high-cholesterol diet. Male New Zealand White rabbits were fed a 0.5% cholesterol diet without (control group, n = 7) or with kefiran (kefiran group, n = 8) for eight weeks. The aorta was analyzed by histochemistry and atherosclerotic lesions were quantified. Lipids and sugars in serum were measured. Foam cell formation of RAW264.7 by βVLDL derived from both groups of rabbits was also investigated. Cholesterol, triglyceride and phospholipids levels of serum and lipoprotein fractions were not significantly different between these groups. Atherosclerotic lesions of the aorta in the kefiran group were statistically lower than those of the control group, with marked differences in the abdominal aorta. T-lymphocytes were not detectable in the aorta of the kefiran group. Cholesterol contents in stools were almost identical in both groups. Cholesterol content in the liver of the kefiran group was statistically lower than in the control group. Galactose content of βVLDL derived from the kefiran group was higher, and the lipid peroxidation level was much lower than in the control group. RAW264.7 macrophages treated with βVLDL from the kefiran group showed a more spherical shape and accumulated statistically lower cholesterol than macrophages treated with βVLDL from the control group. Orally derived kefiran is absorbed in the blood. Kefiran prevents the onset and development of atherosclerosis in hypercholesterolemic rabbits by anti-inflammatory and anti-oxidant actions.

  3. Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

    Science.gov (United States)

    Abdelhalim, Mohamed Anwar K.; Moussa, Sherif A. Abdelmottaleb; AL-Mohy, Yanallah Hussain

    2013-01-01

    Background. In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. Methods. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. Results. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. Conclusions. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis. PMID:24350281

  4. Radiation-induced carotid artery atherosclerosis

    International Nuclear Information System (INIS)

    Gujral, Dorothy M.; Chahal, Navtej; Senior, Roxy; Harrington, Kevin J.; Nutting, Christopher M.

    2014-01-01

    Purpose: Carotid arteries frequently receive significant doses of radiation as collateral structures in the treatment of malignant diseases. Vascular injury following treatment may result in carotid artery stenosis (CAS) and increased risk of stroke and transient ischaemic attack (TIA). This systematic review examines the effect of radiotherapy (RT) on the carotid arteries, looking at the incidence of stroke in patients receiving neck radiotherapy. In addition, we consider possible surrogate endpoints such as CAS and carotid intima-medial thickness (CIMT) and summarise the evidence for radiation-induced carotid atherosclerosis. Materials and methods: From 853 references, 34 articles met the criteria for inclusion in this systematic review. These papers described 9 studies investigating the incidence of stroke/TIA in irradiated patients, 11 looking at CAS, and 14 examining CIMT. Results: The majority of studies utilised suboptimally-matched controls for each endpoint. The relative risk of stroke in irradiated patients ranged from 1.12 in patients with breast cancer to 5.6 in patients treated for head and neck cancer. The prevalence of CAS was increased by 16–55%, with the more modest increase seen in a study using matched controls. CIMT was increased in irradiated carotid arteries by 18–40%. Only two matched-control studies demonstrated a significant increase in CIMT of 36% and 22% (p = 0.003 and <0.001, respectively). Early prospective data demonstrated a significant increase in CIMT in irradiated arteries at 1 and 2 years after RT (p < 0.001 and <0.01, respectively). Conclusions: The incidence of stroke was significantly increased in patients receiving RT to the neck. There was a consistent difference in CAS and CIMT between irradiated and unirradiated carotid arteries. Future studies should optimise control groups

  5. Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis: Proteomic Findings

    OpenAIRE

    Madan, Monika; Amar, Salomon

    2008-01-01

    Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/-) mice.To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/-)-TLR2(+/+), ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice were fed eit...

  6. The Establishment and Characteristics of Rat Model of Atherosclerosis Induced by Hyperuricemia

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2016-01-01

    Full Text Available Epidemiological studies have identified hyperuricemia as an independent risk factor for cardiovascular disease. However, the mechanism whereby hyperuricemia causes atherosclerosis remains unclear. The objective of the study was to establish a new rat model of hyperuricemia-induced atherosclerosis. Wistar-Kyoto rats were randomly allocated to either a normal diet (ND, high-fat diet (HFD, or high-adenine diet (HAD, followed by sacrifice 4, 8, or 12 weeks later. Serum uric acid and lipid levels were analyzed, pathologic changes in the aorta were observed by hematoxylin and eosin staining, and mRNA expression was evaluated by quantitative real-time polymerase chain reaction. Serum uric acid and TC were significantly increased in the HAD group at 4 weeks compared with the ND group, but there was no significant difference in serum uric acid between the ND and HFD groups. Aorta calcification occurred earlier and was more severe in the HAD group, compared with the HFD group. Proliferating cell nuclear antigen, monocyte chemotactic factor-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 mRNA levels were increased in the HFD and HAD groups compared with the ND group. This new animal model will be a useful tool for investigating the mechanisms responsible for hyperuricemia-induced atherosclerosis.

  7. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.

    Science.gov (United States)

    Madan, Monika; Amar, Salomon

    2008-09-12

    Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/-) mice. To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/-)-TLR2(+/+), ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 microl live Porphyromonas gingivalis (P.g) (10(7) CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE(+/-)-TLR2(+/+) mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE(+/-)-TLR2(+/+) mice were significantly higher than from ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE(+/-)-TLR2(+/+) mice compared to ApoE(+/-)-TLR2(+/-) and TLR2(-/-) mice, irrespective of diet or bacterial challenge. ApoE(+/-)-TLR2(+/+) mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE(+/-)-TLR2(-/-) mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimensional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE(+/-)-TLR2(+/+) mice

  8. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.

    Directory of Open Access Journals (Sweden)

    Monika Madan

    2008-09-01

    Full Text Available Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/- mice.To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/--TLR2(+/+, ApoE(+/--TLR2(+/- and ApoE(+/--TLR2(-/- mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 microl live Porphyromonas gingivalis (P.g (10(7 CFU or vehicle (normal saline. Animals were euthanized 24 weeks after the first inoculation. ApoE(+/--TLR2(+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE(+/--TLR2(+/- and ApoE(+/--TLR2(-/- mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE(+/--TLR2(+/+ mice were significantly higher than from ApoE(+/--TLR2(+/- and ApoE(+/--TLR2(-/- mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE(+/--TLR2(+/+ mice compared to ApoE(+/--TLR2(+/- and TLR2(-/- mice, irrespective of diet or bacterial challenge. ApoE(+/--TLR2(+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE(+/--TLR2(-/- mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS of aortic samples analyzed by 2-dimensional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE(+/--TLR2(+/+ mice fed the high fat

  9. Management of radiation-induced accelerated carotid atherosclerosis

    International Nuclear Information System (INIS)

    Loftus, C.M.; Biller, J.; Hart, M.N.; Cornell, S.H.; Hiratzka, L.F.

    1987-01-01

    Patients with long survival following cervical irradiation are at risk for accelerated carotid atherosclerosis. The neurologic presentation in these patients mimics naturally occurring atheromatous disease, but patients often present at younger ages and with less concurrent coronary or systemic vascular disease. Hypercholesterolemia also contributes to this accelerated arteriosclerosis. Angiographic findings in this disorder include disproportionate involvement of the distal common carotid artery and unusually long carotid lesions. Pathologic findings include destruction of the internal elastic lamina and replacement of the normal intima and media with fibrous tissue. This article describes two surgical patients with radiation-induced accelerated carotid atherosclerosis who typify the presentation and characteristics of this disease

  10. Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2014-01-01

    Full Text Available Atherosclerosis and its complications are major causes of death all over the world. One of the major risks of atherosclerosis is hypercholesterolemia. During atherosclerosis, oxidized low density lipoprotein (oxLDL regulates CD36-mediated activation of c-jun amino terminal kinase-1 (JNK1 and modulates matrix metalloproteinase (MMP induction which stimulates inflammation with an invasion of monocytes. Additionally, inhibition of proteasome leads to an accumulation of c-jun and phosphorylated c-jun and activation of activator protein-1 (AP-1 related increase of MMP expression. We have previously reported a significant increase in cluster of differentiation 36 (CD36 mRNA levels in hypercholesterolemic rabbits and shown that vitamin E treatment prevented the cholesterol induced increase in CD36 mRNA expression. In the present study, our aim is to identify the signaling molecules/transcription factors involved in the progression of atherosclerosis following CD36 activation in an in vivo model of hypercholesterolemic (induced by 2% cholesterol containing diet rabbits. In this direction, proteasomal activities by fluorometry and c-jun, phospo c-jun, JNK1, MMP-9 expressions by quantitative RT-PCR and immunoblotting were tested in aortic tissues. The effects of vitamin E on these changes were also investigated in this model. As a result, c-jun was phosphorylated following decreased proteasomal degradation in hypercholesterolemic group. MMP-9 expression was also increased in cholesterol group rabbits contributing to the development of atherosclerosis. In addition, vitamin E showed its effect by decreasing MMP-9 levels and phosphorylation of c-jun.

  11. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: balance between antioxidant and hyperlipidemic properties

    International Nuclear Information System (INIS)

    Aguilar, E.C.; Jascolka, T.L.; Teixeira, L.G.; Lages, P.C.; Ribeiro, A.C.C.; Vieira, E.L.M.; Peluzio, M.C.G.; Alvarez-Leite, J.I.

    2012-01-01

    Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr −/− , C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action

  12. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: balance between antioxidant and hyperlipidemic properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, E.C. [Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Jascolka, T.L. [Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Teixeira, L.G.; Lages, P.C.; Ribeiro, A.C.C.; Vieira, E.L.M. [Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Peluzio, M.C.G. [Departamento de Nutrição, Universidade Federal de Viçosa, Viçosa, MG (Brazil); Alvarez-Leite, J.I. [Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-05-11

    Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr{sup −/−}, C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.

  13. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: balance between antioxidant and hyperlipidemic properties

    Directory of Open Access Journals (Sweden)

    E.C. Aguilar

    2012-07-01

    Full Text Available Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr-/-, C57BL/6-background. Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12 or 7% pequi oil (Pequi group, N = 12 for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units. Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.

  14. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    Science.gov (United States)

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  15. Animal model of atherosclerosis using rabbit experimentally induced by combination of X-ray and hypercholesterolemia

    International Nuclear Information System (INIS)

    Ishiyama, Tomotoshi; Sawai, Takashi; Okuma, Tsuneo; Mori, Shozo

    1995-01-01

    An attempt was made to prepare an animal model of atherosclerosis similar to human lesions. The experimental animals were male Japanese white rabbits weighting about 2 kg. Hypercholesterolemia was experimentally induced by giving a 1% cholesterol diet. Four weeks later, a single dose of 45 Gy was delivered to the femur to produce vascular changes. Soon after irradiation, immunohistochemical examination revealed the adhesion and invasion of macrophages to endothelial cells, followed by accumulation of foam cells and thickness of the intimal plaques. Three months after irradiation, these thickened plaques became fibrotic, calcified, and necrotic. The tunica media was thinned and the internal elastic lamella was destroyed. Irradiated arteries exhibited not only severe narrowing of the lumen but also aneurysmal dilation and the lesions of the irradiated arteries resembled human atherosclerosis. In conclusion, the atherosclerotic model produced by combining experimental hypercholesterolemia and X-ray irradiaiton may serve as a useful model for studies on atherosclerosis because it can be prepared with no need of complicated or time-consuming procedures. (N.K.)

  16. Diet Pattern and Respiratory Morbidity in the Atherosclerosis Risk in Communities Study.

    Science.gov (United States)

    Brigham, Emily P; Steffen, Lyn M; London, Stephanie J; Boyce, Danielle; Diette, Gregory B; Hansel, Nadia N; Rice, Jessica; McCormack, Meredith C

    2018-02-15

    Dietary intake is a potential risk factor for respiratory morbidity in adult populations. Few studies capture the effect of diet patterns, representative of combination of nutrients consumed, on respiratory morbidity in combination with objective measures of lung function. To evaluate patterns of dietary intake in relation to respiratory morbidity and objective measures of lung function in a U.S. The Atherosclerosis Risk in Communities (ARIC) Study enrolled 15,792 participants from four U.S. communities between 1987-1989 and collected a validated food frequency questionnaire to assess diet. Principal components analysis was applied and patterns representative of "Western" and "Prudent" diet emerged. We investigated associations between dietary pattern and pulmonary assessments including asthma and chronic obstructive pulmonary disease (COPD) diagnosis, respiratory symptoms, and lung function. Multivariable logistic regression models included quintiles of dietary patterns and potential confounders. Interaction of dietary patterns with obesity, gender, and smoking status was assessed in relation to all outcomes. A "Western" diet pattern was associated with higher odds of COPD, wheeze, cough, phlegm, and worse lung function, whereas a "Prudent" diet pattern was associated with lower odds of COPD, cough, and better lung function. The prevalence of asthma was not related to dietary intake. Dietary pattern was significantly associated with respiratory outcomes in ARIC participants. A "Western" diet was adverse, whereas a "Prudent" diet was beneficially related to respiratory morbidity and objective measures of lung function. Additional studies of dietary pattern in U.S. populations are needed to verify this effect.

  17. Impact of plant-based diet on lipid risk factors for atherosclerosis.

    Science.gov (United States)

    Kuchta, Agnieszka; Lebiedzińska, Anna; Fijałkowski, Marcin; Gałąska, Rafał; Kreft, Ewelina; Totoń, Magdalena; Czaja, Kuba; Kozłowska, Anna; Ćwiklińska, Agnieszka; Kortas-Stempak, Barbara; Strzelecki, Adrian; Gliwińska, Anna; Dąbkowski, Kamil; Jankowski, Maciej

    2016-01-01

    The aim of the study was to investigate the effect of a vegan diet on the serum lipid profile with particular regard to the parameters characterizing the high-density lipoprotein (HDL) fractions in subjects without subclinical atherosclerosis, measured by carotid Doppler ultrasonography. Forty-two 23 to 38 year old subjects (21 omnivores and 21 vegans) participated in the study. Compared to the omnivores, the vegan subjects were characterized by lower parameters of lipid profile: total cholesterol (p vegan subjects. The apoB/apoAI ratio in vegans was lower than in omnivores (p vegans. The activity of paraoxonase-1 and 8-iso-prostaglandin F2a concentration were also not different between the study groups. We suggest that a vegan diet may have a beneficial effect on serum lipid profile and cardiovascular protection, but it is not associated with changes in HDL composition.

  18. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    Science.gov (United States)

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  19. Resveratrol protects rabbits against cholesterol diet- induced ...

    African Journals Online (AJOL)

    ... groups compared to HFD group only. In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrations and might be beneficial in treatment of hyperlipidemia and atherosclerosis. Keywords: Cholesterol diet, Lipidaemia, Rabbit; Resveratrol, LDL-c, HDL-c, TC, TG ...

  20. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  1. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet.

    Science.gov (United States)

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE -/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN

  2. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  3. Diet and the development of atherosclerosis: a whole-diet approach from childhood to adulthood

    OpenAIRE

    Mikkilä, Vera

    2008-01-01

    Cardiovascular diseases (CVDs) are the leading cause of mortality in the world. Studies of the impact of single nutrients on the risk for CVD have often provided inconclusive results, and recent research in nutritional epidemiology with a more holistic whole-diet approach has proven fruitful. Moreover, dietary habits in childhood and adolescence may play a role in later health and disease, either independently or by tracking into adulthood. The main aims of this study were to find childhood a...

  4. Effects of dietary calcium on atherosclerosis, aortic calcification, and icterus in rabbits fed a supplemental cholesterol diet

    Directory of Open Access Journals (Sweden)

    Culley Nathan C

    2006-06-01

    Full Text Available Abstract Background Vascular calcification is implicated in myocardial infarction, instability and rigidity of the aortic wall, and bioprosthetic failures. Although an increase in the calcium (Ca content in atherogenic diets has been shown to decrease atherosclerosis in rabbits, whether Ca supplementation and deficiency can affect atherosclerosis-related aortic calcification remains unknown. Results New Zealand White male rabbit littermates were fed an atherogenic diet containing 0.5% cholesterol and 2% peanut oil. The Ca content of the diet, which normally contains 1%, was adjusted to 0.5 or 3%. Segments of thoracic aortas were dissected from rabbits for histological evaluations and Ca and Pi determinations. Rabbits with calcium supplementation were maintained for 4 months, whereas those with calcium deficiency were maintained for 2 1/2 months due to severe icterus beyond this stage. The ratios of intimal to medial areas and calcified to intimal areas were used to semi-quantify lesion accumulation and calcification, respectively. Icterus was estimated from the extent of yellowing of the skin, sclera, and mucous membranes along with gross evidence of hepatic lipidosis and/or biliary obstructions. Statistical analysis of 16 matched littermates shows that Ca supplementation significantly decreased the lesions by 41% (p Conclusion Ca supplementation to an atherogenic diet inhibits atherosclerosis, aortic calcification, and icterus, whereas a Ca deficient-diet promotes them.

  5. Mediterranean diet score and left ventricular structure and function: the Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A

    2016-09-01

    Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45-84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less-Mediterranean-like dietary patterns. This trial was registered at

  6. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingjun, E-mail: menglingjun@nibs.ac.cn [College of Biological Sciences, China Agricultural University, Beijing 100094 (China); National Institute of Biological Sciences, Beijing 102206 (China); Jin, Wei [Institute for Immunology, Tsinghua University, Beijing 100084 (China); Wang, Yuhui [Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing 100191 (China); Huang, Huanwei; Li, Jia; Zhang, Cai [National Institute of Biological Sciences, Beijing 102206 (China)

    2016-04-29

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.

  7. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    International Nuclear Information System (INIS)

    Meng, Lingjun; Jin, Wei; Wang, Yuhui; Huang, Huanwei; Li, Jia; Zhang, Cai

    2016-01-01

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.

  8. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shanshan [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800 (China); Wang, Jiaxing [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Pang, Wei [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Ai, Ding [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Zhu, Yi [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); He, Jinlong, E-mail: hejinlong@tmu.edu.cn [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China)

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  9. Addition of Aspirin to a Fish Oil Rich Diet Decreases Inflammation and Atherosclerosis in ApoE-Null Mice

    Science.gov (United States)

    Sorokin, Alexander V.; Yang, Zhi-Hong; Vaisman, Boris L.; Thacker, Seth; Yu, Zu-Xi; Sampson, Maureen; Serhan, Charles N.; Remaley, Alan T.

    2016-01-01

    Aspirin (ASA) is known to alter the production of potent inflammatory lipid mediators, but whether it interacts with omega-3 fatty acids (FA) from fish oil to affect atherosclerosis has not been determined. The goal was to investigate the impact of a fish oil enriched diet alone and in combination with ASA on the production of lipid mediators and atherosclerosis. ApoE−/− female mice were fed for 13 weeks one of the four following diets: Omega-3 FA deficient (OD), Omega-3 FA Rich (OR) (1.8 g Omega-3 FAs/kg • diet per day), Omega-3 FA Rich plus ASA (ORA) (0.1 g ASA/kg • diet per day), or an Omega-3 FA deficient plus ASA (ODA) with supplement levels equivalent to human doses. Plasma lipids, atherosclerosis, markers of inflammation, hepatic gene expression and aortic lipid mediators were determined. Hepatic omega-3 FAs were markedly higher in OR (9.9-fold) and ORA (7-fold) groups. Mice in both OR and ORA groups had 40% less plasma cholesterol in VLDL and LDL fractions, but aortic plaque area formation was only significantly lower in the ORA group (5.5%) compared to the OD group (2.5%). Plasma PCSK9 protein levels were approximately 70% lower in the OR and ORA groups. Pro-inflammatory aortic lipid mediators were 50–70% lower in the ODA group than in the OD group and more than 50% lower in the ORA group. In summary, less aortic plaque lesions and aortic pro-inflammatory lipid mediators were observed in mice on the fish oil diet plus ASA versus just the fish oil diet. PMID:27394692

  10. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  11. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE?/? mice

    OpenAIRE

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V.; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-01-01

    Background Atherosclerosis appears to have multifactorial causes ? microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceutica...

  12. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease.

    Science.gov (United States)

    Sfyri, Peggy; Matsakas, Antonios

    2017-07-08

    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.

  13. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible...... to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...... used urinary isoprostane as a marker for oxidative stress. RESULTS: Although high-salt diet per se did not affect plaque extension, high salt combined with Ang II increased plaque area significantly in both the aorta and the innominate artery as compared with Ang II or salt alone (P

  14. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    Science.gov (United States)

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice : An immunohistochemical study

    NARCIS (Netherlands)

    Gijbels, M.J.J.; Cammen, M. van der; Laan, L.J.W. van der; Emeis, J.J.; Havekes, L.M.; Hofker, M.H.; Kraal, G.

    1999-01-01

    Apolipoprotein E3-Leiden (APOE3-Leiden) transgenic mice develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. We have studied the progression and regression of atherosclerosis using immunohistochemistry. Female transgenic mice were fed a moderate fat diet to study

  16. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  17. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet

    OpenAIRE

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    2015-01-01

    Objective This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). Background D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacolog...

  18. Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome.

    Science.gov (United States)

    Badin, Jill K; Kole, Ayeeshik; Stivers, Benjamin; Progar, Victor; Pareddy, Anisha; Alloosh, Mouhamad; Sturek, Michael

    2018-03-09

    There is a preponderance of evidence implicating diabetes with increased coronary artery disease (CAD) and calcification (CAC) in human patients with metabolic syndrome (MetS), but the effect of diabetes on CAD severity in animal models remains controversial. We investigated whether diabetes exacerbates CAD/CAC and intracellular free calcium ([Ca 2+ ] i ) dysregulation in the clinically relevant Ossabaw miniature swine model of MetS. Sixteen swine, eight with alloxan-induced diabetes, were fed a hypercaloric, atherogenic diet for 6 months. Alloxan-induced pancreatic beta cell damage was examined by immunohistochemical staining of insulin. The metabolic profile was confirmed by body weight, complete blood panel, intravenous glucose tolerance test (IVGTT), and meal tolerance test. CAD severity was assessed with intravascular ultrasound and histology. [Ca 2+ ] i handling in coronary smooth muscle (CSM) cells was assessed with fura-2 ratiometric imaging. Fasting and post-prandial blood glucose, total cholesterol, and serum triglycerides were elevated in MetS-diabetic swine. This group also exhibited hypoinsulinemia during IVGTT and less pancreatic beta cell mass when compared to lean and MetS-nondiabetic swine. IVUS analysis revealed that MetS-diabetic swine had greater percent wall coverage, percent plaque burden, and calcium index when compared to lean and MetS-nondiabetic swine. Fura-2 imaging of CSM [Ca 2+ ] i revealed that MetS-nondiabetic swine exhibited increased sarcoplasmic reticulum Ca 2+ store release and Ca 2+ influx through voltage-gated Ca 2+ channels compared to lean swine. MetS-diabetic swine exhibited impaired Ca 2+ efflux. Diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with MetS, accompanied by progression of [Ca 2+ ] i dysregulation in advanced CAD/CAC. These results recapitulate increased CAD in humans with diabetes and establish Ossabaw miniature swine as an animal model for future Met

  19. Diet-induced mating preference in Drosophila

    OpenAIRE

    Rosenberg, Eugene; Zilber-Rosenberg, Ilana; Sharon, Gil; Segal, Daniel

    2018-01-01

    Diet-induced mating preference was initially observed by Dodd (1). Subsequently, we reported that diet-induced mating preference occurred in Drosophila melanogaster. Treatment of the flies with antibiotics abolished the mating preference, suggesting that fly-associated commensal bacteria were responsible for the phenomenon (2). The hypothesis was confirmed when it was shown that colonizing antibiotic-treated flies with Lactobacillus plantarum reestablished mating preference in multiple-choice...

  20. C3 deposition in cholesterol-induced atherosclerosis in rabbits: a possible etiologic role for complement in atherogenesis.

    Science.gov (United States)

    Pang, A S; Katz, A; Minta, J O

    1979-09-01

    Hypercholesterolemia was induced in rabbits by feeding Purina Chow supplemented with cholesterol (5 g/kg body weight/day). The serum cholesterol levels of these rabbits increased progressively and after 3 to 5 months were 4 to 9-fold greater than those of the control animals. Decrease in total hemolytic complement was not apparent during the feeding regimen. Morphologic examination of aortae of these hypercholesterolemic rabbits showed typical atherosclerotic intimal plaques. Immunofluorescent microscopy with fluorescein (F)-labeled anti-rabbit C3 showed deposition of C3 in the intimal and inner medial layers as early as 3 months on high cholesterol diet. C3 deposits were also observed in the renal glomeruli and in the walls of coronary arteries. However, fluorescent studies failed to demonstrate the presence of IgG, IgM, and C4 at these sites. Tissues from control animals fed normal diets were negative for immunoglobulins, C3, and C4. These results suggest that the complement system may be implicated in the pathogenesis of cholesterol-induced atherosclerosis in rabbits.

  1. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice.

    Science.gov (United States)

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2014-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. MicroRNAs as Potential Mediators for Cigarette Smoking Induced Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Yuka Yokoyama

    2018-04-01

    Full Text Available Smoking increases the risk of atherosclerosis-related events, such as myocardial infarction and ischemic stroke. Recent studies have examined the expression levels of altered microRNAs (miRNAs in various diseases. The profiles of tissue miRNAs can be potentially used in diagnosis or prognosis. However, there are limited studies on miRNAs following exposure to cigarette smoke (CS. The present study was designed to dissect the effects and cellular/molecular mechanisms of CS-induced atherosclerogenesis. Apolipoprotein E knockout (ApoE KO mice were exposed to CS for five days a week for two months at low (two puffs/min for 40 min/day or high dose (two puffs/min for 120 min/day. We measured the area of atherosclerotic plaques in the aorta, representing the expression of miRNAs after the exposure period. Two-month exposure to the high dose of CS significantly increased the plaque area in aortic arch, and significantly upregulated the expression of atherosclerotic markers (VCAM-1, ICAM-1, MCP1, p22phox, and gp91phox. Exposure to the high dose of CS also significantly upregulated the miRNA-155 level in the aortic tissues of ApoE KO mice. Moreover, the expression level of miR-126 tended to be downregulated and that of miR-21 tended to be upregulated in ApoE KO mice exposed to the high dose of CS, albeit statistically insignificant. The results suggest that CS induces atherosclerosis through increased vascular inflammation and NADPH oxidase expression and also emphasize the importance of miRNAs in the pathogenesis of CS-induced atherosclerosis. Our findings provide evidence for miRNAs as potential mediators of inflammation and atherosclerosis induced by CS.

  3. Dietary saturated fat/cholesterol, but not unsaturated fat or starch, induces C-reactive protein associated early atherosclerosis and ectopic fat deposition in diabetic pigs

    Directory of Open Access Journals (Sweden)

    Serlie Mireille J

    2011-07-01

    Full Text Available Abstract Background Diabetes is thought to accelerate cardiovascular disease depending on the type of diet. This study in diabetic subjects was performed to investigate the metabolic, inflammatory and cardiovascular effects of nutritional components typically present in a Western, Mediterranean or high glycaemic diet. Methods Streptozotocin-diabetic pigs (~45 kg were fed for 10 weeks supplemental (40% of dietary energy saturated fat/cholesterol (SFC, unsaturated fat (UF or starch (S in an eucaloric dietary intervention study. Results Fasting plasma total, LDL and HDL cholesterol concentrations were 3-5 fold higher (p 2 = 0.95. Retroperitoneal fat depot weight (g was intermediate in SFC (260 ± 72, lowest in S (135 ± 51 and highest (p Conclusion Dietary saturated fat/cholesterol induces inflammation, atherosclerosis and ectopic fat deposition whereas an equally high dietary unsaturated fat load does not induce these abnormalities and shows beneficial effects on postprandial glycaemia in diabetic pigs.

  4. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    Science.gov (United States)

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Bai, Ni [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver (Canada); Vincent, Renaud [Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa (Canada); Francis, Gordon A.; Sin, Don D. [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Van Eeden, Stephan F., E-mail: Stephan.vanEeden@hli.ubc.ca [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada)

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  6. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-01-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM 10 ) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM 10 . New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM 10 /saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM 10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM 10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM 10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM 10 . Taken together, statins protect against PM 10 -induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM 10 ) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and

  7. Mediterranean diet score and left ventricular structure and function: the Multi-Ethnic Study of Atherosclerosis12

    Science.gov (United States)

    Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A

    2016-01-01

    Background: Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. Objective: We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. Design: We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45–84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). Results: The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. Conclusions: A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less

  8. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4.

    Science.gov (United States)

    Drager, Luciano F; Yao, Qiaoling; Hernandez, Karen L; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Gay, Jason; Sussan, Thomas E; Jun, Jonathan C; Myers, Allen C; Olivecrona, Gunilla; Schwartz, Alan R; Halberg, Nils; Scherer, Philipp E; Semenza, Gregg L; Powell, David R; Polotsky, Vsevolod Y

    2013-07-15

    Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.

  9. Feasibility of simultaneous PET/MR in diet-induced atherosclerotic minipig

    DEFF Research Database (Denmark)

    Pedersen, Sune F; Ludvigsen, Trine P; Johannesen, Helle H

    2014-01-01

    Novel hybrid 18-fluoro-deoxy-D-glucose ((18)F-FDG) based positron emission tomography (PET) and magnetic resonance imaging (MRI) has shown promise for characterization of atherosclerotic plaques clinically. The purpose of this study was to evaluate the method in a pre-clinical model of diet......-induced atherosclerosis, based on the Göttingen minipig. Using (18)F-FDG PET/MRI the goal was to develop and create a new imaging method in an in vivo animal model for translational studies of atherosclerosis. We used a strategy of multisequence MRI for optimal anatomical imaging of the abdominal aortas of the pigs (n=4...... glycolysis as given by standardized uptake values (SUV). Ex vivo en face evaluation of aortas from an atherosclerotic animal illustrated plaque distribution macroscopically, compared to a lean control animal. Although T2-TSE weighted imaging was most consistent, no one MRI sequence was preferable...

  10. Atherosclerosis VII

    International Nuclear Information System (INIS)

    Fidge, N.H.; Nestel, P.J.; Flinders Univ., Adelaide

    1986-01-01

    In these proceedings the major themes of the conference have been preserved and comprise epidemiology, lipoproteins, pathogenesis, and clinical, therapeutic and nutritional aspects. The diet-lipidcoronary artery disease hypothesis has been strengthened significantly. Several long-awaited trials, reviewed here, have provided very strong support for the rationale for treating hyperlipidemia. A strategy for the prevention of atherosclerosis was defined at the conference. The genesis of atherosclerosis was shown to be more firmly grounded in the influx of lipoprotein into the arterial wall. The regulation of these processes and the rapid advances made possible by new technology were detailed in several sessions. Important new developments in the clinical area and in pharmacology give promise of greatly improved management of established disease. However, the possibility of mounting large-scale preventive measures in the near future, was given credence in the epidemiology and nutrition workshops. (Auth.)

  11. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  12. An essential role for diet in exercise-mediated protection against dyslipidemia, inflammation and atherosclerosis in ApoE⁻/⁻ mice.

    Directory of Open Access Journals (Sweden)

    Liliana Cesar

    2011-02-01

    Full Text Available Diet and exercise promote cardiovascular health but their relative contributions to atherosclerosis are not fully known. The transition from a sedentary to active lifestyle requires increased caloric intake to achieve energy balance. Using atherosclerosis-prone ApoE-null mice we sought to determine whether the benefits of exercise for arterial disease are dependent on the food source of the additional calories.Mice were fed a high-fat diet (HF for 4.5 months to initiate atherosclerosis after which time half were continued on HF while the other half were switched to a high protein/fish oil diet (HP. Half of each group underwent voluntary running. Food intake, running distance, body weight, lipids, inflammation markers, and atherosclerotic plaque were quantified. Two-way ANOVA tests were used to assess differences and interactions between groups. Exercised mice ran approximately 6-km per day with no difference between groups. Both groups increased food intake during exercise and there was a significant main effect of exercise F((1,44 = 9.86, p<0.01 without interaction. Diet or exercise produced significant independent effects on body weight (diet: F(1,52 = 6.85, p = 0.012; exercise: F(1,52 = 9.52, p<0.01 with no significant interaction. The combination of HP diet and exercise produced a greater decrease in total cholesterol (F(1, 46 = 7.9, p<0.01 and LDL (F(1, 46 = 7.33, p<0.01 with a large effect on the size of the interaction. HP diet and exercise independently reduced TGL and VLDL (p<0.05 and 0.001 respectively. Interleukin 6 and C-reactive protein were highest in the HF-sedentary group and were significantly reduced by exercise only in this group. Plaque accumulation in the aortic arch, a marker of cardiovascular events was reduced by the HP diet and the effect was significantly potentiated by exercise only in this group resulting in significant plaque regression (F1, 49 = 4.77, p<0.05.In this model exercise is

  13. Acute Effects of Apple Cider Vinegar Intake on Some Biochemical Risk Factors of Atherosclerosis in Rabbits Fed with a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    M Setorki

    2012-05-01

    Full Text Available

    Background and Objectives: Metabolic changes in postprandial stage, especially after consumption of high fat meal cause atherosclerosis and increase the risk of cardiovascular diseases. Apple cider vinegar is an acidic juice with useful medicinal effects. In this research; we investigated acute effects of apple cider vinegar intake on some of the biochemical atherosclerosis risk factors in high cholesterol fed rabbits.

