WorldWideScience

Sample records for diesel fuel oil

  1. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  2. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  3. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  4. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  5. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  6. Fuel oil systems for standby diesel-generators

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides the design requirements for fuel oil system for diesel-generators that provide standby power for a nuclear power generating station. The system includes all essential equipment from and including fuel oil storage tanks up to the terminal connection on the diesel-engine. It does not include that portion of the fuel oil system supplied by the diesel-generator manufacturer which is in accordance with Trial-Use Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations, IEEE-387-1972. This definition of scope is intended to exclude only those factory-assembled, engine-mounted appurtances supplied with a diesel-generator unit. Integral tanks are, however, within the scope of this Standard. It also excludes motors, motor control centers, switchgear, cables, and other electrical equipment which is used in operation of the fuel oil system, except to define interface requirements

  7. Cottonseed oil as a diesel-engine fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Staph, H.E.; Staudt, J.J.

    1982-07-31

    If diesel fuel becomes unavailable for any reason, can diesel powered farm equipment function on alternate fuels from energy crops that are available on the farm. This project sought to gain some insight into this question through the use of once-refined cottonseed oil as fuel in a typical unmodified agricultural diesel engine. The engine used for test was an International Harvester Model DT-436B 6 cylinder, inline, direct injection, turbocharged engine of approximately 175 brake horsepower at 2500 rpm. The engine was run on a stationary stand using blends of reference diesel fuel (DF-2), once-refined cottonseed oil (CSO), and transesterified cottonseed oil (ESCO). The latter is cottonseed oil which has been processed to give a methyl ester instead of a glyceride. The volume percent blends of fuels used in the tests ranged from 100% DF-2, to 20/80 DF-2/CSO, 50/50 DF-2/ESCO, 50/50 CSO/ESCO, and 100% ESCO. The test procedures and results are presented in this volume. The results suggest that ESCO would probably be a satisfactory substitute for diesel fuel, but more testing is required. None of the fuels tested is a cost effective alternative to diesel fuels. ESCO presently costs four to five times as much as commercial diesel fuel.

  8. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    OpenAIRE

    M. Z. H. Khan; M. Sultana; M. R. Al-Mamun; M. R. Hasan

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330?490?C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards AS...

  9. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  10. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  11. Fueling diesel engines with methyl-ester soybean oil

    International Nuclear Information System (INIS)

    Schumacher, L.G.; Hires, W.G.; Borgelt, S.C.

    1993-01-01

    Two 5.9 liter Cummins engines were fueled for a combined total of more than 80,467 km (50,000 miles). One truck, a 1991 Dodge, has been driven approximately 48,280 km (30,000 miles). The other, a 1992 Dodge, has been driven approximately 32,187 km (20,000 miles). Fueling these engines with soydiesel increase engine power by 3 percent (1991 engine) and reduced power by 6 percent (1992 engine). The pickups averaged more than 7.1 km/L (16.7 mpg). Analysis of used engine oil samples indicated that the engines were wearing at normal rate. The black exhaust smoke normally observed when a diesel engine accelerates was reduced as much as 86 percent when the diesel engine was fueled with 100% soydiesel. Increased EPA exhaust emissions requirements for diesel engines have created much interest in the use of soydiesel as fuel for diesel engines

  12. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available The authors introduced waste plastic pyrolysis oil (WPPO as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%, and carbon residue of 0.5 (wt%, and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  13. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  14. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  15. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  16. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  17. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  18. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  19. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  20. Cottonseed oil as a diesel-engine fuel. Part 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Staph, H.E.; Staudt, J.J.

    1982-07-31

    This appendix, Volume 2 of a 2 volume report, contains the original data and the methods used to reduce the data obtained in performance tests on diesel engines fueled by diesel fuel, cottonseed oil, and mixtures of these fuels. (LCL)

  1. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  2. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  3. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  4. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  5. Thermally decomposed ricebran oil as a diesel fuel

    Directory of Open Access Journals (Sweden)

    Megahed, O. A.

    1998-04-01

    Full Text Available Ricebran oil; a non edible oil, was thermally decomposed using different loads of calcium oxide as catalyst. The fuel properties of the cracked product were evaluated as compared to those of diesel fuel. The considered properties included the calorific value, flash point, viscosity, pour point, distillation characteristics, cetane number in addition to some other fuel properties. The results had shown that the fuel properties of the decomposed oil were quite similar to those of standard diesel fuel. The calorific value was 80-90% that of diesel fuel and the viscosity was sligthy higher. The prepared fuel was advantageous over diesel fuel as the former was completely free from sulfur, which on fuel combustion produces corrosive gases of sulfur oxides.

    Aceite de germen de arroz, un aceite no comestible, fue descompuesto térmicamente usando diferentes cantidades de óxido cálcico como catalizador. Las propiedades combustibles del producto craqueado fueron evaluadas comparándolas con las del gasóleo. Las propiedades consideradas incluyeron el poder calorífico, punto de inflamación, viscosidad, temperatura de fluidez crítica, características de destilación, número de cetano y otras propiedades de los combustibles. Los resultados han mostrado que las propiedades combustibles del aceite descompuesto fueron bastantes similares a la de los gasóleos estándar. El poder calorífico fue del 80-90% de la del gasóleo y la viscosidad ligeramente mayor. El combustible preparado fue ventajoso sobre el gasóleo ya que el primero estaba completamente libre de sulfuro, el cual produce en la combustión del carburante gases corrosivos de óxido de azufre.

  6. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  7. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Đặng Van Uy

    2018-03-01

    Full Text Available The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixed fuel supplying to diesel engines inline. In order to ensure a quality of the mixed fuel created by continuous mixer, a homogeneous testing was introduced with believable results. Then, the continuous mixer has been installed into fuel supply system of diesel engine 6LU32 at a lab of Vietnam Maritime University in terms of checking a real operation of the fuel continuous mixer with diesel engine.

  8. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2006-01-01

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  9. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  10. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  11. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    OpenAIRE

    Đặng Van Uy; Tran The Nam

    2018-01-01

    The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixe...

  12. Low - temperature properties of rape seed oil biodiesel fuel and its blending with other diesel fuels

    International Nuclear Information System (INIS)

    Kampars, V.; Skujins, A.

    2004-01-01

    The properties of commercial bio diesel fuel depend upon the refining technique and the nature of the renewable lipids from which it is produced. The examined bio diesel fuel produced from rape seed oil by the Latvian SIA 'Delta Riga' has better low-temperature properties than many other bio diesels; but a considerably higher cloud point (-5,7 deg C), cold filter plugging point (-7 deg C) and pour point (-12 deg C) than the examined petrodiesel (grade C, LST EN 590:2000) from AB 'Mazeikiu nafta'. The low-temperature properties considerably improve if blending of these fuels is used. The blended fuels with bio diesel contents up to 90% have lower cold filter plugging points than petrodollar's. The estimated viscosity variations with temperature show that the blended fuels are Arrenius-type liquids, which lose this property near the cold filter plugging point. (authors)

  13. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  14. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  15. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  16. Breakup mechanisms of electrostatic atomization of corn oil and diesel fuel

    Science.gov (United States)

    Malkawi, G.; Yarin, A. L.; Mashayek, F.

    2010-09-01

    High-viscosity organic oils may be considered as an alternative to the ordinary diesel fuel. These organic oils and the diesel fuel are all Newtonian liquids; however, viscosity values of the organic oils are more than 20 times higher than that of the diesel fuel. In the present work, the electrostatic atomization of corn oil jets is studied and compared to the electrostatic atomization of diesel fuel jets. The experimental data revealed that in addition to the varicose breakup of straight jets, bending modes set in and grow in conjunction with the varicose undulations. Bending instability, kindred to the aerodynamically-driven bending instability of high-speed liquid jets moving in air, and to the electrically-driven bending instability of polymer jets in electrospinning, is significantly more pronounced in the case of the highly-viscous corn oil jets than in diesel jets. The experimental results are interpreted using the theory of bending instability developed previously for electrospinning.

  17. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  18. Effect of the Rapeseed Oil Methyl Ester Component on Conventional Diesel Fuel Properties

    OpenAIRE

    Kumbár V.; Votava J.

    2015-01-01

    The effect of the rapeseed oil methyl ester (RME) component in diesel fuel was assessed. Dynamic viscosity and density of blends were particularly observed. Measurements were performed at standard constant temperature. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In the case of pure RME, pure diesel fuel, and the blend of both, temperature dependence of dynamic viscosity and density was examined. Considerable temperature d...

  19. Utilizing Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel for industrial steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Archie B. Maglaya [De La Salle University, Manila (Philippines). Department of Mechanical Engineering

    2005-01-01

    The fast depletion of fuel oil and the continuous increase in the demand for power is a global issue. In the Philippines, the demand for diesel oil is expected to increase significantly in a 20-year period as projected by the Department of Energy. In line with the Philippine Government's thrust to lessen the dependence on imported energy, the agenda for the search for alternative fuel is highly prioritized. Thus, this paper presents the results of the study on performance analysis and efficiency test of a diesel oil fired industrial steam generator using Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel. A computer program was developed in HyperText Markup Language (HTML{copyright}) and JavaScript{copyright} to aid the computation of the adiabatic flame temperature from the governing system of equations based on the heat interaction between CDOM fuel, combustion air and products of combustion to determine the most desirable alternative fuel. Actual experimentation for the determination of CDOM fuel properties was also conducted to verify the alternative fuel selected through theoretical calculations. Results showed that the CDOM fuel with a particle size passing 75 {mu}m (-200 mesh) sieve having a proportion of 5% pulverized coal-95% diesel oil and 10% pulverized coal-90% diesel oil could be handled throughout the test with no degradation of the industrial steam generator. The steam generator efficiency using diesel oil is close to the steam generator efficiency using both CDOM fuels. 20 refs., 5 figs., 4 tabs.

  20. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Science.gov (United States)

    2010-07-01

    ..., fuel oil (diesel and burner), kerosene, and solvents. 101-26.602-3 Section 101-26.602-3 Public... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a...,000 Diesel oil 10,000 Kerosene 10,000 Solvents 500 (2) Estimates shall not be submitted when the...

  1. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Janke, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Connatser, Raynella M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Lewis, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Gaston, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center

    2017-12-22

    We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  2. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Connatser, Raynella M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Lewis, Samuel Arthur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Gaston, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center

    2017-12-05

    We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  3. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  4. Caracterización de un motor diesel trabajando con mezclas de aceite de Jatropha y combustible diesel Characterization of a diesel engine fueled with Jatropha oil and diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Michel Errasti Cabrera

    2013-09-01

    Full Text Available El presente trabajo tiene como objetivo caracterizar el desempeño de un motor diesel en cuanto a sus prestaciones y al retardo de la ignición, al operar bajo diferentes regímenes de carga, empleando mezclas de aceite de Jatropha y combustible diesel. Para esto se determinó la característica exterior de velocidad al emplear las mezclas, y se compararon estos resultados con los obtenidos durante los ensayos con combustible diesel patrón; estableciendo el grado de afectación del motor al sustituir parte del combustible diesel por aceite de Jatropha. Se observó una disminución del torque y la potencia efectiva, y un aumento del consumo específico de combustible al emplear un mayor porciento de aceite de Jatropha en las mezclas. Por otra parte, en comparación con el combustible diesel, el retardo de la ignición no mostró una variación significativa al emplear las mezclas de aceite de Jatropha y combustible diesel.  The present study aims to characterize the benefits of a diesel engine in terms of performance and ignition delay, operating under different loading regimes, using Jatropha oil and diesel fuel blends. We determined the speed exterior feature when using mixtures, and compared these results with those obtained during tests with standard diesel fuel, establishing the degree of involvement of the engine to replace some diesel fuel for Jatropha oil. There was a decrease in the torque and effective power, and increased specific fuel consumption by using a higher percentage of Jatropha oil in blends. Moreover, compared to diesel fuel, the ignition delay showed no significant variation by employing Jatropha oil and diesel fuel blends.Key words: Jatropha curcas oil, outer velocity characteristic, diesel engine, ignition delay.

  5. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Yasar, Abdulkadir; Guerue, Metin; Altiparmak, Duran

    2010-01-01

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO x emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO 2 emissions did not vary with the blend fuels significantly.

  6. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali; Yasar, Abdulkadir [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2010-12-15

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO{sub x} emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO{sub 2} emissions did not vary with the blend fuels significantly. (author)

  7. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-08-18

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.

  8. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  9. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  10. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  11. Caracterización de un motor diesel trabajando con mezclas de aceite de Jatropha y combustible diesel ; Characterization of a diesel engine fueled with Jatropha oil and diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Michel Errasti Cabrera

    2013-10-01

    Full Text Available El presente trabajo tiene como objetivo caracterizar el desempeño de un motor diesel en cuanto a sus prestaciones y al retardo de la ignición, al operar bajo diferentes regímenes de carga, empleando mezclas de aceite de Jatropha y combustible diesel. Para esto se determinó la característica exterior de velocidad al emplear las mezclas, y se compararon estos resultados con los obtenidos durante los ensayos con combustible diesel patrón; estableciendo el grado de afectación del motor al sustituir parte del combustible diesel por aceite de Jatropha. Se observó una disminución del torque y la potencia efectiva, y un aumento del consumo específico de combustible al emplear un mayor porciento de aceite de Jatropha en las mezclas. Por otra parte, en comparación con el combustible diesel, el retardo de la ignición no mostró una variación significativa al emplear las mezclas de aceite de Jatropha y combustible diesel.The present study aims to characterize the benefits of a diesel engine in terms of performance and ignition delay, operating under different loading regimes, using Jatropha oil and diesel fuel blends. We determined the speed exterior feature when using mixtures, and compared these results with those obtained during tests with standard diesel fuel, establishing the degree of involvement of the engine to replace some diesel fuel for Jatropha oil. There was a decrease in the torque and effective power, and increased specific fuel consumption by using a higher percentage of Jatropha oil in blends. Moreover, compared to diesel fuel, the ignition delay showed no significant variation by employing Jatropha oil and diesel fuel blends.

  12. Preparation and research on properties of castor oil as a diesel fuel additive

    OpenAIRE

    Nurbakhit Imankulov

    2012-01-01

    The research shows an opportunity of preparing biodiesel fuel on the basis of local diesel fuel and the bioadditive - castor oil. Limiting optimum concentration of introduction of the bioadditive equal was established as 5% mass ratio. The castor oil released from seeds of Palma Christi grown on experimental field. All physical and chemical characteristics of the oil including IR-spectra were determined. Operating conditions of castor oil introduction (temperature, solubility, concentra-tion,...

  13. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Automotive Division, Department of Mechanical Education, Marmara University, Ziverbey, 34722 Istanbul (Turkey)

    2008-11-15

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  14. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    International Nuclear Information System (INIS)

    Gumus, M.

    2008-01-01

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  15. Experimental investigation of kapok (Ceiba pentandra) oil biodiesel as an alternate fuel for diesel engine

    International Nuclear Information System (INIS)

    Vedharaj, S.; Vallinayagam, R.; Yang, W.M.; Chou, S.K.; Chua, K.J.E.; Lee, P.S.

    2013-01-01

    Highlights: • Kapok (C. pentandra) oil, an indigenous source, has been used to synthesis biodiesel. • A different method has been availed to extract oil from the kapok seeds. • Kapok methyl ester (KME) is tested for the first time in a diesel engine. • Brake thermal efficiency for B25 blend of KME is noticed to be 4% higher than diesel. • Combustion and emission results for B25 blend of KME are almost comparable to diesel. - Abstract: This manuscript explores the possibility of using kapok oil as a source for biodiesel production and experimentally investigate it, KME (kapok oil methyl ester), as a diesel engine fuel. Distinctly, this manuscript is novel on the basis of adopting a different approach in extracting oil from kapok seeds and testing of the produced KME in a diesel engine, perhaps for the first time. Accordingly, kapok oil, an indigenous source, has been extracted from kapok seeds through steam treatment process followed by crushing in an expeller, which has not been considered so far by researchers. Significantly, this method is chosen with the intent to extract oil for its use in diesel engine. Typically, KME is synthesized by trans-esterification process, and the properties of it, evaluated by ASTM standard methods, are in concordance with biodiesel standards. Having ensured the feasibility of its use in diesel engine, KME is tested in a single cylinder diesel engine to appraise the performance, combustion and emission characteristics of the engine. The experimental investigation reveals that the thermal efficiency of the engine for B25 is superior to conventional diesel by 4%. In the same token, the emission and combustion results of lower blend of KME (B25), showed comparable results with diesel, making KME as one of the pertinent fuel for diesel engine

  16. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  17. Vegetable Oil Derived Fuels for Civil Works Diesel Engine Applications

    Science.gov (United States)

    1988-07-01

    previously identified alcohols, water/oll emulsions, coal , synthetic fuels (synfuels) from shale and tar sands, vegetable oils, and mixtures thereof as...displayed varying tendencies for coking, with the light hydrotreated soybean oil displaying the least and the crude oils of sunflower, soybean, and

  18. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  19. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  20. Dual fuel operation of used transformer oil with acetylene in a DI diesel engine

    International Nuclear Information System (INIS)

    Behera, Pritinika; Murugan, S.; Nagarajan, G.

    2014-01-01

    Highlights: • Utilisation of Used transformer oil (UTO) as a fuel in a diesel engine. • UTO with acetylene in a diesel engine, on a dual fuel mode technique. • Analysis of combustion characteristics of the diesel engine. • Analysis of performance and emission characteristics of the diesel engine. - Abstract: Used transformer oil (UTO) is a waste oil obtained from power transformers and welding transformers. It possesses considerable heating value and properties similar to diesel fuel. A preliminary investigation on the utilization of the UTO in a single cylinder, four stroke small powered direct injection (DI) diesel engine revealed that at an optimum injection timing of 20°CA the engine exhibited lower nitric oxide (NO) and higher smoke emissions, compared to that of diesel operation. In order to improve the performance and reduce the smoke emission, a dual fuel operation was attempted in the present investigation. Acetylene was inducted as a primary fuel at four different flow rates viz 132 g/h, 198 g/h, 264 g/h and 330 g/h along with the air, to study the combustion, performance and emission behavior of a four-stroke, 4.4 kW diesel engine, while the UTO was injected as pilot fuel with the optimized injection timing. The experimental results were compared with diesel-acetylene dual fuel operation in the same engine. Acetylene aspiration reduced the ignition delay and maximum cylinder pressure by about 3°CA, and 25% respectively at full load in comparison with the sole UTO operation. Higher thermal efficiency and lower exhaust gas were also observed at full load. Smoke was reduced by about 13.7%, in comparison with the UTO operation at full load

  1. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  2. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  3. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  4. The Effect on Performance and Exhaust Emissions of Adding Cotton Oil Methyl Ester to Diesel Fuel

    OpenAIRE

    Kahraman, Ali; Ciniviz, Murat; Örs, İlker; Oğuz, Hidayet

    2016-01-01

    In the study, engine performance and exhaust emissions of diesel fuel and cotton oil methyl ester (COME) blends at proportions of 2%, %5 and 10% (v/v) have been investigated. The engine was fuelled with COME–diesel blends and pure diesel when running the engine at six different engine speed (1000,1200, 1400, 1600, 1800, 2000 rpm) and at full load. Test results are presented engine torque and specific fuel consumption (SCF) as engine performance, and Carbon monoxide (CO), Hydrocarbon (HC), smo...

  5. Effect of the Rapeseed Oil Methyl Ester Component on Conventional Diesel Fuel Properties

    Directory of Open Access Journals (Sweden)

    Kumbár V.

    2015-01-01

    Full Text Available The effect of the rapeseed oil methyl ester (RME component in diesel fuel was assessed. Dynamic viscosity and density of blends were particularly observed. Measurements were performed at standard constant temperature. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In the case of pure RME, pure diesel fuel, and the blend of both, temperature dependence of dynamic viscosity and density was examined. Considerable temperature dependence of dynamic viscosity and density was found out and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and literature data sources. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modelled using the 3rd degree polynomial. Temperature dependence of density was modelled using the 2nd degree polynomial. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  6. Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants

    Directory of Open Access Journals (Sweden)

    Petr Procházka

    2018-02-01

    Full Text Available Indonesia needs to find an alternative fuel to substitute diesel in their power plants in order to reduce the use of nonrenewable energy sources. The Indonesian government has a target to reduce oil fuel consumption while improving the efficiency of energy utilization. Crude palm oil is proposed to be used for this substitution. In this paper, the authors conduct an economic analysis of the replacement of diesel by crude palm oil. To predict future prices, a time series analysis is conducted using AutoRegressive Integrated Moving-Average method. A financial analysis of a specific project (0.75-MW power plant is conducted using static financial indicators (payback period, return on investment. Results show that replacing diesel with crude palm oil may be profitable. This is especially true for the proposed prospects of diesel price evolution. Analysis shows that the price of crude oil, which is the main factor in the pricing of diesel, may go up. Also, recently Indonesian currency depreciated against the US dollar, which also implies a higher cost of diesel.

  7. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  8. Production of diesel-like fuel from waste engine oil by pyrolitic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Arpa, Orhan [Dicle University, Mechanical Engineering Department, Diyarbakir (Turkey); Yumrutas, Recep [University of Gaziantep, Mechanical Engineering Department, Gaziantep (Turkey); Demirbas, Ayhan [Sila Science, Trabzon (Turkey)

    2010-01-15

    The aim of this study is to obtain diesel-like fuel from waste lubrication engine oils by pyrolitic distillation method, which can be used in diesel engines. With this aim in mind, waste engine oil is collected in a tank, and it is purified from contaminants such as dust, heavy carbon soot, metal particles, gum-type materials and other impurities by filtering in the process prepared earlier. To investigate effects of additives known as sodium carbonate (NaCO{sub 3}), zeolite and lime (CaO) on density, viscosity, flash point, sulfur content, heating value and distillation temperature, the purified oil samples are blended separately with additives having mass basis of 2%, 4%, 6%, 8% and 10%. The mixed samples are exposed to pyrolitic distillation process to produce fuels to be used in engines. Thermal and physical properties of the produced fuels such as density, flash point, viscosity, sulfur content, heating value and distillation temperatures are examined. From these results, the CaO with a ratio of 2% has the highest effect on decreasing of sulfur content of the waste engine oil and on acquiring the most suitable distillation temperatures close to values of a diesel fuel. Diesel-like fuel (DLF) is obtained as 60% of the waste lubrication engine oil. (author)

  9. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel.

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Emmert, Birgit; Westphal, Götz; Müller, Michael; Hallier, Ernst; Brüning, Thomas

    2007-08-01

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.

  10. Production of Renewable Diesel Fuel

    Science.gov (United States)

    2012-06-01

    Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...

  11. Influence of injection timing on DI diesel engine characteristics fueled with waste transformer oil

    Directory of Open Access Journals (Sweden)

    S. Prasanna Raj Yadav

    2015-12-01

    Full Text Available This research work targets on the effective utilization of WTO (waste transformer oil in a diesel engine, which would rather reduce environmental problems caused by disposing of it in the open land. The waste transformer oil was compared with the conventional diesel fuel and found that it can also be used as fuel in compression ignition engines since the WTO is also a derivative of crude oil. In this present work, the WTO has been subjected to traditional base-catalyzed trans-esterification process in order to reduce the high viscosity of the WTO which helps to effectively utilize WTO as a fuel in DI diesel engine. The objective of the work is to study the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine using TWTO (trans-esterified waste transformer oil as a fuel. Experiments were performed at four injection timings (23°, 22°, 21°, and 20° bTDC. The results indicate that the retarded injection timing of 20° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon by 11.57%, 17.24%, and 10% respectively while the brake thermal efficiency and smoke increased under all the load conditions when compared to that of standard injection timing.

  12. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    Science.gov (United States)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  13. Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles

    Science.gov (United States)

    2009-03-01

    into a solid when the temperature falls below 160 degrees, making a heating system paramount. Switching valves are equally important. The engine...Toyota, and Tesla were recently unveiled at the 2009 North American International Auto Show. With the exception of Tesla , none of the vehicles are...is used to heat the WVO up to 140° to separate the oil from the water and features a valve to dispose of the water. Another Fryer to Fuel system

  14. Emulsifaction of waste cooking oils and fatty acid distillates as diesel engine fuel

    OpenAIRE

    Melo-Espinosa, Eliezer Ahmed; Piloto-Rodríguez, Ramón; Goyos-Pérez, Leonardo; Verhelst, Sebastian

    2015-01-01

    The scope of this paper is to analyze the possibilities and feasibilities, as well as the main experimental results reported about the emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained in the refining oil industry, food industry and service sector from the frying process, mainly. However, they are a little used as feedstocks to produce biofuels and constitute a pot...

  15. Cetane Number Booster Additive for Diesel Fuel Synthesized from Coconut Oil

    Directory of Open Access Journals (Sweden)

    Mohammad Nasikin

    2010-10-01

    Full Text Available To reduce NOx, SOx, HC, and particulates that produce because of using diesel fuel, can be done by increasing cetane number. One of methods is adding an additive to diesel fuel. 2-Ethyl Hexyl Nitrate (2-EHN is a commercial additive that an organic nitrate. Making an additive in this research is used palm oil by nitration reaction that used HNO3 and H2SO4. Result of this reaction is methyl ester nitrate that has a structure looks like 2-EHN. IR spectra from research show that methyl ester nitrate is indicated by spectrum NO2 at 1635 cm-1. This result show that methyl ester nitrate can be synthesized by nitration reaction and yield is 74,84% volume. Loading 1% methyl ester nitrate to diesel fuel can increase cetane number from 44,68 to 47,49.

  16. Performance, emissions and lubricant oil analysis of diesel engine running on emulsion fuel

    International Nuclear Information System (INIS)

    Hasannuddin, A.K.; Wira, J.Y.; Sarah, S.; Wan Syaidatul Aqma, W.M.N.; Abdul Hadi, A.R.; Hirofumi, N.; Aizam, S.A.; Aiman, M.A.B.; Watanabe, S.; Ahmad, M.I.; Azrin, M.A.

    2016-01-01

    Highlights: • The rate of NO x and PM reduction was lower than the rate of CO increase when using emulsion fuel. • The lubricant oil viscosity variation did not exceed the limits during the engine operation. • Emulsion fuel offers beneficial properties in terms of lower wear and friction. • Average depletions of lubricant oil additives were found at the lowest level for emulsion fuel in compared with D2. - Abstract: Emulsion fuel is one of the alternative fuels for diesel engines which are well-known for simultaneous reduction of Particulate Matter (PM) and Nitrogen Oxides (NO x ) emissions. However lack of studies have been conducted to investigate the effect of emulsion fuel usage for long run. Therefore, this study aims to investigate the effect of lubricant oil in diesel engine that operated using emulsion fuels for 200 h in comparison with Malaysian conventional diesel fuel (D2). Two emulsion fuels were used in the experiment comprising of water, low grade diesel fuel and surfactant; with ratio of 10:89:1 v/v% (E10) and 20:79:1 v/v% (E20). Engine tests were focused on fuel consumption, NO x , PM, Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Oxygen (O 2 ) and exhaust temperature. Parameters for the lubricant oil analysis measured were included kinematic viscosity, Total Acid Number (TAN), ash, water content, flash point, soot, wear metals and additive elements. The findings showed the fuel consumption were up to 33.33% (including water) and lower 9.57% (without water) using emulsion. The NO x and PM were reduced by 51% and 14% respectively by using emulsion fuel. Kinematic viscosity, TAN, ash, water content, flash point and soot for emulsion fuel were observed to be better or no changes in comparison to D2. The emulsion fuel did not cause any excessive amount of metals or degraded the additive. The average percentage of wear debris concentration reduction by emulsion fuel were 8.2%, 9.1%, 16.3% and 21.0% for Iron (Fe) Aluminum (Al), Copper (Cu) and

  17. Mutagenicity of diesel exhaust particles from two fossil and two plant oil fuels.

    Science.gov (United States)

    Bünger, J; Müller, M M; Krahl, J; Baum, K; Weigel, A; Hallier, E; Schulz, T G

    2000-09-01

    Particulate matter of diesel engine exhaust from four different fuels was studied for content of polynuclear aromatic compounds and mutagenic effects. Two so-called biodiesel fuels, rapeseed oil methylesters (RME) and soybean oil methylesters (SME), were compared directly with two fossil diesel fuels with the normal (DF) and a low sulfur content (LS-DF). Diesel exhaust particles were sampled on filters from the diluted and cooled exhaust of a test engine at five different speeds and loads. Filters were weighed for total particulate matter, Soxhlet extracted with dichloromethane and the content of insoluble material determined. The soluble organic fraction was analysed for polynuclear aromatic compounds. Mutagenicity was determined using the Salmonella typhimurium/mammalian microsome assay with strains TA98 and TA100. Compared with DF, the exhaust particles of LS-DF, RME and SME contained less insoluble material, which consisted mainly of the carbon cores of diesel exhaust particles. The concentrations of individual polynuclear aromatic compounds varied widely among the different exhaust extracts, but total concentrations of the compounds were approximately double for DF and SME compared with LS-DF and RME. In TA98 significant increases in mutation rates were obtained for the soluble organic fractions of all fuels for engines running at full speed (load modes A and D), but for DF revertants were 2- to 10-fold more frequent as compared with LS-DF, RME and SME. Revertant frequencies for DF and partly for LS-DF were also elevated in TA100, while RME and SME gave no significant increase in mutations. The results indicate that diesel exhaust particles from RME, SME and LS-DF contain less black carbon and total polynuclear aromatic compounds and are significantly less mutagenic in comparison with DF. A high sulfur content of the fuel and high engine speeds (rated power) and loads are associated with an increase in mutagenicity of diesel exhaust particles.

