WorldWideScience

Sample records for diesel spray final

  1. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  2. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  3. The characteristic of spray using diesel water emulsified fuel in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Kim, Hyungik; Lee, Kihyung

    2016-01-01

    Highlights: • Water in oil emulsion is produced using ceramic membrane. • Surfactant type affect stability performance and droplet size distribution. • Evaporation characteristic of DE is poor compared with neat diesel. • Coefficient of variation maintains below 2.0% both DE and neat diesel. - Abstract: In this study, it was applied to the diesel–water emulsified (DE) fuel that carried out the experiment for the characteristic of sprat using diesel water emulsified fuel in a diesel engine, and the possibility of its application to conventional diesel engines was evaluated from the fundamental characteristics of diesel–water emulsified fuel. According to the results of the spray characteristics such as spray penetration and spray distribution were measured in the experiment, and then analyzed through digital image processing. The DEs were applied to actual diesel engines and their combustion, emission, and fuel consumption characteristics were compared with those of diesel. The results showed that the experiments were confirmed as the spray atomization characteristics at the various emulsified fuels.

  4. Numerical Modeling of Diesel Spray Formation and Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2009-01-01

    A study is presented on the modeling of fuel sprays in diesel engines. The objective of this study is in the first place to accurately and efficiently model non-reacting diesel spray formation, and secondly to include ignition and combustion. For that an efficient 1D Euler-Euler spray model [21] is

  5. Numerical modelling of diesel spray using the Eulerian multiphase approach

    International Nuclear Information System (INIS)

    Vujanović, Milan; Petranović, Zvonimir; Edelbauer, Wilfried; Baleta, Jakov; Duić, Neven

    2015-01-01

    Highlights: • Numerical model for fuel disintegration was presented. • Fuel liquid and vapour were calculated. • Good agreement with experimental data was shown for various combinations of injection and chamber pressure. - Abstract: This research investigates high pressure diesel fuel injection into the combustion chamber by performing computational simulations using the Euler–Eulerian multiphase approach. Six diesel-like conditions were simulated for which the liquid fuel jet was injected into a pressurised inert environment (100% N 2 ) through a 205 μm nozzle hole. The analysis was focused on the liquid jet and vapour penetration, describing spatial and temporal spray evolution. For this purpose, an Eulerian multiphase model was implemented, variations of the sub-model coefficients were performed, and their impact on the spray formation was investigated. The final set of sub-model coefficients was applied to all operating points. Several simulations of high pressure diesel injections (50, 80, and 120 MPa) combined with different chamber pressures (5.4 and 7.2 MPa) were carried out and results were compared to the experimental data. The predicted results share a similar spray cloud shape for all conditions with the different vapour and liquid penetration length. The liquid penetration is shortened with the increase in chamber pressure, whilst the vapour penetration is more pronounced by elevating the injection pressure. Finally, the results showed good agreement when compared to the measured data, and yielded the correct trends for both the liquid and vapour penetrations under different operating conditions

  6. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  7. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    state Figure 5. Q criterion isosurface colored by streamwise velocity in the diesel spray injector as viewed from the nozzle exit. Figure 6. U contour...fidelity simulation approach was adopted to study the atom- ization physics of a diesel injector with detailed nozzle internal geometry. The nozzle flow...26; Stanford, CA 14. ABSTRACT A high fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector has been

  8. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  9. Feasibility Demonstration of Exciplex Fluorescence Measurements in Evaporating Laminar Sprays of Diesel Fuel

    Science.gov (United States)

    2011-05-15

    code) 1 FEASIBILITY DEMONSTRATION OF EXCIPLEX FLUORESCENCE MEASUREMENTS IN EVAPORATING LAMINAR SPRAYS OF DIESEL FUEL Final Technical Report Grant...fluorescence is found to increase with temperature up to 538 K and then declines. Fluorescence from the liquid phase, i.e. the exciplex (Naphthalene+TMPD...to have as well characterized a description of the spray environment and assess conclusively the potential of the exciplex approach for more

  10. Study on fuel particle motion of a diesel spray; Diesel funmu ryushi no kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, N. [Isuzu Motors Ltd., Tokyo (Japan); Tsujimura, K.

    1998-08-25

    This study was performed to clarify the mechanism of mixture formation at peripheral area of diesel spray with PIV technique. Two dimensional cross-sectional photographs of diesel spray were taken with double pulse laser sheet. Local fuel spray particles were analyzed with an auto-correlation method and velocity vector and vorticity of the fuel spray particle were obtained. The vortex number increased and vorticity scale became smaller and its value grew higher with both smaller injection nozzle diameter and higher fuel injection velocity. With this injection condition, the mixing of fuel spray with ambient gas seems to be improved and the turbulence is expected to increase in the regions of higher vortex number, higher vorticity and smaller vorticity scale. Based on above results, the branch-like structure of diesel fuel spray was considered to be caused by vortices which formed in the shear layer between the spray and the ambient gas. 14 refs., 18 figs., 1 tab.

  11. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  12. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    Science.gov (United States)

    2016-04-01

    3mm) of diesel sprays from a high-pressure single-hole fuel injector . Ballistic imaging of dodecane and methyl oleate sprays are reported...Porter, Sean P. Duran, Terence E. Parker. Picosecond Ballistic Imaging of Ligament Structures in the Near- Nozzle Region of Diesel Sprays, ILASS...Experiments in Fluids (12 2014) Sean Duran, Jason Porter, Terence Parker. Ballistic Imaging of a Diesel Injector Spray at High Temperature and

  13. Experimental and numerical investigation of sprays in two stroke diesel Engines

    DEFF Research Database (Denmark)

    Dam, Bjarke Skovgård

    2007-01-01

    . The latter is the subject of this dissertation. The theory and experimental findings on diesel sprays are investigated, including e.g. spray parameters and droplet break up. It is found that no complete theory is yet present and large challenges lie ahead. Generally, there is fairly good consensus on which......The control of the injected spray is important when optimizing performance and reducing emissions from diesel engines. The research community has conducted extensive research especially on smaller four stroke engines, but so far only little has been done on sprays in large two stroke engines...... have different scales and other designs than those used in the literature, so extending results from the literature will require experiments on this particular type of setup. Numerical investigations of diesel sprays are performed using the Eulerian/Lagrangian engine CFD code Kiva. In agreement...

  14. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure

    International Nuclear Information System (INIS)

    Wang Xiangang; Huang Zuohua; Kuti, Olawole Abiola; Zhang Wu; Nishida, Keiya

    2010-01-01

    Spray characteristics of biodiesels (from palm and cooked oil) and diesel under ultra-high injection pressures up to 300 MPa were studied experimentally and analytically. Injection delay, spray penetration, spray angle, spray projected area and spray volume were measured in a spray vessel using a high speed video camera. Air entrainment and atomization characteristics were analyzed with the quasi-steady jet theory and an atomization model respectively. The study shows that biodiesels give longer injection delay and spray tip penetration. Spray angle, projected area and volume of biodiesels are smaller than those of diesel fuel. The approximately linear relationship of non-dimensional spray tip penetration versus time suggests that the behavior of biodiesel and diesel sprays is similar to that of gaseous turbulent jets. Calculation from the quasi-steady jet theory shows that the air entrainment of palm oil is worse than that of diesel, while the cooked oil and diesel present comparable air entrainment characteristics. The estimation on spray droplet size shows that biodiesels generate larger Sauter mean diameter due to higher viscosity and surface tension.

  15. Flamelet Generated Manifold Strategies in Modeling of an Igniting Diesel Spray

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2009-01-01

    A study is presented on the modeling of fuel spray combustion in diesel engines. The objective is to model igniting diesel sprays with the detailed chemistry tabulation method FGM (Flamelet GeneratedManifold). The emphasis is on the accurate prediction of auto-ignition as well as the steady

  16. Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics

    Science.gov (United States)

    Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin

    2014-08-01

    It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.

  17. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  18. Structure of Non-evaporating diesel sprays

    International Nuclear Information System (INIS)

    Mirza, M.R.; Baluch, A.H.; Tahir, Z.R.

    2008-01-01

    Need is always felt of some rational experimental information on fuel spray jet formation, its development and dispersion in the combustion chamber of an internal combustion engine. The latest study uses computational fluid dynamics for the modeling of engine flows. The original experimental work of the present author on non-evaporating sprays produced by a single-hole orifice type nozzle using a distribution type commercial fuel injection pump forms the basis to derive correlations for penetration rates, break up times and lengths of non-evaporating diesel sprays. The correlations derived can be used to do CFD modeling of sprays under variable conditions of injector nozzle hole diameter, fuel injection pressure and combustion chamber pressure. (author)

  19. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2006-01-01

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  20. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Som, Sibendu; Shukla, Pravesh Chandra; Goyal, Harsh; Longman, Douglas

    2015-01-01

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  1. Quantitative spray analysis of diesel fuel and its emulsions using digital image processing

    Directory of Open Access Journals (Sweden)

    Faik Ahmad Muneer El-Deen

    2015-01-01

    Full Text Available In the present work, an experimental investigation of spray atomization of different liquids has been carried out. An air-assist atomizer operating at low injection pressures valued (4 and 6 bar has been used to generate sprays of (diesel fuel, 5, 10, and 15% water-emulsified-diesel, respectively. A Photron-SA4 high speed camera has been used for spray imaging at 2000 fps. 20 time intervals (from 5 to 100 ms with 5 ms time difference are selected for analysis and comparison. Spray macroscopic characteristics (spray penetration, dispersion, cone angle, axial and dispersion velocities have been extracted by a proposed technique based on image processing using Matlab, where the maximum and minimum (horizontal and vertical boundaries of the spray are detected, from which the macroscopic spray characteristics are evaluated. The maximum error of this technique is (1.5% for diesel spray and a little bit higher for its emulsions.

  2. Experimental Study on Diesel Spray Characteristics and Autoignition Process

    Directory of Open Access Journals (Sweden)

    Özgür Oğuz Taşkiran

    2011-01-01

    Full Text Available The main goal of this study is to get the temporal and spatial spray evolution under diesel-like conditions and to investigate autoignition process of sprays which are injected from different nozzle geometries. A constant volume combustion chamber was manufactured and heated internally up to 825 K at 3.5 MPa for experiments. Macroscopic properties of diesel spray were recorded via a high-speed CCD camera by using shadowgraphy technique, and the images were analyzed by using a digital image processing program. To investigate the influence of nozzle geometry, 4 different types of divergent, straight, straight-rounded, convergent-rounded nozzles, were manufactured and used in both spray evolution and autoignition experiments. The internal geometry of the injector nozzles were obtained by using silicone mold method. The macroscopic properties of the nozzles are presented in the study. Ignition behaviour of different nozzle types was observed in terms of ignition delay time and ignition location. A commercial Diesel fuel, n-heptane, and a mixture of hexadecane-heptamethylnonane (CN65—cetane number 65 were used as fuels at ignition experiments. The similar macroscopic properties of different nozzles were searched for observing ignition time and ignition location differences. Though spray and ignition characteristics revealed very similar results, the dissimilarities are presented in the study.

  3. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  4. Application of wear resistant spraying for diesel engine; Diesel kikan eno taimamo yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Y. [Mitsui Engineering and Shipbuliding Co. Ltd., Tokyo (Japan)

    1999-03-31

    Diesel engines used widely as propelling engines of ships have increasingly been provided with a high output and a high thermal efficiency; their structural members, particularly, the component parts for combustion chambers are therefore used under severe conditions, giving rise to the need of surface treatment and surface reforming of the members. Parts for marine diesel engines are huge, so that the technology applicable to the surface treatment and reforming are limited in point of facility and cost; therefore, most suitable is thermal spraying. This paper primarily discusses, among marine diesel engines, a 2-cycle low-speed engine with a 260-980mm bore used for the main engine of a merchant ship such as a container ship, bulk carrier or a tanker, and a 4-cycle medium-speed engine with a 300-420mm bore used for the main engine of a naval vessel; the paper explains the application status of a thermal spraying technology which is in progress to cope with the high output and high thermal efficiency of the diesel engines, explaining particularly the story of the development and the technological features of the wear resistant thermal spraying, which has been put to practical use, on the cylinder liner and the piston ring of the 4-cycle medium-speed engine. (NEDO)

  5. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system

    International Nuclear Information System (INIS)

    Han, Dong; Wang, Chunhai; Duan, Yaozong; Tian, Zhisong; Huang, Zhen

    2014-01-01

    The injection and spray characteristics of diesel and gasoline blends are investigated on a common rail injection system. The injection rate, fuel spray evolution process (tip penetration distance, spray cone angle, projected spray area and relative brightness intensity contour) and microscopic droplet features are analyzed. The results show that diesel and gasoline blends have higher volumetric injection rates, earlier starts of injection and shorter injection delays, but little variances are observed in the mass injection rates for different test fuels. Increased gasoline proportion in the test blends causes slightly decreased spray tip penetration distance but increased spray cone angle. Also, more smaller-size droplets are observed in the fuel jet of the diesel and gasoline blends, indicating that the spray breakup and atomization processes are promoted. - Highlights: • Injection rate and spray characteristics of diesel and gasoline blends are studied. • Diesel and gasoline blends have higher volumetric injection rates. • Earlier starts of injection are found when using diesel and gasoline blends. • Diesel and gasoline blends produce shorter spray penetration but higher cone angle. • The number of small droplets increases in the spray of diesel and gasoline blends

  6. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    Science.gov (United States)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  7. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  8. Real gas effects in mixing-limited diesel spray vaporization models

    NARCIS (Netherlands)

    Luijten, C.C.M.; Kurvers, C.

    2010-01-01

    The maximum penetration length of the liquid phase in diesel sprays is of paramount importance in reducing diesel engine emissions. Quasi-steady liquid length values have been successfully correlated in the literature, assuming that mixing of fuel and air is the limiting step in the evaporation

  9. Fuel temperature influence on diesel sprays in inert and reacting conditions

    International Nuclear Information System (INIS)

    Payri, Raul; García-Oliver, Jose M.; Bardi, Michele; Manin, Julien

    2012-01-01

    The detailed knowledge of the evaporation–combustion process of the Diesel spray is a key factor for the development of robust injection strategies able to reduce the pollutant emissions and keep or increase the combustion efficiency. In this work several typical measurement applied to the diesel spray diagnostic (liquid length, lift-off length and ignition delay) have been employed in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic test conditions (up to 1000 K and 15 MPa). A step forward in the control of the test boundary conditions has been done employing a special system to study the fuel temperature effect on the evaporation and combustion of the spray. The temperature of the injector body has been controlled with a thermostatic system and the relationship between injector body and fuel temperature has been observed experimentally. Imaging diagnostics have been employed to visualize the liquid phase penetration in evaporative/inert conditions and, lift-off length and ignition delay in reactive condition. The results underline a clear influence of the injector body temperature on both conditions, evaporative and, in a lesser degree, reactive; finally the physical models found in the literature have been compared with the results obtained experimentally. - Highlights: ► The effect of the fuel temperature is substantial on liquid length (up to 15%). ► Fuel temperature has low effect but still appreciable on LOL and ignition delay. ► Theoretical one dimensional spray models are able to reproduce the experimental results with good accuracy.

  10. Visualization research on spray atomization, evaporation and combustion processes of ethanol–diesel blend under LTC conditions

    International Nuclear Information System (INIS)

    Huang, Sheng; Deng, Peng; Huang, Ronghua; Wang, Zhaowen; Ma, Yinjie; Dai, Hui

    2015-01-01

    Highlights: • Spray combustion of E20 diesel in LTC condition shows a U-shape flame structure. • The chasing behavior of fuel spray exists near the spray axis. • Fuel ignition doesn’t initiate at the spray tip but in peripheral regions behind it. • An improper chamber structure may lead to a long post-combustion duration. - Abstract: Utilization of ethanol in diesel engines has been widely studied by means of engine experiments and emission detection. However, pertinent studies on the spray combustion process of ethanol–diesel blends are scarce. In order to verify the effect of ethanol in modern diesel engines, an experiment is conducted to visualize the spray combustion process of ethanol–diesel blend under LTC conditions. Stages including atomization, evaporation and combustion, are investigated individually to realize synergistic analysis. Meanwhile, considering the long time scale of combustion after fuel injection finishes, characteristics during and after injection period are both targeted in this paper. Moreover, measurement of macroscopic characteristics, such as spray tip penetration, spray spreading cone angle and flame lift off length, provides a quantitative profile of the spray structure. Results show that, evaporation, different from atomization, has little influence on spray penetration, but promotes the spray spreading angle and spray projected area. So does combustion, which enlarges the spray projected area further. Ignition takes place on the periphery behind the spray tip, then quickly extends to the whole head of the spray and forms a U-shape diffusion structure. After the injection period, the residual spray tail develops into wavelike structures due to absence of subsequent entrainment force. Also, the penetration speed falls greatly to an extent much slower than flame propagation, which frees the flame from the lift-off effect. Subsequently, the flame propagates upstream towards the nozzle orifice. After consumed all fuel in

  11. Effect of ambient gas density for diesel spray; Diesel funmu ni taisuru fun`iki mitsudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yokohashi, M; Suzuki, T; Oshima, R [Tohokugakuin University, Sendai (Japan); Ono, A [Shinryo Corp., Tokyo (Japan)

    1997-10-01

    Effect of ambient gas density for fuel spray are measured to investigate the Diesel spray behavior. The change of ambient gas density has been given by pressuring N2 gas and using a high density atmospheric pressure SF6 gas. The measurement are performed for the spray penetration and angle. As a result, the spray penetration is confirmed same tendency at the change of density by pressuring N2 and using SF6. Though spray angle is required modification with viscosity. 2 refs., 11 figs.

  12. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  13. Quantification of sauter mean diameter in diesel sprays using scattering-absorption extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Gabrielle L; Magnotti, Gina M; Knox, Benjamin W; Genzale, Caroline L; Matusik, Katarzyna E; Duke, Daniel J; Powell, Christopher F; Kastengren, Alan L

    2017-05-18

    Quantitative measurements of the primary breakup process in diesel sprays are lacking due to a range of experimental and diagnostic challenges, including: high droplet number density environments, very small characteristic drop size scales (~1-10 μm), and high characteristic velocities in the primary breakup region (~600 m/s). Due to these challenges, existing measurement techniques have failed to resolve a sufficient range of the temporal and spatial scales involved and much remains unknown about the primary atomization process in practical diesel sprays. To gain a better insight into this process, we have developed a joint visible and x-ray extinction measurement technique to quantify axial and radial distributions of the path-integrated Sauter Mean Diameter (SMD) and Liquid Volume Fraction (LVF) for diesel-like sprays. This technique enables measurement of the SMD in regions of moderate droplet number density, enabling construction of the temporal history of drop size development within practical diesel sprays. The experimental campaign was conducted jointly at the Georgia Institute of Technology and Argonne National Laboratory using the Engine Combustion Network “Spray D” injector. X-ray radiography liquid absorption measurements, conducted at the Advanced Photon Source at Argonne, quantify the liquid-fuel mass and volume distribution in the spray. Diffused back-illumination liquid scattering measurements were conducted at Georgia Tech to quantify the optical thickness throughout the spray. By application of Mie-scatter equations, the ratio of the absorption and scattering extinction measurements is demonstrated to yield solutions for the SMD. This work introduces the newly developed scattering-absorption measurement technique and highlights the important considerations that must be taken into account when jointly processing these measurements to extract the SMD. These considerations include co-alignment of measurements taken at different institutions

  14. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  15. PIV measurement of internal structure of diesel fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z M [Ecotechnology System Lab., Yokohama National Univ. (Japan); Nishino, K [Div. of Artificial Environment and Systems, Yokohama National Univ. (Japan); Mizuno, S [Yokohama National Univ. (Japan); Torii, K [Dept. of Mechanical Engineering and Materials Science, Yokohama National Univ. (Japan)

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70 MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0 MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called 'branch-like structures' by Azetsu et al. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented. (orig.)

  16. An experimental study on atomizing formation process of diesel spray

    International Nuclear Information System (INIS)

    Kim, Ki Bong

    2000-02-01

    In this study, the experiment has, been conducted to investigate the spray characteristics under the parameter of an ambient pressure with a single hole nozzle having aspect ratio(L/D) of 5 and diameter of 0.45mm. Under the condition of the injection pressure of 14Mpa, the initial disintegrating process of a diesel spray is investigated and analysized according to change of the ambient pressures, 0.1, 1, 2 and 3Mpa. The double flash method has been employed to visualize the process of the diesel sprays. The results obtained in this study are as follows: 1) After spray starts, the spray is shown as non-disturbance liquid column within about 1∼2mm from the nozzle tip, whose diameter is similar to that of a nozzle. For the same injection pressure, the increase of the ambient pressure makes the length of the non-disturbance liquid column become short. 2) Due to the surface wave, ligaments of the shape thread appear at the boundary of liquid column right after spray. The more developed wave together the progress of spray transforms ligaments into droplets that have generally the uniformed size. 3) In case spraying into chambers having different ambient pressures, 1, 2, and 3Mpa, the spray tip velocities reach up to 1.5, 1.2, and 0.6ms, respectively, and decrease with lapse of time. The spray angle keeps increasing for 0.6, 1.2, and 1.4ms after spray under the various ambient pressures, 3, 2, and 1Mpa, respectively, and begins to decrease and maintains the constant value. Therefore, the transition points appear near the point where the velocity decreases and the spray angle increases, simultaneously. The higher ambient pressure leads to fast appearance of transition under the same spray pressure. 4) The disintegrating mechanism of the liquid spray is two combined effects: a) friction forces between the surface waves generated at the surface of the liquid column and the ambient gas, b) the collisions of liquid droplets and ligaments by spray were overtaking

  17. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

    Science.gov (United States)

    Berrocal, E.; Kristensson, E.; Hottenbach, P.; Aldén, M.; Grünefeld, G.

    2012-12-01

    Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

  18. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G.M.; Genzale, C.L. (GIT)

    2017-12-01

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Source are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.

  19. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models...... participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced...

  20. Spray characteristics of dimethyl ether (D.M.E.) as on alternative fuel for diesel engine; Daitai diesel nenryo to shite no dimethyl ether (D.M.E.) no funmu tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, K; Nishida, K; Yoshizaki, T; Hiroyasu, H [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    D.M.E. which was paid attention to as on alternative fuel for a diesel engine, was injected by using Bosch type injection pump and a hole nozzle into a high pressure and high temperature vessel. The spray was observed by using schlieren photography. Spray characteristics, such as, the tip penetration, the cone angle and the volume of the spray were and were compared with a diesel fuel spray. The following thing, and so on were found out as a results. The spray angle of the DME spray of atmosphere pressure Pa=0.1Mpa spreads out large in comparison with the diesel fuel spray, and the way of the change by the pressure is contrary to the case of the diesel fuel spray. 3 refs., 6 figs., 1 tab.

  1. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  2. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  3. Study of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu keisei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; Miyamoto, T.; Harada, A.; Akagawa, H.; Tsujimura, K. [New ACE Institute Co. Ltd., Tokyo (Japan)

    1998-05-01

    A study is being made on premixed lean diesel combustion (PREDIC) by means of early fuel injection in diesel engines. The PREDIC makes it possible to largely reduce NOx emission, but has such problems as ignition control and increase in THC and CO generation. In order to clarify the relationship between fuel spray characteristics in the PREDIC and properties of gas mixture and exhausts, the present study has investigated spread and internal structure of the spray by means of spray observation experiment using a pintle swirl nozzle. Based on the result therefrom, simulations were used to investigate effects of spatial dispersion characteristics of the spray on properties of the gas mixture and exhausts before ignition. The pintle swirl nozzle forms conical spray having an air layer inside the spray, where penetration is suppressed even under low atmospheric pressure. By forming hollow spray or solid spray in the conical spray, a possibility was indicated that equivalent ratio distribution of the gas mixture can be controlled and NO emission may be reduced. 8 refs., 12 figs., 1 tab.

  4. 3-D volume rendering visualization for calculated distributions of diesel spray; Diesel funmu kyodo suchi keisan kekka no sanjigen volume rendering hyoji

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T; Imanishi, H; Nishida, K; Yamashita, H; Hiroyasu, H; Kaneda, K [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    Three dimensional visualization technique based on volume rendering method has been developed in order to translate calculated results of diesel combustion simulation into realistically spray and flame images. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique. 8 refs., 8 figs., 1 tab.

  5. An Optical Characterization of Atomization in Non-Evaporating Diesel Sprays

    OpenAIRE

    Lockett, R. D.; Jeshani, M.; Makri, K.; Price, R.

    2016-01-01

    High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) was employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optical...

  6. Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines Progrès de la modélisation des sprays dans les moteurs Diesel et à essence

    Directory of Open Access Journals (Sweden)

    Kong S. C.

    2006-12-01

    Full Text Available In direct-injection engines, the fuel spray characteristics influence the combustion efficiency and exhaust emissions. The performance of available spray models for predicting liquid and vapor fuel distributions, and their influence on combustion is reviewed for both diesel and gasoline direct injection engines. A phenomenological nozzle flow model is described for simulating the effects of diesel injector nozzle internal geometry on the fuel injection and spray processes. The flow model provides initial conditions for the liquid jet breakup model that considers wave instabilities due to Kelvin-Helmholtz (KH and Rayleigh-Taylor (RT mechanisms. A linearized instability analysis has also been extended to consider the breakup of liquid sheets for modeling pressure-swirl gasoline injectors. Diesel engine predictions have been compared with extensive data from in-cylinder laser diagnostics carried out in optically accessible heavy-duty, DI Diesel engines over a wide range of operating conditions. The results show that the nozzle flow model used in combination with the KH and RT models gives realistic spray predictions. In particular, the limited liquid fuel penetration length observed experimentally and the flame shape details are captured accurately. The liquid sheet breakup model has also been compared favorably with experimental spray penetration and drop size data for gasoline hollow-cone sprays. This model is currently being applied to study stratified charge combustion in GDI engines. Dans les moteurs à injection directe, les caractéristiques du spray de carburant influent directement sur le rendement et les émissions. Les performances des modèles de spray existants et leur influence sur la combustion pour les moteurs Diesel et essence à injection directe sont analysées. Un modèle phénoménologique d'écoulement dans les injecteurs indiquant les effets de la géométrie sur les processus d'injection est présenté. Ce modèle donne les

  7. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  8. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised...

  9. Study of Heterogeneous Structure in Diesel Fuel Spray by Using Micro-Probe L2F

    Science.gov (United States)

    Sakaguchi, Daisaku; Yamamoto, Shohei; Ueki, Hironobu; Ishdia, Masahiro

    A L2F (Laser 2-Focus velocimeter) was applied for the measurements of the velocity and size of droplets in diesel fuel sprays. The micro-scale probe of the L2F has an advantage in avoiding the multiple scattering from droplets in a dense region of fuel sprays. A data sampling rate of 15MHz has been achieved in the L2F system for detecting almost all of the droplets which passed through the measurement probe. Diesel fuel was injected into the atmosphere by using a common rail injector. Measurement positions were located along the spray axis at 10, 15, 20, 25, and 30 mm from the nozzle exit. Measurement result showed that the velocity and size of droplets decreased and the number density of droplets increased along the spray axis. It was clearly shown that the mass flow rate in the spray was highest near the spray tip and was lower inside the spray.

  10. Effect of wall impingement on ambient gas entrainment, fuel evaporation and mixture formation of diesel spray

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Keiya [Department of Mechanical Physics Engineering, University of Hiroshima (Japan); Matsumoto, Yuhei; Zhang, Wu [Mazda Motor Corp. (Japan); Gao, Jian [University of Wisconsin (United States); Moon, Seoksu [Argonne National Laboratory (United States)

    2010-07-01

    In the energy sector, with the implementation of stringent regulations on combustion emissions and the depletion of conventional fuels, there is a pressing need to improve the performance of engines. The purpose of this paper is to determine the impact of wall impingement on several characteristics of diesel spray. Experiments were carried out with both a small and a large amount of diesel spray injected and ambient gas entrainment, fuel evaporation and mixture formation were evaluated using an LAS optical system. Results showed that wall impingement has the same effects for small or large amounts of diesel spray injected; these are: a larger volume spray after the impingement and a smaller volume after it, the suppression of ambient gas entrainment and fuel evaporation, and the shift of the PDF peak of the vapor equivalent ratio. This study provided useful information but further work is needed to address the remaining issues.