    Methods: Thirty two male New Zealand rabbits were randomly divided into four groups: normal diet group, high cholesterol diet group (%1cholesterol, %1 cholesterol with 5ml apple cider vinegar group, %1 cholesterol with 10ml apple cider vinegar group. The C-Reactive Protein (CRP, low density lipoprotein (LDL-C, high density lipoprotein (HDL-C, total cholesterol (TC, malondialdehyde (MDA, oxidized-LDL (OxLDL, serum glutamic pyruvic transaminase (SGPT, serum glutamic oxaloacetate transaminase (SGOT, nitrite, nitrate, glucose, fibrinogen triacylglycerol (TG, apolipoprotein A (ApoA1, apolipoprotein B (ApoB100 were all measured before the experiment and three hours after feeding with these treatment diets.

    Results: In high cholesterol diet fibrinogen, nitrite, glucose, OxLDL, MDA and CRP showed a significant increase compared to normal diet. Significant differences were observed between both groups of apple cider vinegar by fibrinogen in comparison with hypercholesterolemic diet. Using 10ml apple cider vinegar with cholesterolemic diet caused a significant reduction in Ox-LDL, MDA and glucose in comparison with hypercholesterolemic diet. Moreover, the consumption of 5ml apple cider vinegar with cholesterolemic diet caused a significant decrease in LDL-C and TC compared to hypercholesterolemic diet. No significant difference was found between apple cider vinegar taking groups and

  14. The influence of different diets on metabolism and atherosclerosis processes-A porcine model: Blood serum, urine and tissues 1H NMR metabolomics targeted analysis.

    Directory of Open Access Journals (Sweden)

    Adam Zabek

    Full Text Available The global epidemic of cardiovascular diseases leads to increased morbidity and mortality caused mainly by myocardial infarction and stroke. Atherosclerosis is the major pathological process behind this epidemic. We designed a novel model of atherosclerosis in swine. Briefly, the first group (11 pigs received normal pig feed (balanced diet group-BDG for 12 months, the second group (9 pigs was fed a Western high-calorie diet (unbalanced diet group-UDG for 12 months, the third group (8 pigs received a Western type high-calorie diet for 9 months later replaced by a normal diet for 3 months (regression group-RG. Clinical measurements included zoometric data, arterial blood pressure, heart rate and ultrasonographic evaluation of femoral arteries. Then, the animals were sacrificed and the blood serum, urine and skeletal muscle tissue were collected and 1H NMR based metabolomics studies with the application of fingerprinting PLS-DA and univariate analysis were done. Our results have shown that the molecular disturbances might overlap with other diseases such as onset of diabetes, sleep apnea and other obesity accompanied diseases. Moreover, we revealed that once initiated, molecular changes did not return to homeostatic equilibrium, at least for the duration of this experiment.

  15. Torcetrapib does not reduce atherosclerosis beyond atorvastatin and induces more proinflammatory lesions than atorvastatin

    NARCIS (Netherlands)

    Haan, W. de; Vries-van der Weij, J. de; Hoorn, J.W.A. van der; Gautier, T.; Hoogt, C.C. van der; Westerterp, M.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Princen, H.M.G.; Rensen, P.C.N.

    2008-01-01

    BACKGROUND - Although cholesteryl ester transfer protein (CETP) inhibition is regarded as a promising strategy to reduce atherosclerosis by increasing high-density lipoprotein cholesterol, the CETP inhibitor torcetrapib given in addition to atorvastatin had no effect on atherosclerosis and even

  16. Torcetrapib does not reduce atherosclerosis beyond atorvastatin and induces more proinflammatory lesions than atorvastatin

    NARCIS (Netherlands)

    de Haan, Willeke; de Vries-van der Weij, Jitske; van der Hoorn, José W. A.; Gautier, Thomas; van der Hoogt, Caroline C.; Westerterp, Marit; Romijn, Johannes A.; Jukema, J. Wouter; Havekes, Louis M.; Princen, Hans M. G.; Rensen, Patrick C. N.

    2008-01-01

    Although cholesteryl ester transfer protein (CETP) inhibition is regarded as a promising strategy to reduce atherosclerosis by increasing high-density lipoprotein cholesterol, the CETP inhibitor torcetrapib given in addition to atorvastatin had no effect on atherosclerosis and even increased

  17. Reduction of mouse atherosclerosis by urokinase inhibition or with a limited-spectrum matrix metalloproteinase inhibitor

    DEFF Research Database (Denmark)

    Hu, Jie Hong; Touch, Phanith; Zhang, Jingwan

    2015-01-01

    -accelerated atherosclerosis) to investigate whether systemic inhibition of proteolytic activity of uPA or a subset of MMPs can reduce protease-induced atherosclerosis and aortic dilation. METHODS AND RESULTS: SR-uPA mice were fed a high-fat diet for 10 weeks and treated either with an antibody inhibiting mouse uPA (mU1...... surface lesion coverage. Several lines of evidence identified MMP-13 as a mediator of uPA-induced aortic MMP activity. CONCLUSIONS: Pharmacological inhibition of either uPA or selected MMPs decreased atherosclerosis in SR-uPA mice. uPA inhibition decreased aortic dilation. Differential effects of both...... agents on aortic root vs. distal aortic atherosclerosis suggest prevention of atherosclerosis progression vs. initiation. Systemic inhibition of uPA or a subset of MMPs shows promise for treating atherosclerosis....

  18. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    International Nuclear Information System (INIS)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis

  19. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  20. Phytosterols and atherosclerosis

    DEFF Research Database (Denmark)

    Schrøder, Malene

    Cardiovascular disease (CVD) is the major cause of premature deaths worldwide. Coronary heart disease is the most common CVD, caused by atherosclerosis in the coronary arteries. Atherosclerosis is a multifactorial disease influenced by both genetic and environmental factors. WHO has in 2007 listed...... in its “Guidelines for assessment and management of cardiovascular risk” the following risk factors to influence progressive atherosclerosis: hypertension, abnormal blood lipids, diabetes, unhealthy diet, physical inactivity and smoking. Phytosterols (plant sterols and plant stanols) are known...... their blood cholesterol levels. The aim of this Ph.D. project was to investigate the effects of phytosterols on the development of atherosclerosis in the aorta of heterozygous Watanabe Heritable Hyperlipidemic (WHHL) rabbits. The main advantage of animal studies to human studies in atherosclerosis research...

  1. Diet induced thermogenesis measured over 24h in a respiration chamber: effect of diet composition.

    NARCIS (Netherlands)

    Westerterp, K.R.; Wilson, S.A.; Rolland, V.

    1999-01-01

    Department of Human Biology, Maastricht University, The Netherlands. OBJECTIVE: To study the effect of diet composition on diet-induced thermogenesis (DIT) over 24h in a respiration chamber. SUBJECTS: Eight healthy female volunteers (age 27 +/- 3 y; body mass index, BMI 23 +/- 3 kg/m2). DIETS: A

  2. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Puijvelde, Gijs H M; Wierts, Laura; Lagraauw, H Maxime; Foks, Amanda C; van Santbrink, Peter J; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C A

    2015-01-01

    Modulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This

  3. Torcetrapib does not reduce atherosclerosis beyond atorvastatin and induces more proinflammatory lesions than atorvastatin

    NARCIS (Netherlands)

    de Haan, Willeke; de Vries-van der Weij, Jitske; van der Hoorn, Jose W. A.; Gautier, Thomas; van der Hoogt, Caroline C.; Westerterp, Marit; Romijn, Johannes A.; Jukema, J. Wouter; Havekes, Louis M.; Princen, Hans M. G.; Rensen, Patrick C. N.

    2008-01-01

    Background-Although cholesteryl ester transfer protein (CETP) inhibition is regarded as a promising strategy to reduce atherosclerosis by increasing high-density lipoprotein cholesterol, the CETP inhibitor torcetrapib given in addition to atorvastatin had no effect on atherosclerosis and even

  4. Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: A combined transcriptomics and metabolomics analysis

    NARCIS (Netherlands)

    Kleemann, R.; Verschuren, L.; Erk, M.J. van; Nikolsky, Y.; Cnubben, N.H.P.; Verheij, E.R.; Smilde, A.K.; Hendriks, H.F.J.; Zadelaar, A.S.M.; Smith, G.J.; Kaznacheev, V.; Nikolskaya, T.; Melnikov, A.; Hurt-Camejo, E.; Greef, J. van der; Ommen, B. van; Kooistra, T.

    2007-01-01

    Background: Increased dietary cholesterol intake is associated with atherosclerosis. Atherosclerosis development requires a lipid and an inflammatory component. It is unclear where and how the inflammatory component develops. To assess the role of the liver in the evolution of inflammation, we

  5. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Florian Willecke

    Full Text Available We tested whether a high fat diet (HFD containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/- mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR. After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD, showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states.

  6. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    Science.gov (United States)

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice.

    Science.gov (United States)

    Douglas, Robert M; Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B; Juliano, Joseph; Dalton, Nancy D; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L; Witztum, Joseph L; Haddad, Gabriel G; Li, Andrew C

    2013-12-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr(-/-)) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr(-/-) mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized.

  8. Diet-induced obesity attenuates fasting-induced hyperphagia.

    Science.gov (United States)

    Briggs, D I; Lemus, M B; Kua, E; Andrews, Z B

    2011-07-01

    Obesity impairs arcuate (ARC) neuropeptide Y (NPY)/agouti-releated peptide (AgRP) neuronal function and renders these homeostatic neurones unresponsive to the orexigenic hormone ghrelin. In the present study, we investigated the effect of diet-induced obesity (DIO) on feeding behaviour, ARC neuronal activation and mRNA expression following another orexigenic stimulus, an overnight fast. We show that 9 weeks of high-fat feeding attenuates fasting-induced hyperphagia by suppressing ARC neuronal activation and hypothalamic NPY/AgRP mRNA expression. Thus, the lack of appropriate feeding responses in DIO mice to a fast is caused by failure ARC neurones to recognise and/or respond to orexigenic cues. We propose that fasting-induced hyperphagia is regulated not by homeostatic control of appetite in DIO mice, but rather by changes in the reward circuitry. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  9. Circadian Rhythms in Diet-Induced Obesity.

    Science.gov (United States)

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in

  10. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    Science.gov (United States)

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization......, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents....

  12. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice

    OpenAIRE

    Lisa R. Hoving; Margreet R. de Vries; Rob C. M. de Jong; Saeed Katiraei; Amanda Pronk; Paul H. A. Quax; Vanessa van Harmelen; Ko Willems van Dijk

    2018-01-01

    The prebiotic inulin has proven effective at lowering inflammation and plasma lipid levels. As atherosclerosis is provoked by both inflammation and hyperlipidemia, we aimed to determine the effect of inulin supplementation on atherosclerosis development in hypercholesterolemic APOE*3-Leiden (E3L) mice. Male E3L mice were fed a high-cholesterol (1%) diet, supplemented with or without 10% inulin for 5 weeks. At week 3, a non-constrictive cuff was placed around the right femoral artery to induce...

  13. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  14. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Aarup; Pedersen, Tanja X; Junker, Nanna

    2016-01-01

    transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation...... to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS: HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis....

  15. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoE(null mice.

    Directory of Open Access Journals (Sweden)

    Mercedes F Rivera

    Full Text Available Periodontal disease (PD and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoE(null mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia] mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001 and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05 with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001. This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoE(null mice.

  16. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Thomas E Sussan

    Full Text Available BACKGROUND: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/- causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. PRINCIPAL FINDINGS: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2(-/- mice with apoliporotein E-deficient (ApoE(-/- mice. ApoE(-/- and ApoE(-/-Nrf2(-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE(-/-Nrf2(-/- mice exhibited significantly smaller plaque area than ApoE(-/- controls (11.5% vs 29.5%. This decrease in plaque area observed in ApoE(-/-Nrf2(-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL by isolated macrophages from ApoE(-/-Nrf2(-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE(-/-Nrf2(-/- mice exhibited decreased expression of the scavenger receptor CD36. CONCLUSIONS: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.

  17. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice

    Science.gov (United States)

    Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B.; Juliano, Joseph; Dalton, Nancy D.; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L.; Witztum, Joseph L.; Haddad, Gabriel G.; Li, Andrew C.

    2013-01-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr−/−) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr−/− mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized. PMID:23990245

  18. Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo.

    Science.gov (United States)

    Gorinstein, Shela; Leontowicz, Hanna; Leontowicz, Maria; Jesion, Iwona; Namiesnik, Jacek; Drzewiecki, Jerzy; Park, Yong-Seo; Ham, Kyung-Sik; Giordani, Edgardo; Trakhtenberg, Simon

    2011-01-01

    To assess the influence of two persimmon cultivars on some atherosclerosis indices in rats fed cholesterol (Chol)-containing diets. Persimmon cultivars "Fuyu" and "Jiro" as supplementation to rats' diets were investigated in vitro to compare the contents of their bioactive compounds (polyphenols, flavonoids, flavanols, tannins, carotenoids, and ascorbic acid) and antioxidant potentials. In the in vivo investigation, 36 male Wistar rats were randomly divided into six diet groups, each with six rats: control, control/Fuyu, control/Jiro, Chol, Chol/Fuyu, and Chol/Jiro. During a period of 47 d (42 d of feeding and 5-d adaptation before the experiment) of the trial, rats in the control group were fed a basal diet and two additional control groups (control/Fuyu and control/Jiro) a basal diet plus 5% of lyophilized Fuyu and Jiro, respectively. The Chol, Chol/Fuyu, and Chol/Jiro rat groups were fed a basal diet supplemented with 1% Chol (Chol group) and 1% Chol plus 5% lyophilized Fuyu (Chol/Fuyu group) and plus 5% lyophilized Jiro (Chol/Jiro group), respectively. After completion of the experiment, the rats were anesthetized using Narcotan (halothane) and sacrificed and the atherosclerotic lesions in the aorta were assessed. The obtained results of the investigation of all six groups were compared. Testing of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerols, total cholesterol in the liver, electrophoretic patterns of liver tissue, and three-dimensional fluorescence of serum protein fractions was performed. The polyphenols and tannins were significantly higher in the Fuyu cultivar (Pacid) (ABTS) assay (Pcholesterol 19.4% and 9.5%, low-density lipoprotein cholesterol 25.6% and 13.1%, respectively, P<0.05) and hindered the decrease in plasma antioxidant activity versus the Chol group by 40.0% and 16.8% and by 39.6% and 11.3% for the ABTS and 1,1-diphenyl-2-picrylhydrazyl assays, respectively. The atherosclerotic

  19. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    Science.gov (United States)

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  20. The Neuropeptide Substance P Mediates Adventitial Mast Cell Activation and Induces Intraplaque Hemorrhage in Advanced Atherosclerosis

    NARCIS (Netherlands)

    Bot, Ilze; de Jager, Saskia C. A.; Bot, Martine; van Heiningen, Sandra H.; de Groot, Paul; Veldhuizen, Roel W.; van Berkel, Theo J. C.; von der Thüsen, Jan H.; Biessen, Erik A. L.

    2010-01-01

    Rationale: Although we and others have recently shown that mast cells play an important role in plaque progression and destabilization, the nature of the actual trigger for (peri) vascular mast cell activation during atherosclerosis is still unresolved. Objective: In this study, we confirm that

  1. Neighborhood Prices of Healthier and Unhealthier Foods and Associations with Diet Quality: Evidence from the Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Kern, David M; Auchincloss, Amy H; Stehr, Mark F; Roux, Ana V Diez; Moore, Latetia V; Kanter, Genevieve P; Robinson, Lucy F

    2017-11-16

    It is known that the price of food influences the purchasing and consumption decisions of individuals; however, little work has examined if the price of healthier food relative to unhealthier food in an individual's neighborhood is associated with overall dietary quality while using data from multiple regions in the United States. Cross-sectional person-level data came from The Multi-Ethnic Study of Atherosclerosis (exam 5, 2010-2012 n = 2765); a food frequency questionnaire assessed diet. Supermarket food/beverage prices came from Information Resources Inc. (n = 794 supermarkets). For each individual, the average price of select indicators of healthier foods (vegetables, fruits, dairy) and unhealthier foods (soda, sweets, salty snacks), as well as their ratio, was computed for supermarkets within three miles of the person's residential address. Logistic regression estimated odds ratios of a high-quality diet (top quintile of Healthy Eating Index 2010) associated with healthy-to-unhealthy price ratio, adjusted for individual and neighborhood characteristics. Sensitivity analyses used an instrumental variable (IV) approach. Healthier foods cost nearly twice as much as unhealthier foods per serving on average (mean healthy-to-unhealthy ratio = 1.97 [SD 0.14]). A larger healthy-to-unhealthy price ratio was associated with lower odds of a high-quality diet (OR = 0.76 per SD increase in the ratio, 95% CI = [0.64-0.9]). IV analyses largely confirmed these findings although-as expected with IV adjustment-confidence intervals were wide (OR = 0.82 [0.57-1.19]). Policies to address the large price differences between healthier and unhealthy foods may help improve diet quality in the United States.

  2. Neighborhood Prices of Healthier and Unhealthier Foods and Associations with Diet Quality: Evidence from the Multi-Ethnic Study of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    David M. Kern

    2017-11-01

    Full Text Available It is known that the price of food influences the purchasing and consumption decisions of individuals; however, little work has examined if the price of healthier food relative to unhealthier food in an individual’s neighborhood is associated with overall dietary quality while using data from multiple regions in the United States. Cross-sectional person-level data came from The Multi-Ethnic Study of Atherosclerosis (exam 5, 2010–2012, n = 2765; a food frequency questionnaire assessed diet. Supermarket food/beverage prices came from Information Resources Inc. (n = 794 supermarkets. For each individual, the average price of select indicators of healthier foods (vegetables, fruits, dairy and unhealthier foods (soda, sweets, salty snacks, as well as their ratio, was computed for supermarkets within three miles of the person’s residential address. Logistic regression estimated odds ratios of a high-quality diet (top quintile of Healthy Eating Index 2010 associated with healthy-to-unhealthy price ratio, adjusted for individual and neighborhood characteristics. Sensitivity analyses used an instrumental variable (IV approach. Healthier foods cost nearly twice as much as unhealthier foods per serving on average (mean healthy-to-unhealthy ratio = 1.97 [SD 0.14]. A larger healthy-to-unhealthy price ratio was associated with lower odds of a high-quality diet (OR = 0.76 per SD increase in the ratio, 95% CI = [0.64–0.9]. IV analyses largely confirmed these findings although—as expected with IV adjustment—confidence intervals were wide (OR = 0.82 [0.57–1.19]. Policies to address the large price differences between healthier and unhealthy foods may help improve diet quality in the United States.

  3. Baccaurea angulata fruit juice ameliorates altered hematological and biochemical biomarkers in diet-induced hypercholesterolemic rabbits.

    Science.gov (United States)

    Ahmed, Idris Adewale; Mikail, Maryam Abimbola; Ibrahim, Muhammad

    2017-06-01

    Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (Pjuice. Improvements of the biomarkers in rabbits were dose-dependent, markedly enhanced at the highest dose of juice (1.5mL/kg/day). The results suggest potential health benefits of the antioxidant-rich BA fruit juice against hypercholesterolemia-associated hematological and biochemical alterations in the rabbit. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of Curcuma comosa on the expression of atherosclerosis-related cytokine genes in rabbits fed a high-cholesterol diet.

    Science.gov (United States)

    Charoenwanthanang, Puttavee; Lawanprasert, Somsong; Phivthong-Ngam, Laddawal; Piyachaturawat, Pawinee; Sanvarinda, Yupin; Porntadavity, Sureerut

    2011-04-12

    Curcuma comosa has been known to have potential use in cardiovascular diseases, but its immunoregulatory role in atherosclerosis development and liver toxicity has not been well studied. We therefore investigated the effects of Curcuma comosa on the expression of atherosclerosis-related cytokine genes in rabbits fed a high-cholesterol diet. Twelve male New Zealand White rabbits were treated with 1.0% cholesterol for one month and were subsequently treated with 0.5% cholesterol either alone, or in combination with 5mg/kg/day of simvastatin or with 400mg/kg/day of Curcuma comosa powder for three months. The expression of IL-1, MCP-1, TNF-α, IL-10, and TGF-β in the isolated abdominal aorta and liver were determined by real-time RT-PCR. Liver toxicity was determined by hepatic enzyme activity. Curcuma comosa significantly decreased the expression of pro-inflammatory cytokines, leading to a stronger reduction in IL-1, MCP-1, and TNF-α expression compared to that was suppressed by simvastatin treatment. However, neither Curcuma comosa nor simvastatin affected the expression of anti-inflammation cytokines. In the liver, Curcuma comosa insignificantly decreased the expression of pro-inflammatory cytokines and significantly increased the expression of the anti-inflammatory cytokine IL-10 without altering the activity of hepatic enzymes. In contrast, simvastatin significantly increased the MCP-1 and TNF-α expressions and serum ALT level, without affecting the expression of anti-inflammatory cytokines. In this study, we demonstrated that Curcuma comosa exerts anti-inflammatory activity in the aorta and liver without causing liver toxicity, indicating that Curcuma comosa is a potential candidate as an alternative agent in cardiovascular disease therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. The effectiveness of chemical carcinogens to induce atherosclerosis in the white carneau pigeon

    International Nuclear Information System (INIS)

    Revis, N.W.; Bull, R.; Laurie, D.; Schiller, C.A.

    1984-01-01

    The frequency of atherosclerotic lesions of the abdominal aorta has been reported to increase significantly in chickens exposed to benzo(a)pyrene and 7,12-dimethylbenz(a,h)anthracene. The present studies were performed to determine in another experimental model frequently used in atherosclerotic studies (i.e. White Carneau Pigeons) whether these and other chemical carcinogens enhance atherosclerosis. The induction and enhancement of atherosclerotic lesions were observed in pigeons treated with 7,12-dimethylbenz(a,h)anthracene, benzo(a)pyrene and 3-methylcholanthrene. The number and size of plaques in the aorta were frequently greater in pigeons treated with the higher concentrations (i.e. 100 mg/kg) of these 3 polycyclic aromatic hydrocarbons. Benzo(e)pyrene and 2,4,6-trichlorophenol were ineffective in the induction or enhancement of atherosclerosis in the pigeons. The results of the present and previous studies suggest that the polycyclic aromatic hydrocarbons (excluding benzo(e)pyrene) may be the only potential atherogens in avian atherosclerosis. This relationship may be associated with how these hydrocarbons are transported in the plasma (i.e. by lipoproteins) as demonstrated by the present distribution studies (author)

  6. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    IL-8 levels compared with DOX-Form (all P diet. Thus a single dose of DOX induces intestinal toxicity in preweaned pigs...... and may lead to a systemic inflammatory response. The toxicity is affected by type of enteral nutrition with more pronounced GI toxicity when formula is fed compared with bovine colostrum. The results indicate that bovine colostrum may be a beneficial supplementary diet for children subjected...

  7. Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice.

    Science.gov (United States)

    Dorighello, Gabriel G; Rovani, Juliana C; Luhman, Christopher J F; Paim, Bruno A; Raposo, Helena F; Vercesi, Anibal E; Oliveira, Helena C F

    2014-03-28

    Different regimens of food restriction have been associated with protection against obesity, diabetes and CVD. In the present study, we hypothesised that food restriction would bring benefits to atherosclerosis- and diabetes-prone hypercholesterolaemic LDL-receptor knockout mice. For this purpose, 2-month-old mice were submitted to an intermittent fasting (IF) regimen (fasting every other day) over a 3-month period, which resulted in an overall 20 % reduction in food intake. Contrary to our expectation, epididymal and carcass fat depots and adipocyte size were significantly enlarged by 15, 72 and 68 %, respectively, in the IF mice compared with the ad libitum-fed mice. Accordingly, plasma levels of leptin were 50 % higher in the IF mice than in the ad libitum-fed mice. In addition, the IF mice showed increased plasma levels of total cholesterol (37 %), VLDL-cholesterol (195 %) and LDL-cholesterol (50 %). As expected, in wild-type mice, the IF regimen decreased plasma cholesterol levels and epididymal fat mass. Glucose homeostasis was also disturbed by the IF regimen in LDL-receptor knockout mice. Elevated levels of glycaemia (40 %), insulinaemia (50 %), glucose intolerance and insulin resistance were observed in the IF mice. Systemic inflammatory markers, TNF-α and C-reactive protein, were significantly increased and spontaneous atherosclerosis development were markedly increased (3-fold) in the IF mice. In conclusion, the IF regimen induced obesity and diabetes and worsened the development of spontaneous atherosclerosis in LDL-receptor knockout mice. Although being efficient in a wild-type background, this type of food restriction is not beneficial in the context of genetic hypercholesterolaemia.

  8. A Drosophila model of high sugar diet-induced cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jianbo Na

    Full Text Available Diets high in carbohydrates have long been linked to progressive heart dysfunction, yet the mechanisms by which chronic high sugar leads to heart failure remain poorly understood. Here we combine diet, genetics, and physiology to establish an adult Drosophila melanogaster model of chronic high sugar-induced heart disease. We demonstrate deterioration of heart function accompanied by fibrosis-like collagen accumulation, insulin signaling defects, and fat accumulation. The result was a shorter life span that was more severe in the presence of reduced insulin and P38 signaling. We provide evidence of a role for hexosamine flux, a metabolic pathway accessed by glucose. Increased hexosamine flux led to heart function defects and structural damage; conversely, cardiac-specific reduction of pathway activity prevented sugar-induced heart dysfunction. Our data establish Drosophila as a useful system for exploring specific aspects of diet-induced heart dysfunction and emphasize enzymes within the hexosamine biosynthetic pathway as candidate therapeutic targets.

  9. Abnormalities of blood platelets in rabbits with dietary hypercholesterolemia and atherosclerosis

    International Nuclear Information System (INIS)

    Mazoyer, E.; Dalal, K.; Carpenter, D.; Brennan, K.; Yee, T.; Mazoyer, B.; Leven, R.; Ebbe, S.

    1986-01-01

    Preliminary results are reported from observations of rabbits that were fed a high cholesterol diet to induce atherosclerosis. The purpose of the project was to develop an animal model that would be appropriate to use in the imaging of vascular lesions by positron emission tomography or other techniques

  10. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE −/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE −/− mice was maintained.

  11. Antiseizure effects of ketogenic diet on seizures induced with ...

    African Journals Online (AJOL)

    Antiseizure effects of ketogenic diet on seizures induced with pentylenetetrazole, 4-aminopyridine and strychnine in wistar rats. E.O. Sanya, A.O. Soladoye, O.O. Desalu, P.M. Kolo, L. A. Olatunji, J.K. Olarinoye ...

  12. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  13. Baccaurea angulata fruit juice reduces atherosclerotic lesions in diet-induced Hypercholesterolemic rabbits.

    Science.gov (United States)

    Ibrahim, Muhammad; Ahmed, Idris Adewale; Mikail, Maryam Abimbola; Ishola, Afeez Adekunle; Draman, Samsul; Isa, Muhammad Lokman Md; Yusof, Afzan Mat

    2017-07-07

    Atherosclerosis is the most common disease of large and medium-sized arteries linked to oxidative stress, dyslipidemia as well as chronic inflammation. The aim of this study was to evaluate the potential health benefits of Baccaurea angulata (BA) fruit juice on the aorta of diet-induced hypercholesterolemic rabbits, to detect an accumulation of fatty streak and evaluate the percentage of atherosclerotic lesion accrued. Thirty-five healthy male adults New Zealand White rabbits were assigned to seven different groups. Four groups were fed 1% cholesterol diet and 0, 0.5, 1.0, and 1.5 mL of BA fruit juice per kg of rabbit daily (atherogenic groups), while the other three groups were fed commercial rabbit pellet and 0, 0.5, and 1.0 mL of juice per kg of rabbit daily (normocholesterolemic groups) for 90 days. The thoracic and abdominal aorta between the heart origin and bifurcation into iliac arteries of all the rabbits were carefully removed and analyzed accordingly. The supplementation of the high-cholesterol diet of hypercholesterolemic rabbits with only 0.5 mL BA/kg rabbit per day significantly (p < 0.001) improved aortic lipid profile, attenuated aortic fatty streak development and reduced intima thickening. Higher BA doses used (1.0 and 1.5 mL/kg rabbit per day) also significantly (p < 0.001) decreased further the development of aortic fatty streaks, reduced the thickening of the tunica intima layer and preserved endothelial healing following arterial injury. Therefore, BA fruit is a potential novel functional food with effective anti-inflammatory, anti-atherogenic and hypocholesterolemic activities.

  14. The use of rabbits in atherosclerosis research. Diet and drug intervention in different rabbit models exposed to selected dietary fats and the calcium antagonist (-)-anipamil

    DEFF Research Database (Denmark)

    Mortensen, Alicja

    Laboratory animal models play an important role in atherosclerosis research. One of the most popular laboratory animal species in this field of research is the rabbit. The rabbit fulfils most of the criteria for an animal model for human atherosclerosis. Three rabbit models were established...

  15. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice

    Science.gov (United States)

    Consuming curcumin may benefit health by modulating lipid metabolism and suppressing atherogenesis. Fatty acid binding proteins (FABP-4/aP2) and CD36 expression are key factors in lipid accumulation in macrophages and foam cell formation in atherogenesis. Our earlier observations suggest that curcum...

  16. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  17. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    International Nuclear Information System (INIS)

    Shrestha, Chandan; Ito, Takashi; Kawahara, Ko-ichi; Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto; Maruyama, Ikuro

    2013-01-01

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis

  18. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    Science.gov (United States)

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  19. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  20. Maternal perinatal diet induces developmental programming of bone architecture.

    Science.gov (United States)

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (Pbone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (Pbone area was 6% higher at 14 weeks vs. N-N (Pbone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  1. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Cho, Sungjoon; Tripathi, Ashutosh; Chlipala, George; Green, Stefan; Lee, Hyunwoo; Chang, Eugene B; Jeong, Hyunyoung

    2017-01-01

    Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  2. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Sungjoon Cho

    Full Text Available Acetaminophen (APAP is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v fructose in water (or regular water for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold higher basal glutathione levels and (~2 fold lower basal (mRNA and activity levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  3. High levels of avenanthramides in oat-based diet further suppress high fat diet-induced atherosclerosis in Ldlr-/- mice

    Science.gov (United States)

    Background: The consumption of oats reduces plasma cholesterol, a major risk factor for heart disease. Oats, in addition to cholesterol lowering properties through its beta-glucan content, are a good source of several antioxidants including Avenanthramides (Avns), a unique group of polyphenols prese...