  18. PERENCANAAN PEMANFAATAN MARINE FUEL OIL (MFO SEBAGAI BAHAN BAKAR ENGINE DIESEL MaK

    Directory of Open Access Journals (Sweden)

    Hendra Poeswanto

    2015-06-01

    Full Text Available PT. PLN (Persero Area Bontang tengah berupaya melakukan penggantian jenis bahan bakar pada engine diesel merk MaK yang semula menggunakan High Speed Diesel (HSD menjadi Marine Fuel Oil (MFO. Tujuan penelitian ini untuk mengetahui proses treatment bahan bakar MFO untuk menurunkan viscositas dan penyeragaman ukuran partikel bahan bakar pada engine diesel merk MaK dan mengetahui perbandingan biaya penghematan dan evisiensi pemakaian bahan bakar HSD dengan bahan bakar MFO. Metode yang digunakan analisa perpindaahan panas pada oil heater dan viskositas bahan bakar yang digunakan untuk menentukan proses treatment bahan bakar MFO. Dari hasil perencanaan, proses treatment menggunakan oli heater dimana proses pemanasan oli dengan memanfaatkan panas dari gas buang hasil pembakaran. Dengan penggunaan bahan bakar MFO dapat menghemat biaya konsumsi bahan bakar sebesar Rp. 21.827.520,- per harinya.

  19. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  20. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  1. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  2. Fatty Acid Methyl Esters of Melon Seed Oil: Characterisation for Potential Diesel Fuel Application

    Directory of Open Access Journals (Sweden)

    Paul M. EJIKEME

    2011-06-01

    Full Text Available Fatty acid methyl esters (FAME, biodiesel, are alternative diesel fuels usually obtained from renewable sources, mainly, vegetable and animal oils through transesterification among other processes. Melon seed oil was extracted from melon seeds bought from a local market, degummed and alkali refined using standard methods. FAME of the oil was produced using methanol in the molar ration of 1:6, 1% sodium hydroxide catalyst at the reaction temperature of 60 deg C for the duration of 1h. Results obtained showed that the fatty acid methyl esters had a specific gravity of 0.8786, viscosity of 6.24 centistokes, pH of 7.23, heating value of 36.34 J/g and flash point of 148 deg C. The FAME yield was 87.35% under the reaction conditions that applied. The infrared spectra of both the refined oil and the methyl esters from it, showed peaks at 1721.3cm-1 and 1167.8cm-1 (C=O and C-O stretches large and medium absorbance's for oils and methyl esters. Generally, the fuel properties of the FAME compared with values obtained under the same conditions for conventional petroleum diesel that was sourced from a retail outlet; suggesting that biodiesel from MSO could be used alone or in blends with petrodiesel to power compression ignition (diesel engines.

  3. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  4. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    Science.gov (United States)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  5. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  6. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  7. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  8. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  9. Heat release and engine performance effects of soybean oil ethyl ester blending into diesel fuel

    International Nuclear Information System (INIS)

    Bueno, Andre Valente; Velasquez, Jose Antonio; Milanez, Luiz Fernando

    2011-01-01

    The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high speed turbocharged direct injection engine. Modifications in fuel heat value, fuel-air equivalence ratio and combustion temperature were found to govern the impact resulting from the addition of biodiesel on engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in brake power and a reduction of 1.73% in sfc was observed with B10 blend.

  10. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  11. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    Science.gov (United States)

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  12. Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pugazhvadivu, M. [Pondicherry Engineering College (India). Dept. of Mechanical Engineering; Jeyachandran, K. [Anna University, Chennai (India). Dept. of Mechanical Engineering

    2005-11-01

    In the present experimental investigation, waste frying oil a non-edible vegetable oil was used as an alternative fuel for diesel engine. The high viscosity of the waste frying oil was reduced by preheating. The properties of waste frying oil such as viscosity, density, calorific value and flash point were determined. The effect of temperature on the viscosity of waste frying oil was evaluated. It was determined that the waste frying oil requires a heating temperature of 135{sup o}C to bring down its viscosity to that of diesel at 30{sup o}C. The performance and exhaust emissions of a single cylinder diesel engine was evaluated using diesel, waste frying oil (without preheating) and waste frying oil preheated to two different inlet temperatures (75 and 135{sup o}C). The engine performance was improved and the CO and smoke emissions were reduced using preheated waste frying oil. It was concluded from the results of the experimental investigation that the waste frying oil preheated to 135{sup o}C could be used as a diesel fuel substitute for short-term engine operation. (author)

  13. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating...

  14. Lethal and behavioral impacts of diesel and fuel oil on the Antarctic amphipod Paramoera walkeri.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Harrison, Peter L

    2017-09-01

    Toxicity testing with Antarctic species is required for risk assessment of fuel spills in Antarctic coastal waters. The lethal and sublethal (movement behavior) sensitivities of adults and juveniles of the Antarctic amphipod Paramoera walkeri to the water accommodated fractions (WAFs) of 3 fuels were estimated in extended-duration tests at -1 °C to 21 d. Response of P. walkeri for lethal hydrocarbon concentrations was slow, with 50% lethal concentrations (LC50s) first able to be estimated at 7 d for adults exposed to Special Antarctic Blend diesel (SAB), which had the highest hydrocarbon concentrations of the 3 fuel WAFs. Juveniles showed greater response to marine gas oil (MGO) and intermediate residual fuel oil (IFO 180) at longer exposure durations and were most sensitive at 21 d to IFO 180 (LC50 = 12 μg/L). Adults were initially more sensitive than juveniles; at 21 d, however, juveniles were more than twice as sensitive as adults to SAB (LC50 = 153 μg/L and 377 μg/L, respectively). Significant effects on movement behavior were evident at earlier time points and lower concentrations than was mortality in all 3 fuel WAFs, and juveniles were highly sensitive to sublethal effects of MGO. These first estimates of Antarctic amphipod sensitivity to diesel and fuel oils in seawater contribute to the development of ecologically relevant risk assessments for management of hydrocarbon contamination in the region. Environ Toxicol Chem 2017;36:2444-2455. © 2017 SETAC. © 2017 SETAC.

  15. Results of experiments with flare type igniters on diesel fuel and crude oil emulsions

    International Nuclear Information System (INIS)

    Moffat, C.; Hankins, P.

    1997-01-01

    Development of a hand-deployable igniter that could ignite contained diesel fuel and crude oil emulsions on water was described. The igniter was developed as part of the U.S. Navy Supervisor of Salvage (SUPSALV) In-Situ Burn (ISB) system. It is a manually operated, electrically fired, high temperature flare type igniter. It is 41 cm long, 10 cm in diameter, weighs 1.5 kg, and is packaged and shipped with the ISB system. The chemical and mineral composition of the flair allows for a three minute burn of up to 1370 degrees C (2500 degrees F) at the center. The flare is most effective when used in conjunction with a shroud of sorbent material which traps and holds oil around the burning flare aiding the ignition process by increasing the initial propagation area. In small-scale tank experiments the flare ignited diesel fuel in ambient temperatures of 3 degrees C, with winds of 8 to 10 m/sec. The flare also ignited 22.5 per cent water-in crude oil emulsion in 3 degrees C temperatures. 4 refs., 3 tabs

  16. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  18. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  19. Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars

    Science.gov (United States)

    Brandenberger, Sandro; Mohr, Martin; Grob, Koni; Neukom, Hans Peter

    In this study we determined particle-bound paraffins in the exhaust of six light-duty diesel vehicles on a chassis dynamometer for different driving cycles and ambient temperatures. The filters containing particulate matter were extracted with dichloromethane in a Soxhlet apparatus, and the paraffin analysis was performed using two-dimensional normal phase high-pressure liquid chromatography (HPLC) coupled on-line to gas chromatography-flame ionization detection (GC-FID). The different molecular mass of lubricant and diesel paraffins facilitated the distinction between diesel and lubricant contribution to the emission. Although all vehicles were certified according to the same emission class, there were considerable variations between vehicles. The study showed that under cold-start conditions the organic mass fraction ranged from 10% to 30% with respect to particle mass and the paraffins from 30% to 60% with respect to the organic mass. With cold engine, falling ambient temperature increased the emission of unburned diesel fuel, whereas that from unburned lubricating oil was less affected. Under warm-start conditions, the ambient temperature had less impact on the emission of paraffins. The emissions were also affected by the operating conditions of the engine: driving cycles with higher mean load tend towards higher emissions of lubricant. The operating conditions also affected the distribution of paraffins: the emission of light paraffins seemed to be lower with higher load in the driving cycle. With an urban and a highway cycle, roughly 40% and 80% w/w, respectively, of unburned paraffins were contributed by the lubricant. Measurements of polycyclic aromatic hydrocarbons (PAH) in lubricating oil showed lubricant to be a sink for PAHs. As lubricant significantly contributes to the organic emission, as shown in this study, it can be assumed that it is also a significant source of PAH emissions.

  20. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    International Nuclear Information System (INIS)

    Schröder, O; Munack, A; Schaak, J; Pabst, C; Schmidt, L; Bünger, J; Krahl, J

    2012-01-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  1. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  2. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  3. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  4. Using pre-heated sunflower oil as fuel in a diesel cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Delalibera, H.C.; Neto, P.H.W.; Martini, J. [State Univ. of Ponta Grossa (Brazil)

    2010-07-01

    This paper reported on a study in which 100 per cent sunflower oil was used in a tractor to compare its performance with petroleum diesel. Work trials were carried out for 50 hours on a single cylinder direct injection micro-tractor. In the first trial (E-1), the temperature of the vegetable oil was the same as the air temperature of the engine, while in the second trial (E-2), the oil was heated to a temperature of about 90 degrees C. Only petrodiesel was used in the third (E-3) trial. The head gasket burned in the first test after 50 hours of operation. An increase in compression was noted during trials E-1 and E-2. The carbonized mass in the nozzle of the E-2 trial was 81.5 per cent lower than in the E-1 trial. The carbonized mass in the intake system of the E-2 trial was 51.7 per cent lower than in the E-1 trial. The exhaust system of the E-2 trial was 33.4 per cent lower than that of the E-1 trial. For the combustion chamber, the carbonization of the E-1 trial was nearly the same as in the E-2 trial. The hourly fuel consumption of the E-1 trial was 2.3 per cent higher than petrodiesel, while E-2 trial was 0.7 per cent higher than petrodiesel. In the first 2 tests, the lubricating oil was contaminated by vegetable oil fuel. In general, results from the first trial were better than results from the second trial.

  5. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel

    KAUST Repository

    Subramanian, Thiyagarajan

    2018-03-21

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO emissions, fuel additives such as diglyme (DGE)—a cetane enhancer, cumene (CU)—an antioxidant, and eugenol (EU) and acetone (A)—bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  6. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel.

    Science.gov (United States)

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S; Vallinayagam, R

    2018-03-21

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO X emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO X emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO X emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO X emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  7. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  8. Radium in diesel oil

    International Nuclear Information System (INIS)

    Kulich, J.

    1977-05-01

    In order to determine the addition of radon and radium to the air in mines, originatiny from the combustion of petroleum, measurements of the content of radium in diesel oil have been performed. Knowing the radium content theradon content can easily be calculated. The procedures used for the chemical analysis of radium is desribed. The ash remaining after combustion of the diesel oil is soluted in water and radium is precipiated as sulphate. The radium is detected by a ZnS (Ag) detector. The diesel oils from different petroleum companies contained between o.019-0.5pCi radium - 226. The conclution is that the consumption of diesel oils in motors used in mines does not contribute to the radium - 226 content at the air move than permissible according to norms.(K.K.)

  9. Experimental Studies on Four Stroke Diesel Engine Fuelled with Tamarind Seed Oil as Potential Alternate Fuel for Sustainable Green Environment

    Directory of Open Access Journals (Sweden)

    V. Dhana Raju

    2018-01-01

    Full Text Available The main objective of this present novel work is to investigate the performance, combustion and emission characteristics of biodiesel derived from the tamarind seed through the transesterification process as potential alternative feedstock for the diesel engine. The physio-chemical properties of tamarind seed methyl ester (TSME were evaluated experimentally and compared with the base fuel. Test fuels were prepared in 3 concentrations such as B10 (10% tamarind seed oil and 90% diesel, B20 and B30.Experiments were conducted at a constant speed, the injection timing of 23° crank angle and compression ratio 17.5:1 with varying load conditions to investigate the diesel engine characteristics. TSME 20 shown better thermal efficiency (34.41% over diesel which is 1.17 % higher and also it produces lower emissions of CO, HC, and smoke opacity. N-Amyl alcohol (NAA is used as a fuel additive for the optimum blend of TSME20; added in 5% and 10% concentration on the volume basis. From the analysis of experimental data, the use of fuel additives significantly reduces the smoke opacity by 29.49 % for TSME20 NAA 10% blend in addition to the reduction of carbon monoxide and hydrocarbons emissions; however, the specific fuel consumption and the oxides of nitrogen were marginally increased.

  10. Fuel system for diesel engine with multi-stage heated

    Science.gov (United States)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  11. Characteristics of Waste Plastics Pyrolytic Oil and Its Applications as Alternative Fuel on Four Cylinder Diesel Engines

    Directory of Open Access Journals (Sweden)

    Nosal Nugroho Pratama

    2014-02-01

    Full Text Available Waste plastics recycling using pyrolysis method is not only able to decrease a number of environment pollutant but also able to produce economical and high quality hydrocarbon products. Two experiments were conducted to completely study Waste Plastic Pyrolytic Oil (WPPO characteristics and its applications.  First experiment investigated oil characteristics derived from pyrolysis process in two stages batch reactors: pyrolysis and catalytic reforming reactor, at maximum temperature 500oC and 450oC respectively. Waste Polyethylene (PE, Polypropylene (PP, Polystyrene (PS, Polyethylene Terepthalate (PET and others were used as raw material. Nitrogen flow rate at 0.8 l/minutes was used to increase oil weight percentage. Indonesian natural zeolite was used as catalyst. Then, second experiment was carried out on Diesel Engine Test Bed (DETB used blending of WPPO and Biodiesel fuel with a volume ratio of 1:9. This experiment was specifically conducted to study how much potency of blending of WPPO and biodiesel in diesel engine. The result of first experiment showed that the highest weight percentage of WPPO derived from mixture of PE waste (50%wt, PP waste (40%wt and PS waste (10%wt is 45.13%wt. The more weight percentage of PE in feedstock effected on the less weight percentage of WPPO, the more percentage of C12-C20 content in WPPO and the higher calorific value of WPPO. Characteristics of WPPO such as, Specific Gravity, Flash point, Pour Point, Kinematic Viscosity, Calorific value and percentage of C12-C20 showed interesting result that WPPO could be developed as alternative fuel on diesel fuel blending due to the proximity of their characteristics. Performance of diesel engine using blending of WPPO and biodiesel on second experiment gave good result so the WPPO will have great potency to be valuable alternative liquid fuel in future, especially on stationary diesel engine and transportation engine application.

  12. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission.

    Science.gov (United States)

    Keskin, Ali; Gürü, Metin; Altiparmak, Duran

    2008-09-01

    The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.

  13. Investigation of emissions and combustion characteristics of a CI engine fueled with waste cooking oil methyl ester and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Nantha Gopal

    2014-06-01

    Full Text Available Biodiesel has been identified as a potential alternative fuel for CI engines because use of biodiesel can reduce petroleum diesel consumption as well as engine out emissions. Out of many biodiesel derived from various resources, biodiesel from Waste Cooking Oil (WCO can be prepared economically using usual transesterification process. In the present study, in-depth research and comparative study of blends of biodiesel made from WCO and diesel is carried out to bring out the benefits of its extensive usage in CI engines. The experimental results of the study reveal that the WCO biodiesel has similar characteristics to that of diesel. The brake thermal efficiency, carbon monoxide, unburned hydrocarbon and smoke opacity are observed to be lower in the case of WCO biodiesel blends than diesel. On the other hand specific energy consumption and oxides of nitrogen of WCO biodiesel blends are found to be higher than diesel. In addition combustion characteristics of all biodiesel blends showed similar trends when compared to that of conventional diesel.

  14. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  15. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  16. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    Science.gov (United States)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  17. Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as injected fuels

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E Society' s College of Engineering and Technology, Belgaum, Karnataka (India)

    2008-09-15

    In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111-33.; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983.; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466-87.; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997.; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529-38, 248.; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006.; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314-23. ]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993.; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in

  18. Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.

  19. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture

    International Nuclear Information System (INIS)

    Can, Özer

    2014-01-01

    Highlights: • High quality biodiesel fuels can be produced by using different waste cooking oils. • Biodiesel fuel blends (in 5 and 10% vol) can be used without any negative effects. • Effects of biodiesel addition on the combustion and exhaust emissions were investigated. - Abstract: In this study, a mixture of biodiesel fuels produced from two different kinds of waste cooking oils was blended in 5% and 10% with No. 2 diesel fuel. The biodiesel/No. 2 diesel fuel blends were tested in a single-cylinder, direct injection, four-stroke, natural aspirated diesel engine under four different engine loads (BMEP 0.48–0.36–0.24–0.12 MPa) and 2200 rpm engine speed. Despite of the earlier start of injection, the detailed combustion and engine performance results showed that the ignition delay with the biodiesel addition was decreased for the all engine loads with the earlier combustion timings due to higher cetane number of biodiesel fuel. Meanwhile the maximum heat release rate and the in-cylinder pressure rise rate were slightly decreased and the combustion duration was generally increased with the biodiesel addition. However, significant changings were not observed on the maximum in-cylinder pressures. In addition, it was observed that the indicated mean effective pressure values were slightly varied depending on the start of combustion timing and the center of heat release location. It was found that 5% and 10% biodiesel fuel addition resulted in slightly increment on break specific fuel consumption (up to 4%) and reduction on break thermal efficiency (up to 2.8%). The biodiesel additions also increased NO x emissions up to 8.7% and decreased smoke and total hydrocarbon emissions for the all engine loads. Although there were no significant changes on CO emissions at the low and medium engine loads, some reductions were observed at the full engine load. Also, CO 2 emissions were slightly increased for the all engine loads

  20. The palm oil as an alternative for the Diesel oil as fuel for electric power generators in communities of the Amazon region; Oleo de dende, alternativa ao oleo diesel como combustivel para geradores de energia em comunidades da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, R. de M.; Moura, R.D. [EMBRAPA Amazonia Ocidental, Manaus, AM (Brazil)

    2000-07-01

    The world is currently aware of the efforts to find renewable energy sources as a substitute for fossil fuels. Seeking less pollution and environmental degradation, EMBRAPA Amazonia Ocidental with the financial support of CNPq and SUDAM, developed research studies along these lines using palm oil as fuel in Cyclo Diesel engines. A set-generator MWM D225-4 was installed and monitored in the Boa Uniao Community (in the township of Presidente Figueiredo, State of Amazonas, Brazil). Also studied were a multi-fuel 4RTA-G AMS set-generator, which extracted the oil provided by EMBRAPA, and a van normally run on diesel fuel. Results showed that the MWM obtained the best results. There was no need to change or modify any of its mechanical components. The van engine, due to the complexity of being mobile, was tested with a finer palm oil (oleine). Under test conditions, this oil was more cost effective than diesel fuel. The palm oil has a larger productivity (5000 kg/ha-year) and is highly adapted to areas with a high pluviometric index, brightness and elevated temperatures and therefore, ideal for the Amazon. This species is productive throughout the year, provides year round work for local people and contributes to sustainable development in the area where it is cultivated. (author)

  1. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel... supply, store or transport motor vehicle diesel fuel, NRLM diesel fuel, ECA marine fuel or heating oil... transport any diesel fuel for use in motor vehicle or nonroad engines that contains greater than 0.10...

  2. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    International Nuclear Information System (INIS)

    Ozsezen, Ahmet Necati; Canakci, Mustafa

    2011-01-01

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO 2 ) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO x ) emissions by 11-22% compared with those of the PBDF over the speed range.

  3. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend

    International Nuclear Information System (INIS)

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L.; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-01-01

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 μm

  4. Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend

    International Nuclear Information System (INIS)

    İleri, Erol; Koçar, Günnur

    2013-01-01

    Highlights: • BHA, BHT, TBHQ, EHN synthetic antioxidants were employed in the study. • Antioxidant additives are a promising candidate for improving cetane number, oxidation stability and decreasing NO x emissions • Cetane number improving efficiency of the antioxidants was ordered as EHN>BHA>BHT>TBHQ. • Formation of CO emissions has been increased with addition of each of the antioxidants to B20. - Abstract: An experimental investigation has been carried out to analyze the effect of antioxidants on engine performance and exhaust emissions of a diesel engine fueled with B20 (20 vol.% canola oil methyl ester and 80 vol.% diesel fuel blend). The four synthetic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butylhydroquinone (TBHQ) and 2-ethylhexyl nitrate (EHN), were tested on a Land Rover turbocharged direct injection (TDI) 110 type diesel engine with water cooled, 4-cycl and 4-cylinder. The addition of antioxidants to B20 did not cause any negative effect on basic fuel properties of B20. According to engine performance test results, brake specific fuel consumption (BSFC) of B20 with antioxidants decreased compared to those of B20 without antioxidants. A 1000 ppm concentration of TBHQ was optimal as BSFC values were considerably reduced (10.19%) in the whole engine speeds when compared to B20. EHN antioxidant with B20 presented the best mean oxides of nitrogen (NO x ) with a reduction of 4.63%. However, formation of carbon monoxide (CO) emissions has been increased with addition of each of the antioxidants to B20

  5. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  6. Emission characteristics of a diesel engine using waste cooking oil ...

    African Journals Online (AJOL)

    In this study, the use of waste cooking oil (WCO) methyl ester as an alternative fuel in a four-stroke turbo diesel engine with four cylinders, direct injection and 85 HP was analyzed. A test was applied in which an engine was fueled with diesel and three different blends of diesel/biodiesel (B25, B50 and B75) made from WCO.

  7. Economic and technical considerations on the use of vegetable oils as fuel substitute for diesel oil; Consideracoes economicas e tecnicas sobre o uso de oleos vegetais combustiveis como substituto de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: anna@ital.sp.gov.br

    2006-07-01

    The introduction of bio diesel in the Brazilian energy matrix has been mainly motivated by the governmental actions, which foresees social and economical development to the country in a program that allows the use of different oil seed crops as raw materials for biofuels production. Cost estimates considering the average price received by the farmer and the oil content of each vegetable shows that the minimum cost of bio fuel was about 1,1(castor bean); 1,8(peanut); 2,0(soy beans); 3,3(corn) higher than the average cost of fossil diesel from 1975 to 2004. Among the evaluated raw materials, only the palm oil had inferior cost compared to the petroleum diesel (0.6%). The oleaginous plants that have a higher oil content and smaller agricultural production cost to produce bio fuels are economically most feasible and they should be prioritized in the government program so that it may become economically sustainable along the years, as well as generate adequate profit to the farmers of each culture. The feasibility of National Program for Biofuels Use and Production and both economical and environmental aspects should also consider the destination of the main by-products of the biofuel productive chain such as the left over cakes after extraction of the oil and glycerine produced during the transesterification process. (author)

  8. The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine

    International Nuclear Information System (INIS)

    Lešnik, Luka; Biluš, Ignacijo

    2016-01-01

    Highlights: • Sub-models for parameter determination can be derived using experimental results. • Proposed sub-models can be used for calculation of model parameters. • Biodiesel fuel reduces emissions compared to diesel fuel on full engine load. • Usage of biodiesel fuel slow down the emission formation rate. • Oxygen content in biodiesel fuel decreases the amount of formatted CO emissions. - Abstract: This study presents the influence of biodiesel fuel and blends with mineral diesel fuel on diesel engine performance, the combustion process, and the formation of emissions. The study was conducted numerically and experimentally. The aim of the study was to test the possibility of replacing mineral diesel fuel with biodiesel fuel made from rapeseed oil. Pure biodiesel fuel and three blends of biodiesel fuel with mineral diesel fuel were tested experimentally for that purpose on a heavy-duty bus diesel engine. The engine’s performance, in-cylinder pressure, fuel consumption, and the amount of produced NO x and CO emissions were monitored during experimental measurements, which were repeated numerically using the AVL BOOST simulation program. New empirical sub-models are proposed for determining a combustion model and emission models parameters. The proposed sub-models allow the determination of necessary combustion and emission model parameters regarding the properties of the tested fuel and the engine speed. When increasing the percentage of biodiesel fuel within the fuel blends, the reduction in engine torque and brake mean effective pressures are obtained for most of the test regimes. The reduction is caused due to the lower calorific value of the biodiesel fuel. Higher oxygen content in biodiesel fuel contributes to a better oxidation process within the combustion chamber when running on pure biodiesel or its blends. Better oxidation further results in a reduction of the formatted carbon and nitrogen oxides. The reduction of carbon emission is also

  9. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  10. Comparison investigation for biological diesel fuel

    International Nuclear Information System (INIS)

    Grundulis, A.; Galins, A.; Grundulis, A.; Zihmane, K.

    2003-01-01

    The application of vegetable oils as diesel-engine fuels is being discussed and investigated as a means of exploiting agricultural potential in the production of regenerative energy sources. Traditional vegetable oils transesterification using methanol or ethanol technology for biofuel production is complicate and expensive. We investigate different kind of oils and fuel additives mixtures and offer simplified technology for biofuel production. The work presents compare of energetic and physical parameters of rape-seed-oil methyl and ethyl ester and oil mixture (authors)

  11. Effect of Biodiesel of Spent Cooking Oil Addition at Diesel Fuel to Opacity and Gas Emission Throw Away of CO, CO2 and HC

    International Nuclear Information System (INIS)

    Setyadji, Moch; Endang Susiantini

    2007-01-01

    Investigation of biodiesel spent cooking oil addition effect at diesel fuel to opacity and gas emission throw away on various engine rotation speed has been done. The variables observed were fuel specific used i.e. pure diesel fuel, biodiesel mix 5% (B5), mix 10% (B10), mix 15% (B15), mix 20% (B20) and engine rotation speed. Gas emission throw away observed were CO, CO 2 , HC and opacity. Opacity and gas emission throwaway were observed by Opacity Sagem apparatus and gas analyzer. Result of experiment showed that biodiesel addition at diesel fuel was very decreasing opacity and gas emission throw away. The opacity lowest on B20, gas emission throw away lowest of CO on B10, CO 2 on B10 and HC on B20. (author)

  12. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  13. Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Arpa, Orhan [Dicle University, Mechanical Engineering Department, Diyarbakir (Turkey); Yumrutas, Recep [University of Gaziantep, Mechanical Engineering Department, Gaziantep (Turkey); Argunhan, Zeki [University of Batman, Mechanical Engineering Department, Batman (Turkey)

    2010-10-15

    In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation. (author)

  14. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  15. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  16. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  17. Implementation and testing of the use of vegetable oils as fuel diesel generators in the Amazon isolated communities; Implantacao e testes de utilizacao de oleo vegetal como combustivel para diesel geradores em comunidades isoladas da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Silva, Orlando Cristiano da; Gonzalez Velaquez, Silvia Maria Stortini; Monteiro, Maria Beatriz C.A.; Silotto, Carlos Eduardo Grassi [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)

    2004-07-01

    The project PROVEGAM 'Implantation and test of a unit demonstration of energetic utilization of vegetable oil', tested in operational conditions of field, the functioning of a conventional diesel engine, adapted to operate with palm oil 'in natura' in the community of Vila Soledade, city of Moju, Para State. The Vila Soledade is an isolated community that has, approximately, 700 inhabitants and it's located at one hundred kilometers from the city hall by car and more 30 minutes by boat. The electric energy of this community was previously generated, by a conventional diesel engine, obsolete and very expensive to the community, because the fuel price and the transport of the diesel oil from the city to the community. The PROVEGAM project, installed an electric generation group, MWM TD229, manufactured in Brazil, adapted with a conversion kit to operate with 'in natura' palm oil, working 6 hours per day. Because of the viscosity of the palm oil and its combustion point, it was necessary to heat the vegetable oil before its injection into the engine. The operation begins and finishes with diesel oil, in order to heat the palm oil and to clean possible residues deposited in the interior of the engine. The use of the palm oil justifies itself for being produced in the region, which means that it doesn't have to be imported. Currently, the generating group is working in the community during 5 hours per day with palm oil, and 1 hour per day with diesel oil and it already has more than 1600 hours of testing. The results of this project, so far, have confirmed the conceived premises, and this electric model of generating energy is already recommended to be implemented in other communities in the Amazon region. (author)

  18. Bio-diesel fuels production: Feasibility studies

    International Nuclear Information System (INIS)

    Tabasso, L.