  11. Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates

    Science.gov (United States)

    2014-05-01

    Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates by L...efficiency. In this study, three-dimensional numerical simulations of single and two-hole injector nozzles under diesel conditions are conducted to...numerical simulations of single and two-hole injector nozzles under diesel conditions are conducted to study the spray behavior and the effect of

  12. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  13. Simulation of oblique evaporating diesel sprays, and comparison with empirical correlations and simulated straight sprays

    International Nuclear Information System (INIS)

    Chaudhry, I.A.; Mirza, M.R.; Rashid, M.J.

    2010-01-01

    The innovation in software analysis and various available programming facilities have urged the designers at various levels to do indispensable calculations for engine flows. Presently, the 3-D analysis approach is under practice to do simulations for various parameters involving engine operations using various soft wares, 'Fluent' being the trendiest at the moment for CFD modeling. The present work involves CFD modeling of diesel fuel sprays at a specified angle with cylinder axis. Fuel spray modeling includes sub-models for aerodynamic drag, droplet oscillation and distortion, turbulence effects, droplet breakup, evaporation, and droplet collision and coalescence. The data available from existing published work is used to model the fuel spray and the subsequent simulation results are compared to experimental results to test validity of the proposed models. (author)

  14. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  15. Analysis of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S; Harada, a; Miyamoto, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Premixed lean diesel combustion (PREDIC) makes it possible to achieve low NOx emission. It is an important factor to make the homogeneous spray formation for PREDIC. In this paper presents I the effect of the spray dispersion on emission characteristic were analyzed with the spray observation and engine test. Pintle type nozzle, which has different feature from orifice type nozzle, are used to form the hollow cone spray. As a result, the pintle type nozzle having grooves to generate the swirl flow, makes the reduced penetration in comparison with the hole nozzle under low ambient gas pressure. And it could improve THC, CO emissions at low NOx emission condition. 7 refs., 12 figs., 1 tab.

  16. Limitations on the use of the planar laser induced exciplex fluorescence technique in diesel sprays

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Desantes; J.V. Pastor; J.M. Pastor; J.E. Julia [Universidad Politecnica de Valencia, Valencia (Spain). CMT Motores Termicos

    2005-12-01

    The Planar Laser Induced Exciplex Fluorescence (PLIEF) technique is widely used to visualize and measure the fuel concentration fields in both liquid and vapor phases of DI Diesel sprays. However, the real limitations of the PLIEF technique in Diesel sprays and the accuracy of the results obtained are still a source of controversy. In this work, a complete methodology for maximum penetration and fuel concentration measurements in evaporating conditions in Diesel sprays has been developed and the reliability of the results obtained has been investigated. The methodology includes new procedures for measuring both liquid and vapor phases, adapting, when necessary, correlations available in the literature for calibration. An experimental matrix of nine test points with different injection pressures and combustion chamber densities has been performed. A critical analysis of the different error sources for proper quantification is made. Results have shown that macroscopic features can be accurately determined using the PLIEF technique, but for fuel concentration measurements special considerations have to be taken into account, particularly in the regions where liquid and vapor coexist. 37 refs., 15 figs., 2 tabs.

  17. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  18. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels

    International Nuclear Information System (INIS)

    Battistoni, Michele; Grimaldi, Carlo Nazareno

    2012-01-01

    Highlights: ► Fluid-dynamic simulation of injection process with biodiesel and diesel fuel. ► Coupling of Eulerian and Lagrangian spray CFD simulations. ► Effects of hole shaping: conical versus cylindrical and edge rounding effects. ► Prediction of spray characteristics improved using inner nozzle flow data. ► Explanation of mass flow differences depending on hole shape and fuel type. -- Abstract: The aim of the paper is the comparison of the injection process with two fuels, a standard diesel fuel and a pure biodiesel, methyl ester of soybean oil. Multiphase cavitating flows inside injector nozzles are calculated by means of unsteady CFD simulations on moving grids from needle opening to closure, using an Eulerian–Eulerian two-fluid approach which takes into account bubble dynamics. Afterward, spray evolutions are also evaluated in a Lagrangian framework using results of the first computing step, mapped onto the hole exit area, for the initialization of the primary breakup model. Two nozzles with cylindrical and conical holes are studied and their behaviors are discussed in relation to fuel properties. Nozzle flow simulations highlighted that the extent of cavitation regions is not much affected by the fuel type, whereas it is strongly dependent on the nozzle shape. Biodiesel provides a slightly higher mass flow in highly cavitating nozzles. On the contrary using hole shaped nozzles (to reduce cavitation) diesel provides similar or slightly higher mass flow. Comparing the two fuels, the effects of different viscosities and densities play main role which explains these behaviors. Simulations of the spray evolution are also discussed highlighting the differences between the use of fossil and biodiesel fuels in terms of spray penetration, atomization and cone-angle. Usage of diesel fuel in the conical convergent nozzle gives higher liquid penetration.

  19. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  20. Air/fuel ratio visualization in a diesel spray

    Science.gov (United States)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  1. Study on initial stage of diesel spray formation. Effects of the condition inside the nozzle sac; Diesel funmu no shoki keisei katei ni kansuru kenkyu. Sac nai nenryo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, N.; Tsujimura, K. [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Komori, M.

    1996-06-25

    To realize clean diesel exhaust, it is very important to clarify the atomization phenomena of the fuel spray. In this study, the initial stage of the atomization process of a diesel injection fuel spray was analyzed with a high-speed image converter camera under the conditions of atmospheric gas pressure and room temperature. As a result, it was found that the initial spray formation was greatly affected lay the condition inside the nozzle sac. In the case in which fuel existed in the sac, pin-like structure spray formation was observed at the initial injection stage. This phenomenon was not observed in the case in which no fuel was present in the sac, and a widely spread fuel spray formation was observed at the initial injection stage. The relatively low-speed fuel spray injected in the initial low-sac-pressure condition was pushed away by the subsequent fuel spray injected in the high-sac-pressure condition. 7 refs., 12 figs., 1 tab.

  2. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i

  3. Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source

    International Nuclear Information System (INIS)

    Powell, C.

    2003-01-01

    The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure

  4. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M T; Kaario, O T [VTT Energy, Espoo (Finland)

    1998-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  5. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  6. Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Salvador, F.J.; Lopez, J.J.; Morena, J. de la [Universidad Politecnica de Valencia, CMT-Motores Termicos, Valencia (Spain)

    2011-02-15

    In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions. (orig.)

  7. Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends

    International Nuclear Information System (INIS)

    Zhou, Nan; Huo, Ming; Wu, Han; Nithyanandan, Karthik; Lee, Chia-fon F.; Wang, Qingnian

    2014-01-01

    Highlights: • Combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends. • Feasibility of ABE to be blended directly with diesel in engine. • Conventional and low temperature combustion in constant volume chamber. • ABE–diesel blends can suppress the soot formation and achieve better combustion. - Abstract: The combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends were studied in a constant volume chamber under both conventional diesel combustion and low temperature combustion (LTC) conditions. In this work, 20 vol.% ABE without water (ABE20) was mixed with diesel and the vol.% of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The advantageous combustion characteristics of ABE-diesel include higher oxygen content which promotes soot oxidation compared to pure diesel; longer ignition delay and soot lift-off length allowing more air entrainment upstream of the spray jet thus providing better air–fuel mixing. Based on the analysis, it is found that at low ambient temperature of 800 K and ambient oxygen of 11%, ABE20 presented close-to-zero soot luminosity with better combustion efficiency compared to D100 suggesting that ABE, an intermediate product during ABE fermentation, is a very promising alternative fuel to be directly used in diesel engines especially under LTC conditions. Meanwhile, ABE–diesel blends contain multiple components possessing drastically different volatilities, which greatly favor the occurrence of micro-explosion. This feature may result in better atomization and air–fuel mixing enhancement, which all contribute to the better combustion performance of ABE20 at LTC conditions

  8. Quality control of thermal spray coatings in diesel engines; Qualitaetskontrolle an thermisch gespritzten Beschichtungen in Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Carstensen, Jesper Vejloe [MAN Diesel and Turbo, Copenhagen (Denmark). Material Technology and Research Dept.; Lindegren, Maria [Struers A/S, Ballerup (Denmark). Application Dept.

    2013-06-01

    Thermal spraying is a method, which is suitable for coating of large components. The coatings can e.g. improve the wear, friction and/or corrosion properties of components so that they can withstand the increased loads. The quality of the coatings is essential to ensure reliable operation of the components. However, quality control of thermally sprayed coatings is indeed nontrivial and sample preparation is a key issue. This paper shows examples of thermal spray coated components in large diesel engines and provides insight into the methods used in preparing samples for quality control. (orig.)

  9. Optical diagnostics of diesel spray injections and combustion in a high-pressure high-temperature cell

    NARCIS (Netherlands)

    Bougie, H.J.T.; Tulej, M.; Dreier, T.; Dam, N.J.; Meulen, J.J. ter; Gerber, T.

    2005-01-01

    We report on spatially and temporally resolved optical diagnostic measurements of propagation and combustion of diesel sprays introduced through a single-hole fuel injector into a constant volume, high-temperature, high-pressure cell. From shadowgraphy images in non-reacting environments of pure

  10. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  11. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  12. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  13. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color

  14. Numerical modeling of spray combustion in DI diesel engine using partially stirred reactor (PaSR) model

    International Nuclear Information System (INIS)

    Khaleghi, H.; Hosseini, S.M.

    2003-01-01

    In recent years special attention has been paid to the topic of diesel engine combustion. Various combustion models are used in CFD codes. In this paper Partially Stirred Reactor (PaSR) model, one of the newest turbulent combustion models, is introduced. This model has been employed in conjunction with the non-iterative PISO algorithm to calculate spray combustion in an axi-symmetric, direct injection diesel engine. Qualitative consideration of the results shows very good agreement with physical expectations and other numerical and experimental results. (author)

  15. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O 2 concentrations were used, spanning 10–21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH ∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH ∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH ∗ with the increase of ambient temperature and O 2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O 2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O 2 concentration conditions by

  16. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    Science.gov (United States)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  17. Fuel concentration in isothermal Diesel sprays through structured planar laser imaging measurements

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Gimeno, J.; Marti, P. [CMT Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Manin, J., E-mail: jmanin@sandia.gov [Sandia National Laboratories, 7011 East Ave., 94551 Livermore, CA (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Structured illumination has been implemented to quantify mixing in isothermal sprays. Black-Right-Pointing-Pointer Comparison to a gas-jet model conducted to Schmidt number below the unity (Sc = 0.8). Black-Right-Pointing-Pointer Results showed incomplete momentum transfer due to velocity slip between droplets and ambient. Black-Right-Pointing-Pointer Higher injection pressures enhance momentum transfer and lead to better global mixing. - Abstract: The mixing of isothermal liquid sprays in engine-like conditions has been investigated by applying the structured planar laser imaging technique to remove multiple light scattering. The intensity of the illumination plane has been recovered by removing multiply scattered light and mapping the spray three-dimensionally via discrete tomography. Based on the extinction of light within the illumination plane, the number density has been extracted. Coupled with 2-D maps of droplet diameters obtained through LIF/Mie ratio, the number density allowed to calculate the fuel concentration in the sprays. The mixture fraction of DI Diesel sprays injected into an inert environment held at room temperature has been evaluated and compared to a 2-D model based on gas-jet theory. The experimental results showed good agreement with the predictions when a Gaussian radial distribution is assumed and the Schmidt number is correctly tuned. Differences in the radial distribution has been observed and related to incomplete momentum transfer between the liquid spray and the surrounding gases. For different testing conditions, while the influence of ambient density on mixing was expected, the effect of injection pressure has been found to provide additional information concerning the global mixing of liquid sprays.

  18. Studies on Microscopic Structure of Diesel Sprays under Atmospheric and High Gas Pressures

    Directory of Open Access Journals (Sweden)

    D. Deshmukh

    2014-06-01

    Full Text Available In the present work, the spray structure of diesel from a 200-μm, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean Diameter (SMD is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

  19. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  20. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital highspeed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  1. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    Laboratories. The next step was to update the code with a model of the turbulence-chemistry interaction. The volume reactor fraction model (VRFM), a novel partially stirred reactor (PaSR) model, has been implemented in OpenFOAMr. The model defines a reactor fraction based on the mixture fraction, the chemical progress variable, and their variances instead of defining mixing and chemical time scales. The chemistry is described by a reduced n-heptane mechanism with 36 species involved in 81 reactions. The effect of exhaust gas recirculation (EGR) on n-heptane sprays for Diesel enginelike conditions was studied with the VRFM and results obtained from the calculations are compared to experimental data from the Engine Combustion Network.

  2. Spray-combustion process characterization in a common rail diesel engine fuelled with butanol-diesel blends by conventional methods and optical diagnostics

    Directory of Open Access Journals (Sweden)

    Simona Silvia Merola

    2014-04-01

    Full Text Available The target of a sustainable mobility has led to investigate advanced combustion modes and fuels technologies. On the other side, the increasing global energy demand and the decreasing fossil-energy resources are enhancing the interest in the use of renewable alternative fuels for compression ignition engines with the target of near-zero emission levels. Although performance and emissions of alternative-fuel within light-duty diesel engines have been extensively investigated, results of fuel chemical composition impact on combustion by integrated optical methodologies are lacking. In order to meet this challenge, one of the main objectives of the research efforts is to characterize the combustion and species evolution. In this investigation, conventional tests and optical diagnostics were employed to enhance the comprehension of the combustion process and chemical markers in a common rail compression ignition engine powered by butanol-diesel blends. The investigation was focused on the effect of the injection strategy and blend composition on in-cylinder spray combustion and soot formation, through UV-visible digital imaging and natural emission spectroscopy. Experiments were performed in an optically accessible single cylinder high swirl compression ignition engine, equipped with a common rail multi-jets injection system. UV-visible emission spectroscopy was used to follow the evolution of the combustion process chemical markers. Spectral features of OH were identified and followed during the spray combustion process examining different pilot-main dwell timings. Soot spectral evidence in the visible wavelength range was correlated to soot engine out emissions. In this work, conventional and optical data related to diesel fuel blended with 40 % of n-butanol will be presented.

  3. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole; Sarathy, Mani; Nishida, Keiya; Roberts, William L.

    2014-01-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68

  4. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital high-speed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  5. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    Science.gov (United States)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  6. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    International Nuclear Information System (INIS)

    Devassy, B Mandumpala; Edelbauer, W; Greif, D

    2015-01-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation. (paper)

  7. Experimental study of spray characteristics of biodiesel derived from waste cooking oil

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Tay, Kun Lin; Yu, Wenbin

    2014-01-01

    Highlights: • B20 and diesel exhibit similar spray tip penetration and angle. • Change in orientation of spray shapes observed with different fuels. • B100 shows poor air fuel mixing compared to B20 and diesel. • Diesel shows higher equivalence ratio compared to B20 and B100. - Abstract: In this study, the fuel spray characteristics and air-fuel mixing process of waste cooking oil biodiesel (B100) and its blend with diesel (B20) were investigated and compared with diesel fuel. Spray characteristics such as spray tip penetration, spray angle, spray velocity and spray morphology were investigated under high injection and ambient pressure conditions using a constant volume spray chamber. The air-fuel mixing process was analysed using empirical relations like fuel volume, mass of air entrained within the spray and equivalence ratio. The results shows that B100 has higher spray tip penetration and velocity but narrow spray angles due to high viscosity and large momentum possessed by B100 compared to B20 and diesel fuels. The deviation in spray tip penetration reduces under high ambient pressure. The spray angle shows no change under various injection pressures; however it increases significantly under high ambient pressure. The spray shape is affected by the cavitation inside the injector nozzle holes. The fuel volume and amount of air entrainment within the spray showed that B100 exhibits poor air-fuel mixing compared to B20 and diesel fuels. Nevertheless, the equivalence ratio along the axial direction of spray reveals that the B100 has lean equivalence ratio compared to B20 and diesel fuel due to the presence of inherent oxygen content in its structure. A numerical simulation was conducted using new hybrid spray model implemented in KIVA4 and found that the results obtained from the simulation were in good agreement with the empirical results calculated from the experiments

  8. Droplet size measurement of diesel fuel spray particles using a planar laser-induced fluorescence method; Nijigen laser yuki keikoho wo mochiita diesel funmu ryushi no ryukei keisoku ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, N. [Isuzu Motors Ltd., Tokyo (Japan); Niimura, K. [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Tsujimura, K.

    1997-11-25

    In this study, the planar laser-induced fluorescence (PLIF) technique was used to measure the mean size and size distribution of diesel spray particles. The fuel used was n-tridecane mixed with 1 wt% N, N, Nprime, Nprime-tetramethylparaphenyenediamine (TMPD). The light source used to excite the TMPD in the fuel was a secondary harmonic of a ruby laser-light sheet. A highly magnified image of the fluorescence from TMPD was taken by a 35 mm still camera with magnified optics, and the mean particle size and particle size distribution of the fuel spray were determined by processing the images of fuel particles printed on paper. First, the accuracy of this method was confirmed by comparison with results of Phase Doppler Anemometry for fuel spray of an air-assisted gasoline injector. Then, for the diesel spray, the effects of injection velocity, ambient pressure, geometric configuration of nozzle hole (i.e., nozzle hole diameter and nozzle hole L/D) and of measurement points on the fuel particle mean size and size distribution in a high-pressure vessel at atmospheric temperature were investigated. The results showed that the small size particles increase in number with increasing injection velocity. At higher injection velocity, seem to atomize more actively. With increasing ambient pressure, the mean particle size increases. A reduction in nozzle diameter resulted in no improvement of atomization in this study. Also, the mean particle size in the downstream region of the spray is larger than that in the upstream region of the spray. 16 refs., 19 figs., 3 tabs.

  9. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil.

    Science.gov (United States)

    Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo

    2018-05-15

    This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast x-radiography

    International Nuclear Information System (INIS)

    Cheong, S. K.; Liu, J.; Shu, D.; Wang, J.; Powell, C. F.; Experimental Facilities Division

    2004-01-01

    A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (ml 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar Nd2 and 1 bar SFd6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved, x-radiographic data revealed that the spray penetration in this near-nozzle region was not significantly affected by the limited change of the ambient pressure. In addition, well-defined features of the spray, such as the leading and trailing edges, and fluctuations of fuel mass density in the spray body, allowed us to calculate the leading, trailing, and internal speeds of the sprays

  11. Numerical simulation of fuel sprays and combustion in a premixed lean diesel engine; Kihaku yokongo diesel kikan ni okeru nenryo funmu to nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, T; Harada, A; Sasaki, S; Shimazaki, N; Hashizume, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Fuel sprays and combustion in a direct injection Premixed lean Diesel Combustion (PREDIC) engine, which can make smokeless combustion with little NOx emission, is studied numerically. Numerical simulation was carried out by means of KIVA II based computer code with a combustion submodel. The combustion submodel describes the formation of combustible fuel vapor by turbulent mixing and four-step chemical reaction which includes low temperature oxidation. Comparison between computation and experiment shows qualitatively good agreement in terms of heat release rate and NO emission. Computational results indicate that the combustion is significantly influenced by fuel spray characteristics and injection timing to vary NO emission. 10 refs., 8 figs., 1 tab.

  12. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  13. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  14. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    Science.gov (United States)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  15. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  16. Caracterización experimental mediante técnicas ópticas de sprays en combustión con mezclas de combustibles gasolina y diesel

    OpenAIRE

    ESCOBEDO CARBONELL, PABLO

    2017-01-01

    Sprays injected into an atmosphere with thermodynamic conditions similar to those occuring inside the cylinder of an internal combustion engine have been characterized motor of ignition for the compression for the automotive is carried out. As fuel, commercial gasoline and diesel blends are used in different proportions, given the potential mixtures have for producing efficient fuels in compression ignition engines, with pollutant emissions lower than those achieved in current diesel engines....

  17. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.

    Science.gov (United States)

    Lanjekar, R D; Deshmukh, D

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  18. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    Science.gov (United States)

    Lanjekar, R. D.; Deshmukh, D.

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  19. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.I.; Som, S.; Aggarwal, Suresh K. [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Kastengren, A.L.; El-Hannouny, E.M.; Longman, D.E.; Powell, C.F. [Argonne National Laboratory, Energy Systems Division, Argonne, IL (United States)

    2009-07-15

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software

  20. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Science.gov (United States)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  1. Coupled calculation of diesel injection, primary spray propagation and spray formation using a multifluid approach and comparison with experiments in transparent model nozzles; Gekoppelte Berechnung von Dieseleinspritzung, primaerem Strahlzerfall und Spraybildung mit dem Multifluid-Ansatz und Vergleich mit Experimenten in transparenten Modellduesen

    Energy Technology Data Exchange (ETDEWEB)

    Berg, E. von; Edelbauer, W.; Alajbegovic, A.; Tatschl, R. [AVL List GmbH, Graz (Austria)

    2004-07-01

    Based on the Eulerian multi-fluid approach cavitating nozzle flow in Diesel injectors as well as spray formation downstream of the nozzle orifice can be simulated in a single calculation. Fuel liquid, fuel vapor, spray droplets, and air are treated as interpenetrating phases. For each of the phases separate sets of conservation equations are solved. Different flow regimes such as cavitating nozzle flow and spray regions are described by using appropriate interfacial exchange terms between the phases. Besides a simplified calculation procedure the main advantage of this methodology is the direct coupling of the different flow regimes. Thus, effects of the cavitating nozzle flow can directly enter the primary break-up model, which is based on locally resolved nozzle flow turbulence. This new approach is applied for single- and multi-hole full scale Diesel injectors as well as for a large-scale model injector operated with water. The results obtained on the basis of the CFD code FIRE show good agreement compared to experimental data and yield the correct trends for both spray penetration and spray angle for increasing injection pressure. (orig.)

  2. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  3. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  4. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  5. Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2018-01-01

    This paper aims to simulate diesel spray flames across a wide range of engine-like conditions using the Eulerian Stochastic Field probability density function (ESF-PDF) model. The ESF model is coupled with the Chemistry Coordinate Mapping approach to expedite the calculation. A convergence study...... is carried out for a number of stochastic fields at five different conditions, covering both conventional diesel combustion and low-temperature combustion regimes. Ignition delay time, flame lift-off length as well as distributions of temperature and various combustion products are used to evaluate...... the performance of the model. The peak values of these properties generated using thirty-two stochastic fields are found to converge, with a maximum relative difference of 27% as compared to those from a greater number of stochastic fields. The ESF-PDF model with thirty-two stochastic fields performs reasonably...

  6. Study on a small diesel engine with direct injection impinging distribution spray combustion system. Optimum of injection system and combustion chamber; Shototsu kakusan hoshiki kogata diesel kikan ni kansuru kenkyu. Funshakei to nenshoshitsu no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K; Kato, S; Saito, T [Kanazawa Institute of Technology, Ishikawa (Japan); Tanabe, H [Gunma University, Gunma (Japan)

    1997-10-01

    This study is concerned with a small bore (93mm) diesel engine using impinged fuel spray, named OSKA system. The higher rate of injection show lower smoke emission with higher NOx Emission. The exhaust emission and performance were investigated under different compression ratio with higher rate of injection. The experimental results show that this OSKA system is capable for reducing the smoke emission without the deterioration of NOx emission and fuel consumption compared with the conventional DI diesel engine. 5 refs., 8 figs., 3 tabs.

  7. Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2017-01-01

    The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated ignit...... serve as an important tool for the simulation of spray flames in marine diesel engines, where fuel injectors with different nozzle diameters are applied for pilot and main injections.......The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated...... ignition delay times are consistently overestimated, the relative differences remain below 28%. Furthermore, the change of the averaged pressure rise with respect to the variation of nozzle diameter is captured by the model. The simulated flame lift-off lengths also agree with the measurements...

  8. Numerical analysis of spray characteristics of dimethyl ether and diethyl ether fuel

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Yu, Wenbin; Tay, Kun Lin

    2017-01-01

    Highlights: • Thermo-physical properties of liquid DME and DEE are reported. • Ether fuels tend to cavitate higher compared to that of diesel fuel. • Spray tip penetration and SMD are found to be lesser for ether fuels. • Ether fuels shows excellent atomization behavior. - Abstract: In this work, the spray characteristics of ether fuels such as dimethyl ether (DME) and diethyl ether (DEE) have been numerically investigated using KIVA-4 CFD code. A new hybrid spray model developed by coupling the standard KHRT model to cavitation sub model was used. The detailed thermo-physical properties of ether fuels have been predicted and validated with experimental results available from literature. The cavitation inception inside the injector nozzle hole has been studied for ether fuels in comparison with diesel fuel. It was found that ether fuels cavitates higher compared to that of conventional diesel fuel because of its low viscosity. The spray tip penetration of diesel fuel was longer than that of ether fuels due to high viscosity and density of diesel fuel. Ether fuels characterized by low Ohnesorge number and high Reynolds number showed better atomization behavior compared to that of the diesel fuel.

  9. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  10. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  11. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  12. Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation

    Science.gov (United States)

    2016-11-01

    is unlimited. 10 6. References 1. Malbec L-M, Egúsquiza J, Bruneaux G, Meijer M. Characterization of a set of ECN spray A injectors : nozzle to...sprays and develop a predictive theory for comparison to measurements in the laboratory of turbulent diesel sprays. 15. SUBJECT TERMS high...models into future simulations of turbulent jet sprays and develop a predictive theory for comparison to measurements in the lab of turbulent diesel

  13. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  14. Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

    Directory of Open Access Journals (Sweden)

    Filipović Ivan

    2011-01-01

    Full Text Available The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions. The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely

  15. Final report : Alberta renewable diesel demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-02-15

    The Alberta renewable diesel demonstration (ARDD) was a demonstration project aimed at providing information and operating experience to stakeholders in the diesel fuel industry. The demonstration took renewable diesel from the lab to the road, providing hands-on experience at 2 and 5 per cent blends (B2 in winter and B5 in shoulder and summer seasons). The ARDD fleet consisted of 59 vehicles running on two types of renewable diesel, notably fatty acid methyl ester (FAME) and hydrogenated-derived renewable diesel (HDRD). This report was a summary of the observations of the ARDD. The report provided a general account of the project scope, methods and observations employed in a multi-stakeholder, real-world demonstration of low-level renewable diesel fuels in challenging winter conditions. The purpose of the report was to provide feedback to stakeholders regarding the use of renewable diesel fuels in Canada's on-road diesel fuel market and to confirm the operability of low level renewable diesel blends under the specific conditions tested ensuring full and continuous compliance with CAN/CGSB 3.520. The report discussed Canada's fuel distribution system in western Canada; the blending facility; blending techniques; fuel retail locations; fuel properties; fuel handling; fuel selection; and fuel testing. It was concluded that the ARDD demonstrated that B2 blends of canola methyl ester and 2 per cent blends of hydrogenation derived renewable diesel were fully operable in winter conditions in the study area when cloud points were adjusted to meet CAN/CGSB requirements. 4 refs., 15 tabs., 20 figs., 2 appendices.

  16. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  17. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  18. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  19. Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere

    International Nuclear Information System (INIS)

    Gimeno, Jaime; Bracho, Gabriela; Martí-Aldaraví, Pedro; Peraza, Jesús E.

    2016-01-01

    In this research, two Engine Combustion Network (ECN) mono-orifice nozzles, referred to as Spray C and Spray D respectively, were analyzed by performing visualization tests through Schlieren and Diffused Backlight Illumination (DBI) techniques under a wide range of ambient conditions in a non-reactive atmosphere. Spray C presents a straight nozzle designed with a sharp fillet in opposition to Spray D that has similar hydraulic properties, but with a convergent nozzle construction and a smoother corner. The experiments were carried out injecting two distinct fuels at different injection pressure ranges, from 50 MPa to 150 MPa with n-dodecane and to 200 MPa for diesel. The images were processed with Matlab home-built routines to calculate parameters as spray penetration, spreading angle, quasi-steady liquid length, as well as the spray penetration derivative respect to the square root of time, presented in this document as R-parameter. The results showed a clear influence of nozzle geometry in all measured parameters, due mainly to the nature of Spray C to cavitation, which increase the spreading angle and consequently a reduction in vapor penetration. On the other hand, fuel properties also affected spray penetration due to its dependency on viscous forces expressed in terms of the Reynolds number and its volatility in case of liquid length. This last parameter was calculated employing two processing methodologies, finding a good general agreement between them.