  4. Atheroprotective effects of pure tocotrienol supplementation in the treatment of rabbits with experimentally induced early and established atherosclerosis

    Directory of Open Access Journals (Sweden)

    Thuhairah Abdul Rahman

    2016-10-01

    Full Text Available Background: Atherosclerosis is the main cause of coronary artery disease -related deaths worldwide. The atheroprotective properties of pure tocotrienols (T3 in the absence of alpha-tocopherol (α-TCP in vitamin E has not been extensively examined. Aim: To determine the atheroprotective properties of T3 in early and established atherosclerosis rabbits. Methods: Thirty New Zealand white rabbits were divided into two groups, B1 and B2 which represent early [fed 1% high cholesterol diet (HCD for 2 weeks] and established (fed 1% HCD for 8 weeks atherosclerosis. Each group was subdivided into three intervention arms: 1 T3–4 mg/kg, 2 T3–15 mg/kg and 3 vehicle without T3 (T3 negative for 8 weeks. Serial fasting blood samples were obtained for lipid profile, and whole lengths of aorta were used to determine tissue markers of endothelial activation, inflammation and plaque stability. Results: In B1, atherosclerotic lesion in T3–4 mg/kg group was significantly reduced (p=0.008, while aortic tissue expression of vascular cellular adhesion molecule 1 (VCAM-1, interleukin-6 (IL-6 and matrix metalloproteinase (MMP-12 was reduced in T3–4 mg/kg compared to T3-negative rabbits group (0.2±0.1 vs. 28.5±3.1%; 3.0±1.6 vs. 14.0±1.7%; and 5.2±2.2 vs. 27.7±0.8%, respectively, p<0.05. T3–15 mg/kg group showed reduction in VCAM-1, E-selectin, IL-6 and MMP-12 (3.9±1.9 vs. 28.5±3.1%; 10.3±0.5 vs. 59.8±8.5%; 2.6±1.7 vs. 14.0±1.7%; and 16.2±3.2 vs. 27.7 0.8%, respectively, p<0.05. In B2, T3–4 mg/kg group reduced aortic tissue expression of intercellular adhesion molecule 1 (ICAM-1, E-selectin, IL-6, MMP-12 and MMP-9 compared to T3-negative rabbits group (29.9±2.4 vs. 55.3±1.3%; 26.7±1.5 vs. 60.5±7.6%; 15.7±0.7 vs. 27.7±4.8%; 34.8±2.7 vs. 46.5±3.4%; and 25.89±3.9 vs. 45.9±1.7%, respectively, p<0.05. T3–15 mg/kg group showed reduced VCAM-1, ICAM-1, E-selectin, IL-6, MMP-12 and MMP-9 (20.5±3.3 vs. 35.6±2.5%; 24.9±1.3 vs. 55.3±1.3%; 29.9

  5. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  6. Liquid fructose supplementation in LDL-R−/− mice fed a western-type diet enhances lipid burden and atherosclerosis despite identical calorie consumption

    Directory of Open Access Journals (Sweden)

    Natalia Hutter

    2015-12-01

    Conclusions: SLF, without changing total calorie intake, increases atherosclerosis, visceral adipose tissue and cholesterol burden in a background of overweight LDL receptor knockout mice consuming an unhealthy, Western-type solid rodent chow.

  7. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  9. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    DA LUZ PROTASIO L.

    2001-01-01

    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  10. [The receptor theory of atherosclerosis].

    Science.gov (United States)

    Likhoded, V G; Bondarenko, V M; Gintsburg, A L

    2010-01-01

    Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.

  11. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    Science.gov (United States)

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  12. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters.

    Science.gov (United States)

    Lai, Yu-Sheng; Yang, Tzu-Ching; Chang, Po-Yuan; Chang, Shwu-Fen; Ho, Shu-Li; Chen, Hui-Ling; Lu, Shao-Chun

    2016-04-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH), like that of atherosclerosis, involves lipid accumulation, inflammation and fibrosis. Recent studies suggest that oxidized LDL (oxLDL) may be a risk factor for NASH, but oxLDL levels were not directly measured in these studies. The aim of this study was to examine whether there was an association between electronegative LDL [LDL(-)], a mildly oxLDL found in the blood, and the development of NASH using two animal models. Golden Syrian hamsters and C57BL/6 mice were fed a high-fat, high-cholesterol (HFC) diet for 6 or 12weeks, then liver lipid and histopathology, plasma lipoprotein profile and LDL(-) levels were examined. The HFC-diet-fed hamsters and mice had similar levels of hepatic lipid but different histopathological changes, with microvesicular steatosis, hepatocellular hypertrophy, inflammation and bridging fibrosis in the hamsters, but only in mild steatohepatitis with low inflammatory cell infiltration in the mice. It also resulted in a significant increase in plasma levels of LDL cholesterol and LDL(-) in hamsters, but only a slight increase in mice. Moreover, enlarged Kupffer cells, LDL(-) and accumulation of unesterified cholesterol were detected in the portal area of HFC-diet-fed hamsters, but not HFC-diet-fed mice. An in vitro study showed that LDL(-) from HFC-diet-fed hamsters induced TNF-α secretion in rat Kupffer cell through a LOX-1-dependent pathway. Our results strongly suggest that LDL(-) is one of the underlying causes of hepatic inflammation and plays a critical role in the development of NASH. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Role of parnaparin in atherosclerosis.

    Science.gov (United States)

    Bonomini, Francesca; Taurone, Samanta; Parnigotto, Pierpaolo; Zamai, Loris; Rodella, Luigi F; Artico, Marco; Rezzani, Rita

    2016-12-01

    Atherosclerosis is characterized by a proliferation of vascular smooth muscle cells (VSMCs) and their migration to the intima, which induces thickening of the intima itself, but the mechanism remains poorly understood. Low molecular weight heparin (LMWH) inhibits the proliferation of VSMCs. Previous studies have shown that a LMWH, parnaparin (PNP), acts on the processes of atherogenesis and atheroprogression in experimental animal models. The aim of this study was to investigate the involvement of oxidative stress, inflammation and VSMCs in the regulation of vascular wall homeostasis. We also considered the possibility of restoring vascular pathological changes using PNP treatment. In order to evaluate vascular remodelling in this study we have analysed the morphological changes in aortas of an animal model of atherosclerosis, apolipoprotein E-deficient mice (ApoE-/-) fed with a normal or a western diet without treatment or treated with PNP. We also analysed, by immunohistochemistry, the expression of proteins linked to atherogenesis and atheroprogression - an enzyme involved in oxidative stress, iNOS, examples of inflammatory mediators, such as tumour necrosis factor alpha (TNF-α), interleukins 1 and 6 (IL-1 and IL-6), and markers of VSMC changes, in particular plasminogen activator inhibitor-1 and thrombospondin-1 (PAI-1 and TSP-1). Our results could suggest that PNP downregulates VSMC proliferation and migration, mediated by PAI-1 and TSP-1, and reduces inflammation and oxidative stress in vessels. These data suggested that LMWH, in particular PNP, could be a theoretically practical tool in the prevention of atherosclerotic vascular modification. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  14. A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice.

    Science.gov (United States)

    Cooper, Michael A; Menta, Blaise W; Perez-Sanchez, Consuelo; Jack, Megan M; Khan, Zair W; Ryals, Janelle M; Winter, Michelle; Wright, Douglas E

    2018-08-01

    Current experiments investigated whether a ketogenic diet impacts neuropathy associated with obesity and prediabetes. Mice challenged with a ketogenic diet were compared to mice fed a high-fat diet or a high-fat diet plus exercise. Additionally, an intervention switching to a ketogenic diet following 8 weeks of high-fat diet was performed to compare how a control diet, exercise, or a ketogenic diet affects metabolic syndrome-induced neural complications. When challenged with a ketogenic diet, mice had reduced bodyweight and fat mass compared to high-fat-fed mice, and were similar to exercised, high-fat-fed mice. High-fat-fed, exercised and ketogenic-fed mice had mildly elevated blood glucose; conversely, ketogenic diet-fed mice were unique in having reduced serum insulin levels. Ketogenic diet-fed mice never developed mechanical allodynia contrary to mice fed a high-fat diet. Ketogenic diet fed mice also had increased epidermal axon density compared all other groups. When a ketogenic diet was used as an intervention, a ketogenic diet was unable to reverse high-fat fed-induced metabolic changes but was able to significantly reverse a high-fat diet-induced mechanical allodynia. As an intervention, a ketogenic diet also increased epidermal axon density. In vitro studies revealed increased neurite outgrowth in sensory neurons from mice fed a ketogenic diet and in neurons from normal diet-fed mice given ketone bodies in the culture medium. These results suggest a ketogenic diet can prevent certain complications of prediabetes and provides significant benefits to peripheral axons and sensory dysfunction. Published by Elsevier Inc.

  15. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice.

    Science.gov (United States)

    Hoving, Lisa R; de Vries, Margreet R; de Jong, Rob C M; Katiraei, Saeed; Pronk, Amanda; Quax, Paul H A; van Harmelen, Vanessa; Willems van Dijk, Ko

    2018-02-03

    The prebiotic inulin has proven effective at lowering inflammation and plasma lipid levels. As atherosclerosis is provoked by both inflammation and hyperlipidemia, we aimed to determine the effect of inulin supplementation on atherosclerosis development in hypercholesterolemic APOE*3-Leiden ( E3L ) mice. Male E3L mice were fed a high-cholesterol (1%) diet, supplemented with or without 10% inulin for 5 weeks. At week 3, a non-constrictive cuff was placed around the right femoral artery to induce accelerated atherosclerosis. At week 5, vascular pathology was determined by lesion thickness, vascular remodeling, and lesion composition. Throughout the study, plasma lipids were measured and in week 5, blood monocyte subtypes were determined using flow cytometry analysis. In contrast to our hypothesis, inulin exacerbated atherosclerosis development, characterized by increased lesion formation and outward vascular remodeling. The lesions showed increased number of macrophages, smooth muscle cells, and collagen content. No effects on blood monocyte composition were found. Inulin significantly increased plasma total cholesterol levels and total cholesterol exposure. In conclusion, inulin aggravated accelerated atherosclerosis development in hypercholesterolemic E3L mice, accompanied by adverse lesion composition and outward remodeling. This process was not accompanied by differences in blood monocyte composition, suggesting that the aggravated atherosclerosis development was driven by increased plasma cholesterol.

  16. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice

    Directory of Open Access Journals (Sweden)

    Lisa R. Hoving

    2018-02-01

    Full Text Available The prebiotic inulin has proven effective at lowering inflammation and plasma lipid levels. As atherosclerosis is provoked by both inflammation and hyperlipidemia, we aimed to determine the effect of inulin supplementation on atherosclerosis development in hypercholesterolemic APOE*3-Leiden (E3L mice. Male E3L mice were fed a high-cholesterol (1% diet, supplemented with or without 10% inulin for 5 weeks. At week 3, a non-constrictive cuff was placed around the right femoral artery to induce accelerated atherosclerosis. At week 5, vascular pathology was determined by lesion thickness, vascular remodeling, and lesion composition. Throughout the study, plasma lipids were measured and in week 5, blood monocyte subtypes were determined using flow cytometry analysis. In contrast to our hypothesis, inulin exacerbated atherosclerosis development, characterized by increased lesion formation and outward vascular remodeling. The lesions showed increased number of macrophages, smooth muscle cells, and collagen content. No effects on blood monocyte composition were found. Inulin significantly increased plasma total cholesterol levels and total cholesterol exposure. In conclusion, inulin aggravated accelerated atherosclerosis development in hypercholesterolemic E3L mice, accompanied by adverse lesion composition and outward remodeling. This process was not accompanied by differences in blood monocyte composition, suggesting that the aggravated atherosclerosis development was driven by increased plasma cholesterol.

  17. PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH.

    Science.gov (United States)

    Baron, Morgane; Leroyer, Aurélie S; Majd, Zouher; Lalloyer, Fanny; Vallez, Emmanuelle; Bantubungi, Kadiombo; Chinetti-Gbaguidi, Giulia; Delerive, Philippe; Boulanger, Chantal M; Staels, Bart; Tailleux, Anne

    2011-09-01

    Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are complex pathologies characterized by lipid accumulation, chronic inflammation and extensive tissue remodelling. Microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, might not only be biomarkers, but also functional actors in these pathologies. The apoE2-KI mouse is a model of atherosclerosis and NAFLD. Activation of the nuclear receptor PPARα decreases atherosclerosis and components of non-alcoholic steatohepatitis (NASH) in the apoE2-KI mouse. (1) To determine whether MPs are present in atherosclerotic lesions, liver and plasma during atherosclerosis and NASH progression in apoE2-KI mice, and (2) to study whether PPARα activation modulates MP concentrations. ApoE2-KI mice were fed a Western diet to induce atherosclerosis and NASH. MPs were isolated from atherosclerotic lesions, liver and blood and quantified by flow cytometry. An increase of MPs was observed in the atherosclerotic lesions and in the liver of apoE2-KI mice upon Western diet feeding. PPARα activation with fenofibrate decreased MP levels in the atherosclerotic lesions in a PPARα-dependent manner, but did not influence MP concentrations in the liver. Here we report that MPs are present in atherosclerotic lesions and in the liver of apoE2-KI mice. Their concentration increased during atherosclerosis and NASH development. PPARα activation differentially modulates MP levels in a tissue-specific manner. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  19. Aterosclerose experimental em coelhos Experimental atherosclerosis in rabbits

    Directory of Open Access Journals (Sweden)

    Waleska C. Dornas

    2010-08-01

    Full Text Available Numerosas pesquisas têm sido realizadas utilizando modelos experimentais para estudar o desenvolvimento da aterosclerose com dieta induzindo hiperlipidemia. Devido ao fato de que coelhos são muito sensíveis a dietas ricas em colesterol e acumulam grandes quantidades no plasma, a utilização destes animais como modelo experimental para avaliar o desenvolvimento de aterosclerose é de grande relevância, trazendo informação sobre fatores que contribuem para progressão e regressão aplicadas a situações humanas. Sendo assim, nessa revisão a função aterogênica do colesterol é mostrada em trabalhos que incluem o coelho como modelo experimental, uma vez que este animal tornou-se o mais popular modelo experimental de aterosclerose.Many researches have been conducted in experimental models in order to study the development of atherosclerosis from hyperlipidemia-inducing diets. Since rabbits are very sensitive to cholesterol-rich diets and accumulate large amounts of cholesterol in their plasma, their use as experimental models to evaluate the development of atherosclerosis is highly relevant and brings information on factors that contribute to the progression and regression of this condition that can be applied to humans. As such, this review includes studies on the atherogenic function of cholesterol based on rabbits as the experimental model, since they have become the most largely used experimental model of atherosclerosis.

  20. The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE{sup −/−} mice through inhibiting vascular inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi xi; Zhang, Man; Cai, Yuehua; Zhao, Qihui; Dai, Wenjian, E-mail: wjdai@126.com

    2015-10-02

    Activation of the silent mating type information regulation 2 homolog 1 (SIRT1) has been shown consistent antiinflammatory function. However, little information is available on the function of SIRT1 during Angiotensin II (AngII)-induced atherosclerosis. Here we report atheroprotective effects of sirt1 activation in a model of AngII-accelerated atherosclerosis, characterized by suppression pro-inflammatory transcription factors Nuclear transcription factor (NF)-κB and Signal Transducers and Activators of Transcription. (STAT) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the SIRT1 agonist SRT1720 substantially attenuated AngII-accelerated atherosclerosis with decreasing blood pressure and inhibited NF-κB and STAT3 activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated VSMCs and macrophages: SIRT1 activation inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of SIRT1 activation to inhibit AngII signaling, which is atheroprotective. - Highlights: • SRT1720 reduced atherosclerotic lesion size in aortic arches and atherosclerotic lesion macrophage content. • SRT1720 could inhibit the phosphorylation of STAT3 and p65 phosphorylation and translocation. • SRT1720 could inhibit the expression of proinflammatory factor.

  1. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    Full Text Available Elevated low-density lipoprotein (LDL-cholesterol is a risk factor for both Alzheimer's disease (AD and Atherosclerosis (CVD, suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1 high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2 Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3 oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL, induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4 LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5 cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6 ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  2. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol.

    Science.gov (United States)

    Abu-Fanne, Rami; Maraga, Emad; Abd-Elrahman, Ihab; Hankin, Aviel; Blum, Galia; Abdeen, Suhair; Hijazi, Nuha; Cines, Douglas B; Higazi, Abd Al-Roof

    2016-02-05

    Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. ApoB and apoM - New aspects of lipoprotein biology in uremia-induced atherosclerosis

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bartels, Emil D.; Pedersen, Annemarie Aarup

    2017-01-01

    Chronic kidney disease affects as much as 13% of the population, and is associated with a markedly increased risk of developing cardiovascular disease. One of the underlying reasons is accelerated development of atherosclerosis. This can be ascribed both to increased occurrence of traditional...

  5. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.

    Science.gov (United States)

    Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y

    2011-11-01

    Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P obesity.

  6. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  7. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  8. ABCB4 mediates diet-induced hypercholesterolemia in laboratory opossums.

    Science.gov (United States)

    Chan, Jeannie; Mahaney, Michael C; Kushwaha, Rampratap S; VandeBerg, Jane F; VandeBerg, John L

    2010-10-01

    High-responding opossums are susceptible to developing hypercholesterolemia on a high-cholesterol diet, but low-responding opossums are resistant. The observation of low biliary cholesterol and low biliary phospholipids in high responders suggested that the ABCB4 gene affects response to dietary cholesterol. Two missense mutations (Arg29Gly and Ile235Leu) were found in the ABCB4 gene of high responders. High responders (ATHH strain) were bred with low responders (ATHE or ATHL strain) to produce F1 and F2 progeny in two different genetic crosses (KUSH6 and JCX) to determine the effect of ABCB4 allelic variants on plasma cholesterol concentrations after a dietary challenge. Pedigree-based genetic association analyses consistently implicated a variant in ABCB4 or a closely linked locus as a major, but not the sole, genetic contributor to variation in the plasma cholesterol response to dietary cholesterol. High responders, but not low responders, developed liver injury as indicated by elevated plasma biomarkers of liver function, probably reflecting damage to the canalicular membrane by bile salts because of impaired phospholipid secretion. Our results implicate ABCB4 as a major determinant of diet-induced hypercholesterolemia in high-responding opossums and suggest that other genes interact with ABCB4 to regulate lipemic response to dietary cholesterol.

  9. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  10. Addiction-like synaptic impairments in diet-induced obesity

    Science.gov (United States)

    Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2016-01-01

    Background There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature, and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core (NAcore) considered hallmarks of addiction. Methods Sprague-Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO prone (OP) and resistant (OR) subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed (FR1, 3 and 5) and progressive ratio (PR) schedules. Subsequently, NAcore brain slices were prepared and we tested for changes in the ratio between AMPA and NMDA currents (AMPA/NMDA) and the ability to exhibit long-term depression (LTD). Results We found that propensity to develop DIO is linked to deficits in the ability to induce LTD in the NAcore, as well as increased potentiation at these synapses as measured by AMPA/NMDA currents. Consistent with these impairments, we observed addictive-like behavior in OP rats, including i) heightened motivation for palatable food (ii) excessive intake and (iii) increased food-seeking when food was unavailable. Conclusions Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. PMID:26826876

  11. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    Science.gov (United States)

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that

  12. MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice*

    Science.gov (United States)

    Irani, Sara; Pan, Xiaoyue; Peck, Bailey C. E.; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M. Mahmood

    2016-01-01

    High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe−/− mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis. PMID:27365390

  13. MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice.

    Science.gov (United States)

    Irani, Sara; Pan, Xiaoyue; Peck, Bailey C E; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M Mahmood

    2016-08-26

    High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe(-/-) mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Qin, Meng [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Ye, Jing-xue [Jilin Agricultural University, No. 2888, Xincheng Street, Changchun, 130118 Jilin (China); Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China)

    2013-08-15

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H{sub 2}O{sub 2})-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H{sub 2}O{sub 2}-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H{sub 2}O{sub 2}-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H{sub 2}O{sub 2} induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up

  15. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Qin, Meng; Ye, Jing-xue; Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang; Wang, Hong-wei; Sun, Xiao-bo

    2013-01-01

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H 2 O 2 )-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H 2 O 2 -induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H 2 O 2 -induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H 2 O 2 induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up regulates eNOS activity in HUVECs.

  16. [Correction of lipid peroxidation and antioxidant system disorders by bioflavonoids during modeling of cholesterol atherosclerosis in rabbits].

    Science.gov (United States)

    Shysh, A M; Pashevin, D O; Dosenko, V Ie; Moĭbenko, O O

    2011-01-01

    We have studied the influence of bioflavonoids (quercetin, corvitin) on lipid peroxidation and antioxidant enzymes in the modeling of cholesterol atherosclerosis in rabbits. It has been shown that simultaneous administration of the quercetin derivative corvitin suppressed lipid peroxidation. We showed that under hypercholesterolemia, the concentration of malone dialdehyde in myocardial tissue in rabbits is significantly increased, while administration of bioflavonoids decreased the concentration of malone dialdehyde by 38.3%. Furthermore, corvitin caused activating effects on antioxidant enzymes superoxide dismutase and catalase in cardiac tissue. Our data suggest that bioflavonoids are able to suppress lipid peroxidation and prevent the decrease ofantioxidant enzymes activity in rabbits with cholesterol-rich diet induced atherosclerosis.

  17. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    Science.gov (United States)

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  18. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice

    NARCIS (Netherlands)

    Vroegrijk, Irene O. C. M.; van Diepen, Janna A.; van den Berg, Sjoerd; Westbroek, Irene; Keizer, Hiskias; Gambelli, Luisa; Hontecillas, Raquel; Bassaganya-Riera, Josep; Zondag, Gerben C. M.; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2011-01-01

    Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. High-fat diet or high-fat diet with 1% Pomegranate seed oil (PUA) was fed for 12weeks to

  19. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice.

    NARCIS (Netherlands)

    Vroegrijk, I.O.; Diepen, J.A. van; Berg, S.; Westbroek, I.; Keizer, H.; Gambelli, L.; Hontecillas, R.; Bassaganya-Riera, J.; Zondag, G.C.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J.

    2011-01-01

    BACKGROUND: Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. OBJECTIVE: To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. DESIGN: High-fat diet or high-fat diet with 1% Pomegranate seed

  20. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Mice with diet-induced obesity demonstrate a relative prothrombotic factor profile and a thicker aorta with reduced ex-vivo function.

    Science.gov (United States)

    Uner, Aykut G; Unsal, Cengiz; Unsal, Humeyra; Erdogan, Mumin A; Koc, Ece; Ekici, Mehmet; Avci, Hamdi; Balkaya, Muharrem; Belge, Ferda; Tarin, Lokman

    2018-04-01

    : Classical risk factors such as cholesterol and lipoproteins are currently not sufficient to explain all physiopathological processes of obesity-related vascular dysfunction as well as atherosclerosis and arteriosclerosis. Therefore, the discovery of potential markers involved in vascular dysfunction in the obese state is still needed. Disturbances in hemostatic factors may be involved in the developmental processes associated with obesity-related cardiovascular disorders. We hypothesized that alterations of several hemostatic factors in the obese state could correlate with the function and morphology of the aorta and it could play an important role in the development of vascular dysfunction. To test this, we fed mice with a high-fat diet for 18 weeks and investigated the relationships between selected hemostatic factors (in either plasma or in the liver), metabolic hormones and morphology, and ex-vivo function of the aorta. Here, we show that 18-week exposure to a high-fat diet results in a higher plasma fibrinogen and prolonged prothrombin time in diet-induced obese mice compared to the controls. In addition, liver levels or activities of FII, FX, activated protein C, AT-III, and protein S are significantly different in diet-induced obese mice as compared to the controls. Curiously, FII, FVIII, FX, activated protein C, PTT, and protein S are correlated with both the aorta histology (aortic thickness and diameter) and ex-vivo aortic function. Notably, ex-vivo studies revealed that diet-induced obese mice show a marked attenuation in the functions of the aorta. Taken together, aforementioned hemostatic factors may be considered as critical markers for obesity-related vascular dysfunction and they could play important roles in diagnosing of the dysfunction.

  2. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    Science.gov (United States)

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  3. Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Loft Steffen

    2009-02-01

    Full Text Available Abstract Background Exposure to small size particulate matter in urban air is regarded as a risk factor for cardiovascular effects, whereas there is little information about the impact on the cardiovascular system by exposure to pure carbonaceous materials in the nano-size range. C60 fullerenes are nano-sized particles that are expected to have a widespread use, including cosmetics and medicines. Methods We investigated the association between intraperitoneal injection of pristine C60 fullerenes and vasomotor dysfunction in the aorta of 11–13 and 40–42 weeks old apolipoprotein E knockout mice (apoE-/- with different degree of atherosclerosis. Results The aged apoE-/-mice had lower endothelium-dependent vasorelaxation elicited by acetylcholine in aorta segments mounted in myographs and the phenylephrine-dependent vasoconstriction response was increased. One hour after an intraperitoneal injection of 0.05 or 0.5 mg/kg of C60 fullerenes, the young apoE-/- mice had slightly reduced maximal endothelium-dependent vasorelaxation. A similar tendency was observed in the old apoE-/- mice. Hampered endothelium-independent vasorelaxation was also observed as slightly increased EC50 of sodium nitroprusside-induced vasorelaxation response in young apoE-/- mice. Conclusion Treatment with C60 fullerenes affected mainly the response to vasorelaxation in young apoE-/- mice, whereas the vasomotor dysfunction in old apoE-/- mice with more advanced atherosclerosis was less affected by acute C60 fullerene treatment. These findings represent an important step in the hazard characterization of C60 fullerenes by showing that intraperitoneal administration is associated with a moderate decrease in the vascular function of mice with atherosclerosis.

  4. Probiotics and atherosclerosis – a new challenge?

    Directory of Open Access Journals (Sweden)

    Chan Yee Kwan

    2012-06-01

    Full Text Available Background Atherosclerosis is the major cause of cardiovascular disease and stroke, which are among the top 10 leading causes of death worldwide. Pathogen-associated molecular patterns (PAMPs can activate toll-like receptors (TLRs and activate nuclear factor kappa B (NFκB signaling, a central pathway in inflammation, which regulates genes that encode proinflammatory molecules essential in atherogenesis. Lipopolysaccharides (LPS, which is unique to gram negative bacteria, as well as peptidoglycan (PGN, which is found in gram positive bacteria are PAMPS and ligands of TLR4 and TLR2, respectively, both of which are essential in plaque progression in atherosclerosis. Gastrointestinal tract is suggested to be the major site for absorption and translocation of TLR2 and TLR4 stimulants. Inflammation can result in a ‘leaky gut’ that leads to higher bacterial translocation, eventually the accumulation of LPS and PGN would activate TLRs and trigger inflammation through NFκB and promote further systemic complication like atherosclerosis. Probiotics, can protect the intestinal barrier to reduce bacterial translocation and have potential systemic anti-inflammatory properties.To evaluate whether probiotics can help reduce atherosclerotic development using in vivo study.Apolipoprotein E knockout (ApoE−/ −  mice were fed on high fat diet alone, with telmisartan (Tel (1 or 5 mg/kg/day, positive controls or with probiotics (VSL#3/LGG with or without Tel (1 mg/kg/day for 12 weeks.Probiotics, Tel, or a combination of both reduced lesion size at the aortic root significantly; VSL#3 reduced serum inflammatory adhesion molecules soluble E- (sE-selectin, soluble intercellular adhesion molecule 1 (sICAM-1, soluble vascular cell adhesion molecule 1 (sVCAM-1, and plaque disrupting factor matrix metalloproteinase (MMP-9 significantly; probiotics and Tel at 5 mg/kg/day could induce changes in gut microbiota population; the efficiency of lesion reduction seemed

  5. Impact of Hydroxychloroquine on Atherosclerosis and Vascular Stiffness in the Presence of Chronic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Ashutosh M Shukla

    Full Text Available Cardiovascular disease is the largest cause of morbidity and mortality among patients with chronic kidney disease (CKD and end-stage kidney disease, with nearly half of all deaths attributed to cardiovascular disease. Hydroxychloroquine (HCQ, an anti-inflammatory drug, has been shown to have multiple pleiotropic actions relevant to atherosclerosis. We conducted a proof-of-efficacy study to evaluate the effects of hydroxychloroquine in an animal model of atherosclerosis in ApoE knockout mice with and without chronic kidney disease. Forty male, 6-week-old mice were divided into four groups in a 2 x 2 design: sham placebo group; sham treatment group; CKD placebo group; and CKD treatment group. CKD was induced by a two-step surgical procedure. All mice received a high-fat diet through the study duration and were sacrificed after 16 weeks of therapy. Mice were monitored with ante-mortem ultrasonic echography (AUE for atherosclerosis and vascular stiffness and with post-mortem histology studies for atherosclerosis. Therapy with HCQ significantly reduced the severity of atherosclerosis in CKD mice and sham treated mice. HCQ reduced the area of aortic atherosclerosis on en face examination by approximately 60% in HCQ treated groups compared to the non-treated groups. Additionally, therapy with HCQ resulted in significant reduction in vascular endothelial dysfunction with improvement in vascular elasticity and flow patterns and better-preserved vascular wall thickness across multiple vascular beds. More importantly, we found that presence of CKD had no mitigating effect on HCQ's anti-atherosclerotic and vasculoprotective effects. These beneficial effects were not due to any significant effect of HCQ on inflammation, renal function, or lipid profile at the end of 16 weeks of therapy. This study, which demonstrates structural and functional protection against atherosclerosis by HCQ, provides a rationale to evaluate its use in CKD patients. Further studies

  6. A rabbit model of atherosclerosis at carotid artery: MRI visualization and histopathological characterization

    International Nuclear Information System (INIS)

    Ma, Zhan-Long; Teng, Gao-Jun; Chen, Jun; Zhang, Hong-Ying; Cao, Ai-Hong; Ni, Yicheng

    2008-01-01

    To induce a rabbit model of atherosclerosis at carotid artery, to visualize the lesion evolution with magnetic resonance imaging (MRI), and to characterize the lesion types by histopathology. Atherosclerosis at the right common carotid artery (RCCA) was induced in 23 rabbits by high-lipid diet following balloon catheter injury to the endothelium. The rabbits were examined in vivo with a 1.5-T MRI and randomly divided into three groups of 6 weeks (n=6), 12 weeks (n=8) and 15 weeks (n=9) for postmortem histopathology. The lesions on both MRI and histology were categorized according to the American Heart Association (AHA) classifications of atherosclerosis. Type I and type II of atherosclerotic changes were detected at week 6, i.e., nearly normal signal intensity (SI) of the injured RCCA wall without stenosis on MRI, but with subendothelial inflammatory infiltration and proliferation of smooth muscle cells on histopathology. At week 12, 75.0% and 62.5% of type III changes were encountered on MRI and histopathology respectively with thicker injured RCCA wall of increased SI on T 1 -weighted and proton density (PD)-weighted MRI and microscopically a higher degree of plaque formation. At week 15, carotid atherosclerosis became more advanced, i.e., type IV and type V in 55.6% and 22.2% of the lesions with MRI and 55.6% and 33.3% of the lesions with histopathology, respectively. Statistical analysis revealed a significant agreement (p<0.05) between the MRI and histological findings for lesion classification (r=0.96). A rabbit model of carotid artery atherosclerosis has been successfully induced and noninvasively visualized. The atherosclerotic plaque formation evolved from type I to type V with time, which could be monitored with 1.5-T MRI and confirmed with histomorphology. This experimental setting can be applied in preclinical research on atherosclerosis. (orig.)

  7. Voluntary feed intake in rainbow trout is regulated by diet-induced differences in oxygen use.

    Science.gov (United States)

    Saravanan, Subramanian; Geurden, Inge; Figueiredo-Silva, A Cláudia; Kaushik, Sadasivam; Verreth, Johan; Schrama, Johan W

    2013-06-01

    This study investigated the hypothesis that the voluntary feed intake in fish is regulated by diet-induced differences in oxygen use. Four diets were prepared with a similar digestible protein:digestible energy ratio (18 mg/kJ), but which differed in the composition of nonprotein energy source. This replacement of fat (F) by starch (S) was intended to create a diet-induced difference in oxygen use (per unit of feed): diets F30-S70, F50-S50, F65-S35, and F80-S20 with digestible fat providing 28, 49, 65, and 81% of the nonprotein digestible energy (NPDE), respectively. Each diet was fed to satiation to triplicate groups of 20 rainbow trout for 6 wk. As expected, diet-induced oxygen use decreased linearly (R(2) = 0.89; P digestible and metabolizable energy intakes of trout slightly increased with increasing NPDE as fat (i.e., decreasing starch content) (R(2) = 0.30, P = 0.08; and R(2) = 0.34, P = 0.05, respectively). Oxygen consumption of trout fed to satiation declined with increasing dietary NPDE as fat (R(2) = 0.48; P = 0.01). The inverse relation between digestible energy intake of trout and the diet-induced oxygen use (R(2) = 0.33; P = 0.05) suggests a possible role of diet-induced oxygen use in feed intake regulation as shown by the replacement of dietary fat by starch.