    1993-01-01

    This paper reviews the efforts being made by Italy's national government and private industry to develop diesel engine fuels derived from vegetable oils, in particular, sunflower seed oil. These fuels are being promoted in Italy from the environmental protection stand-point in that they don't contain any sulfur, the main cause of acid rain, and from the agricultural stand-point in that they provide Italian farmers, whose food crop production capacity is limited due to European Communities agreements, with the opportunity to use their set-aside land for the production of energy crops. This paper provides brief notes on the key performance characteristics of bio-diesel fuels, whose application doesn't require any modifications to diesel engines, apart from minor adjustments to the air/fuel mix regulating system, and assesses commercialization prospects. Brief mention is made of the problems being encountered by the Government in the establishing fair bio-fuel production tax rebates which are compatible with the marketing practices of the petroleum industry. One of the strategies being considered is to use the bio-fuels as additives to be mixed with conventional fuel oils so as to derive a fuel which meets the new European air pollution standards

  19. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  20. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... to amend the definition of heating oil in the Renewable Fuel Standard (``RFS'' or ``RFS2'') program under section 211(o) of the Clean Air Act. This amendment will expand the scope of renewable fuels that...

  1. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... of heating oil in the Renewable Fuel Standard (RFS) program under section 211(o) of the Clean Air Act. This amendment would expand the scope of renewable fuels that can generate Renewable Identification...

  2. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  3. The Engine Performance of a Diesel Engine and the Research of the Effect of Fuel Additives on Engine Oil and Engine Parts

    OpenAIRE

    Hanbey HAZAR; İlker TEMIZER

    2012-01-01

    In this study, the development of properties of diesel fuel, and the effect of methanol fuel on engine performance and on engine parts have been researched. For this purpose, this study consists of the analyses respectively in that organometal MnO2 synthesis, fuel analysis, engine tests involving the values of the engine performance and the effect of methanol used in this study on engine lubricating oil have been examined. Experiments have been made by adding methanol into 1 liter fuel in the...

  4. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  5. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    Science.gov (United States)

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  6. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  7. Zero-sulfur diesel fuel from non-petroleum resources : the key to reducing U.S. oil imports.

    Science.gov (United States)

    2012-09-01

    Zero-sulfur diesel fuel of the highest quality, the fuel used in this project, can be made by Fischer-Tropsch (FT) synthesis from many non-petroleum resources, including natural gas, which is increasingly abundant in the United States. Zero-sulfur FT...

  8. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  9. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  10. Sliding-wear resistance of pure near fully-dense B4C under lubrication with water, diesel fuel, and paraffin oil

    DEFF Research Database (Denmark)

    Ortiz, Angel L.; Leal, Victor Manuel Candelario; Borrero-López, Oscar

    2017-01-01

    The sliding-wear resistance of pure near fully-dense B4C is investigated, and the wear mode/mechanisms identified, under lubrication with water, diesel fuel, and paraffin oil. It is found that the wear is mild in the three cases, with specific wear rates (SWRs) of 10−16–10−17 m3/N m. Nonetheless......, the wear resistance of the B4C ceramic is one order of magnitude greater under oil lubrication (1016 N m/m3) than under water lubrication (1015 N m/m3), and twice as great for the specific case of paraffin oil than diesel fuel, attributable to the lubricant’s viscosity. It is also found that the wear mode...... is always abrasion, and that the wear mechanisms are plastic deformation and localized fracture with grain pullout. However, in agreement with the macro-wear data, the severity of the wear damage is lower under lubrication with paraffin oil, followed by diesel fuel, and lastly water. Finally...

  11. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  12. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    were observed to be higher in comparison to diesel, A. The CO 2 (carbon dioxide) and CO (carbon monoxide) emissions were reported to be lower than diesel oil. The effect of using emulsion fuels decreased the NOx (nitrogen oxides) emissions at medium engine speeds, i.e. approximately 30.0%. Lesser NOx emission was attributed by the reduction of cetane number of the diesel-biodiesel-bioethanol emulsion fuels’ cetane number as the amount of bioethanol increases. However, the emissions of NOx were found to increase gradually at low speed (∼1600 rpm), high load; high speed (∼2400 rpm), medium load conditions. It was found that the combustion performance and emissions of the diesel engine very much depend on the fuel, its emulsion combination types and engine operating conditions.

  13. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    Ali, M.; Shaikh, A.A.

    2012-01-01

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  14. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions.

    Directory of Open Access Journals (Sweden)

    Sebastian Oeder

    Full Text Available Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling.To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols.Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO or cleaner-burning diesel fuel (DF. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses.The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot". Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification.Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a

  15. Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions

    Science.gov (United States)

    Dilger, Marco; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Diabaté, Silvia; Weiss, Carsten; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Torvela, Tiina; Jokiniemi, Jorma K.; Hirvonen, Maija-Riitta; Schmidt-Weber, Carsten; Traidl-Hoffmann, Claudia; BéruBé, Kelly A.; Wlodarczyk, Anna J.; Prytherch, Zoë; Michalke, Bernhard; Krebs, Tobias; Prévôt, André S. H.; Kelbg, Michael; Tiggesbäumker, Josef; Karg, Erwin; Jakobi, Gert; Scholtes, Sorana; Schnelle-Kreis, Jürgen; Lintelmann, Jutta; Matuschek, Georg; Sklorz, Martin; Klingbeil, Sophie; Orasche, Jürgen; Richthammer, Patrick; Müller, Laarnie; Elsasser, Michael; Reda, Ahmed; Gröger, Thomas; Weggler, Benedikt; Schwemer, Theo; Czech, Hendryk; Rüger, Christopher P.; Abbaszade, Gülcin; Radischat, Christian; Hiller, Karsten; Buters, Jeroen T. M.; Dittmar, Gunnar; Zimmermann, Ralf

    2015-01-01

    Background Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the

  16. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.511 What are the per-gallon and... requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or...

  17. Caracterización de un motor diesel trabajando con mezclas de aceite de Jatropha y combustible diesel ; Characterization of a diesel engine fueled with Jatropha oil and diesel fuel blends

    OpenAIRE

    Michel Errasti Cabrera; Ramón Piloto Rodríguez; Noel Ferrer Frontela; Eliezer Ahmed Melo Espinoza; Antonio Werner de Dios Ortega; Leonardo Goyos Pérez

    2013-01-01

    El presente trabajo tiene como objetivo caracterizar el desempeño de un motor diesel en cuanto a sus prestaciones y al retardo de la ignición, al operar bajo diferentes regímenes de carga, empleando mezclas de aceite de Jatropha y combustible diesel. Para esto se determinó la característica exterior de velocidad al emplear las mezclas, y se compararon estos resultados con los obtenidos durante los ensayos con combustible diesel patrón; estableciendo el grado de afectación del motor al sustitu...

  18. VEGETABLE OILS AS SUBSTITUTION FOR DIESEL OIL Test results ...

    African Journals Online (AJOL)

    REFERENCES. (1) 'lbe Ethiopian Herald, Ed. "Brazil heavy depending on plants for fuel". Sunday, 24 April 1983, p.6. [2] Pischinger, G. "Consumption Data and. Consideration on Three Approaches to. Diesel oil Substitution". Internal publi- cation of Volkswagen AG, Wolfsburg,. 1981. [ 3] Tewolde Berhan G /Egziabher and.

  19. Sensitivity to fuel diesel oil and cell wall structure of some Scenedesmus (Chlorococcales strains

    Directory of Open Access Journals (Sweden)

    Zbigniew Tukaj

    2014-01-01

    Full Text Available Sensitivity of three Scenedesmus strains exposed to aqueous fuel-oil extract (AFOE is strongly strain-dependent S. quadricauda is the most resistant, S. armatus moderately tolerant whereas the most sensitive appears to be S. microspina. The sensitivity of tested species increases parallel with decreasing of cell size and cell number in coenobium. The values of the cell surface/cell volumes ratios only partly explain the above relationships. Electron microscope investigations reveal that the sensitivity may depend on cell wall structure of the strains. Cell wall of all here investigated strains is built of two layers: the inner so-called cellulosic layer and the outer one showing a three-laminar structure (TLS. The latter contains an acetolysis-resistant biopolymer (ARB. These two layers are similar in thickness in the three strains tested, but the surface of Scenedesmus is covered with various epistructures that are characteristic of strains. Some of them as the tightly fitting warty layer of S. armatus and especially the loosely fitting reticulate layer of S. quadricauda may contribute to lower permeability of cell wall. The structure of the rosettes also appears to be correlated with the sensitivity of strains. Presence of invaginations of plasmalemma in areas under rosettes indicates their role in transport processes inside/outside the cells.

  20. Combustion of soybean oil and diesel mixtures for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  1. Particulate Emissions Associated with Diesel Engine Oil Consumption

    OpenAIRE

    Tornehed, Petter

    2010-01-01

    Particulate emissions from diesel engines have been a key issue for diesel engine developers in recent decades. Their work has succeeded in reducing the exhaust particles from the combustion of fuel, which has led to increasing interest in the contribution of particulates from lubrication oil. When discussing oil-related particulate emissions, hydrocarbon particles are customarily referred to. This thesis uses a broader definition, in which oil-related particulate emissions are modelled not o...

  2. Effect of upgraded diesel fuels and oxidation catalysts on emission properties, especially PAH and genotoxicity

    DEFF Research Database (Denmark)

    Johansen, Keld; Gabrielsson, Pär; Stavnsbjerg, Peter

    1997-01-01

    Test samples of two different “advanced” diesel fuels were prepared from the raw diesel of North Sea Light Gas Oil. A commercial “Ultralight” diesel fuel was used as a reference. The three fuels were tested on two engines with and without an oxidation catalyst: 1) a VOLVO 10.0 1 DI was mounted...

  3. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NO x emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ship diesel emission aerosols: A comprehensive study on the chemical composition, the physical properties and the molecular biological and toxicological effects on human lung cells of aerosols from a ship diesel engine operated with heavy or light diesel fuel oil

    Science.gov (United States)

    Zimmermann, R.; Buters, J.; Öder, S.; Dietmar, G.; Kanashova, T.; Paur, H.; Dilger, M.; Mülhopt, S.; Harndorf, H.; Stengel, B.; Rabe, R.; Hirvonen, M.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Berube, K.; Sippula, O.; Streibel, T.; Karg, E.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Arteaga Salas, M.; Orasche, J.; Müller, L.; Reda, A.; Passig, J.; Radischat, C.; Gröger, T.; Weiss, C.

    2013-12-01

    The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties, transformation processes and health effects of anthropogenic combustion emissions. This is performed by thorough comprehensive chemical and physical characterization of combustion aerosols (including application of advantageous on-line methods) and studying of biological effects on human lung cell-cultures. A new ALI air-liquid-interface (ALI) exposition system and a mobile S2-biological laboratory were developed for the HICE-measurements. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized (e.g. proteomics). By using stable isotope labeling technologies (13C-Glucose/metabolomics; 2H-Lysine/SILAC-proteomics), high sensitivity and accuracy for detection of molecular-biological effects is achievable even at sub-toxic effect dose levels. Aerosols from wood combustion and ship diesel engine (heavy/light fuel oil) have been investigated. The effect of wood combustion and ship diesel PM e.g. on the protein expression of ALI-exposed A549 cells was compared. Filtered aerosol is used as gas-reference for the isotope labeling based method (SILAC). Therefore the effects of wood combustion- and shipping diesel-PM can be directly compared. Ship diesel aerosol causes a broader distribution in the observed fold changes (log2), i.e. more proteins are significantly up-/down-regulated in case of shipping diesel PM-exposure. This corresponds to a stronger biological reaction if compared to wood combustion-PM exposure. The chemical analysis results on wood combustion- and ship diesel-PM depict more polycyclic aromatic hydrocarbons (PAH)/oxidized-PAH but less of some transition metals (V, Fe) in the wood combustion case. Interestingly, alkylated PAH are considerably more abundant in shipping PM, suggesting that PAH/Oxy-PAH may be less relevant for

  5. MEA and DEE as additives on diesel engine using waste plastic oil diesel blends

    Directory of Open Access Journals (Sweden)

    Pappula Bridjesh

    2018-05-01

    Full Text Available Waste plastic oil (WPO is a standout amongst the most promising alternative fuels for diesel in view of most of its properties similar to diesel. The challenges of waste management and increasing fuel crisis can be addressed while with the production of fuel from plastic wastes. This experimental investigation is an endeavour to supplant diesel at least by 50% with waste plastic oil alongside 2-methoxy ethyl acetate (MEA and diethyl ether (DEE as additives. Test fuels considered in this study are WPO, 50D50W (50%Diesel + 50%WPO, 50D40W10MEA (50%Diesel + 40%WPO + 10%MEA and 50D40W10DEE (50%Diesel + 40%WPO + 10%DEE. The test results are compared with diesel. An increase in brake thermal efficiency and abatement in brake specific fuel consumption are seen with 50D40W10MEA, as well as reduction in hydro carbon, carbon monoxide and smoke emissions. 50D40W10DEE showed reduced NOx emission whereas 50D40W10MEA has almost no impact. Engine performance and emission characteristics under different loads for different test fuels are discussed. Keywords: 2-Methoxy ethyl acetate, Diethyl ether, Waste plastic oil, Pyrolysis

  6. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  7. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  8. A Literature Survey and Data Base Assessment: Microbial Fate of Diesel Fuel and Fog Oils,

    Science.gov (United States)

    1986-04-01

    Chemical Abstracts CAIN; CABF data bases now AGRICOLA Enviroline National Technical Information Service Orbit IV (Systems Development Corp. International...mixture of one part light sandy loam garden soil to nine parts white sand. A single surface application of oil was made at 1.25 L/m2 . Regimens of

  9. Production of bio diesel from chicken frying oil

    International Nuclear Information System (INIS)

    Bakir, E.T.; Fadhil, A.B.

    2011-01-01

    Chicken fried oil was converted into different bio diesels through single step transesterification and two step transesterification, namely acid-base and base-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The results showed that two step base catalyzed transesterification was better compared to other methods. It resulted in higher yield and better fuel properties. Transesterification of fried chicken oil was monitored by TLC technique and compared with that of the parent oil. Fuel properties of the products have been measured and found markedly enhanced compared to those of the parent oil. Also, the values satisfied the standard limits according to the ASTM standards. Blending of the better bio diesel sample with petro diesel was made using three volume percentages (10, 30 and 50% v/v). The results disclosed that blending had slight effect on the original properties of petro diesel.

  10. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    International Nuclear Information System (INIS)

    Yun, Young-Chul; Chung, Woo-Geun

    2016-01-01

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m 3 /hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability

  11. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young-Chul; Chung, Woo-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m{sup 3}/hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability.

  12. Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine

    Directory of Open Access Journals (Sweden)

    N Shrivastava

    2012-11-01

    Full Text Available Fast depletion of fossil fuel resources forces the extensive research on the alternative fuels. Vegetable oils edible or non edible can be a better substitute for the petroleum diesel. Karanja, a non edible oil can be a potential source to replace the diesel fuel. To investigate the feasibility of Karanja oil as an alternative diesel fuel, its biodiesel was prepared through the transesterification process. The Biodiesel was then subjected to performance and emission tests in order to assess its actual performance, when used as a diesel engine fuel. The data generated for the 20, 50 and 100 percent blended biodiesel were compared with base line data generated for neat diesel fuel. Result showed that the Biodiesel and its blend showed lower thermal efficiency. Emission of Carbon monoxide, unburned Hydrocarbon and smoke was found to be reduced where as oxides of nitrogen was higher with biodiesel and its blends. Keywords: alternate Diesel fuel; Biodiesel; Karanja oil methyl ester; performance and emission

  13. Bio Diesel An Alternative Vehicles Fuel; Analytical View

    International Nuclear Information System (INIS)

    El Banna, S.; El Deen, O.N.

    2004-01-01

    Transesterification of a vegetable oil was conducted as early as 1853, by scientists E. Duffy and J. Patrick, many years before the first diesel engine became functional(1). Rudolf Diesel's prime model, a single 10 ft (3 m) iron cylinder with a flywheel at its base, ran on its own power for the first time in Augsburg, Germany on August 10, 1893(2). Diesel later demonstrated his engine at the World Fair in Paris, France in 1898. This engine stood as an example of Diesel's vision because it was powered by peanut oil-a bio fuel. He believed that the utilization of a biomass fuel was the real future of his engine. In a 1912 speech, Rudolf Diesel said, (I) t he use of vegetable oils for engine fuels may seem insignificant today, but such oils may become, in the course of time, as important as petroleum and the coal-tar products of the present time. Rudolf Diesel was not the only inventor to believe that biomass fuels would be the mainstay of the transportation industry. Henry Ford designed his automobiles, beginning with the 1908 Model T(1), to use ethanol. Ford was so convinced that renewable resources were the key to the success of his automobiles that he built a plant to make ethanol in the Midwest and formed a partnership with Standard Oil to sell it in their distributing stations

  14. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Volume 1. Fog Oil, Diesel Fuels, and Polyethylene Glycol (PEG 200)

    Science.gov (United States)

    1983-07-01

    dissolved in water interfered with the food - finding behavior of the snail (Nas5arius obsoletus). Marine crustaceans were moderately sensitive to No. 2...Exposure to 505 mg/I No. 96-hr LC50; excessive Stalnken, 1976 soft shell cdms 2 fuel oil in water mucus secretion; emulsion * muscular narcotization...Exposure to < 100 mg/I No. 7-Day LC0 excessive 2 fuel oil In water emul- mucus secretion; sion muscular narcotization Soft shell 5 months exposure to No

  15. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  16. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    Science.gov (United States)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  17. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel are hereby individually designated: (1) Motor vehicle diesel fuel, grade 1-D; (2) Motor vehicle diesel...

  18. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  19. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    Science.gov (United States)

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Hydro Carbon (HC) and Nitrogen Oxide (NO x ) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels. Copyright © 2016 Elsevier Inc. All

  20. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  1. Evaluation of the agricultural tractor using biofuel and diesel oil; Avaliacao de um trator agricola utilizando biocombustivel e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Pinheiro Neto, Raimundo; Meyer, Wagner; Mendonca, Elton Costa de; Roberti, Marcelo [Universidade Estadual de Maringa (UEM), PR (Brazil)], Emails: raplopes@uem.br, rpneto@uem.br

    2009-07-01

    Test with alternative fuels is essential to evaluate the performance of machines and engines. In this paper, the performance of a tractor in chiseling operation was evaluated using oil diesel and biofuel (oil diesel + soybean vegetable oil mixture). Speed of displacement, slip wheels, force traction bar and fuel consumption was evaluated in areas under tillage and no-tillage. The speed of displacement of the set presented similar behavior in tillage and no-tillage. Bigger values mean force in the bar of traction, slip and fuel consumptions had been observed for no-tillage with the tractor operating with diesel. Bigger values mean consumption the biofuel had been observed in areas under tillage. The coverings of the soil had influenced in the values of force bar traction, slip wheels, speed of displacement and fuel consumption. In the studied conditions, the tests demonstrate that the mixture oil diesel + soybean vegetable oil had not influenced in the performance of the tractor. (author)

  2. The characteristic of spray using diesel water emulsified fuel in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Kim, Hyungik; Lee, Kihyung

    2016-01-01

    Highlights: • Water in oil emulsion is produced using ceramic membrane. • Surfactant type affect stability performance and droplet size distribution. • Evaporation characteristic of DE is poor compared with neat diesel. • Coefficient of variation maintains below 2.0% both DE and neat diesel. - Abstract: In this study, it was applied to the diesel–water emulsified (DE) fuel that carried out the experiment for the characteristic of sprat using diesel water emulsified fuel in a diesel engine, and the possibility of its application to conventional diesel engines was evaluated from the fundamental characteristics of diesel–water emulsified fuel. According to the results of the spray characteristics such as spray penetration and spray distribution were measured in the experiment, and then analyzed through digital image processing. The DEs were applied to actual diesel engines and their combustion, emission, and fuel consumption characteristics were compared with those of diesel. The results showed that the experiments were confirmed as the spray atomization characteristics at the various emulsified fuels.

  3. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  4. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  5. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  6. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  7. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  8. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Science.gov (United States)

    2012-05-10

    ... the 2005 Energy Policy Act (EP Act), Congress revised the SDWA definition of ``underground injection... fuel is a complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C9 through C20 and boiling in the range of...

  9. 77 FR 48177 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2012-08-13

    ... ] requirements regarding fuel oil systems for safety-related emergency diesel generators and oil-fueled gas... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft... Regulatory Commission (NRC or the Commission) issued Draft Regulatory Guide, DG- 1282, ``Fuel Oil Systems for...

  10. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  11. Bio-oil fuelled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1997-12-01

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 pyrolysis oil made of wood was tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  12. Impact of fuels on diesel exhaust emissions

    International Nuclear Information System (INIS)

    Westerholm, R.

    1991-09-01

    This report presents an investigation of the emissions from eight diesel fuels with different sulphur and aromatic content. A bus and a truck were used in the investigation. Chemical analysis and biological testing have been performed. The aim of this project was to find a 'good' diesel fuel which can be used in urban areas. Seven of the fuels were meant to be such fuels. It has been confirmed in this study that there exists a quantifiable relationship between the variables of the diesel fuel blends and the variables of the chemical emissions and their biological effects. 119 figs., 12 tabs., approx. 100 refs

  13. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  14. Evaluation of engine performance, emissions, of a twin cylinder diesel engine fuelled with waste plastic oil and diesel blends with a fraction of methanol

    OpenAIRE

    Y. Tarun; C. Thamotharan; K. Mukherjee

    2014-01-01

    A comprehensive study on the methanol and waste plastic oil as an alternative fuel has been carried out. This report deals with the exhaust emission of waste plastic fuel on twin cylinder diesel engine. The objectives of this report are to analyse the fuel consumption and the emission characteristic of a twin cylinder diesel engine that are using waste plastic oil compared to usage of ordinary diesel that are available in the market. This report describes the setups and the procedures for the...

  15. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  16. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  17. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  18. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  19. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    Science.gov (United States)

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

  20. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2008-01-01

    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  1. Utilisation des huiles végétales et de leurs produits de transestérification comme carburants Diesel Use of Vegetable Oils and Their Transesterification Products As Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Gateau P.

    2006-11-01

    écautions soient prises au stade de leur préparation. L'IFP a mis au point un procédé de transestérification simple et économique, mais cependant précis et rigoureux, qui fournit un ester de très bonne qualité pour une application comme carburant. La distillation, toujours coûteuse, peut ici être évitée et le produit, testé en endurance, n'engendre pas de dépôts plus importants que ceux observés lors d'un fonctionnement au gazole. The use of vegetable oils and their derivatives as diesel fuels has been the subject of several studies, since 1981, financed by Agence Française pour la Maîtrise de l'Energie (APME and carried out by Institut Français du Pétrole (IFP in collaboration with Elf, Renault, Centre d'Etudes et d'Expérimentation du Machinisme Agricole Tropical (CEEMAT and Institut de Recherches pour les Huiles et Oléagineux (IRHO. This article reviews the test-bench results obtained with several types of engines representing a wide range of applications from the two-wheeled tractor used for African farming to conventional tractor or truck engines. Two types of fuels were examined: (i vegetable oils themselves, used pure or in a mixture with diesel fuel, and (ii methyl esters from these oils used as they are. During short operating times, both oils and esters lead to the generally satisfactory operating of the engine. Performance losses compared to diesel fuel remain moderate or even imperceptible. However, for their lower viscosity, we could prefer esters to oils. For endurance tests the major problem encountered with vegetable oils and their derivatives is the formation of deposits at injector nozzles. With unsophisticated prechamber engines (Hatz type this phenomenon remains limited in that a complete set of endurance tests was performed without any problem for 1100 hours with different types of pure oils (peanut, cotton, palm. In direct-injection engines the formation of deposits is a very serious constraint in that it almost prohibits the use of such

  2. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Science.gov (United States)

    2010-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  3. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Desempenho de misturas pré-aquecidas de óleo de soja cru e diesel como combustível para motores agrícolas Performance of preheated crude soybean oil-diesel blends as fuel in agricultural engines

    Directory of Open Access Journals (Sweden)

    José Fernando Schlosser

    2007-10-01

    Full Text Available O óleo de soja é um dos óleos vegetais que têm potencial de uso como combustível para motores diesel, pois é renovável, seguro e de fácil utilização. Em temperatura ambiente, o óleo cru apresenta uma viscosidade cerca de dez vezes maior que a do óleo diesel. Para reduzir a viscosidade do óleo de soja a níveis aceitáveis, é necessária uma temperatura de aquecimento em torno de aproximadamente 60°C ou misturá-lo com óleo diesel. O objetivo deste estudo foi avaliar o desempenho do óleo de soja cru e suas misturas com óleo diesel, pré-aquecidas antes da bomba injetora entre 57°C e 68°C, como combustível para motores diesel. O desempenho das misturas combustíveis foi avaliado num motor monocilíndrico de injeção indireta e comparado com o obtido pelo óleo diesel. Os ensaios de curta duração foram conduzidos entre 1.800 e 2.800rpm, sob condição de plena carga em dinamômetro hidráulico. Ensaios realizados a 68°C apresentaram sempre os melhores valores para torque, potência e consumo específico de combustível do que a 57°C. Uma mistura composta por 70% de óleo de soja e 30% de óleo diesel, aquecida a 68°C, apresentou os melhores resultados.Crude soybean oil is one of the vegetable oils that have potential for use as fuel for diesel engines. Soybean oil is renewable, and is safe and easy to handle. At room temperature crude oil has a viscosity about ten times higher than that of diesel oil. To lower soybean oil's viscosity to the acceptable levels a heating temperature at least 60°C is needed or blending with diesel fuel. The objective of this study was evaluating the soybean oil and blends performance as a fuel for diesel engines. On both crude soybean oil and soybean oil blends were used pre-heating temperature levels on the range between 57°C and 68°C, before fuel pump. The performance of the fuel blends were evaluated in a single cylinder indirect injection diesel engine and compared with the performance

  5. Diesel fuel takes over from gasoline as the rop seller

    International Nuclear Information System (INIS)

    Nupponen, J.

    2001-01-01

    Sales of diesel fuel in Finland continued to increase during 2000, and exceeded gasoline sales in terms of tonnes sold for the first time since the early 1960s. Sales of gasoline and the other main petroleum products fell slightly compared to 1999. Sales of natural gas increased. Otherwise, the year was a relatively uneventful one on the Finnish oil market

  6. Green Diesel from Hydrotreated Vegetable Oil Process Design Study

    NARCIS (Netherlands)

    Hilbers, T.J.; Sprakel, Lisette Maria Johanna; van den Enk, L.B.J.; Zaalberg, B.; van den Berg, Henderikus; van der Ham, Aloysius G.J.