  20. A Piston Geometry and Nozzle Spray Angle Investigation in a DI Diesel Engine by Quantifying the Air-Fuel Mixture

    Directory of Open Access Journals (Sweden)

    Pavlos Dimitriou

    2015-03-01

    Full Text Available Low temperature diesel combustion has been widely investigated over the last few years for reducing in-cylinder emissions of Direct Injection (DI diesel engines without sacrificing efficiency and fuel consumption. The spatial distribution of the fuel within the combustion chamber and the air-fuel mixing quality are the key factors affecting temperature generation within the cylinder. Avoiding fuel rich areas within the cylinder can significantly reduce the local high temperatures resulting in low NOx formation. This paper investigates the effects of the combustion chamber geometry and spray angle on the air-fuel mixing and emissions formation of a DI diesel engine. A new quantitative factor measuring the air-fuel mixing quality has been adopted in order to analyze and compare air-fuel mixing quality for different piston geometries. The results have shown that pistons with a narrow entrance and a deep combustion re-entrant chamber benefit from increased air-fuel mixtures due to the significantly higher swirl generated within the cylinder. However, the improved air-fuel mixing does not consequently lead to a reduced NOx generation, which is highly affected by the combustion efficiency of the engine.

  1. Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass

    International Nuclear Information System (INIS)

    García, Antonio; Monsalve-Serrano, Javier; Heuser, Benedikt; Jakob, Markus; Kremer, Florian; Pischinger, Stefan

    2016-01-01

    Highlights: • TMFB show clear potential to reduce soot emissions under mixing-controlled combustion. • The larger lift-off-length of 2-MTHF and 1-octanol promotes soot emissions reduction. • Oxidation process governs the improved soot emissions of DNBE. - Abstract: This work evaluates the potential of some new biomass-derived fuels as candidates for compression ignition operation. Thus, fundamental spray characteristics related to fuel vaporization and fuel/air mixing process for 2-Methyltetrahydrofuran, Di-n-butyl ether and 1-octanol has been studied and compared with conventional EN590 Diesel fuel. For this purpose, OH"∗ chemiluminescence and shadowgraphy measurements in a high pressure chamber as well as 1D simulations with a spray model have been carried out at different operating conditions representative of the NEDC driving cycle. Finally, measured soot emissions in the single-cylinder engine were presented and discussed. Results from the high pressure chamber presented very good agreement in terms of liquid length and vapor penetration with simulation results. Thus, some analytical expressions related to macroscopic spray characteristics have been proposed and validated experimentally for all four fuels. Finally, the single-cylinder engine results confirmed the relevant role of soot formation on final emissions for 1-octanol and 2-MTHF. In addition, DNBE showed greater soot oxidation potential than diesel and other TMFB candidates.

  2. Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska Final Rule

    Science.gov (United States)

    This final rule will implement the requirements for sulfur, cetane and aromatics for highway, nonroad, locomotive and marine diesel fuel produced in, imported into, and distributed or used in the rural areas of Alaska.

  3. Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

    OpenAIRE

    H. Hazar; S. Sap

    2017-01-01

    In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating th...

  4. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  5. Modelling of diesel spray flame under engine-like conditions using an accelerated eulerian stochastic fields method: A convergence study of the number of stochastic fields

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, X.-S.

    generated similar results. The principal motivation for ESF compared to Lagrangian particle based PDF is the relative ease of implementation of the former into Eulerian computational fluid dynamics(CFD) codes [5]. Several works have attempted to implement the ESF model for the simulations of diesel spray......The use of transported Probability Density Function(PDF) methods allows a single model to compute the autoignition, premixed mode and diffusion flame of diesel combustion under engine-like conditions [1,2]. The Lagrangian particle based transported PDF models have been validated across a wide range...... combustion under engine-like conditions.The current work aims to further evaluate the performance of the ESF model in this application, with an emphasis on examining the convergence of the number of stochastic fields, nsf. Five test conditions, covering both the conventional diesel combustion and low...

  6. In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate

  7. Effect of injection pressure and ambient pressure on spray characteristics of pine oil-diesel blends%喷射压力及环境背压对松油-柴油混合燃料喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    黄豪中; 史程; 张鹏; 王庆新; 刘庆生; 班智博

    2016-01-01

    为探究柴油/松油混合燃料的喷雾特性,基于高压可视化容弹试验台,通过高速摄影技术对掺松油的柴油混合燃料的喷雾过程进行试验研究,分析了喷射压力、背压和燃料物性的改变对喷雾宏观参数的影响。结果表明:混合燃料的喷雾贯穿距离先呈现一定程度的线性增长,然后增长幅度逐渐变小,喷雾锥角呈先减小再保持在一个相对稳定的数值趋势,但全程锥角变化不大;喷射压力从90 MPa升高至150 MPa,混合燃料的喷雾锥角和贯穿距离的平均增幅分别为9.2%和15%;背压从3 MPa增加到5 MPa,混合燃料的平均喷雾锥角增幅约2.6°,而贯穿距离降低11 mm左右,说明背压的改变对喷雾特性影响显著;将广安公式适当地修正可与混合燃料的贯穿距离相互吻合;向柴油中掺混一定比例的松油后,燃料的黏度降低,会引起喷雾锥角、贯穿距离和油束面积均小幅增大,增强燃料的油气混合。试验研究有助于改善柴油的雾化质量,可为柴油机代用燃料的筛选提供参考。%The fuel spray performance and atomization quality played a fundamental role in promoting the level of combustion efficiency and exhaust emissions in internal combustion engines. In order to achieve better atomizing mode of diesel, we conducted experiments to study the spray characteristics of diesel blending pine oil. A diesel/pine oil spray trial platform was constructed to carry out a visual constant volume chamber and the high-pressure common rail test bench. The high-speed photograph technique was applied to systematically investigate the spray process of blended fuel. The study was conducted under the pine oil blending ratios of with 0, 20%, 40% and 50%, respectively. Then, the influences of injection pressure, ambient pressure and fuel property on macroscopic spray parameters (including spray cone angle, spray penetration distance and fuel flow area

  8. On the modeling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Christer

    1997-12-01

    This report concerns on the modelling of fuel sprays in a non-combustible case using an own developed fuel spray code module. The spray code is made as an independent module to simplify the use of different gas flow solvers together with the spray module. This enables the possibility to use different turbulence models. In the report two turbulence models has been used, the standard k-{epsilon} and the LES (Large Eddy Simulation) model. The report presents results obtained from a sensitivity study of both numerical and physical parameters on an evaporating spray under diesel like conditions (light duty diesel engine) with the spray code module attached to a cylindrical gas phase flow solver. The results from the sensitivity analysis showed that these effects were not so pronounced as has been reported. It was suggested that this was due to the `easy` nature of the investigated case, where the flow field could be sufficiently resolved without violating the droplet void fraction criteria and break-up, collision and combustion that may increase the grid spacing sensitivity were not modelled. An investigation was performed to valuate the feasibility of using LES as turbulence model. Calculations of the initial phase of a developing jet were made and it was found that in the initial phase of the spray and the flow structure were similar to that of a spatially developing jet flow, which is in agreement with experimental observations. Results from LES calculations on a developing spray jet was also compared with k-{epsilon} based ones. This result showed that the spray-LES approach captured the transition from a laminar to a turbulent flow field with an increase in turbulent kinetic energy k along the injection direction 45 refs, 37 figs, 2 tabs

  9. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  10. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  11. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  12. Modeling the influence of nozzle-generated turbulence on diesel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G M; Matusik, K E; Duke, D J; Knox, B W; Martinez, G L; Powell, C F; Kastengren, A L; Genzale, C L

    2017-05-18

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potential atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased

  13. A study on the 0D phenomenological model for diesel engine simulation: Application to combustion of Neem methyl esther biodiesel

    International Nuclear Information System (INIS)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi; Ayissi, Zacharie Merlin; Obonou, Marcel

    2015-01-01

    Highlights: • We elaborate a 0D model for prediction of diesel engine operating parameters. • We implement the model for Neem methyl ester biodiesel combustion. • We show methyl butanoate and butyrate can be used as surrogates for biodiesel. • The model predicts fuel spray, in cylinder gaseous state and NOx emissions. • We show the model can be effective both in accuracy and computational speed. - Abstract: The design and monitoring of modern diesel engines running on alternative fuels require reliable models that can validly substitute experimental tests and predict their operating characteristics under different load conditions. Although there exists a multitude of models for diesel engines, 0D phenomenological models present the advantages of giving fast and accurate computed results. These models are useful for predicting fuel spray characteristics and instantaneous gas state. However, there are few reported studies on the application of 0D phenomenological models on biodiesel fuel combustion in diesel engines. This work reports the elaboration, validation and application on Neem methyl ester biodiesel (NMEB) combustion of a 0D phenomenological model for diesel engine simulation. The model addresses some specific aspects of diesel engine modeling found in previous studies such as the compromise between computers cost, accurateness and model simplicity, the reduction of the number of empirical fitting constant, the prediction of combustion kinetics with reduction of the need of experimental curve fitting, the ability to simultaneously predict under various loads engine thermodynamic and spray parameters as well as emission characteristics and finally the ability to simulate diesel engine parameters when fueled by alternative fuels. The proposed model predicts fuel spray behavior, in cylinder combustion and nitric oxides (NOx) emissions. The model is implemented through a Matlab code. The model is mainly based on Razlejtsev’s spray evaporation model

  14. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  15. PDF modelling and particle-turbulence interaction of turbulent spray flames

    NARCIS (Netherlands)

    Beishuizen, N.A.

    2008-01-01

    Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and

  16. Final Rule for Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Science.gov (United States)

    EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs.

  17. First results of the delayed fluorescence velocimetry as applied to diesel spray diagnostics

    Science.gov (United States)

    Megahed, M.; Roosen, P.

    1993-08-01

    One of the main parameters governing diesel spray formation is the fuel's velocity just beneath the nozzle. The high density of the injected liquid within the first few millimeters under the injector prohibits accurate measurements of this velocity. The liquid's velocity in this region has been mainly measured using intrusive methods and has been numerically calculated without considering the complex flow fields in the nozzle. A new optical method based on laser induced delayed fluorescence allowing the measurement of the fuel's velocity close to the nozzle is reported. The results are accurate to about 14% and represent the velocities of heavy oils within the first 2 - 5 mm beneath the nozzle. The development of the velocity over the injection period showed a drastic deceleration of the fuel within the first 3 mm beneath the nozzle. This is assumed to be due to the complex interaction of cavitation in the injection hole and pressure waves in the injection system which causes the start of atomization in the nozzle hole.

  18. Differences in rheological profile of regular diesel and bio-diesel fuel

    Directory of Open Access Journals (Sweden)

    Jiří Čupera

    2010-01-01

    Full Text Available Biodiesel represents a promising alternative to regular fossil diesel. Fuel viscosity markedly influences injection, spraying and combustion, viscosity is thus critical factor to be evaluated and monitored. This work is focused on quantifying the differences in temperature dependent kinematic viscosity regular diesel fuel and B30 biodiesel fuel. The samples were assumed to be Newtonian fluids. Vis­co­si­ty was measured on a digital rotary viscometer in a range of 0 to 80 °C. More significant difference between minimum and maximum values was found in case of diesel fuel in comparison with biodiesel fuel. Temperature dependence of both fuels was modeled using several mathematical models – polynomial, power and Gaussian equation. The Gaussian fit offers the best match between experimental and computed data. Description of viscosity behavior of fuels is critically important, e.g. when considering or calculating running efficiency and performance of combustion engines. The models proposed in this work may be used as a tool for precise prediction of rheological behavior of diesel-type fuels.

  19. A numerical study of the effects of injection rate shape on combustion and emission of diesel engines

    Directory of Open Access Journals (Sweden)

    He Zhixia

    2014-01-01

    Full Text Available The spray characteristics including spray droplet sizes, droplet distribution, spray tip penetration length and spray diffusion angle directly affects the mixture process of fuel and oxygen and then plays an important role for the improvement of combustion and emission performance of diesel engines. Different injection rate shapes may induce different spray characteristics and then further affect the subsequent combustion and emission performance of diesel engines. In this paper, the spray and combustion processes based on four different injection rate shapes with constant injection duration and injected fuel mass were simulated in the software of AVL FIRE. The numerical models were validated through comparing the results from the simulation with those from experiment. It was found that the dynamic of diesel engines with the new proposed hump shape of injection rate and the original saddle shape is better than that with the injection rate of rectangle and triangle shape, but the emission of NOX is higher. And the soot emission is lowest during the late injection period for the new hump-shape injection rate because of a higher oxidation rate with a better mixture between fuel and air under the high injection pressure.

  20. Inventory of concepts for mixed diesel fuels containing renewable components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, B. [Inst. for Surface Chemistry, Stockholm (Sweden); Berg, R. [Befri Konsult, Solna (Sweden); Berg, J. [Svenska Lantmaennen/Agro Oil, Stockholm (Sweden)

    2000-08-01

    The present report has involved the assembly of two sub-reports, which have been put together to form this final report. Both of the sub-reports deal with the incorporation of ethanol in diesel fuels. The potential advantages are the decreased net emissions of carbon dioxide, due to the renewable nature of ethanol (if obtained from renewable raw materials), and the decrease of NO{sub x} emissions, due to the decreased combustion temperature. The first sub-report is a compilation of scientific articles and patents/patent applications regarding the possibility to blend ethanol into diesel to form a stable solution in the form of a so called microemulsion, with the aid of surfactants and/or co-solvents. The second sub-report briefly describes the test work, both in the laboratory and in field tests, that is being done in various countries, regarding the blending of ethanol into diesel fuel.

  1. In situ bioremediation of a diesel fuel spill in northern Manitoba

    International Nuclear Information System (INIS)

    Hryhoruk, C.D.

    1994-01-01

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs

  2. In situ bioremediation of a diesel fuel spill in northern Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Hryhoruk, C D

    1994-01-01

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs.

  3. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  4. Large eddy simulation of spray and combustion characteristics with realistic chemistry and high-order numerical scheme under diesel engine-like conditions

    International Nuclear Information System (INIS)

    Zhou, Lei; Luo, Kai Hong; Qin, Wenjin; Jia, Ming; Shuai, Shi Jin

    2015-01-01

    Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21

  5. Hydraulic Characterization of Diesel Engine Single-Hole Injectors

    OpenAIRE

    Arco Sola, Javier

    2015-01-01

    Due to world trend on the emission regulations and greater demand of fuel economy,the research on advanced diesel injector designs is a key factor for the next generation diesel engines. For that reason, it is well established that understanding the effects of the nozzle geometry on the spray development, fuel-air mixing, combustion and pollutants formation is of crucial importance to achieve these goals.In the present research, the influence of the injector nozzle geometry on the internalflo...

  6. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  7. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  8. CFD simulations of the diesel jet primary atomization from a multihole injector

    OpenAIRE

    Chasos, Charalambos

    2017-01-01

    [EN] High pressure multi-hole diesel injectors are currently used in direct-injection common-rail diesel engines for the improvement of fuel injection and air/fuel mixing, and the overall engine performance. The resulting spray injection characteristics are dictated by the injector geometry and the injection conditions, as well as the ambient conditions into which the liquid is injected. The main objective of the present study was to design a high pressure multi-hole diesel inject...

  9. Emission potentials of future diesel fuel injection systems; Emissionspotentiale zukuenftiger Diesel-Einspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schommers, J.; Breitbach, H.; Stotz, M.; Schnabel, M. [DaimlerChrysler AG (Germany)

    2007-07-01

    The historical evolution of the diesel engine correlates strongly with fuel injection system developments. Mercedes-Benz contributed significantly to the recent success of the diesel engine, being one of the first car manufacturers to introduce a modern common rail diesel engine in the Mercedes C220 CDI in 1997. The excellent characteristics of modern diesel engines resulted in a 50% market share in newly registered cars in Germany. These characteristics have to be further improved in the next years to keep the diesel engine attractive. Emissions and at the same time fuel consumption and noise need to be further reduced, while engine power has to go up. For Mercedes-Benz key steps to reach these goals are lower compression ratio, higher boost pressures, higher exhaust gas recirculation rates and better EGR cooling, multiple injection patterns and components with stable application parameters over lifetime. Important requirements for future fuel injection systems are high spray momentum, good stability over lifetime, good robustness of injected quantities for varying injection patterns and a low shot-to-shot variation of injected quantities. The high spray momentum has to be achieved especially for small injections and for part load operating points with low pressures. Therefore, the needle opening and closing velocities are of special importance. With special focus on the above requirements, different injector concepts were hydraulically evaluated. Both concepts in serial production and under development from system suppliers, as well as Mercedes-Benz developed prototype injector concepts were chosen. The concepts analysed are a servo-hydraulically driven injector with control piston, two servo-hydraulically driven injectors without control piston with differently adjusted hydraulics, and a direct driven injector, where the needle is driven directly from an actuator without servo-hydraulic amplification. The hydraulic investigations show an excellent performance of

  10. Laser diagnosis and plasma technology: fundamentals for reduction of emissions and fuel consumption in DI internal combustion engines. Spray/wall-interaction under diesel engine conditions. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Spray/Wand-Wechselwirkung bei der motorischen Einspritzung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Renz, U.; Meingast, U.

    2001-02-01

    Spray/wall-interaction under diesel engine conditions is not yet investigated extensively in detail with high spatial resolution and high time resolution as those experiments require extremely accurate techniques. Numerical modelling to predict fluiddynamic and heat transfer processes are validated mostly under non engine conditions. The processes during spray/wall interaction under internal combustion engine conditions were investigated experimentally in an injection chamber using enhanced laser optical methods. To enable validation and development of numerical spray/wall models the data was collected under well known and reproducible conditions. Microscopic visualisation tools, Phase-Doppler Anemometry (PDA) to measure droplet diameter and velocity as well as fluorescence based film measurement technique and high speed surface thermocouples to determine the wall heat flux were used. The numerical predictions of the spray wall interaction using Computational Fluid Dynamics (CFD) including two spray/wall models from the literature show qualitatively good agreement with the experiments. However, quantitatively some insufficiencies are observed because the models base on experiments under atmospheric conditions disregarding the influences of high pressure and high temperature. Here more detailed investigation is necessary in the future. The present results build up a comprehensive basis to validate future models and their interaction. Progress was done in using measurement techniques to investigate complex mechanisms under challenging conditions. (orig.) [German] Die Spray/Wand Wechselwirkung unter dieselmotorischen Bedingungen ist bisher nicht mit hoher Zeit- und Ortsaufloesung umfassend charakterisiert worden, weil deren Untersuchung hohe Anforderungen an die Messtechniken stellt. Numerische Modelle zur Vorhersage der Stroemungs- und Waermetransportvorgaenge sind nur teilweise unter reale Bedingungen verifiziert worden. Die Vorgaenge beim Auftreffen eines

  11. Impact of spray spreading and mixture formation on the combustion of biodiesel-diesel blends; Einfluss der Sprayausbreitung und Gemischbildung auf die Verbrennung von Biodiesel-Diesel-Gemischen

    Energy Technology Data Exchange (ETDEWEB)

    Huettl, Christian

    2011-07-01

    In many countries, one tries to replace fossil fuels in internal combustion engines at least in part by biofuels. Beyond the environmental discussions on this issue, some technical challenges have to be overcome. It should be remembered that today's automotive engines have become so fuel efficient and low emissions only by a very sophisticated and subtle control of the mixture formation and combustion. For each other, even non-conventional fuel and for each fuel mixture technical adjustments and developments are necessary in order not to give up those achievements again. This especially is true for the total or partial replacement of conventional diesel fuel by biodiesel. Under this aspect, the author of the book under consideration reports on such investigations for various motor conditions under a systematic variation of the amount of biodiesel. It focuses on the observation of the spray spreading, mixing and combustion.

  12. Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part II: Reactive atmosphere

    International Nuclear Information System (INIS)

    Payri, Raul; Salvador, F.J.; Gimeno, Jaime; Peraza, Jesús E.

    2016-01-01

    The second part of this experimental analysis, presented in this paper, seeks to go deep on the characterization of the Spray C and Spray D nozzles from the Engine Combustion Network, investigating the penetration of fuel spray at reacting conditions alongside characteristic parameters of combustion such as ignition delay and lift-off length. Both ECN mono-orifice injectors have similar nozzle flow capacity but different conicity degrees and corner sharpness, being Spray C more susceptible to cavitate. Schlieren imaging technique was employed to quantitatively measure reactive penetration and ignition delay, while lift-off length was identified through OH ∗ chemiluminescence. As in the inert part of this research, n-dodecane and commercial diesel were selected for the tests, thereby the effect of the fuel properties in the measured parameters was analyzed. Also, once again the concept of R-parameter, defined as the penetration derivative respect to the square root of time was calculated to delve into the penetration behavior. The experiments were performed in a constant pressure-flow facility able to reproduce engine-like thermodynamic conditions. Results revealed that R-parameter evolution can be divided in four stages: an inert zone, a ‘bump’, a ‘valley’ part and a quasi-steady one that overlaps the previous inert part. Those stages are highly governed by ambient temperature and oxygen concentration. Nozzle geometry and fuel properties demonstrated to have a noteworthy influence on all measured parameters.

  13. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  14. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  15. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  16. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed; Hernandez Perez, Francisco; Vallinayagam, R.; Vedharaj, S.; Johansson, Bengt; Im, Hong G.

    2017-01-01

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics

  17. Investigation of the cavitating flow in injector nozzles for diesel and biodiesel

    Science.gov (United States)

    Zhong, Wenjun; He, Zhixia; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-07-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. At present the biodiesel is a kind of prospective alternative fuel in diesel engines, the flow characteristics for the biodiesel fuel need to be investigated. In this paper, based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate physical model. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. A high resolution and speed CCD camera equipped with a long distance microscope device was used to acquire flow images of diesel and biodiesel fuel, respectively. Then, the characteristics of cavitating flow and their effects on the fuel atomization characteristics were investigated. The experimental results show that the nozzle cavitating flow of both the diesel and biodiesel fuel could be divided into four regimes: turbulent flow, cavitation inception, development of cavitation and hydraulic flip. The critical pressures of both the cavitating flow and hydraulic flip of biodiesel are higher than those of diesel. The spray cone angle increases as the cavitation occurs, but it decreases when the hydraulic flip appears. Finally, it can be concluded that the Reynolds number decreases with the increase of cavitation number, and the discharge coefficient increases with the increase of cavitation number.

  18. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hespel, Camille [Universite d' Orleans, Laboratoire PRISME, Orleans (France); Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles [CORIA, UMR 6614, CNRS, Universite et INSA de Rouen, Saint Etienne du Rouvray (France)

    2012-07-15

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals. (orig.)

  19. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    Science.gov (United States)

    Hespel, Camille; Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles

    2012-07-01

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals.

  20. Black carbon emissions from diesel sources in Russia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kholod, Nazar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.

  1. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  2. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  3. Numerical simulation of the flow field and fuel sprays in an IC engine

    Science.gov (United States)

    Nguyen, H. L.; Schock, H. J.; Ramos, J. I.; Carpenter, M. H.; Stegeman, J. D.

    1987-01-01

    A two-dimensional model for axisymmetric piston-cylinder configurations is developed to study the flow field in two-stroke direct-injection Diesel engines under motored conditions. The model accounts for turbulence by a two-equation model for the turbulence kinetic energy and its rate of dissipation. A discrete droplet model is used to simulate the fuel spray, and the effects of the gas phase turbulence on the droplets is considered. It is shown that a fluctuating velocity can be added to the mean droplet velocity every time step if the step is small enough. Good agreement with experimental data is found for a range of ambient pressures in Diesel engine-type microenvironments. The effects of the intake swirl angle in the spray penetration, vaporization, and mixing in a uniflow-scavenged two-stroke Diesel engine are analyzed. It is found that the swirl increases the gas phase turbulence levels and the rates of vaporization.

  4. Unsteady flamelet modelling of spray flames using deep artificial neural networks

    Science.gov (United States)

    Owoyele, Opeoluwa; Kundu, Prithwish; Ameen, Muhsin; Echekki, Tarek; Som, Sibendu

    2017-11-01

    We investigate the applicability of the tabulated, multidimensional unsteady flamelet model and artificial neural networks (TFM-ANN) to lifted diesel spray flame simulations. The tabulated flamelet model (TFM), based on the widely known flamelet assumption, eliminates the use of a progress variable and has been shown to successfully model global diesel spray flame characteristics in previous studies. While the TFM has shown speed-up compared to other models and predictive capabilities across a range of ambient conditions, it involves the storage of multidimensional tables, requiring large memory and multidimensional interpolation schemes. This work discusses the implementation of deep artificial neural networks (ANN) to replace the use of large tables and multidimensional interpolation. The proposed framework is validated by applying it to an n-dodecane spray flame (ECN Spray A) at different conditions using a 4 dimensional flamelet library. The validations are then extended for the simulations using a 5-dimensional flamelet table applied to the combustion of methyl decanoate in a compression ignition engine. Different ANN topologies, optimization algorithms and speed-up techniques are explored and details of computational resources required for TFM-ANN and the TFM are also presented. The overall tools and algorithms used in this study can be directly extended to other multidimensional tabulated models.

  5. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  6. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  7. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  8. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  9. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    Science.gov (United States)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  10. Etudes théoriques et expérimentales de la combustion dans les moteurs Diesel d'automobiles à injection directe et à préchambre Theoretical and Experimental Research on Combustion in Diesel Automotive Engines with Direct Injection and a Prechamber

    Directory of Open Access Journals (Sweden)

    Douaud A.

    2006-11-01

    Full Text Available Certaines techniques récemment développées pour la modélisation mathématique et les investigations expérimentales sur moteur Diesel sont présentées. On insiste sur l'importance de la validation croisée entre calcul et mesure. Taux d'injection, aérodynamique interne, développement du spray sont analysés en relation avec la géométrie des chambres de combustion. Des exemples, portant principalement sur des considérations de rendement énergétiques et d'émissions polluantes sont présentés à la fois sur le moteur Diesel à préchambre et le moteur Diesel à injection directe. Various techniques developed recently for the mathematical modeling and experimental investigating of diesel engines are described. Emphasis is placed on the importance of crosschecking between computing and measuring. The injection rate, internal aerodynamics and spray development are analyzed in relation to the geometry of combustion chambers. Examples mainly concerning matters of energy efficiency and pollutant emissions are given for diesel engines both with a prechamber and with direct injection.

  11. Improvement of D.I. diesel engine combustion using numerical simulation; Chokufun diesel kikan no nensho kaizen shuho. Suchi kaiseki ni yoru torikumi

    Energy Technology Data Exchange (ETDEWEB)

    Minami, T.; Adachi, T.; Isyii, Y. [Isuzu Motors Ltd., Tokyo (Japan)

    1999-04-01

    For the purpose of improving DI diesel engine combustion, it is important to predict air flow of intake and exhaust manifold, intake port flow, combustion chamber swirl and fuel spray combustion. This paper describes the application of numerical simulation to the engines, the analysis of phenomena and a problem of simulation model modification. (author)

  12. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Min, Kyoung Doug

    2006-01-01

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images

  13. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  14. A study of the wall/jet interaction on a transient spray. Application to diesel injection; Etude de l'interaction jet/paroi dans un spray transitoire. Application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Chale Gongora, H.G.

    1998-07-01

    The aim of this work is to better understand the mechanisms that govern the formation and development of the parietal flow occurring during the impact of a diesel fuel jet on a plate. In order to isolate the dynamical aspects of the phenomenon, a non-confined experimental configuration at ambient temperature and pressure has been used. The behaviour of the dispersed phase for different conditions of jet approach and different plate temperatures has been analyzed. Velocity and diameter fields of the free zone and of the parietal zone have been measured using a laser doppler apparatus up to a plate surface resolution of 0.2 mm. In a first step, an estimation of the average time value gives information about the global behaviour of the spray: the plate effect is sensible up to a very reduced distance but increases with the plate temperature, the momentum of the parietal jet is localized in a zone very close to the wall, an increase of the droplets size and of radial velocities in the parietal zone is observed when the nozzle is moved closer to the wall, and the increase of the plate temperature facilitates the jet penetration and leads to a reduction of the droplets size (increase of the shear stresses) and to a reduction of the liquid film thickness submitted to splashing. In order to examine the behaviour of velocity and droplets diameter with time, a processing has been defined which provides an average description of the phenomena. A laser tomography study in association with fast cinematography and CCD camera video recording has permitted to outline the main aspects of the evolution of the parietal spray with time: fast development of a swirl which drags most of the small droplets and limits their dispersion, effect of the temperature rise of the plate in the beginning of fuel injection, development of a more intense swirl which leads to an increase of velocity fluctuations, development of wavelet structures in the internal zone of the flow, near the wall, and

  15. A computational study of a fast sampling valve designed to sample soot precursors inside a forming diesel spray plume

    International Nuclear Information System (INIS)

    Dumitrescu, Cosmin; Puzinauskas, Paulius V.; Agrawal, Ajay K.; Liu, Hao; Daly, Daniel T.