  8. Curcumin analog L3 alleviates diabetic atherosclerosis by multiple effects.

    Science.gov (United States)

    Zheng, Bin; Yang, Liu; Wen, Caixia; Huang, Xiuwang; Xu, Chenxia; Lee, Kuan-Han; Xu, Jianhua

    2016-03-15

    L3, an analog of curcumin, is a compound isolated from a traditional Chinese medicine Turmeric. In this paper, we aims to explore the efficacy of L3 on diabetic atherosclerosis and the related mechanism. The effect of L3 was studied on glucose and lipid metabolism, antioxidant status, atherosclerosis-related indexes and pathological changes of main organs in the mice model of diabetes induced by streptozotocin and high-fat diet. The results showed that L3 treatment could meliorate dyslipidemia and hyperglycemia, reduce oxidative stress, enhance the activity of antioxidases, increase the nitric oxide level in plasma and aortic arch, decrease the production of reactive oxygen species in pancreas and lectin-like oxidized low-density lipoprotein receptor-1 expression in aortic arch, and meliorate the fatty and atherosclerotic degeneration in aortic arch, thereby preventing the development of diabetes and its complications. These results suggested that L3 can alleviate the diabetic atherosclerosis by multiple effects. This study provided scientific basis for the further research and clinical application of L3. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    OpenAIRE

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission el...

  10. Diets

    Science.gov (United States)

    ... beef and pork, and sweets is limited. Drinking wine in moderation is encouraged. Studies have shown that ... levels and improve cholesterol levels. This diet can benefit people with high blood pressure and may benefit ...

  11. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    Science.gov (United States)

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  12. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  paradisiaca -based diet demonstrated significant reduction ( p  paradisiaca -based diet significantly ( p  <   .05) reversed the activities of aspartate aminotransferase and alanine aminotransferase when compared with diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.

  13. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  14. Predictors of diet-induced weight loss in overweight adults with type 2 diabetes

    NARCIS (Netherlands)

    K.A.C. Berk (Kirsten); M.T. Mulder (Monique); A.J.M. Verhoeven; Van Wietmarschen, H. (Herman); Boessen, R. (Ruud); Pellis, L.P. (Linette P.); Van Spijker, A.T. (Adriaan T); R. Timman (Reinier); B. Özcan (Behiye); E.J.G. Sijbrands (Eric)

    2016-01-01

    textabstractAims A very low calorie diet improves the metabolic regulation of obesity related type 2 diabetes, but not for all patients, which leads to frustration in patients and professionals alike. The aim of this study was to develop a prediction model of diet-induced weight loss in type 2

  15. Predictors of diet-induced weight loss in overweight adults with type 2 diabetes

    NARCIS (Netherlands)

    Berk, K.A.; Mulder, M.T.; Verhoeven, A.J.M.; Wietmarschen, H. van; Boessen, R.; Pellis, L.P.; Spijker, A.T. van; Timman, R.; Ozcan, B.; Sijbrands, E.J.G.

    2016-01-01

    Aims A very low calorie diet improves the metabolic regulation of obesity related type 2 diabetes, but not for all patients, which leads to frustration in patients and professionals alike. The aim of this study was to develop a prediction model of diet-induced weight loss in type 2 diabetes. Methods

  16. Metabonomics-based omics study and atherosclerosis

    OpenAIRE

    Wu, Duo-jiao; Zhu, Bi-jun; Wang, Xiang-dong

    2011-01-01

    Atherosclerosis results from dyslipidemia and systemic inflammation, associated with the strong metabolism and interaction between diet and disease. Strategies based on the global profiling of metabolism would be important to define the mechanisms involved in pathological alterations. Metabonomics is the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. Metabonomics has been used in combination w...

  17. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    Science.gov (United States)

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  18. Modulatory role of chelating agents in diet-induced hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Heba M. Mahmoud

    2014-06-01

    Conclusion: Pretreatment of hypercholesterolemic rats with simvastatin, CaNa2EDTA or DMSA attenuated most of the changes induced by feeding rats with cholesterol-rich diet owing to their observed anti-hyperlipidemic and antioxidant properties.

  19. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    Science.gov (United States)

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  20. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  1. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  2. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  3. Endothelial GPR124 Exaggerates the Pathogenesis of Atherosclerosis by Activating Inflammation

    Directory of Open Access Journals (Sweden)

    Dong-Mei Gong

    2018-01-01

    Full Text Available Background/Aims: Endothelial cell dysfunction is the principal pathological process underlying atherosclerotic cardiovascular disease. G protein-coupled receptor 124 (GPR124, an orphan receptor in the adhesion GPCR subfamily, promotes angiogenesis in the brain. In the present study, we explored the role of endothelial GPR124 in the development and progression of atherosclerosis in adult mice. Methods: Using tetracycline-inducible transgenic systems, we generated mice expressing GPR124 specifically under control of the Tie-2 promoter. The animal model of atherosclerosis was constructed by intravenously injecting AAV-PCSK9DY into tetracycline-regulated mice and feeding the mice a high-fat diet for 16 consecutive weeks. Biochemical analysis and immunohistochemistry methods were used to address the role and mechanism of GPR124 in the pathological process of atherosclerosis. Results: Higher TC (total cholesterol and LDL-C (low density lipoprotein cholesterol levels in serum and greater lipid deposition in the aortic sinus were found in atherosclerotic mice with GPR124 overexpression, coincident with the elevated proliferation of smooth muscle cells. We observed an elevation of ONOO- in the aortic sinus in this model by using immunofluorescence, and the experiments showed that the specific overexpression of GPR124 in the endothelium induced the up-regulation of CD68, NLRP3 and caspase-1 levels in the aortic sinus. Conclusion: The above results indicate that manipulating GPR124 in the endothelium may contribute to delayed pathological progression of atherosclerosis.

  4. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N

    2013-01-01

    locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...... complications is still elusive. In the present study, we investigated the impact of GPRC6A deficiency in a murine model of diet-induced obesity (DIO). Male Gprc6a knockout (KO) mice and WT littermates were subjected to a high-fat diet (HFD) for 25 weeks and exposed to comprehensive metabolic phenotyping...

  6. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  7. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  8. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis

    Directory of Open Access Journals (Sweden)

    Svenja Sydor

    2017-05-01

    Full Text Available Objective: Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD. Acid sphingomyelinase (ASM converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1−/− genotype affects diet-induced NAFLD. Methods: Smpd1−/− mice and wild type controls were fed either a standard or Western diet (WD for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Results: Although Smpd1−/− mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1−/−, we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1−/− mice indicated a reduction in Rictor (mTORC2 activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. Conclusion: These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation. Keywords: Ceramide, NAFLD, Rictor, Western diet

  9. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J

    1997-01-21

    The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.

  10. Acute effects of vinegar intake on some biochemical risk factors of atherosclerosis in hypercholesterolemic rabbits

    Directory of Open Access Journals (Sweden)

    rohani Ali

    2010-01-01

    Full Text Available Abstract Background Exaggerated postprandial spikes in blood glucose and lipids induce proportional increases in oxidative stress, which acutely trigger impairment endothelial, inflammation and increased risk of future cardiovascular events. In this research, we have investigated acute effects of vinegar intake on some of the biochemical atherosclerosis risk factors in high cholesterol fed rabbits to see if we can find a probable protective value for it. Methods The rabbits were randomly divided into four groups: normal diet, high cholesterol diet (%1cholesterol, %1 cholesterol with 5 ml vinegar (low dose, %1 cholesterol with 10 ml vinegar (high dose. After fasting for 12-15 hours, blood samples were taken to determine baseline values. Three hours after feeding, blood samples were collected again to investigate acute effects of vinegar intake on the measured factors. Results Using high-dose vinegar with cholesterolemic diet caused significant reduce in LDL-cholesterol (LDL-C, oxidized-LDL (ox-LDL, malondialdehyde (MDA, total cholesterol (TC and apolipoprotein B (ApoB in comparison with hypercholesterolemic diet. Consumption low-dose vinegar with cholesterolemic diet induced a significant decrease in fibrinogen and glucose compared to hypercholesterolemic diet. Level of serum nitrite, nitrate, triacylglycerol (TAG, HDL-cholesterol (HDL-C, apolipoprotein A (ApoA, serum glutamic pyruvic transaminase (SGPT, serum glutamic oxaloacetate transaminase (SGOT and C-reactive protein (CRP were not significantly difference in low and high doses vinegar with cholesterolemic diet compared to hypercholesterolemic diet. A significant difference was observed for LDL-C, ApoB100 and TC between low and high doses vinegar. Conclusion This study suggest that vinegar, might have some acute effects on biochemical risk factors of atherosclerosis and a probable protective value can be considered for its postprandial use.

  11. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    Science.gov (United States)

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  12. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice

    Energy Technology Data Exchange (ETDEWEB)

    Hoving, Saske [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Heeneman, Sylvia [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Gijbels, Marion J.J. [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (Netherlands); Poele, Johannes A.M. te [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Pol, Jeffrey F.C.; Gabriels, Karen [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Russell, Nicola S [Division of Radiotherapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Daemen, Mat J.A.P. [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Department of Pathology, AMC, Amsterdam (Netherlands); Stewart, Fiona A., E-mail: f.stewart@nki.nl [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2011-10-15

    Background and purpose: We previously showed that irradiating the carotid arteries of ApoE{sup -/-} mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis. Material and methods: ApoE{sup -/-} mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation. Atorvastatin (15 mg/kg/day) or clopidogrel (20 mg/kg/day) was given in the chow; control groups received regular chow. Clopidogrel inhibited platelet aggregation by 50%. CD40L{sup -/-}/ApoE{sup -/-} and ApoE{sup -/-} littermates were also given 0 or 14 Gy to the neck and the carotid arteries were harvested after 30 weeks. Results: Clopidogrel decreased MCP-1 expression in the carotid artery at 4 weeks after irradiation. Expression of VCAM-1, ICAM-1, thrombomodulin, tissue factor and eNOS was unchanged in atorvastatin and clopidogrel-treated mice. Neither drug inhibited either age-related or radiation-induced atherosclerosis. Furthermore, loss of the inflammatory mediator CD40L did not influence the development of age-related and radiation-induced atherosclerosis. Conclusions: The effects of radiation-induced atherosclerosis could not be circumvented by these specific anti-inflammatory and anti-coagulant therapies. This suggests that more effective drug combinations may be required to overcome the radiation stimulus, or that other underlying mechanistic pathways are involved compared to age-related atherosclerosis.

  13. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice

    International Nuclear Information System (INIS)

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.; Poele, Johannes A.M. te; Pol, Jeffrey F.C.; Gabriels, Karen; Russell, Nicola S.; Daemen, Mat J.A.P.; Stewart, Fiona A.

    2011-01-01

    Background and purpose: We previously showed that irradiating the carotid arteries of ApoE −/− mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis. Material and methods: ApoE −/− mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation. Atorvastatin (15 mg/kg/day) or clopidogrel (20 mg/kg/day) was given in the chow; control groups received regular chow. Clopidogrel inhibited platelet aggregation by 50%. CD40L −/− /ApoE −/− and ApoE −/− littermates were also given 0 or 14 Gy to the neck and the carotid arteries were harvested after 30 weeks. Results: Clopidogrel decreased MCP-1 expression in the carotid artery at 4 weeks after irradiation. Expression of VCAM-1, ICAM-1, thrombomodulin, tissue factor and eNOS was unchanged in atorvastatin and clopidogrel-treated mice. Neither drug inhibited either age-related or radiation-induced atherosclerosis. Furthermore, loss of the inflammatory mediator CD40L did not influence the development of age-related and radiation-induced atherosclerosis. Conclusions: The effects of radiation-induced atherosclerosis could not be circumvented by these specific anti-inflammatory and anti-coagulant therapies. This suggests that more effective drug combinations may be required to overcome the radiation stimulus, or that other underlying mechanistic pathways are involved compared to age-related atherosclerosis.

  14. Urticarial vasculitis induced by OTC diet pills: a case report.

    Science.gov (United States)

    Chérrez Ojeda, Iván; Loayza, Enrique; Greiding, Leonardo; Calderón, Juan Carlos; Cherrez, Annia; Adum, Farid

    2015-01-01

    Urticarial Vasculitis (UV) is in most of the cases idiopathic; however it has been associated with several conditions and drugs. Over the counter (OTC) diet pills are widely available, even on-line, but they are rarely regulated by pharmaceutical control. We present the case of a 35-year-old female patient suffering of pruriginous and painful wheals more than 1 cm in diameter, with a burning sensation. The eruption lasted more than 24 hours and was accompanied by angioedema, headache and myalgia. No remarkable medical history was found, except for previous intake of OTC diet pills. UV diagnosis was confirmed by the skin biopsy of a lesion. OTC diet pills are widely available worldwide, and due to its widespread use, allergologists and dermatologist should be able to recognize symptoms and lesions of cutaneous vasculitis, which may be under reported.

  15. The hypolipidaemic effect of gum tragacanth in diet induced hyperlipidaemia in rats.

    Science.gov (United States)

    Amer, S; Kamil, R; Siddiqui, P Q

    1999-07-01

    Previous research indicated that fiber in the diet of men lowers plasma lipid and LDL cholesterol concentration. To further study the lipid lowering effect of fibre, we conducted an animal study using rats with diet induced hyperlipidaemia. Rats were randomly assigned to one of the three experimental diets. Two of the diets contained cholesterol and choice acid to induce hyperlipidaemia, the fiber source in the hyperlipidaemic diet was gum tragacanth (5%). The rats consumed one of the three diets ad libitum for 4 weeks before they were killed. Plasma LDL cholesterol and total cholesterol concentrations were significantly higher in the hyperlipidaemic group than in the non hyperlipidaemic control group. A marked improvement in the plasma LDL cholesterol and total cholesterol concentration was observed in the rats that were fed hyperlipidaemic diet containing grum tragacanth. No significant difference in the plasma triglyceride concentration was detected in the three groups. Plasma HDL concentration was significantly higher in the non-hyperlipidaemic group than in the hyperlipidaemic group than. Addition of gum tragacanth to the hyperlipidaemic diet significantly improved the plasma HDL concentration in the hyperlipidaemic rats. These results suggest that fiber from gum tragacanth lowers plasma cholesterol and LDL in hyperlipidaemia. Gum tragacanth could be useful adjunct to the dietary management of hyperlipidaemia.

  16. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  17. Inflammasomes and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    S. Vallurupalli, MD

    2016-09-01

    Full Text Available Inflammation plays an important role in atherosclerosis. Inflammasomes play a crucial role in innate immunity, which mediates the body’s response to various pathogens. Of the different types of inflammasomes, NLRP3 has been implicated in atherosclerosis through the production of proinflammatory cytokines, IL-1β and IL-18. This review describes the role of the NLRP3 inflammasome in atherosclerosis and discusses potential therapeutic targets in the inflammasome pathway.

  18. Improvement of Diet-induced Obesity by Ingestion of Mushroom Chitosan Prepared from Flammulina velutipes.

    Science.gov (United States)

    Miyazawa, Noriko; Yoshimoto, Hiroaki; Kurihara, Shoichi; Hamaya, Tadao; Eguchi, Fumio

    2018-02-01

    The anti-obesity effects of mushroom chitosan prepared from Flammulina velutipes were investigated using an animal model with diet-induced obesity. In this study, 5-week-old imprinting control region (ICR) mice were divided into six groups of 10 mice each and fed different diets based on the MF powdered diet (standard diet) for 6 weeks: standard diet control group, high-fat diet control group (induced dietary obesity) consisting of the standard diet and 20% lard, and mushroom chitosan groups consisting of the high-fat diet with mushroom chitosan added at 100, 500, 1,000, and 2,000 mg/kg body weight. On the final day of the experiment, mean body weight was 39.1 g in the high-fat control group and 36.3 g in the 2,000 mg/kg mushroom chitosan group, compared to 35.8 g in the standard diet control group. In the mushroom chitosan groups, a dose-dependent suppression of weight gain and marked improvements in serum triglycerides, total cholesterol, LDL-cholesterol, and HDL-cholesterol were found. The mushroom chitosan groups showed fewer and smaller fat deposits in liver cells than the high-fat diet control group, and liver weight was significantly reduced. Glutamic oxaloacetic transaminase (GOT) and glutamate pyruvic transaminase (GPT), which are indices of the hepatic function, all showed dose-dependent improvement with mushroom chitosan administration. These results suggested that mushroom chitosan acts to suppress enlargement of the liver from fat deposition resulting from a high-fat diet and to restore hepatic function. The lipid content of feces showed a marked increase correlated with the mushroom chitosan dose. These findings suggest the potential use of mushroom chitosan as a functional food ingredient that contributes to the prevention or improvement of dietary obesity by inhibiting digestion and absorption of fats in the digestive tract and simultaneously promotes lipolysis in adipocytes.

  19. Vascular smooth muscle cell apoptosis is an early trigger for hypothyroid atherosclerosis.

    Science.gov (United States)

    Wang, Pei; Xu, Tian-Ying; Guan, Yun-Feng; Zhao, Yan; Li, Zhi-Yong; Lan, Xiao-Hong; Wang, Xia; Yang, Peng-Yuan; Kang, Zhi-Min; Vanhoutte, Paul M; Miao, Chao-Yu

    2014-06-01

    Endothelial dysfunction is an initial and vascular smooth muscle cell (VSMC) apoptosis, a later step of atherosclerosis. Hypothyroidism accelerates atherosclerosis. However, the early events responsible for this pro-atherosclerotic effect are unclear. Rats were resistant to induction of atherosclerosis by high cholesterol diet alone, but became susceptible in hypothyroid state achieved by administration of propylthiouracil (PTU) for 6 weeks. VSMC dysfunction and apoptosis were obvious within 1 week after PTU treatment, without signs of endothelial dysfunction. This early VSMC damage was caused by hypothyroidism but not the high cholesterol diet. In ApoE knockout mice, PTU-induced hypothyroidism triggered early VSMC apoptosis, increased oxidative stress, and accelerated atherosclerosis development. Thyroid hormone supplementation (T4, 10, or 50 μg/kg) prevented atherogenic phenotypes in hypothyroid rats and mice. In rats, thyroidectomy caused severe hypothyroidism 5 days after operation, which also led to rapid VSMC dysfunction and apoptosis. In vitro studies did not show a direct toxic effect of PTU on VSMCs. In contrast, thyroid hormone (T3, 0.75 μg/L plus T4, 50 nmol/L) exerted a direct protection against VSMC apoptosis, which was reduced by knockdown of TRα1, rather than TRβ1 and TRβ2 receptors. TRα1-mediated inhibition of apoptotic signalling of JNKs and caspase-3 contributed to the anti-apoptotic action of thyroid hormone. These findings provide an in vivo example for VSMC apoptosis as an early trigger of hypothyroidism-associated atherosclerosis, and reveal activation of TRα1 receptors to prevent VSMC apoptosis as a therapeutic strategy in this disease. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  20. The role of artichoke leaf tincture (Cynara scolymus) in the suppression of DNA damage and atherosclerosis in rats fed an atherogenic diet.

    Science.gov (United States)

    Bogavac-Stanojevic, Natasa; Kotur Stevuljevic, Jelena; Cerne, Darko; Zupan, Janja; Marc, Janja; Vujic, Zorica; Crevar-Sakac, Milkica; Sopic, Miron; Munjas, Jelena; Radenkovic, Miroslav; Jelic-Ivanovic, Zorana

    2018-12-01

    Polyphenols and flavonoids in artichoke leaf tincture (ALT) protect cells against oxidative damage. We examined ALT effects on deoxyribonucleic acid (DNA) damage and lipid profiles in rat plasma and gene expression in rat aorta [haemeoxygenase-1 (HO1), haemeoxygenase-2 (HO2), NADPH oxidase 4 (NOX-4), monocyte chemoattractant protein-1 (MCP-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. Eighteen male Wistar albino rats were divided into three groups (n = 6/group): The control group (CG) was fed with standard pellet chow for 11 weeks; the AD group was fed for a similar period of time with pellet chow supplemented with 2% cholesterol, 3% sunflower oil and 1% sodium cholate. The ADA group was fed with pellet chow (for 1 week), the atherogenic diet (see above) for the following 4 weeks and then with ALT (0.1 mL/kg body weight) and atherogenic diet for 6 weeks. According to HPLC analysis, the isolated main compounds in ALT were chlorogenic acid, caffeic acid, isoquercitrin and rutin. Normalized HO-1 [0.11 (0.04-0.24)] and MCP-1 [0.29 (0.21-0.47)] mRNA levels and DNA scores [12.50 (4.50-36.50)] were significantly lower in the ADA group than in the AD group [0.84 (0.35-2.51)], p = 0.021 for HO-1 [0.85 (0.61-3.45)], p = 0.047 for MCP-1 and [176.5 (66.50-221.25)], p = 0.020 for DNA scores. HO-1 mRNA was lower in the ADA group than in the CG group [0.30 (0.21-0.71), p = 0.049]. Supplementation with ALT limited the effects of the atherogenic diet through reduced MCP-1 expression, thereby preventing oxidative damage.

  1. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue

    NARCIS (Netherlands)

    Schafer, M.J.; White, T.A.; Evans, G.; Tonne, J.M.; Verzosa, G.C.; Stout, M.B.; Mazula, D.L.; Palmer, A.K.; Baker, D.J.; Jensen, M.D.; Torbenson, M.S.; Miller, J.D.; Ikeda, Y.; Tchkonia, T.; Deursen, J.M.A. van; Kirkland, J.L.; LeBrasseur, N.K.

    2016-01-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the

  2. ST2 Deficiency Ameliorates High Fat Diet-Induced Liver Steatosis In BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Jovicic Nemanja

    2015-03-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is strongly associated with obesity, but the molecular mechanisms of liver steatosis and its progression to non-alcoholic steatohepatitis and fibrosis are incompletely understood. Immune reactivity plays an important role in the pathogenesis of NAFLD. The IL-33/ST2 axis has a protective role in adiposity and atherosclerosis, but its role in obesity-associated metabolic disorders requires further clarification. To investigate the unresolved role of IL-33/ST2 signalling in NAFLD, we used ST2-deficient (ST2-/- and wild type (WT BALB/c mice maintained on a high-fat diet (HFD for 24 weeks. HFD-fed ST2-/- mice exhibited increased weight gain, visceral adipose tissue weight and triglyceridaemia and decreased liver weight compared with diet-matched WT mice. Compared with WT mice on an HFD, ST2 deletion significantly reduced hepatic steatosis, liver inflammation and fibrosis and downregulated the expression of genes related to lipid metabolism in the liver. The frequency of innate immune cells in the liver, including CD68+ macrophages and CD11c+ dendritic cells, was lower in HFD-fed ST2-/- mice, accompanied by lower TNFα serum levels compared with diet-matched WT mice. Less collagen deposition in the livers of ST2-/- mice on an HFD was associated with lower numbers of profibrotic CD11b+Ly6clow monocytes and CD4+IL-17+ T cells in the liver, lower hepatic gene expression of procollagen, IL-33 and IL-13, and lower serum levels of IL-33 and IL-13 compared with diet-matched WT mice.

  3. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  4. Maternal Diet-Induced Obesity Programmes Cardiac Dysfunction in Male Mice Independently of Post-Weaning Diet.

    Science.gov (United States)

    Loche, Elena; Blackmore, Heather L; Carpenter, Asha A M; Beeson, Jessica H; Pinnock, Adele; Ashmore, Thomas J; Aiken, Catherine E; de Almeida-Faria, Juliana; Schoonejans, Josca; Giussani, Dino A; Fernandez-Twinn, Denise S; Ozanne, Susan E

    2018-04-04

    Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure and function was assessed in 8-week old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P<0.0001) and leptin levels (P<0.0001); maternal obesity (P=0.001) and a post-weaning obesogenic diet (P=0.002) increased absolute heart weight; maternal obesity (P=0.01) and offspring obesity (P=0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7:Myh6 ratio; P=0.0004), however these genes were not affected by offspring diet; maternal obesity (P=0.02) and offspring obesity (P=0.05) caused hypertension and effects were additive. Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes and remodelling of cardiac structure. These data highlight that the

  5. ATHEROSCLEROSIS DISEASE: A MULTI-FACTORIAL PATHOLOGY

    Directory of Open Access Journals (Sweden)

    Marcieli da Luz Giroldo1; Arienne Serrano Alves1; Francielle Baptista1

    2007-06-01

    Full Text Available Atherosclerosis or arterial stiffening is a gradual disease that restricts the normal blood flow in different areas of body and maylead to secondary illnesses as myocardial infarction and cerebral stroke. Innumerable factors are related to the development ofatherosclerosis, among them are the dyslipidemia; genetic factors; arterial hypertension; diabetes mellitus; obesity; smoking;lack of exercise; pulmonary infection by Chlamydia and stress. Due to multi-factorial atherosclerosis characteristics,innumerable drugs, with differentiated mechanisms of action, are being elaborated to be used in prevention and control of thisdisease. However, beyond the pharmacological therapy, a balanced diet, physical activity and elimination of risk habits, assmoking, also are need for controlling atherosclerosis progression, as well as for the increase of expectative and quality of life

  6. Role of gut microbiota in atherosclerosis

    DEFF Research Database (Denmark)

    Jonsson, Annika Lindskog; Bäckhed, Gert Fredrik

    2017-01-01

    describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development...... of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been...... associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based...

  7. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats.

    Science.gov (United States)

    Boussenna, Ahlem; Goncalves-Mendes, Nicolas; Joubert-Zakeyh, Juliette; Pereira, Bruno; Fraisse, Didier; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2015-12-01

    Dextran sodium sulphate (DSS)-induced colitis is a widely used model for inflammatory bowel disease. However, various factors including nutrition may affect the development of this colitis. This study aimed to compare and characterize the impact of purified and non-purified basal diets on the development of DSS-induced colitis in the rat. Wistar rats were fed a non-purified or a semi-synthetic purified diet for 21 days. Colitis was then induced in half of the rats by administration of DSS in drinking water (4% w/v) during the last 7 days of experimentation. At the end of the experimental period, colon sections were taken for histopathological examination, determination of various markers of inflammation (myeloperoxidase: MPO, cytokines) and oxidative stress (superoxide dismutase: SOD, catalase: CAT, glutathione peroxidase: GPx and glutathione reductase: GRed activities), and evaluation of the expression of various genes implicated in this disorder. DSS ingestion induced a more marked colitis in animals receiving the purified diet, as reflected by higher histological score and increased MPO activity. A significant decrease in SOD and CAT activities was also observed in rats fed the purified diet. Also, in these animals, administration of DSS induced a significant increase in interleukin (IL)-1α, IL-1β and IL-6. In addition, various genes implicated in inflammation were over-expressed after ingestion of DSS by rats fed the purified diet. These results show that a purified diet promotes the onset of a more severe induced colitis than a non-purified one, highlighting the influence of basal diet in colitis development.

  8. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  9. Function of CD147 in atherosclerosis and atherothrombosis

    Science.gov (United States)

    Wang, Cuiping; Jin, Rong; Zhu, Xiaolei; Yan, Jinchuan; Guohong, Li

    2015-01-01

    CD147, a member of the immunoglobulin super family, is a well-known potent inducer of extracellular matrix metalloproteinases. Studies show that CD147 is upregulated in inflammatory diseases. Atherosclerosis is a chronic inflammatory disease of the artery wall. Further understanding of the functions of CD147 in atherosclerosis and atherothrombosis may provide a new strategy for preventing and treating cardiovascular disease. In this review, we discuss how CD147 contributes to atherosclerosis and atherothrombosis. PMID:25604960

  10. Comparison of diet-induced thermogenesis of foods containing medium- versus long-chain triacylglycerols.

    Science.gov (United States)

    Kasai, Michio; Nosaka, Naohisa; Maki, Hideaki; Suzuki, Yoshie; Takeuchi, Hiroyuki; Aoyama, Toshiaki; Ohra, Atsushi; Harada, Youji; Okazaki, Mitsuko; Kondo, Kazuo

    2002-12-01

    The purpose of this study was to investigate the effect of 5-10 g of medium-chain triacylglycerols (MCT) on diet-induced thermogenesis in healthy humans. The study compared diet-induced thermogenesis after ingestion of test foods containing MCT and long-chain triacylglycerols (LCT), using a double-blind, crossover design. Eight male and eight female subjects participated in study 1 and study 2, respectively. In both studies, the LCT was a blend of rapeseed oil and soybean oil. In study 1, the liquid meals contained 10 g MCT (10M), a mixture of 5 g MCT and 5 g LCT (5M5L), and 10 g LCT (10L). In study 2, the subjects were given a meal (sandwich and clear soup) with the mayonnaise or margarine containing 5 g of MCT or LCT. Postprandial energy expenditure was measured by indirect calorimetry before and during the 6 h after ingestion of the test meals. Diet-induced thermogenesis was significantly greater after 5M5L and 10M Ingestion as compared to 10L ingestion. Ingestion of the mayonnaise or margarine containing 5 g MCT caused significantly larger diet-induced thermogenesis as compared to that of LCT. These results suggest that, in healthy humans, the intake of 5-10 g of MCT causes larger diet-induced thermogenesis than that of LCT, irrespective of the form of meal containing the MCT.

  11. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  12. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  13. Vaccination against atherosclerosis

    NARCIS (Netherlands)

    Es, Thomas van

    2009-01-01

    Atherosclerosis, the predominantly underlying pathology of cardiovascular events, is the consequence of lipid deposition in the arterial wall, mostly as consequence of high levels of serum cholesterol. Treatment of atherosclerosis is mainly focused at the reduction of cholesterol levels by lipid

  14. Innate lymphoid cells in atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  15. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4 in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity.

  16. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Science.gov (United States)

    Adeyemi, O. S.; Elebiyo, T. C.

    2014-01-01

    Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4) in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity. PMID:25295181

  17. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  18. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR

    Science.gov (United States)

    Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.

    2015-01-01

    Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641

  19. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  20. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  1. Effects of diet-induced obesity on motivation and pain behavior in an operant assay.

    Science.gov (United States)

    Rossi, H L; Luu, A K S; Kothari, S D; Kuburas, A; Neubert, J K; Caudle, R M; Recober, A

    2013-04-03

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-01-01

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD 100 dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-α and plasma adiponectin increased cardiac fatty acid oxidation (666.9 ±14.0 nmol/min/g heart in ad libitum versus 1035.6 ± 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMPα2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 ± 2.1 μmol/g heart in ad libitum versus 26.7 ± 1.9 μmol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway

  3. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  4. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Dorothy D Sears

    2009-09-01

    Full Text Available Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD-induced insulin resistance.Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT and 12/15LO knockout (KO mice after 2-4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b(+, F4/80(+ macrophages and elevated protein levels of the inflammatory markers IL-1beta, IL-6, IL-10, IL-12, IFNgamma, Cxcl1 and TNFalpha. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.

  5. Effects of macronutrient composition and cyclooxygenase-inhibition on diet-induced obesity, low grade inflammation and glucose homeostasis

    DEFF Research Database (Denmark)

    Fjære, Even

    - or protein based background, and supplemented with either corn- or fish oil. These experiments were conducted to determine whether macronutrient composition and type of dietary fat can modulate diet-induced obesity, and associated metabolic consequences. The use of non-steroidal anti-inflammatory drugs...... was combined with a low fat diet. This further highlights the importance of the background diet and macronutrient composition of experimental diets. Conclusions: In summary, our results demonstrate that the composition of background diet modulates the obesogenic effect of the high fat diet. The obesogenic...