    2015-01-01

    A systematic approach was applied to study the process of hydrotreating vegetable oils. During the three phases of conceptual, detailed, and final design, unit operations were designed and sized. Modeling of the process was performed with UniSim Design®. Producing green diesel and jet fuel from

  7. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... discharge point. (d) If diesel fuel lines are not buried in the ground sufficiently to protect them from... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated...

  8. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and...

  9. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  10. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  11. Effect of orange peel oil addition on the performance of cottonseed oil fuelled DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Leenus Jesu Martin, M. [Department of Automobile Engineering, SRM University, Chennai-603203 (India); Edwin Geo, V. [Department of Mechanical Engineering, GKM College of Engineering and Technology, Chennai-600063 (India); Prithviraj, D. [Department of Mechanical Engineering, SRM University, Chennai-603203 (India)

    2011-07-01

    The world petroleum situation due to rapid depletion of fossil fuels and the degradation of the environment due to the combustion of fossil fuels have caused a resurgence of interest in finding alternative fuel. Vegetable oil based fuels are biodegradable, non-toxic and significantly reduce pollution. Cottonseed oil, which is considered, is not suitable as a fuel for diesel engines straight because of its high viscosity. Addition of a small quantity of another light vegetable oil, Orange Peel oil reduces the viscosity and improves the performance of the engine largely. Blends of varying proportions of cottonseed oil and orange peel oil were prepared, analyzed and their properties were calculated. The performance of the engine using diesel, the blends and cottonseed oil were evaluated using a single cylinder, four stroke, direct injection compression ignition engine. The results obtained were compared with baseline data generated with raw cottonseed oil and diesel. 15% of Orange peel oil by volume addition to cottonseed oil exhibited the best performance and smooth engine operation without any problem.

  12. Fuel and Fuel Additive Registration Testing of Ethanol-Diesel Blend for O2Diesel, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Fanick, E. R.

    2004-02-01

    O2 Diesel Inc. (formerly AAE Technologies Inc.) tested a heavy duty engine with O2Diesel (diesel fuel with 7.7% ethanol and additives) for regulated emissions and speciation of vapor-phase and semi-volatile hydrocarbon compounds. This testing was performed in support of EPA requirements for registering designated fuels and fuel additives as stipulated by sections 211(b) and 211(e) of the Clean Air Act.

  13. Road transport fuels in europe: the explosion of demand for diesel fuel

    International Nuclear Information System (INIS)

    Bensaid, B.

    2004-01-01

    In the last 20 years, road transport fuel consumption has more than doubled in European countries, due to strong growth on the diesel passenger car segment and in the transport of road freight. In an economy heavily dependent on oil, European authorities are seeking to promote alternative energy solutions, such as motor fuels produced from biomass

  14. Study on performance of blended fuel PPO - Diesel at generator

    Science.gov (United States)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  15. USE OF WATER-FUEL MIXTURE IN DIESEL ENGINES AT FISHING VESSELS

    Directory of Open Access Journals (Sweden)

    Oleg KLYUS

    2017-04-01

    Full Text Available The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20% and water (up to 2.5%. The obtained parameters prove that adding bio-components (rapeseed oil methyl esters and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel – catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  16. Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels

    Science.gov (United States)

    Klyus, Oleg; Bezyukov, O.

    2017-06-01

    The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  17. Oil from biomass corncob tar as a fuel

    International Nuclear Information System (INIS)

    Zhang, Hongmei; Wang, Jun

    2007-01-01

    In this study, biomass corncob tar oil (B-oil I and B-oil II) was extracted and its characteristics were measured. The characterization data show some similarities and differences among B-oil I, B-oil II and the Diesel: flash point. The densities and viscosities are higher than that of Diesel fuel. The solidifying point for B-oil I and B-oil II were lower than that of Diesel. The heating value of B-oil I and B-oil II were about 85.6% and 87.3% of that ordinary Diesel fuel (OD). The distillation temperatures of B-oil I and B-oil II were lower than that of Diesel fuel, with the 50% evaporation point being as much as 10 o C and 4 o C lower and the 90% evaporation point being 10 o C and 2 o C lower, respectively. These evaporation characteristics implied better cold starting and warm up properties of B-oil I and B-oil II than that of Diesel fuel. B-oil I and B-oil II were blended with Diesel in 10% and 20% by volume. Engine tests have been conducted with the aim of obtaining comparative measures of torque, thermal efficiency, specific fuel consumption and emissions such as CO, smoke density and NO to evaluate and compute the behavior of the Diesel engine running on the above mentioned fuels. The reduction in exhaust emissions, together with the increases in torque and thermal efficiency and the reduction in specific fuel consumption made the blends of B-oil I and B-oil II a suitable alternative fuel for Diesel and could help in controlling air pollution

  18. Waste cooking oil transformed into bio diesel; Oleo de fritura transformado em biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Nei Hansen de; Hoff, Nicole Marques; Zulim, Lucas Leone [Pontificia Universidade Catolica do Parana (PUC/PR), Curitiba, PR (Brazil)], e-mail: nei.almeida@pucpr.br, e-mail: nicole.hoff@ufpr.br, e-mail: Lucas.zulim@zipmail.com.br

    2006-07-01

    Vegetable oils obtained from renewable cultures like soybean oil, sunflower oil and forage turnip oil, they can be transformed into bio diesel by reversible transesterification and esterification reactions with ethanol in presence of catalysts, forming ethyl esters (bio diesel) and glycerol. Most of the bio diesel fabrication commercial process uses methanol as reagent. Due the great amount of free fatty acids in the spent cooking oil compared with vegetable oil, was necessary the performance of two reactions, one of transesterification and another of esterification to obtain ethyl ester at high level. The bio diesel used as fuel produce dioxide emission due the explosion reactions with compressed air in the diesel engine. This gas can be recycled by photosynthesis fixing carbon on soil and liberating oxygen to the atmosphere. The carbon dioxide liberated by fossil fuel are not absorbed by plants remaining in the atmosphere causing the greenhouse effect. The high temperature used in vegetal oils, frying vegetable oil of foods, oxidizes the oil and forms free fatty acids, that are transformed into bio diesel using type and amounts of appropriated catalysts in the reaction, since the present humidity in the waste cooking oil increases the acid value of the oil too. The technology developed by Unit Operation laboratory PUC-PR Chemical Engineering course, produces 30 liters by each batch whit ethyl esters yields above 98%. Tests in stationary Diesel motor for mix B10, had resulted in increased values of torque and power for all speed motor if compared with 100% conventional diesel. (author)

  19. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  20. The study on injection parameters of selected alternative fuels used in diesel engines

    Science.gov (United States)

    Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.

    2016-09-01

    The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).

  1. Evaporation of crude oil and diesel from beach sediment

    International Nuclear Information System (INIS)

    Bech, C.; Guenette, C.; Sveum, P.

    1993-01-01

    Three series of outdoor laboratory experiments were conducted on Spitsbergen to study the evaporation of crude oil and diesel fuel from dry gravel beach sediment under Arctic summer conditions. Evaporation rates were studied as a function of oil loading, depth of contaminated material, and depth of clean sediment covering oiled sediment (to simulate burial of contaminated beach material). Measurement of Evaporation loss was followed by determination of the total weight loss from the experimental containers over periods of 30 to 70 h. The data were fitted to full factorial models in an attempt to explain the variability in the data and the influence of the various factors on evaporation. The results showed that the main factors influencing the evaporation of oil and diesel from sediment were the exposure time, oil loading, amount of clean gravel covering contaminated gravel (i.e. exposure level), and environmental conditions. 5 refs., 3 figs., 4 tabs

  2. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  3. Influence of diesel fuel on seed germination

    International Nuclear Information System (INIS)

    Adam, Gillian; Duncan, Harry

    2002-01-01

    The volatile fraction of diesel fuel played a major role in delaying seed emergence and reducing percentage germination. - The use of plant-based systems to remediate contaminated soils has become an area of intense scientific study in recent years and it is apparent that plants which grow well in contaminated soils need to be identified and screened for use in phytoremediation technologies. This study investigated the effect of diesel fuel on germination of selected plant species. Germination response varied greatly with plant species and was species specific, as members of the same plant family showed differential sensitivity to diesel fuel contamination. Differences were also seen within plant subspecies. At relatively low levels of diesel fuel contamination, delayed seed emergence and reduced percentage germination was observed for the majority of plant species investigated. Results suggest the volatile fraction of diesel fuel played an influential role in delaying seed emergence and reducing percentage germination. In addition, the remaining diesel fuel in the soil added to this inhibitory effect on germination by physically impeding water and oxygen transfer between the seed and the surrounding soil environment, thus hindering the germination response

  4. Present evaluation of the use of rape oil/RME compared to diesel fuel. Appendix 1: Resources and emission balances: rape oil and RME compared to diesel fuel. Appendix 2: Economic evaluation of the use of rape oil and RME compared to diesel fuel; Aktuelle Bewertung des Einsatzes von Rapsoel/RME im Vergleich zu Dieselkraftstoff. Anhang 1: Ressourcen- und Emissionsbilanzen: Rapsoel und RME im Vergleich zu Dieselkraftstoff. Anhang 2: Oekonomische Bewertung des Einsatzes von Rapsoel und RME gegenueber Dieselkraftstoff

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, K.; Niklas, G.; Tappe, M.; Reinhardt, G.A. [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Folkers, C. [Bochum Univ. (Germany). Lehrstuhl fuer Finanzwissenschaft

    1999-12-01

    New recognitions in the sectors of research, development in the processing industry, motor vehicle technology, ecological balance methodics, the high interest in environmental policy and some other points of criticism have motivated the Umweltbundesamt to update the corresponding parts of the '1993 eco-balance rape oil'. Balancing of the particularly critically discussed sectors of resource consumption and airborne environmental impacts over the entire life cycle of rape oil based fuels as compared to diesel fuel was taken care of by the ifeu Institute. That balances were only made up for these two sectors is due to the fact that it is here where the particular environmental advantages of vegetable fuel oils are supposedly brought to bear. Moreover, on the basis of the report 'renewable energy sources - fundamentals, methods, ecological balancing' published recently and sponsored by the Deutsche Bundesstiftung Umwelt, topical essential factors such as the redefinition of the reference system (short-rotation cultivation instead of permanent fallowness) could be taken into account by the expertise. A particular benefit attributed to rape oil and RME is the conservation of fossil energy sources and associated abatement of the greenhouse effect (especially carbon dioxide). Cutting down greenhouse gas emissions is one of the predominant aims of national and international environmental policy with a view to preventing a dangerous man-made disturbance of climate. (orig.) [German] Neue Erkenntnisse im Bereich der Forschung, der Entwicklungen der verarbeitenden Industrie, der Fahrzeugtechnik, der Oekobilanzmethodik, das hohe umweltpolitische Interesse sowie die zuvor genannten Kritikpunkte haben das Umweltbundesamt veranlasst, die entsprechenden Teile der 'Oekobilanz Rapsoel' von 1993 auf den neuesten Stand zu bringen. Das ifeu-Institut hat die besonders kritisch diskutierten Bereiche des Ressourcenverbrauchs und der luftgetragenen

  5. A critical review of bio-diesel as a vehicular fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2008-01-01

    The use of vegetable oils as alternative fuels has been around for one hundred years when the inventor of the diesel engine Rudolph Diesel first tested peanut oil, in his compression-ignition engine. In 1970, scientists discovered that the viscosity of vegetable oils could be reduced by a simple chemical process and that it could perform as diesel fuel in modern engine. Considerable efforts have been made to develop vegetable oil derivatives that approximate the properties and performance of the hydrocarbon-based diesel fuels. Bio-diesel is an alternative to petroleum-based fuels derived from vegetable oils, animal fats, and used waste cooking oil including triglycerides. Bio-diesel production is a very modern and technological area for researchers due to the relevance that it is winning everyday because of the increase in the petroleum price and the environmental advantages. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called bio-diesel when used for fuel purposes. (author)

  6. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  7. Detection of Red Dye in Diesel Oil

    Directory of Open Access Journals (Sweden)

    B Varughese

    2017-06-01

    Full Text Available Developing a sensitive and effective instrument for detecting the presence of red dye in diesel fuel is very advantageous for governments in preventing tax loss by controlling illegal use of the diesel fuel. The objective of this work has been to investigate and develop an instrument to detect red dye in diesel, based on the principle of absorption. The peaks of absorption in red and pure diesel fuel were measured with the help of UV-spectrometer (Lambda 6/ PECSS. Optical interference filters of wavelengths 405 nm and 616 nm were used to modify the spectral transmittance of an optical system with appropriate spectral absorption characteristics. Two simultaneous light beams of two different colors were sent into the diesel fuel and the transmitted light from the fuel censored by a silicon photo detector. The signal from the detector was then amplified with the help of three operational amplifiers (OP-177 and sent to an analog device (AD 538 which can perform division operation. The voltage produced when the violet light passes through the medium was divided when the red light passes through the medium in the one quadrant division unit (AD 538. The output voltage from the analog device was measured with the help of a digital multi-meter. The results show that the output voltages decreases with the increase in percentage of red dye in diesel fuel.

  8. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    Science.gov (United States)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  9. COMPARSION OF BIODIESEL AND ETHANOL AS AN ALTERNATIVE DIESEL ENGINE FUEL

    Directory of Open Access Journals (Sweden)

    Nazım USTA

    2005-03-01

    Full Text Available Biodiesel and ethanol are alternative renewable diesel engine fuels and their mixtures with diesel fuel No. 2 at different proportions can be used in diesel engines. Although ethanol is unique chemical molecule and has certain specifications, specifications of biodiesel may vary depending on type of the oil used in the production and esterification technique. In this study, the specifications of ethanol and two different biodiesels were compared with those of diesel fuel No. 2. Effects of ethanol and the biodiesels on performance and emissions of a turbocharged indirect injection diesel engine were investigated. The alternative fuels used in the experiments caused increase in NOx emission, while they reduced CO, soot and SO2 emissions. Although ethanol addition caused some power reduction, the biodiesel addition resulted in slightly higher power with respect to the diesel fuel.

  10. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    S Abbasi

    2018-03-01

    Full Text Available Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel about combustion, performance and emission parameters of engines. One of the parameters that have been less discussed is energy balance. In providing alternative fuels, biodiesel from waste cooking oil due to its low cost compared with biodiesel from plant oils, is the promising option. The properties of biodiesel and diesel fuels, in general, show many similarities, and therefore, biodiesel is rated as a realistic fuel as an alternative to diesel. The conversion of waste cooking oil into methyl esters through the transesterification process approximately reduces the molecular weight to one-third, reduces the viscosity by about one-seventh, reduces the flash point slightly and increases the volatility marginally, and reduces pour point considerably (Demirbas, 2009. In this study, effect of different percentages of biodiesel from waste cooking oil were investigated. Energy distribution study identify the energy losses ways in order to find the reduction solutions of them. Materials and Methods Renewable fuel used in this study consists of biodiesel produced from waste cooking oil by transesterification process (Table 1. Five diesel-biodiesel fuel blends with values of 0, 12, 22, 32 and 42 percent of biodiesel that are signs for B0, B12, B22, B32 and B42, respectively. The test engine was a diesel engine, single-cylinder, four-stroke, compression ignition and air¬cooled, series 3LD510 in the laboratory of renewable energies of agricultural faculty, Tarbiat Modarres

  11. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  12. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Science.gov (United States)

    2010-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? (a) A motor...-operational between January 1, 1999, and January 1, 2000, may apply for motor vehicle diesel fuel small...

  13. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  14. Experimental setup for combustion characteristics in a diesel engine using derivative fuel from biomass

    International Nuclear Information System (INIS)

    Andi Mulkan; Zainal, Z.A.

    2006-01-01

    Reciprocating engines are normally run on petroleum fuels or diesel fuels. Unfortunately, energy reserves such as gas and oil are decreasing. Today, with renewable energy technologies petroleum or diesel can be reduced and substituted fully or partly by alternative fuels in engine. The objective of this paper is to setup the experimental rig using producer gas from gasification system mix with diesel fuel and fed to a diesel engine. The Yanmar L60AE-DTM single cylinder diesel engine is used in the experiment. A 20 kW downdraft gasifier has been developed to produce gas using cut of furniture wood used as biomass source. Air inlet of the engine has been modified to include the producer gas. An AVL quartz Pressure Transducer P4420 was installed into the engine head to measure pressure inside the cylinder of the engine. Several test were carried out on the downdraft gasifier system and diesel engine. The heating value of the producer gas is about 4 MJ/m 3 and the specific biomass fuel consumption is about 1.5 kg/kWh. Waste cooking oil (WCO) and crude palm oil (CPO) were used as biomass fuel. The pressure versus crank angle diagram for using blend of diesel are presented and compared with using diesel alone. The result shows that the peak pressure is higher. The premixed combustion is lower but have higher mixing controlled combustion. The CO and NO x emission are higher for biomass fuel

  15. 78 FR 36278 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2013-06-17

    ... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Guide (RG) 1.137, ``Fuel Oil Systems for Emergency Power Supplies.'' Revision 2 of RG 1.137 endorses ANSI/ANS- 59.51-1997, ``Fuel Oil Systems for Safety-Related Emergency Diesel Generators...

  16. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  17. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines. In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends. (Author)

  18. Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Lin, Sheng-Lun; Wang, Lin-Chi

    2013-01-01

    Highlights: • Water-containing ABE solution (W-ABE) in the diesel is a stable fuel blends. • W-ABE can enhance the energy efficiency of diesel engine and act as a green energy. • W-ABE can reduce the PM, NOx, and PAH emissions very significantly. • The W-ABE can be manufactured from waste bio-mass without competition with food. • The W-ABE can be produced without dehydration process and no surfactant addition. - Abstract: Acetone–Butanol–Ethanol (ABE) is considered a “green” energy resource because it emits less carbon than many other fuels and is produced from biomass that is non-edible. To simulate the use of ABE fermentation products without dehydration and no addition of surfactants, a series of water-containing ABE-diesel blends were investigated. By integrating the diesel engine generator (DEG) and diesel engine dynamometer (DED) results, it was found that a diesel emulsion with 20 vol.% ABE-solution and 0.5 vol.% water (ABE20W0.5) enhanced the brake thermal efficiencies (BTE) by 3.26–8.56%. In addition, the emissions of particulate matter (PM), nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs), and the toxicity equivalency of PAHs (BaP eq ) were reduced by 5.82–61.6%, 3.69–16.4%, 0.699–31.1%, and 2.58–40.2%, respectively, when compared to regular diesel. These benefits resulted from micro-explosion mechanisms, which were caused by water-in-oil droplets, the greater ABE oxygen content, and the cooling effect that is caused by the high vaporization heat of water-containing ABE. Consequently, ABE20W0.5, which is produced by environmentally benign processes (without dehydration and no addition of surfactants), can be a good alternative to diesel because it can improve energy efficiency and reduce pollutant emissions

  19. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also... marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur...

  20. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  1. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects

    OpenAIRE

    Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H.; Fleischer, F.

    2011-01-01

    The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fue...

  2. First bio-diesel plant from oil-producing in Brazil; Premiere usine de biodiesel a partir d'oleagineux au Bresil

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    In march 2005, Brazil implemented its first bio-diesel production plant from vegetal oils. This unit, situated in the Minas Gerais state will produce 12 millions of liter of bio-diesel per year. Cars using bio-diesel fuels generate 16% less of gases and fumes than petrol fuel cars, for the same fuel consumption. (A.L.B.)

  3. Ignition Delay Properties of Alternative Fuels with Navy-Relevant Diesel Injectors

    Science.gov (United States)

    2014-06-01

    and palm oil, vegetable oil, and animal fats [8]. Of 5 particular interest in the field of HRD production is microalgae [9]. Algae-based fuels are...of the microalgae does not interfere, either with land or resources, with the production of food [10]. Oil from microalgae is converted to diesel...shifting energy use from petroleum fuels to alternative fuels [4]. In order to accomplish this shift to alternative forms of energy production , the

  4. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  5. 7 CFR 2902.13 - Diesel fuel additives.

    Science.gov (United States)

    2010-01-01

    ... Items § 2902.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one composed solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to a motor... 7 Agriculture 15 2010-01-01 2010-01-01 false Diesel fuel additives. 2902.13 Section 2902.13...

  6. Using vegetable oils and animal fats in Diesel Engines: chemical analyses and engine texts

    International Nuclear Information System (INIS)

    Marmino, I.; Verhelst, S.; Sierens, R.

    2008-01-01

    In this work, some vegetable oils (rapeseed oil, palm oil) and animal fat were tested in a Diesel engine at a range of engine spreads and torque settings, after preheating at 70 0 C. Engine performance, fuel consumption and NOx, unburnt hydrocarbons and soot emissions have been recorded. The results have been compared to those obtained with diesel fuel in the same test conditions. The oils and fats were also analyzed for their physical and chemical properties (viscosity, composition, unsaturation, heating value). NOx emissions were found to be lower for the oils than for the diesel fuel. This, combined with higher HC emissions, can probably be explained through less effective atomization due to the higher viscosity of the oils and fat. On the other hand, soot emissions were found to decrease. [it

  7. Effect of EGR on a sationary VCR diesel engine using cottonseed biodiesel (B20 fuel

    Directory of Open Access Journals (Sweden)

    Nitin M. Sakhare

    2016-09-01

    Full Text Available This paper presents a view on comparative study of use of diesel fuel with B20 biodieselblend (Diesel (80 %, by vol. and Cotton seed oil (20 %, by vol. derived from Cotton seeds. As higher NOx emission and higher brake specific fuel consumption are main challenges for effective utilization of biodiesel fuel in a diesel engine, there is alarming need to find out the long term solution to reduce NOx emission for better utilization of biodiesel fuel in a diesel engine. Exhaust gas recirculation (EGR is one of the useful technologies to reduce the NOx emission of a diesel engine. In the present research work test is conducted on 3 KW single cylinder, four stroke, water cooled, variable compression ratio (VCR computerized diesel engine using diesel and B20 cotton seed biodiesel blend to study the effect of exhaust gas recirculation on performance and emissions characteristics of a diesel engine in terms of fuel consumption, thermal efficiency and emissions such as hydrocarbon (HC, carbon monoxide (CO, oxides of nitrogen (NOx and carbon dioxide (CO2 of a diesel engine. The constant engine speed of 1500 rpm was maintained through-out the experiment test. The exhaust gas recirculation was varied as 4 % and 6 % at different loading conditions with diesel and B20 biodiesel. The results show that the significant reduction in oxides of nitrogen (NOx with 4 % and 6 % EGR for B20 whereas marginal increment in CO and HC emissions.

  8. Isoprenoid based alternative diesel fuel

    Science.gov (United States)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  9. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  10. Exposure of Atlantic salmon parr (Salmo salar) to a combination of resin acids and a water soluble fraction of diesel fuel oil: A model to investigate the chemical causes of pigmented salmon syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Croce, B. [Scottish Office Agriculture, Environment, and Fisheries Dept., Aberdeen (United Kingdom). Marine Lab.]|[Scottish Environmental Protection Agency, Aberdeen (United Kingdom). North East River Purification Board; Stagg, R.M. [Scottish Office Agriculture, Environment, and Fisheries Dept., Aberdeen (United Kingdom). Marine Lab.

    1997-09-01

    Pigmented salmon syndrome is a pollutant-induced hemolytic anemia and hyperbilirubinemia. As part of an investigation of this condition, S2 Atlantic salmon parr (Salmo salar) were exposed to a diesel fuel oil, water soluble fraction (WSF) in combination with a mixture of three resin acids (isopimaric, dehydroabietic, and abietic acids) in a continuous-flow freshwater system. The total nominal concentrations of resin acids in the exposure tanks were 10, 50, and 100 {micro}g/L; the diesel WSF was generated in situ and provided a mean hydrocarbon concentration of 2.0 {+-} 0.1 mg/L (n = 12) during the 9-d exposure period. Exposure to the diesel WSF alone depressed liver bilirubin UDP-glucuronosyl transferase (UDPGT) activity and induced phenol UDPGT activity. Exposure to the diesel WSF in the absence or presence of resin acids induced liver cytochrome P4501A and increased the concentrations in the plasma of the enzymes lactate dehydrogenase, alkaline phosphatase, and glutamic oxaloacetic transaminase. The combined exposure to diesel WSF with either 50 or 100 {micro}g/L total resin acid caused significant elevations in the concentrations of bilirubin in the plasma and many of these fish had yellow pigmentation on the ventral surface and around the gill arches. The results demonstrate that exposure to combinations of two groups of contaminants can result in the manifestation of toxic effects not apparent from exposure to either of these chemicals in isolation.

  11. Statements by non-UBA experts on the 'Ecological audit of rape seed oil or rape methyl ester as a substitute for diesel fuel (ecological audit rape seed oil)' in its wording of September 28, 1992. Annex to UBA-Texte 4/93

    International Nuclear Information System (INIS)

    1993-01-01

    This annex to ''Publications of the Federal Environmental Agency (UBA), No. 4/93'' contains eleven statements by experts regarding the agency's report ''Ecological audit of rape seed oil or rape methyl ester as a substitute for diesel fuel'' of October/November 1992. Scientific research institutions, associations and groups representing the interests of the sectors of industry concerned have their say. (UWA) [de

  12. Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil

    Directory of Open Access Journals (Sweden)

    Xiao-Chu Yang

    2012-03-01

    Full Text Available Bio-oil from fast pyrolysis of biomass is a low-grade liquid fuel, which can be upgraded through the emulsification with diesel oil. In this study, we prepared two rice husk bio-oil samples with different solid char contents and three bio-oil/diesel-oil emulsion samples with the bio-oil content of 10 wt%, 30 wt% and 50 wt%, respectively. The lubrication properties of these oil samples were evaluated by a four-ball tester. The morphologies of the worn ball surface were observed by scanning electron microscope (SEM. The chemical states of the elements on the worn surface and non-worn surface were analyzed by X-ray photoelectron spectroscope (XPS. The results showed that the bio-oil possessed better extreme-pressure, anti-wear and friction-reducing properties than the commercial diesel oil (number zero. The solid char particles in the bio-oil could improve its lubrication performance. Moreover, the lubrication ability of the emulsions would be enhanced with the increasing of the bio-oil content in the emulsions.

  13. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  14. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    Science.gov (United States)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  15. Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon

    OpenAIRE

    Lam, Su Shiung; Mahari, Wan Adibah Wan; Cheng, Chin Kui; Omar, Rozita; Chong, Cheng Tung; Chase, Howard Allaker

    2016-01-01

    Microwave pyrolysis using a well-mixed bed of activated carbon as both the microwave absorber and reaction bed was investigated for its potential to recover useful products from waste palm cooking oil – a cooking oil widely used in Asia. The carbon bed provided rapid heating (∼18 °C/min) and a localized reaction hot zone that thermally promoted extensive pyrolysis cracking of the waste oil at 450 °C, leading to increased production of a biofuel product in a process taking less than 25 min. It...

  16. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  17. Quality characteristics of alternative diesel from hydrotreatment of used frying oils

    Energy Technology Data Exchange (ETDEWEB)

    Karonis, Dimitrios; Chilari, Despina [National Technical Univ. of Athens (Greece). Lab. of Fuels Technology and Lubricants; Bezergianni, Stella [Center for Research and Technology Hellas (CERTH), Thessaloniki (Greece). Lab. of Environmental Fuels and Hydrocarbons (LEFH)

    2013-06-01

    This paper examines the properties of alternative diesel fuel that is derived from the hydrotreatment of used frying oils (UFO). Used frying oil is a difficult feedstock for biodiesel production. The hydrotreating of UFO converts triglycerides mainly into normal paraffins in the diesel fuel range. The results obtained show that the use of hydrotreated UFO has many advantages in comparison conventional diesel. Particularly, this renewable fuel has an excellent cetane number and cetane index (> 90) justified from its paraffinic character. Furthermore, this finding complies with the lower value of density in comparison to diesel, reinforcing the paraffinic nature of this fuel, comprising straight chain alkanes and negligible content of aromatic hydrocarbons in its composition. Due to the hydrotreating, these fuels do not contain olefinic bonds, therefore they are resistant to oxidation, permitting long term storage abilities. Despite these benefits, there are some considerations from the use of HFOs. Hydrotreating is a process which successfully removes heteroatoms such as S, N, O and eliminates the existence of double unstable bonds, rendering to fuel appreciable characteristics. Unfortunately, these high ignition quality oils suffer from lower lubricity and worse cold flow properties in comparison to diesel, making their use during winter period inevitable. These problems could be addressed by blending hydrotreated UFO with regular diesel. A compromise should be found in order to promote a renewable fuel with lower cetane number but with much better lubricity in order to meet the EN 590 European Standard regarding the main quality characteristics of the final fuel. (orig.)