    2009-01-01

    Accurate chemical reaction mechanisms are critically needed to fully optimize combustion strategies for modern internal-combustion engines. These mechanisms are needed to predict emission formation and the chemical heat release characteristics for traditional direct-injection diesel as well as recently-developed and proposed variant combustion strategies. Experimental data acquired under conditions representative of such combustion strategies are required to validate these reaction mechanisms. This paper explores the feasibility of developing a fast sampling valve which extracts reactants at known locations in the spray reaction structure to provide these data. CHEMKIN software is used to establish the reaction timescales which dictate the required fast sampling capabilities. The sampling process is analyzed using separate FLUENT and CHEMKIN calculations. The non-reacting FLUENT CFD calculations give a quantitative estimate of the sample quantity as well as the fluid mixing and thermal history. A CHEMKIN reactor network has been created that reflects these mixing and thermal time scales and allows a theoretical evaluation of the quenching process

  16. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  17. Influence of nanodispersed modifications of magnetite powders on spray nozzle efficiency of diesel engine injector

    Science.gov (United States)

    Saidov, M. A.; Perekrestov, A. P.

    2017-10-01

    The paper presents data on the impact of new environmental requirements relating to the quality of diesel fuel on the anti-wear properties of fuel. Anti-wear additive is proposed as a material for increasing the tribotechnical characteristics of diesel fuel. This additive consists of diesel fuel with micelles contained in it, formed on the basis of molecules of solid plasticity lubrication of iron oxide (Fe3O4) - magnetite, and with surrounding molecules of oleic acid (C18H34O2). The additive has low shear resistance and increased lubricity of diesel fuel when this additive is introduced into it.

  18. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  19. Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine.

    Science.gov (United States)

    Ravikumar, J; Saravanan, S

    2017-02-01

    Yellow grease from restaurants is typically waste cooking oil (WCO) free from suspended food particles with free fatty acid (FFA) content less than 15%. This study proposes an approach to formulate a renewable, eco-friendly fuel by recycling WCO with diesel (D) and n-pentanol (P) to improve fuel-spray characteristics. Three ternary blends (D50-WCO45-P5, D50-WCO40-P10 and D50-WCO30-P20) were selected based on the stability tests and prepared with an objective to substitute diesel by 50% with up to 45% recycled component (WCO) and up to 20% bio-component (n-pentanol) by volume. The fuel properties of these ternary blends were measured and compared. The emission impacts of these blends on a diesel engine were analysed in comparison with diesel and D50-WCO50 (50% of diesel + 50% of WCO) under naturally articulated and EGR (exhaust gas recirculation) approaches. Doping of n-pentanol showed improved fuel properties when compared to D50-WCO50. Viscosity is reduced up to 45%. Cetane number and density were comparable to that of diesel. Addition of n-pentanol to D50-WCO50 presented improved brake specific fuel consumption (BSFC) for all ternary blends. Brake thermal efficiency (BTE) of D50-WCO30-P20 blend is comparable to diesel due to improved atomization. Smoke opacity reduced, HC emissions increased and CO emissions remained unchanged with doping n-pentanol in the WCO. NOx emission increases with increase in n-pentanol and remained lower than diesel and all load conditions. However, NOx can be decreased by up to threefold using EGR. By adopting this approach, WCO can be effectively reused as a clean energy source by negating environmental hazards before and after its use in diesel engines, instead of being dumped into sewers and landfills.

  20. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Wook [Korea Institue of Machinery and Materials, Daejeon (Korea, Republic of); Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2006-06-15

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

  1. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  2. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  3. Steam reforming of commercial ultra-low sulphur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.; Van Dijk, E.; De Munck, S.; Van den Brink, R. [Energy research Centre of The Netherlands, ECN Hydrogen and Clean Fossil Fuels, P.O. Box 1, NL1755ZG Petten (Netherlands)

    2011-03-11

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  4. Steam reforming of commercial ultra-low sulphur diesel

    Science.gov (United States)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  5. Trajectory and velocity measurement of a particle in spray by digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Lue Qieni; Chen Yiliang; Yuan Rui; Ge Baozhen; Gao Yan; Zhang Yimo

    2009-12-20

    We present a method for the trajectory and the velocity measurement of a particle in spray by digital holography. Based on multiple exposure digital in-line holography, a sequence of digital holograms of a dynamic spray particle field at different times are recorded with a CW laser and a high-speed CCD. The time evolution of the serial positions of particles, i.e., the motion trajectories of the particles, is obtained by numerically reconstructing the synthetic hologram of a sequence of digital holograms. The center coordinate (x,y) of each particle image can be extracted using a Hough transform and subpixel precision computing, and the velocity of an individual particle can also be obtained, which is then applied to measuring the velocity of diesel spray and alcohol spray. The research shows that the method presented in this paper for measuring spray field is feasible.

  6. Flow regime effects on non-cavitating injection nozzles over spray behavior

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R., E-mail: rpayri@mot.upv.e [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain); Salvador, F.J.; Gimeno, J.; Novella, R. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain)

    2011-02-15

    This paper deals with the influence of flow regime (laminar, transition or turbulent) on the internal flow behavior, and how it affects the spray development in diesel nozzles. In particular, the research described here aims at studying and quantifying the internal flow regime effects on the spray behavior. With this purpose, internal flow results, based on mass flow rate and momentum flux measurements performed on three different tapered nozzles and which helped to determine the flow regime, has been taken into account as a point of departure for the spray behavior analysis. Thus, in this work, spray macroscopic visualization tests have been performed and analyzed which clearly revealed a change in the behavior of the angle and penetration of the spray related to the change of the flow nature. Moreover, with all the experimental data available, it has been possible to relate macroscopic parameters of the spray with those describing the internal flow (momentum and effective velocity) or the geometry of the nozzle (length or diameter) through correlations.

  7. Spray droplet velocity characterization for convergent nozzles with three different diameters

    Energy Technology Data Exchange (ETDEWEB)

    R. Payri; B. Tormos; F.J. Salvador; L. Araneo [Universidad Politecnica de Valencia, Valencia (Spain). CMT-Motores Termicos

    2008-11-15

    The core of the present work consists of the phase-Doppler anemometry non-intrusive measurements performed at various points of diesel direct injection sprays in order to obtain the local speed of fuel droplets. The main objective was to perform extensive sets of measurements on convergent nozzles with various orifices diameters, observe and justify the differences and compare the experimental data with a theoretical approach derived by the authors in a previous work which takes into account the spray momentum flux. Experimental axial velocity profiles in different sections of the spray showed a radial distribution that was fitted with a high level of agreement to a Gaussian profile and so proving that this type of profile is a reasonable approach for the type of sprays within the scope of the present work. The experimental results showed that the velocity in the spray's axis inversely depends on axial position and that for a given axial position; higher axial velocity has been measured for the nozzles with higher spray momentum. 16 refs., 5 figs., 5 tabs.

  8. Analysis of combustion behavior in DI diesel engine at low temperature; DI diesel engine ni okeru teionji no nensho kyodo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuya, Y; Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Aoki, S; Itatsu, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    For NOx reduction of a DI diesel engine, the retard of fuel injection timing is effective. However, it causes the white smoke at low temperature and low load. To analyze the mechanism of white smoke generation, a new visualizing system of fuel spray and flame behavior has been developed. This system can be also applied to a 4-valves per cylinder production engine by integrating two optical systems for image and lighting. From the visualization of the fuel spray and the flame behavior in the combustion chamber at low temperature, it has been proved that prompt fuel evaporation before reaching the wall surface of combustion chamber is required to reduce the white smoke. 6 refs., 10 figs., 3 tabs.

  9. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    Science.gov (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  10. Dieselization in Sweden

    International Nuclear Information System (INIS)

    Kågeson, Per

    2013-01-01

    In Sweden the market share of diesel cars grew from below 10 per cent in 2005 to 62 per cent in 2011 despite a closing gap between pump prices on diesel oil and gasoline, and diesel cars being less favored than ethanol and biogas cars in terms of tax cuts and other subsidies offered to “environment cars”. The most important factor behind the dieselization was probably the market entrance of a number of low-consuming models. Towards the end of the period a growing number of diesel models were able to meet the 120 g CO 2 threshold applicable to “environment cars” that cannot use ethanol or biogas. This helped such models increase their share of the diesel car market from zero to 41 per cent. Dieselization appears to have had only a minor effect on annual distances driven. The higher average annual mileage of diesel cars is probably to a large extent a result of a self-selection bias. However, the Swedish diesel car fleet is young, and the direct rebound effect stemming from a lower variable driving cost may show up more clearly as the fleet gets older based on the assumption that second owners are more fuel price sensitive than first owners. - Highlights: ► This paper tries to explain the fast dieselization of the new Swedish car fleet. ► It identifies changes in supply and the impact of tax benefits. ► Finally it studies the impact on the annual average mileage

  11. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  12. Visualization techniques in diesel engine research. Diesel Engine kenkyu ni okeru kashika gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Komori, M.; Tsujimura, K. (New ACE., Tsukuba (Japan))

    1993-04-01

    In order to grasp the phenomena actually occurring in the combustion chamber for improving the combustion and for reducing the exhaust gas emission of the diesel engines, the visualization techniques are becoming to be essential and indispensable. The authors have observed the spray and combustion, when proceeding the combustion improvement by the high pressure injection, and then have performed the image processing and simulation calculation based on them. The high pressure injection devices used for the experiment are the intensifier type and accumulator type which can generate the injection pressure more than 200MPa, and both of them are the electronic controlled hydraulic drive type, and are driven separately from the engine. Since it was found that the analysis of high pressure injection by the hologram is limited in the conditions, as for the spray, the spray analysis was performed by the transmitted light attenuation method and laser sheet method. As for the combustion, the engine for observing the combustion was trially made, and then the combustion state was observed by the high speed photograph. Furthermore, the flame temperature analysis by the image processing using the combustion photograph and the analysis of flow and turbulence of the flame were carried out. 9 refs., 16 figs.

  13. Experimental analysis on the influence of nozzle geometry over the dispersion of liquid n-dodecane sprays

    Directory of Open Access Journals (Sweden)

    Raul ePayri

    2015-10-01

    Full Text Available Understanding and controlling mixing and combustion processes is fundamental in order to face the challenges set by the ever more demanding pollutant regulations and fuel consumption standards of direct injection diesel engines. The fundamentals of these processes haven been long studied by the diesel spray community from both experimental and numerical perspectives. However, certain topics such as the influence of nozzle geometry over the spray atomization, mixing and combustion process are still not completely well understood and predicted by numerical models. The present study seeks to contribute to the current understanding of this subject, by performing state-of-the-art optical diagnostics to liquid sprays injected through two singe-hole nozzles of different conicity. The experiments were carried out in a nitrogen-filled constant-pressure-flow facility. Back pressures were set to produce the desired engine-like density conditions in the chamber, at room temperature. The experimental setup consists in a diffused back illumination setup with a fast pulsed LED light source and a high-speed camera. The diagnostics focused on detecting the liquid spray contour and evaluating the influence of nozzle geometry over the time-resolved and quasi-steady response of the spray dispersion, at similar injection conditions. Results show a clear influence of nozzle geometry on spray contour fluctuations, where the cylindrical nozzle seems to produce larger dispersion in both time-resolved fluctuations and quasi-steady values, when compared to the conical nozzle. This evidences that the turbulence and radial velocity profiles originated at the cylindrical nozzle geometry are able to affect not only the microscopic scales inside the nozzle, but also macroscopic scales such as the steady spray. Observations from this study indicate that the effects of the flow characteristics within the nozzle are carried on to the first millimeters of the spray, in which the

  14. Development of combustion management concept for natural-aspirated small diesel engine; Shizen kyuki kogata diesel engine no nensho seigyo concept no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Wada, T; Kawano, T; Shoji, M; Kuniyosh, M; Yamashita, O; Nagao, A [Mazda Motor Corp., Tokyo (Japan); Yoshikawa, S [Zexel Corp., Tokyo (Japan)

    1997-10-01

    We have developed a combustion management concept for natural-aspirated small IDI diesel engines and achieved higher power, lower exhaust emissions and more comfort. The concept is related to improvements of intake volumetric efficiency, EGR effect, mixture formation caused by combustion chamber and spray characteristics, engine management system and after treatment device. This paper describes the concept and experimental results. 3 refs., 14 figs., 1 tab.

  15. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    Science.gov (United States)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn

  16. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Srinivasan, Kalyan K. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Krishnan, Sundar R. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Som, Sibendu [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Transportation Research

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

  17. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    Science.gov (United States)

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection...Temperature (K) 363 Ambient temperature (K) 900 Nozzle Diameter (mm) 0.09 Ambient density (kg/m3) 22.8 Injection Duration (ms) 1.5 Number of injector holes

  18. Chemiluminescence analysis of the effect of butanol-diesel fuel blends on the spray-combustion process in an experimental common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia S.

    2015-01-01

    Full Text Available Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40 were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40% together with a strong smoke number decrease (>80% and NOx concentration increase (@50% were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.

  19. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  20. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Al-Qurashi, Khalid

    2014-01-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of 'MTBE soot' started began at a lower temperature and had higher reaction rate than 'diesel soot' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  1. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  2. Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yung-Sung [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China); Department of Mechanical Engineering, Hsiuping Institute of Technology, No.11, Gongye Rd., Dali City, Taichung County 412-80 (China); Lin, Hai-Ping [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China)

    2010-09-15

    In Taiwan, millions of tons of waste cooking oil are produced each year, and less than 20% of it, about 150,000 ton/a, is reclaimed and reused. Most waste oil is flushed down the drain. Utilizing waste cooking oil to make biodiesel not only reduces engine exhaust gas pollution, but also replaces food-derived fuels, and reduces ecologic river pollution. This study employed two-stage transesterification to lower the high viscosity of waste oil, utilized emulsion to reduce the methyl ester NOx pollution, and used methanol to enhance the stability and viscosity of emulsified fuel. To further analyze spray characteristics of fuels, this experiment built a constant volume bomb under high temperature, used high speed photography to analyze spray tip penetration, spray angle, and the Sauter mean diameter (SMD) of fuel droplets, and compared the results with fossil diesel. The experimental results suggested that, two-stage transesterification can significantly lower waste oil viscosity to that which is close to fossil diesel viscosity. At a temperature above 300 C, waste cooking oil methyl esters had a water content of 20%, spray droplet characteristics were significantly improved, and NOx emission dropped significantly. The optimal fuel ratio suggested in this experiment was waste cooking oil methyl ester 74.5%, methanol 5%, water 20%, and composite surfactant Span-Tween 0.5%. (author)

  3. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  4. Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine

    International Nuclear Information System (INIS)

    Hernández, J.J.; Lapuerta, M.; Barba, J.

    2015-01-01

    The injected diesel fuel used in a diesel engine was partially replaced with biomass-derived gas through the intake port, and the effect on performance and pollutant emissions was studied. The experimental work was carried out in a supercharged, common-rail injection, single-cylinder diesel engine by replacing diesel fuel up to 20% (by energy), keeping constant the engine power. Three engine loads (60, 90, 105 Nm), three different EGR (exhaust gas recirculation) ratios (0, 7.5, 15%) and two intake temperatures (45, 60 °C) were tested. Finally, some of the tested conditions were selected to replace diesel injection fuel with biodiesel injection. Although the brake thermal efficiency was decreased and hydrocarbons and carbon monoxide emissions increased with increasing fuel replacement, particulate emissions decreased significantly and NO x emissions decreased slightly at all loads and EGR ratios. Thermodynamic diagnostic results showed higher premixed ratio and lower combustion duration for increasing diesel fuel replacement. High EGR ratios improved both engine performance and emissions, especially when intake temperature was increased, which suggest removing EGR cooling when diesel fuel is replaced. Finally, when biodiesel was used instead of diesel fuel, the gas replacement improved the efficiency and reduced the hydrocarbon, carbon monoxide and particulate emissions. - Highlights: • Replacing injected fuel with gas permits an efficient valorization of waste biomass. • Inlet gas was inefficiently burned after the end of liquid fuel injection. • Engine parameters were combined to simultaneously reduce particle and NO x emissions. • Hot EGR (exhaust gas recirculation) and biodiesel injection are proposed to improve efficiency and emissions

  5. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  6. Alternative Diesel from Waste Plastics

    Directory of Open Access Journals (Sweden)

    Stella Bezergianni

    2017-10-01

    Full Text Available The long term ambition of energy security and solidarity, coupled with the environmental concerns of problematic waste accumulation, is addressed via the proposed waste-to-fuel technology. Plastic waste is converted into automotive diesel fuel via a two-step thermochemical process based on pyrolysis and hydrotreatment. Plastic waste was pyrolyzed in a South East Asia plant rendering pyrolysis oil, which mostly consisted of middle-distillate (naphtha and diesel hydrocarbons. The diesel fraction (170–370 °C was fractionated, and its further upgrade was assessed in a hydroprocessing pilot plant at the Centre for Research and Technology Hellas (CERTH in Greece. The final fuel was evaluated with respect to the diesel fuel quality specifications EN 590, which characterized it as a promising alternative diesel pool component with excellent ignition quality characteristics and low back end volatility.

  7. Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Gan, Suyin

    2016-01-01

    This reported work investigates the sensitivities of spray and soot developments to the change of thermo-physical properties for coconut and soybean methyl esters, using two-dimensional computational fluid dynamics fuel spray modelling. The choice of test fuels made was due to their contrasting...... saturation-unsaturation compositions. The sensitivity analyses for non-reacting and reacting sprays were carried out against a total of 12 thermo-physical properties, at an ambient temperature of 900 K and density of 22.8 kg/m3. For the sensitivity analyses, all the thermo-physical properties were set...... as the baseline case and each property was individually replaced by that of diesel. The significance of individual thermo-physical property was determined based on the deviations found in predictions such as liquid penetration, ignition delay period and peak soot concentration when compared to those of baseline...

  8. Demonstration of diesel fired coolant heaters in school bus applications : final report.

    Science.gov (United States)

    2010-04-01

    Engine block pre-heating can reduce fuel consumption, decrease pollution, extend engine life, and it is often necessary for reliably starting diesel engines in cold climates. This report describes the application and experience of applying 36 diesel ...

  9. Spray Processes in Optical Diesel Engines - Air-Entrainement and Emissions

    OpenAIRE

    Chartier, Clement

    2012-01-01

    Internal combustion engines have been an important technological field for more than a century. It has had an important impact on society through improved transportation and industrial applications. However, concerns about environmental effects of exhaust gases and utilization of oil resources have pushed development of combustion engines towards cleaner combustion and higher efficiencies. The diesel engine is today an interesting solution in terms of fuel economy. However, emissions ...

  10. GO evaluation of a PWR spray system. Final report

    International Nuclear Information System (INIS)

    Long, W.T.

    1975-08-01

    GO is a reliability analysis methodology developed over the years from 1960 to the present by Kaman Sciences Corporation, Colorado Springs, Colorado. In this report the GO methodology is presented and its application demonstrated by performing a reliability analysis of a conceptual PWR Containment Spray System. Certain numerical results obtained are compared with those of a prior fault tree analysis of the same system as documented in the 11 January 1973 draft report, A Fault Tree Evaluation of a PWR Spray System

  11. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.

    2008-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) diesel engine is applied for the interesting case of its operation with ethanol-diesel fuel blends, the ethanol (bio-fuel) being considered recently as a promising extender to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using bio-fuels. This is a two dimensional, multi-zone model with the issuing fuel jets divided into several discrete volumes, called 'zones', formed along and across the direction of the fuel injection. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to provide local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of eleven species considered, together with chemical rate equations for calculation of nitric oxide (NO) and a model for net soot formation. The results from the computer program, implementing the analysis, for the in cylinder pressure, exhaust NO concentration and soot density compare well with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI diesel engine located at the authors' laboratory, which is operated with ethanol-diesel fuel blends containing 5%, 10% and 15% (by vol.) ethanol. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the cylinder at various instants of time, when using these ethanol-diesel fuel blends against the diesel fuel (baseline fuel), shed light on the mechanisms

  12. Experimental studies on spray and gas entrainment characteristics of biodiesel fuel: Implications of gas entrained and fuel oxygen content on soot formation

    International Nuclear Information System (INIS)

    Kuti, Olawole Abiola; Nishida, Keiya; Zhu, Jingyu

    2013-01-01

    Experiments were performed inside the constant volume vessel to simulate the real diesel engine conditions. The LIF–PIV (Laser Induced Florescence – Particulate Image Velocimetry) technique was used to characterize the spray and gas entrainment characteristics of the fuels while the OH-chemiluminescence and two color pyrometry were applied to obtain information about the combustion processes. Biodiesel from palm oil (BDF (Biodiesel Fuel)) and the JIS #2 diesel fuel were utilized. It was observed that the SMD (Sauter mean diameter) obtained through an empirical equation decreased by increasing the injection pressure from 100 to 300 MPa and reducing the nozzle diameter from 0.16 to 0.08 mm. BDF has higher SMD values compared to diesel thus signifying inferior atomization. By increasing the injection pressure up to 300 MPa and reducing the nozzle diameter to 0.08 mm, the normal velocity and total mass flow rate of the entrained gas by the fuels increased. Due to higher viscosity and density properties, BDF possessed inferior atomization characteristics which made the normal velocity and total mass flow rate of the entrained gas lower compared to diesel. Due to inferior atomization which led to less gas being entrained upstream of the lift-off flame, the fuel oxygen content in BDF played a significant role in soot formation processes. - Highlights: • Spray and gas entrainment characteristics of biodiesel (BDF (Biodiesel Fuel)) and fuel were investigated. • Effect of injector parameters on BDF spray and gas entrainment characteristics was identified. • Higher viscosity and density of BDF yielded inferior spray atomization processes. • Gas entrainment velocity and mass flow rate of gas entrained by BDF lower. • Gas entrained had less effect on BDF's soot formation

  13. Influence of injector hole number on the performance and emissions of a DI diesel engine fueled with biodiesel–diesel fuel blends

    International Nuclear Information System (INIS)

    Sayin, Cenk; Gumus, Metin; Canakci, Mustafa

    2013-01-01

    In diesel engines, fuel atomization process strongly affects the combustion and emissions. Injector hole number (INHN) particular influence on the performance and emissions because both parameters take important influence on the spray parameters like droplet size and penetration length and thus on the combustion process. Therefore, the INHN effects on the performance and emissions of a diesel engine using biodiesel and its blends were experimentally investigated by running the engine at four different engine loads in terms of brake mean effective pressure (BMEP) (12.5, 25, 37.5 and, 50 kPa). The injector nozzle hole size and number included 340 × 2 (340 μm diameter holes with 2 holes in the nozzle), 240 × 4, 200 × 6, and 170 × 8. The results verified that the brake specific fuel consumption (BSFC), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ) emission increased, smoke opacity (SO), hydrocarbon (HC) and carbon monoxide (CO) emissions reduced due to the fuel properties and combustion characteristics of biodiesel. However, the increased INHN caused a decrease in BSFC at the use of high percentage biodiesel–diesel blends (B50 and B100), SO and the emissions of CO, HC. The emissions of CO 2 and NO x increased. Compared to the original (ORG) INHN, changing the INHN caused an increase in BSFC values for diesel fuel and low percentage biodiesel–diesel blends (B5 and B20). -- Highlights: • We used biodiesel–diesel blends with the injectors having different parameters. • Injector parameters have influences on the exhaust emissions. • Specific fuel consumption can be affected with injector parameters. • Injectors with proper hole numbers and size can be used for biodiesel–diesel blends

  14. Optimization of combustion chamber geometry for natural gas engines with diesel micro-pilot-induced ignition

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Tie; Ge, Linlin; Ogawa, Hideyuki

    2016-01-01

    Highlights: • Combustion chamber geometry is optimized to reduce the HC/CO emissions. • CFD model is calibrated against the spray visualization and engine bench test data. • Design space is explored by the multi-objective NSGA-II with Kriging meta-model. • HC and CO emissions are respectively reduced by 56.47% and 33.55%. - Abstract: Smokeless, low nitrogen oxides (NOx), and high thermal efficiency have been achieved through the lean-burn concept for natural gas engine with diesel micro-pilot-induced ignition (MPII). However, the combustion chamber is usually not specialized for natural gas combustion, and increases in the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are still a challenge for this type of engines. This paper describes optimization of the combustion chamber geometry to reduce the HC and CO emissions and improve the combustion efficiency in the MPII natural gas engine. The 3-D computational fluid dynamics (CFD) simulation model coupled with a chemical reaction mechanism is described. The temporal development of the short-pulsed diesel spray in a high pressure constant-volume vessel is measured and used to calibrate the spray model in the CFD simulation. The simulation models are validated by the experimental data of the in-cylinder pressure trace, apparent heat release rate (AHRR) and exhaust gas emissions from a single-cylinder MPII natural gas engine. To generate the various combustion chamber geometries, the bowl outline is parameterized by the two cubic Bezier curves while keeping the compression ratio constant. The available design space is explored by the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) with Kriging-based meta-model. With the optimization, the HC and CO emissions are reduced by 56.47% and 33.55%, respectively, while the NOx emissions, the maximum rate of pressure rise and the gross indicated thermal efficiency that are employed as the constraints are slightly improved. Finally, the

  15. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  16. Development and application of multi-zone model for combustion and pollutants formation in direct injection diesel engine running with vegetable oil or its bio-diesel

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2007-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) Diesel engine is presented and applied for the interesting case of its operation with vegetable oil (cottonseed) or its derived bio-diesel (methyl ester) as fuels, which recently are considered as promising alternatives (bio-fuels) to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these fuels. The model is two dimensional, multi-zone with the issuing jets (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection and across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment (forming the non-burning zone) of the combustion chamber, before and after wall impingement. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to yield local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of 11 species considered, together with the chemical rate equations for the calculation of nitric oxide (NO). A model for evaluation of soot formation and oxidation rates is included. The results from the relevant computer program for the in cylinder pressure, exhaust nitric oxide concentration (NO) and soot density are compared favorably with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI Diesel engine installed at the authors' laboratory. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the combustion chamber at various instants of time when using these

  17. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision; FINAL

    International Nuclear Information System (INIS)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-01-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated

  18. Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines

    International Nuclear Information System (INIS)

    Wei, Shengli; Wang, Feihu; Leng, Xianyin; Liu, Xin; Ji, Kunpeng

    2013-01-01

    Highlights: • A new swirl chamber combustion system of DI diesel engines is proposed. • The appropriate vortex motion can reduce the wall concentration of mixture. • It has best emissions at swirl ratio of 0.8. • Before spray, the turbulent kinetic energy is primarily controlled by the squish. • After spray, the combustion swirl and reverse squish have a great impact on TKE. - Abstract: In order to improve the spray spatial distribution and promote the mixture quality, enhancing airflow movement in a combustion chamber, a new swirl chamber combustion system in direct injection (DI) diesel engines is proposed. The mixture formation and combustion progress in the cylinder are simulated and investigated at several different swirl ratios by using the AVL-FIRE code. The results show that in view of the fuel/air equivalence ratio distribution, the uniformity of mixture with swirl ratio of 0.2 is better. Before spray injection, the turbulent kinetic energy distribution is primarily controlled by the squish. After spray, the combustion swirl and reverse squish swirl have an effect on temperature distribution and turbulent kinetic energy (TKE) in the cylinder. The NO mass fraction is the lowest at swirl ratio of 0.8 and the highest at swirl ratio of 2.7, while Soot mass fraction is the lowest at swirl ratio of 0.2 and the highest at swirl ratio of 3.2. The appropriate swirl is benefit to improve combustion. To sum up, the emissions at swirl ratio of 0.8 has a better performance in the new combustion system

  19. Experimental investigation review of biodiesel usage in bus diesel engine

    Directory of Open Access Journals (Sweden)

    Kegl Breda

    2017-01-01

    Full Text Available This paper assembles and analyses extensive experimental research work conducted for several years in relation to biodiesel usage in a MAN bus Diesel engine with M injection system. At first the most important properties of the actually used neat rapeseed biodiesel fuel and its blends with mineral diesel are discussed and compared to that of mineral diesel. Then the injection, fuel spray, and engine characteristics for various considered fuel blends are compared at various ambient conditions, with special emphasis on the influence of low temperature on fueling. Furthermore, for each tested fuel the optimal injection pump timing is determined. The obtained optimal injection pump timings for individual fuels are then used to determine and discuss the most important injection and combustion characteristics, engine performance, as well as the emission, economy, and tribology characteristics of the engine at all modes of emission test cycles test. The results show that for each tested fuel it is possible to find the optimized injection pump timing, which enables acceptable engine characteristics at all modes of the emission test cycles test.