  6. Diet-Induced Ketosis Protects Against Focal Cerebral Ischemia in Mouse.

    Science.gov (United States)

    Xu, Kui; Ye, Lena; Sharma, Katyayini; Jin, Yongming; Harrison, Matthew M; Caldwell, Tylor; Berthiaume, Jessica M; Luo, Yu; LaManna, Joseph C; Puchowicz, Michelle A

    2017-01-01

    Over the past decade we have consistently shown that ketosis is neuroprotective against ischemic insults in rats. We reported that diet-induced ketotic rats had a significant reduction in infarct volume when subjected to middle cerebral artery occlusion (MCAO), and improved survival and recovery after cardiac arrest and resuscitation. The neuroprotective mechanisms of ketosis (via ketogenic diet; KG) include (i) ketones are alternate energy substrates that can restore energy balance when glucose metabolism is deficient and (ii) ketones modulate cell-signalling pathways that are cytoprotective. We investigated the effects of diet-induced ketosis following transient focal cerebral ischemia in mice. The correlation between levels of ketosis and hypoxic inducible factor-1alpha (HIF-1α), AKT (also known as protein kinase B or PKB) and 5' AMP-activated protein kinase (AMPK) were determined. Mice were fed with KG diet or standard lab-chow (STD) diet for 4 weeks. For the MCAO group, mice underwent 60 min of MCAO and total brain infarct volumes were evaluated 48 h after reperfusion. In a separate group of mice, brain tissue metabolites, levels of HIF-1α, phosphorylated AKT (pAKT), and AMPK were measured. After feeding a KG diet, levels of blood ketone bodies (beta-hydroxyburyrate, BHB) were increased. There was a proportional decrease in infarct volumes with increased blood BHB levels (KG vs STD; 4.2 ± 0.6 vs 7.8 ± 2.2 mm 3 , mean ± SEM). A positive correlation was also observed with HIF-1α and pAKT relative to blood BHB levels. Our results showed that chronic ketosis can be induced in mice by KG diet and was neuroprotective against focal cerebral ischemia in a concentration dependent manner. Potential mechanisms include upregulation of cytoprotective pathways such as those associated with HIF-1α, pAKT and AMPK.

  7. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity

    Science.gov (United States)

    Cha, Jiyoung Y.; Kim, Hyo Jung; Yu, Jung Hwan; Xu, Jing; Kim, Daham; Paul, Bindu D.; Choi, Hyeonjin; Kim, Seyun; Lee, Yoo Jeong; Ho, Gary P.; Rao, Feng; Snyder, Solomon H.; Kim, Jae-woo

    2013-01-01

    Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice. PMID:24297897

  8. Recent advances in lipoprotein and atherosclerosis: A nutrigenomic approach

    OpenAIRE

    López, Sergio; Ortega, Almudena; Varela, Lourdes; Bermúdez, Beatriz; Muriana, Francisco JG; Abia, Rocío

    2009-01-01

    Atherosclerosis is a disease in which multiple factors contribute to the degeneration of the vascular wall. Many risk factors have been identified as having influence on the progression of atherosclerosis among them, the type of diet. Multifactorial interaction among lipoproteins, vascular wall cells, and inflammatory mediators has been recognised as the basis of atherogenesis. Dietary intake affects lipoprotein concentration and composition providing risk or protection at several stages of a...

  9. PENGARUH DIET KACANG MERAH TERHADAP KADAR GULA DARAH TIKUS DIABETIK INDUKSI ALLOXAN [Effect of Red Bean Diet on Blood Glucose Concentration of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Y. Marsono 1

    2003-04-01

    Full Text Available Hypoglycemic response of red bean were evaluated in alloxan-induced diabetic rats. The objective of this research was to evaluate the effect of red bean (Vigna umbellata diet compare with soy bean diet on blood glucose concentration in alloxan-induced diabetic rats.Thirty male Sprague-Dawley (SD rats (250-300 g were diabetic induced by alloxan injection (80 mg/kg of body weight by intra muscular injection. They were divided into three groups of ten rats. They were fed (1 Standard diet (STD, (2 Red bean diet (KM, and (3 Soy bean diet (KD for 28 days. Concentration of serum glucose were determined before injection (0 day,after injection (day 17th and every sweek during diet intervention (day 24,31,38 and 45thIt was found that alloxan injection increased serum glucose concentration of STD, KM, and KD rats. After 28 days intervention, red bean decreased the serum glucose concentration from 217, 87 mg/dL to 57,70 mg/dL (69 % in KM groups and from 218,94 mg/dL to 76,82 mg/dL (65 % in KD groups, but standard diet (STD were decreased less than both of KM and KD diet.

  10. A Diet Pattern with More Dairy and Nuts, but Less Meat Is Related to Lower Risk of Developing Hypertension in Middle-Aged Adults: The Atherosclerosis Risk in Communities (ARIC Study

    Directory of Open Access Journals (Sweden)

    Aaron R. Folsom

    2013-05-01

    Full Text Available Dietary intake among other lifestyle factors influence blood pressure. We examined the associations of an ―a priori‖ diet score with incident high normal blood pressure (HNBP; systolic blood pressure (SBP 120–139 mmHg, or diastolic blood pressure (DBP 80–89 mmHg and no antihypertensive medications and hypertension (SBP ≥ 140 mmHg, DBP ≥ 90 mmHg, or taking antihypertensive medication. We used proportional hazards regression to evaluate this score in quintiles (Q and each food group making up the score relative to incident HNBP or hypertension over nine years in the Atherosclerosis Risk of Communities (ARIC study of 9913 African-American and Caucasian adults aged 45–64 years and free of HNBP or hypertension at baseline. Incidence of HNBP varied from 42.5% in white women to 44.1% in black women; and incident hypertension from 26.1% in white women to 40.8% in black women. Adjusting for demographics and CVD risk factors, the ―a priori‖ food score was inversely associated with incident hypertension; but not HNBP. Compared to Q1, the relative hazards of hypertension for the food score Q2–Q5 were 0.97 (0.87–1.09, 0.91 (0.81–1.02, 0.91 (0.80–1.03, and 0.86 (0.75–0.98; ptrend = 0.01. This inverse relation was largely attributable to greater intake of dairy products and nuts, and less meat. These findings support the 2010 Dietary Guidelines to consume more dairy products and nuts, but suggest a reduction in meat intake.

  11. Effectiveness of a structured diet program in antipsychotic-induced weight gain in patients with schizophrenia.

    Science.gov (United States)

    Direk, Nese; Ucok, Alp

    2008-01-01

    Objective.The aim of this study was to evaluate the effectiveness of a structured diet program in weight loss in patients with schizophrenia. Methods. A total of 38 outpatients diagnosed with schizophrenia according to DSM-IV and who had complaints of weight gain during treatment with various antipsychotic drugs were invited to participate in a 3-month structured diet program. Thirty-two patients and another 40 patients were included as the control group. At the beginning of the diet program, the patients were given a form in order to evaluate their eating habits, and blood samples were taken to measure plasma lipid profile, and fasting blood glucose (FBG) level. Patients' baseline weight, body mass index (BMI), and basal metabolism rate (BMR) were recorded. Results. Thirty-two patients with schizophrenia, who attended a 3-month structured diet program had mean weight loss of 6.19 kg, whereas patients in the control group gained 1.6 kg. Conclusion. Our findings show that a diet program is effective in managing antipsychotic-induced weight gain. The degree of weight loss seems to be correlated with the duration in which the patient is on the diet program. However; younger patients had less benefit from the diet program.

  12. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  13. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  14. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  15. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  16. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity

    Science.gov (United States)

    Robinson, Mike JF; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-01-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or ‘wanting’). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened ‘wanting’ was not due to individual differences in the hedonic impact (‘liking’) of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal ‘hot-spots’ that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation. PMID:25761571

  17. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Diet composition modifies embryotoxic effects induced by experimental diabetes in rats.

    Science.gov (United States)

    Giavini, E; Broccia, M L; Prati, M; Domenico Roversi, G

    1991-01-01

    Despite improvements in prenatal care, the incidence of congenital malformations in diabetic pregnancies is still 3-4 times higher than in normal pregnancies. These defects could be attributed to alterations of intrauterine environment due to disorder of the maternal metabolism. If this were true, the quality of food could play a role in diabetes-induced embryotoxicity. To check this hypothesis, female CD rats were made diabetic by injecting intravenously 50 mg/kg of streptozotocin 2 weeks before mating. From the first day of pregnancy they were divided into three groups and maintained on the following diets: (1) standard diet (Italiana Mangimi); (2) purified high protein diet (protein 55%, carbohydrates 25.5%, fat 7.5%, fiber 4.5%, ash 7.5%); (3) purified normoprotein diet (protein 19%, carbohydrates 62.5%, fat 7.5%, fiber 4%, ash 7%). Nondiabetic pregnant females fed with standard diet served as negative control. No significant differences were observed in blood glucose levels among the groups (range 410-500 mg/dl). The group fed on normoprotein diet showed at term of pregnancy: (1) higher rate of resorptions; (2) lower fetal weight; (3) higher frequency of major malformations than the groups fed standard and hyperproteic diets. Although we are not able at this time to discriminate between a protective effect of a diet with a high protein content and a disruptive effect of a diet containing high quantity of carbohydrates, the results of this trial support the hypothesis of a fuel-mediated teratogenesis in diabetic pregnancy.

  19. Nanomedicine highlights in atherosclerosis

    International Nuclear Information System (INIS)

    Karagkiozaki, Varvara

    2013-01-01

    Atherosclerosis is a multifactorial disease and many different approaches have been attempted for its accurate diagnosis and treatment. The disease is induced by a low-grade inflammatory process in the vascular wall, leading through a cascade of events to the eventual formation of atheromatous plaque and arterial stenosis. Different types of cells participate in the process making more difficult to recognize the potential cellular targets within the plaques for their effective treatment. The rise of nanomedicine over the last decade has provided new types of drug delivery nanosystems that are able to be delivered to a specific diseased site of the vessel for imaging while simultaneously act as therapeutic agents. In this paper, a review of the recent advances in nanomedicine that has provided novel insights to the disease diagnosis and treatment will be given in line with different nanotechnology-based approaches to advance the cardiovascular stents. The main complications of bare metal stents such as restenosis and of drug-eluting stents which is the late stent thrombosis are analyzed to comprehend the demand for emerging therapeutic strategies based on nanotechnology.

  20. Nanomedicine highlights in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Karagkiozaki, Varvara, E-mail: vakaragk@physics.auth.gr [Aristotle University of Thessaloniki, Nanomedicine Group, Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Physics Department (Greece)

    2013-04-15

    Atherosclerosis is a multifactorial disease and many different approaches have been attempted for its accurate diagnosis and treatment. The disease is induced by a low-grade inflammatory process in the vascular wall, leading through a cascade of events to the eventual formation of atheromatous plaque and arterial stenosis. Different types of cells participate in the process making more difficult to recognize the potential cellular targets within the plaques for their effective treatment. The rise of nanomedicine over the last decade has provided new types of drug delivery nanosystems that are able to be delivered to a specific diseased site of the vessel for imaging while simultaneously act as therapeutic agents. In this paper, a review of the recent advances in nanomedicine that has provided novel insights to the disease diagnosis and treatment will be given in line with different nanotechnology-based approaches to advance the cardiovascular stents. The main complications of bare metal stents such as restenosis and of drug-eluting stents which is the late stent thrombosis are analyzed to comprehend the demand for emerging therapeutic strategies based on nanotechnology.

  1. Atherosclerosis: Hypotheses and theories

    Directory of Open Access Journals (Sweden)

    E. A. Yuryeva

    2014-01-01

    Full Text Available The article gives basic theories of the pathogenesis of atherosclerosis, including inflammatory, cholesterol, lipid, lipoprotein, iron ones, as a result of metabolic syndrome, oxidative stress. In spite of carefully and deeply developed and ongoing elaborated pathogenesis theories, the etiological factors of atherosclerosis remain unknown so far. The age-related aspect of the disease is discussed; atherosclerosis is considered to be a childhood-onset disease that manifests itself at a later age. The authors propose an experimental and clinical evidence-based concept of the common etiology of syndromes of atherosclerosis, namely: the body's endogenous intoxication that is permanent or periodically progressive may be a primary cause of altered conformation of different protein molecules with their higher ability to adsorb the trace elements consolidating the structural changes. This change of proteins diminishes their functions and determines their antigenic properties, which is attended by the development of different pathogenic components in relation to the body's individual features.

  2. The Biochemistry of atherosclerosis

    National Research Council Canada - National Science Library

    Scanu, Angelo M; Getz, Godfrey S; Wissler, Robert W

    1979-01-01

    In this first full-length review of the biochemical parameters and their part in the pathogenesis of atherosclerosis, the reader will discover a range of coverage concerning basic etiological factors...

  3. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    2010-01-01

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  4. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis.

    Science.gov (United States)

    Mulvihill, Erin E; Burke, Amy C; Huff, Murray W

    2016-07-17

    Citrus flavonoids are polyphenolic compounds with significant biological properties. This review summarizes recent advances in understanding the ability of citrus flavonoids to modulate lipid metabolism, other metabolic parameters related to the metabolic syndrome, and atherosclerosis. Citrus flavonoids, including naringenin, hesperitin, nobiletin, and tangeretin, have emerged as potential therapeutics for the treatment of metabolic dysregulation. Epidemiological studies reveal an association between the intake of citrus flavonoid-containing foods and a decreased incidence of cardiovascular disease. Studies in cell culture and animal models, as well as a limited number of clinical studies, reveal the lipid-lowering, insulin-sensitizing, antihypertensive, and anti-inflammatory properties of citrus flavonoids. In animal models, supplementation of rodent diets with citrus flavonoids prevents hepatic steatosis, dyslipidemia, and insulin resistance primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose, kidney, and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established, although several potential targets have been identified. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters as well as through direct impact on the vessel wall. Recent studies support a role for citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity, and atherosclerosis. Larger human studies examining dose, bioavailability, efficacy, and safety are required to promote the development of these promising therapeutic agents.

  5. A fibre cocktail of fenugreek, guar gum and wheat bran reduces oxidative modification of LDL induced by an atherogenic diet in rats.

    Science.gov (United States)

    Venkatesan, Nandini; Devaraj, S Niranjali; Devaraj, H

    2007-01-01

    LDL (low-density lipoprotein) oxidation is a key trigger factor for the development of atherosclerosis. Relatively few studies exist on the impact of dietary fibre on LDL oxidation. This study was undertaken to evaluate the influence of a novel fibre mix of fenugreek seed powder, guar gum and wheat bran (Fibernat) on LDL oxidation induced by an atherogenic diet. Male Wistar albino rats were administered one of the following diets: (1) a control diet that was fibre-free (Group I); (2) an atherogenic diet containing 1.5% cholesterol and 0.1% cholic acid (Group II) or (3) an atherogenic diet supplemented with Fibernat (Group III). Peroxidative changes in low-density lipoprotein (LDL) and the oxidative susceptibility of LDL and the LDL + VLDL (very low-density lipoprotein) fraction were determined. As a corollary to the oxidative modification theory, the titer of autoantibodies to oxidised LDL (oxLDL) was determined at various time points of the study. In addition, plasma homocysteine (tHcy) and lipoprotein (Lp (a)), apolipoprotein (apoB), cholesterol, triglyceride, phospholipid and alpha-tocopherol content of LDL were determined. A decrease in malonaldehyde (MDA) content (p<0.05) and relative electrophoretic mobility (REM) of LDL was observed in the group III rats as compared to the group II rats. An increase in lag time to oxidation (p<0.01) and decrease in maximum oxidation (p<0.01) and oxidation rate (p<0.01) were observed in the LDL + VLDL fraction of group III rats. In group II rats, formation of autoantibodies to oxLDL occurred at an earlier time point and at levels greater than in the group III rats. Fibernat, had a sparing effect on LDL alpha-tocopherol, which was about 51% higher in the group III rats than in the group II rats; apo B content of LDL was reduced by 37.6% in group III rats. LDL of group III rats displayed a decrease in free and ester cholesterol (p<0.01) as compared to that of group II. A decrease in plasma homocysteine (p<0.01) and an increase

  6. Low sodium diet and pregnancy-induced hypertension: a multi-centre randomised controlled trial

    NARCIS (Netherlands)

    Knuist, M.; Bonsel, G. J.; Zondervan, H. A.; Treffers, P. E.

    1998-01-01

    To examine the effectiveness of the standard policy in the Netherlands to prescribe a sodium restricted diet to prevent or to treat mild pregnancy-induced hypertension. Multi-centre randomised controlled trial between April 1992 and April 1994. Seven practices of independent midwives and one

  7. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  8. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS...

  9. Continuous administration of an elemental diet induces insulin resistance in neonatal pigs

    Science.gov (United States)

    We previously showed that total parenteral nutrition (TPN) compared to intermittent enteral feeding of a milk-based formula induces insulin resistance and hepatic steatosis in neonatal pigs. We hypothesized that intravenous (IV) feeding rather than the nature of the diet (elemental vs polymeric) or ...

  10. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity.

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z; Jedrychowski, Mark P; Bare, Curtis J; Mina, Amir I; Kumari, Manju; Zhang, Song; Vuckovic, Ivan; Laznik-Bogoslavski, Dina; Dzeja, Petras; Banks, Alexander S; Rosen, Evan D; Spiegelman, Bruce M

    2017-10-03

    Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity. Published by Elsevier Inc.

  11. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  12. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR.

    Science.gov (United States)

    Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A

    2015-10-01

    Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p HOMA-IR; 846.5 ± 1723.3%, p HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.

  13. Local heart irradiation of ApoE(-/-) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    NARCIS (Netherlands)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the

  14. Effect of uremia on HDL composition, vascular inflammation, and atherosclerosis in wild-type mice

    DEFF Research Database (Denmark)

    Bang, Christian A; Bro, Susanne; Bartels, Emil D

    2007-01-01

    Wild-type mice normally do not develop atherosclerosis, unless fed cholic acid. Uremia is proinflammatory and increases atherosclerosis 6- to 10-fold in apolipoprotein E-deficient mice. This study examined the effect of uremia on lipoproteins, vascular inflammation, and atherosclerosis in wild...... in cholic acid-fed sham mice. The results suggest that moderate uremia neither induces aortic inflammation nor atherosclerosis in C57BL/6J mice despite increased LDL/HDL cholesterol ratio and altered HDL composition....

  15. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity

    NARCIS (Netherlands)

    La Fleur, S. E.; Luijendijk, M. C. M.; van Rozen, A. J.; Kalsbeek, A.; Adan, R. A. H.

    2011-01-01

    Objectives: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets,

  16. Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats

    Science.gov (United States)

    Stephen Adeyemi, Oluyomi; Sokolayemji Aroge, Cincin; Adewumi Akanji, Musbau

    2017-01-01

    Multiple health-promoting effects have been attributed to the consumption of Moringa oleifera leaves, as part of diet without adequate scientific credence. This study evaluated the effect of M. oleifera-based diets on nickel (Ni) - induced hepatotoxicity in rats. Male rats assigned into six groups were given oral administration of 20 mg/kg body weight nickel sulfate in normal saline and either fed normal diet orM. oleifera-based diets for 21 days. All animals were sacrificed under anesthesia 24 hours after the last treatment. Ni exposure elevated the rat plasma activities of alanine transaminase, aspartate transaminase and alkaline phosphatase significantly. Ni exposure also raised the levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol while depleting the high-density lipoprotein cholesterol concentration. Further, Ni exposure raised rat plasma malondialdehyde but depleted reduced glutathione concentrations. The histopathological presentations revealed inflammation and cellular degeneration caused by Ni exposure. We show evidence thatM. oleifera-based diets protected against Ni-induced hepatotoxicity by improving the rat liver function indices, lipid profile as well as restoring cellular architecture and integrity. Study lends credence to the health-promoting value ofM. oleifera as well as underscores its potential to attenuate hepatic injury. PMID:28808207

  17. Evaluation of the effect of soybean diet on interferon-α-induced depression in male mice

    Directory of Open Access Journals (Sweden)

    Yazdan Azimi Fashi

    2017-08-01

    Full Text Available Objective: Interferon-α (IFN therapy can cause depressive symptom which may lead to drug discontinuation. By interfering with tryptophan pathway, the available level of tryptophan required for serotonin synthesis decreases which could be related to depression. The aim of this study was to evaluate whether soybean diet could improve IFN-induced depression. Materials and Methods: Male mice weighing 28±3 g were used in the forced swimming test (FST as an animal model of depression; also, locomotor activity was recorded. IFN 16×105 IU/kg was injected subcutaneously for 6 days. Animals were fed with regular diet or soybean diet at 3 concentrations throughout the experiment. Fluoxetine was the reference drug. To check whether the tryptophan content in the soy bean diet was effective, a group of animals was injected with a single dose of tryptophan on the test day. Results: IFN-α increased the immobility time in the FST (192 sec ± 5.4, that denotes depression in mice. Soybean diets caused less immobility that was more profound with 50% soybean (26.4 sec ± 6. This diet overcame the depression caused by IFN in the FST (54 sec±18. This result was parallel with that of tryptophan injected to animals (38 sec±17. All the animals showed normal locomotor activity. Conclusion: For the first time, we showed that soybean diet could counteract with depression caused by IFN-α. Since tryptophan therapy had similar effects, possibly the tryptophan content of soybean had induced the serotonin synthesis. Thus, not only less harmful kynurenine was produced but also more serotonin was available in the brain to overcome depression. However, this interpretation needs further evaluations.

  18. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Zhou, Kequan

    2010-11-10

    Norton grape is one of the most important wine grapes in Southern and Midwestern states and generates massive pomace byproducts. The objective of this study is to characterize the antioxidant compounds and activity in Norton grape pomace extract (GPE) and further assess the potential health promoting properties of Norton GPE using an animal disease model. The total phenolic content and anthocyanins in Norton GPE were 475.4 mg of gallic acid equiv/g and 156.9 mg of cyanidin 3-glucoside equiv/g, respectively. Catechin and epicatechin in GPE were 28.6 and 24.5 mg/g, respectively. Other major antioxidants in GPE included quercetin (1.6 mg/g), trans-resveratrol (60 μg/g), gallic acid (867.2 μg/g), coutaric acid (511.8 μg/g), p-hydroxybenzoic acid (408.3 μg/g), and protocatechuic acid (371.5 μg/g). The antioxidant activity of GPE was evaluated by oxygen radical absorbance capacity (ORAC) and was 4133 μmol of Trolox equiv/g. Male diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a normal diet (ND group), a high fat diet (HF group), and the high fat diet supplemented with GPE (HFGPE group). After 12-week treatment, mice in the high fat diet groups gained 29% more weight than the ND group. The GPE supplementation (estimated 250 mg/kg bw/d) lowered plasma C-reactive protein levels by 15.5% in the high fat diet fed mice (P < 0.05), suggesting a potential anti-inflammatory effect by dietary GPE. However, dietary GPE did not improve oxidative stress in DIO mice as determined by plasma ORAC, glutathione peroxidase, and liver lipid peroxidation. The results showed that GPE contained significant antioxidants and dietary GPE exerted an anti-inflammatory effect in diet induced obesity.

  19. Immunoproteasome subunit ß5i/LMP7-deficiency in atherosclerosis.

    Science.gov (United States)

    Hewing, Bernd; Ludwig, Antje; Dan, Cristian; Pötzsch, Max; Hannemann, Carmen; Petry, Andreas; Lauer, Dilyara; Görlach, Agnes; Kaschina, Elena; Müller, Dominik N; Baumann, Gert; Stangl, Verena; Stangl, Karl; Wilck, Nicola

    2017-10-17

    Management of protein homeostasis by the ubiquitin-proteasome system is critical for atherosclerosis development. Recent studies showed controversial results on the role of immunoproteasome (IP) subunit β5i/LMP7 in maintenance of protein homeostasis under cytokine induced oxidative stress. The present study aimed to investigate the effect of β5i/LMP7-deficiency on the initiation and progression of atherosclerosis as a chronic inflammatory, immune cell driven disease. LDLR -/- LMP7 -/- and LDLR -/- mice were fed a Western-type diet for either 6 or 24 weeks to induce early and advanced stage atherosclerosis, respectively. Lesion burden was similar between genotypes in both stages. Macrophage content and abundance of polyubiquitin conjugates in aortic root plaques were unaltered by β5i/LMP7-deficiency. In vitro experiments using bone marrow-derived macrophages (BMDM) showed that β5i/LMP7-deficiency did not influence macrophage polarization or accumulation of polyubiquitinated proteins and cell survival upon hydrogen peroxide and interferon-γ treatment. Analyses of proteasome core particle composition by Western blot revealed incorporation of standard proteasome subunits in β5i/LMP7-deficient BMDM and spleen. Chymotrypsin-, trypsin- and caspase-like activities assessed by using short fluorogenic peptides in BMDM whole cell lysates were similar in both genotypes. Taken together, deficiency of IP subunit β5i/LMP7 does not disturb protein homeostasis and does not aggravate atherogenesis in LDLR -/- mice.

  20. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorub......Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated...... to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue...

  1. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice.

    OpenAIRE

    Lengacher Sylvain; Nehiri-Sitayeb Touria; Steiner Nadia; Carneiro Lionel; Favrod Céline; Preitner Frédéric; Thorens Bernard; Stehle Jean-Christophe; Dix Laure; Pralong François; Magistretti Pierre J; Pellerin Luc

    2013-01-01

    The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1(+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1(+/-) mice displayed resistance to development of diet-induced obesity ...

  2. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  3. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  4. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  5. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    Science.gov (United States)

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  6. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Elisa Benetti

    Full Text Available Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40 were fed with a control or a High Fat-High Sugar (HFHS diet for 4 months. Subsets of animals were treated for 2 months with vitamin D (7 μg·kg-1, i.p. three times/week. HFHS diet induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS animals showed an impaired insulin signaling and a marked fat accumulation in the skeletal muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addition, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis evoked by the diet. These effects were associated to decreased activation of NF-κB and lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression were observed in skeletal muscle of animals treated with vitamin D. Collectively, these data indicate that vitamin D-induced selective inhibition of signaling pathways (including NF-κB, SCAP/SREBP and CML/RAGE cascades within the skeletal muscle significantly contributed to the beneficial effects of vitamin D supplementation against diet-induced metabolic derangements.

  7. Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.

    Science.gov (United States)

    Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J

    2014-09-16

    Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors

  8. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  9. Identifying novel genes for atherosclerosis through mouse-human comparative genetics

    NARCIS (Netherlands)

    Wang, XS; Ishimori, N; Korstanje, R; Rollins, J; Paigen, B

    Susceptibility to atherosclerosis is determined by both environmental and genetic factors. Its genetic determinants have been studied by use of quantitative- trait - locus ( QTL) analysis. So far, 21 atherosclerosis QTLs have been identified in the mouse: 7 in a high- fat - diet model only, 9 in a

  10. Hydrolyzed Casein Reduces Diet-Induced Obesity in Male C57BL/6J Mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis H.; Tastesen, Hanne Sørup; Du, Zhen-Yu

    2013-01-01

    used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein......The digestion rate of dietary protein is a regulating factor for postprandial metabolism both in humans and animal models. However, few data exist about the habitual consumption of proteins with different digestion rates with regard to the development of body mass and diet-induced obesity. Here, we...... diets had higher spontaneous locomotor activity than mice fed intact casein. During the light phase, mice fed hydrolyzed casein tended (P = 0.08) to have a lower respiratory exchange ratio, indicating lower utilization of carbohydrates as energy substrate relative to those fed intact casein. In further...

  11. The effect of milk proteins on appetite regulation and diet induced thermogenesis

    DEFF Research Database (Denmark)

    Lorenzen, Janne; Frederiksen, Rikke; Hoppe, Camilla

    2012-01-01

    BACKGROUND/OBJECTIVES: There is increasing evidence to support that a high-protein diet may promote weight loss and prevent weight (re)gain better than a low-protein diet, and that the effect is due to higher diet-induced thermogenesis (DIT) and increased satiety. However, data on the effect...... of different types of protein are limited. In the present study we compare the effect of whey, casein and milk on DIT and satiety. SUBJECTS/METHODS: Seventeen slightly overweight (29 ± 4 kg/m(2)) male subjects completed the study. The study had a randomized, crossover design, where the effect on 4 h...... for baseline values. There was no significant difference in effect on EE, protein oxidation or carbohydrate oxidation. CONCLUSIONS: Milk reduced subsequent EI more than isocaloric drinks containing only whey or casein. A small but significant increase in lipid oxidation was seen after casein compared with whey....

  12. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P NASH mice (2.4 ± 0.3 vs 6.3

  13. Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity

    Science.gov (United States)

    Clegg, Deborah J.; Gotoh, Koro; Kemp, Christopher; Wortman, Matthew D.; Benoit, Stephen C.; Brown, Lynda M.; D’Alessio, David; Tso, Patrick; Seeley, Randy J.; Woods, Stephen C.

    2011-01-01

    Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad lib food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin’s inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF-but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA. PMID:21241723

  14. Effect of 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin lesions on systemic inflammation and atherosclerosis in hypercholesterolaemic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Madsen, Marie; Hansen, Peter Riis; Nielsen, Lars Bo

    2016-01-01

    BACKGROUND: Risk of cardiovascular disease is increased in patients with psoriasis, but molecular mechanisms linking the two conditions have not been clearly established. Lack of appropriate animal models has hampered generation of new knowledge in this area of research and we therefore sought...... to develop an animal model with combined atherosclerosis and psoriasis-like skin inflammation. METHODS: Topical 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to the ears twice per week for 8 weeks in atherosclerosis-prone apolipoprotein E deficient (ApoE(-/-)) mice. RESULTS: TPA led to localized...

  15. Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice.

    Science.gov (United States)

    Dong, Pengzhi; Pan, Lanlan; Zhang, Xiting; Zhang, Wenwen; Wang, Xue; Jiang, Meixiu; Chen, Yuanli; Duan, Yajun; Wu, Honghua; Xu, Yantong; Zhang, Peng; Zhu, Yan

    2017-02-23

    Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (Pflavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression.

    Science.gov (United States)

    Zhang, Shanshan; Zou, Jun; Li, Peiyang; Zheng, Xiumei; Feng, Dan

    2018-01-17

    Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE -/- ) mice by inhibiting TLR4 expression. ApoE -/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.

  17. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  18. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model.

    Science.gov (United States)

    Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B; Isales, Carlos; Caldwell, R William; Fulzele, Sadanand

    2016-02-15

    A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. Published by Elsevier Ireland Ltd.

  19. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Nuclear medicine and atherosclerosis

    International Nuclear Information System (INIS)

    Sinzinger, H.; Virgolini, I.

    1990-01-01

    Although the pathomechanisms of atherosclerosis are well known, their radioisotopic monitoring is still in its early childhood. The current radioisotope techniques are of only limited value for contributing to the clinical diagnosis of atherosclerosis. The limited reaction time of cellular blood constituents (platelets, monocytes) with the vascular surface at the injury site makes it very difficult to catch the point of injury. Lipoproteins excellently allow receptor imaging, while vascular monitoring is only of scientific interest at present. Labelling and subsequent imaging of components of the coagulation cascade have not succeeded so far, nor have attempts using unspecific labels such as porphyrin, polyclonal IgG and Fc fragments, for example. Preliminary evidence indicates that radioisotopic techniques may be of great benefit in the future in elucidating functional aspects of the disease, while they do not contribute to examining the stage and extent of atherosclerosis. (orig.)

  1. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  2. Oxyradical Stress, Endocannabinoids, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Anberitha T. Matthews

    2015-12-01

    Full Text Available Atherosclerosis is responsible for most cardiovascular disease (CVD and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG. Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.

  3. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Darimont Christian

    2004-08-01

    Full Text Available Abstract Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114 could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG and diacylglycerol (DAG accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.

  4. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  5. Nutritional compensation to exercise- vs. diet-induced acute energy deficit in adolescents with obesity.