  18. Cleaner emissions from a DI diesel engine fueled with waste plastic oil derived from municipal solid waste under the influence of n-pentanol addition, cold EGR, and injection timing.

    Science.gov (United States)

    Damodharan, Dillikannan; Sathiyagnanam, Amudhavalli Paramasivam; Rajesh Kumar, Babu; Ganesh, Kuttalam Chidambaradhanu

    2018-03-01

    Urban planning and development is a decisive factor that increases the automobile numbers which leads to increased energy demand across the globe. In order to meet the escalating requirements of energy, it is necessary to find viable alternatives. Waste plastic oil (WPO) is one such alternative which has dual benefits as it reduces the environmental pollution caused by plastic waste and it could possibly meet the energy requirement along with fossil fuels. The study attempted to reduce emissions from a DI diesel engine fueled with WPO using 30% by volume of n-pentanol with fossil diesel (WPO70P30). EGR (10, 20, and 30%) and injection timing modifications were made with the intention to find optimum engine operating conditions. The experimental results indicated that addition of renewable component like n-pentanol had improved the combustion characteristics by igniting WPO more homogeneously producing a higher premixed combustion phase. Smoke density for WPO70P30 was found to be twice lower than that of neat WPO at standard injection timing of 23°CA bTDC at any given EGR rate, NOx emissions were slightly on the higher side about 12% for WPO70P30 blend against WPO at same operating conditions. WPO70P30 showed lowest smoke and carbon monoxide emissions than diesel and WPO while delivering BTE's higher than WPO and closer to diesel at all EGR and injection timings. However NOx and HC emissions increased with n-pentanol addition. The use of EGR reduced NOx emissions but was found to aggravate other emissions. It was concluded WPO70P30 can be favorably used in a DI diesel engine at the engines advanced injection timing for better performance than diesel with a slight penalty in NOx emissions.

  19. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Troy, M.A.; Jerger, D.E.

    1992-01-01

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  20. Diesel Fuel Systems. Teacher Edition (Revised).

    Science.gov (United States)

    Clark, Elton; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…

  1. Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends

    International Nuclear Information System (INIS)

    Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfü; Aydın, Hüseyin

    2017-01-01

    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene. - Highlights: • Effects of kerosene and diesel addition to biodiesel in a diesel engine were investigated. • B80&K10 and B80&K10&D10 were tested and comparisons have been made with D2. • Similar fuel properties and combustion parameters have been found for all fuels. • Heat release initiated earlier for B80&K10 and B80&K10&D10. • CO and NOx emissions are lowered for B80&K10 and B80&K10&D10.

  2. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    Science.gov (United States)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  3. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.

    2015-04-16

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process, the reported oil was cracked using a catalyst, as the latter improves the fuel properties better than the former. In a bid to make the production process economically viable, a waste and cheap catalyst, RFA (raw fly ash), has been capitalized for the cracking process as against the conventional zeolite catalyst. The fuel production process, which is performed in a fixed bed catalytic reactor, was done methodologically after comprehensively studying the characteristics of fly ash catalyst. Significantly, fly ash characterization was realized using SEM and EDS, which demarcated the surface and internal structures of fly ash particles before and after cracking. After the production of hydrocarbon fuel from C. inophyllum oil, the performed compositional analysis in GC-MS revealed the presence of esters, parfins and olefins. Followed by the characterization of catalytically cracked C. inophyllum oil, suitable blends of it with diesel were tested in a single cylinder diesel engine. From the engine experimental results, BTE (brake thermal efficiency) of the engine for B25 (25% cracked C. inophyllum oil and 75% diesel) was observed to be closer to diesel, while it decreased for higher blends. On the other hand, emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke were found to be comparable for B25 with diesel. © 2015 Elsevier Ltd. All rights reserved.

  4. Economic viability and performance of an agricultural tractor using sunflower oil and diesel

    Directory of Open Access Journals (Sweden)

    Anderson Wasilewski

    2017-07-01

    Full Text Available In studies concerning the use, as an fuel for agricultural tractors, of the mixture of diesel  with vegetable oil, it must be verified the economic viability regarding its use as renewable fuels and the performance of agricultural machinery in the field. Therefore, it was evaluated the economic viability and performance of an agricultural tractor, fueled with diesel fuel and the diesel mixture with sunflower oil. The assay was conducted at the Universidade Estadual de Maringá Experimental Farm, in Maringá Paraná, Brazil. It was used an MF 275 agricultural tractor, coupled to a horizontal straw chopper. It was used B S10 diesel (100% and a mixture of diesel (80% with sunflower oil (20%. The mechanized set was subjected to three travel speeds (3.00; 4.00; 5.00 km h-1 into two workload conditions, with load (CC and without load (SC. It was used the experimental design in strips, with four replications, in a factorial scheme 2 x 3 x 2. The data was submitted to the tests (variance analyses F and Tukey at the level of 5% of probability. The engine consumption did not differ between the tested fuels. The tractor with load presented a higher wheel  slip. The tractor fueled with the diesel mixture with sunflower oil had a higher cost per hour.

  5. Palm oil transesterified by metanolysis as diesel engine biofuel

    International Nuclear Information System (INIS)

    Agudelo Santamaria, John R; Pena, Diego Leon; Mejia, Ricardo

    2001-01-01

    This paper reviews a general background of biodiesel and its potentialities and possibilities as automotive fuel. The paper also compares the colombian production capacity in the world context, and shows its advantages and disadvantages as diesel engine biofuel. The paper discusses some relevant processing techniques of crude palm oil, the methanol transesterification technique being found to be the most suitable one. Finally it shows the results of some important physicochemical characterization of a crude palm oil transesterificated with methanol at the Universidad de Antioquia

  6. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    Science.gov (United States)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  7. VEGETABLE OILS AS SUBSTITUTION FOR DIESEL OIL Test results ...

    African Journals Online (AJOL)

    One result of the esterification process is that the viscosity is reduced to values which also occur with diesel oil. Similarly, the noteable differences between ..... Castor oil may be ot special int.erest 88 it is contrary to other vegetable oila eoluble in alcohol in all proportions and at room temperature. Hence alcohol could be ...

  8. Diesel fuel injection system simulation

    OpenAIRE

    Kiijärvi, Jukka

    2003-01-01

    The injection process of a medium-speed diesel engine was studied in detail, using a computer program developed for this purpose. In the program, the injection pump was replaced with the measured pressure at the junction between the pump and high-pressure pipe. The results were calculated with a full and approximately a half load. The calculated and measured results corresponded moderately well with each other. In the calculation, special interest was paid to the flow of the injection valve h...

  9. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Science.gov (United States)

    2010-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Beginning on June 1...

  10. Fuel oil and kerosene sales 1995

    International Nuclear Information System (INIS)

    1996-09-01

    This publication contains the 1995 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs

  11. 77 FR 59458 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Science.gov (United States)

    2012-09-27

    ... 80 Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume; Final...] RIN 2060-AR55 Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume... biomass-based diesel to be used in setting annual percentage standards under the renewable fuel standard...

  12. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General... of marker solvent yellow 124. (2) All motor vehicle and NRLM diesel fuel shall be free of solvent... yellow 124 shall be considered motor vehicle diesel fuel or NRLM diesel fuel, as appropriate. (5) Any...

  13. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  14. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  15. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Chen, Zhenbin; Wang, Xiaochen; Pei, Yiqiang; Zhang, Chengliang; Xiao, Mingwei; He, Jinge

    2015-01-01

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NO X emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NO x and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NO x emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  16. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements...

  17. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  18. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  19. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  20. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    NARCIS (Netherlands)

    Mutlu, E.; Nash, D.G.; King, C.; Krantz, T.Q.; Preston, W.T.; Kooter, I.M.; Higuchi, M.; DeMarini, D.; Linak, W.P.; Ian Gilmour, M.

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this

  1. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  2. Exhaust emissions of DI diesel engine using unconventional fuels

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  3. Bintangor Laut (Calophylum Inophylum L.) Oil: A promising source of bio diesel

    International Nuclear Information System (INIS)

    Shaharuddin, H.; Wan Asma, I.; Rafidah, J.; Puad, E.; Mahanim, S.

    2010-01-01

    Full text: Bintangor Laut (BL) oil is non-edible oil extracted from the seeds of Calophylum Inophylum L. It is a tree of 12-20 m height, with spread branches. The BL tree grows along coastal areas and adjacent lowland forests, although it occasionally occurs inland at higher elevations and it is native to east Africa, India, Southeast Asia, Australia, and the South Pacific. This study investigates the potential of BL oil as an alternative source of bio energy (bio diesel). The average oil content of BL seeds is 35% by weight. Fuel properties of trans esterified BL oil chemically known as methyl esters (bio diesel) were compared with bio diesel standards of American Standard Testing Method (ASTM). The fuel properties of BL bio diesel (100%) that is specific gravity is 0.92, kinematic viscosity at 40 degree Celsius, 7.43, flash point 151 degree Celsius, pour point -4 degree Celsius, cloud point 4 degree Celsius, B10 were very close to petroleum diesel. On the basis of these fuel properties, it is concluded that BL bio diesel is a good option for renewable energy to reduce dependency on import of foreign oil. (author)

  4. Aviation fuel and future oil production scenarios

    International Nuclear Information System (INIS)

    Nygren, Emma; Aleklett, Kjell; Hoeoek, Mikael

    2009-01-01

    Most aviation fuels are jet fuels originating from crude oil. Crude oil must be refined to be useful and jet fuel is only one of many products that can be derived from crude oil. Jet fuel is extracted from the middle distillates fraction and competes, for example, with the production of diesel. Crude oil is a limited natural resource subject to depletion and several reports indicate that the world's crude oil production is close to the maximum level and that it will start to decrease after reaching this maximum. A post-Kyoto political agenda to reduce oil consumption will have the same effect on aviation fuel production as a natural decline in the crude oil production. On the other hand, it is predicted by the aviation industry that aviation traffic will keep on increasing. The industry has put ambitious goals on increases in fuel efficiency for the aviation fleet. Traffic is predicted to grow by 5% per year to 2026, fuel demand by about 3% per year. At the same time, aviation fuel production is predicted to decrease by several percent each year after the crude oil production peak is reached resulting in a substantial shortage of jet fuel by 2026. The aviation industry will have a hard time replacing this with fuel from other sources, even if air traffic remains at current levels.

  5. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  6. SRC Residual fuel oils

    Science.gov (United States)

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  7. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  8. Diesel fuel long term storage and treatment- recommended tests and practices (U)

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2009-06-05

    The Clean Air Act (1970) is the comprehensive federal law that regulates air emissions from stationary and mobile sources. Among other things, this law authorized the Environmental Protection Agency (EPA) to establish National Ambient Air Quality Standards to protect public health and public welfare and to regulate emissions of hazardous air pollutants. In recent years, EPA regulations have forced oil refineries into producing a very low sulfur diesel fuel and incentives for adding up to 5% bio-diesel. These changes to the fuel oil formulation are beneficial to air quality and to energy conservation, but adversely impact heat content, long term storage stability, engine power, and injection system reliability. Diesel engines typically have a high incidence of injector failure resulting from poor diesel fuel quality. Since standby diesel engines do not run continuously it is necessary to implement periodic surveillance's to ensure the quality of diesel fuel is acceptable for reliable operation when a loss of power occurs. The information contained in this document is a compilation of best practices to be used as a guide for maintenance of a reliable diesel fuel system.

  9. Phytoremediation of subarctic soil contaminated with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Puhakka, J.A. [Tampere University of Technology (Finland). Institute of Environmental Engineering and Biotechnology; Pichtel, J. [Ball State University, Muncie, IN (United States). Natural Resources and Environmental Management

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Festuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions. (author)

  10. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    Science.gov (United States)

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  11. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    Science.gov (United States)

    Sapcariu, Sean C; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  12. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    Directory of Open Access Journals (Sweden)

    Sean C Sapcariu

    Full Text Available Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO and diesel fuel (DF, two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase, or the gas phase only (with particles filtered out. Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular

  13. Coal-fueled diesels for modular power generation

    Science.gov (United States)

    Wilson, R. P.; Rao, A. K.; Smith, W. C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970's. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980's, Morgantown Energy Technology Center (METC) of the US Department of Energy initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10-100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990's and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  14. Development of a diesel substitute fuel

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Anton; Mair-Zelenka, Philipp [Graz Univ. of Technology (Austria). Inst. of Chemical Engineering and Environmental Technology; Zeymer, Marc [OMV Refining and Marketing GmbH, Vienna (Austria). MRDI-D Product Development and Innovation

    2013-06-01

    Substitute fuels composed of few real chemical compounds are an alternative characterisation approach for conventional fuels as opposed to the traditional pseudo-component method. With the algorithm proposed in this paper the generation of such substitutes will be facilitated and well-established thermodynamic methods can be applied for physical property-data prediction. Based on some quality criteria like true boiling-point curve, liquid density, C/H ratio, or cloud point of a target fuel a surrogate which meets these properties is determined by fitting its composition. The application and capabilities of the algorithm developed are demonstrated by means of an exemplary diesel substitute fuel. The substitute mixture obtained can be generated and used for evaluation of property-prediction methods. Furthermore this approach can help to understand the effects of mixing fossil fuels with biogenic compounds. (orig.)

  15. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  16. Potential of waste frying oil as a feedstock for the production of bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Quadri, Syed M Raza [Dept. of Chemical Engineering, Z.H.C.E.T, A.M.U, Aligarh (India)], e-mail: chemicalraza@gmail.com; Wani, Omar Bashir; Athar, Moina [Dept. of Petroleum Studies, Z.H.C.E.T, A.M.U, Aligarh (India)

    2012-11-01

    To face the challenges of climbing Petroleum demand and of climate changes related to Carbon dioxide emissions, interest grows in sustainable fuels made from organic matter. World production of bio fuels has experienced phenomenal growth. The search for alternatives to petroleum based fuel has led to the development of fuels from various renewable sources, including feed stocks, such as fats and oils. Several kinds of fuels can be derived from these feed stocks. One of them is biodiesel, which is mono alkyl esters of vegetables oils and animal fats and produced by transesterification of oil and fats with alcohols in the presence of acid, alkali or enzyme base catalysts. The main hurdle in using the biodiesel is its cost which is mainly the cost of virgin oil. In India every year Millions of liters of waste frying oil are discarded into the sewage system which adds cost to its treatment and add up to the pollution of ground water. This paper proposed the production of Bio-diesel from the very same waste frying oil. The production of Bio-diesel from this waste frying oil offers economic, social, environmental and health benefits. The Bio-diesel produced finds the same use as the conventional diesel but this happens to be cost effective.

  17. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  18. Lemon peel oil – A novel renewable alternative energy source for diesel engine

    International Nuclear Information System (INIS)

    Ashok, B.; Thundil Karuppa Raj, R.; Nanthagopal, K.; Krishnan, Rahul; Subbarao, Rayapati

    2017-01-01

    Highlights: • Novel biofuel is extracted from lemon peels through steam distillation process. • Lemon peel oil is found to be a potential, renewable alternate eco-friendly fuel. • Significant vibration is observed with 100% lemon peel oil. • Reduction of CO, HC and smoke emission are observed with lemon peel oil blends. • Lemon peel oil blends are showed higher brake thermal efficiency than diesel fuel. - Abstract: The present research work has embarked on to exploit the novel renewable and biodegradable source of energy from lemon fruit rinds. A systematic approach has been made in this study to find the suitability of lemon peel oil for internal combustion engines and gensets applications. Extracted lemon peel oil is found to exhibit comparatively very low viscosity, flash point and boiling point than that of conventional diesel. Various blends of lemon peel oil have been prepared with conventional diesel with volumetric concentration of 20%, 40%, 50% and 100% and their physical and chemical properties are evaluated for its suitability in direct injection diesel engine. Lower cetane index of lemon peel oil significantly influences the ignition delay period and peak heat release rate that lead to the penalty in NOx emissions. Interestingly, the diesel engine performance characteristics have been improved to a remarkable level with higher proportions of lemon peel oil in the blends. In addition, the reduction of BSCO, BSHC and smoke emission is proportional to the lemon oil concentration in the blends. Overall diesel engine characteristics indicated that lemon peel oil can partially or completely replace the petroleum diesel usage to a great extent in developing countries like India.

  19. Experimental investigation of pistacia lentiscus biodiesel as a fuel for direct injection diesel engine

    International Nuclear Information System (INIS)

    Khiari, K.; Awad, S.; Loubar, K.; Tarabet, L.; Mahmoud, R.; Tazerout, M.

    2016-01-01

    Highlights: • Biodiesel is prepared from Pistacia Lentiscus oil. • Biodiesel yield is 94% when using 6:1 methanol/oil and 1% KOH catalyst at 50 °C. • BSFC and NOx emissions have increased with the use of biodiesel and its blends. • Biodiesel reduces significantly HC, CO and particulate emissions at high engine load. - Abstract: Biodiesel is currently seen as an interesting substitute for diesel fuel due to the continuing depletion of petroleum reserves and the environment pollution emerging from exhaust emissions. The present work is an experimental study conducted on a DI diesel engine running with either pistacia lentiscus (PL) biodiesel or its blends with conventional diesel fuel. PL biodiesel is obtained by converting PL seed oil via a single-step homogenous alkali catalyzed transesterification process. The PL biodiesel physicochemical properties, which are measured via standard methods, are similar to those of diesel fuel. A single cylinder, naturally aspirated DI diesel engine is operated at 1500 rpm with either PL biodiesel or its blends with diesel fuel for several ratios (50, 30 and 5 by v%) and engine load conditions. The combustion parameters, performance and pollutant emissions of PL biodiesel and its blends are compared with those of diesel fuel. The results show that the thermal efficiency is 3% higher for PL biodiesel than for diesel fuel. The emission levels of carbon monoxide (CO), unburned hydrocarbon (HC) and particulate matter are considerably reduced at full engine load (around 25%, 45% and 17% respectively). On the other hand, the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions increase (around 10% and 4% respectively).

  20. Heating fuel oil tariffs

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Fuel-oil sellers must quote gross prices. The addition to the net price, plus added value tax, is not enough. Now, the competent authorities control the offers of the fuel-oil traders. Net prices are punished as illegal acts.

  1. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel under §§ 80.593, 80.601, and 80.604. (4) If previously designated motor vehicle diesel fuel having... redesignate all the diesel fuel as 500 ppm sulfur motor vehicle diesel fuel for purposes of the temporary...

  2. THE EFFECT OF SKULDUGGERY IN FUEL OF DIESEL ENGINES ON THE PERFORMANCE OF I. C. ENGINE

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The current research aimed to study the effect of fraud in the diesel fuel on environmental pollution,  the study included two samples of diesel fuel., first sample is used currently in all diesel engines vehicles, and it produced in colander of oil  of Baiji, the second sample is producer manually from mixing of the Lubricating oils and kerosene with ratio(1/40, were prepared and tested in research laboratories and quality control of the North Refineries Company /BAIJI by using standard engine (CFR. comparison between two models of fuel in terms of the properties of the mixing fuel and the properties of diesel fuel standard. The results proved that the process of mixing these ,  leading to the minimization of Cetane number and flash point. While the viscosity increase in  mixing fuel, comparison with fuel producer in the refinery, and which identical to the minimum standard specifications of diesel fuel.The tests had been carried out using the engine of (TQ four stroke type (TD115 with a single-cylinder and compression ratio (21:1 a complement to the hydraulic type Dynamo meter (TD115.

  3. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  4. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  5. INFLUENCE OF PALM METHYL ESTER (PME AS AN ALTERNATIVE FUEL IN MULTICYLINDER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Mohd Hafizil M. Yasin

    2012-12-01

    Full Text Available Palm oil is one of the vegetable oil, which is converted to biodiesel through a transesterification process using methanol as the catalyst. Palm oil biodiesel or palm methyl ester (PME can be used in diesel engines without any modification, and can be blended with conventional diesel to produce different proportions of PME-diesel blend fuels. The physical properties of PME were evaluated experimentally and theoretically. The effect of using neat PME as fuel on engine performance and emissions was evaluated using a commercial four-cylinder four-stroke IDI diesel engine. The experimental results on an engine operated with PME exhibited higher brake specific fuel consumption in comparison with the conventional fuel. With respect to the in-cylinder pressure and heat release rate, these increased features by over 8.11% and 9.3% with PME compared to conventional diesel. The overall results show that PME surpassed the diesel combustion quality due to its psychochemical properties and higher oxygen content.

  6. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey); Bayindir, Hasan [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Dicle University, Diyarbakir, 21280 (Turkey)

    2010-03-15

    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NO{sub x}, SO{sub 2} and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines. (author)

  7. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels

    International Nuclear Information System (INIS)

    Ayanoğlu, Abdulkadir; Yumrutaş, Recep

    2016-01-01

    Highlights: • Waste Tire Oil (WTO) is produced from waste tire at rotary kiln reactor. • Physical and chemical properties of WTO and fuel samples are analyzed. • Gasoline like fuel (GLF) and diesel like fuel (DLF) are produced from the WTO-10 wt% CaO mixture at fixed bed reactor. • Physical and chemical properties of the GLF and DLF are compared with the standard fuels. - Abstract: In this study, waste tire is pyrolyzed in a rotary kiln reactor to obtain more gas, light liquid, heavy liquid, wax products, and less carbon black at their maximum yields as, 20%, 12%, 25%, 8% and 35% of the total weight (4 tones), respectively. Then, the heavy and light oils are reacted with additives such as natural zeolite (NZ) and lime (CaO) at different mass ratio as 2, 6, and 10 wt%, respectively, in the batch reactor to produce liquids similar to standard petroleum fuels. The heavy and light oils mixture samples are distillated to observe their optimum graphics which are similar to gasoline and diesel like fuel. Consequently, the best results are obtained from the CaO sample with 10 wt% in comparison to the ones from the gasoline and diesel fuels. The 10 wt% CaO light liquid mixture resembles to gasoline named as gasoline like fuel (GLF) and the 10 wt% CaO heavy liquid mixture is similar to diesel called as diesel like fuel (DLF). The chemical and physical features of the waste tire, light oil, heavy oil, GLF, and DLF are analyzed by TG (thermogravimetric)/dTG (derivative thermogravimetric), proximate, ultimate, higher heating value (HHV), fourier transform-infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET), sulfur, density, viscosity, gas chromatography–mass spectroscopy (GC–MS), flash point, moisture, and distillation tests. The test results are turned out to be very close to the standard petroleum fuel.

  8. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  9. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).

    Science.gov (United States)

    Bamgbose, Ifeoluwa; Anderson, Todd A

    2015-12-01

    The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%) ≥ Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further

  10. Fuel oil and kerosene sales 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This publication contains the 1992 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ''Annual Fuel Oil and Kerosene Sales Report'' survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA)

  11. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor... consumer in diesel motor vehicles or nonroad diesel engines. [69 FR 39171, June 29, 2004] ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment...

  12. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  13. Study of Effect of Diesel Fuel Energy Rate in Duel Fuel on Performance of Compression Ignition Engine

    OpenAIRE

    Maan Janan Basheer

    2012-01-01

    The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual fuel (diesel and LPG). The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presen...

  14. Use of the fuel obtained from waste plastics as a mixture with diesel and biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, Z.; Zelazo, P. [Lublin Univ. of Technology (Poland)

    2013-06-01

    The researches concerning the use of fuel derived from waste plastics and biodiesel have been presented in the paper. The biodiesel and the fuel obtained from waste plastics were both used as fuel components. The bio-admixture in the fuel was FAME, STING and rape oil. The catalytic cracking of polyolefin's was the source of second fuel admixture. The physical properties of analyzed components of the fuel have been presented. The operational parameters of direct injection diesel engine fuelled with tested fuel blends have been set out. The principles of fuel mixture preparation has been also described. The concept of the diesel fuel which is made from the components of opposite physical properties could have a positive practical effect and could improve the use of biofuels. (orig.)

  15. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    Full Text Available Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significantly from sample to sample. A methodology set up at Cirad allowed to investigate separately natural triacylglycerols alone and the effect of minor components. In addition to these laboratory experiments, engine test at bench and field trials performed in palm oil producing countries, show that this oil is among the best oils as fuel; palm kernel oil whose chemical and physical properties are very close to those of the best of the series investigated, namely copra oil, should display also very interesting properties as Diesel biofuel. Both oils do require external adaptation of the engine when using an indirect injection type engine but even heavier adaptations for a direct injection model. Thus for use as Diesel fuel palm and palm kernel oils are suitable for captive fleets or for engine gensets, to balance the adaptation cost by a scale-up effect either on the number of identical engines or on the nominal vegetable oil consumption per set. Direct use of palm et palm kernel oils fits very well with technical and economical conditions encountered in remote areas. It is also possible to mix palm oil to Diesel fuel either as simple blend or as micro-emulsion. Out of the direct use, palm oil methyl or ethyl ester, often referred to as biodiesel, displays properties similar to those of petroleum Diesel fuel. This technical solution which is suitable to feed all kinds of standard compression ignited engines requires a chemical plant for carrying out the

  16. Effect of Engine Modifications on Performance and Emission Characteristics of Diesel Engines with Alternative Fuels

    OpenAIRE

    Venkateswarlu, K.; Murthy, B.S.R

    2010-01-01

    Performance and emission characteristics unmodified diesel engines operating on different alternative fuels with smaller blend proportions are comparable with pure diesel operation. But with increased blend proportions due to the associated problems of vegetable oils like high viscosity and low volatility pollution levels increase which however is accompanied by operating and durability problems with the long term usage of engine. This paper discusses the necessary modifications required to o...

  17. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2013-01-01

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (η th ) are found to have maximum values under these conditions. The emission CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  19. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  20. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  1. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review

    KAUST Repository

    Vallinayagam, R.

    2015-11-01

    This review work focuses on biofuels with lower viscosity and cetane number and their mode of operation in a diesel engine. Though there were a number of review works describing the production, characterization and utilization of biodiesel, synthesized from vegetable oils, a comprehensive summary on other category of biofuels endowed with lower viscosity and cetane number has not come to light so far. In this backdrop, this review work would bring forth the existence of biofuels having lower viscosity and cetane number, classify them under one category and elucidate their operational feasibility in a diesel engine. Considerably, alcohol based fuels such as methanol, ethanol and butanol, and plant based light biofuels such as eucalyptus oil and pine oil have been chosen and classified as LVLC (less viscous and lower cetane) fuels in the current work. Besides describing the operation feasibility of these fuels, an extensive exploration of their physical, thermal and critical properties as well as their compositional attributes has been made. Despite their distinct properties, these fuels have found use in diesel engine by various strategies and apparently, they could be used in blends with diesel/biodiesel, dual fuel mode and as sole fuel. In this regard, herein, a detailed summary on operation of these fuels in the reported three different modes is clearly explained and their engine characteristics such as performance, combustion and emission are briefed. © 2015 Elsevier Ltd.

  2. Experimental investigation of fouling characteristics of diesel oil ...

    African Journals Online (AJOL)

    This study investigated the fouling characteristics of diesel oil using hot-wire test equipment. The diesel oil was electrically preheated to a desired fluid temperature using a heating coil. The fluid entered the test section and swept through a nichrome wire which was supplied with the electrical current corresponding to the ...

  3. 40 CFR 80.617 - How may California diesel fuel be distributed or sold outside of the State of California?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation... California diesel fuel redesignates it as motor vehicle diesel meeting the 15 ppm sulfur standard; and (vi) The terminal includes the volumes of California diesel fuel redesignated as motor vehicle diesel fuel...