  20. Influence of turbulence-chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation

    Science.gov (United States)

    Bolla, Michele; Farrace, Daniele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2014-03-01

    The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.

  1. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  2. A Review on Liquid Spray Models for Diesel Engine Computational Analysis

    Science.gov (United States)

    2014-05-01

    developed by Los Alamos National Laboratories, USA (15); OpenFoam developed by OpenCFD, U.K.; and AVBP developed by Centre Européen de Recherche et de...Validating Non-Reacting Spray Cases With KIVA-3V and OpenFoam , SAE technical paper 2013-01-1595, 2013. 17. Senecal, P.; Pomraning, E.; Richards, K

  3. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone

    2017-01-01

    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO_x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO_x emissions compared to diesel under lean burning conditions.

  4. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  5. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  6. Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Barzegar Ramin

    2013-01-01

    Full Text Available In the present paper, the combustion process and emission formation in the Lister 8.1 I.D.I Diesel engine have been investigated using a Computational Fluid Dynamics (CFD code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately resolved for the swirl chamber (pre-chamber and the main chamber. The results of model verify the fact that the equal amount of the fuel is burned in the main and pre-chamber at full load state while at part load the majority of the fuel is burned in the main chamber. Also, it is shown that the adherence of fuel spray on the pre-chamber walls is due to formation of a stagnation zone which prevents quick spray evaporation and plays an important role in the increase of soot mass fractions at this zone at full load conditions. The simulation results, such as the mean in-cylinder pressure, heat release rate and exhaust emissions are compared with the experimental data and show good agreement. This work also demonstrates the usefulness of multidimensional modeling for complex chamber geometries, such as in I.D.I Diesel engines, to gain more insight into the flow field, combustion process and emission formation.

  7. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  8. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    Science.gov (United States)

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  9. PENGARUH TEMPERATUR SOLAR TERHADAP PERFORMA MESIN DIESEL DIRECK INJECTION PUTARAN KONSTAN

    Directory of Open Access Journals (Sweden)

    Murni Murni

    2012-07-01

    Full Text Available The imperfect combustion process will be a problem in the development effort of diesel engine’s performance.Nonhomogen air–fuel mixing process is one of the factors which cause the imperfect combustion.By heating upthe diesel solar up to a certain temperature before it goes through the high pressure injection pump will lowerits density and viscosity. Therefore, when injected in the combustion chamber, it will formed smaller droplets offuel spray which result in a more homogenious air–fuel mixture. Also by using higher temperature will make thediesel fuel easier to ignite in order to compensate the limited time which is available in high speed operatingconditions. Diesel engine Dong Feng 1 cylinder direct injection at constant speed was used in this research. Thefuel used are solar with temperature variations in the range from 30oC to 70oC . The best thermal efficiency forsolar fuel is 30 % at 60oC with 28 % BSFC. In this condition, the fuel consumption was decreased 4 % bycomparing with that at 30oC.

  10. Study of hydrocarbon emission in small direct injection engines; Kogata DI diesel kikan ni okeru teifukaji HC haishutsu ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tsurushima, T; Zhang, L; Ueda, T; Fujino, R; Yokota, K [Isuzu Advanced Engineering Center, Tokyo (Japan)

    1997-10-01

    The cause of unburned hydrocarbon emission in small DI diesel engines at light load was studied. An optically accessible engine which was enabled to visualize the squish area was used to investigate the behavior of spray, mixture distribution and so on. Based on these observations and engine tests, the factors such as the direct impingement of liquid phase fuel spray to the combustion chamber wall the unevenness of fuel spray among holes and spreading of the fuel droplets, mixture and flame to the squish area were supposed to be the cause of forming HC emission. 18 refs., 10 figs., 2 tabs.

  11. Remediation of diesel-oil-contaminated soil using peat

    International Nuclear Information System (INIS)

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-01-01

    We investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65 - 10.80% and 32.57 - 35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification. (author)

  12. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Haiwen Song

    2016-01-01

    Full Text Available Effects of oxygen content of fuels on combustion characteristics and emissions were investigated on both an optical single cylinder direct injection (DI diesel engine and a multi-cylinder engine. Three fuels were derived from conventional diesel fuel (Finnish City diesel summer grade by blending Rapeseed Methyl Ester (RME or Diglyme and Butyl-Diglyme of different quantities to make their oxygen content 3%, 3% and 9%, respectively. The experimental results with three tested fuels show that the fuel spray development was not affected apparently by the oxygenating. Compared with the base fuel, the ignition delay to pilot injection was shortened by 0%, 11% and 19% for three oxygenated fuels, respectively. The ignition delay to main injection was shortened by 10%, 19% and 38%, respectively. With regard to emissions, the smoke level was reduced by 24% to 90%, depending on fuel properties and engine running conditions. The penalties of increased NOx emissions and fuel consumption were up to 19% and 24%, respectively.

  13. Metal/nonmetal diesel particulate matter rule

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, D.M. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technology Center; Stackpole, R.P. [United States Dept. of Labor, Mine Safety and Health Administration, Triadelphia, WV (United States). Approval and Certification Center; Findlay, C.D. [United States Dept. of Labor, Mine Safety and Health Administration, Arlington, VA (United States). Metal/Nonmetal Safety and Health; Pomroy, W.H. [United States Dept. of Labor, Mine Safety and Health Administration, Duluth, MN (United States). Metal/Nonmetal North Central District

    2010-07-01

    The American Mine Safety and Health Administration (MSHA) issued a health standard in January 2001 designed to reduce exposure to diesel particulate matter (DPM) in underground metal and nonmetal mines. The rule established an interim concentration limit for DPM of 400 {mu}g/m{sup 3} of total carbon, to be followed in 2004 by a final limit of 160 {mu}g/m{sup 3} of total carbon. The 2001 rule was challenged in federal court by various mining trade associations and mining companies. The rule was subsequently amended. This paper highlighted the major provisions of the 2006 final rule and summarized MSHAs current compliance sampling procedures. The concentration limit was changed to a permissible exposure limit and the sampling surrogate was changed from total carbon to elemental carbon. The MSHA published a new rule in 2006 which based the final limit on a miner's personal exposure rather than a concentration limit. The final limit was phased in using 3 steps over 2 years. This paper also discussed engineering controls and a recent MSHA report on organic carbon, elemental carbon and total carbon emissions from a diesel engine fueled with various blends of standard diesel and biodiesel. In May 2008, about two-thirds of all underground metal/nonmetal mines achieved and maintained compliance with the rule. 20 refs.

  14. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu

    2014-03-04

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction. The work of Zhaoyu Luo, Sibendu Som, Max Plomer, William J. Pitz, Douglas E. Longman and Tianfeng Lu was authored as part of their official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. S. Mani Sarathy hereby waives his right to

  15. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  16. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  17. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine

    Directory of Open Access Journals (Sweden)

    Nader Raeie

    2014-06-01

    Full Text Available It is well known that injection strategies including the injection timing and pressure play the most important role in determining engine performance, especially in pollutant emissions. However, the injection timing and pressure quantitatively affect the performance of diesel engine with a turbo charger are not well understood. In this paper, the fire computational fluid dynamics (CFD code with an improved spray model has been used to simulate the spray and combustion processes of diesel with early and late injection timings and six different injection pressure (from 275 bar to 1000 bar. It has been concluded that the use of early injection provides lower soot and higher NOx emissions than the late injection. In this study, it has been tried using the change of fuel injection time at these two next steps: before top dead center (BTDC and after top dead center (ATDC in order to achieving optimum emission and power in a specific point.

  18. Time-resolved measurements of supersonic fuel sprays using synchrotron x-rays

    International Nuclear Information System (INIS)

    Powell, C.F.; Yue, Y.; Poola, R.; Wang, J.

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date

  19. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  20. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  1. Development of multi-component diesel surrogate fuel models – Part II:Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Pang, Kar Mun; Ng, Hoon Kiat

    2016-01-01

    ), cyclohexane(CHX) and toluene developed in Part I are applied in this work. They are combined to produce two different versions of multi-component diesel surrogate models in the form of MCDS1 (HXN + HMN)and MCDS2 (HXN + HMN + toluene + CHX). The integrated mechanisms are then comprehensively validated in zero......-dimensional chemical kinetic simulations under a wide range of shock tube and jetstirred reactor conditions. Subsequently, the fidelity of the surrogate models is further evaluated in two-dimensional CFD spray combustion simulations. Simulation results show that ignition delay (ID) prediction corresponds well...... an increase of maximum local soot volume fraction by a factor of2.1 when the ambient temperature increases from 900 K to 1000 K, while the prediction by MCDS1 is lower at 1.6. This trend qualitatively agrees with the experimental observation. This work demonstrates that MCDS1 serves as a potential surrogate...

  2. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Theoretical analysis and experimental study of spray degassing method

    International Nuclear Information System (INIS)

    Wu Ruizhi; Shu Da; Sun Baode; Wang Jun; Li Fei; Chen Haiyan; Lu YanLing

    2005-01-01

    A new hydrogen-removal method of aluminum melt, spray degassing, is presented. The thermodynamic and kinetic analysis of the method are discussed. A comparison between the thermodynamics and kinetics of the spray degassing method and rotary impellor degassing method is made. The thermodynamic analysis shows that the relationship between the final hydrogen content of the aluminum melt and the ratio of purge gas flow rate to melt flow rate is linear. The result of thermodynamic calculation shows that, in spray degassing, when the ratio of G/q is larger than 2.2 x 10 -6 , the final hydrogen content will be less than 0.1 ml/100 g Al. From the kinetic analysis, the degassing effect is affected by both the size of melt droplets and the time that melt droplets move from sprayer to the bottom of the treatment tank. In numerical calculation, the hydrogen in aluminum melt can be degassed to 0.05 ml/100 g Al from 0.2 ml/100 g Al in 0.02 s with the spray degassing method. Finally, the water-model experiments are presented with the spray degassing method and rotary impellor degassing method. Melt experiments are also presented. Both the water-model experiments and the melt experiments show that the degassing effect of the spray degassing method is better than that of the rotary impeller method

  4. Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion

    Directory of Open Access Journals (Sweden)

    Dimitrios N Tziourtzioumis

    2017-07-01

    Full Text Available Differences in the evolution of combustion in a single cylinder, DI (direct injection diesel engine fuelled by B20 were observed upon processing of the respective indicator diagrams. Aiming to further investigate the effects of biodiesel on the engine injection and combustion process, the injection characteristics of B0, B20, B40, B60, B80 and B100 were measured at low injection pressure and visualized at low and standard injection pressures. The fuel atomization characteristics were investigated in terms of mean droplet velocity, Sauter mean diameter, droplet velocity and diameter distributions by using a spray visualization system and Laser Doppler Velocimetry. The jet break-up characteristics are mainly influenced by the Weber number, which is lower for biodiesel, mainly due to its higher surface tension. Thus, Sauter mean diameter (SMD of sprays with biodiesel blended-fuel is higher. Volume mean diameter (VMD and arithmetic mean diameter (AMD values also increase with blending ratio. Kinematic viscosity and surface tension become higher as the biodiesel blending ratio increases. The SMD, VMD and AMD of diesel and biodiesel blended fuels decreased with an increase in the axial distance from spray tip. Comparison of estimated fuel burning rates for 60,000 droplets’ samples points to a decrease in mean fuel burning rate for B20 and higher blends.

  5. Ultrafast X-ray Imaging of Fuel Sprays

    Science.gov (United States)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  6. Ultrafast X-ray Imaging of Fuel Sprays

    International Nuclear Information System (INIS)

    Wang Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means

  7. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    fixation of man country life, the excellent and varied climatic conditions and several types of terrain become the country, with extensive workable areas, stand out in the world scenery if considering its great potentiality on generation of alternative fuels. The environmental preservation, important subject nowadays, makes that the human being work in searches for the development of alternative energies, mainly those originating from renewable and biodegradable sources of sustantable character. Taking in consideration those searches, the purpose of this work was to evaluate the performance of a diesel engine working in different moments with mineral diesel and mixtures of mineral diesel and biodiesel in the equivalent proportions B2 (98% mineral diesel and 2%biodiesel, B5 (95% mineral diesel and 5%biodiesel, B20 (80% mineral diesel and 20%biodiesel, and, finally, B100 (100% biodiesel. The rehearsal was accomplished in the dependences of the Engineering Department at UFLA - Federal University of Lavras, in Lavras, Minas Gerais, in July, 2005. For the accomplishment of the rehearsals it, was used an engine cycle diesel of a tractor VALMET 85 id, of 58,2kW (78 cv, following it methodology established by the norm NBR 5484 of ABNT (1985, that refers to the rehearsal dynamometric of engines cycle Otto and Diesel being proceeded. One noticed ended that the potency of the motor when using biodiesel was lower than one when using mineral diesel. One observed that, in some rotations, the mixtures B5 and B20 presented the same potency or even higher, in some situations, than the one when if using mineral diesel. The best thermal efficiency of the motor was verified in the rotation of 540 rpm of equivalent TDP to 1720 rpm of the motor.

  8. Fall meeting 2004: information conference on engines. Final and interim reports of the research centres; Herbsttagung 2004: Informationstagung Motoren. Abschluss- und Zwischenberichte der Forschungsstellen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Proceedings (volume R526, 2004) of the Information Conference on Engines which has been held on the 23rd September 2004 in Pforzheim/Germany, contains ten final and interim reports. The subjects of the contributions presented were as follow: particulate filter with NOx storage coating; cause study on damage-relevant knocking combustion; spray wall interaction; binaural transfer path analysis synthesis; acoustical optimized sealing-systems on engine acoustics; working process caused gas exchange noise; knowledge based diesel engine optimization; frontal press fit assemblies; case hardening and autofrettage; oil condition sensor (orig.)

  9. Diesel CPO for SOFC. Development of a cold-flame assisted CPO reactor coupled to a SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J.; Ouweltjes, J.P.; Nyqvist, R.G. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-07-15

    Within the research program 'Reforming of liquid fuels for fuel-cells', ECN started a project on the development of a diesel CPO (catalytic partial oxidation) reformer for SOFC (solid oxide fuel cell) in 2005. The application in mind is a small scale (5kWe) diesel fed auxiliary power unit (APU). The goal of the project is to develop the technology required to transform a liquid logistic fuel into a reformat suitable for the operation of a SOFC. The emphasis of this work is on the development of a cold-flame assisted evaporator/mixer coupled to a catalytic CPO reformer. The application of cold-flame evaporation and mixing allows the reformat to be directly fed to the SOFC without further heating or cooling. Moreover, once cold-flames are ignited and stabilized, pre-heating of the air and fuel becomes obsolete. These aspects justify the development described in this report. In the cold-flame evaporator/mixer, the cold-flames are stabilized by means of a recirculation tube. The momentum of the fuel spray of the nozzle induces the required recirculation. The cold flame evaporator/mixer was coupled to a catalytic reformer reactor, transforming the hydrocarbon+air feed into a CO+H2 rich reformate. The reformer was coupled to a SOFC to be able to verify the quality of the reformat obtained with this reformer. The SOFC therefore served as an analysis tool. Characteristically, the reformat was held at 800C all the way towards the SOFC. For this, high temperature flange connections and steel-ceramic expansion connections were successfully applied. It is demonstrated that cold-flame evaporation of liquid fuels is a feasible means of feed preparation for a catalytic reforming reactor. The quality of the resulting reformat is adequate to be fed to the SOFC. The reformat quality, however, decreased with time-on-stream due to fouling of the reformer by carbon-depositions. These carbon-depositions were essentially located on the fuel injector, which is the coldest part

  10. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment; FINAL

    International Nuclear Information System (INIS)

    K. Stork; R. Poola

    1998-01-01

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO(sub x)) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM(sub 2.5)). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO(sub x) and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles

  11. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    Baldrich, C.A

    1998-01-01

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  12. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  13. Spray drying for processing of nanomaterials

    International Nuclear Information System (INIS)

    Lindeloev, Jesper Saederup; Wahlberg, Michael

    2009-01-01

    Consolidation of nano-particles into micron-sized granules reduces the potential risks associated with handling nano-powders in dry form. Spray drying is a one step granulation technique which can be designed for safe production of free flowing low dusty granules from suspensions of nano-particles. Spray dried granules are well suited for subsequent processing into final products where the superior properties given by the nano-particles are retained. A spray drier with bag filters inside the drying chamber and recycling of drying gas combined with containment valves are proposed as a safe process for granulation of potential hazardous nano-particles.

  14. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  15. Fact Sheet: Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska

    Science.gov (United States)

    This fact sheet summarizes EPA's final rule modifying the diesel fuel regulations to apply an effective date of 6-1-2010 for 15 ppm sulfur requirements for highway, nonroad, locomotive and marine diesel fuel produced/imported for, distributed

  16. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    Science.gov (United States)

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  17. Optical investigations on Diesel spray dynamics and in-flame soot formation

    OpenAIRE

    Xuan, Tiemin

    2018-01-01

    En las últimas décadas ha avanzado mucho la comprensión científica sobre el proceso de combustión de los chorros diesel de inyección directa gracias al desarrollo de todo tipo de técnicas e instalaciones ópticas. Además, se han desarrollado y mejorado una gran cantidad de modelos de Dinámica de Fluidos Computacional (CFD), los cuales se usan para el desarrollo de motores altamente eficientes y con bajas emisiones. Sin embargo, debido a la complejidad de los procesos físicos y químicos involuc...

  18. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  19. Optimization of diesel engine performances for a hybrid wind-diesel system with compressed air energy storage

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Basbous, T.; Ilinca, A.; Dimitrova, M.

    2011-01-01

    Electricity supply in remote areas around the world is mostly guaranteed by diesel generators. This relatively inefficient and expensive method is responsible for 1.2 million tons of greenhouse gas (GHG) emission in Canada annually. Some low- and high-penetration wind-diesel hybrid systems (WDS) have been experimented in order to reduce the diesel consumption. We explore the re-engineering of current diesel power plants with the introduction of high-penetration wind systems together with compressed air energy storage (CAES). This is a viable alternative to major the overall percentage of renewable energy and reduce the cost of electricity. In this paper, we present the operative principle of this hybrid system, its economic benefits and advantages and we finally propose a numerical model of each of its components. Moreover, we are demonstrating the energy efficiency of the system, particularly in terms of the increase of the engine performance and the reduction of its fuel consumption illustrated and supported by a village in northern Quebec. -- Highlights: → The Wind-Diesel-Compressed Air Storage System (WDCAS) has a very important commercial potential for remote areas. → The WDCAS is conceived like the adaptation of the existing engines at the level of the intake system. → A wind turbine and an air compression and storage system are added on the diesel plant. → This study demonstrates the potential of WDCAS to reduce fuel consumption and increase the efficiency of the diesel engine. → This study demonstrates that we can expect savings which can reach 50%.

  20. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  1. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    Science.gov (United States)

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  2. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  3. LES of n-Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model

    Directory of Open Access Journals (Sweden)

    Davidovic Marco

    2017-09-01

    Full Text Available A single-hole n-dodecane spray flame is studied in a Large-Eddy Simulation (LES framework under Diesel-relevant conditions using a Multiple Representative Interactive Flamelets (MRIF combustion model. Diesel spray combustion is strongly affected by the mixture formation process, which is dominated by several physical processes such as the flow within the injector, break-up of the liquid fuel jet, evaporation and turbulent mixing with the surrounding gas. While the effects of nozzle-internal flow and primary breakup are captured within tuned model parameters in traditional Lagrangian spray models, an alternative approach is applied in this study, where the initial droplet conditions and primary fuel jet breakup are modeled based on results from highly resolved multiphase simulations with resolved interface. A highly reduced chemical mechanism consisting of 57 species and 217 reactions has been developed for n-dodecane achiving a good computational performance at solving the chemical reactions. The MRIF model, which has demonstrated its capability of capturing combustion and pollutant formation under typical Diesel conditions in Reynolds-Averaged Navier-Stokes (RANS simulations is extended for the application in LES. In the standard RIF combustion model, representative chemistry conditioned on mixture fraction is solved interactively with the flow. Subfilter-scale mixing is modeled by the scalar dissipation rate. While the standard RIF model only includes temporal changes of the scalar dissipation rate, the spatial distribution can be accounted for by extending the model to multiple flamelets, which also enables the possibility of capturing different fuel residence times. Overall, the model shows good agreement with experimental data regarding both, low and high temperature combustion characteristics. It is shown that the ignition process and pollutant formation are affected by turbulent mixing. First, a cool flame is initiated at approximately

  4. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    distributions of PLII signals help understand the soot distributions within diesel/ biodiesel flames. In addition, planar laser-induced Figure 1. Transported ...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 9/14/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll This project investigated biodiesel ...emissions testing. 1 FINAL REPORT Project title: Understanding combustion and soot formation in biodiesel fuelled diesel engines Lead Institute and

  5. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  6. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  7. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Kamrak, Juthamas; Kongsombut, Benjapol; Grehan, Gerard; Saengkaew, Sawitree; Kim, Kyo-Seon; Charinpanitkul, Tawatchai

    2009-01-01

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 μm at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa.

  8. Fluctuations of a spray generated by an airblast atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Batarseh, Feras Z.; Gnirss, Markus; Roisman, Ilia V.; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Chair of Fluid Mechanics and Aerodynamics

    2009-06-15

    This paper is devoted to the study of the aerodynamic instability of the spray generated by an airblast atomizer. As a result of this instability the spray shape and its velocity fluctuate with a certain frequency, which depends on the operational parameters of the atomizer. The effect of three parameters, namely; chamber pressure, liquid phase flow rate and the gas phase flow rate on the spray fluctuating frequency are investigated. The velocity vector of the drops in the spray and the arrival times to the detection volume are measured using the laser Doppler instrument. The slotting technique is applied to the data of axial velocity and arrival times of the drops in order to estimate the dominating spray frequencies. Additionally, the shape of the spray has been observed using the high-speed video system. The frequencies of the shape fluctuations are estimated using proper orthogonal decomposition of the time-resolved images of the spray. We show that the frequencies of the spray velocity and those exhibited by spray shape coincide over a wide range of spray parameters. Finally, a simple scaling for the spray frequency is proposed and validated by the experimental data. (orig.)

  9. Theoretical and experimental investigations on the performance of dual fuel diesel engine with hydrogen and LPG as secondary fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lata, D.B.; Misra, Ashok [Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 (India)

    2010-11-15

    The mathematical models to predict pressure, net heat release rate, mean gas temperature, and brake thermal efficiency for dual fuel diesel engine operated on hydrogen, LPG and mixture of LPG and hydrogen as secondary fuels are developed. In these models emphasis have been given on spray mixing characteristics, flame propagation, equilibrium combustion products and in-cylinder processes, which were computed using empirical equations and compared with experimental results. This combustion model predicts results which are in close agreement with the results of experiments conducted on a multi cylinder turbocharged, intercooled gen-set diesel engine. The predictions are also in close agreement with the results on single cylinder diesel engine obtained by other researchers. A reasonable agreement between the predicted and experimental results reveals that the presented model gives quantitatively and qualitatively realistic prediction of in-cylinder processes and engine performances during combustion. (author)

  10. A Mixing Based Model for DME Combustion in Diesel Engines

    DEFF Research Database (Denmark)

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  11. A mixing based model for DME combustion in diesel engines

    DEFF Research Database (Denmark)

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  12. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  13. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  14. Bio-diesel. Initiatives, potential and prospects in Thailand. A review

    International Nuclear Information System (INIS)

    Siriwardhana, Manjula; Opathella, G.K.C.; Jha, M.K.

    2009-01-01

    Thailand experiences a great economic and industrial development and is the second largest energy consumer in South East Asia. Being a net oil importer, Thai government has declared a renewable energy development programme in order to secure sustainable development and energy security. Thailand spends more than 10% of GDP for energy imports and transport sector accounts for 36% of total final energy consumption of which 50% is diesel. Diesel marks a huge impact on Thai economy. Thai government's bio-diesel development strategy is to replace 10% of petro-diesel in transport sector by bio-diesel by 2012. The plan is to increase the use of bio-diesel from 365 million liters in 2007 to 3100 million liters by 2012. This paper reviews the current status and potential of bio-diesel in Thailand and investigates and discusses the qualities and weaknesses of the proposed road-map. The proposed road-map definitely gives immediate solution for soaring oil prices, but the long-term economic, environmental and social impacts need to be examined. (author)

  15. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2014-01-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration

  16. Exhaust emissions evaluation of Colombian commercial diesel fuels

    International Nuclear Information System (INIS)

    Torres, Jaime; Bello, Arcesio; Sarmiento, Jose; Rostkowski, Jacek; Brady, Jeremy

    2003-01-01

    Ecopetrol, based on the results obtained in the study, The effect of diesel properties on the emissions of particulate matter (Bello et al 2000), reformulated the diesel fuel distributed in Bogota, becoming it lighter and with lower sulfur content. In order to evaluate the environmental benefits that the reformulation of diesel fuel generate in Bogota, Instituto Colombiano del Petroleo (ICP), with the assistance of emissions research and measurement division (ERMD) from environment Canada, arranged a research project to determine the changes in CO, THC, NO x , CO 2 and particulate matter emissions. The research program was developed in two steps. First one, developed in Bogota, involved a fleet test with 15 public service buses that normally operate in Bogota's savannah, using a portable emissions sampling technology developed for ERMD (DOES2) and following a representative transient driving cycle. Second step, carried out in ERMD's Heavy-Duty engine emissions laboratory in Ottawa, tested a 1995 caterpillar 3406E 324/5 KW (435 HP) diesel truck engine on the same samples of Colombian diesel fuels used in the fleet tests performed in Bogota, baselining the tests with a Canadian commercial low sulfur diesel fuel. The two commercial Colombian diesel fuels used had the following properties: High Sulfur Diesel (HSD), with 3000 ppm (0,3 wt %) of sulfur and a final boiling point (FBP) of 633 K and the new reformulated diesel fuel, with 1000 ppm (0,1 wt %) of sulfur and FBP of 613 K, which is currently been distributed in Bogota. Fleet test show small reduction on CO, THC and TPM, and small increments on CO 2 and NO x but with not statistically significant results, while engine testing shows a strong reduction of 40/8% in TPM when you use the new reformulated diesel fuel (0,1 wt % of sulfur) instead of high sulfur diesel

  17. IN-SITU Optical Diagnostics Of Diesel Spray Injection And Combustion For Engine-Like Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bougie, B.; Tulej, M.; Dreier, T.; Gerber, T.

    2004-03-01

    A combination of shadowgraphy, laser elastic scattering, laser-induced incandescence and chemiluminescence imaging was conducted to characterize the propagation, vaporization and soot formation due to combustion of Diesel fuel injection into a hot (550-850 K), high pressure (4-6 MPa) gaseous environment as provided by the PSI high temperature pressure vessel (HTDZ). (author)

  18. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  19. Injection characteristics of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.