    Science.gov (United States)

    Thivel, David; Doucet, Eric; Julian, Valérie; Cardenoux, Charlotte; Boirie, Yves; Duclos, Martine

    2017-07-01

    To compare the energy and macronutrient intake responses to equivalent energy deficits induced by diet (food restriction) and exercise in adolescents with obesity. Fourteen 12-15years old obese adolescents completed three experimental conditions (08:00am to 07:30pm) in a randomized crossover design: i) control session (CON); ii) diet-induced 25% energy depletion (Def-EI), iii) and an exercise-induced 25% energy depletion (Def-EX). The sessions order was either CON/Def-EI/Def-EX or CON/Def-EX/Def-EI as the deficit corresponded to 25% of the energy ingested at lunch on the control day (CON) and was imposed either by exercise (Def-EX) or diet (Def-EI). Ad libitum EI and macronutrients preferences were assessed at dinner and appetite sensations assessed using visual analogue scales. Mean BMI was 36.6±5.0kg/m 2 (z-BMI: 2.40±0.29). The individually calibrated 25% energy deficit represented 254±92kcal. Ad libitum EI was significantly higher during both Def-EX (971±225kcal) and Def-EI (949±246kcal) compared with CON (742±297) (pexercise and the control session (EI Def-EX - EI CON) (r=-0,643 pexercise- or diet-induced energy deficits could lead to similar EI compensation in obese adolescents but this EI compensation might be influenced by the magnitude of the deficit. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidemic rat

    OpenAIRE

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective: To evaluate the hypolipidemic effect of Piper betel (P. betel) in high fat diet induced hyperlipidemia rat. Methods: The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of 250 mg/kg body weight and administered orally. Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results: In group II animals, the activity levels of serum total cholesterol (TC), triglycerides (TG), low densi...

  7. Dysregulation of the unfolded protein response in db/db mice with diet induced steatohepatitis

    OpenAIRE

    Rinella, Mary E.; Siddiqui, M. Shaddab; Gardikiotes, Konstantina; Gottstein, Jeanne; Elias, Marc; Green, Richard M.

    2011-01-01

    In humans with non-alcoholic fatty liver, diabetes is associated with more advanced disease. We have previously shown that diabetic db/db mice are highly susceptible to methionine choline deficient diet (MCD) induced hepatic injury. Since activation of the unfolded protein response (UPR) is an important adaptive cellular mechanism in diabetes, obesity and fatty liver, we hypothesized that dysregulation of the UPR may partially explain how diabetes could promote liver injury.

  8. Diet- and genetically-induced obesity differentially affect the fecal microbiome and metabolome in Apc1638N mice

    Science.gov (United States)

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on th...

  9. Consumption of milk-protein combined with green tea modulates diet-induced thermogenesis.

    Science.gov (United States)

    Hursel, Rick; Westerterp-Plantenga, Margriet S

    2011-08-01

    Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP) in combination with green tea on diet-induced thermogenesis (DIT) was examined in 18 subjects (aged 18-60 years; BMI: 23.0 ± 2.1 kg/m(2)). They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ) were measured. Green tea (GT)vs. placebo (PL) capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP) (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL), and 3.5 g (3.5 MP) (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL). After measuring resting energy expenditure (REE) for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p milk-protein inhibits the effect of green tea on DIT.

  10. Effect of Morinda citrifolia (Noni) Fruit Juice on High Fat Diet Induced Dyslipidemia in Rats.

    Science.gov (United States)

    Shoeb, Ahsan; Alwar, M C; Shenoy, Preethi J; Gokul, P

    2016-04-01

    The medicinal value of Morinda citrifolia L. (commonly known as Noni) has been explored in ancient folk remedies with a wide range of therapeutic utility, including antibacterial, antiviral, antifungal, antitumour, analgesic, hypotensive, anti-inflammatory and immune enhancing effects. The present study was designed to evaluate the effects of Noni fruit juice on serum lipid profile in high fat diet induced murine model of dyslipidemia. Hyperlipidemia was induced by feeding a cholesterol rich high fat diet for 45 days in wistar albino rats of either sex (n=8). Noni fruit juice administered at 50mg/kg/day and 100mg/kg/day, per oral, was compared with the standard drug Atorvastatin (10mg/kg/day, oral) fed for the latter 30 days. The blood samples were then sent for complete blood lipid profile, after 30 days of treatment. The data presented as mean ± SEM was analyzed using one-way ANOVA followed by Tukey's post-hoc test. The p juice treated group showed a significant decrease in the total cholesterol, triglycerides and very low density lipoprotein - Cholesterol at both the doses when compared to the disease control (pjuice at the 50mg/kg dose employed, failed to show a statistical significance when compared to atorvastatin. The present study provides evidence for the hypolipidemic activity of Noni fruit juice in high fat diet induced hyperlipidemia in rats.

  11. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  12. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  13. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  14. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.

    Science.gov (United States)

    Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J

    2016-01-01

    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.

  15. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  16. What Is Atherosclerosis?

    Science.gov (United States)

    ... builds up in the renal arteries. These arteries supply oxygen-rich blood to your kidneys. Over time, chronic kidney disease causes a slow loss of kidney function. The main function of the kidneys is to remove waste and extra water from the body. Overview The cause of atherosclerosis ...

  17. The Development of Diet-Induced Obesity and Glucose Intolerance in C57Bl/6 Mice on a High-Fat Diet Consists of Distinct Phases

    Science.gov (United States)

    Williams, Lynda M.; Campbell, Fiona M.; Drew, Janice E.; Koch, Christiane; Hoggard, Nigel; Rees, William D.; Kamolrat, Torkamol; Thi Ngo, Ha; Steffensen, Inger-Lise; Gray, Stuart R.; Tups, Alexander

    2014-01-01

    High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable. PMID:25170916

  18. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice.

    Science.gov (United States)

    von Essen, Gabriella; Lindsund, Erik; Cannon, Barbara; Nedergaard, Jan

    2017-11-01

    The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such. Copyright © 2017 the American Physiological Society.

  19. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    Science.gov (United States)

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH.

  20. Epigenetic dysregulation of the dopamine system in diet-induced obesity.

    Science.gov (United States)

    Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M

    2012-03-01

    Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  1. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  2. Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity.

    Science.gov (United States)

    Kang, Min-Cheol; Kang, Nalae; Kim, Seo-Young; Lima, Inês S; Ko, Seok-Chun; Kim, Young-Tae; Kim, Young-Bum; Jeung, Hee-Do; Choi, Kwang-Sik; Jeon, You-Jin

    2016-04-01

    The popular edible seaweed, Gelidium amansii is broadly used as food worldwide. To determine whether G. amansii extract (GAE) has protective effects on obesity, mice fed a high-fat diet (HFD) treated with GAE (1 and 3 %) were studied. After 12 weeks of GAE treatment, body weight was greatly decreased in mice fed a high-fat diet. This effect could be due to decreased adipogenesis, as evidenced by the fact that GAE suppressed adipogenic gene expression in adipocytes. In addition, blood glucose and serum insulin levels were reduced by GAE treatment in mice fed a high-fat diet, suggesting improvement in glucose metabolism. GAE supplementation also led to a significant decrease in total cholesterol and triglyceride levels. These data are further confirmed by H&E staining. Our findings indicate that Gelidium amansii prevents against the development of diet-induced obesity, and further implicate that GAE supplementation could be the therapeutical option for treatment of metabolic disorder such as obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  4. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  6. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  7. Influence of Different Diets on Development of DMH-Induced Aberrant Crypt Foci and Colon Tumor Incidence in Wistar Rats

    DEFF Research Database (Denmark)

    Kristiansen, E.; Thorup, I.; Meyer, Otto A.

    1995-01-01

    The present study was undertaken to investigate certain dietary factors known to affect the development of colon cancer for their ability to modulate aberrant crypt foci (ACI;). Male Wistar rats were initiated with oral noses of dimethylhydrazine dihydrochloride (DMH-2HCl, 20 mg/kg body wt) once...... a week for to or 20 weeks. Throughout the study the animals were fed I) semisynthetic casein-based control diet, 2) control diet with 20% lard, 3) control diet with 20% lard and 20% dietary fiber, or 4) control diet where most of the carbohydrate pool was substituted with sucrose and dextrin....... The composition of the different diets was designed to achieve equivalent intakes of essential nutrients. Animals were killed after 10, 20, and 31 weeks. The study showed a pronounced effect of dietary composition on the development of DMH-induced ACF. The diet high in sucrose and dextrin caused a statistically...

  8. Ketogenic diet prevents neuronal firing increase within the substantia nigra during pentylenetetrazole-induced seizure in rats.

    Science.gov (United States)

    Viggiano, Andrea; Stoddard, Madison; Pisano, Simone; Operto, Francesca Felicia; Iovane, Valentina; Monda, Marcellino; Coppola, Giangennaro

    2016-07-01

    The mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia. The results demonstrated that the ketogenic diet abolished the correlation between the firing rate response of SNr-neurons and the seizure-threshold. This result suggests that the anti-seizure effect of ketogenic diets can be due to a decrease in reactivity of GABAergic SNr-neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  10. Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNF-α Expression and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min Kyung Chae

    2012-01-01

    Full Text Available Background. Pentoxifylline (PTX anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD- diet-induced NAFLD SD rats in vivo and TNF-α-induced Hep3B cells in vitro. Methods. SD Rats were classified according to diet (chow or MCD diet and treatment (normal saline or PTX injection over a period of 4 weeks: group I (chow + saline, n=4, group II (chow + PTX, group III (MCD + saline, and group IV (MCD + PTX. Hep3B cells were treated with 100 ng/ml TNF-α (24 h in the absence or presence of PTX (1 mM. Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation in vivo. PTX (1 mM reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOP in vitro. Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-α and ER stress.

  11. Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Catherine J Knowles

    Full Text Available Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate, and MCT diet (21% medium-chain triglycerides, no palmitate. We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.

  12. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion.

    Science.gov (United States)

    Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen

    2015-03-01

    Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p competence in HFD rats.

  13. Sweet potato (Ipomoea batatas) attenuates diet-induced aortic stiffening independent of changes in body composition.

    Science.gov (United States)

    Garner, Tyler; Ouyang, An; Berrones, Adam J; Campbell, Marilyn S; Du, Bing; Fleenor, Bradley S

    2017-08-01

    We hypothesized a sweet potato intervention would prevent high-fat (HF) diet-induced aortic stiffness, which would be associated with decreased arterial oxidative stress and increased mitochondrial uncoupling. Young (8-week old) C57BL/6J mice were randomly divided into 4 groups: low fat (LF; 10% fat), HF (60% fat), low-fat sweet potato (LFSP; 10% fat containing 260.3 μg/kcal sweet potato), or high-fat sweet potato diet (HFSP; 60% fat containing 260.3 μg/kcal sweet potato) for 16 weeks. Compared with LF and LFSP, HF- and HFSP-fed mice had increased body mass and percent fat mass with lower percent lean mass (all, P Sweet potato intervention did not influence body composition (all, P > 0.05). Arterial stiffness, assessed by aortic pulse wave velocity and ex vivo mechanical testing of the elastin region elastic modulus (EEM) was greater in HF compared with LF and HFSP animals (all, P sweet potato attenuates diet-induced aortic stiffness independent of body mass and composition, which is associated with a normalization of arterial oxidative stress possibly due to mitochondrial uncoupling.

  14. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    Science.gov (United States)

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  16. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis.

    Directory of Open Access Journals (Sweden)

    June-Chul Lee

    Full Text Available Consumption of a typical Western diet is a risk factor for several disorders. Metabolic syndrome is the most common disease associated with intake of excess fat. However, the incidence of inflammatory bowel disease is also greater in subjects consuming a Western diet, although the mechanism of this phenomenon is not clearly understood. We examined the morphological and functional changes of the intestine, the first site contacting dietary fat, in mice fed a high-fat diet (HFD inducing obesity. Paneth cell area and production of antimicrobial peptides by Paneth cells were decreased in HFD-fed mice. Goblet cell number and secretion of mucin by goblet cells were also decreased, while intestinal permeability was increased in HFD-fed mice. HFD-fed mice were more susceptible to experimental colitis, and exhibited severe colonic inflammation, accompanied by the expansion of selected pathobionts such as Atopobium sp. and Proteobacteria. Fecal microbiota transplantation transferred the susceptibility to DSS-colitis, and antibiotic treatment abrogated colitis progression. These data suggest that an experimental HFD-induced Paneth cell dysfunction and subsequent intestinal dysbiosis characterized by pathobiont expansion can be predisposing factors to the development of inflammatory bowel disease.

  17. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    Science.gov (United States)

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity.

    Science.gov (United States)

    Donovan, Michael J; Paulino, Gabriel; Raybould, Helen E

    2009-01-12

    Food intake is controlled by peripheral signals from the gastrointestinal tract and adipocytes, which are integrated within the central nervous system. There is evidence that signals from the GI tract are modulated by long term changes in diet, possibly leading to hyperphagia and increased body weight. We tested the hypothesis that diet-induced obese-prone (DIO-P) and obese-resistant (DIO-R) mice strains differ in the long term adaptive response of the gut-brain pathway to a high fat diet. Immunochemical detection of Fos protein was used as a measure of neuronal activation in the nucleus of the solitary tract (NTS) in response to intragastric administration of lipid in DIO-P (C57Bl6) and DIO-R (129sv) mouse strains maintained on chow or high fat, high energy diets (45% or 60% kcal from fat). Intragastric lipid administration activated neurons in the NTS in both DIO-P and DIO-R mice; the number of activated neurons was significantly greater in DIO-P than in DIO-R mice (Pdiet, for 4 or 8 weeks, compared to chow fed controls (Pdiet (45% or 60%) had no effect on lipid-induced activation of NTS neurons. These results demonstrate that DIO-P and DIO-R mice strains differ in the adaptation of the pathway to long term ingestion of high fat diets, which may contribute to decrease satiation and increased food intake.

  19. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  1. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  2. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure

    DEFF Research Database (Denmark)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H

    2016-01-01

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile...... similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae......, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota...

  3. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    Science.gov (United States)

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  5. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  6. Phytosterols protect against diet-induced hypertriglyceridemia in Syrian golden hamsters

    Science.gov (United States)

    2014-01-01

    Background In addition to lowering LDL-C, emerging data suggests that phytosterols (PS) may reduce blood triglycerides (TG), however, the underlying mechanisms are not known. Methods We examined the TG-lowering mechanisms of dietary PS in Syrian golden hamsters randomly assigned to a high fat (HF) diet or the HF diet supplemented with PS (2%) for 6 weeks (n = 12/group). An additional subset of animals (n = 12) was provided the HF diet supplemented with ezetimibe (EZ, 0.002%) as a positive control as it is a cholesterol-lowering agent with known TG-lowering properties. Results In confirmation of diet formulation and compound delivery, both the PS and EZ treatments lowered (p < 0.05) intestinal cholesterol absorption (24 and 31%, respectively), blood non-HDL cholesterol (61 and 66%, respectively), and hepatic cholesterol (45 and 55%, respectively) compared with the HF-fed animals. Blood TG concentrations were lower (p < 0.05) in the PS (49%) and EZ (68%)-treated animals compared with the HF group. The TG-lowering response in the PS-supplemented group was associated with reduced (p < 0.05) intestinal SREBP1c mRNA (0.45 fold of HF), hepatic PPARα mRNA (0.73 fold of HF), hepatic FAS protein abundance (0.68 fold of HD), and de novo lipogenesis (44%) compared with the HF group. Similarly, lipogenesis was lower in the EZ-treated animals, albeit through a reduction in the hepatic protein abundance of ACC (0.47 fold of HF). Conclusions Study results suggest that dietary PS are protective against diet-induced hypertriglyceridemia, likely through multiple mechanisms that involve modulation of intestinal fatty acid metabolism and a reduction in hepatic lipogenesis. PMID:24393244

  7. Behavioral changes induced by cocaine in mice are modified by a hyperlipidic diet or recombinant leptin

    Directory of Open Access Journals (Sweden)

    E. Erhardt

    2006-12-01

    Full Text Available The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina but receiving recombinant leptin (rLeptin or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68 = 7.834, P = 0.007. There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34 = 3.751, P = 0.020 and exploration (F(3,34 = 3.581, P = 0.024. These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.

  8. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    Science.gov (United States)

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet. Copyright © 2016 the American Physiological Society.

  10. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-01-01

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  11. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    Science.gov (United States)

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  13. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  14. Predictors of Diet-Induced Weight Loss in Overweight Adults with Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Kirsten A Berk

    Full Text Available A very low calorie diet improves the metabolic regulation of obesity related type 2 diabetes, but not for all patients, which leads to frustration in patients and professionals alike. The aim of this study was to develop a prediction model of diet-induced weight loss in type 2 diabetes.192 patients with type 2 diabetes and BMI>27 kg/m2 from the outpatient diabetes clinic of the Erasmus Medical Center underwent an 8-week very low calorie diet. Baseline demographic, psychological and physiological parameters were measured and the C-index was calculated of the model with the largest explained variance of relative weight loss using backward linear regression analysis. The model was internally validated using bootstrapping techniques.Weight loss after the diet was 7.8±4.6 kg (95%CI 7.2-8.5; p<0.001 and was independently associated with the baseline variables fasting glucose (B = -0.33 (95%CI -0.49, -0.18, p = 0.001, anxiety (HADS; B = -0.22 (95%CI -0.34, -0.11, p = 0.001, numb feeling in extremities (B = 1.86 (95%CI 0.85, 2.87, p = 0.002, insulin dose (B = 0.01 (95%CI 0.00, 0.02, p = 0.014 and waist-to-hip ratio (B = 6.79 (95%CI 2.10, 11.78, p = 0.003. This model explained 25% of the variance in weight loss. The C-index of this model to predict successful (≥5% weight loss was 0.74 (95%CI 0.67-0.82, with a sensitivity of 0.93 (95% CI 0.89-0.97 and specificity of 0.29 (95% CI 0.16-0.42. When only the obese T2D patients (BMI≥30 kg/m2; n = 181 were considered, age also contributed to the model (B = 0.06 (95%CI 0.02, 0.11, p = 0.008, whereas waist-to-hip ratio did not.Diet-induced weight loss in overweight adults with T2D was predicted by five baseline parameters, which were predominantly diabetes related. However, failure seems difficult to predict. We propose to test this prediction model in future prospective diet intervention studies in patients with type 2 diabetes.

  15. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking.

    Science.gov (United States)

    Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi

    2017-01-01

    Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.

  16. Aging, Atherosclerosis, and IGF-1

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1–induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging. PMID:22491965

  17. SOCS-1 deficiency does not prevent diet-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Macotela, Yazmin; Boucher, Jérémie

    2008-01-01

    Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we...... investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression...... of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency...

  18. Intracranial atherosclerosis: current concepts.

    Science.gov (United States)

    Arenillas, Juan F

    2011-01-01

    The most relevant ideas discussed in this article are described here. Intracranial atherosclerotic disease (ICAD) represents the most common cause of ischemic stroke worldwide. Its importance in whites may have been underestimated. New technical developments, such as high-resolution MRI, allow direct assessment of the intracranial atherosclerotic plaque, which may have a profound impact on ICAD diagnosis and therapy in the near future. Early detection of ICAD may allow therapeutic intervention while the disease is still asymptomatic. The Barcelonès Nord and Maresme Asymptomatic Intracranial Atherosclerosis Study is presented here. The main prognostic factors that characterize the patients who are at a higher risk for ICAD recurrence are classified and discussed. The best treatment for ICAD remains to be established. The Stenting Versus Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Study is currently ongoing to address this crucial issue. These and other topics will be discussed at the Fifth International Intracranial Atherosclerosis Conference (Valladolid, Spain, autumn 2011).

  19. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding.

    Science.gov (United States)

    Gac, L; Kanaly, V; Ramirez, V; Teske, J A; Pinto, M P; Perez-Leighton, C E

    2015-12-01

    Despite the increase in obesity prevalence over the last decades, humans show large inter-individual variability for susceptibility to diet-induced obesity. Understanding the biological basis of this susceptibility could identify new therapeutic alternatives against obesity. We characterized behavioral changes associated with propensity to obesity induced by cafeteria (CAF) diet consumption in mice. We show that Balb/c mice fed a CAF diet display a large inter-individual variability in susceptibility to diet-induced obesity, such that based on changes in adiposity we can classify mice as obesity prone (OP) or obesity resistant (OR). Both OP and OR were hyperphagic relative to control-fed mice but caloric intake was similar between OP and OR mice. In contrast, OR had a larger increase in locomotor activity following CAF diet compared to OP mice. Obesity resistant and prone mice showed similar intake of sweet snacks, but OR ate more savory snacks than OP mice. Two bottle sucrose preference tests showed that OP decreased their sucrose preference compared to OR mice after CAF diet feeding. Finally, to test the robustness of the OR phenotype in response to further increases in caloric intake, we fed OR mice with a personalized CAF (CAF-P) diet based on individual snack preferences. When fed a CAF-P diet, OR increased their calorie intake compared to OP mice fed the standard CAF diet, but did not reach adiposity levels observed in OP mice. Together, our data show the contribution of hedonic intake, individual snack preference and physical activity to individual susceptibility to obesity in Balb/c mice fed a standard and personalized cafeteria-style diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    Science.gov (United States)

    Kim, Sung-Bae; Kang, Ok-Hwa; Lee, Young-Seob; Han, Sin-Hee; Ahn, Young-Sup; Cha, Seon-Woo; Seo, Yun-Soo; Kong, Ryong; Kwon, Dong-Yeul

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD.

  2. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    Directory of Open Access Journals (Sweden)

    Sung-Bae Kim

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment, MCD diet (MCD diet only, MCD + silymarin (SIL 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent

  3. Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in diet-induced obese mice.

    Science.gov (United States)

    Alligier, Maud; Dewulf, Evelyne M; Salazar, Nuria; Mairal, Aline; Neyrinck, Audrey M; Cani, Patrice D; Langin, Dominique; Delzenne, Nathalie M

    2014-07-01

    To investigate whether inulin-type fructan (ITF) prebiotics could counteract the thiazolidinedione (TZD, PPARγ activator) induced-fat mass gain, without affecting its beneficial effect on glucose homeostasis, in high-fat (HF) diet fed mice. Male C57bl6/J mice were fed a HF diet alone or supplemented with ITF prebiotics (0.2 g/day × mouse) or TZD (30 mg pioglitazone (PIO)/kg body weight × day) or both during 4 weeks. An insulin tolerance test was performed after 3 weeks of treatment. As expected, PIO improved glucose homeostasis and increased adiponectinaemia. Furthermore, it induced an over-expression of several PPARγ target genes in white adipose tissues. ITF prebiotics modulated the PIO-induced PPARγ activation in a tissue-dependent manner. The co-treatment with ITF prebiotics and PIO maintained the beneficial impact of TZD on glucose homeostasis and adiponectinaemia. Moreover, the combination of both treatments reduced fat mass accumulation, circulating lipids and hepatic triglyceride content, suggesting an overall improvement of metabolism. Finally, the co-treatment favored induction of white-to-brown fat conversion in subcutaneous adipose tissue, thereby leading to the development of brite adipocytes that could increase the oxidative capacity of the tissue. ITF prebiotics decrease adiposity and improve the metabolic response in HF fed mice treated with TZD. © 2014 The Obesity Society.

  4. Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.

    Science.gov (United States)

    Kamisah, Yusof; Ang, Shu-Min; Othman, Faizah; Nurul-Iman, Badlishah Sham; Qodriyah, Hj Mohd Saad

    2016-10-01

    Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague-Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.

  5. Silymarin ameliorates metabolic dysfunction associated with Diet-induced Obesity via activation of farnesyl X receptor

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-09-01

    Full Text Available AbstractBACKGROUND AND PURPOSESilymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis and other types of toxic liver damage. . Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. EXPERIMENTAL APPROACHC57BL/6 mice were fed high-fat diet (HFD for 3 months to induce obesity, insulin resistance, hyperlipidaemia and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. FXR and NF-κB transactivities were analysed in liver using a gene reporter assay based onquantitative RT-PCR.KEY RESULTSSilymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signalling, which was enhanced by FXR activation. CONCLUSIONS AND IMPLICATIONSOur results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signalling. Key words: silymarin; silybin; metabolic syndrome; non-alcoholic fatty liver disease; farnesyl X receptorAbbreviationsALT, alanine aminotransferase; AST, aspartate transaminase; BA, bile acid; DIO, diet-induced obesity; CA, cholic acid; DMSO, dimethylsulfoxide; FXR, farnesyl X receptor; HDL-c, high density lipoprotein cholesterol; HF, high-fat; IPITT, intraperitoneal insulin tolerance test; LDL-c, low density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NF-κB, nuclear factor kappa B; NR, nuclear receptor; MS, metabolic syndrome

  6. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  7. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  8. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    Science.gov (United States)

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. Consumption of Milk-Protein Combined with Green Tea Modulates Diet-Induced Thermogenesis

    Directory of Open Access Journals (Sweden)

    Margriet S. Westerterp-Plantenga

    2011-07-01

    Full Text Available Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP in combination with green tea on diet-induced thermogenesis (DIT was examined in 18 subjects (aged 18–60 years; BMI: 23.0 ± 2.1 kg/m2. They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ were measured. Green tea (GT vs. placebo (PL capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL, and 3.5 g (3.5 MP (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL. After measuring resting energy expenditure (REE for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p < 0.001. Post-hoc, areas under the curve (AUCs for diet-induced energy expenditure were significantly different (P ≤ 0.001 for GT + water (41.11 [91.72] kJ·3.5 h vs. PL + water (10.86 [28.13] kJ·3.5 h, GT + 3.5 MP (10.14 [54.59] kJ·3.5 h and PL + 3.5 MP (12.03 [34.09] kJ·3.5 h, but not between GT + 3.5 MP, PL + 3.5 MP and PL + water, indicating that MP inhibited DIT following GT. DIT after GT + 15 MP (167.69 [141.56] kJ·3.5 h and PL + 15 MP (168.99 [186.56] kJ·3.5 h was significantly increased vs. PL + water (P < 0.001, but these were not different from each other indicating that 15 g MP stimulated DIT, but inhibited the GT effect on DIT. No significant differences in RQ were seen between conditions for baseline and post-treatment. In conclusion, consumption of milk-protein inhibits the effect of green tea on DIT.

  10. Nutritional compensation to exercise- vs. diet-induced acute energy deficit in adolescents with obesity

    OpenAIRE

    Thivel , David; Doucet , Eric; Julian , Valérie; Cardenoux , Charlotte; Boirie , Yves; Duclos , Martine

    2017-01-01

    This article belongs to a special issueConference: 24th Annual Meeting of the Society-for-the-Study-of-Ingestive-Behavior (SSIB)Location: Porto, PORTUGALDate: JUL 12-16, 2016Sponsor(s):Soc Study Ingest BehavThe authors want to thank the adolescents who took part in the study as well as Miss Nais Petiot and Miss Audrey Marion for their help; BACKGROUND: To compare the energy and macronutrient intake responses to equivalent energy deficits induced by diet (food restriction) and exercise in adol...

  11. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  12. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  13. PON1 and Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    José M. Lou-Bonafonte

    2015-05-01

    Full Text Available The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1 has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.

  14. The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet.

    Science.gov (United States)

    Liu, Shasha; Bennett, Darin C; Tun, Hein M; Kim, Ji-Eun; Cheng, Kimberly M; Zhang, Hongfu; Leung, Frederick C

    2015-01-01

    Two Japanese quail strains, respectively atherosclerosis-susceptible (SUS) and -resistant (RES), have been shown to be good models to study cholesterol metabolism and transportation associated with atherosclerosis. Our objective was to examine possible difference in cecal microbiota between these strains when fed a control diet and a cholesterol enriched diet, to determine how host genotype and diet could affect the cecal microbiome that may play a part in cholesterol metabolism. A factorial study with both strains and two diets (control, cholesterol) was carried out. Cecal content was collected from 12 week old quail that have been on their respective diets for 6 weeks. DNA was extracted from the samples and the variable region 3-5 of the bacterial 16S rRNA gene was amplified. The amplicon libraries were subjected to pyrosequencing. Principal Component Analysis (PCA) of β-diversity showed four distinct microbiota communities that can be assigned to the 4 treatment groups (RES/control, RES/cholesterol, SUS/control, SUS/cholesterol). At the Phylum level, the 4 treatment groups has distinct Firmicutes community characteristics but no significant difference in Bacteroidetes. Eubacterium dolichum was rare in RES/control but became overabundant in RES/cholesterol. An unclassified species of Lactobacillaceae was found in abundance in SUS/control but the same species was rare in RES/cholesterol. On the other hand, two Lactobacillus species were only found in RES/control and an unclassified Lachnospiraceae species was abundant in RES/cholesterol but rare in SUS/control. The abundance of four species of Lachnospiraceae, three species of Ruminococcaceae and one species of Coprobacillaceae was positively correlated with plasma Total Cholesterol, plasma LDL, and LDL/HDL ratio. Our study of cecal microbiota in these quail has demonstrated that selection for susceptibility/resistance to diet induced atherosclerosis has also affected the quail's cecal environment to host

  15. The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet

    Directory of Open Access Journals (Sweden)

    Shasha eLiu

    2015-10-01

    Full Text Available Two Japanese quail strains, respectively atherosclerosis-susceptible (SUS and –resistant (RES, have been shown to be good models to study cholesterol metabolism and transportation associated with atherosclerosis. Our objective was to examine possible difference in cecal microbiota between these strains when fed a control diet and a cholesterol enriched diet, to determine how host genotype and diet could affect the cecal microbiome that may play a part in cholesterol metabolism. A factorial study with both strains and two diets (control, cholesterol was carried out. Cecal content was collected from 12 week old quail that have been on their respective diets for 6 weeks. DNA was extracted from the samples and the variable region 3 to 5 of the bacterial 16S rRNA gene was amplified. The amplicon libraries were subjected to pyrosequencing. Principal Component Analysis (PCA of β-diversity showed four distinct microbiota communities that can be assigned to the 4 treatment groups (RES/control, RES/cholesterol, SUS/control, SUS/cholesterol. At the Phylum level, the 4 treatment groups has distinct Firmicutes community characteristics but no significant difference in Bacteroidetes. Eubacterium dolichum was rare in RES/control but became overabundant in RES/cholesterol. An unclassified species of Lactobacillaceae was found in abundance in SUS/control but the same species was rare in RES/cholesterol. On the other hand, two Lactobacillus species were only found in RES/control and an unclassified Lachnospiraceae species was abundant in RES/cholesterol but rare in SUS/control. The abundance of 4 species of Lachnospiraceae, 3 species of Ruminococcaceae and one species of Coprobacillaceae was positively correlated with plasma Total Cholesterol, plasma LDL, and LDL/HDL ratio. Our study of cecal microbiota in these quail has demonstrated that selection for susceptibility/resistance to diet induced atherosclerosis has also affected the quail’s cecal environment

  16. Feeding a high-concentrate corn straw diet induced epigenetic alterations in the mammary tissue of dairy cows.

    Directory of Open Access Journals (Sweden)

    Guozhong Dong

    Full Text Available The objective of this study was to investigate the effects of feeding a high-concentrate corn straw (HCS diet (65% concentrate+35% corn straw on the epigenetic changes in the mammary tissue of dairy cows in comparison with a low-concentrate corn straw (LCS diet (46% concentrate+54% corn straw and with a low-concentrate mixed forage (LMF diet (46% concentrate+54% mixed forage.Multiparous mid-lactation Chinese Holstein cows were fed one of these three diets for 6 weeks, at which time blood samples and mammary tissue samples were collected. Mammary arterial and venous blood samples were analyzed for lipopolysaccharide (LPS concentrations while mammary tissue samples were assayed for histone H3 acetylation and the methylation of specific genes associated with fat and protein synthesis.Extraction of histones and quantification of histone H3 acetylation revealed that acetylation was significantly reduced in cows fed the HCS diet, as compared with cows fed the LCS diet. Cows fed the HCS diet had significantly higher LPS concentrations in the mammary arterial blood, as compared with cows fed the LCS diet. We found that the extent of histone H3 acetylation was negatively correlated with LPS concentrations. The methylation of the stearoyl-coenzyme A desaturase gene associated with milk fat synthesis was increased in cows fed the HCS diet. By contrast, methylation of the gene encoding the signal transducer and activator of transcription 5A was reduced in cows fed the HCS diet, suggesting that feeding a high-concentrate corn straw diet may alter the methylation of specific genes involved in fat and protein synthesis in the mammary tissue of dairy cows.Feeding the high-concentrate diet induced epigenetic changes in the mammary tissues of dairy cows, possibly through effecting the release of differing amounts of LPS into the mammary blood.

  17. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

    Directory of Open Access Journals (Sweden)

    Shian-Huey Chiang

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

  18. Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats

    Directory of Open Access Journals (Sweden)

    Tian Ya-ping

    2010-07-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD, which is characterized by hepatic steatosis, can be reversed by early treatment. Several case reports have indicated that the administration of recombinant growth hormone (GH could improve fatty liver in GH-deficient patients. Here, we investigated whether chronic exogenous GH levels could improve hepatic steatosis induced by a high-fat diet in rats, and explored the underlying mechanisms. Results High-fat diet-fed rats developed abdominal obesity, fatty liver and insulin resistance. Chronic exogenous GH improved fatty liver, by reversing dyslipidaemia, fat accumulation and insulin resistance. Exogenous GH also reduced serum tumour necrosis factor-alpha (TNF-alpha levels, and ameliorated hepatic lipid peroxidation and oxidative stress. Hepatic fat deposition was also reduced by exogenous GH levels, as was the expression of adipocyte-derived adipokines (adiponectin, leptin and resistin, which might improve lipid metabolism and hepatic steatosis. Exogenous GH seems to improve fatty liver by reducing fat weight, improving insulin sensitivity and correcting oxidative stress, which may be achieved through phosphorylation or dephosphorylation of a group of signal transducers and activators of hepatic signal transduction pathways. Conclusions Chronic exogenous GH has positive effects on fatty liver and may be a potential clinical application in the prevention or reversal of fatty liver. However, chronic secretion of exogenous GH, even at a low level, may increase serum glucose and insulin levels in rats fed a standard diet, and thus increase the risk of insulin resistance.

  19. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  1. Teucrium polium reversed the MCD diet-induced liver injury in rats.

    Science.gov (United States)

    Amini, Rahim; Yazdanparast, Razieh; Aghazadeh, Safiyeh; Ghaffari, Seyed H

    2011-09-01

    In the present study, we evaluated the ability of Teucrium polium ethyl acetate fraction, with high antioxidant activity, in the treatment of nonalcoholic steatohepatitis (NASH) in rats and its possible effect on factors involved in pathogenesis of the disease. To induce NASH, a methionine and choline deficient (MCD) diet was given to N-Mary rats for 8 weeks. After NASH development, MCD-fed rats were divided into 2 groups: NASH group that received MCD diet and NASH + T group which was fed MCD diet plus ethyl acetate fraction of T. polium orally for 3 weeks. Histopathological evaluations revealed that treatment with the extract has abated the severity of NASH among the MCD-fed rats. In addition, the fraction reduced the elevated levels of hepatic tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) gene expression and also the elevated level of malondialdehyde (MDA). In addition, the extract increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and enhanced the level of hepatic glutathione (GSH). Moreover, the fraction treatments lowered caspase-3 level and the phosphorylated form of C-Jun N-terminal kinase (JNK) and augmented the phosphorylated level of extracellular regulated kinase1/2 (ERK1/2). These results indicate that the ethyl acetate fraction of T. poium effectively reversed NASH, mainly due to its strong antioxidant and anti-inflammatory properties.

  2. Choline-Deficient-Diet-Induced Fatty Liver Is a Metastasis-Resistant Microenvironment.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kosuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    Fatty liver disease is increasing in the developed and developing world. Liver metastasis from malignant lymphoma in the fatty liver is poorly understood. In a previous report, we developed color-coded imaging of the tumor microenvironment (TME) of the murine EL4-RFP malignant lymphoma during metastasis, including the lung. In the present report, we investigated the potential and microenvironment of the fatty liver induced by a choline-deficient diet as a metastatic site in this mouse lymphoma model. C57BL/6-GFP transgenic mice were fed with a choline-deficient diet in order to establish a fatty liver model. EL4-RFP cells were injected in the spleen of normal mice and fatty-liver mice. Metastases in mice with fatty liver or normal liver were imaged with the Olympus SZX7 microscope and the Olympus FV1000 confocal microscope. Metastases of EL4-RFP were observed in the liver, ascites and bone marrow. Primary tumors were imaged in the spleen at the injection site. The fewest metastases were observed in the fatty liver. In addition, the fewest cancer-associated fibroblasts (CAFs) were observed in the fatty liver. The relative metastatic resistance of the fatty liver may be due to the reduced number of CAFs in the fatty livers. The mechanism of the effect of the choline-deficient diet is discussed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  4. Green tea extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice.

    Science.gov (United States)

    Onishi, Shintaro; Ishino, Mayu; Kitazawa, Hidefumi; Yoto, Ai; Shimba, Yuki; Mochizuki, Yusuke; Unno, Keiko; Meguro, Shinichi; Tokimitsu, Ichiro; Miura, Shinji

    2018-01-01

    Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.

  5. Lipidemic effects of common edible oils and risk of atherosclerosis in diabetic Wistar rats

    Directory of Open Access Journals (Sweden)

    Olulola Olutoyin Oladapo

    2017-03-01

    Full Text Available BACKGROUND: Diabetic state potentiates atherosclerosis and the type of edible oil consumed by the individual may affect this further. This study aimed to determine if the common edible oils in Nigeria have any effects on the lipid profiles and arteries of alloxan-induced diabetic male Wistar rats. METHODS: Thirty male Wistar rats were randomly divided into five groups of normal control, diabetic control, animals on diet enriched with refined, bleached deodorized palm oil (RBD-PO, animals on diet enriched with soya oil, and animals on diet enriched with olive oil. At the end of 8 weeks, the lipid profiles of the animals were determined before sacrificing them. Their aortas were subsequently harvested for histological examination. RESULTS: The olive oil fed group had the highest level of total cholesterol (TC, non-high-density lipoprotein cholesterol (non-HDL-C, lowest HDL-C, and highest artherogenic index (AI. Diabetic animals fed on RBD-PO had a lower non-HDL-C, higher HDL-C, and lower AI than diabetic animals fed on olive oil or soya oil. However, the diabetic animals fed on RBD-PO had the highest triglyceride level. When the aortas were examined histologically, there were no atherosclerotic lesions in all the control and experimental groups except those fed on 10% soya oil enriched diet that had type II atherosclerotic lesions according to American Heart Association (AHA. CONCLUSION: The result of our study showed that RBD-PO appears to offer a better lipid profile in the diabetic animals compared with olive oil and soya oil. Soya oil appears to cause the development of atherosclerosis in diabetic state.   

  6. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pobese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.......3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  7. An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a high-fat "Western-type" diet in mice.

    Science.gov (United States)

    Jurado-Ruiz, Enrique; Varela, Lourdes M; Luque, Amparo; Berná, Genoveva; Cahuana, Gladys; Martinez-Force, Enrique; Gallego-Durán, Rocío; Soria, Bernat; de Roos, Baukje; Romero Gómez, Manuel; Martín, Franz

    2017-03-01

    We evaluated the protective effect of extra virgin olive oil (EVOO) in high-fat diets (HFDs) on the inflammatory response and liver damage in a nonalcoholic fatty liver disease (NAFLD) mouse model. C57BL/6J mice were fed a standard diet or a lard-based HFD (HFD-L) for 12 wk to develop NAFLD. HFD-fed mice were then divided into four groups and fed for 24 wk with the following: HFD-L, HFD-EVOO, HFD based on phenolics-rich EVOO, and reversion (standard diet). HFD-L-induced metabolic disorders were alleviated by replacement of lard with EVOO. EVOO diets improved plasma lipid profile and reduced body weight, plasma and epididymal fat INF-γ, IL-6 and leptin levels, and macrophage infiltration. Moreover, NAFLD activity scores were reduced. The liver lipid composition showed an increase in MUFAs, especially oleic acid, and a decrease in saturated fatty acids. Hepatic adiponutrin and Cd36 gene expression was upregulated in the EVOO groups. Liver ingenuity pathway analysis revealed in EVOO groups regulation of proteins involved in lipid metabolism, small molecule biochemistry, gastrointestinal disease, and liver regeneration. Dietary EVOO could repair HFD-induced hepatic damage, possibly via an anti-inflammatory effect in adipose tissue and modifications in the liver lipid composition and signaling pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Protective Effects of Setarud (IMODTM on Development of Diet-Induced Hypercholesterolemia in Rabbits

    Directory of Open Access Journals (Sweden)

    MH Shahhosseiny

    2008-09-01

    Full Text Available Background: A new herbal drug setarud (IMODTM containing selenium, carotene, and flavonoids, was expected to have positive effects on lipid metabolism and liver functions, due to the nature of its primary components. This study was designed to determine effectiveness of the drug in reducing the risk of development of diet-induced hypercholesterolemia in laboratory animals. Methods: Two groups of male rabbits (n=10 per group as: intact and control groups on regular chow, were fed a high-cholesterol diet, and two experimental groups were maintained on the same diet and treated with different daily doses (0.02 g/kg and 0.04 g/kg of setarud (brand name IMOD®, Pars Roos, Iran. The treatment groups were then compared with the intact and control groups and with one another for the effects of the drug which was determined by changes in blood sugar, serum lipid levels, and liver function tests. Results: Results showed that drug had important benefits in alleviating the impact of high-cholesterol diet on serum lipids and liver function markers in drug-treated groups relative to hyperlipidemic controls (p < 0.001. A more favorable modification of total cholesterol and triglyceride levels and the atherogenic index was found in animals, which received 0.04 g/kg drug, as compared to the 0.02 g/kg dose group (p < 0.05. Assessment of serum total protein, albumin, transaminases, and bilirubin levels showed that no changes in liver function of control and drug-treated animals during the period of the study. Conclusion: From the results of this study it may concluded that setarud has dose-dependent positive effects on liver and lipid metabolism and may acts as an effective anti-hyperglycemic agent.

  9. Ghrelin did not change coronary angiogenesis in diet-induced obese mice.

    Science.gov (United States)

    Khazaei, M; Tahergorabi, Z

    2017-02-28

    Ghrelin is a 28 amino acids peptide that initially was recognized as an endogenous ligand for growth hormone secretagogue receptor (GHSR). Recently, a number of studies demonstrated that ghrelin is a cardiovascular hormone with a series cardiovascular effect. The main objective of this study was to investigate the effect of systemic ghrelin administration on angiogenesis in the heart and its correlation with serum leptin levels in normal and diet-induced obese mice. 24 male C57BL/6 mice were randomly divided into four groups: normal diet (ND) or control, ND+ghrelin, high-fat-diet (HFD) or obese and HFD+ghrelin (n=6/group). Obese and control groups received HFD or ND, respectively, for 14 weeks. Then, the ghrelin was injected subcutaneously 100µg/kg twice daily. After 10 days, the animals were sacrificed, blood samples were taken and the hearts were removed. The angiogenic response in the heart was assessed by immunohisochemical staining. HFD significantly increased angiogenesis in the heart expressed as the number of CD31 positive cells than standard diet. Ghrelin did not alter angiogenesis in the heart in both obese and control groups, however, it reduced serum nitric oxide (NO) and leptin levels in obese mice. There was a strong positive correlation between the number of CD31 positive cells and serum leptin concentration (r=0.74). Leptin as an angiogenic factor has a positive correlation with angiogenesis in the heart. Although systemic administration of ghrelin reduced serum leptin and NO levels in obese mice, however, it could not alter coronary angiogenesis.

  10. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  11. Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Folkmann, Janne K; Jacobsen, Nicklas R

    2009-01-01

    ABSTRACT: BACKGROUND: Exposure to small size particulate matter in urban air is regarded as a risk factor for cardiovascular effects, whereas there is little information about the impact on the cardiovascular system by exposure to pure carbonaceous materials in the nano-size range. C60 fullerenes...... (apoE-/-) with different degree of atherosclerosis. RESULTS: The aged apoE-/-mice had lower endothelium-dependent vasorelaxation elicited by acetylcholine in aorta segments mounted in myographs and the phenylephrine-dependent vasoconstriction response was increased. One hour after an intraperitoneal...

  12. Kefir prevented excess fat accumulation in diet-induced obese mice.

    Science.gov (United States)

    Choi, Jae-Woo; Kang, Hye Won; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2017-05-01

    Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein-cholesterol concentrations. Overall, kefir has the potential to prevent obesity.

  13. Dietary Protein in the Prevention of Diet-Induced Obesity and Co-Morbidities

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup

    mice were fed obesity‐promoting diets with protein from different sources, in different forms and at different levels to evaluate the affect on development of obesity, glucose intolerance and dyslipidemia. Results: In the present study the dietary level of protein, 16 versus 32 percent energy from...... protein, was found to be negligible in development of obesity and co‐morbidities in mice. Seafood protein with high endogenous taurine and glycine contents was found to prevent diet‐induced adiposity and dyslipidemia, both in ad libitum and pair‐fed settings. The ability of seafood proteins to prevent...... that the source and form of protein has great impact on development and prevention of diet‐induced adiposity, dyslipidemia, hyperinsulinemia and impairment of glucose tolerance through modulations of voluntary locomotor activity, energy expenditure and energy substrate metabolism in mice...

  14. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  15. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice.

    Science.gov (United States)

    Wang, Zaicun; Wang, Shumei; Wang, Zunzhe; Yun, Tiantian; Wang, Chenchen; Wang, Huating

    2017-08-19

    Atherosclerosis is a chronic inflammatory cardiovascular disease with high mortality worldwide. Tofacitinib (CP-690,550), an oral small-molecule Janus kinase inhibitor, has been shown to be effective in the treatment of rheumatoid arthritis, autoimmune encephalomyelitis and ulcerative colitis. However, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of Tofacitinib on atherogenic diet (ATD)-induced atherosclerosis using apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis-prone apoE-/- mice were fed with ATD and treated with or without Tofacitinib through intragastrical administration (10 mg kg -1 day -1 ) for 8 weeks. Our results showed that Tofacitinib did not change plasma lipids, while significantly reduced the levels of plasma pro-inflammatory cytokines IL-6 and TNF-α. It also significantly attenuated atherosclerotic plaque lesion in the aortic root and macrophages contained in plaque as shown with Mac2 immuno-staining. Peritoneal macrophages (PMC) were separated from apoE-/- mice fed with 8-week ATD, and then subjected to inflammation tests. Flow cytometry analysis of F4/80 and CD206 and mRNA levels of M1 and M2 macrophages markers showed that M1 macrophages decreased while M2 macrophages increased in Tofacitinib treated group. Expressions of other inflammatory genes also indicated an anti-inflammatory status in mice treated with Tofacitinib. Ox-LDL was used to induce foam cell formation from PMC in wild type mice, and the results displayed a reduced formation of foam cells and decreased inflammation in mice with Tofacitinib administration (1 μM). The mRNA and protein levels of ATP binding cassette subfamily A member 1 (ABCA1), a key gene involved in cholesterol efflux, remarkably increased, while it was absence of alterations in scavenger receptors expression. Therefore, we demonstrated that Tofacitinib could attenuate atherosclerosis and foam cells formation by

  16. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  17. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    Science.gov (United States)

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  19. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats.

    Science.gov (United States)

    Trovato, Ada; Taviano, Maria F; Pergolizzi, Simona; Campolo, Loredana; De Pasquale, Rita; Miceli, Natalizia

    2010-04-01

    The present study was designed to evaluate the protective effect of treatment with Citrus bergamia juice (1 mL/day, for 30 days) against hypercholesterolemic diet-induced renal injury in rat.C. bergamia juice provoked a significant reduction in the plasma levels of cholesterol, triglycerides and LDL, and an increase in HDL levels, versus hyperlipidemic controls (p juice administration significantly decreased MDA levels elevations compared with hyperlipidemic controls (4.10 +/- 0.10 nmol/mg protein and 4.78 +/- 0.15 nmol/mg protein, respectively).Histological observations of the kidney supported the biochemical data and indicated a protective effect of C. bergamia juice on the development of renal damage in hypercholesterolemic rats.The antioxidant potential of C. bergamia juice was examined in two in vitro systems: in the DPPH test the juice showed a noticeable effect on scavenging free radicals (IC(50) = 25.01 +/- 0.70 +/-L); in the reducing power assay it showed a strong activity, too (1.44 +/- 0.01 ASE/mL).These findings suggest that C. bergamia juice has a protective role in hypercholesterolemic diet-induced renal damage, which may be attributed to its antioxidant properties. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Effects of antioxidant vitamins along with atorvastatin and atorvastatin–niacin combination on diet-induced hypercholesterolemia in rats

    OpenAIRE

    Solanki, Yogendrasinh B; Bhatt, Rajendra V

    2010-01-01

    The present study investigated the effects of antioxidant vitamins along with atorvastatin and atorvastatinniacin combination on diet-induced hypercholesterolemia in rats. High cholesterol diet produced a significant increase in the serum total cholesterol, LDL-C, VLDL-C, TG, atherogenic index and decrease in HDL-C and HDL/LDL ratio. The lipid peroxidation and oxidative stress were significantly high in the hyperlipidemic control group. Atorvastatin improved atherogenic index but not the HDL/...

  1. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  2. Fat and carbohydrate content in the diet induces drastic changes in gene expression in young Göttingen minipigs

    DEFF Research Database (Denmark)

    Mentzel, Caroline M.Junker; Figueiredo Cardoso, Tainã; Haagensen, Annika Maria Juul

    2017-01-01

    In human health, there is interest in developing specific diets to reduce body weight. These studies are mainly focused on phenotypic changes induced in blood measurements, i.e., triglycerides, HDL, LDL, and insulin, and on physical changes, i.e., body weight and BMI. To evaluate the biological i....... The new knowledge gained in this study could potentially be of value for considering direct modulation of gene expression by nutrient content in the diet....

  3. Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils.

    Science.gov (United States)

    van den Berg, Susan M; van Dam, Andrea D; Kusters, Pascal J H; Beckers, Linda; den Toom, Myrthe; van der Velden, Saskia; Van den Bossche, Jan; van Die, Irma; Boon, Mariëtte R; Rensen, Patrick C N; Lutgens, Esther; de Winther, Menno P J

    2017-10-01

    Brown adipose tissue (BAT) activation and white adipose tissue (WAT) beiging can increase energy expenditure and have the potential to reduce obesity and associated diseases. The immune system is a potential target in mediating brown and beige adipocyte activation. Type 2 and anti-inflammatory immune cells contribute to metabolic homeostasis within lean WAT, with a prominent role for eosinophils and interleukin (IL)-4-induced anti-inflammatory macrophages. We determined eosinophil numbers in epididymal WAT (EpAT), subcutaneous WAT (ScAT) and BAT after 1 day, 3 days or 1 week of high-fat diet (HFD) feeding in C57Bl/6 mice. One day of HFD resulted in a rapid drop in eosinophil numbers in EpAT and BAT, and after 3 days, in ScAT. In an attempt to restore this HFD-induced drop in adipose tissue eosinophils, we treated 1-week HFD-fed mice with helminth antigens from Schistosoma mansoni or Trichuris suis and evaluated whether the well-known protective metabolic effects of helminth antigens involves BAT activation or beiging. Indeed, antigens of both helminth species induced high numbers of eosinophils in EpAT, but failed to induce beiging. In ScAT, Schistosoma mansoni antigens induced mild eosinophilia, which was accompanied by slightly more beiging. No effects were observed in BAT. To study type 2 responses on brown adipocytes directly, T37i cells were stimulated with IL-4. This increased Ucp1 expression and strongly induced the production of eosinophil chemoattractant CCL11 (+26-fold), revealing that brown adipocytes themselves can attract eosinophils. Our findings indicate that helminth antigen-induced eosinophilia fails to induce profound beiging of white adipocytes. © 2017 Society for Endocrinology.

  4. Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats

    OpenAIRE

    Shih, Shen-Liang; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2015-01-01

    Background The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50?mg/kg, dio50) was intervened daily concurrent HF diet (HF diet?+?dio50) for five w...

  5. Polyphenol Rich Extract of Garcinia pedunculata Fruit Attenuates the Hyperlipidemia induced by High Fat Diet

    Directory of Open Access Journals (Sweden)

    Rahul Sarma

    2016-08-01

    Full Text Available Fatty foods, the most common diet today are the crux of many metabolic disorders which need urgent attention. Garcinia pedunculata Roxb. (GP, Clusiaceae is a plant found available in Northeast (NE region of India, is considered to have versatile therapeutic properties. The people of this region has been using dried pulp of GP fruit for the treatment of different stomach related diseases traditionally. This study aimed at evaluating the potential therapeutic action of the polyphenol-rich methanolic extract (ME of the fruit in experimental induced obese rats. In vitro antioxidant and antidiabetic activity of GP extracts, i.e., fruit extract (GF and seed extract (GS were determined by using various methods viz., 1,1-diphenyl-2 picrylhydrazyl (DPPH, 2,2′-Azinobis (3-ethyl benzthiazoline-6-sulphonic acid (ABTS•+, nitroblue tetrazolium (NBT and α-glucosidase inhibition assay for detection of antihyperglycemic activity. In vivo antilipidemic and antiobesity activities were evaluated by administrating oral dose of GF for 60 days on a high-fat diet (HFD induced hyperlipidemia in the rat. GF showed higher antioxidant activity than GS by DPPH radical scavenging (IC50=4.01 µg/ml, ABTS•+ (IC50=0.82 µg/ml, NBT (IC50=0.07 µg/ml and also showed notable α-glucosidase inhibitory activity (IC50=19.26 µg/ml. Furthermore, GF treated rat revealed a reduction in the body weight (~60%, serum total cholesterol (33%, triglycerides (32%, low-density lipoprotein (38% and liver biomarker enzymes after 60 days HFD fed animals. Simultaneously, GF supplementation significantly protected the HFD induced changes in hematological parameters. Histological observations clearly differentiate the structural changes in liver of HFD and GF treated group. This novel dietary lipid adsorbing agent of GF exhibited prevention of hyperlipidemia induced by HFD in the rat.

  6. Change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Hou, Yiran; Wen, Bin

    2016-08-01

    The present study was conducted to determine the change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets. Four experimental diets were tested, in which Sargassum thunbergii was proportionally replaced by the mixture of corn kernels meal and soybean meal. The growth performance, body composition and intestinal digestive enzyme activities in A. japonicus fed these 4 diets were examined. Results showed that the sea cucumber exhibited the maximum growth rate when 20% of S. thunbergii in the diet was replaced by corn kernels meal and soybean meal, while 40% of S. thunbergii in the diet can be replaced by the mixture of corn kernels meal and soybean meal without adversely affecting growth performance of A. japonicus. The activities of intestinal trypsin and amylase in A. japonicus can be significantly altered by corn kernels meal and soybean meal in diets. Trypsin activity in the intestine of A. japonicus significantly increased in the treatment groups compared to the control, suggesting that the supplement of corn kernels meal and soybean meal in the diets might increase the intestinal trypsin activity of A. japonicus. However, amylase activity in the intestine of A. japonicus remarkably decreased with the increasing replacement level of S. thunbergii by the mixture of corn kernels meal and soybean meal, suggesting that supplement of corn kernels meal and soybean meal in the diets might decrease the intestinal amylase activity of A. japonicus.

  7. Atherosclerosis in familial lines of pigeons fed exogenous cholesterol.

    Science.gov (United States)

    Patton, N M; Brown, R V; Middleton, C C

    1975-01-01

    Exogenous cholesterol was fed to F1 pigeons of high and low serum cholesterol differentiated lines of White Carneau and Racing Homer pigeons that had previously been developed by selection and positive assortive mating. The serum cholesterol response of the various high and low lines was dependent upon the breed and the amount of cholesterol in the diet. Racing Homer pigeons were found to be more resistant to aortic atherosclerosis and more susceptible to coronary atherosclerosis than White Carneau pigeons. Data from necropsy examinations showed significant differences in both aortic and coronary atherosclerosis between lines within the White Carneau breed, but no differences between lines of the Racing Homer breed. Mean organ weights for the 4 lines of pigeons were reported.

  8. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    Science.gov (United States)

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  9. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  10. The Effects of a Hypocaloric Diet on Diet-Induced Thermogenesis and Blood Hormone Response in Healthy Male Adults: A Pilot Study.

    Science.gov (United States)

    Ishii, Shunsuke; Osaki, Noriko; Shimotoyodome, Akira

    2016-01-01

    Calorie restriction is a common strategy for weight loss and management. Consumption of food and nutrients stimulates diet-induced thermogenesis (DIT), as well as pancreatic and gastrointestinal hormone secretion that may regulate energy metabolism. Yet, little is known about the impact of hypocaloric diets on energy metabolism-related parameters. In this study, we assessed the effects of hypocaloric diets on hormonal variance in relation to DIT in healthy adults. Ten healthy male adults were enrolled in a randomized crossover study comprising three meal trials. Each subject was given a meal of 200 (extremely hypocaloric), 400 (moderately hypocaloric), or 800 kcal (normocaloric). Postprandial blood variables and energy expenditure were measured for 4 h (after the 200- and 400-kcal meals) or 6 h (after the 800-kcal meal). DIT and postprandial changes in blood pancreatic peptide and ghrelin were significantly smaller after the extremely or moderately hypocaloric diet than after the normocaloric diet but were similar between the hypocaloric diets. Postprandial blood insulin, amylin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide type-1 (GLP-1) increased in a calorie-dependent manner. Thermogenic efficiency (DIT per energy intake) was negatively correlated with the maximum blood level (Cmax) (p=0.01) and incremental area under the curve (p=0.01) of the blood GIP response. Calorie restriction thus leads to hormonal responses and lower DIT in healthy adults. Extreme calorie restriction, however, led to greater thermogenic efficiency compared with moderate calorie restriction. The postprandial GIP response may be a good predictor of postprandial thermogenic efficiency.

  11. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  12. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

    Science.gov (United States)

    Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin

    2016-12-01

    Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice

  13. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes.

    Science.gov (United States)

    Büchner, Nicole; Ale-Agha, Niloofar; Jakob, Sascha; Sydlik, Ulrich; Kunze, Kerstin; Unfried, Klaus; Altschmied, Joachim; Haendeler, Judith

    2013-01-01

    Telomerase activity in endothelial and lung epithelial cells. As a consequence, ufCB increased senescence of endothelial cells. To investigate whether ufCB show also effects in vivo, we instilled ufCB in concentrations not inducing inflammation into mice. Indeed, eNOS expression was reduced in the abdominal aorta of animals treated with ufCB. Thus, a combination of fructose and LDL in the diet and ufCB, as a major constituent of air pollution, seem to accelerate respiratory and cardiovascular cellular changes, which may compromise "healthy aging" and can lead to cardiovascular and pulmonary diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    International Nuclear Information System (INIS)

    Guo, Tai L.; Wang, Yunbiao; Xiong, Tao; Ling, Xiao; Zheng, Jianfeng

    2014-01-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  15. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tai L., E-mail: tlguo1@uga.edu [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Wang, Yunbiao [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Xiong, Tao [College of Animal Science, Yangtze University, Jingzhou City, Hubei Province 434025 (China); Ling, Xiao [Institute for Food and Drug Control of Shandong Province, Jinan City, Shandong 250012 (China); Zheng, Jianfeng [Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2014-11-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  16. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.

  17. Protective role for properdin in progression of experimental murine atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Tanja Steiner

    Full Text Available Genetic, dietary and immune factors contribute to the pathogenesis of atherosclerosis in humans and mice. Complement activation is an integral part of the innate immune defence but also shapes cellular responses and influences directly triglyceride synthesis. Deficiency of Factor B of the alternative pathway (AP of complement is beneficial in LDLR(-/- mice fed a high fat diet. The serum glycoprotein properdin is a key positive regulator of the AP but has not been studied in experimental atherosclerosis. Atherosclerosis was assessed after feeding low fat (LFD or high fat (HFD Western type diets to newly generated LDLR(-/- Properdin(KO (LDLR(-/-P(KO and LDLR-/-PWT mice. Lipids, lymphocytes and monocytes were similar among genotypes, genders and diets. Complement C3, but not C3adesarg, levels were enhanced in LDLR(-/-P(KO mice regardless of diet type or gender. Non-esterified fatty acids (NEFA were decreased in male LDLR(-/-P(KO fed a HFD compared with controls. All mice showed significant atherosclerotic burden in aortae and at aortic roots but male LDLR(-/- mice fed a LFD were affected to the greatest extent by the absence of properdin. The protective effect of properdin expression was overwhelmed in both genders of LDLR(-/-mice when fed a HFD. We conclude that properdin plays an unexpectedly beneficial role in the development and progression of early atherosclerotic lesions.

  18. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2010-07-01

    Full Text Available Abstract Background Calorie restriction (CR and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat, low-fat diet with 30% calorie restriction (LR, high-fat diet (HC, 60% fat, high-fat diet with 30% calorie restriction (HR, high-fat diet with voluntary running exercise (HE, and high-fat diet with a combination of 30% calorie restriction and exercise (HRE. The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression. Results Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal. Conclusions CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.

  19. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Mun-Gyu Song

    2016-11-01

    Full Text Available Objective: Adipose tissue (AT expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC of subcutaneous and visceral fats in lean and obese mice. Methods: We compared the AC of epididymal fat (EF and inguinal fat (IF using an angiogenesis assay in diet-induced obese (DIO mice and diet-resistant (DR mice fed a high-fat diet (HFD. Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD, DIO mice, and DR mice fed a HFD. Results: DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a, Vegfa, Fgf1, Kdr, and Pecam1, macrophage recruitment, and inflammation (including Emr1, Ccr2, Itgax, Ccl2, Tnf, and Il1b correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. Conclusions: These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity. Keywords: Angiogenesis, Inflammation, Adipose tissue, Diet-induced obese mice, Diet-resistant mice, High-fat diet

  20. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  1. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Alexis Panny Y. S. Chung

    2018-03-01

    Full Text Available Geraniin, a hydrolysable polyphenol derived from Nephelium lappaceum L. fruit rind, has been shown to possess significant antioxidant activity in vitro and recently been recognized for its therapeutic potential in metabolic syndrome. This study investigated its antioxidative strength and protective effects on organs in high-fat diet (HFD-induced rodents. Rats were fed HFD for 6 weeks to induce obesity, followed by 10 and 50 mg/kg of geraniin supplementation for 4 weeks to assess its protective potential. The control groups were maintained on standard rat chows and HFD for the same period. At the 10th week, oxidative status was assessed and the pancreas, liver, heart and aorta, kidney, and brain of the Sprague Dawley rats were harvested and subjected to pathological studies. HFD rats demonstrated changes in redox balance; increased protein carbonyl content, decreased levels of superoxide dismutase, glutathione peroxidase, and glutathione reductase with a reduction in the non-enzymatic antioxidant mechanisms and total antioxidant capacity, indicating a higher oxidative stress (OS index. In addition, HFD rats demonstrated significant diet-induced changes particularly in the pancreas. Four-week oral geraniin supplementation, restored the OS observed in the HFD rats. It was able to restore OS biomarkers, serum antioxidants, and the glutathione redox balance (reduced glutathione/oxidized glutathione ratio to levels comparable with that of the control group, particularly at dosage of 50 mg geraniin. Geraniin was not toxic to the HFD rats but exhibited protection against glucotoxicity and lipotoxicity particularly in the pancreas of the obese rodents. It is suggested that geraniin has the pharmaceutical potential to be developed as a supplement to primary drugs in the treatment of obesity and its pathophysiological sequels.

  2. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    Science.gov (United States)

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  4. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Deblon

    Full Text Available Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

  5. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  6. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  7. Maternal obesogenic diet induces endometrial hyperplasia, an early hallmark of endometrial cancer, in a diethylstilbestrol mouse model.

    Science.gov (United States)

    Owuor, Theresa O; Reid, Michaela; Reschke, Lauren; Hagemann, Ian; Greco, Suellen; Modi, Zeel; Moley, Kelle H

    2018-01-01

    Thirty-eight percent of US adult women are obese, meaning that more children are now born of overweight and obese mothers, leading to an increase in predisposition to several adult onset diseases. To explore this phenomenon, we developed a maternal obesity animal model by feeding mice a diet composed of high fat/ high sugar (HF/HS) and assessed both maternal diet and offspring diet on the development of endometrial cancer (ECa). We show that maternal diet by itself did not lead to ECa initiation in wildtype offspring of the C57Bl/6J mouse strain. While offspring fed a HF/HS post-weaning diet resulted in poor metabolic health and decreased uterine weight (regardless of maternal diet), it did not lead to ECa. We also investigated the effects of the maternal obesogenic diet on ECa development in a Diethylstilbestrol (DES) carcinogenesis mouse model. All mice injected with DES had reproductive tract lesions including decreased number of glands, condensed and hyalinized endometrial stroma, and fibrosis and increased collagen deposition that in some mice extended into the myometrium resulting in extensive disruption and loss of the inner and outer muscular layers. Fifty percent of DES mice that were exposed to maternal HF/HS diet developed several features indicative of the initial stages of carcinogenesis including focal glandular and atypical endometrial hyperplasia versus 0% of their Chow counterparts. There was an increase in phospho-Akt expression in DES mice exposed to maternal HF/HS diet, a regulator of persistent proliferation in the endometrium, and no difference in total Akt, phospho-PTEN and total PTEN expression. In summary, maternal HF/HS diet exposure induces endometrial hyperplasia and other precancerous phenotypes in mice treated with DES. This study suggests that maternal obesity alone is not sufficient for the development of ECa, but has an additive effect in the presence of a secondary insult such as DES.

  8. Hepatocellular proliferation and hepatocarcinogen bioactivation in mice with diet-induced fatty liver and obesity.

    Science.gov (United States)

    Iatropoulos, M J; Duan, J-D; Jeffrey, A M; Leach, M W; Hayes, A N; Stedman, N L; Williams, G M

    2013-05-01

    Human liver cancer is in part associated with obesity and related metabolic diseases. The present study was undertaken in a mouse model of diet-induced obesity (DIO) and hepatic steatosis, conditions which can be associated with hepatic neoplasia, to determine whether the rates of cell proliferation or hepatocarcinogen bioactivation were altered in ways which could facilitate hepatocarcinogenesis. DIO mice were generated by feeding C57BL/6 (B6) male mice a high-fat diet beginning at 4 weeks of age; age-matched conventional lean (LEAN) B6 mice fed a low fat diet (10% Kcal from fat) were used for comparison. Groups of 28 week old DIO and LEAN mice were dosed with the bioactivation-dependent DNA-reactive hepatocarcinogen 2-acetylaminofluorene (AAF), at 2.24 or 22.4 mg/kg, given by gavage 3 times per week for 31 days, or received no treatment (DIO and LEAN control groups). Compared with the LEAN control group, the DIO control group had a higher mean body weight (16.5 g), higher mean absolute (1.4 g) and mean relative (25.5%) liver weights, higher (394%) liver triglyceride concentrations, and an increased incidence and severity of hepatocellular steatosis at the end of the dosing phase. The DIO control group also had a higher mean hepatocellular replicating fraction (31% increase, determined by proliferating cell nuclear antigen immunohistochemistry). Hepatocarcinogen bioactivation, based on formation of AAF DNA adducts as measured by nucleotide (32)P-postlabeling, was similar in both DIO and LEAN AAF-dosed groups. Thus, hepatocellular proliferation, but not hepatocarcinogen bioactivation, was identified as an alteration in livers of DIO mice which could contribute to their susceptibility to hepatocarcinogenesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Hypolipidemic Effect of Tomato Juice in Hamsters in High Cholesterol Diet-Induced Hyperlipidemia.

    Science.gov (United States)

    Lee, Li-Chen; Wei, Li; Huang, Wen-Ching; Hsu, Yi-Ju; Chen, Yi-Ming; Huang, Chi-Chang

    2015-12-17

    Tomato is a globally famous food and contains several phytonutrients including lycopene, β-carotene, anthocyanin, and flavonoids. The increased temperature used to produce tomato juice, ketchup, tomato paste and canned tomato enhances the bioactive composition. We aimed to verify the beneficial effects of processed tomato juice from Kagome Ltd. (KOT) on hypolipidemic action in hamsters with hyperlipidemia induced by a 0.2% cholesterol and 10% lard diet (i.e., high-cholesterol diet (HCD)). Male Golden Syrian hamsters were randomly divided into two groups for treatment: normal (n = 8), standard diet (control); and experimental (n = 32), HCD. The 32 hamsters were further divided into four groups (n = 8 per group) to receive vehicle or KOT by oral gavage at 2787, 5573, or 13,934 mg/kg/day for six weeks, designated the HCD-1X, -2X and -5X groups, respectively. The efficacy and safety of KOT supplementation was evaluated by lipid profiles of serum, liver and feces and by clinical biochemistry and histopathology. HCD significantly increased serum levels of total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C ratio, hepatic and fetal TC and TG levels, and degree of fatty liver as compared with controls. KOT supplementation dose-dependently decreased serum TC, TG, LDL-C levels, LDL-C/HDL-C ratio, hepatic TC and TG levels, and fecal TG level. Our study provides experiment-based evidence to support that KOT may be useful in treating or preventing the onset of hyperlipidemia.

  10. Hypolipidemic Effect of Tomato Juice in Hamsters in High Cholesterol Diet-Induced Hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Li-Chen Lee

    2015-12-01

    Full Text Available Tomato is a globally famous food and contains several phytonutrients including lycopene, β-carotene, anthocyanin, and flavonoids. The increased temperature used to produce tomato juice, ketchup, tomato paste and canned tomato enhances the bioactive composition. We aimed to verify the beneficial effects of processed tomato juice from Kagome Ltd. (KOT on hypolipidemic action in hamsters with hyperlipidemia induced by a 0.2% cholesterol and 10% lard diet (i.e., high-cholesterol diet (HCD. Male Golden Syrian hamsters were randomly divided into two groups for treatment: normal (n = 8, standard diet (control; and experimental (n = 32, HCD. The 32 hamsters were further divided into four groups (n = 8 per group to receive vehicle or KOT by oral gavage at 2787, 5573, or 13,934 mg/kg/day for six weeks, designated the HCD-1X, -2X and -5X groups, respectively. The efficacy and safety of KOT supplementation was evaluated by lipid profiles of serum, liver and feces and by clinical biochemistry and histopathology. HCD significantly increased serum levels of total cholesterol (TC, triacylglycerol (TG, high-density lipoprotein cholesterol (HDL-C, and low-density lipoprotein cholesterol (LDL-C, LDL-C/HDL-C ratio, hepatic and fetal TC and TG levels, and degree of fatty liver as compared with controls. KOT supplementation dose-dependently decreased serum TC, TG, LDL-C levels, LDL-C/HDL-C ratio, hepatic TC and TG levels, and fecal TG level. Our study provides experiment-based evidence to support that KOT may be useful in treating or preventing the onset of hyperlipidemia.

  11. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  12. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  14. Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in Wistar rats.

    Science.gov (United States)

    Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N

    2017-01-01

    Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.

  15. Antagonistic Effect of Atorvastatin on High Fat Diet Induced Survival during Acute Chagas Disease

    Science.gov (United States)

    Zhao, Dazhi; Lizardo, Kezia; Cui, Min Hui; Ambadipudi, Kamalakar; Lora, Jose; Jelicks, Linda A; Nagajyothi, Jyothi F

    2016-01-01

    Chagasic cardiomyopathy, which is seen in Chagas Disease, is the most severe and life-threatening manifestation of infection by the kinetoplastid Trypanosoma cruzi. Adipose tissue and diet play a major role in maintaining lipid homeostasis and regulating cardiac pathogenesis during the development of Chagas cardiomyopathy. We have previously reported that T. cruzi has a high affinity for lipoproteins and that the invasion rate of this parasite increases in the presence of cholesterol, suggesting that drugs that inhibit cholesterol synthesis, such as statins, could affect infection and the development of Chagasic cardiomyopathy. The dual epidemic of diabetes and obesity in Latin America, the endemic regions for Chagas Disease, has led to many patients in the endemic region of infection having hyperlipidemia that is being treated with statins such as atorvastatin. The current study was performed to examine using mice fed on either regular or high fat diet the effect of atorvastatin on T. cruzi infection-induced myocarditis and to evaluate the effect of this treatment during infection on adipose tissue physiology and cardiac pathology. Atorvastatin was found to regulate lipolysis and cardiac lipidopathy during acute T. cruzi infection in mice and to enhance tissue parasite load, cardiac LDL levels, inflammation, and mortality in during acute infection. Overall, these data suggest that statins, such as atorvastatin, have deleterious effects during acute Chagas disease. PMID:27416748

  16. Conditional deletion of Hdac3 in osteoprogenitor cells attenuates diet-induced systemic metabolic dysfunction

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; White, Thomas A.; LeBrasseur, Nathan K.; Westendorf, Jennifer J.

    2015-01-01

    Obesity is a major health epidemic in the United States and a leading cause of preventable diseases including type 2 diabetes. A growing body of evidence indicates that the skeleton influences whole body metabolism and suggests a new avenue for developing novel therapeutic agents, but the underlying mechanisms are not well understood. Here, it is demonstrated that conditional deletion of an epigenetic regulator, Hdac3, in osteoblast progenitor cells abrogates high fat diet-induced insulin resistance and hepatic steatosis. These Hdac3-deficient mice have reduced bone formation and lower circulating levels of total and undercarboxylated osteocalcin, coupled with decreased bone resorption activity. They also maintain lower body fat and fasting glucose levels on normal and high fat chow diets. The mechanisms by which Hdac3 controls systemic energy homeostasis from within osteoblasts have not yet been fully realized, but the current study suggests that it does not involve elevated levels of circulating osteocalcin. Thus, Hdac3 is a new player in the emerging paradigm that the skeleton influences systemic energy metabolism. PMID:25666992

  17. ABCB4 mediates diet-induced hypercholesterolemia in laboratory opossums[S

    Science.gov (United States)

    Chan, Jeannie; Mahaney, Michael C.; Kushwaha, Rampratap S.; VandeBerg, Jane F.; VandeBerg, John L.

    2010-01-01

    High-responding opossums are susceptible to developing hypercholesterolemia on a high-cholesterol diet, but low-responding opossums are resistant. The observation of low biliary cholesterol and low biliary phospholipids in high responders suggested that the ABCB4 gene affects response to dietary cholesterol. Two missense mutations (Arg29Gly and Ile235Leu) were found in the ABCB4 gene of high responders. High responders (ATHH strain) were bred with low responders (ATHE or ATHL strain) to produce F1 and F2 progeny in two different genetic crosses (KUSH6 and JCX) to determine the effect of ABCB4 allelic variants on plasma cholesterol concentrations after a dietary challenge. Pedigree-based genetic association analyses consistently implicated a variant in ABCB4 or a closely linked locus as a major, but not the sole, genetic contributor to variation in the plasma cholesterol response to dietary cholesterol. High responders, but not low responders, developed liver injury as indicated by elevated plasma biomarkers of liver function, probably reflecting damage to the canalicular membrane by bile salts because of impaired phospholipid secretion. Our results implicate ABCB4 as a major determinant of diet-induced hypercholesterolemia in high-responding opossums and suggest that other genes interact with ABCB4 to regulate lipemic response to dietary cholesterol. PMID:20488799

  18. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    Science.gov (United States)

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    Science.gov (United States)

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.

  20. Loss of Akt1 in mice increases energy expenditure and protects against diet-induced obesity.

    Science.gov (United States)

    Wan, Min; Easton, Rachael M; Gleason, Catherine E; Monks, Bobby R; Ueki, Kohjiro; Kahn, C Ronald; Birnbaum, Morris J

    2012-01-01

    Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity.

  1. Emodin Prevents Intrahepatic Fat Accumulation, Inflammation and Redox Status Imbalance During Diet-Induced Hepatosteatosis in Rats

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    2012-02-01

    Full Text Available High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis or be associated with necro-inflammation and fibrosis (steatohepatitis. Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD for 15 weeks, or a high-fat/high-fructose diet (HFD/HF. After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN. In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis.

  2. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Radhika V Seimon

    Full Text Available Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change ÷ [(total energy intake of mice on CD or ID-(total average energy intake of controls]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05. There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01. Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative

  3. Administration of granulocyte-colony stimulating factor accompanied with a balanced diet improves cardiac function alterations induced by high fat diet in mice.

    Science.gov (United States)

    Daltro, Pâmela Santana; Alves, Paula Santana; Castro, Murilo Fagundes; Azevedo, Carine M; Vasconcelos, Juliana Fraga; Allahdadi, Kyan James; de Freitas, Luiz Antônio Rodrigues; de Freitas Souza, Bruno Solano; Dos Santos, Ricardo Ribeiro; Soares, Milena Botelho Pereira; Macambira, Simone Garcia

    2015-12-03

    High fat diet (HFD) is a major contributor to the development of obesity and cardiovascular diseases due to the induction of cardiac structural and hemodynamic abnormalities. We used a model of diabetic cardiomyopathy in C57Bl/6 mice fed with a HFD to investigate the effects of granulocyte-colony stimulating factor (G-CSF), a cytokine known for its beneficial effects in the heart, on cardiac anatomical and functional abnormalities associated with obesity and type 2 diabetes. Groups of C57Bl/6 mice were fed with standard diet (n = 8) or HFD (n = 16). After 36 weeks, HFD animals were divided into a group treated with G-CSF + standard diet (n = 8) and a vehicle control group + standard diet (n = 8). Cardiac structure and function were assessed by electrocardiography, echocardiography and treadmill tests, in addition to the evaluation of body weight, fasting glicemia, insulin and glucose tolerance at different time points. Histological analyses were performed in the heart tissue. HFD consumption induced metabolic alterations characteristic of type 2 diabetes and obesity, as well as cardiac fibrosis and reduced exercise capacity. Upon returning to a standard diet, obese mice body weight returned to non-obese levels. G-CSF administration accelerated the reduction in of body weight in obese mice. Additionally, G-CSF treatment reduced insulin levels, diminished heart fibrosis, increased exercise capacity and reversed cardiac alterations, including bradycardia, elevated QRS amplitude, augmented P amplitude, increased septal wall thickness, left ventricular posterior thickening and cardiac output reduction. Our results indicate that G-CSF administration caused beneficial effects on obesity-associated cardiac impairment.

  4. The effect of psychological stress on diet-induced thermogenesis and resting metabolic rate.

    Science.gov (United States)

    Weststrate, J A; Van der Kooy, K; Deurenberg, P; Hautvast, J G

    1990-04-01

    The effect of psychological stress on resting metabolic rate (RMR) and diet-induced thermogenesis (DIT) was assessed in 12 healthy young non-obese men of body weight 70.2 +/- 1.2 kg (mean +/- s.e.m.) and age 25 +/- 0.6 years. Two types of commercially available motion pictures (video films) were shown to the subjects during the measurements, ie stress-inducing horror films and as a control, romantic family films. The study was conducted according to a cross-over design. RMR and respiratory quotients were not significantly influenced by the type of film shown to the subjects. DIT, assessed over 4 h, was significantly increased by the stress-inducing treatment, 0.95 +/- 0.05 kJ/min (mean +/- s.e.m.) versus 0.76 +/- 0.06 kJ/min (control). No significant effect was observed of psychological stress on postprandial substrate oxidation rates, nutrient balances, and urinary catecholamine excretion.

  5. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  6. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  7. Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats

    Directory of Open Access Journals (Sweden)

    Muraki Etsuko

    2012-05-01

    Full Text Available Abstract Background Various therapeutic effects of fenugreek (Trigonella foenum-graecum L. on metabolic disorders have been reported. However, the bitterness of fenugreek makes it hard for humans to eat sufficient doses of it for achieving therapeutic effects. Fenugreek contains bitter saponins such as protodioscin. Fenugreek with reduced bitterness (FRB is prepared by treating fenugreek with beta-glucosidase. This study has been undertaken to evaluate the effects of FRB on metabolic disorders in rats. Methods Forty Sprague–Dawley rats were fed with high-fat high-sucrose (HFS diet for 12 week to induce mild glucose and lipid disorders. Afterwards, the rats were divided into 5 groups. In the experiment 1, each group (n = 8 was fed with HFS, or HFS containing 2.4% fenugreek, or HFS containing 1.2%, 2.4% and 4.8% FRB, respectively, for 12 week. In the experiment 2, we examined the effects of lower doses of FRB (0.12%, 0.24% and 1.2% under the same protocol (n = 7 in each groups. Results In the experiment 1, FRB dose-dependently reduced food intake, body weight gain, epididymal white adipose tissue (EWAT and soleus muscle weight. FRB also lowered plasma and hepatic lipid levels and increased fecal lipid levels, both dose-dependently. The Plasma total cholesterol levels (mmol/L in the three FRB and Ctrl groups were 1.58 ± 0.09, 1.45 ± 0.05*, 1.29 ± 0.07* and 2.00 ± 0.18, respectively (*; P P P  Conclusions Thus we have demonstrated that FRB (1.2 ~ 4.8% prevents diet-induced metabolic disorders such as insulin resistance, dyslipidemia and fatty liver.

  8. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model

    Directory of Open Access Journals (Sweden)

    Yosep Ji

    2018-04-01

    Full Text Available Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO while a third group (control received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG. Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  9. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model.

    Science.gov (United States)

    Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H

    2018-01-01

    Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  10. Proconvulsant effects of the ketogenic diet in electroshock-induced seizures in mice.

    Science.gov (United States)

    Zarnowska, Iwona; Luszczki, Jarogniew J; Zarnowski, Tomasz; Wlaz, Piotr; Czuczwar, Stanislaw J; Gasior, Maciej

    2017-04-01

    Among non-pharmacological treatments, the ketogenic diet (KD) has the strongest demonstrated evidence of clinical success in drug resistant epilepsy. In an attempt to model the anticonvulsant effects of the KD pre-clinically, the present study assessed the effects of the KD against electroshock-induced convulsions in mice. After confirming that exposure to the KD for 2 weeks resulted in stable ketosis and hypoglycemia, mice were exposed to electroshocks of various intensities to establish general seizure susceptibility. When compared to mice fed the standard rodent chow diet (SRCD), we found that mice fed the KD were more sensitive to electroconvulsions as reflected by a significant decrease in seizure threshold (3.86 mA in mice on the KD vs 7.29 mA in mice on the SRCD; P < 0.05) in the maximal electroshock seizure threshold (MEST) test. To examine if this increased seizure sensitivity to electroconvulsions produced by the KD would affect anticonvulsant effects of antiepileptic drugs (AEDs), anticonvulsant potencies of carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) against maximal electroshock (MES)-induced convulsions were compared in mice fed the KD and SRCD. We found that potencies of all AEDs studied were decreased in mice fed the KD in comparison to those on the SRCD, with decreases in the anticonvulsant potencies ranging from 1.4 fold (PB) to 1.7 fold (PHT). Finally, the lack of differences in brain exposures of the AEDs studied in mice fed the KD and SRCD ruled out a pharmacokinetic nature of the observed findings. Taken together, exposure to the KD in the present study had an overall pro-convulsant effect. Since electroconvulsions require large metabolic reserves to support their rapid spread throughout the brain and consequent generalized tonic-clonic convulsions, this effect may be explained by a high energy state produced by the KD in regards to increased energy storage and utilization.

  11. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  12. Decaffeinated coffee consumption induces expression of tight junction proteins in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Mazzone G

    2016-09-01

    Full Text Available Background: Recent evidence indicates that gut microbiota plays a key role in the development of NAFLD through the gut-liver axis. An altered gut permeability induced by alterations of tight junction (TJ proteins allows the passage of bacteria and substances leading to liver inflammation, hepatocyte damage and fibrosis. This study aims to evaluate the influence of decaffeinated coffee on gut permeability in a rat model of fat liver damage induced by a high fat diet (HFD. Methods: Twelve male Wistar rats were assigned to 3 groups. The first group received HFD for 5 months and drank water. The second group received HFD for 5 months and drank water added with 1.2mL decaffeinated coffee/day starting from the 4th month. The third group received standard diet (SD and drank water. Protein and mRNA expression levels of Toll-Like Receptor- 4 (TLR-4, Occludin and Zonula occludens-1 (ZO-1 were assessed in rat intestines. Results: A significant reduction of Occludin and ZO-1 was observed in HFD fed rats (0.97±0.05 vs 0.15±0.08 p˂0.01, and 0.97±0.05 vs 0.57±0.14 p˂0.001 respectively. This reduction was reverted in HFD+COFFEE rats (0.15±0.08 vs 0.83±0.27 p˂0.01 and 0.57±0.14 vs 0.85±0.12 p˂0.01 respectively. The TLR-4 expression up-regulated by HFD was partially reduced by coffee administration. Conclusions: HFD impairs the intestinal TJ barrier integrity. Coffee increases the expression of TJ proteins, reverting the altered gut permeability and reducing TLR-4 expression.

  13. Pancreas and liver uptake of new radiolabeled incretins (GLP-1 and Exendin-4) in models of diet-induced and diet-restricted obesity

    International Nuclear Information System (INIS)

    Seo, Daniele; Faintuch, Bluma Linkowski; Aparecida de Oliveira, Erica; Faintuch, Joel

    2017-01-01

    Introduction: Radiolabeled GLP-1 and its analog Exendin-4, have been employed in diabetes and insulinoma. No protocol in conventional Diet-Induced Obesity (DIO), and Diet-Restricted Obesity (DRO), has been identified. Aiming to assess pancreatic beta cell uptake in DIO and DRO, a protocol was designed. Methods: GLP-1-βAla-HYNIC and HYNIC-βAla-Exendin-4 were labeled with technetium-99m. Four Swiss mouse models were adopted: Controls (C), Alloxan Diabetes Controls (ADC), DIO and DRO. Biodistribution and ex-vivo planar imaging were documented. Results: Radiolabeling yield was in the range of 97% and both agents were hydrophilic. Fasting Blood Glucose (FBG) was 79.2 ± 8.2 mg/dl in C, 590.4 ± 23.3 mg/dl in ADC, 234.3 ± 66.7 mg/dl in DIO, and 96.6 ± 9.3 in DRO (p = 0.010). Biodistribution confirmed predominantly urinary excretion. DIO mice exhibited depressed uptake in liver and pancreas, for both radiomarkers, in the range of ADC. DRO only partially restored such values. 99m Tc-HYNIC-βAla-Exendin-4 demonstrated better results than GLP-1-βAla-HYNIC- 99m Tc. Conclusions: 1) Diet-induced obesity remarkably depressed beta cell uptake; 2) Restriction of obesity failed to normalize uptake, despite robust improvement of FBG; 3) HYNIC-βAla-Exendin-4 was the most useful marker; 4) Further studies are recommended in obesity and dieting, including bariatric surgery.

  14. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    Science.gov (United States)

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (pdiet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  15. Doubling diet fat on sugar ratio in children with mitochondrial OXPHOS disorders: Effects of a randomized trial on resting energy expenditure, diet induced thermogenesis and body composition.

    Science.gov (United States)

    Béghin, Laurent; Coopman, Stéphanie; Schiff, Manuel; Vamecq, Joseph; Mention-Mulliez, Karine; Hankard, Régis; Cuisset, Jean-Marie; Ogier, Hélène; Gottrand, Frédéric; Dobbelaere, Dries

    2016-12-01

    Mitochondrial OXPHOS disorders (MODs) affect one or several complexes of respiratory chain oxidative phosphorylation. An increased fat/low-carbohydrate ratio of the diet was recommended for treating MODs without, however, evaluating its potential benefits through changes in the respective contributions of cell pathways (glycolysis, fatty acid oxidation) initiating energy production. Therefore, the objective of the present work was to compare Resting Energy Expenditure (REE) under basal diet (BD) and challenging diet (CD) in which fat on sugar content ratio was doubled. Diet-induced thermogenesis (DIT) and body compositions were also compared. Energetic vs regulatory aspects of increasing fat contribution to total nutritional energy input were essentially addressed through measures primarily aiming at modifying total fat amounts and not the types of fats in designed diets. In this randomized cross-over study, BD contained 10% proteins/30% lipids/60% carbohydrates (fat on sugar ratio = 0.5) and was the imposed diet at baseline. CD contained 10% proteins/45% lipids/45% carbohydrates (fat on sugar ratio = 1). Main and second evaluation criteria measured by indirect calorimetry (QUARK RMR ® , Cosmed, Pavona; Italy) were REE and DIT, respectively. Thirty four MOD patients were included; 22 (mean age 13.2 ± 4.7 years, 50% female; BMI 16.9 ± 4.2 kg/m 2 ) were evaluated for REE, and 12 (mean age 13.8 ± 4.8 years, 60% female; BMI 17.4 ± 4.6 kg/m 2 ) also for DIT. OXPHOS complex deficiency repartition in 22 analysed patients was 55% for complex I, 9% for complex III, 27% for complex IV and 9% for other proteins. Neither carry-over nor period effects were detected (p = 0.878; ANOVA for repeated measures). REE was similar between BD vs CD (1148.8 ± 301.7 vs 1156.1 ± 278.8 kcal/day; p = 0.942) as well as DIT (peak DIT 260 vs 265 kcal/day; p = 0.842) and body composition (21.9 ± 13.0 vs 21.6 ± 13.3% of fat mass; p = 0.810). Doubling diet

  16. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit.

    Directory of Open Access Journals (Sweden)

    Oscar Julián Arias-Mutis

    Full Text Available Metabolic syndrome (MetS has become one of the main concerns for public health because of its link to cardiovascular disease. Murine models have been used to study the effect of MetS on the cardiovascular system, but they have limitations for studying cardiac electrophysiology. In contrast, the rabbit cardiac electrophysiology is similar to human, but a detailed characterization of the different components of MetS in this animal is still needed. Our objective was to develop and characterize a diet-induced experimental model of MetS that allows the study of cardiovascular remodeling and arrhythmogenesis. Male NZW rabbits were assigned to control (n = 15 or MetS group (n = 16, fed during 28 weeks with high-fat, high-sucrose diet. We measured weight, morphological characteristics, blood pressure, glycaemia, standard plasma biochemistry and the metabolomic profile at weeks 14 and 28. Liver histological changes were evaluated using hematoxylin-eosin staining. A mixed model ANOVA or unpaired t-test were used for statistical analysis (P<0.05. Weight, abdominal contour, body mass index, systolic, diastolic and mean arterial pressure increased in the MetS group at weeks 14 and 28. Glucose, triglycerides, LDL, GOT-AST, GOT/GPT, bilirubin and bile acid increased, whereas HDL decreased in the MetS group at weeks 14 and 28. We found a 40% increase in hepatocyte area and lipid vacuoles infiltration in the liver from MetS rabbits. Metabolomic analysis revealed differences in metabolites related to fatty acids, energetic metabolism and microbiota, compounds linked with cardiovascular disease. Administration of high-fat and high-sucrose diet during 28 weeks induced obesity, glucose intolerance, hypertension, non-alcoholic hepatic steatosis and metabolic alterations, thus reproducing the main clinical manifestations of the metabolic syndrome in humans. This experimental model should provide a valuable tool for studies into the mechanisms of cardiovascular

  17. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Murilo Foppa

    2001-02-01

    Full Text Available Observational studies have attributed a protective effect to alcohol consumption on the development of atherosclerosis and cardiovascular morbidity and mortality. Alcohol intake in the amount of one to two drinks per day results in an estimated 20-40% reduction in cardiovascular events. An additional protective effect, according to major cohort studies, has been attributed to wine, probably due to antioxidant effects and platelet antiaggregation agents. On the other hand, the influence of different patterns of alcohol consumption and environmental factors may explain a great part of the additional effect of wine. Protection may be mediated by modulation of other risk factors, because alcohol increases HDL-C, produces a biphasic response on blood pressure, and modulates the endothelial function, while it neither increases body weight nor impairs glucose-insulin homeostasis. Alcohol may also have a direct effect on atherogenesis. Despite these favorable effects, the current evidence is not enough to justify prescribing alcohol to prevent cardiovascular disease.

  18. Phytosterols and atherosclerosis

    DEFF Research Database (Denmark)

    Schrøder, Malene

    for decades for their natural ability to reduce cholesterol levels in the blood. In the last decade numerous food products added phytosterol esters have been placed on the market, e.g. yellow fat spread, yoghurt, dressing. The products are being marketed as a natural means for people who want to lower...... or advanced lesion) and quantitatively by stereological methods applied to evaluate the area of the intima and the ratio of intima:media on cross sections from three defined places on the aorta. The biochemical endpoint was the cholesterol content in the inner layer of the entire aorta, which is considered...... than 3% brassicasterol are not accepted on the European market. The aim of the study was to investigate the effect of dietary supplementation of RSO derived sterol, with high content of brassicasterols, and stanol esters on the development of atherosclerosis in cholesterol-fed heterozygous WHHL rabbits...

  19. White Matter Lesions, Carotid and Coronary Atherosclerosis in Late-Onset Depression and Healthy Controls

    DEFF Research Database (Denmark)

    Devantier, Torben Albert; Nørgaard, Bjarne Linde; Poulsen, Mikael Kjær

    2016-01-01

    BACKGROUND: Cerebral white matter lesions (WMLs) are more common in individuals with late-onset or late-life depression. It has been proposed that carotid atherosclerosis may predispose to WMLs by inducing cerebral hypoperfusion. This hemodynamic effect of carotid atherosclerosis could be importa...

  20. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract.

    Directory of Open Access Journals (Sweden)

    Shinichi Meguro

    Full Text Available Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat volume and body fat volume ratio (body fat volume/body weight of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.

  1. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment

    Science.gov (United States)

    Ackart, David F.; Richardson, Michael A.; DiLisio, James E.; Pulford, Bruce; Basaraba, Randall J.

    2017-01-01

    ABSTRACT Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. PMID:28093504

  2. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment.

    Science.gov (United States)

    Podell, Brendan K; Ackart, David F; Richardson, Michael A; DiLisio, James E; Pulford, Bruce; Basaraba, Randall J

    2017-02-01

    Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. © 2017. Published by

  3. Valsartan Promoting Atherosclerotic Plaque Stabilization by Upregulating Renalase: A Potential-Related Gene of Atherosclerosis.

    Science.gov (United States)

    Zhou, Mingxue; Ma, Chao; Liu, Weihong; Liu, Hongxu; Wang, Ning; Kang, Qunfu; Li, Ping

    2015-09-01

    Renalase is a protein that can regulate sympathetic nerve activity by metabolizing catecholamines, while redundant catecholamines are thought to contribute to atherosclerosis (As). Catecholamine release can be facilitated by angiotensin (Ang) II by binding to Ang II type 1 (AT1) receptors. Valsartan, a special AT1 antagonist, can dilate blood vessels and reduce blood pressure, but it remained unclear whether valsartan can promote the stability of atherosclerotic plaque by affecting renalase. This study examined the tissue distribution of renalase in ApoE(-/-) mice fed with a high-fat diet and the effect of valsartan on expression of renalase. ApoE(-/-) mice were fed with a high-fat diet for 13 or 26 weeks. As a control, 10 C57BL mice were fed with a standard chow diet. After 13 weeks on the high-fat diet, the ApoE(-/-) mice were randomized (10 mice/group) and treated with valsartan, simvastatin, or distilled water (control group) for an additional 13 weeks accompanied by a high-fat diet. Knockout of ApoE caused a dramatic increase in expression of renalase in mice adipose tissue. With the disturbance of lipid metabolism induced by a high-fat diet, renalase expression decreased in the liver. Renalase can be expressed in smooth muscle cells and M2 macrophages in atherosclerotic plaque, and its expression gradually decreases in the fibrous cap during the transition from stable to vulnerable atherosclerotic plaque. Valsartan, an AT1 receptor antagonist, promotes the stabilization of atherosclerotic plaque by increasing the levels of renalase in serum and the expression of renalase in the fibrous cap of atherosclerotic plaque. It also reduces triglyceride levels in serum and increases the expression of renalase in the liver. Renalase may be a potential-related gene of lipid metabolism and As, and it may be the possible molecular target of valsartan to help stabilize atherosclerotic plaque. © The Author(s) 2015.

  4. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Feigh, Michael; Hjuler, Sara T; Andreassen, Kim V

    2014-01-01

    We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present...

  5. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin

    2015-01-01

    We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglut...

  6. The effects of overnight nutrient intake on hypothalamic inflammation in a free-choice diet-induced obesity rat model

    NARCIS (Netherlands)

    Belegri, Evita; Eggels, Leslie; Unmehopa, Unga A; Mul, Joram D; Boelen, Anita; la Fleur, Susanne E

    2018-01-01

    Consumption of fat and sugar induces hyperphagia and increases the prevalence of obesity and diabetes type 2. Low-grade inflammation in the hypothalamus, a key brain area involved in the regulation of energy homeostasis is shown to blunt signals of satiety after long term high fat diet. The fact

  7. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  8. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-01-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  9. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  10. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common