  4. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines.

    Science.gov (United States)

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Mazac, Martin; Pechout, Martin; Vojtisek-Lom, Michal

    2012-07-07

    The present study was performed to identify possible genotoxicity induced by organic extracts from particulate matter in the exhaust of two typical diesel engines run on diesel fuel and neat heated fuel-grade rapeseed oil: a Cummins ISBe4 engine tested using the World Harmonized Steady State Test Cycle (WHSC) and modified Engine Steady Cycle (ESC) and a Zetor 1505 engine tested using the Non-Road Steady State Cycle (NRSC). In addition, biodiesel B-100 (neat methylester of rapeseed oil) was tested in the Cummins engine run on the modified ESC. Diluted exhaust was sampled with high-volume samplers on Teflon coated filters. Filters were extracted with dichlormethane (DCM) and DNA adduct levels induced by extractable organic matter (EOM) in an acellular assay of calf thymus DNA coupled with (32)P-postlabeling in the presence and absence of rat liver microsomal S9 fraction were employed. Simultaneously, the chemical analysis of 12 priority PAHs in EOM, including 7 carcinogenic PAHs (c-PAHs) was performed. The results suggest that diesel emissions contain substantially more total PAHs than rapeseed oil emissions (for the ESC) or that these concentrations were comparable (for the WHSC and NRSC), while c-PAHs levels were comparable (for the ESC) or significantly higher (for the WHSC and NRSC) for rapeseed oil emissions. DNA adduct levels induced by diesel and rapeseed oil derived EOM were comparable, but consistently slightly higher for diesel than for rapeseed oil. Highly significant correlations were found between 12 priority PAHs concentrations and DNA adduct levels (0.980; pengine and the test cycle than on the fuel. Our findings suggest that the genotoxicity of particulate emissions from the combustion of rapeseed oil is significant and is comparable to that from the combustion of diesel fuel. A more detailed study is ongoing to verify and extent these preliminary findings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. 40 CFR 80.608 - What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Exemptions... sulfur standards of § 80.520(a)(1) and (c) related to motor vehicle diesel fuel, of § 80.510(a), (b), and... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What requirements apply to diesel fuel...

  6. Design and Qualification of a High-Pressure Combustion Chamber for Ignition Delay Testing of Diesel Fuels

    Science.gov (United States)

    2013-06-01

    biological origin, such as vegetable oils and animal fats. Some of the common oils that are used are rapeseed, sunflower, soybean, and palm oil [8]. The...solid impurities. Hydrogen is used to convert the fatty acids in these oils into fuels. The hydrotreatment produces synthetic versions of diesel...derived oils used for the hydrotreatment process are purified by removing solid impurities. Oxygen molecules are removed from the oils and hydrogen is

  7. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  9. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  10. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine

    International Nuclear Information System (INIS)

    Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K.

    2017-01-01

    Highlights: • Neat lemongrass oil can be used as an alternate fuel in diesel engine. • The combined effect of nano emulsion and EGR using LGO25-DEE-Diesel is investigated. • The BTE is improved for nano emulsion fuel blend. • The NO x and smoke emissions decrease significantly. • Cylinder pressure and Heat release rate increase with longer ignition delay. - Abstract: In the present experimental study, the combined effects of nanoemulsion and exhaust gas recirculation (EGR) on the performance, combustion and emission characteristics of a single cylinder, four stroke, variable compression ratio diesel engine fueled with neat lemongrass oil (LGO)-diesel-DEE (diethyl ether) blend are investigated. The Neat Lemongrass oil could be used as a new alternate fuel in compression ignition engines without any engine modifications. The entire investigation was conducted in the diesel engine using the following test fuels: emulsified LGO25, cerium oxide blended emulsified LGO25 and DEE added emulsified LGO25 with EGR respectively and compared with standard diesel and LGO25 (75% by volume of diesel and 25% by volume of lemongrass oil) fuels. The combined effect of DEE added nano-emulsified LGO25 with EGR yielded a significant reduction in NO x and smoke emission by 30.72% and 11.2% respectively compared to LGO25. Furthermore, the HC and CO emissions were reduced by 18.18% and 33.31% respectively than with LGO25. The brake thermal efficiency and brake specific fuel consumption increased by 2.4% and 10.8% respectively than LGO25. The combustion characteristics such as cylinder pressure and heat release rate increased by 4.46% and 3.29% respectively than with LGO25. The combustion duration and ignition delay increase at nano-emulsified LGO25 with DEE and EGR mode but decrease for nano-emulsified LGO25 fuel.

  11. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y.J.; Ju, U.S.; Park, Y.C. [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  12. Biomass energy from wood chips: Diesel fuel dependence?

    International Nuclear Information System (INIS)

    Timmons, Dave; Mejia, Cesar Viteri

    2010-01-01

    Most renewable energy sources depend to some extent on use of other, non-renewable sources. In this study we explore use of diesel fuel in producing and transporting woody biomass in the state of New Hampshire, USA. We use two methods to estimate the diesel fuel used in woody biomass production: 1) a calculation based on case studies of diesel consumption in different parts of the wood chip supply chain, and 2) to support extrapolating those results to a regional system, an econometric study of the variation of wood-chip prices with respect to diesel fuel prices. The econometric study relies on an assumption of fixed demand, then assesses variables impacting supply, with a focus on how the price of diesel fuel affects price of biomass supplied. The two methods yield similar results. The econometric study, representing overall regional practices, suggests that a $1.00 per liter increase in diesel fuel price is associated with a $5.59 per Mg increase in the price of wood chips. On an energy basis, the diesel fuel used directly in wood chip production and transportation appears to account for less than 2% of the potential energy in the wood chips. Thus, the dependence of woody biomass energy production on diesel fuel does not appear to be extreme. (author)

  13. Reduction of gaseous pollutants and particulate materials by using fuels derived from vegetable in substitution to diesel oil; Reducao de poluentes gasosos e de material particulado por meio do uso de combustiveis a base de oleos vegetais como substitutos ao oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Yazaki, Carlos Kazuaki [General Motors do Brasil, Sao Caetano do Sul, SP (Brazil). Engenharia de Chassis e Integracao Powertrain]. E-mail: carlos.yazaki@gm.com; Trielli, Mauricio Assumpcao [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: trielli@ipt.br

    2006-07-01

    The aim of this article is to present the contribution allowed by fuels derived from vegetable oils in substitution for the diesel oil. It especially emphasizes the vegetable oil esters potential as gaseous exhaust pollutant and particulate matter reduction produced by ignition compression engines, such a conclusion has been achieved through systematization and analysis of results of experimental tests performed by several researchers that applied natural vegetable oils and their esters to this class of engines. Once the vegetable oils are the base of formation of these fuels, their direct application in these engines is also analyzed showing the advantages and disadvantages of this alternative route. This article also includes an analysis of their physical and chemical properties which help the understanding of their performance in the engines. Due to better results obtained from esters use, their industrial processing, the special characteristics of the engineering materials which they will have contact in engine, principally those used in injection systems, as well as aspects related to their storages are discussed too. (author)

  14. Survey of Alternative Fuels for Corps of Engineers Diesel Engine Powered Dredges.

    Science.gov (United States)

    1984-04-01

    38 6 Hydrotreating of Canadian Tar Sands Coker Distillate ................... 41 7 Recommended Preliminary Specifications for Vegetable Oil...for severe hydrotreating of intermediate coal liquids) results in coal processing technology comparing most unfavorably with petroleum refining...fuels (cost of hydrotreating notwithstanding). The tradeoff between hydrotreating severity (process economics) and tar sands distillate quality for diesel

  15. Bio-diesel fuels production: Feasibility studies. Se l'agricoltore semina il gasolio

    Energy Technology Data Exchange (ETDEWEB)

    Tabasso, L.

    This paper reviews the efforts being made by Italy's national government and private industry to develop diesel engine fuels derived from vegetable oils, in particular, sunflower seed oil. These fuels are being promoted in Italy from the environmental protection stand-point in that they don't contain any sulfur, the main cause of acid rain, and from the agricultural stand-point in that they provide Italian farmers, whose food crop production capacity is limited due to European Communities agreements, with the opportunity to use their set-aside land for the production of energy crops. This paper provides brief notes on the key performance characteristics of bio-diesel fuels, whose application doesn't require any modifications to diesel engines, apart from minor adjustments to the air/fuel mix regulating system, and assesses commercialization prospects. Brief mention is made of the problems being encountered by the Government in the establishing fair bio-fuel production tax rebates which are compatible with the marketing practices of the petroleum industry. One of the strategies being considered is to use the bio-fuels as additives to be mixed with conventional fuel oils so as to derive a fuel which meets the new European air pollution standards.

  16. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; exemption for dyed... (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Motor Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed...

  17. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; notice required for..., Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-2 Diesel fuel and kerosene; notice... “DYED KEROSENE, NONTAXABLE USE ONLY, PENALTY FOR TAXABLE USE” must be posted by a seller on any retail...

  18. Experimental investigation on cyclic variability, engine performance and exhaust emissions in a diesel engine using alcohol-diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Gurgen Samet

    2017-01-01

    Full Text Available This paper investigates the impacts of using n-butanol-diesel fuel and ethanol-diesel fuel blends on engine performance, exhaust emission, and cycle-by-cycle variation in a Diesel engine. The engine was operated at two different engine speed and full load condition with pure diesel fuel, 5% and 10% (by vol. ethanol and n-butanol fuel blends. The coefficient of variation of indicated mean effective pressure was used to evaluate the cyclic variability of n-butanol-diesel fuel and ethanol-diesel fuel blends. The results obtained in this study showed that effective efficiency and brake specific fuel consumption generally increased with the use of the n-butanol-diesel fuel or ethanol-diesel fuel blends with respect to that of the neat diesel fuel. The addition of ethanol or n-butanol to diesel fuel caused a decrement in CO and NOx emissions. Also, the results indicated that cycle-by-cycle variation has an increasing trend with the increase of alcohol-diesel blending ratio for all engine speed. An increase in cyclic variability of alcohol-diesel fuel blends at low engine speed is higher than that of high engine speed.

  19. Diesel oil volatilization processes affected by selected porous media.

    Science.gov (United States)

    Ma, Yanfei; Zheng, Xilai; Anderson, S H; Lu, Jie; Feng, Xuedong

    2014-03-01

    Volatilization plays an important role in attenuating petroleum products in contaminated soils. The objective of this study was to evaluate the influence of wind speed, vessel diameter and mean grain size of porous media on diesel oil volatilization. Experiments were conducted to investigate the volatilization behavior of diesel oil from porous media by weighing contaminated samples pre- and post-volatilization. Three selected field porous media materials were evaluated: Silty Clay Loam, Fine Sand, and Coarse Sand along with six individual sand fractions of the Coarse Sand. Results indicate that increasing wind speed accelerates the diesel oil volatilization process, especially for wind speeds below 2.10ms(-1). The low-carbon components of diesel oil volatilize more rapidly, with the effects of wind speed more pronounced on C10 to C15 volatilization than on C16 and higher. The volatilization rate coefficient of diesel oil increases with decreasing mean grain size of porous media, and with increasing vessel diameter. A power function expressed the relationship with mean grain size. All processes (wind speed, vessel diameter, and mean grain size) were included in an equation which explained over 92% of the measured diesel oil volatilization rate coefficient variations for the experiments. Diesel oil volatilization appears to be boundary-layer regulated to some extent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    Science.gov (United States)

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.

  1. Biodiesel From waste cooking oil for heating, lighting, or running diesel engines

    Science.gov (United States)

    Rico O. Cruz

    2009-01-01

    Biodiesel and its byproducts and blends can be used as alternative fuel in diesel engines and for heating, cooking, and lighting. A simple process of biodiesel production can utilize waste cooking oil as the main feedstock to the transesterification and cruzesterification processes. I currently make my own biodiesel for applications related to my nursery and greenhouse...

  2. Fischer-Tropsch-synthesis fuels as diesel engine fuel - Fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    2000-04-01

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent auto ignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with regular diesel fuel if produced in large volumes. The aim of this investigation is to reveal and analyze the effects of F-T fuels on a research diesel engine performance. Previous engine laboratory tests indicate that F-T fuels are promising alternative fuels because they can be used in unmodified diesel engines, and substantial quantitative exhaust emission reductions can be reached. Also substantial qualitative reductions, e.g. reduction of the number of hazardous chemicals and reduction of the concentration of hazardous chemicals in the exhausts may be realised. Since the engine performance is closely related to in-cylinder processes, a detailed thermodynamic analysis has been performed revealing the real thermochemistry history. The experimental results have shown that F-T fuels have a beneficial effect not only on the emission levels, but also on other energetic parameters of the engine. Heat release analysis have shown that ignition delay, cylinder peak pressure, heat release gradient and indicated efficiency are affected as well. Two different mixtures of FT-fuels with variation in carbon chain branching and, to a certain extent, variation in chain length were tested and their results were compared with those obtained from conventional fuel (MK1). The selected optimized F-T fuels mixture were further tested according to the 13 mode ECE R49 test cycle and were found as good competitive alternative diesel fuels.

  3. Determination of residual oil in diesel oil by spectrofluorimetric and chemometric analysis.

    Science.gov (United States)

    Corgozinho, Camila N C; Pasa, Vânya M D; Barbeira, Paulo J S

    2008-07-15

    Multivariate calibration (PLS), principal components analysis (PCA) and linear discriminant analysis (LDA), associated to synchronous spectrofluorimetry, were used to identify and quantify non-transesterified residual vegetable oil in diesel oil with the addition of 2% of biodiesel (B2). The addition of residual oil, one of the easiest ways of adultering fuel, damages engines and leads to tax evasion. Using this method, the samples of diesel oil, B2, and B2 contaminated with residual oil were classified correctly and separated into three well-defined groups. The quantification of residual oil in B2 was carried out in the 0-25% (w/w) band, RMSEC and RMSEP values ranging from 0.26 to 0.48% (w/w) and 1.6-2.6% (w/w), respectively. The method is highly sensitive and efficient to identify and quantify this type of adulterant in which 100% of the samples were correctly classified and the average relative error was approximately 4% in the range 0.5-25% (w/w).

  4. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  5. Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification

    International Nuclear Information System (INIS)

    Wang, W.G.; Lyons, D.W.; Clark, N.N.; Gautam, M.; Norton, P.M.

    2000-01-01

    Biodiesel, a fuel that can be made from renewable biological sources such as vegetable oils or animal fats, has been recognized recently as an environment friendly alternative fuel for diesel engines. In this paper, the authors describe a study that compared exhaust emissions from in-use heavy trucks fueled with a biodiesel blend with those from trucks fueled with petroleum diesel. The biodiesel blend tested is a mixture of 35% biodiesel and 65% petroleum diesel, a blend designated as B35. The study is based on the field test results from West Virginia University's Transportable Heavy Duty Chassis Dynamometer Emissions Testing Laboratory and sponsored by the US Department of Energy. The heavy trucks the authors tested performed well when the originally equipped compression-ignition engine (diesel engine) was fueled with B35 without any engine modifications. Fuel economy (in terms of gallon per mile) of the two fuels was about the same. The emissions test results have shown that the heavy trucks fueled by B35 emitted significantly lower particulate matter (PM) and moderately lower carbon monoxide (CO) and hydrocarbon (HC) than the same trucks fueled by no. 2 diesel (D2). Oxides of nitrogen (NO x ) emissions from B35 and D2, however, were generally in the same level. Emissions variations from two different engine models and two driving cycles were also observed. Although the authors recommend more tests for biodiesel vehicles, the data obtained in this study indicate that biodiesel has promise as an emissions-reducing alternative fuel for diesel engines

  6. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  7. Research and field trials with a blend of ethanol in diesel oil

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K.E. [Autoemission K-E E Consultant, Nykoeping (Sweden)

    1999-03-01

    The aim of this report is to summarize the experiences acquired and data generated during the project named `The mixed fuel project` which was carried out during the years 1993 to 1997. The project was initiated after that some information had been collected in Australia, where a similar project was underway. The Australian project showed some interesting data and within that project an emulsifier had been developed - an emulsifier which has also been used in the Swedish project. In order to avoid a costly development of a method for blending ethanol in diesel oil, a form of co-operation was established between the people involved in Australia and those involved in Sweden. The content of ethanol in diesel oil used in Australia was 15 % and the investigations in Sweden reported further down in this report the ratio 15 % ethanol in MK 1 (an environmentally classified diesel fuel in Sweden) was the best alternative to be used also in Sweden. Twelve reports have been studied and used as references in order to summarize the results and experiences from the project. In order to fulfil the obligations of the project many institutions, private and community companies, consultants and universities in Sweden were involved. In the report presents the main results from the different investigations and field trials with ethanol-diesel fueled vehicles. It can be said that there are no technical problems connected to the use of ethanol-diesel fuel but the most serious drawback is the cost of the fuel. There is also a need for further development of the technology of making a homogenous emulsion of ethanol in diesel oil at a reasonable cost. The main advantage of using the mixed fuel is that the emission of particles is considerably reduced. The emission of CO{sub 2} is also reduced when the ethanol is produced from biomass using an environmentally friendly method 17 refs, 22 figs, 22 tabs

  8. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-08-01

    Full Text Available Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0%, 25% and 50% of total fuel energy, where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750, 900, 1100, 1400, 1750 and finally 2100 r/min engine speed. Variation in engine performance, emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content, a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.

  9. Green fuel utilization for diesel engine, combustion and emission analysis fuelled with CNSO diesel blends with Diethyl ether as additive

    Science.gov (United States)

    Kumar, Ashok; Rajan, K.; Senthil Kumar, K. R.; Maiyappan, K.; Rasheed, Usama Tariq

    2017-05-01

    The experimental investigation is conducted to evaluate the effects by using Diethyl ether (DEE) as an additive. The Cashew Nut Shell Oil diesel blends (CDB) are tested in a 4-stroke single cylinder DI unmodified diesel engine, rated power is 4.4 kW at a speed of 1500 rpm. The effect of combustion analysis of test fuels on net heat release rate, cylinder pressure, engine power, BSFC, BTE, EGT were observed by the performance tests. The combustion and emission characteristics of a diesel engine with an additive of high cetane number is utilized with CDB and thus investigated. The influence of blends on CO, CO2, HC, NOx and smoke opacity is investigated by emission tests. Initially, the experiment was conducted with different blends of CDB diesel blends like 10%, 20%, & 30% by volume basis in a diesel engine. Among this blends B20 shows reasonable result and heat dissipation rate at full load conditions. The BTE of B20 is 27.52% whereas base diesel fuel is 29.73%. Addition of the DEE by 5%, 10% and 15% by volume basis with B20 which is a base fuel has resulted with improved estimates. The result shows that at full load conditions BTE of B20D10 is 28.96% which is close to the base fuel i.e. B20. The emissions like CO2 shows reducing trends while HC emission rises with increase in CNSO blends. The HC in diesel corresponds to 30ppm and in B20 it is 34ppm, but addition of DEE shows a decreasing trend as in B20D5 has 29ppm and B20D15 has 23ppm respectively. NOx also shows increasing trends with CNSO blend, after addition of DEE it shows declining trend. The NOx for diesel, B20, B30, B20D5, B20D10 and B20D15 emits 1195, 1450, 1511, 1327, 1373 and 1200ppm respectively. The smoke emission is 3.96, 3.38, 3.15 FSN of B20, B20D15 and diesel respectively.

  10. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  11. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  12. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO 2 emissions while causing slightly higher NO x emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  13. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  14. Effects of Nano Additives in engine emission Characteristics using Blends of Lemon Balm oil with Diesel

    Science.gov (United States)

    Senthil kumar, J.; Ganesan, S.; Sivasaravanan, S.; Padmanabhan, S.; Krishnan, L.; Aniruthan, V. C.

    2017-05-01

    Economic growth in developing countries has led to enormous increase in energy demand. In India the energy demand is increasing at a rate of 6.5% every year. The crude oil demand of country is meet by bring in of about 70%. Thus the energy safety measures have become key issue for our country. Bio diesel an eco-friendly and renewable fuel alternate for diesel has been getting the consideration of researcher’s entire world. The main aim of this paper is to evaluate the engine parameters using blend of pure lemon balm oil with diesel. Also nano Additives is used as a catalyst with blends of bio fuel to enhance the Emission Characteristics of various effective gases like CO2, NOx, CO and UHC with various levels of engine process parameters.

  15. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  16. 500 Watt Diesel Fueled TPV Portable Power Supply

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  17. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536 How... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits used...

  18. Reduction of CO/sub 2/ emissions through fuel economy standards for diesel cars in pakistan

    International Nuclear Information System (INIS)

    Memon, L.A.; Mehlia, T.M.I.; Hassan, M.H.

    2007-01-01

    In Pakistan, like many developing countries, the increasing prosperity and population growth are resulting in accelerated growth in vehicle population and vehicle kilometers traveled. This causes air pollution due to huge CO/sub 2/ emissions. Automobile fuel economy standards have proven to be one of the most effective tools to control oil demand thereby reducing the GHG (Green House Gas) emissions like CO/sub 2/, This study presents the investigation to apply fuel economy standards in Pakistan, in order to predict the potential reduction in CO/sub 2/ emissions and saving in fuel demand. The study is focused on only diesel cars and the data of diesel car owners for previous fifteen years is obtained from the related sources in Pakistan. A growth trend of diesel car owners was analyzed and the number of diesel car owners in future was predicted by applying database computer software. Calculations were made to study the effect of fuel economy standards in terms of saving in fuel demand and the reduction in CO/sub 2/ emissions. The results reveal the potential application of fuel economy standards and it was found that a cumulative amount of fuel 39266775 liters can be saved and CO/sub 2/ emissions can be reduced by 106021 tons at the end of 2011-2012, if fuel economy standards are implemented in 2008-2009. (author)

  19. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we ...

  20. Effect of temperature on the density of palm oil bio diesel and its blends with conventional diesel

    International Nuclear Information System (INIS)

    Benjumea H, Pedro N; Chaves N, German; Vargas R, Claudia M

    2006-01-01

    The density is a property of easy measurement which can be correlated with other key properties for evaluating fuel performance in diesel engines, such as calorific value and cetane number. Additionally, the density is one of the most important parameters in connection with fuel storage, transportation and commercialization. In this paper, experimental results showing the temperature dependence of the density for palm oil bio diesel and its 5% and 20% blends with conventional petroleum derived diesel fuel are presented. The experimental results were adequate fixed by linear regressions resulting in regression coefficients close to 1. For calculating the density of the BACPACPM blends a simple mixing law (weighted mass average) was proposed leading to absolute maximum deviations lesser than 0.5% of measured data. The density experimental results for the different tested fuels were compared with the estimated values from the volume correction method proposed by the Astm D1250 standard for hydrocarbon type fuels. For the neat BACP case (B100) the absolute maximum deviation was within 0.32% of measured data indicating that the mentioned correction method is also adequate for predicting the volumetric temperature behavior of substances having different chemical nature such as the methylesters of fatty acids.

  1. Bio-fuels for diesel engines: Experience in Italy and Europe

    International Nuclear Information System (INIS)

    Rocchietta, C.

    1992-01-01

    With the aim of meeting stringent European Communities air pollution regulations, reducing the necessity of petroleum imports and creating new markets for agricultural products, Italy's Ferruzzi-Montedison Group is developing diesel engine fuels derived from vegetable oils. The innovative feature of these fuels, from the environmental protection stand-point, is that they don't contain any sulfur, the main cause of acid rain. This paper provides brief notes of the key chemical-physical properties of these diesel fuels, whose application doesn't require any modifications to diesel engines, and assesses the relative production technologies and commercialization prospects. Reference is made to the results of recent performance tests conducted on buses and taxis

  2. Microbial contamination in diesel fuel. Are new problems arising from biodiesel blends?

    Energy Technology Data Exchange (ETDEWEB)

    Siegert, Wolfgang [Schuelke und Mayr GmbH, Norderstedt (Germany)

    2013-06-01

    Standard diesel fuel is allowed to contain only 0.2 cm{sup 3} water per litre of fuel from which a third of this is dissolved. The rest of the water settles at the tank bottom and is sufficient to serve as a biosphere for the microorganisms. Microbial products of decomposition form an emulsion of water and fuel and make separation of the water more difficult. Microbes are the cause for operational problems like fouling of tanks, pipes, filters and tank corrosion. These microbial problems in mineral diesel have been known for over 70 years. But nowadays the diesel fuel is a blend with biodiesel such as fatty acid methyl esters (FAME). Since the widespread of biodiesel blends an increase of operational problems is observed. Does the addition of FAME increase the risk of microbial contamination? Is it enhancing microbial growth? The fatty acid esters, such as FAME, produce an environment in mineral diesel in which microbial growth is encouraged due to the ability of microorganisms to degrade natural fat and oil to yield energy for growth. The microbial growth can be enhanced at every stage in production, storage, distribution and in end users vehicles. Good housekeeping, monitoring and proper usage of an effective biocide are crucial measures for an anti-microbial strategy. A tailor-made fuel biocide for mineral diesel I FAME blends is introduced. (orig.)

  3. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  4. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S.; Yokota, H.; Kakegawa, T. [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  5. Production of renewable diesel fuel from biologically based feedstocks.

    Science.gov (United States)

    2014-09-01

    Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...

  6. Best conditions for biodegradation of diesel oil by chemometric tools

    OpenAIRE

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positiv...

  7. Experimental investigation on a diesel engine using neem oil and its methyl ester

    Directory of Open Access Journals (Sweden)

    Sivalakshmi S.

    2011-01-01

    Full Text Available Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO and its methyl ester (NOME on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at full load, peak cylinder pressure is higher for NOME; peak heat release rate during the premixed combustion phase is lower for neat NeO and NOME. Ignition delay is lower for neat NeO and NOME when compared with diesel at full load. The brake thermal efficiency is slightly lower for NeO at all engine loads, but in the case of NOME slightly higher at full load. It has been observed that there is a reduction in NOx emission for neem oil and its methyl ester along with an increase in CO, HC and smoke emissions.

  8. Dimethyl Ether as a Fuel for Diesel Engines

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1999-01-01

    DME has recently been shown to be an attractive high cetane fuel for diesel engines, offering the advantages of soot free operation, with low engine noise, the potential for low NOx emissions, and low reactivity emissions of hydrocarbons and unburned fuel. DME has physical characteristics similar...... of engine fuels systems in regard to lubricity and suitable sealing materials....

  9. Calorific value for compositions with biodiesel of fat chicken and diesel oil; Valor calorifico para composicoes com biodiesel da gordura de frango e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Jose da [Universidade de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], email: marcelo.jose@feagri.unicamp.br; Souza, Samuel N.M. de; Souza, Abel A. de; Martins, Gislaine I. [Universidade Estadual do Oeste do Parana (CCET/UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], emails: ssouza@unioeste.br, abel.sza@hotmail.com, iastiaque@yahoo.com.br

    2011-07-01

    The biodiesel fuel is a renewable source of alternative fuel used in diesel cycle engines. The production of biodiesel involves the reaction of methanol with fatty acids of animal or vegetable. The production of biodiesel from chicken fat can be very attractive for some regions from Brazil with high poultry production, as in the Parana West and Santa Catarina West. In this study , the goal was the lower calorific value of the compositions between biodiesel and diesel oil: 100% Diesel oil (B0), 20% biodiesel (B20), 40% biodiesel (B40), 60% biodiesel (B60), 80% biodiesel (B80 ), 100% biodiesel (B100). The biodiesel used was acquired in the Centre for Development and Diffusion of technologies on the Assis Gurgacz College, in Cascavel city. The nominal production capacity of the unit is 900 liters on period of 8 hours. The model of the calorimeter used, was the E2K. The lower calorific value of B100 composition was 35.388 MJ kg-1 and the diesel oil was 41.299 MJ kg-1. With the measuring of the caloric value of six samples mix of diesel oil and biodiesel, was obtained a linear function decrease of the calorific value when increased it the proportion of biodiesel from chicken fat into fuel. (author)

  10. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R. [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P.; Nylund, N.O. [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  11. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends

    Science.gov (United States)

    Karthickeyan, V.