    1996-09-01

    Dimethyl ether (DME) has proved to be a new ultra-clean alternative fuel for diesel engines. Engine tests have shown considerably lower NO{sub x} emissions, no particle emissions and lower noise compared to that obtained from normal diesel engine operation. DME also has demonstrated favorable response to Exhaust Gas Recirculation (EGR). The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME. Fundamental spray behaviour was characterized by fuel spray penetration and angle, atomization and droplet size and evaporation. The influence of fuel characteristics, nozzle geometry and ambient pressure on the DME and diesel spray behavior was investigated. Fuel was injected into an unheated injection chamber with a ambient pressure of 15 bar and 25 bar, respectively, giving a simplified simulation of the environment in an operating engine. Two nozzles were studied: a single hole nozzle and a pintle nozzle. A conventional fuel injection system was used for both nozzles. Injection parameters of RPM, throttle position, fuel line length and chamber environment were held constant for both nozzles. The sprays were visualized using schlieren and high speed photography. Results show that the general appearance of the DME spray is similar to that of diesel spray. The core of the DME spray seems less dense and the spray tip less sharp compared to diesel spray, indicating smaller droplets with a lower momentum in the core of the DME spray. Schlieren film shows that with both DME and diesel fuel, the spray tip only consists of liquid and that evaporation occurs after a brief time interval. Penetration of DME is about one third that of diesel using the pintle nozzle. Also, the spray angle is considerably larger for the DME spray compared to the diesel spray. A comparatively smaller difference in penetration is observed using the hole nozzle. Differences in penetration for the hole nozzle are within the limit of the penetration

  20. To solve the specific emissions of locomotive diesel engines. Final report

    International Nuclear Information System (INIS)

    Korhonen, R.; Maeaettaenen, M.

    1999-01-01

    Ministry of Transport has made a goal to create an uniform system to make it possible to compare emissions of different transport forms. Kymenlaakso Polytechnic was supported by the Mobile Research Programme to measure the specific emissions of locomotive diesel engines. VR Osakeyhtioe has also supported economically the research work. During the research specific emissions of three diesel engines used in locomotives and calculated according to ISO 8178 standard were measured. In all, emissions of 14 engines were measured. For 12 engines measurements were made after the engine shop repair and for two engines before the repairing. Gaseous emissions: nitric oxide, carbon monoxide, carbon dioxide and total hydrocarbons contents were measured. Based on measured emissions and sulphur contents of the oil the weighted emissions were calculated in units g/kWh and g/kg fuel . Particular emissions were measured with dilution method and specific emissions were calculated in same units as for gaseous emissions

  1. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Kamrak, Juthamas; Kongsombut, Benjapol; Charinpanitkul, Tawatchai [Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road, Patumwan, Bangkok 10330 (Thailand); Grehan, Gerard; Saengkaew, Sawitree [LESP/UMR CNRS6614/INSA et Universite de Rouen, BP 12, avenue de l' universite, 76801, Saint Etienne du Rouvray (France); Kim, Kyo-Seon [Department of Chemical Engineering, Faculty of Engineering, Kangwon National University, Chuncheon (Korea)

    2009-10-15

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 {mu}m at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa. (author)

  2. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  3. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  4. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  5. Prices and taxes for gasoline and diesel in industrialized countries

    International Nuclear Information System (INIS)

    Davoust, R.

    2008-01-01

    This report present a comparative study on the prices and taxes of automotive fuels (gasoline and diesel fuel) in various industrialized countries, members of the OECD organization. Statistics are taken from a publication of the IEA (International Energy Agency), and concern the following fuel categories: regular gasoline, unleaded premium gasoline (SP 95 and SP 98), professional diesel fuel and domestic diesel fuel. It is shown that fuel prices are generally equivalent from one country to another, while taxes make all the difference for the retail final price. Somme global comparisons are also made between US and EU prices

  6. Large-Eddy Simulation (LES of Spray Transients: Start and End of Injection Phenomena

    Directory of Open Access Journals (Sweden)

    Battistoni Michele

    2016-01-01

    Full Text Available This work reports investigations on Diesel spray transients, accounting for internal nozzle flow and needle motion, and demonstrates how seamless calculations of internal flow and external jet can be accomplished in a Large-Eddy Simulation (LES framework using an Eulerian mixture model. Sub-grid stresses are modeled with the Dynamic Structure (DS model, a non-viscosity based one-equation LES model. Two problems are studied with high level of spatial and temporal resolution. The first one concerns an End-Of-Injection (EOI case where gas ingestion, cavitation, and dribble formation are resolved. The second case is a Start-Of-Injection (SOI simulation that aims at analyzing the effect of residual gas trapped inside the injector sac on spray penetration and rate of fuel injection. Simulation results are compared against experiments carried out at Argonne National Laboratory (ANL using synchrotron X-ray. A mesh sensitivity analysis is conducted to assess the quality of the LES approach by evaluating the resolved turbulent kinetic energy budget and comparing the outcomes with a length-scale resolution index. LES of both EOI and SOI processes have been carried out on a single hole Diesel injector, providing insights in to the physics of the processes, with internal and external flow details, and linking the phenomena at the end of an injection event to those at the start of a new injection. Concerning the EOI, the model predicts ligament formation and gas ingestion, as observed experimentally, and the amount of residual gas in the nozzle sac matches with the available data. The fast dynamics of the process is described in detail. The simulation provides unique insights into the physics at the EOI. Similarly, the SOI simulation shows how gas is ejected first, and liquid fuel starts being injected with a delay. The simulation starts from a very low needle lift and is able to predict the actual Rate-Of-Injection (ROI and jet penetration, based only on the

  7. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  8. Conversion of diesel engines to dual fuel (propane/diesel) operations

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S W; DeMaere, D A

    1984-02-01

    A device to convert a diesel engine to dual fuel (propane/diesel) operation was developed and evaluated. Preliminary experimentation has indicated that as much as 30% of the diesel fuel consumed in diesel engines could be displaced with propane, accompanied by an improvement in fuel efficiency, engine maintenance and an overall reduction in emission levels. Dual fuel operations in both transportation and stationary applications would then project a saving of ca 90,000 barrels of diesel fuel per day by the year 1990. A turbo-charged 250 hp diesel engine was directly coupled to a dynamometer under laboratory conditions, and operated at speeds between 500 and 2500 rpm and at various torque levels. At each rpm/torque point the engine first operated on diesel fuel alone, and then increasing quantities of propane were induced into the air intake until detonation occured. Results indicate that the proportion of propane that can be safely induced into a diesel engine varies considerably with rpm and torque so that a sophisticated metering system would be required to maximize diesel oil displacement by propane. Conversion is not cost effective at 1983 price levels.

  9. Rudolph Diesel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Rudolph Diesel. Articles written in Resonance – Journal of Science Education. Volume 17 Issue 4 April 2012 pp 406-424 Classics. Diesel's Rational Heat Motor · Rudolph Diesel · More Details Fulltext PDF ...

  10. Short-term break in the French love for diesel?

    International Nuclear Information System (INIS)

    Hivert, Laurent

    2013-01-01

    From 1980 to 1995, France was the first European country in which diesel cars became more popular than petrol cars. In addition to offering improved performance, this preference was notably due to a much cheaper cost of use, in line with the taxation on both fuel types. But the advantage of diesel technology does not clearly seem to extend to energy and CO2 savings. In this paper, French trends over the last 15 years and latest annual available statistics about both diesel car ownership and use are analysed, on the basis of the “ParcAuto” panel data source. The results notably show that, from the moment the gap between fuel prices was reduced, the annual mileage amounts of diesel cars have fallen faster than those of petrol cars. A specific section summarizes the results of our work on the behaviour of French households who chose to replace their petrol car with a diesel. Detailed examination of these switching behaviours, involving a complex set of variables, confirms that there are increases in driving associated with “new diesel motorists”. The final section of this paper briefly discusses recent evolutions of fuel expenditures. - Highlights: ► Latest figures/long-term trends about French diesel cars analysed using panel data. ► French preference for diesel was notably due to a much cheaper cost of use. ► Switching from petrol to diesel car commonly induced an increase in driving. ► Diesel sales and mileages have fallen faster when the gap between fuel prices reduced. ► Recent fuel prices sharp increase involved major changes in car use behaviours

  11. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  12. Electro Spray Method for Flexible Display

    Science.gov (United States)

    2016-05-12

    AFRL-AFOSR-JP-TR-2016-0095 Electro Spray Method for Flexible Display Yukiharu Uraoka NARA INSTITUTE OF SCIENCE AND TECHNOLOGY Final Report 11/26/2016...DATES COVERED (From - To)  20 Mar 2013 to 19 May 2016 4. TITLE AND SUBTITLE Electro Spray Method for Flexible Display 5a.  CONTRACT NUMBER 5b.  GRANT...NUMBER FA2386-13-1-4024 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Yukiharu Uraoka 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.   WORK UNIT NUMBER 7

  13. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Experimental Study of Liquid Fuel Spray Combustion

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree

    the specific physical quantities needed in CFD validation of these types of flames. This work is a testament to that fact. The first part of this thesis is an extensive study of optical combustion diagnostics applied to complex transient sprayflames in a high temperature and pressure environment...... by the Danish Council for Strategic Research. Other supporters of the project have been MAN Diesel & Turbo A/S, DTU Mechanical Engineering, DTU Chemical Engineering, Sandia National Laboratories USA, Norwegian University of Science & Technology (NTNU) and University of Nottingham, Malaysia Campus.......The physiochemical properties and electromagnetic interactions in flames, of which various optical combustion diagnostics are based, have been reviewed. Key diagnostics have been presented with practical examples of their application which, together with a comprehensive review of fuel spray flames, form...

  15. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.

    Science.gov (United States)

    Lao, Fei; Giusti, M Monica

    2017-07-15

    Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report

    Energy Technology Data Exchange (ETDEWEB)

    Meiners, Dennis [Alaska Industrial Development and Export Authority, Anchorage, AK (United States); Drouhilet, Steve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reeve, Brad [Alaska Industrial Development and Export Authority, Anchorage, AK (United States); Bergen, Matt [Kotzebue Electric Association, Kotzebue, AK (United States)

    2002-03-11

    The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

  17. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  18. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  20. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  1. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  2. Improvements of diesel combustion with pilot and main injections at different piston positions; Piston iso wo koryoshita pilot funsha ni yoru diesel nenshono kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.; Ogawa, H.; Miyamoto, N. [Hokkaido University, Sapporo (Japan); Sakai, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    2000-06-25

    The fuel spray distribution in a DI diesel engine with a pilot injection was actively controlled by pilot and main fuel injections at different piston positions to avoid the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separated the cores of the pilot and main fuel sprays. The experiments showed that more smoke was emitted with pilot injection in an ordinary cavity without the central lip while smokeless and low NO{sub x} operation was realized with pilot injection in a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emitted smoke so much. The indicated specific energy consumption ISEC was a little bit higher with the pilot injection, mainly because of the reduction in the degree of constant volume combustion. With the advanced pilot injection, ISEC was improved more than that with the retarded pilot injection while the NO{sub x} is a little higher than the retarded pilot injection maintaining still much lower than in ordinary operation. (author)

  3. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  4. A methodology for laser diagnostics in large-bore marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Hult, J; Mayer, S

    2013-01-01

    Large two-stroke diesel engines for marine propulsion offer several challenges to successful implementation of the laser diagnostic techniques applied extensively in smaller automotive engines. For this purpose a fully operational large-bore engine has been modified to allow flexible optical access, through 24 optical ports with clear diameters of 40 mm. By mounting the entire optical set-up directly to the engine, effects of the vigorous vibrations and thermal drifts on alignment can be minimized. Wide-angle observation and illumination, as well as relatively large aperture detection, is made possible through mounting of optical modules and relays inside optical ports. This allows positioning of the last optical element within 10 mm from the cylinder wall. Finally, the implementation on a multi-cylinder engine allows for flexible and independent operation of the optically accessible cylinder for testing purposes. The performance of the integrated optical engine and imaging system developed is demonstrated through laser Mie scattering imaging of fuel jet structures, from which information on liquid penetration and spray angles can be deduced. Double pulse laser-sheet imaging of native in-cylinder structures is also demonstrated, for the purpose of velocimetry. (paper)

  5. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  6. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  7. Visible Photodetectors Based on Organic-Inorganic Hybrids Using Electrostatic Spraying Technology

    Directory of Open Access Journals (Sweden)

    Liang-Wen Ji

    2013-12-01

    Full Text Available This paper discusses an organic-inorganic hybrid white photodetector with the structure of ITO /AZO/ZnO NWs:P3HT: PCBM/PEDOT: PSS/Al produced with an electrostatic spraying method. The method of production was as follows: First, different spraying methods (continuous spraying, discontinuous spraying and different spraying times were tested before the final electrostatic spraying. Then, different annealing times (10 min and 20 min were tested to anneal the coated film. Lastly, we investigated the photoelectric properties, including transparency analysis of the film surface topography through XRD, OM, FE-SEM, AFM and UV-VIS. The results showed that the detector with discontinuous spraying and 20 mins annealing had a photocurrent of approx. 22.1×10-4A, dark current (drain current of approx. 1.94×10-7A, and a ratio of photocurrent to dark current of approximately 1.14×104, which produced optimal photoelectric characteristics.

  8. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  9. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm

  10. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  11. The effect of diesel properties on the emissions of particulate matter

    International Nuclear Information System (INIS)

    Bello, A; Torres, J; Herrera, J; Sarmiento, J

    2000-01-01

    An evaluation was carried out on the effect that modifying some properties of Colombian diesel fuel, such as final boiling point (FBP), density and sulfur content, has on the emissions of particulate matter (PM). Four diesel engines with different technologies and work capacity were used for the evaluation. Different alternatives to modify the properties of commercial diesel fuel, from the fuel treatment viewpoint, as well as that of the incorporation or segregation of some of the streams from the pool at the Barrancabermeja refinery were studied. The particulate matter was measured using a partial flow (AVL-SPC472) Constant volume sampler (CVS) with following the 13-step steady state European cycle and the ECE-R49 European guideline. The tests were performed at the Instituto Colombiano del Petroleo. (ICP) test cell in the city of Bucaramanga, Colombia. General tendencies show reductions of up to 25% in PM emissions when final boiling point and sulfur content are reduced. But levels of reduction vary from one engine to another depending on technology and working time. As a baseline, the emission levels of the commercial diesel fuel for each engine are used, and as a reference the results obtained are compared with the EURO I and II European standards defined for the emission levels of heavy duty engines

  12. 150 years of Rudolf Diesel; 150 Jahre Rudolf Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Basshuysen, R. van; Siebenpfeiffer, W. (eds.)

    2008-03-15

    'My engine is still making great progress', Rudolf Diesel wrote in a letter to his wife on 3 July 1895. The fact that Diesel's statement still holds true can be seen every day on our roads and at sea. But it is equally true that the idea of this eccentric and doubter who wanted to dedicate himself with an over-inflated self-belief to the welfare of humanity, needed a certain time to take a form that others could recognise in order to continuously refine this life's work. Diesel himself did not live to see most of the milestones that were repeatedly set thanks to his engine. It was not until 23 years after his unexplained death in 1913 that people were able to buy the first passenger car to be equipped with a diesel engine - with a top speed of 90 km/h. Today, diesel cars can easily reach speeds of up to 300 km/h, and even if there is little point in such excessive speeds outside racetracks like Le Mans, they are nevertheless clear evidence of the incredible evolution of the noisy, smoky truck engine to a high-tech racing power unit, from the ear-splitting rattle of the pre-chamber diesel to the highly refined, soot-free, common-rail diesel engine of today. The Publisher hopes you enjoy reading this unique progress report. (orig.)

  13. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  14. High quality diesel fuels by VO-LSGO hydrotreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stanica-Ezeanu, Dorin; Juganaru, Traian [Petroleum and Gas Univ. of Ploiesti (Romania)

    2013-06-01

    The aim of the paper is to obtain a high quality Diesel fuel by hydro-deoxigenation of vegetable oils (VO) mixed with a low sulfur gasoil (LSGO). The process is possible by using a bi-functional catalyst Ni-Mo supported by an activated Al{sub 2}O{sub 3} containing 2% Ultrastable Y-zeolite. The experimental conditions were: T =340 - 380 C, Pressure = 50 bar, LHSV = 1,5 h{sup -1}, H{sub 2}/Feed ratio = 15 mole H{sub 2} /mole liquid feed. The liquid product was separated in two fractions: a light distillate (similar to gasoline) and a heavy distillate (boiling point > 200 C) with very good characteristics for Diesel engines. The reaction chemistry is very complex, but the de-oxygenation process is decisive for the chemical structure of hydrocarbons from final product. Finally, a schema for the reaction mechanism is proposed. (orig.)

  15. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  16. Changes in the Canadian diesel industry and their impact on trucking and farming

    International Nuclear Information System (INIS)

    Sperber, M.; Vail, S.; Clavet, F.

    2001-01-01

    This study examines the workings of the diesel industry and provides a perspective on several issues that influence the industry, particularly retail pricing and how it affects truckers and farmers. These important users of diesel fuel have expressed concerns regarding the relationships between diesel prices and external factors. The five regions that were examined in depth were Moncton, New Brunswick, Saint-Hyacinthe,Quebec, Winnipeg, Manitoba, Regina, Saskatchewan and Guelph, Ontario. The diesel industry follows the economic rules of supply and demand. The study found that diesel fuel prices at the wholesale level are influenced by world crude oil prices as well as by continental and world conditions. The paper examined the structure, conduct and performance of the wholesale diesel industry as well as its competition. The components that make up the final cost of diesel fuel (such as taxes) were described along with the influence of continental factors that affect the diesel industry. Trucking companies have the flexibility to consider supply options in different regions in North America, depending on the routes they travel. In addition, carriers using large volumes of diesel also pay better prices for fuel than smaller carriers. Farmers use less fuel than truckers and must rely on fuel delivery to their farms. The price of diesel for farmers generally depends on the volume purchased. Grain farmers are affected by diesel fuel costs more than other types of farmers, particularly since they receive very low world prices for their harvest. 7 tabs., 11 figs

  17. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    Science.gov (United States)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  18. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME)

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The spray atomization characteristics of an undiluted biodiesel fuel (soybean oil methyl ester, SME) in a diesel engine were investigated and compared with that of diesel fuel (ultra low sulfur diesel, ULSD). The experimental results were compared with numerical results predicted by the KIVA-3V code. The spray characteristics of the spray tip penetration, spray area, spray centroid and injection delay were analyzed using images obtained from a visualization system. The Sauter mean diameter (SMD) was analyzed using a droplet analyzer system to investigate the atomization characteristics. It was found that the peak injection rate increases and advances when the injection pressure increases due to the increase of the initial injection momentum. The injection rate of the SME, which has a higher density than diesel fuel, is higher than that of diesel fuel despite its low injection velocity. The high ambient pressure induces the shortening of spray tip penetration of the SME. Moreover, the predicted spray tip penetration pattern is similar to the pattern observed experimentally. The SMD of the SME decreases along the axial distance. The predicted local and overall SMD distribution patterns of diesel and SME fuels illustrate similar tendencies when compared with the experimental droplet size distribution patterns

  19. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  20. Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2017-08-01

    Full Text Available On account of their high power, thermal efficiency, good reliability, safety, and durability, low-speed two-stroke marine diesel engines are used as the main drive devices for large fuel and cargo ships. Most marine engines use heavy fuel oil (HFO as the primary fuel, however, the physical and chemical characteristics of HFO are not clear because of its complex thermophysical properties. The present study was conducted to investigate the effects of fuel properties on the spray and combustion characteristics under two-stroke marine engine-like conditions via a sensitivity analysis. The sensitivity analysis of fuel properties for non-reacting and reacting simulations are conducted by comparing two fuels having different physical properties, such as fuel density, dynamic viscosity, critical temperature, and surface tension. The performances of the fuels are comprehensively studied under different ambient pressures, ambient temperatures, fuel temperatures, and swirl flow conditions. From the results of non-reacting simulations of HFO and diesel fuel properties in a constant volume combustion chamber, it can be found that the increase of the ambient pressure promotes fuel evaporation, resulting in a reduction in the steady liquid penetration of both diesel and HFO; however, the difference in the vapor penetrations of HFO and diesel reduces. Increasing the swirl flow significantly influences the atomization of both HFO and diesel, especially the liquid distribution of diesel. It is also found that the ambient temperature and fuel temperature have the negative effects on Sauter mean diameter (SMD distribution. For low-speed marine engines, the combustion performance of HFO is not sensitive to activation energy in a certain range of activation energy. At higher engine speed, the difference in the effects of different activation energies on the in-cylinder pressure increases. The swirl flow in the cylinder can significantly promote fuel evaporation and

  1. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    International Nuclear Information System (INIS)

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  2. Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana

    2015-03-17

    More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.

  3. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  4. Response of breeding birds to aerial sprays of trichlorfon (Dylox) and carbaryl (Sevin-4-Oil) in Montana forests

    Science.gov (United States)

    DeWeese, L.R.; Henny, C.J.; Floyd, R.L.; Bobal, K.A.; Schultz, A.W.

    1979-01-01

    Breeding density, food, nesting success, and mortality of 20 bird species were monitored at Beaverhead National Forest, Montana, in 1975 in conjunction with experimental applications of trichlorfon (Dylox) and carbaryl (Sevin-4-oil) to western budworms (Choristoneura occidentalis). Bird species on nine 350- to 550-ha forested plots (three controls and three treated with each pesticide) were studied before and for 14 days after the spraying of trichlorfon at 1.1 kg in?9.4 L of Panasol AN3 per ha (1 pound active ingredient in 1.0 gallon/acre) and of carbaryl at 1.1 kg in 4.7 L of diesel oil per ha (l pound active ingredient in 0.5 gallon/acre). No significant decrease in bird numbers was detected from breeding-pair estimates or live bird counts after the spraying. Of the breeding pairs present before spraying, 92% remained on control plots, 89% on trichlorfon plots, and 92% on carbaryl plots. Counts of live birds made before and after spraying in three types of habitat supported the. results of the breeding-pair estimates. Nests with eggs or with young at the time of spraying were 74 and 97% successful, respectively, in control plots, 83 and 100% in plots sprayed with trichlorfon, and 86 and 100% in plots sprayed with carbaryl. No sick or dead birds were found after the spraying, although budworms were found in bird stomachs, and tracer-dye from the pesticide occurred on the feathers or feet of 74% of the 202 birds collected. Species dwelling in the tree canopy encountered the dye (and thus the pesticide) at a slightly higher rate (80%) than did species below the treetops (71 %) or near the ground and in open areas (70%).

  5. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  6. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    Science.gov (United States)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  7. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  8. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating......In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...

  9. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  10. Diesel exhaust controls and aftertreatment

    Energy Technology Data Exchange (ETDEWEB)

    Rubeli, B. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    This presentation discussed the safe use of diesel fuels in underground mines, with particular reference to advanced technology engines and system technology options for mines. The use of diesel fuels underground requires well designed diesel engines with an effective preventive maintenance programs utilizing diesel emissions testing. The mines must have a well-engineered ventilation system and an adequate air quality monitoring system. An outline of diesel pollutant formation was included in the presentation. Diesel emission control technologies can address localized air quality problems and control emissions at the source. This presentation summarized the best available diesel emission control technologies for underground mines, namely diesel oxidation catalysts (DOC); diesel particulate filters (DPF); active diesel particulate filters (A-DPF); selective catalytic reduction (SCR); water scrubbers; and fume diluters. An emissions control plan using aftertreatment technology should target the vehicles that are the biggest contributors to diesel exhaust. Low sulphur fuel is a prerequisite for most emission control technologies. The successful control of emissions requires knowledge of the high emitting vehicle groups; an integrated ventilation and emission control technology application plan; ambient and tailpipe emissions testing; and training of operators and mechanics. tabs., figs.

  11. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  12. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  13. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  14. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    Ali, M.; Shaikh, A.A.

    2012-01-01

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  15. A user-friendly model for spray drying to aid pharmaceutical product development.

    Science.gov (United States)

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  16. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also... marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur...

  17. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  18. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  19. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H.

    1998-05-01

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated. Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B1OO) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In the United States, initial interest in producing and using biodiesel has focused on the use of soybean oil as the primary feedstock mainly because the United States is the largest producer of soybean oil in the world. 170 figs., 148 tabs.

  20. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  1. Spray characteristics and spray cooling heat transfer in the non-boiling regime

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Feng-Yun; Liu, Qi-Nie; Fan, Han-Lin

    2011-01-01

    Spray cooling is an effective method for dissipating high heat fluxes in the field of electronics thermal control. In this study, experiments were performed with distilled water as a test liquid to study the spray cooling heat transfer in non-boiling regime. A Phase Doppler Anemometry (PDA) was used to study the spray characteristics. The effects of spray flow rate, spray height, and inlet temperature on spray cooling heat transfer were investigated. It was found that the parameters affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and working fluid thermophysical properties. Then the corresponding droplet axial velocity and Sauter mean diameter (SMD) were successfully correlated with mean absolute error of 15%, which were based upon the orifice diameter, the Weber and Reynolds numbers of the orifice flow prior to liquid breakup, dimensionless spray height and spray cross-section radius. The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%, which was mainly associated with the working fluid thermophysical properties, the Weber and Reynolds numbers hitting the heating surface, dimensionless heating surface temperature and diameter. -- Highlights: → The spray flow rate, spray height, and inlet temperature affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and the working fluid thermophysical properties. → Then the corresponding droplet axial velocity and Sauer mean diameter (SMD) were successfully correlated with mean absolute error of 15%. → The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%.

  2. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  3. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  4. 326 Ion-spraying type atmospheric radon detector

    International Nuclear Information System (INIS)

    Wu Xinmin; Liu Qingchen; Liu Yujuan; Li Shumin; Yang Yaxin

    2005-01-01

    The advantages and disadvantages of atmospheric absolute radon detector were briefly analyzed in this paper. The working principle, structure and main technical capability of the 326 ion-spraying type atmospheric radon detector were introduced. Finally, its disadvantages and the improved aspects in the future were discussed. (authors)

  5. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S; Yokota, H; Kakegawa, T [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  6. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  7. Structure of steam water mixture spray

    International Nuclear Information System (INIS)

    Mitsuhashi, Yuki; Mizutani, Hiroya; Sanada, Toshiyuki; Saito, Takayuki

    2008-01-01

    The flow structure of steam and water mixture spray is studied both numerically and experimentally. The velocity and pressure profiles of the single phase flow are calculated using numerical methods. Using calculated flow fields, the droplet behavior is predicted by the one-way interaction model. This numerical analysis clarifies that the droplets are still accelerated after they are sprayed from the nozzle. In the experiments, the spray of the mixture is observed by using ultra high-speed video camera, and the velocity field is measured by using PIV technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, mixing process of steam and water, and atomization process of liquid film are observed through the transparent nozzle. The high-speed photography observation reveals that the flow inside the nozzle forms the annular flow and the most of the liquid film is atomized at the nozzle outlet. Finally, the optimum method of processing mixture of steam and water is proposed. (author)

  8. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  9. Disappointed by Diesel? The impact of the shift to Diesels in Europe through 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, Lee (Precourt institute for Energy Efficiency, Stanford Univ., CA (United States)); Fulton, Lew (International Energy Agency, Energy Technology Policy Div., Paris (France))

    2009-07-01

    A previous review of trends in light-duty diesel vehicle sales and usage in Europe through the mid 1990s questioned whether the shift toward diesels would yield large energy savings (Schipper, Fulton and Marie 2002, SFM). This study expands the sample of countries in the previous work and adds about ten years more data from both new vehicle test fuel economy and on-road performance, including usage. The updated findings renew the concerns first expressed in SFM. Although there is still evidence that diesels of a certain size have a substantial (volumetric) fuel economy advantage over gasoline vehicles of a similar size (perhaps 30% on average), average new diesel cars and the stock of diesels on the road maintain a smaller efficiency advantage over gasoline, on the order of 15% in most countries as of 2005. When the higher energy content of diesel is considered, the new vehicle and on-road figures shrink to less than a 5% and 7% fuel intensity advantage for new diesel vehicles and stock, respectively. The net CO{sub 2}/km emissions advantage for diesels is even less; for new cars, below 5% in all but one country and 0% on average across the 8 sampled countries in 2005. For total stock, diesel has a 2% average CO{sub 2} advantage. Even normalizing for the larger average size of diesels, their CO{sub 2} advantage appears to be no more than 15-18% for vehicles of a similar size class. Diesels are typically larger and are driven 60-100% more per year than gasoline cars. While much of these differences could be ascribed to self selection and related effects, some are likely due to a rebound effect created by diesel's better fuel economy and (in many countries) the lower price of diesel fuel. Using typical elasticity estimates to measure the driving rebound effect, the average result is about a 5% increase in annual driving and up to a 12% increase depending on the country and assumed elasticity. This is small compared to the observed driving difference between

  10. Analysis of flow and turbulence in high pressure spray by image processing technique. Gazo shori ni yoru koatsu funmunai ni okeru ryudo to midare no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, I. (Japan Automobile Research Institute, Inc., Tsukuba (Japan)); Nishida, M.; Nakahira, T.; Komori, M.; Tsujimura, K.

    1992-07-01

    The image processing technique (reported previously) developed for analyzing combustion in a diesel engine was applied to measuring flow and turbulent intensity in a high pressure spray. Copper vapor laser beam in a sheet form with a thickness of 0.2 mm was injected into the cross section of a spray center in a container. Photographs of the scattered lights of the beam is converted into digital values and analyzed using an image processing equipment. With the laser light emitting frequency set to 20 KHz at a maximum, the flow velocity is measured from changes in photographic image density in two subsequent photographs, and the turbulence intensity from changes in brightness intensity. As a result, it was clarified that the flow velocity and the turbulence intensity in the spray cross section increase with raising the spray pressure. Further discussions are being made on the measuring method, including changes in the image brightness associated with entrance and exit of spray particulates into the laser beam sheet, and effects of the laser beam sheet thickness on the measurements of the turbulence intensity. 6 refs., 6 figs.

  11. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  12. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C.

    2011-01-01

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  13. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    International Nuclear Information System (INIS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-01-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice. (paper)

  14. Development of a robust and compact kerosene–diesel reaction mechanism for diesel engines

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Mohan, Balaji; An, Hui; Zhou, Dezhi; Yu, Wenbin

    2016-01-01

    Highlights: • An approach is used to develop a robust kerosene–diesel reaction mechanism. • Ignition delay of the kerosene sub-mechanism is well validated with experiments. • The kerosene sub-mechanism reproduces the flame lift-off lengths of Jet-A reasonably well. • The kerosene sub-mechanism performs reasonably well under engine conditions. - Abstract: The use of kerosene fuels in internal combustion engines is getting more widespread. The North Atlantic Treaty Organization military is pushing for the use of a single fuel on the battlefield in order to reduce logistical issues. Moreover, in some countries, fuel adulteration is a serious matter where kerosene is blended with diesel and used in diesel engines. So far, most investigations done regarding the use of kerosene fuels in diesel engines are experimental and there is negligible simulation work done in this area possibly because of the lack of a robust and compact kerosene reaction mechanism. This work focuses on the development of a small but reliable kerosene–diesel reaction mechanism, suitable to be used for diesel engine simulations. The new kerosene–diesel reaction mechanism consists only of 48 species and 152 reactions. Furthermore, the kerosene sub-mechanism in this new mechanism is well validated for its ignition delay times and has proven to replicate kerosene combustion well in a constant volume combustion chamber and an optical engine. Overall, this new kerosene–diesel reaction mechanism is proven to be robust and practical for diesel engine simulations.

  15. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Chen, Zhenbin; Wang, Xiaochen; Pei, Yiqiang; Zhang, Chengliang; Xiao, Mingwei; He, Jinge

    2015-01-01

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NO X emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NO x and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NO x emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  16. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  17. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Directory of Open Access Journals (Sweden)

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  18. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  19. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends

    International Nuclear Information System (INIS)

    Chen, Guisheng; Shen, Yinggang; Zhang, Quanchang; Yao, Mingfa; Zheng, Zunqing; Liu, Haifeng

    2013-01-01

    In the paper, combustion and emissions of a multi-cylinder CI (compression-ignition) engine fueled with DMF–diesel, n-butanol–diesel and gasoline–diesel blends were experimentally investigated, and fuel characteristics of DMF, n-butanol and gasoline were compared. Diesel was used as the base fuel. And 30% of DMF, n-butanol and gasoline were blended with the base fuel by volume respectively, referred to as D30, B30 and G30. Results show that compared to B30 and G30, D30 has longer ignition delay because of lower cetane number, which leads to faster burning rate and higher pressure rise rate. With increasing EGR (exhaust gas recirculation) rate, D30 gets the lowest soot emissions, and extended ignition delay and fuel oxygen are two key factors reducing soot emissions, and ignition delay has greater effects than fuel oxygen on soot reduction. In addition, D30 and B30 improve the trade-off of NO x -soot remarkably and extend low-emission region without deteriorating fuel efficiency by utilizing medium EGR rates ( x , THC and CO emissions and BSFC, but reduce soot greatly. • Fuel oxygen is more efficient than air oxygen while ignition delay has greater effects than fuel oxygen to reduce soot. • As diesel additive, DMF is superior to n-butanol and gasoline for reducing soot emissions. • Using DMF–diesel blends combined with medium EGR may be a better way to meet future emission standards

  20. Recent Progress in the Development of Diesel Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  1. Green Diesel from Hydrotreated Vegetable Oil Process Design Study

    NARCIS (Netherlands)

    Hilbers, T.J.; Sprakel, Lisette Maria Johanna; van den Enk, L.B.J.; Zaalberg, B.; van den Berg, Henderikus; van der Ham, Aloysius G.J.

    2015-01-01

    A systematic approach was applied to study the process of hydrotreating vegetable oils. During the three phases of conceptual, detailed, and final design, unit operations were designed and sized. Modeling of the process was performed with UniSim Design®. Producing green diesel and jet fuel from

  2. Panorama 2016 - Diesel

    International Nuclear Information System (INIS)

    Monnier, Gaetan; Ivanic, Tanja; Alazard-Toux, Nathalie

    2016-01-01

    Diesel vehicles have been the focus of recent national and world news coverage. This solution, with greater overall efficiency than spark emission engines (gasoline, LPG and natural gas), remains an essential aspect of road freight transport. Diesel has even gained a significant share of the light vehicle market in certain regions of the world. However, diesel is currently the focus of numerous controversies and has been condemned for its negative impact on air quality. (authors)

  3. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  4. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  5. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  6. Optimization of Pesticide Spraying Tasks via Multi-UAVs Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    He Luo

    2017-01-01

    Full Text Available Task allocation is the key factor in the spraying pesticides process using unmanned aerial vehicles (UAVs, and maximizing the effects of pesticide spraying is the goal of optimizing UAV pesticide spraying. In this study, we first introduce each UAV’s kinematic constraint and extend the Euclidean distance between fields to the Dubins path distance. We then analyze the two factors affecting the pesticide spraying effects, which are the type of pesticides and the temperature during the pesticide spraying. The time window of the pesticide spraying is dynamically generated according to the temperature and is introduced to the pesticide spraying efficacy function. Finally, according to the extensions, we propose a team orienteering problem with variable time windows and variable profits model. We propose the genetic algorithm to solve the above model and give the methods of encoding, crossover, and mutation in the algorithm. The experimental results show that this model and its solution method have clear advantages over the common manual allocation strategy and can provide the same results as those of the enumeration method in small-scale scenarios. In addition, the results also show that the algorithm parameter can affect the solution, and we provide the optimal parameters configuration for the algorithm.

  7. Sixth international wind-diesel workshop

    International Nuclear Information System (INIS)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop

  8. Sixth international wind-diesel workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop.

  9. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  10. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  11. Study of ignition characteristics of microemulsion of coconut oil under off diesel engine conditions

    Directory of Open Access Journals (Sweden)

    Mahir H. Salmani

    2015-09-01

    Full Text Available The increasing awareness of the depletion of fossil fuel resources and the environmental benefits motivates the use of vegetable oils, however there is little known information about ignition and combustion characteristics of vegetable oil based fuels under off diesel engine conditions. These conditions are normally reached either during starting or when the engine is sufficiently worn out. A fuel was prepared by co-solvent blending of coconut oil with 20% butyl alcohol and was analysed. An experimental study of the measurement of ignition delay (ID characteristics of conical fuel sprays impinging on hot surface in cylindrical combustion chamber was carried out. The objective of the study was to investigate the effect of hot surface temperatures on ignition delays of microemulsion of coconut oil at various ambient air pressures and temperatures which would have reached under off diesel engine conditions. An experimental set-up was designed and developed for a maximum air pressure of 200 bar and a maximum temperature of 800 °C with the emphasis on optical method for the measurement of ignition delay. Hot surface temperature range chosen was 300–450 °C and ambient air pressure (inside the combustion chamber range chosen was 10–25 bar. Present study shows that at fixed injection pressure and fixed ambient (hot surface temperature, at higher ambient air pressure (25 bar inside the combustion chamber, ignition delay of diesel and microemulsion of coconut oil are comparable and therefore are having matching combustion characteristics. Although a pressure of 25 bar is much less than the precombustion pressure of most diesel engines but again conclusively establish that combustion characteristics are same despite lower air pressure, temperature and lower injection pressure. At higher injection pressure ignition delay of microemulsion of coconut oil and pure diesel attains the lower value at the same ambient air pressure inside the

  12. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  13. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  14. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil

    International Nuclear Information System (INIS)

    Lapinskiene, Asta; Martinkus, Povilas; Rebzdaite, Vilija

    2006-01-01

    The goal of this study was to compare diesel fuel to biodiesel fuel by determining the toxicity of analyzed materials and by quantitatively evaluating the microbial transformation of these materials in non-adapted aerated soil. The toxicity levels were determined by measuring the respiration of soil microorganisms as well as the activity of soil dehydrogenases. The quantitative evaluation of biotransformation of analyzed materials was based on the principle of balancing carbon in the following final products: (a) carbon dioxide; (b) humus compounds; (c) the remainder of non-biodegraded analyzed material; and (d) intermediate biodegradation products and the biomass of microorganisms. The results of these studies indicate that diesel fuel has toxic properties at concentrations above 3% (w/w), while biodiesel fuel has none up to a concentration of 12% (w/w). The diesel fuel is more resistant to biodegradation and produces more humus products. The biodiesel is easily biotransformed. - The comparison of diesel and biodiesel fuels' eco-toxicological parameters in non-adapted aerated soil is relevant when considering the effects of these substances on the environment in cases of accidental spills

  15. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  16. The diesel challenge

    International Nuclear Information System (INIS)

    Tobin, Geoff

    1997-01-01

    This article is focused on the challenges being faced by the diesel producer and these include a number of interesting developments which illustrate the highly competitive world of the European refiner. These include: The tightening quality requirements being legislated coupled with the availability of the ''city diesel'' from Scandinavia and elsewhere which is already being sold into the market. For a time there will be a clear means of product differentiation. One of the key questions is whether the consumer will value the quality difference; a growing demand for diesel which is outstripping the growth in gasoline demand and causing refiners headaches when it comes to balancing their supply/demand barrels; the emergence of alternative fuels which are challenging the traditional markets of the refiner and in particular, the niche markets for the higher quality diesel fuels. All of this at a time of poor margins and over-capacity in the industry with further major challenges ahead such as fuel oil disposal, tighter environmental standards and the likelihood of heavier, higher sulphur crude oils in the future. Clearly, in such a difficult and highly-competitive business environment it will be important to find low-cost solutions to the challenges of the diesel quality changes. An innovative approach will be required to identify the cheapest and best route to enable the manufacture of the new quality diesel. (Author)

  17. A Dynamic Model for Road Gasoline and Diesel Consumption: An Application for Spanish Regions

    Directory of Open Access Journals (Sweden)

    Rosa Marina González Marrero

    2012-01-01

    Full Text Available This paper analyzes the factors explaining the aggregate fuel consumption for road transport in Spain in a dynamic panel data framework. Three features on this study are the use of a balanced panel using regional data, the distinction between gasoline and diesel and the specification of a dynamic panel data (DPD model and estimate it by system Generalized Methods of Moments (GMM. Our results show that most explanatory variables are significant in explaining the evolution of gasoline consumption, while diesel consumption is found to be independent of most of these factors. The differences between the markets of the gasoline (most for passenger transport use and the diesel (passenger and freight transport are important could explain the results for the diesel model. Moreover, the intensive dieselization process that has taken place in Spain over the last decade, which has resulted in diesel consumption being exposed to factors - i.e., regulatory - which are not of a strictly economic nature. This finding highlights the need to consider different explanatory variables and models for gasoline and diesel consumption, and to go further in the research. Finally, we find that traditional estimation procedures, such as fixed and random effect estimators, produce important differences with respect to system-GMM, which may even change policy recommendations.

  18. Integration of autothermal diesel reformer for hydrogen production feeding a PEMFC; Integracion de reformador diesel con pilas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, F. I.; Briceno, Y. B.; Navarro, R. M.; Alvarez, C.; Bordons, C.

    2004-07-01

    This paper presents carried out actions to design and construct an autothermal diesel reformer for hydrogen production feeding a PEMFC.These activities have been performed by INTA, AICIA, CIDAUT and ICP-CSIC trough a collaborative effort 50% funded by INTA and by partners as in kind contributions as a function of developed tasks.The paper presents activities carried out to date: selection of a catalyst, simulation of the process, design and construction of a 5 kW autothermal diesel reformer. Reformer will be characterized during the second half of 2004 and, finally, will be installed for a proper operation together with a 5 kW PEMFC at the promises of INTA located in Centro de Experimentacion de Arenosillo at Huelva. (Author)

  19. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  20. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Ilinca, A.; Dimitrova, M.; Perron, J.

    2010-01-01

    Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada . Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

  1. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  2. Investigation of Real-Time Two-Dimensional Visualization of Fuel Spray Liquid/Vapor Distribution via Exciplex Fluorescence.

    Science.gov (United States)

    1987-08-30

    EXCIPLEX FLUORESCENCE ~N 0FINAL REPORT 00 JAMES F. VERDIECK AND ARTHUR A. ROTUNNO UNITED TECHNOLOGIES RESEARCH CENTER 0 AND LYNN A. MELTON D I UNIVERSITY...DOCUMENTATION. "NWA 0. INVESTIGATION OF REAL-TINE TWO-DIMENSIONAL VISUALIZATION OF FUEL SPRAY LIQUID/VAPOR DISTRIBUTION VIA EXCIPLEX FLUORESCENCE FINAL...Spray Liquid/Vapor Distribution Via Exciplex Fluorescen , - 12. PERSONAL AUTHOR(S) J. F. Yeardierk. A- A. Rnriiunn-l L_ A. Millo - 13a TYPE OF REPORT

  3. Successful testing of an emergency diesel generator engine at very low load

    International Nuclear Information System (INIS)

    Killinger, A.; Loeper, St.

    2001-01-01

    For more than 30 years, the nuclear power industry has been concerned about the ability of emergency diesel generator sets (EDGs) to operate for extended periods of time at low loads (typically less than 33% of design rating) and still be capable of meeting their design safety requirement. Most diesel engine manufacturers today still caution owners and operators to avoid running their diesel engines for extended periods of time at low loads. At one nuclear power plant, the emergency electrical bus arrangement only required approximately 25% of the EDG's design rating, which necessitated that the plant operators monitor EDG operating hours and periodically increase electrical load. In order to eliminate the plant operations burden of periodically loading the EDGs, the nuclear power plant decided to conduct a low-load test of a ''spare'' diesel engine. A SACM Model UD45V16S5D diesel engine was returned to the factory in Mulhouse, France where the week long testing at rated speed and 3% of design rating was completed. The test demonstrated that the engine was capable of operating for seven days (168 hours) at very low loads, with no loss of performance and no unusual internal wear or degradation. The planning and inspections associated with preparing the diesel engine for the test, the engine monitoring performed during the test, the final test results, and the results and material condition of the engine following the test are described. The successful diesel engine low-load test resulted in the elimination of unnecessary nuclear power plant operation restrictions that were based on old concerns about long-term, low-load operation of diesel engines. The paper describes the significance of this diesel engine test to the nuclear power plant and the entire nuclear power industry. (author)

  4. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  5. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Science.gov (United States)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  6. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  7. Diesel-generator reliability at nuclear power plants: data and preliminary analysis. Interim report

    International Nuclear Information System (INIS)

    McClymont, A.; McLagan, G.

    1982-06-01

    This report summarizes work performed under RP1233-1 relating to the collection and analysis of data pertaining to diesel generator reliability in nuclear power plants. Drawing from data collected on-site at plants, data supplied by utilites, and data from Licensee Event Reports (LERs), the report describes methods of deriving reliability estimates from data for use in probabilistic risk assessment and presents results when these methods are applied to data collected from 14 plants. Specifically, data are used to estimate diesel failure probabilities for failures to start and failure rates for failures to continue to run. A sampling theory approach and a Bayesian approach to failure probability estimation are compared. The data are used to derive estimates of diesel repair time for some plants, maintenance outages, and multiple diesel failure rates. In addition, a section is included that presents suggestions for failure-rate estimation when an accurate count of diesel start attempts at a plant is not available. The final section presents an analysis of diesel failures based on data from LERs, including a breakdown of failure event by subsystem, failure mode, and failure cause. Appendixes include detailed summaries of the data used in the analysis of previous sections

  8. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil.

    Science.gov (United States)

    Whang, Liang-Ming; Liu, Pao-Wen G; Ma, Chih-Chung; Cheng, Sheng-Shung

    2008-02-28

    This study investigated potential application of two biosurfactants, surfactin (SF) and rhamnolipid (RL), for enhanced biodegradation of diesel-contaminated water and soil with a series of bench-scale experiments. The rhamnolipid used in this study, a commonly isolated glycolipid biosurfactant, was produced by Pseudomonas aeruginosa J4, while the surfactin, a lipoprotein type biosurfactant, was produced by Bacillus subtilis ATCC 21332. Both biosurfactants were able to reduce surface tension to less than 30 dynes/cm from 72 dynes/cm with critical micelle concentration (CMC) values of 45 and 50 mg/L for surfactin and rhamnolipid, respectively. In addition, the results of diesel dissolution experiments also demonstrated their ability in increasing diesel solubility with increased biosurfactant addition. In diesel/water batch experiments, an addition of 40 mg/L of surfactin significantly enhanced biomass growth (2500 mg VSS/L) as well as increased diesel biodegradation percentage (94%), compared to batch experiments with no surfactin addition (1000 mg VSS/L and 40% biodegradation percentage). Addition of surfactin more than 40 mg/L, however, decreased both biomass growth and diesel biodegradation efficiency, with a worse diesel biodegradation percentage (0%) at 400 mg/L of SF addition. Similar trends were also observed for both specific rate constants of biomass growth and diesel degradation, as surfactin addition increased from 0 to 400 mg/L. Addition of rhamnolipid to diesel/water systems from 0 to 80 mg/L substantially increased biomass growth and diesel biodegradation percentage from 1000 to 2500 mg VSS/L and 40 to 100%, respectively. Rhamnolipid addition at a concentration of 160 mg/L provided similar results to those of an 80 mg/L addition. Finally, potential application of surfactin and rhamnolipid in stimulating indigenous microorganisms for enhanced bioremediation of diesel-contaminated soil was also examined. The results confirmed their enhancing capability

  9. Trends in Asian diesel fuel quality

    International Nuclear Information System (INIS)

    Yamaguchi, N.D.

    2000-01-01

    An overview of the Asia-Pacific petrol and diesel markets is presented covering the diesel demand and quality in the sub regions of Australia/New Zealand, East Asia (Japan, China), South Asia, and Southeast Asia (Malaysia, Indonesia, Thailand, Philippines, Singapore) and the trend towards lower sulphur diesels in Asia. Plots are presented illustrating Asia-Pacific diesel demand by regional submarket (1985-2005), the steady reductions in Asia-Pacific diesel sulphur levels (1990-2000), and the average sulphur content and tpd sulphur in Asian diesel

  10. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    Science.gov (United States)

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier

  11. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji; Jaasim, Mohammed; Ahmed, Ahfaz; Hernandez Perez, Francisco; Sim, Jaeheon; Roberts, William L.; Sarathy, Mani; Im, Hong G.

    2018-01-01

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  12. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji

    2018-04-03

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  13. Diesel fuel filtration system

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  14. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  15. Flow structure of steam-water mixed spray

    International Nuclear Information System (INIS)

    Sanada, Toshiyuki; Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki

    2010-01-01

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  16. Flow structure of steam-water mixed spray

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Toshiyuki, E-mail: ttsanad@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan); Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

    2010-12-15

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  17. Setting an Upper Limit on Gas Exchange Through Sea-Spray

    Science.gov (United States)

    Vlahos, P.; Monahan, E. C.; Andreas, E. L.

    2016-02-01

    Air-sea gas exchange parameterization is critical to understanding both climate forcing and feedbacks and is key in biogeochemistry cycles. Models based on wind speed have provided empirical estimates of gas exchange that are useful though it is likely that at high wind speeds of over 10 m/s there are important gas exchange parameters including bubbles and sea spray that have not been well constrained. Here we address the sea-spray component of gas exchange at these high wind speeds to set sn upper boundary condition for the gas exchange of the six model gases including; nobel gases helium, neon and argon, diatomic gases nitrogen and oxygen and finally, the more complex gas carbon dioxide. Estimates are based on the spray generation function of Andreas and Monahan and the gases are tested under three scenarios including 100 percent saturation and complete droplet evaporation, 100 percent saturation and a more realistic scenario in which a fraction of droplets evaporate completely, a fraction evaporate to some degree and a fraction returns to the water side without significant evaporation. Finally the latter scenario is applied to representative under saturated concentrations of the gases.

  18. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  19. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  20. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  1. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  2. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  3. Heavy-Duty Diesel Fuel Analysis

    Science.gov (United States)

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  4. Experimental submarine with closed cycle diesel engine. Final report. Experimentaltauchboot mit Argon-Kreislaufdieselmotor. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.

    1990-08-01

    The Experimental Submarine SEAHORSE-KD is a fully operational autonomous test platform for an air independent propulsion system based on a closed cycle diesel engine. The Argon-Diesel known as MOTARK was a contribution from MAN Technologie AG, Munich, which also included process technology and control. Within the Argon cycle the exhaust gas is cooled down, cleaned from CO{sub 2} in a rotary scrubber and fed into the engine again after addition of oxygen. On surface, the engine can be operated on ambient air. During closed cycle operation, no media are exchanged with the ambient. The process works independently from the depth. Bruker Meerestechnik GmbH had to define the complete vehicle, developed and integrated the subsystems such as the LOX-system, the chemical and condensate plant, the fuel system, the propulsion and the electric system, etc. and carried out extensive workshop tests, shallow water and sea trials. The reliable functioning of the CCD-plant and of the complete Experimental Submarine could be convincingly demonstrated. A certificate has been issued by the Germanischer Lloyd. (orig.) With 90 refs., 15 figs.

  5. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    Energy Technology Data Exchange (ETDEWEB)

    Dane, J.; Voorhees, K. J.

    2010-06-01

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  6. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2013-01-01

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (η th ) are found to have maximum values under these conditions. The emission CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  7. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  8. Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

    Directory of Open Access Journals (Sweden)

    Lucas Eder

    2018-03-01

    Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.

  9. Diesel oil: self sufficiency is possible for Brazil; Oleo diesel: auto-suficiencia e possivel para o Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pascalicchio, Agostinho Celso [AES Eletropaulo Metropolitana - Eletricidade de Sao Paulo, SP (Brazil); Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil)]. E-mail: agostinho.pascalicch@AES.com; Franco, Armando Cesar [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil)]. E-mail: armandofranco@mackenzie.com.br; Bermann, Celio [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia]. E-mail: cbermann@iee.usp.br

    2006-07-01

    This paper addresses to analyze the Brazil possibility to be a self - sufficient diesel oil producer. Diesel increase production as result to modernization effort and technological development implemented by PETROBRAS in its refinery and this increase is greater than internal demand for the product. Furthermore, new alternatives as bio-diesel that is adding to diesel oil up to 2% and vehicular natural gas in urban buses are in implementation process that will allow a decrease in diesel oil demand. With that in the short run Brazil could cease is international condition of oil diesel importer. (author)

  10. Performance evaluation of alternative fuel/engine concepts 1990- 1995. Final report including addendum of diesel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Ikonen, M.; Kytoe, M.; Lappi, M.; Westerholm, M.; Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1996-12-31

    Annex V within the IEA Agreement on Alternative Motor Fuels is the first subtask to generate new experimental data. The objective of the task is to generate information on the emission potential of alternative fuels in severe operating conditions and to evaluate new emission measurement methods. The work was carried out in three phases, Engine Tests, Vehicle Tests and Addendum of Diesel Vehicles. The work was carried out at VTT (Technical Research Centre of Finland) as a cost shared operation. Participants were Belgium (Parts Two and Three), Canada (Parts One and Two), Finland, Italy (Part One), Japan, the Netherlands Sweden and USA. The United Kingdom also joined at the end of the Annex. The work included 143 different vehicle/fuel/temperature combinations. FTP type emission tests were run on 14 vehicles powered with different gasoline compositions, methanol (M50 and M85), ethanol (E85), LPG, CNG and diesel. Both regulated and unregulated emission components were measured using the most up-to-date emissions measurement technology. The results indicated, that today`s advanced gasoline vehicles must be considered rather clean. Diesel is comparable with gasoline in the case of CO and HC. M85 gives low emissions in warm conditions, but unburned methanol must be controlled. Natural gas and LPG are inherently clean fuels which, using up-to-date engine technology, give low emissions in all conditions. (orig.) (29 refs.)

  11. Quality characteristics of alternative diesel from hydrotreatment of used frying oils

    Energy Technology Data Exchange (ETDEWEB)

    Karonis, Dimitrios; Chilari, Despina [National Technical Univ. of Athens (Greece). Lab. of Fuels Technology and Lubricants; Bezergianni, Stella [Center for Research and Technology Hellas (CERTH), Thessaloniki (Greece). Lab. of Environmental Fuels and Hydrocarbons (LEFH)

    2013-06-01

    This paper examines the properties of alternative diesel fuel that is derived from the hydrotreatment of used frying oils (UFO). Used frying oil is a difficult feedstock for biodiesel production. The hydrotreating of UFO converts triglycerides mainly into normal paraffins in the diesel fuel range. The results obtained show that the use of hydrotreated UFO has many advantages in comparison conventional diesel. Particularly, this renewable fuel has an excellent cetane number and cetane index (> 90) justified from its paraffinic character. Furthermore, this finding complies with the lower value of density in comparison to diesel, reinforcing the paraffinic nature of this fuel, comprising straight chain alkanes and negligible content of aromatic hydrocarbons in its composition. Due to the hydrotreating, these fuels do not contain olefinic bonds, therefore they are resistant to oxidation, permitting long term storage abilities. Despite these benefits, there are some considerations from the use of HFOs. Hydrotreating is a process which successfully removes heteroatoms such as S, N, O and eliminates the existence of double unstable bonds, rendering to fuel appreciable characteristics. Unfortunately, these high ignition quality oils suffer from lower lubricity and worse cold flow properties in comparison to diesel, making their use during winter period inevitable. These problems could be addressed by blending hydrotreated UFO with regular diesel. A compromise should be found in order to promote a renewable fuel with lower cetane number but with much better lubricity in order to meet the EN 590 European Standard regarding the main quality characteristics of the final fuel. (orig.)