    2018-01-01

    Depletion of fossil fuel has created a threat to the nation's energy policy, which in turn led to the development of new source renewable of energy. Biodiesel was considered as the most promising alternative to the traditional fossil fuel. In the present study, raw neem oil was considered as a principle source for the production of biodiesel and converted into Neem Oil Methyl Ester (NOME) using two stage transesterification process. The chemical compositions of NOME was analysed using Fourier Transform Infra-Red Spectroscopy (FTIR) and Gas Chromatography- Mass Spectrometry (GC-MS). Baseline readings were recorded with diesel, 25NOME (25% NOME with 75% diesel) and 50NOME (50% NOME with 50% diesel) in a direct injection, four stroke, water cooled diesel engine. Thermal Barrier Coating (TBC) was considered as a better technique for emission reduction in direct injection diesel engine. In the present study, Partially Stabilized Zirconia (PSZ) was used as a TBC material to coat the combustion chamber components like cylinder head, piston head and intake and exhaust valves. In coated engine, 25NOME showed better brake thermal efficiency and declined brake specific fuel consumption than 50NOME. Decreased exhaust emissions like CO, HC and smoke were observed with 25NOME in coated engine except NOx. [Figure not available: see fulltext.

  12. Hybrid technologies for the remediation of Diesel fuel polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, M.; Alcantara, M.T.; Rosales, E.; Sanroman, M.A. [Department of Chemical Engineering, University of Vigo (Spain)

    2011-12-15

    Diesel fuel may be released into soil due to anthropogenic activities, such as accidental spills or leaks in underground storage tanks or pipelines. Since diesel fuel is mainly composed of hydrophobic organic compounds, it has low water solubility. Therefore, treating contaminated areas with conventional techniques is difficult. In this study, electrokinetic treatment of soil contaminated with diesel fuel was carried out. Two different hybrid approaches to pollutant removal were tested. A surfactant was used as a processing fluid during electrokinetic treatment to increase desorption and the solubility of diesel fuel. Additionally, a hybrid technology combining a Fenton reaction and electrokinetic remediation (EK-Fenton) was tested in an attempt to generate favorable in situ degradation of pollutants. The efficiency of each treatment was determined based on diesel fuel removal. After 30 days of treatment, the highest removal of diesel fuel was found to be achieved with the EK-Fenton process. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Waste cooking oil as source for renewable fuel in Romania

    Science.gov (United States)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  14. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel will be segregated from motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel, as... documents associated with research and development motor vehicle diesel fuel must comply with requirements...

  15. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil

    OpenAIRE

    Kalargaris, Ioannis; Tian, Guohong; Gu, Sai

    2016-01-01

    Plastic waste is an ideal source of energy due to its high heating value and abundance. It can be converted into oil through the pyrolysis process and utilised in internal combustion engines to produce power and heat. In the present work, plastic pyrolysis oil is manufactured via a fast pyrolysis process using a feedstock consisting of different types of plastic. The oil was analysed and it was found that its properties are similar to diesel fuel. The plastic pyrolysis oil was tested on a fou...

  16. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... are motor vehicle diesel fuel credits generated? (a) Generation of credits from June 1, 2006 through...

  17. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the standards of § 80.510(a) or (b). V520 = The total volume of motor vehicle diesel fuel produced or... generated by both a foreign refiner and by an importer for the same motor vehicle diesel fuel. (iii) Credits...

  18. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  19. Influence of high salinities on the degradation of diesel fuel by bacterial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Riis, V.; Kleinsteuber, S.; Babel, W. [UFZ Centre for Environmental Research Leipzig-Halle, Dept. of Environmental Microbiology, Leipzig, (Germany)

    2003-11-01

    Salinization and oil contamination of the surrounding soil are common hazards of exploiting and processing hydrocarbons, requiring remediation of the mineral-oil-contaminated soil. This study reports results of the degradation of diesel fuels by indigenous microbial communities from Argentinian saline soils, the emphasis being on assessing the possibilities of remediating oil-contaminated soils on high salinity. Results showed that the majority of diesel fuel hydrocarbons can be degraded by bacterial communities of saline soils at salt concentrations of up to 17.5 per cent in the aqueous phase. Although none of the microbial communities were effective in the presence of 25 per cent salt, living cell counts showed that components of the microbial population survived even after long-term exposure. Surviving communities were identified as members of the genera Cellulomonas, Bacillus, Dietzia, and Halomonas. 20 refs., 4 tabs., 4 figs.

  20. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.520 What are the standards and dye requirements for motor vehicle diesel...

  1. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  2. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  3. An Experimental Study on the Diesel Engine Performance with Rape Seed Oil

    International Nuclear Information System (INIS)

    Oh, Yeong Og

    2002-02-01

    A four cycle diesel engine performance test was performed with four kinds of oils such as rape seed oil, effective micro-organism rape seed oil, activated clay rape seed oil and light oil. The experiment was conducted at full load condition with constant injection time of the engine and the test oil temperature was maintained at 70±2 .deg. C. 1. The torque and the horsepower with rape seed fuel is increased about 10% compare with light seed oil at full load condition of the engine. High viscosity of the rape makes oil films in the combustor which leads to higher compression ratio and explosion. The results of the high viscosity make higher torque of the engine. The brake specific fuel consumption of the rape seed fuel increased 8%∼10% than that of the light oil. This effect could be the difference of heating value between the two kinds of oil. 2. The emission of the smoke gas was decreased 29%, 38% and 52% compare with light oil in rape seed oil, effective micro-organism rape seed oil and activated clay rape respectively due to the low volatility and high viscosity of the soot. The NOx emission with rape seed oil is twice larger than that of the light oil at full load condition. The reason is that the fuel temperature increment effects on the combustor temperature and it makes thermal NOx of the engine. 3. The test engine could be started over 40 .deg. C of the rape seed oil. Engine inspection results shows that the soot adherence amount of the cylinder head piston head is higher in following order; activated clay rape seed oil > effective micro-organism rape seed oil > rape seed oil > light oil

  4. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers

    International Nuclear Information System (INIS)

    Lin, Bo-Jhih; Chen, Wei-Hsin; Budzianowski, Wojciech M.; Hsieh, Cheng-Ting; Lin, Pei-Hsun

    2016-01-01

    Highlights: • Emulsification characteristics of bio-oils and diesel are studied. • The correlation of optimum HLB and HHV provides the best result. • The developed correlations are conducive to reducing operation cost. • The found mechanisms provide practical insights into the preparation of emulsions. • FTIR can precisely examine the stability and homogeneity of emulsified fuels. - Abstract: Emulsification characteristics of bio-oils and diesel at various operating conditions are analyzed. Three different commercial emulsifiers (i.e., Span 80, Tween 80, and Atlox 4914) and four bio-oils from fast pyrolysis of wood wastes are studied. When the three emulsifiers are individually employed, the performance of the emulsifiers is characterized by the order of Atlox 4914 > Span 80 > Tween 80. Atlox 4914, consisting of the hydrophilic portion of PEG and the hydrophobic portion of poly alkyd resin, has a better performance. The HLB value of an emulsifier can be obtained by blending Span 80 and Tween 80 or Span 80 and Atlox 4914. The optimum HLB for the emulsification of bio-oils and diesel linearly increases with increasing the atomic O/C or H/C ratio, water content, and decreasing higher heating value (HHV) of bio-oil. The correlation of the optimum HLB and HHV provides the best result, which can be employed for practical emulsification operation between bio-oils and diesel and is conduce to reducing operation cost. The functional groups in the emulsifiers, bio-oils, and diesel are analyzed by a Fourier transform infrared spectroscopy (FTIR) to recognize the characteristics of emulsions. It is found that FTIR is a fast and effective tool to examine the stability and homogeneity of emulsified fuels, even though no stratification is observed. Accordingly, this developed method can be used to rapidly and precisely identify the performance of emulsification in industry.

  5. The Mutagenic Potential Caused by the Emissions from Combustion of Crude Glycerin and Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Daniel Terruggi Mazak

    2015-04-01

    Full Text Available This study evaluated the use of crude glycerin as an alternative of energy generation to replace the traditional fuels. The Tradescantia stamen hair mutation assay (Trad-SH was applied to study the mutagenic effects caused by the emissions generated in the direct combustion of diesel oil and glycerin in a flame tube furnace. Tradescantia inflorescences were exposed to gaseous emissions from the combustion tests in a fumigation chamber for 30-40 min. The analysis of variance and the Tukey test were applied to compare the differences between six test groups (intoxicated with emissions from glycerin and diesel oil combustion and a control group. Only one glycerin group showed statistical differences (0.05, possibly due to the complexity of the burning process and impurities, besides the acrolein present in its emissions. The high heating value (HHV of crude glycerin (25.5 MJ/kg was lower than diesel oil (45.19 MJ/kg, but it was comparable to other fuels. Although the use of glycerin as a biofuel could be an important aspect to be considered, the results showed that the glycerin had a substantial mutagenic potential similar to that of diesel oil.

  6. Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel

    Directory of Open Access Journals (Sweden)

    Oguntola J. ALAMU

    2009-07-01

    Full Text Available Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0% ethanol (wt%, 1.0% potassium hydroxide catalyst at 60°C reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

  7. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  8. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content standard...

  9. Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil

    International Nuclear Information System (INIS)

    Salaheldeen, Mohammed; Aroua, M.K.; Mariod, A.A.; Cheng, Sit Foon; Abdelrahman, Malik A.; Atabani, A.E.

    2015-01-01

    Highlights: • Properties of M. peregrina biodiesel are determined for the first time. • Biodiesel was produced easily by alkaline transesterification in one step. • The effect of diesel on the properties of biodiesel was examined. • M. peregrina is a potential crop for sustainable production of biodiesel. - Abstract: Moringaceae is a monogeneric family with a single genus i.e. Moringa. This family includes 13 species. All these species are known as medicinal, nutritional and water purification agents. This study reports, for the first time, on characterization of the biodiesel derived from crude Moringaperegrina seed oil and its blends with diesel. The crude oil was converted to biodiesel by the transesterification reaction, catalyzed by potassium hydroxide. High ester content (97.79%) was obtained. M. peregrina biodiesel exhibited high oxidative stability (24.48 h). Moreover, the major fuel properties of M. peregrina biodiesel conformed to the ASTM D6751 standards. However, kinematic viscosity (4.6758 mm 2 /s), density (876.2 kg/m 3 ) and flash point (156.5 °C) were found higher than that of diesel fuel. In addition, the calorific value of M. peregrina biodiesel (40.119 MJ/kg) was lower than the diesel fuel. The fuel properties of M. peregrina biodiesel were enhanced significantly by blending with diesel fuel. In conclusion, M. peregrina is a suitable feedstock for sustainable production of biodiesel only blended up to 20% with diesel fuel, considering the edibility of all other parts of this tree

  10. Differences in rheological profile of regular diesel and bio-diesel fuel

    Directory of Open Access Journals (Sweden)

    Jiří Čupera

    2010-01-01

    Full Text Available Biodiesel represents a promising alternative to regular fossil diesel. Fuel viscosity markedly influences injection, spraying and combustion, viscosity is thus critical factor to be evaluated and monitored. This work is focused on quantifying the differences in temperature dependent kinematic viscosity regular diesel fuel and B30 biodiesel fuel. The samples were assumed to be Newtonian fluids. Vis­co­si­ty was measured on a digital rotary viscometer in a range of 0 to 80 °C. More significant difference between minimum and maximum values was found in case of diesel fuel in comparison with biodiesel fuel. Temperature dependence of both fuels was modeled using several mathematical models – polynomial, power and Gaussian equation. The Gaussian fit offers the best match between experimental and computed data. Description of viscosity behavior of fuels is critically important, e.g. when considering or calculating running efficiency and performance of combustion engines. The models proposed in this work may be used as a tool for precise prediction of rheological behavior of diesel-type fuels.

  11. Analysis of first and second law of an engine operating with Bio diesel from palm oil. Part 2: global exergy balance

    International Nuclear Information System (INIS)

    Agudelo, John R; Agudelo, Andres F; Cuadrado, Ilba G

    2006-01-01

    An exergy analysis of a diesel engine operating with palm oil bio diesel and its blends with diesel fuel is presented. Measurements were carried out in a test bench under stationary conditions varying engine load at constant speed and vice versa. The variation in exergy distribution and second law efficiency were obtained under several operating points. It was found that fuel type do not affect exergy distribution but it does affect the second law efficiency, which is slightly higher for diesel fuel. In contrast with energy balance results, exergy flows of exhaust and coolant streams are low, specially for the latter. This result is relevant for the implementation of cogeneration systems.

  12. Particulate matter emissions from a heavy duty vehicle fuelled by petroleum diesel and used cooking oil blends

    OpenAIRE

    Dizayi,; Li, HU; Hadavi,; Tomlin, AS

    2015-01-01

    Fuel characteristic and exhaust particulate emissions tests were carried out for a EURO5 compliant Heavy Duty Vehicle operating on both pure petroleum diesel (PD) and used cooking oil (C2G Ultra Biofuel) PD blends under real world driving conditions. Fuel tests showed that fuel temperature, substitution ratio and engine speed play a key role in determining the spray characteristics of the Ultra Biofuel blends. However, under real world operating conditions, the Bioltec fuel blending system wa...

  13. Determination of sulfur content of diesel fuels and diesel fuel-like fractions of waste polymer cracking.

    Science.gov (United States)

    Miskolczi, N; Bartha, L; Borszéki, J; Halmos, P

    2006-05-15

    The element content of low and high sulfur containing diesel fuels was measured by different analytical methods: energy-dispersive X-ray fluorescent (EDXRF) and inductively coupled plasma atomic emission (ICP-OES) spectroscopy methods. Then results were compared. High sulfur containing diesel fuels were from heavy diesel engines and diesel fuel-like liquids obtained by thermal degradation of waste polymers. In case of X-ray analysis also the effect of the used thin foils with different chemical compositions (polypropylene, polycarbonate, polyester) on the accuracy was investigated. According to data considerable differences and deterioration of accuracy was observed in the respect of foils in case of both low and high sulfur containing hydrocarbons. Results indicated appropriate correlation between experimental results measured by both two methods, but differences could be observed in the correlation, which could be explained with different ratio of C/H of samples.

  14. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  15. Effects of trout-oil methyl ester on a diesel engine performance and emission characteristics

    International Nuclear Information System (INIS)

    Buyukkaya, Ekrem; Benli, Serdar; Karaaslan, Salih; Guru, Metin

    2013-01-01

    Highlights: ► Maximum engine power was obtained at 2400 rpm for all fuels. ► The maximum torque of engine was obtained at 1500 rpm for blend fuels. ► The BSFC of TOME’s blends became less. ► HC emissions were found to be lower for blends. ► NO x was obtained to decrease in particularly high engine loads. - Abstract: In this study, trout oil methyl ester fuel (TOME) was prepared by transesterification using potassium hydroxide as catalyst. The trout oil and its blends (B10, B20, B40 and B50) were tested in a single-cylinder natural aspirated indirect injection diesel engine. The tests showed significant changes in engine’s power and particularly torque as well as major improvements in the engine emission for B40 and B50 in general, except the increasing of nitrogen oxide (NO x ) emission due to high combustion temperature resulted by better combustion process. The brake specific fuel consumption of B50 fuel was almost the same as that of diesel fuel at the maximum torque and rated power conditions. Carbon monoxide (CO) and hydrocarbon emissions (HC) were reduced around on average 13% and 45%, respectively, in case of TOME compared to diesel

  16. POWER PERFOMANCE UNDER CONSTANT SPEED TEST WITH PALM OIL BIODIESEL AND ITS BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    E. U. U. Ituen

    2010-06-01

    Full Text Available The torque and power performance tests were carried out with a single cylinder techno four-stroke diesel engine under constant speeds of 2000, 1500 and 1100 rpm. Five fuels, the Dura Palm Oil biodiesel/diesel blend at 10/90 vol/vol, B210 and the diesel or Automotive gas oil (ago, the reference fuel, were involved. Brake torque and brake power data were plotted against brake mean effective pressure (Bmep since the latter is independent of engine speed and size and it is an indication of how power and torque are obtained per litre of fuel. The curves for the torque versus Bmep for the five fuels merged into single straight line curve which extended to the origin and with a gradient of 0.0719 m3 for all the three speed tests of 2000, 1500 and 1100 rpm. Similarly, the power versus Bmep curves for the five fuels merged into one straight curve which also extended to the origin but with different gradients of 0.0151, 0.0113, 0.0083 for 2000, 1500 and 1100 rpm respectively. Therefore, the five fuels had similar torque and power performance characteristics in the engine. The straight line curve which can be extrapolated to any value can be used for the engine designs, that is determining vd from the relation, T=V/4 or Bp=VdN/2

  17. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Science.gov (United States)

    2010-07-01

    ... vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel fuel... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.527 Under what conditions may motor vehicle diesel fuel subject to the 15...

  18. Compound-specific isotope analysis of diesel fuels in a forensic investigation.

    Science.gov (United States)

    Muhammad, Syahidah A; Frew, Russell D; Hayman, Alan R

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ(13)C and δ(2)H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples.

  19. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Directory of Open Access Journals (Sweden)

    Syahidah Akmal Muhammad

    2015-02-01

    Full Text Available Compound-specific isotope analysis (CSIA offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  20. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Balaji Gnanasikamani

    2017-01-01

    Full Text Available The experimental investigation of the influence of Al2O3 nanoadditive on performance and emissions in a methyl ester of neem oil fueled direct injection Diesel engine is reported in this paper. The Al2O3 nanoparticles are mixed in various proportions (100 to 300 ppm with methyl ester of neem oil. The performance and emissions are tested in a single cylinder computerized, 4-stroke, stationary, water-cooled Diesel engine of 3.5 kW rated power. Results show that the nanoadditive is effective in increasing the performance and controlling the NO emissions of methyl ester of neem oil fueled Diesel engines.

  1. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations. Motor...

  2. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    into the cylinder. A mixture of gas and air is compressed during the compression stroke and before the end of the stroke, a pilot quantity of diesel fuel (depending on the operating conditions) is injected to initiate combustion. The combustion processes of dual-fuel engines lie between that of the CI and SI engines. The longer ...

  3. Nitrogen oxide removal using diesel fuel and a catalyst

    Science.gov (United States)

    Vogtlin, George E.; Goerz, David A.; Hsiao, Mark; Merritt, Bernard T.; Penetrante, Bernie M.; Reynolds, John G.; Brusasco, Ray

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  4. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  5. Selection of Fuel System for Modern Heavy Duty Diesel Engines

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonok

    2004-01-01

    Full Text Available Fuel systems of diesel engines have been analyzed. The paper shows components of the systems, peculiarities of their manufacturing process. Difference in efficiency of the systems, their application and market prospects are considered in the paper. While solving problems to design a power installation the essence of fuel system selection is given on the basis of an internal combustion engine.

  6. Co-Combustion of Fast Pyrolysis Bio-Oil Derived from Coffee Bean Residue and Diesel in an Oil-Fired Furnace

    Directory of Open Access Journals (Sweden)

    Shuhn-Shyurng Hou

    2017-10-01

    Full Text Available The combustion characteristics of co-firing bio-oil produced from the fast pyrolysis process of coffee bean residue and diesel in a 300-kWth oil-fired furnace are investigated. Using bio-oil to completely replace fossil fuels has limitations since bio-oil has undesirable properties, such as high water and oxygen contents, high viscosity, and low heating value. However, a low blend ratio of bio-oil used as a substitute for petroleum-derived oil has advantages; i.e., it can be easily combusted in existing furnaces without modifications. Thus, a promising solution is the partial substitution of diesel with bio-oil, rather than completely replacing it. A furnace test is performed for diesel alone and bio-oil/diesel blends with 5 vol % bio-oil. The results show that excellent stable combustion is observed during the co-firing test. Compared with diesel, with 5 vol % bio-oil content in the blends, both the wall temperature and gas temperature drop only slightly and exhibit similar furnace temperature distribution; meanwhile, comparable NO emissions (smaller than 57 ppm are obtained, and lower CO2 emissions are achieved because biomass is both carbon neutral and renewable. Moreover, SO2 and CO emissions under these two burning conditions are very low; SO2 and CO emissions are smaller than 6 and 35 ppm, respectively.

  7. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  8. Experiments on Induction Times of Diesel-Fuels and its Surrogates

    Science.gov (United States)

    Eigenbrod, Christian; Reimert, Manfredo; Marks, Guenther; Rickmers, Peter; Klinkov, Konstantin; Moriue, Osamu

    Aiming for as low polluting combustion control as possible in Diesel-engines or gas-turbines, pre-vaporized and pre-mixed combustion at low mean temperature levels marks the goal. Low-est emissions of nitric-oxides are achievable at combustion temperatures associated to mixture ratios close to the lean flammability limit. In order to prevent local mixture ratios to be below the flammability limit (resulting in flame extinction or generation of unburned hydrocarbons and carbon-monoxide) or to be richer than required (resulting in more nitric-oxide than possi-ble), well-stirred conditioning is required. The time needed for spray generation, vaporization and turbulent mixing is limited through the induction time to self-ignition in a hot high-pressure ambiance. Therefore, detailed knowledge about the autoignition of fuels is a pre-requisit. Experiments were performed at the Bremen drop tower to investigate the self-ignition behavior of single droplets of fossil-Diesel oil, rapeseed-oil, Gas-to-Liquid (GTL) synthetic Diesel-oil and the fossil Diesel surrogates n-heptane, n-tetradecane, 50 n-tetradecane/ 50 1-methylnaphthalene as well as on the GTL-surrogates n-tetradecane / bicyclohexyl and n-tetradecane / 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). The rules for selection of the above fuels and the experimental results are presented and dis-cussed.

  9. Adsorption and preconcentration of divalent metal ions in fossil fuels and biofuels: gasoline, diesel, biodiesel, diesel-like and ethanol by using chitosan microspheres and thermodynamic approach.

    Science.gov (United States)

    Prado, Alexandre G S; Pescara, Igor C; Evangelista, Sheila M; Holanda, Matheus S; Andrade, Romulo D; Suarez, Paulo A Z; Zara, Luiz F

    2011-05-15

    Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2m(2)g(-1). The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu>Ni>Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. 40 CFR 80.570 - What labeling requirements apply to retailers and wholesale purchaser-consumers of diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA..., motor vehicle diesel fuel subject to the 15 ppm sulfur standard of § 80.520(a)(1), must affix the... dispensing, motor vehicle diesel fuel subject to the 500 ppm sulfur standard of § 80.520(c), must prominently...

  11. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Science.gov (United States)

    2010-07-01

    ... compliance option, hardship provisions, or motor vehicle or NRLM diesel fuel credit provisions? 80.620... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Provisions for Foreign Refiners and Importers for Motor Vehicle Diesel...

  12. Emission Characterization of Diesel Engine Run on Coconut Oil ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Chiatti et al (2014) asserted that increasing attention has been devoted to the use of biodiesel fuel in internal combustion diesel engine due to its positive attributes as compared to the other types of fuel: e.g., being a renewable source, non- petroleum-based, with lower carbon monoxide, hydrocarbon, and particulate matter ...

  13. Diesel fuel to dc power: Navy & Marine Corps Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  14. Effect of ethanol fuel additive on diesel emissions.; TOPICAL

    International Nuclear Information System (INIS)

    Cole, R. L.; Poola, R. B.; Sekar, R.; Schaus, J. E.; McPartlin, P.

    2001-01-01

    Engine-out emissions from a Volkswagen model TDI engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel and additives containing 10% ethanol, and a blend of diesel fuel and additives containing 15% ethanol. The test matrix covered five speeds from 1,320 to 3,000 rpm, five torques from 15 Nm to maximum plus the 900-rpm idle condition, and most of the points in the FTP-75 and US-06 vehicle tests. Emissions of particulate matter (PM), nitrogen oxides (NO(sub x)), unburned hydrocarbons (HCs), and carbon monoxide (CO) were measured at each point, as were fuel consumption, exhaust oxygen, and carbon dioxide output. PM emissions were reduced up to 75% when ethanol-diesel blends were used instead of neat diesel fuel. Significant reductions in PM emissions occurred over one-half to two-thirds of the test matrix. NO(sub x) emissions were reduced by up to 84%. Although the regions of reduced NO(sub x) emissions were much smaller than the regions of reduced PM emissions, there was considerable overlap between the two regions where PM emissions were reduced by up to 75% and NO(sub x) emissions were reduced by up to 84%. Such simultaneous reduction of both PM and NO(sub x) emissions would be difficult to achieve by any other means. HC and CO emissions were also reduced in the regions of reduced PM and NO(sub x) emissions that overlapped. Because the ethanol-diesel blends contain less energy on both a per-unit-mass basis and a per-unit-volume basis, there was a reduction in maximum torque of up to 10% and an increase in brake-specific fuel consumption of up to 7% when these blends were used

  15. Diesel fuel in the United States

    International Nuclear Information System (INIS)

    Bensaid, B.; Saint-Antonin, V.

    2003-01-01

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO 2 emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  16. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  17. Diesel fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bensaid, B.; Saint-Antonin, V

    2003-07-01

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO{sub 2} emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  18. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO2 nanoparticles and water.

    Science.gov (United States)

    Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi

    2018-02-10

    Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.

  19. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    Science.gov (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  20. An evaluation of fuels and retrofit diesel particulate filters to reduce diesel particulate matter emissions in an underground mine

    CSIR Research Space (South Africa)

    Wattrus, MC

    2016-09-01

    Full Text Available level compliant) and a diesel containing 500ppm sulphur. Comprehensive engine exhaust emissions tests were carried out in a test cell on seven diesel fuels and two retrofitted diesel particulate filters. For each evaluation, the engine was operated over...

  1. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO X ) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  2. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A

    2012-10-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  3. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels.

    Science.gov (United States)

    Wu, Di; Zhang, Fei; Lou, Wenhao; Li, Dan; Chen, Jianmin

    2017-12-15

    Fuel consumption is one of the major contributors to air pollution worldwide. Plenty of studies have demonstrated that the diesel and petrol exhaust fine particulate matters (FPMs) are associated with increases of various diseases. However, the influences of different fuel types and their chemical components on toxicity have been less investigated. In this study, four kinds of fuels that widely used in China were burned in a laboratory simulation, and the FPMs were collected and analyzed. Transmission electron microscopy showed that black carbon was mainly soot with a dendritic morphology. For light diesel oil, marine heavy diesel oil, 93 octane petrol and 97 octane petrol diesel oil, the emission factors of FPMs were 3.05±0.29, 3.21±0.54, 2.36±0.33, and 2.28±0.25g/kg fuel, respectively. And the emission factors for the "16 US EPA" PAHs of FPM were 0.45±0.20, 0.80±0.22, 1.00±0.20, and 1.05±0.19mg/g FPMs, respectively. Fe is the most abundant metal in these FPMs, and the emission factors of FPMs were 2.58±1.70, 4.45±0.11, 8.18±0.58, and 9.24±0.17mg/g FPMs, respectively. We ranked the cytotoxicity of the FPMs emission from fuels combustion: marine heavy diesel oil>97 octane petrol>93 octane petrol>light diesel oil, and the genotoxicity of FPMs emission from fuels combustion: marine heavy diesel oil>light diesel oil>93 octane petrol>97 octane petrol. Significant correlations were found between PAH concentrations and reactive oxygen species (ROS) generation. Our results demonstrated that fuels exhaust FPMs have strong association with ROS activity, cytotoxicity and genotoxicity. These results indicated that fuels exhaust FPMs pose a potentially serious health, and emphasized the importance of assessing the health risks posed by the particulate pollutants in vehicle exhausts. Copyright © 2017. Published by Elsevier B.V.

  4. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  5. Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions

    KAUST Repository

    Ogunkoya, Dolanimi

    2015-01-01

    A study was undertaken to investigate renewable fuels in a compression-ignition internal combustion engine. The focus of this study was the effect of newly developed renewable fuels on engine performance, combustion, and emissions. Eight fuels were investigated, and they include diesel, jet fuel, a traditional biodiesel (fatty acid methyl ester: FAME), and five next generation biofuels. These five fuels were derived using a two-step process: hydrolysis of the oil into fatty acids (if necessary) and then a thermo-catalytic process to remove the oxygen via a decarboxylation reaction. The fuels included a fed batch deoxygenation of canola derived fatty acids (DCFA), a fed batch deoxygenation of canola derived fatty acids with varying amounts of H2 used during the deoxygenation process (DCFAH), a continuous deoxygenation of canola derived fatty acids (CDCFA), fed batch deoxygenation of lauric acid (DLA), and a third reaction to isomerize the products of the deoxygenated canola derived fatty acid alkanes (IPCF). Diesel, jet fuel, and biodiesel (FAME) have been used as benchmarks for comparing with the newer renewable fuels. The results of the experiments show slightly lower mechanical efficiency but better brake specific fuel consumption for the new renewable fuels. Results from combustion show shorter ignition delays for most of the renewable (deoxygenated) fuels with the exception of fed batch deoxygenation of lauric acid. Combustion results also show lower peak in-cylinder pressures, reduced rate of increase in cylinder pressure, and lower heat release rates for the renewable fuels. Emission results show an increase in hydrocarbon emissions for renewable deoxygenated fuels, but a general decrease in all other emissions including NOx, greenhouse gases, and soot. Results also demonstrate that isomers of the alkanes resulting from the deoxygenation of the canola derived fatty acids could be a potential replacement to conventional fossil diesel and biodiesel based on the

  6. Gaps in fuel oil supply

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-01

    The supplies of the fuel oil consumers have decreased. The fuel oil trade lives from hand to mouth. Refineries and stock-keeping whole-sale traders have just 0.5 million t of gas oil at their free disposal. Not even half of this amount can be imported from Rotterdam. In this situation the consumers are holding themselves back with their orders. They are waiting for falling fuel oil prices. The mineral oil industry, on the other hand, wants 3 Pfennigs per litre more.

  7. Alaska North Slope crude oil price and the behavior of diesel prices in California

    International Nuclear Information System (INIS)

    Adrangi, B.; Chatrath, A.; Raffiee, K.; Ripple, R.

    2001-01-01

    In this paper we analyze the price dynamics of Alaska North Slope crude oil and L.A. diesel fuel prices. We employ VAR methodology and bivariate GARCH model to show that there is a strong evidence of a uni-directional causal relationship between the two prices. The L.A. diesel market is found to bear the majority of the burden of convergence when there is a price spread. This finding may be seen as being consistent with the general consensus that price discovery emanates from the larger, more liquid market where trading volume is concentrated. The contestability of the West Coast crude oil market tends to cause it to react relatively competitively, while the lack of contestability for the West Coast diesel market tends to limit its competitiveness, causing price adjustment to be slow but to follow the price signals of crude oil. Our findings also suggest that the derived demand theory of input pricing may not hold in this case. The Alaska North Slope crude oil price is the driving force in changes of L.A. diesel price

  8. DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2017-06-01

    Full Text Available The exponential increase of plastic production produces 100 million tonnes of waste plastics annually which could be converted into hydrocarbon fuels in a thermal cracking process called pyrolysis. In this research work, a direct current (DC thermal plasma circuit is designed and used for conversion of low density polyethylene (LDPE into diesel oil in a laboratory scale pyrolysis reactor. The experimental setup uses a 270 W DC thermal plasma at operating temperatures in the range of 625 °C to 860 °C for a low density polyethylene (LDPE pyrolysis reaction at pressure = −0.95, temperature = 550 °C with τ = 30 min at a constant heating rate of 7.8 °C/min. The experimental setup consists of a vacuum pump, closed system vessel, direct current (DC plasma circuit, and a k-type thermocouple placed a few millimeters from the reactant sample. The hydrocarbon products are condensed to diesel oil and analyzed using flame ionization detector (FID gas chromatography. The analysis shows 87.5% diesel oil, 1,4-dichlorobenzene (Surr, benzene, ethylbenzene and traces of toluene and xylene. The direct current (DC thermal plasma achieves 56.9 wt. % of diesel range oil (DRO, 37.8 wt. % gaseous products and minimal tar production. The direct current (DC thermal plasma shows reliability, better temperature control, and high thermal performance as well as the ability to work for long operation periods.

  9. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    Science.gov (United States)

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  10. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    Science.gov (United States)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  11. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels

    International Nuclear Information System (INIS)

    Battistoni, Michele; Grimaldi, Carlo Nazareno

    2012-01-01

    Highlights: ► Fluid-dynamic simulation of injection process with biodiesel and diesel fuel. ► Coupling of Eulerian and Lagrangian spray CFD simulations. ► Effects of hole shaping: conical versus cylindrical and edge rounding effects. ► Prediction of spray characteristics improved using inner nozzle flow data. ► Explanation of mass flow differences depending on hole shape and fuel type. -- Abstract: The aim of the paper is the comparison of the injection process with two fuels, a standard diesel fuel and a pure biodiesel, methyl ester of soybean oil. Multiphase cavitating flows inside injector nozzles are calculated by means of unsteady CFD simulations on moving grids from needle opening to closure, using an Eulerian–Eulerian two-fluid approach which takes into account bubble dynamics. Afterward, spray evolutions are also evaluated in a Lagrangian framework using results of the first computing step, mapped onto the hole exit area, for the initialization of the primary breakup model. Two nozzles with cylindrical and conical holes are studied and their behaviors are discussed in relation to fuel properties. Nozzle flow simulations highlighted that the extent of cavitation regions is not much affected by the fuel type, whereas it is strongly dependent on the nozzle shape. Biodiesel provides a slightly higher mass flow in highly cavitating nozzles. On the contrary using hole shaped nozzles (to reduce cavitation) diesel provides similar or slightly higher mass flow. Comparing the two fuels, the effects of different viscosities and densities play main role which explains these behaviors. Simulations of the spray evolution are also discussed highlighting the differences between the use of fossil and biodiesel fuels in terms of spray penetration, atomization and cone-angle. Usage of diesel fuel in the conical convergent nozzle gives higher liquid penetration.

  12. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...... and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...

  13. Genotoxicity of diesel engine emissions during combustion of vegetable oils, mineral oil, and their blends; Gentoxizitaet von Dieselmotoremissionen bei Verbrennung von Pflanzenoelen, Mineraloeldiesel und deren Mischkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Joern

    2013-07-09

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils and that blends of diesel fuel and vegetable oil are mutagenic. Three different vegetable oils (linseed oil, LO; palm tree oil, PO; rapeseed oil, RO), blends of 20% vegetable oil and 80% diesel fuel (B20) and 50% vegetable oil and 50% diesel fuel (B50) as well as common diesel fuel (DF) were combusted in a heavy duty diesel engine. The exhaust was investigated for particle emissions and its mutagenic effect in comparison to emissions of DF. The engine was operated using European Stationary Cycle. Particle mass was determined gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison to DF it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by PO which was scarcely above DF. B50 revealed the lowest amount of TPM while B20 reached as high as DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. B50 showed higher mutagenic potential than B20. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. Vegetable oil blends seem to be less mutagenic than the pure oils with a shifted maximum compared to blends with biodiesel and DF. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. And

  14. Factors affecting diesel fuel degradation using a bespoke high-pressure fuel system rig

    OpenAIRE

    Gopalan, Kesavan; Smith, Christopher; Pickering, Simon; Chuck, Christopher; Bannister, Christopher

    2018-01-01

    Recently, there has been automotive industry-wide impetus to reduce overall diesel vehicle emissions and fuel consumption by increasing fuel injection pressures within common rail systems. Many production fuel injection systems are now capable of delivering rail pressures of 1800-2000 bar with those able to achieve 3000 bar under development. In addition, there has been a gradual increase in the permitted FAME content in EN590 diesel from 5% to 7% with further increases to 10% proposed. With ...

  15. Recent Progress in the Development of Diesel Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  16. Recent Progress in the Development of Diesel Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  17. Investigation of Performance and Emissions Effects of Waste Vegetable Oil Methyl Ester in A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Yahya ULUSOY

    2016-12-01

    Full Text Available In this study engine and emission performance of a 4-stroke, 4 cylinder, direct injection 62,5 kW engine, with three different biodiesel blends (B25, B50, B75,  was compared with those obtained with use of normal diesel (B0 through a 8-mode experimental test procedure, in convention with ISO 8178-C1. The results of the study showed that, performance and emission values of biodiesel fuels produced from vegetable oil and those obtained with diesel fuel (B0 are very close to each other.  In this context, the waste cooking oil, which is a serious risk to the environment and should be collected according to related legistlative measures,  could be processed to and used as biodiesel without creating any significant loss in terms of engine performance, while providing significant advantages in terms of engine emissions. These results revealed that, waste frying oils can be used as diesel fuel and to create an adding value for the economy instead of being potential environmental risk. 

  18. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel fuel...

  19. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Science.gov (United States)

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  20. 40 CFR 80.604 - What are the annual reporting requirements for refiners and importers of NRLM diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... requirements for refiners and importers of NRLM diesel fuel? 80.604 Section 80.604 Protection of Environment... importers of NRLM diesel fuel? Beginning with the annual compliance period that begins June 1, 2007, or the...

  1. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... content requirements for use in diesel motor vehicles and nonroad engines.”; or (2) For those additives... requirements for use in model year 2007 and newer diesel motor vehicles or model year 2011 and newer diesel...

  2. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Nwafor, O.M.I.; Rice, G.; Ogbonna, A.I.

    2000-01-01

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  3. Novel injector techniques for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  4. A simulated study on the performance of diesel engine with ethanol-diesel blend fuel

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Qiang

    2013-01-01

    Full Text Available This paper describes the simulated study on atomization, wall-film formation, combustion and emission forming process of ethanol-diesel blend fuels in a high speed light duty diesel engine. The result shows that increased ethanol volume percentage of the blend fuels could improve atomization and reduce wall-film formation. However, in the meanwhile, with the increased ethanol volume percentage, low heat values of blend fuels decrease, while both total heat releases and cylinder pressures drop. By adding codes into the FIRE software, the NOx and soot formation region mass fractions are outputted. The simulated results display a good correlation with the NOx and soot formation. Besides, the NOx, soot and CO emissions decrease with the increased ethanol volume percentage. The power output of engine penalize, while energy utilization of blend fuels improve and combustion noise reduce, owing to the increased ethanol volume percentage.

  5. Operation of neat pine oil biofuel in a diesel engine by providing ignition assistance

    International Nuclear Information System (INIS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Lee, P.S.

    2014-01-01

    Highlights: • Operational feasibility of neat pine oil biofuel has been examined. • Pine oil suffers lower cetane number, which mandates for necessary ignition assistance. • Ignition support is provided by preheating the inlet air and incorporating a glow plug. • At an inlet air temperature of 60 °C, the BTE for pine oil was found to be in par with diesel. • CO and smoke emissions were reduced by 13.2% and 16.8%, respectively, for neat pine oil. - Abstract: The notion to provide ignition support for the effective operation of lower cetane fuels in a diesel engine has been ably adopted in the present study for the sole fuel operation of pine oil biofuel. Having noted that the lower cetane number and higher self-ignition temperature of pine oil biofuel would inhibit its direct use in a diesel engine, combined ignition support in the form of preheating the inlet air and installing a glow plug in the cylinder head has been provided to improve the auto-ignition of pine oil. While, an air preheater, installed in the inlet manifold of the engine, preheated the inlet air so as to provide ignition assistance partially, the incorporation of glow plug in the cylinder head imparted the further required ignition support appropriately. Subsequently, the operational feasibility of neat pine oil biofuel has been examined in a single cylinder diesel engine and the engine test results were analyzed. From the experimental investigation, though the engine performance and emissions such as CO (carbon monoxide) and smoke were noted to be better for pine oil with an inlet air temperature of 40 °C, the engine suffered the setback of knocking due to delayed SOC (start of combustion). However, with the ignition support through glow plug and preheating of inlet air, the engine knocking was prevented and the normal operation of the engine was ensured. Categorically, at an inlet air temperature of 60 °C, BTE (brake thermal efficiency) was found to be in par with diesel, while

  6. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...

  7. Gaseous emissions from burning diesel, crude and prime bleachable summer yellow cottonseed oil in a burner for drying seedcotton

    International Nuclear Information System (INIS)

    Holt, G.A.; Hooker, J.D.

    2004-01-01

    Cottonseed oil has been used as a fuel source either as a blend with diesel in varying proportions or undiluted (100 %) in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-fueled burner similar to those used by cottonseed oil mills and cotton gins in their drying operations. The purpose of this study was to evaluate emissions from five fuel oil treatments while firing a multi-fueled burner in a setup similar to those used for drying operations of both cottonseed oil mills and cotton gins. For each treatment, gaseous emissions were measured while firing the burner at three fuel flow rates. The five fuel oil treatments evaluated were: (1) No.2 diesel at 28.3 deg C, (2) prime bleachable summer yellow (PBSY) cottonseed oil at 28.3 deg C (PBSY-28), (3) crude cottonseed oil at 28.3 deg C (Crude-28), (4) PBSY at 60 deg C (PBSY-60), and (5) crude at 60 deg C (Crude-60). Results indicate that PBSY treatments had the lowest overall emissions of all treatments. The other treatments varied in emission rates based on treatment and fuel flow rate. Preheating the oil to 60 deg C resulted in higher NO x emissions but displayed varying results in regards to CO. The CO emissions for the crude treatments were relatively unaffected by the 60 deg C preheat temperature whereas the preheated PBSY treatments demonstrated lower CO emissions. Overall, both cottonseed oils performed well in the multi-fueled burner and displayed a promising potential as an alternative fuel source for cottonseed oil mills and cotton gins in their drying operations. (Author)

  8. Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine

    International Nuclear Information System (INIS)

    Wang, Wei-Cheng; Bai, Chi-Jeng; Lin, Chi-Tung; Prakash, Samay

    2016-01-01

    Highlights: • The liquid, solid and gas yields from pyrolysis of waste tires were investigated. • For energy and economic consideration, pre-treatments of TPO were avoided. • Various proportions of TPO-diesel mixture were tested in a DI diesel engine. • TPOs derived from various pyrolysis temperatures were also tested in engine. • Fuel consumption, cylinder pressure, engine power, and SO2 emission were discussed. - Abstract: Alternative fuels from waste material have been receiving attentions due to the increasing demand of fossil fuels. Pyrolysis has been a considerable solution for processing waste tires because it gives clean emissions and produces valuable liquid or solid products. Pyrolysis oil from waste tires has become a potential replacement for petroleum diesel due to the similar physical and chemical properties to diesel fuel. In this study, waste tires were pyrolyzed in a lab-scale fixed bed reactor with various reaction temperatures. The liquid, solid and gas product yields from different pyrolysis temperatures were compared, as well as the analyses of property and element for the oil product. Due to the energy and economic consideration, the pre-treatments of TPO before adding into regular diesel were avoided. The TPO derived from various pyrolysis temperatures were mixed with regular diesel at different proportions and subsequently tested in a DI diesel engine. The engine performance, such as fuel consumption, cylinder pressure, engine power, and SO 2 emission, were examined and discussed. The results indicated that increasing the TPO fraction in diesel lead to worse engine performance, but it can be recovered using TPOs produced from higher pyrolysis temperatures.

  9. New heavy fuel oil injection system; Neues Schweroel-Common-Rail-Einspritzsystem

    Energy Technology Data Exchange (ETDEWEB)

    Senghaas, Clemens; Schneider, Hartmut; Reinhard, Steffen [L' Orange GmbH, Stuttgart (Germany). Bereich Entwicklung; Jay, Dave; Ehrstroem, Kenneth [Waertsilae, Vaasa (Finland)

    2011-01-15

    In 2001 Waertsilaeand L'Orange launched the first common rail injection system for heavy fuel oil applications on the WaertsilaeW32 engine. This common rail system is very complex and relatively slow, compared to the marine diesel common rail systems. The second generation of heavy fuel oil common rail systems will be improved regarding functionality, costs, lifetime and maintainability. (orig.)

  10. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  11. Multi-response optimization of diesel engine operating parameters running with water-in-diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Vellaiyan Suresh

    2017-01-01

    Full Text Available Water-in-diesel emulsion fuel is a promising alternative diesel fuel, which has the potential to promote better performance and emission characteristics in an existing Diesel engine without engine modification and added cost. The key factor that has to be focused with the introduction of such fuel in existing Diesel engine is desired engine-operating conditions. The present study attempts to address the previous issue with two-phases of experiments. In the first phase, stable water-in-diesel emulsion fuels (5, 10, 15, and 20 water-in-diesel are prepared and their stability period and physico-chemical properties are measured. In the second phase, experiments are conducted in a single cylinder, 4-stroke Diesel engine with pre-pared water-in-diesel emulsion fuel blends based on L16 orthogonal array suggested in Taguchi’s quality control concept to record the output responses (perormance and emission levels. Based on signal-to-noise ratio and grey relational analysis, optimal level of operating factors are determined to obtain better response and verified through confirmation experiments. A statistical analysis of variance is applied to measure the significance of individual operating parameters on overall engine performance. Results indicate that the emulsion fuel prepared by Sorbitan monolaurate surfactant at high stirrer speed endows with better emulsion stability and acceptable variation in physicochemical properties. Results of this study also reveal that the optimal parametric setting effectively improves the combustion, performance, and emission characteristics of Diesel engine.

  12. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    Science.gov (United States)

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  13. Oil extracted from spent coffee grounds for bio-hydrotreated diesel production

    International Nuclear Information System (INIS)

    Phimsen, Songphon; Kiatkittipong, Worapon; Yamada, Hiroshi; Tagawa, Tomohiko; Kiatkittipong, Kunlanan; Laosiripojana, Navadol; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • The spent coffee oil with high FFAs was hydrotreated to liquid biofuel. • Pd/C gave higher olefins while NiMo/γ-Al 2 O 3 gave higher isoparaffins liquid products. • The diesel fuel fraction can have a cetane number as high as 80. • The physiochemical properties of diesel fraction comply with commercial standard. - Abstract: Oil extracted from spent coffee grounds is utilized as a renewable source for bio-hydrotreated fuel production. In the present work, oil yield up to 13% can be obtained by Soxhlet extraction with hexane as a solvent. As the extracted oil contained high content of free fatty acids (6.14%), therefore one step alkali-catalyzed for ester based biodiesel production is impractical. Hydrotreating of extracted oil was performed over two catalysts i.e. NiMo/γ-Al 2 O 3 and Pd/C with different operating parameters i.e. reaction time, operating temperature, and H 2 /oil. It was found that the reaction time of 2 h and the reaction temperature of 400 °C are favorable operating conditions. The liquid products mostly consisted of n-pentadecane and n-heptadecane, which contain one carbon atom shorter than the corresponding fatty acid (C n−1 ) i.e. palmitic and stearic acid, respectively. Unfavorable cracking of diesel product is pronounced at high temperature and prolonged reaction time. In addition, although increased H 2 /oil promoted overall reaction and hydrodeoxygenation activity (C n−1 /C n decreased) for both catalysts, hydrocracking is enhanced over Pd/C, leading to significant increase in gasoline yield. Moreover, Pd/C gave higher olefin content in liquid product (22.3 wt%) than NiMo/γ-Al 2 O 3 (4.8 wt%). However, NiMo/γ-Al 2 O 3 shows higher isomerization activity. The amount of isoparaffins catalyzed by NiMo/γ-Al 2 O 3 and Pd/C were 10.8 and 1.7 wt%, respectively. Physiochemical analysis of the diesel fraction exhibit satisfactory properties. The density and kinematic viscosity were consistent with the specification of

  14. Bioremediation of soil contaminated by spent diesel oil using ...

    African Journals Online (AJOL)

    Objectives: To investigate the potential of Pleurotus pulmonarius in the bioremediation of soil contaminated with spent diesel oil at 5, 10 and 15% (v/w) level of contamination over a period of one and two months of incubation. Methodology and results: A pure culture of P. pulmonarius was obtained from the Plant physiology ...

  15. Aerobic biodegradation of butanol and diesel oil blends | Mariano ...

    African Journals Online (AJOL)

    Aerobic biodegradation of butanol and diesel oil blends. Adriano Pinto Mariano, Richard Clayton Tomasella, Clara Di Martino, Eduardo Beraldo Morais, Rubens Maciel Filho, Mirna Helena Regali Seleghim, Jonas Contiero, Sâmia Maria Tauk Tornisielo, Dejanira de Franceschi de Angelis ...

  16. 46 CFR 56.50-75 - Diesel fuel systems.

    Science.gov (United States)

    2010-10-01

    ... terminate on an open deck and shall be fitted with suitable shutoff valves, deck plugs, or caps. (7) Vent... steel pipe or tubing which provides equivalent safety may be used. (2) Tubing connections and fittings... installation of diesel fuel piping shall comply with the requirements of § 56.50-70(b). (4) Shutoff valves...

  17. Diesel fuel containing polyalkylene amine and Mannich base

    Energy Technology Data Exchange (ETDEWEB)

    Harle, O.L.

    1979-06-21

    The fuel composition for diesel engines is characterized in that it contains a hydrocarbon with a boiling range of 120-455/sup 0/C as main component and as additive 5 to 300 ppm of a polyakylene amine, as well as 5 to 300 ppm of the reaction product of an alkyl phenol, an aldehyde and an amine (Mannich base). This additive composition increases the oxidation and thermal stability of the fuel.

  18. Biodegradability of commercial and weathered diesel oils Biodegradabilidade de óleos diesel comercial e intemperizado

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2008-03-01

    Full Text Available This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 - dichlorophenol indophenol (DCPIP and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated.Este trabalho objetivou avaliar a capacidade de diferentes microrganismos em degradar óleo diesel comercial em comparação com um óleo diesel intemperizado coletado da água subterrânea em um posto de combust

  19. Effects of ultra-low sulphur diesel fuel and diesel oxidation catalysts on nitrogen dioxide emissions

    International Nuclear Information System (INIS)

    Stachulak, J.S.; Zarling, D.

    2010-01-01

    Diesel oxidation catalysts (DOCs) are used on diesel equipment in underground mines to reduce exhaust emissions of carbon monoxide (CO), hydrocarbons (C) and odour that are associated with gaseous HCs. New catalysts have also been formulated to minimize sulphate production, but little is know about their effects on nitrogen dioxide (NO 2 ) emissions. DOCs are known to oxidize nitric oxide (NO) to NO 2 , which is more toxic than NO at low levels. Vale Inco uses ultra-low sulphur diesel (ULSD) fuel for its underground diesel equipment. Although ULSD is a cleaner burning fuel, its impact on the emissions performance of DOCs is not fully known. Technical material gathered during a literature review suggested that ULSD fuel may increase NO 2 production if DOCs are used, but that the increase would be small. This paper presented the results of a laboratory evaluation of DOCs with varying amounts of time-in service in Vale Inco mines. The 4 Vale Inco DOCs were found to produce excess NO 2 during some test conditions. In both steady-state and transient testing, there were no obvious trends in NO 2 increases with increasing DOC age. Two possibilities for these observations are that the DOCs may have been well within their useful life or their initial compositions differed. Future studies will make use of improved instrumentation, notably NO 2 analyzers, to definitely determine the influence of DOCs on NO 2 formation. 13 refs., 1 tab., 8 figs.

  20. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  1. Jojoba methyl ester as a diesel fuel substitute: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.S.; Ismail, M.A.; Elfeky, S.M.S.; Abu-Elyazeed, O.S.M. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, University of Helwan, Masakin Elhelmia, Mattaria, Cairo 11718 (Egypt)

    2007-02-15

    The aim of the present work is to prepare jojoba methyl ester (JME) as a diesel fuel substitute. This was carried out experimentally and its chemical and physical properties were determined. Esterification method is used to produce methyl ester from raw jojoba oil. This method is optimized to produce the highest amount of fuel using a minimum amount of methyl alcohol. To achieve the above aim, a test rig for fuel production was developed. To measure the JME burning velocity a constant volume bomb was developed. The bomb was fully instrumented with a piezoelectric pressure transducer, charge amplifier, digital storage oscilloscope, A/D converter and a personal computer. Several grades of fuel were produced but, two grades only were selected and tested as an economical alternative fuel. The chemical and physical properties of these grades of fuel are measured as well as the laminar burning velocity. It is found that JME liquid fuel exhibited lower burning velocities than iso-octane. The new fuel is found to be suitable for compression ignition engine particularly in the indirect-injection ones, while for direct-injection, and high-speed engines fuel modifications are required. The new fuel is safe, has no sulphur content and reduces the engine wear as well as lengthens the lifetime of lubricating oil. (author)

  2. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  3. Bioremediation of soils contaminated with fuel oils

    International Nuclear Information System (INIS)

    Baker, K.H.; Herson, D.S.; Vercellon-Smith, P.; Cronce, R.C.

    1991-01-01

    A utility company discovered soils in their plant contaminated with diesel fuel and related fuel oils (300-450 ppm). The soils were excavated and removed to a concrete pad for treatment. The authors conducted laboratory studies to determine if biostimulation or bioaugmentation would be appropriate for treating the soils. Microbial numbers and soil respiration were monitored in microcosms supplemented with: (1) organic nutrients, (2) inorganic nutrients, and (3) inorganic nutrients plus additional adapted microorganisms. Their studies indicated that biostimulation via the addition of inorganic nutrients would be appropriate at this site. Treatment cells for the contaminated soils were constructed. Initial data indicates that a 35% reduction in the concentration of contaminants has occurred within the first month of operation

  4. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  5. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  6. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Science.gov (United States)

    2010-07-01

    ... motor vehicles, unless the diesel fuel: (1) Has a sulfur percentage, by weight, no greater than 0.05... solvent red 164 (which has a characteristic red color in diesel fuel) shall be considered to be available for use in diesel motor vehicles and motor vehicle engines, and shall be subject to the prohibitions...

  7. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using the...

  8. Effect of oxygenate additive on diesel engine fuel consumption and emissions operating with biodiesel-diesel blend at idling conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, F. Y.; Mamat, R.; Noor, M. M.; Yusri, I. M.

    2017-10-01

    Biodiesel is promising alternative fuel to run the automotive engine but idling is the main problem to run the vehicles in a big city. Vehicles running with idling condition cause higher fuel supply and higher emission level due to being having fuel residues in the exhaust. The purpose of this study is to evaluate the impact of alcohol additive on fuel consumption and emissions parameters under idling conditions when a multicylinder diesel engine operates with the diesel-biodiesel blend. The study found that using 5% butanol as an additive with B5 (5% Palm biodiesel + 95% diesel) blends fuel lowers brake specific fuel consumption and CO emissions by 38% and 20% respectively. But the addition of butanol increases NOx and CO2 emissions. Based on the result it can be said that 5% butanol can be used in a diesel engine with B5 without any engine modifications to tackle the idling problem.

  9. Diesel engine performance and emissions with fuels derived from waste tyres.

    Science.gov (United States)

    Verma, Puneet; Zare, Ali; Jafari, Mohammad; Bodisco, Timothy A; Rainey, Thomas; Ristovski, Zoran D; Brown, Richard J

    2018-02-06

    The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO 2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

  10. 40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting...

  11. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    Science.gov (United States)

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  12. A study of the stabilities, microstructures and fuel characteristics of tri-fuel (diesel-biodiesel-ethanol) using various fuel preparation methods

    Science.gov (United States)

    Lee, K. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    In this study, the work was carried out to investigate the effects of ethanol proportions on the stabilities and physicochemical characteristics of tri-fuel (Diesel-Biodiesel-Ethanol). For the first time, tri-fuel emulsions and blended were compared side by side. The experiment was done with composition having 5%, 10%, 15%, 20% and 25 % of ethanol with fixed 10% of biodiesel from palm oil origin on a volume basis into diesel. The results indicated that the phase stabilities of the emulsified fuels were higher compared to the blended fuels. In addition, tri-fuel composition with higher proportion of ethanol were found unstable with high tendency to form layer separation. It was found that tri-fuel emulsion with 5% ethanol content (D85B10E5) was of the best in stability with little separation. Furthermore, tri-fuel with lowest ethanol proportion indicated convincing physicochemical characteristics compared to others. Physicochemical characteristics of tri-fuel blending yield almost similar results to tri-fuel emulsion but degrading as more proportion ethanol content added. Emulsion category had cloudy look but on temporarily basis. Under the microscope, tri-fuel emulsion and blending droplet were similar for its active moving about micro-bubble but distinct in term of detection of collision, average disperse micro-bubble size, the spread and organization of the microstructure.

  13. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  14. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C.

    2011-01-01

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  15. Hybrid fuel cell/diesel generation total energy system, part 2

    Science.gov (United States)

    Blazek, C. F.

    1982-01-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for