  12. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    Science.gov (United States)

    2014-06-01

    interrogating the near field of a number of dense sprays including diesel injectors , aerated liquid jets, solid-cone sprays, impinging-jet sprays and gas...Measurements of Mass Distributions in the Near- Nozzle Region of Sprays form Standard Multi-hole Common-rail Diesel Injection Systems,” 11th Triennial...Shear Coaxial Rocket Injectors from X-ray Radiography Measurements 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  13. MEA and DEE as additives on diesel engine using waste plastic oil diesel blends

    Directory of Open Access Journals (Sweden)

    Pappula Bridjesh

    2018-05-01

    Full Text Available Waste plastic oil (WPO is a standout amongst the most promising alternative fuels for diesel in view of most of its properties similar to diesel. The challenges of waste management and increasing fuel crisis can be addressed while with the production of fuel from plastic wastes. This experimental investigation is an endeavour to supplant diesel at least by 50% with waste plastic oil alongside 2-methoxy ethyl acetate (MEA and diethyl ether (DEE as additives. Test fuels considered in this study are WPO, 50D50W (50%Diesel + 50%WPO, 50D40W10MEA (50%Diesel + 40%WPO + 10%MEA and 50D40W10DEE (50%Diesel + 40%WPO + 10%DEE. The test results are compared with diesel. An increase in brake thermal efficiency and abatement in brake specific fuel consumption are seen with 50D40W10MEA, as well as reduction in hydro carbon, carbon monoxide and smoke emissions. 50D40W10DEE showed reduced NOx emission whereas 50D40W10MEA has almost no impact. Engine performance and emission characteristics under different loads for different test fuels are discussed. Keywords: 2-Methoxy ethyl acetate, Diethyl ether, Waste plastic oil, Pyrolysis

  14. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  15. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1996-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  16. Bio-oil fuelled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1997-12-01

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 pyrolysis oil made of wood was tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  17. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  18. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  19. Dazzled by diesel? The impact on carbon dioxide emissions of the shift to diesels in Europe through 2009

    International Nuclear Information System (INIS)

    Schipper, Lee; Fulton, Lew

    2013-01-01

    This paper identifies trends in new gasoline and diesel passenger car characteristics in the European Union between 1995 and 2009. By 2009 diesels had captured over 55% of the new vehicle market. While the diesel version of a given car model may have as much as 35% lower fuel use/km and 25% lower CO 2 emissions than its gasoline equivalent, diesel buyers have chosen increasingly large and more powerful cars than the gasoline market. As a result, new diesels bought in 2009 had only 2% lower average CO 2 emissions than new gasoline cars, a smaller advantage than in 1995. A Laspeyres decomposition investigates which factors were important contributors to the observed emission reductions and which factors offset savings in other areas. More than 95% of the reduction in CO 2 emissions per km from new vehicles arose because both diesel and gasoline new vehicle emissions/km fell, and only 5% arose because of the shift from gasoline to diesel technology. Increases in vehicle mass and power for both gasoline and diesel absorbed much of the technological efficiency improvements offered by both technologies. We also observe changes in the gasoline and diesel fleets in eight EU countries and find changes in fuel and emissions intensities consistent with the changes in new vehicles reported. While diesel cars continue to be driven far farther than gasoline cars, we attribute only some of this difference to a “rebound effect”. We conclude that while diesel technology has permitted significant fuel savings, the switch from gasoline to diesel in the new vehicle market contributed little itself to the observed reductions in CO 2 emissions from new vehicles. - Highlights: ► By 2009 diesels had captured over 55% of the new car market in the EU. ► New diesels in 2009 emitted only 2% lower average CO 2 than new gasoline cars. ► Diesel cars continue to be driven farther than gasoline cars. ► Overall there has been little net CO 2 reduction from the switch to diesels in

  20. An experimental investigation of H{sub 2} emissions of a 2004 heavy-duty diesel engine supplemented with H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gatts, T.; Li, H.; Liew, C.; Liu, S.; Spencer, T.; Wayne, S.; Clark, N. [Department of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV 26506 (United States)

    2010-10-15

    Hydrogen (H{sub 2}) emissions characteristics of H{sub 2}-diesel dual fuel engine were measured using a 2004 turbocharged heavy-duty diesel engine with H{sub 2} supplemented into the intake air. The emissions of H{sub 2} were measured using an Electron Pulse Ionization (EPI) Mass Spectrometer (MS). The effect of the amount of H{sub 2} added, the engine load, and diesel fuel flow rates on the emissions of H{sub 2} and its combustion efficiency in the engine were investigated. The addition of H{sub 2} under high load operation was notable for its ability to obtain high H{sub 2} combustion efficiency and improve brake thermal efficiency. However, the addition of H{sub 2} at low load resulted in high emissions of H{sub 2} due to the failure to initiate and support a sufficiently vigorous flame for the complete combustion of H{sub 2} present outside the diesel spray plume. The maximum H{sub 2} emissions of 1.4% (volume in dry exhaust gas) were observed with the addition of 6% H{sub 2} at 10% load. In comparison, the maximum H{sub 2} emissions of 0.13% were observed when operated at 70% load with the addition of 6% H{sub 2}. The slip of a large percentage of H{sub 2} at low load operation was shown to deteriorate the potential of H{sub 2} in improving the brake thermal efficiency. (author)

  1. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  2. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    OpenAIRE

    Arifin Nur; Yanuandri Putrasari; Iman Kartolaksono Reksowardojo

    2012-01-01

    The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices we...

  3. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Lin, Sheng-Lun; Wang, Lin-Chi

    2013-01-01

    Highlights: • Water-containing ABE solution (W-ABE) in the diesel is a stable fuel blends. • W-ABE can enhance the energy efficiency of diesel engine and act as a green energy. • W-ABE can reduce the PM, NOx, and PAH emissions very significantly. • The W-ABE can be manufactured from waste bio-mass without competition with food. • The W-ABE can be produced without dehydration process and no surfactant addition. - Abstract: Acetone–Butanol–Ethanol (ABE) is considered a “green” energy resource because it emits less carbon than many other fuels and is produced from biomass that is non-edible. To simulate the use of ABE fermentation products without dehydration and no addition of surfactants, a series of water-containing ABE-diesel blends were investigated. By integrating the diesel engine generator (DEG) and diesel engine dynamometer (DED) results, it was found that a diesel emulsion with 20 vol.% ABE-solution and 0.5 vol.% water (ABE20W0.5) enhanced the brake thermal efficiencies (BTE) by 3.26–8.56%. In addition, the emissions of particulate matter (PM), nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs), and the toxicity equivalency of PAHs (BaP eq ) were reduced by 5.82–61.6%, 3.69–16.4%, 0.699–31.1%, and 2.58–40.2%, respectively, when compared to regular diesel. These benefits resulted from micro-explosion mechanisms, which were caused by water-in-oil droplets, the greater ABE oxygen content, and the cooling effect that is caused by the high vaporization heat of water-containing ABE. Consequently, ABE20W0.5, which is produced by environmentally benign processes (without dehydration and no addition of surfactants), can be a good alternative to diesel because it can improve energy efficiency and reduce pollutant emissions

  5. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  6. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  7. Ecological Diesel Now

    International Nuclear Information System (INIS)

    Carta Petrolera

    1999-01-01

    An ACPM (Diesel) lighter and of low contained of sulfur it will begin to elaborate the refinery of Ecopetrol in Barrancabermeja (Colombia); it will be the next product of the refinery that it receives the international certification of insurance of quality ISO-9002. The new ecological product will be dedicated initially to assist the demand in Bogota. Their characteristics understand 340 degrade Celsius of final point of boil and 0, 1% in weight of sulfur, what will contribute to reduce the levels of contamination of the air in the capital. It is the result of several years of the technical personnel's of the refinery investigation, where the distillation units adapted and the advantages that they offer took advantage raw light, of low contained of sulfur and paraffin

  8. A Study on the Influence of Fuel Pipe on Fuel Injection Characteristics of Each Nozzle Hole in Diesel Injector

    Directory of Open Access Journals (Sweden)

    Luo Fuqiang

    2016-01-01

    Full Text Available The inner diameter of high pressure fuel pipe has a significant effect on the fuel injection process and the performance of a diesel engine. The spray impact force of each nozzle hole of a conventional injection system of pump-line-nozzle for diesel engine (based on the spray momentum flux and the injection pressure (on a fuel injection pump test rig were measured. With varying fuel injection quantities and pump speed, the effects of the inner diameter of the high pressure fuel pipe on fuel injection process and the fuel injection characteristics of each nozzle hole were analyzed. It was noted from experimental results that the fuel injection pressure changes with variations in the inner diameter of the high pressure fuel pipe and also the injection duration gradually increases with increase in the inner diameter. At low injection pump speed, even with the same geometric fuel deliver rate, the injection duration also increases gradually. Due to throttling effect and reduction in injection pressure, the fuel injection quantities of the injection nozzle were relatively minimal when the inner diameters of the high pressure fuel pipe were respectively small and large. The optimum injection pipe inner diameter for the right quantity for fuel injection falls between the two cases (between small and large. In addition, the injection rate of each nozzle hole increases with the decrease in angle between the needle axis and each of the nozzle hole axis. The fuel injection quantity of each nozzle hole increases while their relative difference decreases with increasing pump speed.

  9. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  10. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  11. Potential of vetiver (vetiveria zizanioides l.) grass in removing selected pahs from diesel contaminated soil

    International Nuclear Information System (INIS)

    Nisa, W.U.; Rashid, A.

    2015-01-01

    Phytoremediation has been renowned as an encouraging technology for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils, little is known about how plant species behave during the process of PAH phytoremediation. Therefore, the aim of this study was to investigate the effectiveness of vetiver (Vetiveria zizanioides L.) plant in PAH phytoremediation and extraction potential of Vetiveria zizanioides for selected PAHs from the diesel contaminated soil. The field soil samples were spiked with varying concentrations (0.5% and 1%) of diesel and used for pot experiment which was conducted in greenhouse. Vetiver grass was used as experimental plant. Physico-chemical analysis of soil was performed before and after the experiment. Concentration of selected PAHs i.e. phenanthrene, pyrene and benzo(a)pyrene in soil was determined using HPLC. Plant parameters such as root/shoot length and dry mass were compared after harvest. Concentrations of PAHs were also determined in plant material and in soils after harvesting. Result showed that initial concentration of phenanthrene was significantly different from final concentration in treatments in which soil was spiked with diesel. Initial and final concentration of pyrene in soil was also significantly different from each other in two treatments in which soil was spiked with 1% diesel. Pyrene concentration was significantly different in roots and shoots of plants while benzo(a)pyrene concentration in treatments in which soil was spiked with diesel was also significantly different from roots and shoots. Phenanthrene was less extracted by the plant in all the treatments and it was present in higher concentration in soil as compared to plant. Our results indicate that vetiver grass has effectively removed PAHs from soil consequently a significantly higher root and shoot uptake of PAHs was observed than control treatments. Study concludes Vetiveria zizanioides as potentially promising plant specie for the removal

  12. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    Science.gov (United States)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  13. A Study of Spill Control Characteristics of JP-8 and Conventional Diesel Fuel with a Common Rail Direct Injection System

    Directory of Open Access Journals (Sweden)

    Seomoon Yang

    2017-12-01

    Full Text Available Diversification of energy sources is a key task for decreasing environmental impacts and global emission of gases. JP-8, a fuel derived from natural gas, coal, biomass, and waste plastics, is a bright prospect. JP-8 is considered a multi-source multi-purpose fuel, with several applications. A preliminary characterization of the JP-8 injection rate and injection quantity behavior was investigated based on the high-pressure common rail injection system used in a heavy-duty engine. According to the spill injection and injection pressure, a trade-off trend between injection rate and injection quantity was observed. As expected, pilot injection of JP-8 aviation fuel and diesel fuel affects the spray quantity and injection evolution of the subsequent operation without pilot injection. The difference in spilling between diesel and JP-8 aviation fuel is greater than the difference in injection amount per time; in the process of controlling the injector solenoid through ECU (Electric Control Units, the oil pressure valve and the needle valve operate to a higher extent in order to maintain the diesel fuel’s injection quantity volume. It was found that the total injection quantity was decreased by adding 20% pilot injection duration. Because the pilot injection quantity causes solenoid response, loss and needle lift stroke friction loss.

  14. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    Science.gov (United States)

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  16. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products.

    Science.gov (United States)

    Lim, Kar; Ma, Mitzi; Dolan, Kirk D

    2011-09-01

    The effect of spray drying on degradation of nutraceutical components in cull blueberry extract was investigated. Samples collected before and after spray drying were tested for antioxidant capacity using oxygen radical absorbance capacity (ORAC(FL) ) and total phenolics; and for individual anthocyanidins. In Study 1, four different levels of maltodextrin (blueberry solids to maltodextrin ratios of 5: 95, 10: 90, 30: 70, and 50: 50) were spray dried a pilot-scale spray dryer. There was significantly higher retention of nutraceutical components with increased levels of maltodextrin indicating a protective effect of maltodextrin on the nutraceutical components during spray drying. In Study 2, the air inlet temperature of the spray dryer was kept constant for all runs at 150 °C, with 2 different outlet temperatures of 80 and 90 °C. The degradation of nutraceutical components was not significantly different at the 2 selected outlet temperatures. ORAC(FL) reduction for blueberry samples after spray drying was 66.3% to 69.6%. After spray drying, total phenolics reduction for blueberry was 8.2% to 17.5%. Individual anthocyanidin reduction for blueberry was 50% to 70%. The experimental spray dried powders compared favorably to commercial blueberry powders. Results of the study show that use of blueberry by-products is feasible to make a value-added powder. Results can be used by producers to estimate final nutraceutical content of spray-dried blueberry by-products. © 2011 Institute of Food Technologists®

  17. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  18. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  19. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Science.gov (United States)

    2010-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  20. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  1. Radium in diesel oil

    International Nuclear Information System (INIS)

    Kulich, J.

    1977-05-01

    In order to determine the addition of radon and radium to the air in mines, originatiny from the combustion of petroleum, measurements of the content of radium in diesel oil have been performed. Knowing the radium content theradon content can easily be calculated. The procedures used for the chemical analysis of radium is desribed. The ash remaining after combustion of the diesel oil is soluted in water and radium is precipiated as sulphate. The radium is detected by a ZnS (Ag) detector. The diesel oils from different petroleum companies contained between o.019-0.5pCi radium - 226. The conclution is that the consumption of diesel oils in motors used in mines does not contribute to the radium - 226 content at the air move than permissible according to norms.(K.K.)

  2. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  3. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  4. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  6. Isolation and Screening of Diesel-Degrading Bacteria from the Diesel Contaminated Seawater at Kenjeran Beach, Surabaya

    Directory of Open Access Journals (Sweden)

    Pratiwi Putri Pranowo

    2016-07-01

    Full Text Available Samples of contaminated seawater by diesel were taken at Kenjeran Beach Surabaya using aseptic technique. Isolation was conducted using serial dilution and spread method on nutrient agar (NA media. The all bacteria colony were devided in to group based on with morphological characterization and gram staining. After that, those bacterial colonies were tested individually in NA media containing different concentration of diesel (2, 4, 6, 8, and 10% for up to 7 days at 30°C. The results showed that eight bacterial strains were isolated from diesel contaminated seawater in Kenjeran Beach Surabaya. Screening on diesel showed that all the isolation bacteria were capable of degrading diesel and bacteria with code of B and E haves highly percentage growth in compared to other bacterial isolation. In conclusion, bacteria with code of B and E have potential to be used in diesel bioremediation in contaminated seawater.

  7. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  8. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme

    DEFF Research Database (Denmark)

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling

    2016-01-01

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co...... the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme......-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed...

  9. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  10. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  11. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  12. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Barrutia, O.; Garbisu, C.; Epelde, L.; Sampedro, M.C.; Goicolea, M.A.; Becerril, J.M.

    2011-01-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg -1 DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 o C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m -2 s -1 ) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F v /F m ), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  14. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    Raheman, H.; Phadatare, A.G.

    2004-01-01

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NO x to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  15. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  16. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  17. Pulsed Plasma Processing of Diesel Engine Exhaust Final Report CRADA No. TC-0336-92-1-C

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Bernard T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Broering, Louis [Cummins Engine Company, Inc., Columbus, IN (United States)

    2017-11-09

    The goal was to develop an exhaust-gas treatment process for the reduction of NOx and hydrocarbon from diesel engines. The project began believing that direct chemical reduction on NOx was possible through the use of non-thermal plasmas. The original CRADA began in 1993 and was scheduled to finish in 1996. It had as its goals three metrics: 1) remove two grams/brake-horse-power-hour of NOx, 2) have no more than five percent energy penalty, and 3) cost no more than ten percent of the engine cost. These goals were all aimed at heavy-duty diesel trucks. This CRADA had its Defense Program funding eliminated by DOE prior to completion in 1995. Prior to loss of funding from DOE, LLNL discovered that due to the large oxygen content in diesel exhaust, direct chemical reduction was not possible. In understanding why, a breakthrough was achieved that combined the use of a non-thermal plasma and a catalyst. This process was named Plasma Assisted Catalytic Reduction (P ACR). Because of this breakthrough, the CRADA became a funds-in only CRADA, once DOE DP funding ended. As a result, the funding decreased from about 1M dollars per year to about $400k per year. Subsequently, progress slowed as well. The CRADA was amended several times to reflect the funds-in nature. At each amendment, the deliverables were modified; the goals remained the same but the focus changed from heavy-duty to lightduty to SUVs. The diesel-engine NOx problem is similar to the furnace and boiler NOx emission problem with the added constraint that ammonia-like additives are impractical for a mobile source. Lean-burning gasoline engines are an additional area of application because the standard three-way catalyst is rendered ineffective by the presence of oxygen. In the P ACR process an electrical discharge is used to create a non-thermal plasma that contains oxidative radicals O and OH. These oxidative radicals convert NO to NO2. Selective catalytic

  18. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  19. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  20. Etudes théoriques et expérimentales de la combustion dans les moteurs Diesel d'automobiles à injection directe et à préchambre Theoretical and Experimental Research on Combustion in Diesel Automotive Engines with Direct Injection and a Prechamber

    OpenAIRE

    Douaud A.; Pinchon P.

    2006-01-01

    Certaines techniques récemment développées pour la modélisation mathématique et les investigations expérimentales sur moteur Diesel sont présentées. On insiste sur l'importance de la validation croisée entre calcul et mesure. Taux d'injection, aérodynamique interne, développement du spray sont analysés en relation avec la géométrie des chambres de combustion. Des exemples, portant principalement sur des considérations de rendement énergétiques et d'émissions polluantes sont présentés à la foi...

  1. An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine

    Directory of Open Access Journals (Sweden)

    Xiao Helin

    2017-01-01

    Full Text Available Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.

  2. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  3. Practical experience with measurement of diesel engine smoke pursuant to ECE-R 24

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, W

    1975-01-01

    Since the ECE regulation 24 demands that diesel smoke of automobiles be measured with opacimeters or units yielding equivalent results, the smoke density of diesel engines was measured with opacimeters and filter units for comparison. Conversion tables, comparative curves, and calculations are provided permitting the conversion of grey tones into opacity units with an accuracy sufficient for practical use. The correlation of measurements obtained with the filters and opacimeters was studied during operation at constant full load and at free acceleration. A relationship could be found in most cases; however, it provided no basis for setting up correlations. Finally, smoke characteristics of induction diesel engines were compared with supercharged engines at different geographical altitudes, based upon practical road tests in the Grossglockner mountains. A linear smoke increase with increasing altitude or decreasing air density was observed.

  4. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  5. Reliability of the emergency diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    Verstegen, C.; Kotthoff, K. [Gesellschaft fuer Reaktorsicherheit - GRS mbH, Schwertnergasse 1, D-5000 Koeln 1, Cologne (Germany)

    1986-02-15

    The paper deals with a statistical investigation on the availability of diesel generators, which has been performed recently The investigation is based on the operating experiences of a total of 40-diesel generators in 10 German NPP's. Both unavailability of the diesel generators due to failures and due to maintenance and repair have been considered.The probability of diesel failure during start and short-time operation amounts?o about 8 x 10{sup -3}/demand. The probability of common mode failures is approximately one order of magnitude smaller. The influence of various parameters on the failure probability has been discussed. A statistically significant dependence could not be identified In addition the investigation shows that the unavailability of the diesel generators due to maintenance and repair is about of the same order magnitude as the probability of diesel failures. (authors)

  6. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  7. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  8. The design and scale-up of spray dried particle delivery systems.

    Science.gov (United States)

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2018-01-01

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  9. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    OpenAIRE

    S Abbasi; H Bahrami; B Ghobadian; M Kiani Deh Kiani

    2018-01-01

    Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel a...

  10. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2010-01-01

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.

  11. Research on the Diesel Engine with Sliding Mode Variable Structure Theory

    Science.gov (United States)

    Ma, Zhexuan; Mao, Xiaobing; Cai, Le

    2018-05-01

    This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  12. 40 CFR 1065.703 - Distillate diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Distillate diesel fuel. 1065.703... Standards § 1065.703 Distillate diesel fuel. (a) Distillate diesel fuels for testing must be clean and... distillate diesel fuels: (1) Cetane improver. (2) Metal deactivator. (3) Antioxidant, dehazer. (4) Rust...

  13. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  14. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  15. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  16. 30 CFR 72.520 - Diesel equipment inventory.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment underground, shall prepare and submit in writing to the District Manager, an inventory of diesel equipment...

  17. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel are hereby individually designated: (1) Motor vehicle diesel fuel, grade 1-D; (2) Motor vehicle diesel...

  18. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  19. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  20. Development of multi-component diesel surrogate fuel models – Part I: Validation of reduced mechanisms of diesel fuel constituents in 0-D kinetic simulations

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Pang, Kar Mun; Ng, Hoon Kiat

    2016-01-01

    In the present work, development and validation of reduced chemical kinetic mechanisms for several different hydrocarbons are performed. These hydrocarbons are potential representative for practical diesel fuel constituents. n-Hexadecane (HXN), 2,2,4,4,6,8,8-heptamethylnonane (HMN), cyclohexane...... (CHX) and toluene are selected to represent straight-alkane, branched-alkane, cyclo-alkane and aromatic compounds in the diesel fuel. A five-stage chemical kinetic mechanism reduction scheme formulated in the previous work is applied to develop the reduced HMN and CHX models based on their respective...... detailed mechanisms. Alongside with the development of the reduced CHX model, a skeletal toluene sub-mechanism is constructed since the elementary reactions for toluene are subset of the detailed CHX mechanism. The final reduced HMN mechanism comprises 89 species with 319 elementary reactions, while...

  1. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Energy Technology Data Exchange (ETDEWEB)

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    From the very beginning, diesel drivetrains have been important components of the BMW EfficientDynamics strategy. High levels of driving dynamics in combination with attractive fuel consumption have become features of a wide range of models. With the introduction of 2-stage turbocharging for passenger car diesel engines in 2004, BMW was able to significantly enhance the power density without increasing the number of cylinders or the cylinder capacity. In the meantime, the BMW TwinPower Turbo diesel engine variants achieve a rated power of up to 160 kW on the 2.0-litre 4-cylinder engine and 230 kW on the 3.0-litre 6-cylinder engine. In order to extend the leading position in the premium segment, a new BMW TwinPower Turbo variant has been developed. The major objectives were to achieve a range of power output, torque and comfort at least at the level of 8-cylinder competitors, but at the same time equal the lower fuel consumption and power/weight ratio that is typical for existing BMW 6-cylinder diesel engines. The new engine will be used for the first time in the emphatically sports-oriented BMW M Performance Automobiles (MPA) of the X5/X6 and 5 Series. The charging and injection technology as well as capability of high cylinder pressures in the core engine are key technologies for the enhancement of performance. The new BMW TwinPower Turbo diesel drivetrain is based on the main dimensions of the existing 3.0-litre 6-cylinder inline diesel engines. The core element of the new engine is a 2-stage turbocharging system, consisting of 3 exhaust turbochargers. A common rail injection system with a system pressure up to 2200 bar is deployed for the first time. The drive unit has been configured for a maximum cylinder pressure of 200 bar, an innovative feature is the aluminium crankcase with its screwed tension anchor connection. The cooling system contains an indirect 2-stage intercooler. The exhaust system of the new BMW diesel engine in the 5 Series is equipped as

  2. Hydrodesulfurization device for diesel fuel

    International Nuclear Information System (INIS)

    Al Asadi, Nadija

    2004-01-01

    New gas oil hydrodesulfurization unit was erected in OKTA Refinery. This unit is meant to produce low sulfur diesel. Capacity of the unit s 363.000 tons. Actually unit is producing diesel fuel with sulfur content of 0.035% wt, with possibility of decreasing sulfur content up to 0.005% wt. With this possibility OKTA reaches the target to supply market with diesel fuel satisfying local, and European fuel specifications. Feedstock for this unit are two gas oil fractions from the Crude oil atmospheric distillation column. As a result of new generation of CoMo and NiMo catalysts performance, high degree of desulfurization is reached at lower temperatures. Milder conditions enables longer operating period between two regenerations, savings of fuel, power etc. With further investments, and practically without changes, the unit will be able of producing diesel with sulfur content of 50 ppm and later with upgrading, 10 ppm. This means that OKTA has solved diesel quality problem for longer period. (Author)

  3. Evaluation of Emissions Bio diesel

    International Nuclear Information System (INIS)

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-01-01

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs

  4. Evaluation of Emissions Bio diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J J; Dorronsoro Arenal, J L; Rojas Garcia, E; Perez Pastor, R; Garcia Alonso, S

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  5. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  6. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  7. Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melting

    Science.gov (United States)

    Bagherifard, Sara; Roscioli, Gianluca; Zuccoli, Maria Vittoria; Hadi, Mehdi; D'Elia, Gaetano; Demir, Ali Gökhan; Previtali, Barbara; Kondás, Ján; Guagliano, Mario

    2017-10-01

    Cold spray offers the possibility of obtaining almost zero-porosity buildups with no theoretical limit to the thickness. Moreover, cold spray can eliminate particle melting, evaporation, crystallization, grain growth, unwanted oxidation, undesirable phases and thermally induced tensile residual stresses. Such characteristics can boost its potential to be used as an additive manufacturing technique. Indeed, deposition via cold spray is recently finding its path toward fabrication of freeform components since it can address the common challenges of powder-bed additive manufacturing techniques including major size constraints, deposition rate limitations and high process temperature. Herein, we prepared nickel-based superalloy Inconel 718 samples with cold spray technique and compared them with similar samples fabricated by selective laser melting method. The samples fabricated using both methods were characterized in terms of mechanical strength, microstructural and porosity characteristics, Vickers microhardness and residual stresses distribution. Different heat treatment cycles were applied to the cold-sprayed samples in order to enhance their mechanical characteristics. The obtained data confirm that cold spray technique can be used as a complementary additive manufacturing method for fabrication of high-quality freestanding components where higher deposition rate, larger final size and lower fabrication temperatures are desired.

  8. Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine.

    Science.gov (United States)

    Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar

    2017-07-01

    In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.

  9. One step processing for future diesel specifications

    International Nuclear Information System (INIS)

    Brierley, G.R.

    1997-01-01

    The trend in diesel fuel specifications is to limit the sulfur level to less than 0.05 wt- per cent. Many regions have also specified that diesel fuels must have lower aromatic levels, higher cetane numbers, and lower distillation end points. These changes will require significant refinery investment to meet the new diesel fuel specifications. The changes may also significantly affect the value of synthetic crude stocks. UOP has developed a new hydroprocessing catalyst which makes it possible to meet the new diesel specifications in one single processing step and at minimal cost. The catalyst saturates aromatics while opening ring structures at the same time. By selectively cracking heavy components into the diesel range with minimal cracking to gas or naphtha, heavier feedstocks can be upgraded to diesel, and refinery diesel yield can be augmented. Synthetic crude distillate is often high in aromatics and low in cetane number. This new UOP hydroprocessing system will allow synthetic crude producers and refiners to produce diesel fuels with higher cetane numbers, high-quality distillate blendstocks and distillate fuels. 26 figs

  10. Diesel Consumption of Agriculture in China

    Directory of Open Access Journals (Sweden)

    Shusen Gui

    2012-12-01

    Full Text Available As agricultural mechanization accelerates the development of agriculture in China, to control the growth of the resulting energy consumption of mechanized agriculture without negatively affecting economic development has become a major challenge. A systematic analysis of the factors (total power, unit diesel consumption, etc. influencing diesel consumption using the SECA model, combined with simulations on agricultural diesel flows in China between 1996 and 2010 is performed in this work. Seven agricultural subsectors, fifteen categories of agricultural machinery and five farm operations are considered. The results show that farming and transportation are the two largest diesel consumers, accounting for 86.23% of the total diesel consumption in agriculture in 2010. Technological progress has led to a decrease in the unit diesel consumption and an increase in the unit productivity of all machinery, and there is still much potential for future progress. Additionally, the annual average working hours have decreased rapidly for most agricultural machinery, thereby influencing the development of mechanized agriculture.

  11. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  12. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  13. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  14. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Hyun; Cha, June Pyo [Graduate School of Hanyang University, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea)

    2010-11-15

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors ({theta}{sub spray} = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle ({theta}{sub spray} = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors ({theta}{sub spray} = 70 and 60 ) is increased, as compared to the results of the wide-angle injector ({theta}{sub spray} = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO{sub x} emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With

  15. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    International Nuclear Information System (INIS)

    Yoon, Seung Hyun; Cha, June Pyo; Lee, Chang Sik

    2010-01-01

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors (θ spray = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle (θ spray = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors (θ spray = 70 and 60 ) is increased, as compared to the results of the wide-angle injector (θ spray = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO x emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With advanced timing of the first injection, narrow

  16. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-01-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  17. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    Science.gov (United States)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  18. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    International Nuclear Information System (INIS)

    Yun, Young-Chul; Chung, Woo-Geun

    2016-01-01

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m 3 /hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability

  19. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young-Chul; Chung, Woo-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m{sup 3}/hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability.

  20. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings