WorldWideScience

Sample records for diesel engine nox

  1. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  2. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  3. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emissions from diesel vehicles are known to be harmful to human health and environment. An experimental study of the diesel fuel reformation by a plasmatron and diesel engine exhaust cleaning by means of plasma chemical pretreatment of fuel is described. Plasma chemical reformation of fuel was carried by a DC arc plasmatron that was fabricated to increase an ability of the gas activation. Some portion of the fuel was activated in an arc discharge and turned into the hydrogen-rich synthesis gas. The yield of reformation for the diesel fuel showed 80 % ∼ 100 % when the small quantities of fuel (flow rate up to about 6 cc/min) were reformed. The regulation for an emission from the diesel vehicle is getting more stringent, the research in the field of the in-cylinder processing technologies (pretreatment) becomes more important issue as well as the catalyst after-treatment. The used high durability plasmatron has the characteristics of low contamination level, low anode erosion rate, low plasma temperature, and effective activation of the process gas. The developed fuel reformation system with the plasmatron was connected to the air feeding inlet sleeve of the diesel engine Kookje 3T90LT-AC (Korea) in order to study the reduction of NOx content in the engine's emission. Tubular reformation chamber was connected to the engine through the heat exchanger DOVER B10Hx20/1P-SC-S. Its cooling jacket was connected in series with the cooling system of the plasmatron. At the exit of this device gas temperature did not exceed ∼40 .deg. C at plasmatron power up to 1.5 kW which seemed quite acceptable. Gas composition was studied here using RBR-Ecom KD gas analyzer. The design of the DC arc plasmatron applied for the plasma chemical fuel reformation was improved boosting the degree of fuel-air mixture activation that provided the

  4. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    OpenAIRE

    Abdullah Mohd Fareez Edzuan; Zhing Sim Shu; Bilong Bugik Clarence

    2017-01-01

    As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM) emissions however nitrogen oxides (NOx) emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coco...

  5. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...

  6. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  7. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  8. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  9. Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine

    Science.gov (United States)

    Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang

    2018-01-01

    For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.

  10. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control

    OpenAIRE

    Zhongbo Zhang; Lifu Li

    2018-01-01

    In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...

  11. Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder

    Increased awareness of the detrimental effects on climate, ecosystems and human health have led to numerous restrictions of the emissions from internal combustion engines. Recently the International Maritime Organization has introduced the Tier III standard, which includes a significantly stricter...... the automotive industry, but have only recently been introduced commercially to large two-stroke diesel engines. Recirculation of exhaust gas to the cylinders lowers the oxygen availability and increases the heat capacity during combustion, which in turn leads to less formation of NOx. Experience shows...... of the Tier III standard, while still maintaining maneuverability performance without smoke formation. The design methods acknowledge that engine specific parameter tuning is a scarce resource in the industry and controller complexity is kept to a minimum. An existing dynamic model of the engine and EGR...

  12. Effect of steam injection on nox emissions and performance of a single cylinder diesel engine fuelled with soy methyl ester

    Directory of Open Access Journals (Sweden)

    Manickam Madhavan V.

    2017-01-01

    Full Text Available Biodiesel attracts most of the researchers and automotive industries in recent years as an alternative fuel for diesel engines, because of its better lubricity property, higher cetane number, and less greenhouse gas emissions. The use of bio diesel leads to reduction in hydro carbons, carbon monoxide, and particulate matter, but increase in NOx emissions. Increase in biodiesel blends in standard diesel leads to increase in NOx emission. In this study, an attempt is made to reduce the NOx emis-sions of a diesel engine fueled with pure soy methyl ester (B100 with low pressure steam injection. Experiments were carried out and studied for both standard diesel and pure biodiesel of soy methyl ester with steam injection ratio of 5, 10, and 15% on mass ratio basis of air in the inlet manifold. The present study has shown that around 30% reduction in NOx can be achieved for the steam injection rate of 10% and considerable reduction for all other steam injection rates when compared to standard diesel and B100. It is also observed that steam injection having signifi-cant impact on reduction of other emissions such as HC, CO, and CO2. The study also noted marginal improvement in the engine brake power, brake thermal effi-ciency and reduction in specific fuel consumption at part loads and minor increase during peak load operation for the low pressure steam injection on B100.

  13. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Srinivasan, Kalyan K. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Krishnan, Sundar R. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Som, Sibendu [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Transportation Research

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

  14. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    Science.gov (United States)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  15. AN EXPERIMENTAL NOX REDUCTION POTENTIAL INVESTIGATION OF THE PARTIAL HCCI APPLICATION, ON A HIGH PRESSURE FUEL INJECTION EQUIPPED DIESEL ENGINE BY IMPLEMENTING FUMIGATION OF GASOLINE PORT INJECTION

    OpenAIRE

    ERGENÇ, Alp Tekin; YÜKSEK, Levent; ÖZENER, Orkun; IŞIN, Övün

    2016-01-01

    This work investigates the effects of partial HCCI (Homogeneous charge compression ignition) application on today's modern diesel engine tail pipe NOx emissions. Gasoline fumigation is supplied via a port fuel injection system located in the intake port of DI(Direct injection) diesel engine to maintain partial HCCI conditions and also diesel fuel injected directly into the combustion chamber before TDC(Top dead center). A single cylinder direct injection diesel research engine equipped w...

  16. EVALUATION OF EMISSION OF CO, NO AND NOX IN EXHAUST OF DIESEL ENGINE FUELED WITH FUEL ADDITIVED

    Directory of Open Access Journals (Sweden)

    Gilson Rodrigo de Miranda

    2011-01-01

    Full Text Available Air pollution has emerged as major global problems. In the last decade, the development of new engines, the use of different forms of treatment of exhaust gases and the increase in fuel quality were used to reduce pollutants (regulated or not. Among the various developments to reduce emissions, the use of oxygenated additives to diesel and paraffin is a quick and effective measure to reduce pollutants. In this work we studied the influence of oxygenated compounds (diethyl ether (DEE, 1-dodecanol (DOD, 2-methoxy-acetate (MEA and terc-butanol (TERC and paraffin (heptane (HEPT and n- hexadecane (CET added to diesel in order to improve the quality of CO, NO and NOx in the exhaust of diesel engine, single cylinder. The fuels used in the studies are formulations of diesel reference, here named S10, which contains low sulfur (

  17. Final Technical Report on Investigation of Selective Non-Catalytic Processes for In-Situ Reduction of NOx and CO Emissions from Marine Gas Turbines and Diesel Engines

    National Research Council Canada - National Science Library

    Bowman, Craig

    1997-01-01

    .... These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel...

  18. Experimental Validation of a Virtual Engine-Out NOx Sensor for Diesel Emission Control

    NARCIS (Netherlands)

    Escobar Valdivieso, D.; Mentink, P.; Külah, S.; Forrai, A.; Willems, F.P.T.

    2017-01-01

    Motivated by automotive emissions legislations, a Virtual NOx sensor is developed. This virtual sensor consists of a real-time, phenomenological model that computes engine-out NOx by using the measured in-cylinder pressure signal from a single cylinder as its main input. The implementation is made

  19. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  20. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines

    International Nuclear Information System (INIS)

    D’Ambrosio, Stefano; Finesso, Roberto; Fu, Lezhong; Mittica, Antonio; Spessa, Ezio

    2014-01-01

    Highlights: • New semi-empirical correlation to predict NOx emissions in diesel engines. • Based on a real-time three-zone diagnostic combustion model. • The model is of fast application, and is therefore suitable for control-oriented applications. - Abstract: The present work describes the development of a fast control-oriented semi-empirical model that is capable of predicting NOx emissions in diesel engines under steady state and transient conditions. The model takes into account the maximum in-cylinder burned gas temperature of the main injection, the ambient gas-to-fuel ratio, the mass of injected fuel, the engine speed and the injection pressure. The evaluation of the temperature of the burned gas is based on a three-zone real-time diagnostic thermodynamic model that has recently been developed by the authors. Two correlations have also been developed in the present study, in order to evaluate the maximum burned gas temperature during the main combustion phase (derived from the three-zone diagnostic model) on the basis of significant engine parameters. The model has been tuned and applied to two diesel engines that feature different injection systems of the indirect acting piezoelectric, direct acting piezoelectric and solenoid type, respectively, over a wide range of steady-state operating conditions. The model has also been validated in transient operation conditions, over the urban and extra-urban phases of an NEDC. It has been shown that the proposed approach is capable of improving the predictive capability of NOx emissions, compared to previous approaches, and is characterized by a very low computational effort, as it is based on a single-equation correlation. It is therefore suitable for real-time applications, and could also be integrated in the engine control unit for closed-loop or feed-forward control tasks

  1. Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H_2, CH_4, and conventional diesel)

    International Nuclear Information System (INIS)

    Abu-Jrai, Ahmad M.; Al-Muhtaseb, Ala'a H.; Hasan, Ahmad O.

    2017-01-01

    In this study, the effect of tri fuel (ULSD, H_2, and CH_4) operation under real exhaust gas conditions with different gaseous fuel compositions on the combustion characteristics, engine emissions, and selective catalytic reduction (SCR) after treatment was examined at low, medium, and high engine loads. Pt/Al_2O_3-SCR reactor was used and operated at different exhaust gas temperatures. Results revealed that at low load, the two gaseous fuels (H_2 and CH_4) have the same trend on combustion proccess, where both reduce the in-cylinder pressure and rate of heat release. At the high engine load there was a considerable influence appeared as an increase of the premixed combustion phase and a significant decrease of the total combustion duration. In terms of emissions, it was observed that at high engine load, fuels with high CH_4 content tend to reduce NOx formation, whereas, fuels with high H_2 content tend to reduce PM formation, moreover, combustion of tri fuel with 50:50 fuel mixture resulted in lower BSFC compared to the other ratios and hence, the best engine efficiency. The hydrocarbon-SCR catalyst has shown satisfactory performance in NOx reduction under real diesel exhaust gas in a temperature window of 180–280 °C for all engine loads. - Highlights: • Effect of tri fuel (ULSD, H_2, CH_4) on combustion and engine emissions was examined. • Fuel with high CH_4 content (H50-M50 and H25-M75) tend to reduce NOx formation. • Fuel with high H_2 content (H75-M25 and H50-M50) tend to reduce PM formation. • Increasing the percentage of H_2 in the feed gas improved the NO_x reduction. • The hydrocarbon-SCR catalyst has shown satisfactory performance in NO_x reduction.

  2. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  3. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  4. In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment devices.

    Science.gov (United States)

    Misra, Chandan; Collins, John F; Herner, Jorn D; Sax, Todd; Krishnamurthy, Mohan; Sobieralski, Wayne; Burntizki, Mark; Chernich, Don

    2013-07-16

    The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.

  5. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  6. Optimal Control as a method for Diesel engine efficiency assessment including pressure and NO_x constraints

    International Nuclear Information System (INIS)

    Guardiola, Carlos; Climent, Héctor; Pla, Benjamín; Reig, Alberto

    2017-01-01

    Highlights: • Optimal Control is applied for heat release shaping in internal combustion engines. • Optimal Control allows to assess the engine performance with a realistic reference. • The proposed method gives a target heat release law to define control strategies. - Abstract: The present paper studies the optimal heat release law in a Diesel engine to maximise the indicated efficiency subject to different constraints, namely: maximum cylinder pressure, maximum cylinder pressure derivative, and NO_x emission restrictions. With this objective, a simple but also representative model of the combustion process has been implemented. The model consists of a 0D energy balance model aimed to provide the pressure and temperature evolutions in the high pressure loop of the engine thermodynamic cycle from the gas conditions at the intake valve closing and the heat release law. The gas pressure and temperature evolutions allow to compute the engine efficiency and NO_x emissions. The comparison between model and experimental results shows that despite the model simplicity, it is able to reproduce the engine efficiency and NO_x emissions. After the model identification and validation, the optimal control problem is posed and solved by means of Dynamic Programming (DP). Also, if only pressure constraints are considered, the paper proposes a solution that reduces the computation cost of the DP strategy in two orders of magnitude for the case being analysed. The solution provides a target heat release law to define injection strategies but also a more realistic maximum efficiency boundary than the ideal thermodynamic cycles usually employed to estimate the maximum engine efficiency.

  7. NO_x reduction and N_2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts

    International Nuclear Information System (INIS)

    Cho, Chong Pyo; Pyo, Young Dug; Jang, Jin Young; Kim, Gang Chul; Shin, Young Jin

    2017-01-01

    Highlights: • NO_x reduction and N_2O emission of urea-SCR catalysts with the oxidation precatalysts were investigated. • Fe-zeolite and V-based catalysts were noticeably affected by the NO_2/NOx ratio. • Remarkable N_2O formation was observed only for the Fe-zeolite catalyst. - Abstract: Among various approaches used to comply with strict diesel engine exhaust regulations, there is increasing interest in urea based selective catalytic reduction (SCR) as a NO_x reduction technology, due to its high reduction and excellent fuel efficiencies. NO_x reduction by SCR catalysts is affected by variations in the NO_2/NO_x ratio, caused by oxidation catalysts such as the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) installed in diesel engines. Recently, it has been reported that the greenhouse gas (GHG) variant N_2O, which is a by-product of the NO_x conversion process in the after-treatment system, will be subject to regulation. Using a real diesel engine installed with DOC and DPF, the NO_x reduction and N_2O emission performances of commonly used Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were investigated under various operating conditions. The exhaust of the diesel engine used in this study had a NO_2/NO_x ratio of over 50% for temperatures below 400 °C due to the oxidation catalysts, while the NO_2/NO_x ratio was significantly lower for temperatures above 400 °C. Under such conditions, it was found that the Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were noticeably affected by the NO_2/NOx ratio and exhaust temperature. Although both catalysts showed satisfactory NO conversions, the V_2O_5-WO_3/TiO_2 catalyst showed decreasing NO_2 conversion rates between 250 °C and 320 °C. The V_2O_5-WO_3/TiO_2 catalyst exhibited NH_3 slip relatively frequently because of its low NH_3 storage capacity. For the Fe-zeolite catalyst, a significant increase in the amount of generated N_2O was observed for high NO_x conversion conditions due to side

  8. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  9. Modeling analysis of urea direct injection on the NOx emission reduction of biodiesel fueled diesel engines

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Li, J.; Zhou, D.Z.

    2015-01-01

    Highlights: • The effects of urea direct injection on NO x emissions reduction was investigated. • Aqueous urea solution was proposed to be injected after the fuel injection process. • The optimized injection strategy achieved a reduction efficiency of 58%. • There were no severe impacts on the CO emissions and BSFC. - Abstract: In this paper, a numerical simulation study was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NO x emissions of a biodiesel fueled diesel engine. Simulation studies were performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. The chemical behaviors of the NO x formation and urea/NO x interaction processes were modeled by a modified extended Zeldovich mechanism and urea/NO interaction sub-mechanism. To ensure an efficient NO x reduction process, various aqueous urea injection strategies in terms of post injection timing, injection angle, and injection rate and urea mass fraction were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. The orientation of the aqueous urea injection was also shown to play a critical role in determining the NO x removal efficiency, and 50 degrees injection angle was determined to be the optimal injection orientation which gave the most NO x reduction. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NO x removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NO emission levels. At last, with the optimized injection

  10. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  11. Possibilities of Simultaneous In-Cylinder Reduction of Soot and NOx Emissions for Diesel Engines with Direct Injection

    OpenAIRE

    Wagner, U.; Eckert, P.; Spicher, U.

    2008-01-01

    Up to now, diesel engines with direct fuel injection are the propulsion systems with the highest efficiency for mobile applications. Future targets in reducing CO2 -emissions with regard to global warming effects can be met with the help of these engines. A major disadvantage of diesel engines is the high soot and nitrogen oxide emissions which cannot be reduced completely with only engine measures today. The present paper describes two different possibilities for the sim...

  12. A new 3DOM Ce-Fe-Ti material for simultaneously catalytic removal of PM and NOx from diesel engines.

    Science.gov (United States)

    Cheng, Ying; Liu, Jian; Zhao, Zhen; Song, Weiyu; Wei, Yuechang

    2018-01-15

    A new 3DOM material was designed and synthesized for the simultaneous removal of PM (soot particulates) and NOx from diesel engine exhausts. The catalytic purification taking place over the material with double efficacy is cost-efficient. The contact between solid PM and catalyst active site has been process intensified by 3DOM unique structure. 3DOM Ce 0.7 Fe 0.2 Ti 0.1 O 2 catalyst possess a high SCR activity and an excellent selectivity to N 2 , giving a maximum concentration of CO 2 at 385°C for PM combustion and 100% NO conversion in the temperature range of 281-425°C. The dual redox cycles (Fe 3+ +Ce 3+ ↔Fe 2+ +Ce 4+ ,Fe 3+ +Ti 3+ ↔Fe 2+ +Ti 4+ ) and the excellent reducibility and sufficient acid sites of catalysts play key roles for the highly catalytic performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Diesel engine NOx emissions control: An advanced method for the O2 evaluation in the intake flow

    International Nuclear Information System (INIS)

    Mariani, F.; Grimaldi, C.N.; Battistoni, M.

    2014-01-01

    Highlights: • Prediction of the volumetric oxygen concentration at the intake using ANN and Neuro-Fuzzy approach. • Analysis of exp data acquired from a compression ignition engine in transient operational conditions. • Aging engine: considerations on the on-board training time. • The role of the linear and non-linear transfer function in the ANN model. - Abstract: In recent decades, the increasingly tight emissions regulations, along with the ever-increasing price of fuels and the request for more power from the engines, has pushed the world car industry to improve the performances of the applications of electronics, designed to control the internal combustion engines (ICE) and the pollutant emissions systems. At present, one of the main problems, in the development of diesel engines is represented by the achievement of an increasingly strict control on the systems used for the pollutant emission reduction. In particular, as far as NOx gas is concerned, EGR systems are mature and widely used, but increased efficiency in terms of emissions abatement, is necessary in order to determine as best possible the actual oxygen content in the charge at the engine intake manifold. The present work compares the ability of the ANN and Neuro-Fuzzy approach (ANFIS) to predict the volumetric oxygen concentration at the intake, using experimental data acquired on a compression ignition engine in transient operational conditions. In an off-line evaluation of results, both models show good predicting abilities; in particular the ANFIS model presents an absolute error value for the training and test phases respectively equal to 0.7 and 0.9 (as a percentage of 3.5% and 4.5%), while, the same evaluation obtained using the ANN-BP model provides 0.92 and 0.9 (as a percentage of 4.6% and 4.5%). The comparison shows that the ANFIS model produces more accurate solutions in less time, using linear rules that bind the input variables with the output. The linearity of the rules is a

  14. Development and Application of a Virtual NOx Sensor for Robust Heavy Duty Diesel Engine Emission Control

    NARCIS (Netherlands)

    Mentink, P.; Seykens, X.; Escobar Valdivieso, D.

    2017-01-01

    To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world

  15. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel

    KAUST Repository

    Subramanian, Thiyagarajan

    2018-03-21

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO emissions, fuel additives such as diglyme (DGE)—a cetane enhancer, cumene (CU)—an antioxidant, and eugenol (EU) and acetone (A)—bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  16. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel.

    Science.gov (United States)

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S; Vallinayagam, R

    2018-06-01

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO X emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO X emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO X emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO X emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  17. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel

    KAUST Repository

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S.; Vallinayagam, R.

    2018-01-01

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO emissions, fuel additives such as diglyme (DGE)—a cetane enhancer, cumene (CU)—an antioxidant, and eugenol (EU) and acetone (A)—bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  18. Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine

    International Nuclear Information System (INIS)

    Barik, Debabrata; Murugan, S.

    2014-01-01

    Highlights: • A solution to use the de-oiled cakes disposed from oil industries. • Biogas produced from Karanja de-oiled cakes contains about 73% methane. • Simultaneous reduction of NO and smoke is possible with KME–biogas dual fuel operation. • Up to 30% replacement of KME is possible with induction of biogas at 0.9 kg/h. • Improved part load performance and emission with KME–biogas dual fuel. - Abstract: This paper presents the results of an experimental investigation conducted on a compression ignition (CI) engine, modified to run on dual fuel mode, using biogas as a primary fuel and KME (Karanja methyl ester) as a pilot fuel. The biogas was produced by anaerobic digestion of Pongamia pinnata (Karanja) seed cakes. In dual fuel mode, the biogas was inducted at four different flow rates, viz. 0.3 kg/h, 0.6 kg/h, 0.9 kg/h and 1.2 kg/h through the intake manifold of the engine. The biogas flow rate of 0.9 kg/h gave a better performance and lower emissions, than those of the other flow rates. The NO and smoke emissions were found to be lower by about 34% and 14%, than those of KME operation, at full load. The ignition delay was longer by about 1–2 °CA in the dual fuel operation, than that of KME at full load. The part load performance was found to be better in dual fuel operation, with reduced emissions of NO and smoke, in comparison with KME. The ignition delay at part load in dual fuel operation was also lower than that of KME operation

  19. Technologies for simulation improvement of NOx and PM emissions and fuel consumption of future diesel engines for heavy-duty trucks; Shorai no ogatasha diesel engine ni okeru NOx, PM, nenryo shohi no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, M.; Shimokawa, K.; Uchida, N.; Tsuji, Y.; Yokotaa, H.; Hosoya, M. [Hino Motors, Ltd., Tokyo (Japan)

    1999-01-01

    Future diesel engines for heavy-duty trucks are required to have significantly low NO{sub x} and PM emissions and fuel consumption characteristics. In order to improve these characteristics, various technologies including high pressure fuel injection systems, combustion optimization. high boost pressure turbocharging, EGR homogeneous charge compression ignition combined with multiple injections, and aftertreatment are discussed. As each technology has a number of challenges to overcome, it will take long before engines with these technologies are commercially available. In this paper, the research activities accomplished to date are reported. (author)

  20. Experimental investigations on CRDI diesel engine fuelled with acid ...

    African Journals Online (AJOL)

    reported that NOx emission amplified by means of an amplification in the proportion ... performance and emission characteristics of CRDI engine when fuelled with diesel, ..... rate of NOx formation is primarily a function of flame temperature, the ...

  1. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  2. Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Wu, Tser Son; Wu, Chang-Yu; Chen, Shui-Jen

    2014-01-01

    Fuel blends that contain biodiesel are known to produce greater NO x (nitrogen oxide) emissions in diesel engine exhaust than regular diesel, and this is one of the key barriers to the wider adoption of biodiesel as an alternative fuel. In this study, a water-containing ABE (acetone–butanol–ethanol) solution, which simulates products that are produced from biomass fermentation without dehydration processing, was tested as a biodiesel-diesel blend additive to lower NO x emissions from diesel engines. The energy efficiency and the PM (particulate matter) and PAHs (polycyclic aromatic hydrocarbons) emissions were investigated and compared under various operating conditions. Although biodiesel had greater NO x emissions, the blends that contained 25% of the water-containing ABE solution had significantly lower NO x (4.30–30.7%), PM (10.9–63.1%), and PAH (polycyclic aromatic hydrocarbon) emissions (26.7–67.6%) than the biodiesel–diesel blends and regular diesel, respectively. In addition, the energy efficiency of this new blend was 0.372–7.88% higher with respect to both the biodiesel–diesel blends and regular diesel. Because dehydration and surfactant addition are not necessary, the application of ABE–biodiesel–diesel blends can simplify fuel production processes, reduce energy consumption, and lower pollutant emissions, meaning that the ABE–biodiesel–diesel blend is a promising green fuel. - Highlights: • Water-containing ABE (acetone–butanol–ethanol)–biodiesel–diesel was tested in a diesel engine. • The addition of ABE to biodiesel–diesel blends can enhance the energy efficiency. • The addition of ABE can solve the problem of NO x -PM (nitrogen oxide-particulate matter) trade-off when using biodiesel. • PAHs (polycyclic aromatic hydrocarbons) can be further reduced by adding ABE in biodiesel–diesel blends. • Fuel production was simplified due to the acceptance of water in ABE

  3. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  4. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  5. Method for reduction of the NOX emissions in marine auxiliary diesel engine using the fuel mixtures containing biodiesel using HCCI combustion.

    Science.gov (United States)

    Puškár, Michal; Kopas, Melichar; Puškár, Dušan; Lumnitzer, Ján; Faltinová, Eva

    2018-02-01

    The marine auxiliary diesel engines installed in the large transoceanic ships are used in order to generate the electricity but at the same time these engines are able to produce a significant amount of the harmful exhaust gas emissions. Therefore the International Maritime Organisation (IMO) concluded an agreement, which has to control generating of gaseous emissions in maritime transport. From this reason started to be used some of the alternative fuels in this branch. There was performed a study, which investigated emissions of the auxiliary marine diesel engine during application of the experimental fuels. The different testing fuels were created using the ratios 0%, 50%, 80% and 100% between the biodiesel and the ULSDF (Ultra Low Sulphur Diesel Fuel). The experimental measurements were performed at the different engine loading levels and various engine speeds in order to investigate an influence of the mixed fuels on the engine operational characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NOx Emissions from Diesel Passenger Cars Worsen with Age.

    Science.gov (United States)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  7. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    Science.gov (United States)

    Monirul, Islam Mohammad; Masjuki, Haji Hassan; Kalam, Mohammad Abdul; Zulkifli, Nurin Wahidah Mohd; Shancita, Islam

    2017-08-01

    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NO X ) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NO X emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

  8. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  9. Exhaust emissions of DI diesel engine using unconventional fuels

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  10. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  11. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  12. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  13. Diesel Engine Mechanics.

    Science.gov (United States)

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  14. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends

    International Nuclear Information System (INIS)

    Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Arbab, M.I.; Masum, B.M.; Sanjid, A.

    2014-01-01

    Highlights: • Environmental benefits of JB blends were found but adverse impact on NO x . • Addition of 0.15% (m) DPPD in JB20, average reduction in NO up to 16.54%. • In some cases, engine power is reduced with DPPD additive. • Emissions of HC and CO for JB blends with DPPD were lower compared to diesel. • Addition of DPPD in JB blends reduction of EGT was found. - Abstract: Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the road. The use of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. However, most researchers have reported that they produce higher NO x emissions compared to diesel, which is a deterrent to the expansion of the market for these fuels. Several proposed pathways try to account for NO x formation during the combustion process. Among them, the Fenimore mechanism explains that fuel radicals formed during the combustion process react with nitrogen from the air to form NO x . It could be proposed that if these radical reactions could be terminated, the NO x formation rate for biodiesel combustion would decrease. An experimental study was conducted on a four-cylinder diesel engine to evaluate the performance and emission characteristics of Jatropha biodiesel blends (JB5, JB10, JB15 and JB20) with and without the addition of N,N′-diphenyl-1,4-phenylenediamine (DPPD) antioxidant. For each tested fuel, the engine performance and emissions were measured at engine speeds 1000–4000 rpm at an interval of 500 rpm under the full throttle condition. The results showed that this antioxidant additive could reduce NO x emissions significantly with a slight penalty in terms of engine power and Brake Specific Fuel Consumption (BSFC) as well as CO and HC emissions. However, when compared to diesel combustion, the emissions of HC and CO with the addition of the DPPD additive were found to be nearly the same or lower. By the

  15. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars.

    Science.gov (United States)

    Yang, Liuhanzi; Franco, Vicente; Mock, Peter; Kolke, Reinhard; Zhang, Shaojun; Wu, Ye; German, John

    2015-12-15

    Controlling nitrogen oxides (NOx) emissions from diesel passenger cars during real-world driving is one of the major technical challenges facing diesel auto manufacturers. Three main technologies are available for this purpose: exhaust gas recirculation (EGR), lean-burn NOx traps (LNT), and selective catalytic reduction (SCR). Seventy-three Euro 6 diesel passenger cars (8 EGR only, 40 LNT, and 25 SCR) were tested on a chassis dynamometer over both the European type-approval cycle (NEDC, cold engine start) and the more realistic Worldwide harmonized light-duty test cycle (WLTC version 2.0, hot start) between 2012 and 2015. Most vehicles met the legislative limit of 0.08 g/km of NOx over NEDC (average emission factors by technology: EGR-only 0.07 g/km, LNT 0.04 g/km, and SCR 0.05 g/km), but the average emission factors rose dramatically over WLTC (EGR-only 0.17 g/km, LNT 0.21 g/km, and SCR 0.13 g/km). Five LNT-equipped vehicles exhibited very poor performance over the WLTC, emitting 7-15 times the regulated limit. These results illustrate how diesel NOx emissions are not properly controlled under the current, NEDC-based homologation framework. The upcoming real-driving emissions (RDE) regulation, which mandates an additional on-road emissions test for EU type approvals, could be a step in the right direction to address this problem.

  16. Diesel engine performance and emission analysis using soybean ...

    African Journals Online (AJOL)

    Biodiesel presents a large potential for replacing other fossil-based fuels. Thus, the present work aimed to assess the specific fuel consumption (SFC), thermal efficiency and emissions of nitric oxide (NO) and nitrogen oxides (NOx), in a cycle diesel engine-generator set, using soybean biodiesel and diesel as fuels.

  17. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  18. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  19. Evolution and application of a pseudo-multi-zone model for the prediction of NOx emissions from large-scale diesel engines at various operating conditions

    International Nuclear Information System (INIS)

    Savva, Nicholas S.; Hountalas, Dimitrios T.

    2014-01-01

    Highlights: • Development of a simplified simulation model for NO x formation during combustion. • Application of the proposed model on large-scale two and four-stroke diesel engines. • Experimental data from stationary and ship main and auxiliary engines were used. • The model captures the trend of NO x as engine power and fuel injection timing varies. • The model is recommended for research and practical use in maritime and power industry. - Abstract: Emissions regulations for heavy-duty diesel units used in maritime and power generation applications have become very strict the last years. Hence, the industry is enforced to limit specific gaseous and particulate emissions (NO x , SO x , CO x , PM and HC) depending on the regulations. Among numerous methods, simulation models are extensively used to support the development of techniques used for the control of emitted pollutants. This is very important for large-scale engines due to the extremely high cost of the experimental investigation resulting from the size of the engines and the test equipment involved. Beyond this, simulation models can also be used to support NO x monitoring, since on-board verification techniques are to become mandatory for the marine industry in the near future. Last but not least, simulation models can also be used for model-based control applications to support the operation of both in-cylinder and after-treatment techniques. Currently, the major controlled pollutant for both marine and stationary applications is NO x . For this reason, in the present work, authors focus on the development and application of a simplified NO x model with special emphasis on its ability to predict the effect of operating conditions on NO x for both two and four-stroke diesel engines. To accomplish this, an existing well validated simplified NO x model has been modified to enhance its physical background and applied on 16 different large-scale diesel engines utilizing 18 different sets of

  20. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...

  1. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  2. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  3. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  4. Effect of EGR on a sationary VCR diesel engine using cottonseed biodiesel (B20 fuel

    Directory of Open Access Journals (Sweden)

    Nitin M. Sakhare

    2016-09-01

    Full Text Available This paper presents a view on comparative study of use of diesel fuel with B20 biodieselblend (Diesel (80 %, by vol. and Cotton seed oil (20 %, by vol. derived from Cotton seeds. As higher NOx emission and higher brake specific fuel consumption are main challenges for effective utilization of biodiesel fuel in a diesel engine, there is alarming need to find out the long term solution to reduce NOx emission for better utilization of biodiesel fuel in a diesel engine. Exhaust gas recirculation (EGR is one of the useful technologies to reduce the NOx emission of a diesel engine. In the present research work test is conducted on 3 KW single cylinder, four stroke, water cooled, variable compression ratio (VCR computerized diesel engine using diesel and B20 cotton seed biodiesel blend to study the effect of exhaust gas recirculation on performance and emissions characteristics of a diesel engine in terms of fuel consumption, thermal efficiency and emissions such as hydrocarbon (HC, carbon monoxide (CO, oxides of nitrogen (NOx and carbon dioxide (CO2 of a diesel engine. The constant engine speed of 1500 rpm was maintained through-out the experiment test. The exhaust gas recirculation was varied as 4 % and 6 % at different loading conditions with diesel and B20 biodiesel. The results show that the significant reduction in oxides of nitrogen (NOx with 4 % and 6 % EGR for B20 whereas marginal increment in CO and HC emissions.

  5. Noise Optimization in Diesel Engines

    Directory of Open Access Journals (Sweden)

    S. Narayan

    2014-04-01

    Full Text Available Euro 6 norms emphasize on reduction of emissions from the engines. New injection methods are being adopted for homogenous mixture formation in diesel engines. During steady state conditions homogenous combustion gave noise levels in lower frequencies. In this work noise produced in a 440 cc diesel engine has been investigated. The engine was run under various operating conditions varying various injection parameters.

  6. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  7. Diesel and gas engines: evolution following new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Deverat, Ph. [Bergerat Monnoyeur (France). Direction Industrie

    1997-12-31

    Engine emissions of CO, NMHC and ashes are easily lowered through a low-cost exhaust gas processing, while NOx processing in fumes is rather complex and environmentally hazardous; thus, engine manufacturers have emphasized their researches for NOx decrease on the engine design: lower combustion temperature in diesel engines through water cooling or air/air exchanger, lean mixture with excess air (open chamber or pre-chamber) in spark ignition gas engines. Examples of modifications in Caterpillar engines are given. Exhaust gas processing for CO, NMHC, NOx (3 way catalytic purifier, selective catalytic reduction) and ashes is also discussed

  8. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  9. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  10. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    Science.gov (United States)

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario.

  11. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  12. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  13. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  14. Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine.

    Science.gov (United States)

    Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar

    2017-07-01

    In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.

  15. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  16. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  17. Urea-SCR technology for deNOx after treatment of diesel exhausts

    CERN Document Server

    Nova, Isabella

    2014-01-01

    Of intense interest both to academics and industry professionals, this groundbreaking book-length treatment of selective catalytic reduction of NOx using ammonia/urea includes papers by researchers at the leading edge of diesel exhaust abatement.

  18. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    Ali, M.; Shaikh, A.A.

    2012-01-01

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  19. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  20. On particulate characterization in a heavy-duty diesel engine by time-resolved laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, H.J.T.

    2007-01-01

    This dissertation describes the results of soot measurements acquired in the combustion chamber of an optically accessible heavy-duty Diesel engine. The Diesel engine is the most efficient internal combustion engine. Pollutant emissions from the engine, such as soot and NOx, however, form a

  1. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  2. Emission performance of lignin-derived cyclic oxygenates in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Luijten, C.C.M.; Leermakers, C.A.J.; Dam, N.J.; Goey, de L.P.H.

    2012-01-01

    In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and

  3. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; de Jager, A.G.; Willems, F.P.T.

    This paper presents an integrated energy and emission management strategy, called Integrated Powertrain Control (IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO2–NOxCO2–NOx trade-off by minimizing the operational costs associated with

  4. Marine Diesel Engine Control to meet Emission Requirements and Maintain Maneuverability

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2018-01-01

    International shipping has been reported to account for 13% of global NOx emissions and 2.1% of global green house gas emissions. Recent restrictions of NOx emissions from marine vessels have led to the development of exhaust gas recirculation (EGR) for large two-stroke diesel engines. Meanwhile...

  5. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  6. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  7. An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine

    Directory of Open Access Journals (Sweden)

    Xiao Helin

    2017-01-01

    Full Text Available Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.

  8. Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Lin, Sheng-Lun; Wang, Lin-Chi

    2013-01-01

    Highlights: • Water-containing ABE solution (W-ABE) in the diesel is a stable fuel blends. • W-ABE can enhance the energy efficiency of diesel engine and act as a green energy. • W-ABE can reduce the PM, NOx, and PAH emissions very significantly. • The W-ABE can be manufactured from waste bio-mass without competition with food. • The W-ABE can be produced without dehydration process and no surfactant addition. - Abstract: Acetone–Butanol–Ethanol (ABE) is considered a “green” energy resource because it emits less carbon than many other fuels and is produced from biomass that is non-edible. To simulate the use of ABE fermentation products without dehydration and no addition of surfactants, a series of water-containing ABE-diesel blends were investigated. By integrating the diesel engine generator (DEG) and diesel engine dynamometer (DED) results, it was found that a diesel emulsion with 20 vol.% ABE-solution and 0.5 vol.% water (ABE20W0.5) enhanced the brake thermal efficiencies (BTE) by 3.26–8.56%. In addition, the emissions of particulate matter (PM), nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs), and the toxicity equivalency of PAHs (BaP eq ) were reduced by 5.82–61.6%, 3.69–16.4%, 0.699–31.1%, and 2.58–40.2%, respectively, when compared to regular diesel. These benefits resulted from micro-explosion mechanisms, which were caused by water-in-oil droplets, the greater ABE oxygen content, and the cooling effect that is caused by the high vaporization heat of water-containing ABE. Consequently, ABE20W0.5, which is produced by environmentally benign processes (without dehydration and no addition of surfactants), can be a good alternative to diesel because it can improve energy efficiency and reduce pollutant emissions

  9. Ion currents in diesel engines

    OpenAIRE

    Rao, Rahul

    2017-01-01

    This thesis documents an experimental and modelling investigation into ion formation in diesel engines, its uses in the field of engine performance and emissions prediction and the mechanisms by which these uses are made possible. Ion sensors have been employed in engines for a variety of purposes, including estimation of air-fuel ratio, start of combustion and in-cylinder pressure, detection of knock, misfire and combustion resonance, prediction of soot formation, and control of spark ...

  10. A probabilistic maintenance model for diesel engines

    Science.gov (United States)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  11. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  12. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  13. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  14. Using vegetable oils and animal fats in Diesel Engines: chemical analyses and engine texts

    International Nuclear Information System (INIS)

    Marmino, I.; Verhelst, S.; Sierens, R.

    2008-01-01

    In this work, some vegetable oils (rapeseed oil, palm oil) and animal fat were tested in a Diesel engine at a range of engine spreads and torque settings, after preheating at 70 0 C. Engine performance, fuel consumption and NOx, unburnt hydrocarbons and soot emissions have been recorded. The results have been compared to those obtained with diesel fuel in the same test conditions. The oils and fats were also analyzed for their physical and chemical properties (viscosity, composition, unsaturation, heating value). NOx emissions were found to be lower for the oils than for the diesel fuel. This, combined with higher HC emissions, can probably be explained through less effective atomization due to the higher viscosity of the oils and fat. On the other hand, soot emissions were found to decrease. [it

  15. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  16. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  17. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  18. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  19. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  20. MEA and DEE as additives on diesel engine using waste plastic oil diesel blends

    Directory of Open Access Journals (Sweden)

    Pappula Bridjesh

    2018-05-01

    Full Text Available Waste plastic oil (WPO is a standout amongst the most promising alternative fuels for diesel in view of most of its properties similar to diesel. The challenges of waste management and increasing fuel crisis can be addressed while with the production of fuel from plastic wastes. This experimental investigation is an endeavour to supplant diesel at least by 50% with waste plastic oil alongside 2-methoxy ethyl acetate (MEA and diethyl ether (DEE as additives. Test fuels considered in this study are WPO, 50D50W (50%Diesel + 50%WPO, 50D40W10MEA (50%Diesel + 40%WPO + 10%MEA and 50D40W10DEE (50%Diesel + 40%WPO + 10%DEE. The test results are compared with diesel. An increase in brake thermal efficiency and abatement in brake specific fuel consumption are seen with 50D40W10MEA, as well as reduction in hydro carbon, carbon monoxide and smoke emissions. 50D40W10DEE showed reduced NOx emission whereas 50D40W10MEA has almost no impact. Engine performance and emission characteristics under different loads for different test fuels are discussed. Keywords: 2-Methoxy ethyl acetate, Diethyl ether, Waste plastic oil, Pyrolysis

  1. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  2. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  3. Diesel Technology: Engines. [Teacher and Student Editions.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  4. Standardized Curriculum for Diesel Engine Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  5. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  6. Effects of biobutanol and biobutanol–diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot injection strategies

    International Nuclear Information System (INIS)

    Yun, Hyuntae; Choi, Kibong; Lee, Chang Sik

    2016-01-01

    Highlights: • Effects of biobutanol blends on NOx and soot emission characteristics in a diesel engine. • Comparison of combustion characteristics between biobutanol and diesel fuels. • Effect of pilot injection on combustion and emissions reduction in a diesel engine. - Abstract: In this study, we investigated the effect of biobutanol and biobutanol–diesel blends on the combustion and emission characteristics in a four-cylinder compression ignition engine using pilot injection strategies. The test fuels were a mixture of 10% biobutanol and 90% conventional diesel (Bu10), 20% biobutanol and 80% diesel (Bu20), and 100% diesel fuel (Bu0) based on mass. To study the combustion and emission characteristics of the biobutanol blended fuels, we carried out experimental investigations under various pilot injection timings from BTDC 20° to BTDC 60° with constant main injection timing. As the butanol content in the blended fuel increased, the experimental results indicated that the ignition delay was longer than that of diesel fuel for all pilot injection timings. Also, the indicated specific fuel consumption (ISFC) of the blended fuels was higher than that of diesel at all test conditions. However, the exhaust temperature was lower than that of diesel at all injection timings. Nitrogen oxide (NOx), carbon monoxide (CO) and soot from Bu20 were lower than those from diesel fuel at all test conditions and hydrocarbons (HC) were higher than that from diesel.

  7. Effect of oxygenate additive on diesel engine fuel consumption and emissions operating with biodiesel-diesel blend at idling conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, F. Y.; Mamat, R.; Noor, M. M.; Yusri, I. M.

    2017-10-01

    Biodiesel is promising alternative fuel to run the automotive engine but idling is the main problem to run the vehicles in a big city. Vehicles running with idling condition cause higher fuel supply and higher emission level due to being having fuel residues in the exhaust. The purpose of this study is to evaluate the impact of alcohol additive on fuel consumption and emissions parameters under idling conditions when a multicylinder diesel engine operates with the diesel-biodiesel blend. The study found that using 5% butanol as an additive with B5 (5% Palm biodiesel + 95% diesel) blends fuel lowers brake specific fuel consumption and CO emissions by 38% and 20% respectively. But the addition of butanol increases NOx and CO2 emissions. Based on the result it can be said that 5% butanol can be used in a diesel engine with B5 without any engine modifications to tackle the idling problem.

  8. Experimental Study of Using Emulsified Diesel Fuel on the Performance and Pollutants Emitted from Four Stroke Water Cooled Diesel Engine

    Science.gov (United States)

    Sakhrieh, A.; Fouad, R. H.; Yamin, J. A.

    2009-08-01

    A water-cooled, four stroke, four cylinder, direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0%, 5%, 10%, 15%, 20%, 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm, the torque, the BMEP and efficiency are found to have maximum values under these conditions. CO2 was found to increase with engine speed and to decrease with water content. NOx produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

  9. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  10. Emission characteristics of biodiesel obtained from jatropha seeds and fish wastes in a diesel engine

    Directory of Open Access Journals (Sweden)

    Bhaskar Kathirvelu

    2017-11-01

    Full Text Available The concept of waste recycling and energy recovery plays a vital role for the development of any economy. The reuse of fish waste and use of wasteland for cultivation of jatropha seeds have led to resource conservation and their use as blend with diesel as an alternative fuel to diesel engines has contributed to pollution reduction. In this work, the results of using blends of biodiesel obtained from jatropha seeds, fish wastes and diesel in constant speed diesel engines are presented. The experimental results show that both the blends can be used as fuels for diesel engine without any major modification in the engines. It is also seen that the carbon monoxide, unburned hydrocarbons and soot emissions are reduced at all loads for both the blends compared to diesel fuel while NOx emissions are observed to be slightly higher.

  11. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  12. Experimental Investigation of Embedded Controlled Diesel Engine

    OpenAIRE

    R.Govindaraju; M.Bharathiraja; Dr. K.Ramani; Dr.K.R.Govindan

    2012-01-01

    Diesel engines are widely used in Automobiles, Agriculture and Power generation sectors in a large scale. The modern techniques have contributed a lot in the saving of fuel in these diesel engines. However, from 1970 onwards the fuel consumption becomes a serious concern because of a manifold increase of automobiles and fast depletion of non renewable sources of energy. Since the fuel injection system plays a major role in the consumption of fuel in diesel engines, various control measures we...

  13. Tratamiento catalítico de las emisiones de NOx en motores diesel

    OpenAIRE

    Córdoba, Luis Fernando; Montes de Correa, Consuelo

    2002-01-01

    Se presenta una revisión sobre algunos aspectos del funcionamiento de los motores diesel, las emisiones contaminantes producidas, así como las tecnologías catalíticas disponibles para el tratamiento de dichas emisiones. Se introduce además, el desempeño de un catalizador desarrollado en el grupo Catálisis Ambiental para la reducción de NOx en mezclas sintéticas que simulan las emisiones de motores diesel. Palabras clave: motor diesel, emisiones, tratamiento, catalizadores.

  14. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NARCIS (Netherlands)

    Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S.

    2016-01-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro

  15. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  16. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  17. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  18. The Diesel as a Vehicle Engine

    Science.gov (United States)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  19. Displacing the dinosaurs. [Diesel engine electric generators

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-05-01

    This article describes how giant power stations are being replaced by smaller, cleaner units. These include plants using combined-cycle gas turbines and diesel engines of low, medium and high speeds. The use of these diesel engines in power generation is discussed. (UK).

  20. 30 CFR 250.510 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must be equipped with...

  1. 30 CFR 250.610 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines which are continuously...

  2. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  3. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Energy Technology Data Exchange (ETDEWEB)

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    series standard with an NOx storage catalyst. The new BMW 6-cylinder TwinPower Turbo diesel engine achieves a rated power of 280 kW and a maximum torque of 740 Nm. With a specific power output of 93.6 kW per litre cylinder capacity, it assumes the top position among series diesel engines. Comprehensive friction measures mean that the friction level of existing BMW 6-cylinder diesel drivetrains is achieved despite a higher ignition pressure configuration. The BMW X5 M50d reaches the 100 km/h mark in only 5.4 seconds. With a standardised fuel consumption of 7.5 litres per 100 km, it is at least 18% below its 8-cylinder competitors. With an acceleration of 0 to 100 km/h in 4.7 seconds and a standardised fuel consumption of 6.3 litres per 100 km, the BMW M550d xDrive is unrivalled in its category. In the BMW 5 Series, the new diesel drivetrain is offered exclusively in the exhaust emission level EU6. The new BMW TwinPower Turbo diesel variant drivetrain is a perfect example of the BMW EfficientDynamics strategy. A strong sporting character and a high degree of supremacy in combination with low fuel consumption that remains unsurpassed in this segment. (orig.)

  4. An experimental study on the effect of using gas-to-liquid (GTL fuel on diesel engine performance and emissions

    Directory of Open Access Journals (Sweden)

    M.A. Bassiony

    2016-09-01

    Full Text Available Gas to Liquid (GTL fuel is considered one of the most propitious clean alternative fuels for the diesel engines. The aim of this study was to experimentally compare the performance and emissions of a diesel engine fueled by GTL fuel, diesel, and a blend of GTL and diesel fuels with a mixing ratio of 1:1 by volume (G50 at various engine load and speed conditions. Although using the GTL and G50 fuels decreased slightly the engine maximum power compared to the diesel fuel, both the engine brake thermal efficiency and engine brake specific fuel consumption were improved. In addition, using the GTL and G50 fuels as alternatives to the diesel resulted in a significant decrease in engine CO, NOx, and SO2 emissions.

  5. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  6. Experimental studies on fumigation of ethanol in a small capacity Diesel engine

    International Nuclear Information System (INIS)

    Chauhan, Bhupendra Singh; Kumar, Naveen; Pal, Shyam Sunder; Du Jun, Yong

    2011-01-01

    To diversify the mix of domestic energy resources and to reduce dependence on imported oil, ethanol is widely investigated for applying in combination with Diesel fuel to reduce pollutants, including smoke and NO x . Present work aims at developing a fumigation system for introduction of ethanol in a small capacity Diesel engine and to determine its effects on emission. Fumigation was achieved by using a constant volume carburetor. Different percentages of ethanol fumes with air were then introduced in the Diesel engine, under various load conditions. Ethanol is an oxygenated fuel and lead to smooth and efficient combustion. Atomization of ethanol also results in lower combustion temperature. During the present study, gaseous emission has been found to be decreasing with ethanol fumigation. Results from the experiment suggest that ethanol fumigation can be effectively employed in existing compression ignition engine to achieve substantial saving of the limited Diesel oil. Results show that fumigated Diesel engine exhibit better engine performance with lower NOx, CO, CO 2 and exhaust temperature. Ethanol fumigation has resulted in increase of unburned hydrocarbon (HC) emission in the entire load range. Considering the parameters, the optimum percentage was found as 15% for ethanol fumigation. -- Research highlights: → To diversify energy resources and to reduce dependence on imported oil, ethanol is used in Diesel engine to reduce pollutants. → Developing a fumigation system to inject ethanol in a small capacity Diesel engine, to determine its effects on emissions. → Different percentages of ethanol fumes with air were introduced in Diesel engine, under various load conditions by using a constant volume carburetor. → Results show that fumigated Diesel engine exhibits better engine performance with lower NOx, CO, CO 2 and exhaust temperature. → Results show increase of unburned hydrocarbon emission in entire load range. Optimum percentage found as 15% for

  7. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  8. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  9. Analysis of noise emitted from diesel engines

    Science.gov (United States)

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  10. Disturbance rejection in diesel engines for low emissions and high fuel efficiency

    NARCIS (Netherlands)

    Criens, C. H. A.; Willems, F. P. T.; Van Keulen, T. A. C.; Steinbuch, M.

    2015-01-01

    This brief presents a novel and time-efficient control design for modern heavy-duty diesel engines using a variable geometry turbine and an exhaust gas recirculation valve. The goal is to simultaneously and robustly achieve low fuel consumption and low emissions of nitrogen oxides (NOx) and

  11. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  12. Final Rule for Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Science.gov (United States)

    EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs.

  13. Under actuated air path control of diesel engines for low emissions and high efficiency

    NARCIS (Netherlands)

    Criens, C.; Willems, F.P.T.; Steinbuch, M.

    2013-01-01

    This paper presents a new method for feedback control using the Exhaust Gas Recirculation (EGR) valve and Variable Geometry Turbine (VGT) of a diesel engine. The controller effectively counteracts disturbances in NOx and PM emissions while maintaining the fuel efficiency. It is shown that by using a

  14. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  15. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  16. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  17. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  18. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  19. Emission Characteristics and Egr Application of Blended Fuels with Bdf and Oxygenate (dmm) in a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    In this study, the possibility of biodiesel fuel and oxygenated fuel (dimethoxy methane ; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load in comparison with the diesel fuel. But, engine power and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counter plan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF (95 vol-%) and DMM (5 vol-%) blended fuel and cooled EGR method (15%).

  20. Diesel engines for independent power producers

    International Nuclear Information System (INIS)

    Berc, Dj.

    1999-01-01

    During recent years an increasing demand has been experienced in the stationary diesel engine market for 10-70 MW diesel units. For larger units this demand is being met by two-stroke low-speed crosshead uniflow scavenged diesel engines, capable of burning almost any fuel available on the market, both liquid of gaseous. The paper deals with service experience gained from such engines and their fuel capability. Examples of actual installations for IPPs and captive plants, together with an example of a typical feasibility study of such plants, is presented in the Appendix. (author)

  1. Diesel engine emission deterioration - a preliminary study

    CSIR Research Space (South Africa)

    Pretorius, Cecilia J

    2016-04-01

    Full Text Available The objective of this study was to find a parameter in diesel and oil analysis of underground mining vehicles that can be correlated with personal diesel particulate matter (DPM) exposure and used as part of an engine maintenance programme. A number...

  2. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. DME fueled engines emit virtually no particulate matter even at low NOx levels. DME has thereby the potential of reducing the diesel engine emissions without filters or other devices...... that jeopardise the high efficiency of the engine and increase the manufacturing costs. DME has a low toxicity and can be made from anything containing carbon including biomass. If DME is produced from cheap natural gas from remote locations, the price of this new fuel could even become lower than that of diesel...... oil. Fueling diesel engines with DME presents two significant problems: The injection equipment can break down due to extensive wear and DME attacks nearly all known elastomers. The latter problem renders dynamic sealing diƣult whereas the first one involves the poor lubrication qualities of DME which...

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  4. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  5. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    Science.gov (United States)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  6. PERFORMANCE ANALYSIS OF 1,4 DIOXANE-ETHANOL-DIESEL BLENDS ON DIESEL ENGINES WITH AND WITHOUT THERMAL BARRIER COATING

    Directory of Open Access Journals (Sweden)

    Chockalingam Sundar Raj

    2010-01-01

    Full Text Available 1,4 dioxane, a new additive allows the splash blending of ethanol in diesel in a clear solution. The objective of this investigation is to first create a stable ethanol-diesel blended fuel with 10% 1,4 dioxane additive, and then to generate performance, combustion and emissions data for evaluation of different ethanol content on a single cylinder diesel engine with and without thermal barrier coating. Results show improved performance with blends compared to neat fuel for all conditions of the engine. Drastic reduction in smoke density is found with the blends as compared to neat diesel and the reduction is still better for coated engine. NOx emissions were found to be high for coated engines than the normal engine for the blends. The oxygen enriched fuel increases the peak pressure and rate of pressure rise with increase in ethanol ratio and is still superior for coated engine. Heat release pattern shows higher premixed combustion rate with the blends. Longer ignition delay and shorter combustion duration are found with all blends than neat diesel fuel.

  7. New catalyst developed at Argonne National Laboratory could help diesels meet NOx deadlines

    CERN Multimedia

    2003-01-01

    "A new catalyst could help auto makers meet the U.S. Environmental Protection Agency's deadline to eliminate 95 percent of nitrogen-oxide from diesel engine exhausts by 2007, while saving energy" (1 page).

  8. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  9. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants

    Energy Technology Data Exchange (ETDEWEB)

    M. Nadeem; C. Rangkuti; K. Anuar; M.R.U. Haq; I.B. Tan; S.S. Shah [Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia)

    2006-10-15

    Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. Water/diesel (W/D) emulsified formulations are reported to reduce the emissions of NOx, SOx, CO and particulate matter (PM) without compensating the engine's performance. Emulsion fuels with varying contents of water and diesel were prepared and stabilized by conventional and gemini surfactant, respectively. Surfactant's dosage, emulsification time, stirring intensity, emulsifying temperature and mixing time have been reported. Diesel engine performance and exhaust emission was also measured and analyzed with these indigenously prepared emulsified fuels. The obtained experimental results indicate that the emulsions stabilized by gemini surfactant have much finer and better-distributed water droplets as compared to those stabilized by conventional surfactant. A comparative study involving torque, engine brake mean effective pressure (BMEP), specific fuel consumption (SFC), particulate matter (PM), NOx and CO emissions is also reported for neat diesel and emulsified formulations. It was found that there was an insignificant reduction in engine's efficiency but on the other hand there are significant benefits associated with the incorporation of water contents in diesel regarding environmental hazards. The biggest reduction in PM, NOx, CO and SOx emission was achieved by the emulsion stabilized by gemini surfactant containing 15% water contents. 34 refs., 11 figs., 1 tab.

  10. Combustion performance and pollutant emissions analysis using diesel/gasoline/iso-butanol blends in a diesel engine

    International Nuclear Information System (INIS)

    Wei, Mingrui; Li, Song; Xiao, Helin; Guo, Guanlun

    2017-01-01

    Highlights: • The diesel/gasoline/iso-butanol blends were investigated in a CI engine. • Blend with gasoline or iso-butanol produce higher HC emission. • CO increase at low loads and decrease at medium and high loads with blend fuels. • Gasoline or iso-butanol decrease large particles but increase small particles. • Blend fuels reduce total PM number and mass concentrations. - Abstract: In this study, the effects of diesel/gasoline/iso-butanol blends, including pure diesel (D100), diesel (70%)/gasoline (30%) (D70G30, by mass), diesel (70%)/iso-butanol (30%) (D70B30) and diesel (70%)/gasoline (15%)/iso-butanol (15%) (D70G15B15), on combustion and exhaust pollutant emissions characteristics in a four-cylinder diesel engine were experimentally investigated under various engine load conditions with a constant speed of 1800 rpm. The results indicated that D70G30, D70G15B15 and D70B30 delayed the ignition timing and shortened the combustion duration compared to D100. Additionally, CA50 was retarded when engine fuelled with D70G30, D70G15B15 and D70B30 at low engine load conditions, but it was advanced at medium and high engine loads. The maximum pressure rise rates (MPRRs) of D70G30, D70G15B15 and D70B30 were increased compared with D100 except for at engine load of 0.13 MPa BMEP (brake mean effective pressure). Meanwhile, D70G15B15 and D70B30 produced higher brake specific fuel consumption (BSFC) than that of D100. The effects of diesel blend with gasoline or iso-butanol on exhaust pollutant emissions were varied with loads. CO emissions were increased obviously and NOx emissions were decreased under low engine loads. However, CO emissions were decreased and NOx emissions were slightly increased under the medium and high engine load conditions. However, D70G30, D70G15B15 and D70B30 leaded to higher HC emissions than D100 regardless the variation of engine load. Moreover, the particulate matter (PM) (diameter, number and mass concentrations) emissions by using

  11. Emission, efficiency, and influence in a diesel n-butanol dual-injection engine

    International Nuclear Information System (INIS)

    Zhu, Yanchun; Chen, Zheng; Liu, Jingping

    2014-01-01

    Highlights: • Dual-injection combustion for diesel n-butanol dual-fuel is investigated. • Higher EGR rate results in lower NOx and ITE, but higher smoke, HC and CO. • Larger butanol fraction results in lower smoke and ITE, but higher NOx, HC and CO. • Advanced injection can decrease smoke, HC and CO, and increase ITE. • Coupling of butanol fraction, EGR and injection timing makes for a better performance. - Abstract: In this work, a dual-injection combustion mode for diesel n-butanol dual-fuel, combined direct injection (DI) of diesel with port fuel injection (PFI) of n-butanol, was introduced. Effects of n-butanol fraction, EGR rate and injection timing on this mode were studied on a modified single-cylinder diesel engine at the speed of 1400 r/min and the IMEP of 1.0 MPa. The results indicate that with increased EGR rate, NOx emissions reduce, but smoke emissions increase. As n-butanol fraction is increased, smoke emissions decrease with a small increase in NOx. However, higher HC and CO emissions, higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE) have to be paid with increased n-butanol fraction, especially at high EGR condition. Advancing diesel injection timing suitably has the capacity of mitigating those costs and further decreasing smoke emissions with a small penalty in NOx emissions. Coupling of large butanol fraction, high EGR rate, and advanced injection suitably contributes to a better balance between emissions and efficiency in the diesel n-butanol dual-injection engine

  12. Effect of beadles from soybean on the exhaust emission of a turbocharged diesel engine

    International Nuclear Information System (INIS)

    Shan, G.E.; Jian, T.; Shah, A.N.

    2009-01-01

    This paper presents the regulated emissions in the light of cylinder pressure and heat release rate (HRR) from a 4-stroke direct injection (DI) diesel engine fuelled with neat soybean oil-based biodiesel, commercial diesel and 20% biodiesel-diesel blend. The engine was run using electrical dynamometer at four different engine conditions. The experimental results revealed that brake power (BP) of the engine decreased but brake specific fuel consumption (BSFC) increased with biodiesel as compared to diesel. Relative to diesel, the maximum combustion pressure (MCP) was higher; however, HRR curves were not much deeper in the ignition delay (ID) periods and the premixed combustion peaks were lower with biodiesel. Carbon monoxide (CO), total hydrocarbons (HC), smoke opacity, and particulate matter (PM) emissions decreased by 3% to 14%, 32.6% to 46%, 56.5% to 83%, and 71% to 87.8%, respectively; however, oxides of nitrogen (NOx) increased by 2% to 10% with biodiesel, compared to the commercial diesel. Both smoke and NOx pollutants were greatly influenced by the MCP, CO, HC, and PM emissions were higher at lower load conditions compared to higher load conditions, but NO/sub x/ and smoke pollutants were higher at higher load conditions relative to lower load conditions. (author)

  13. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  14. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  15. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  16. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... in 2010). The standard is expected to include an 80% reduction of the maximum particulate emissions from diesel cars. The fulfillment of this requirement entails development and production of particulate filters for diesel cars and trucks. Theoretically the paper suggests a rethinking of public industry...

  17. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  18. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  19. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  20. Impact of Emissions of Marine Diesel Engines to Air Pollution on the Example of the Yugoslav River Shipping

    OpenAIRE

    Dragan Ljevaja

    2011-01-01

    The subject of this paper is the impact which marine diesel engines have on air pollution. The combustion of fossil fuels for marine diesel engines produces emission of various greenhouse gases; including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), oxides of nitrogen (NOx), non-methane volatile organic compounds (NMVOCs), and sulphur dioxide (SO2). Gas emission calculation is shown on the example of the Yugoslav river shipping with two methods for calculati...

  1. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  2. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  3. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  4. Energy efficiency impact of EGR on organizing clean combustion in diesel engines

    International Nuclear Information System (INIS)

    Divekar, Prasad S.; Chen, Xiang; Tjong, Jimi; Zheng, Ming

    2016-01-01

    Highlights: • Studied EGR impact on efficiency and emissions of diesel and dual-fuel combustion. • Quantified effectiveness of intake dilution for NOx reduction using EGR. • Identified suitable EGR ranges for mitigating emissions–efficiency trade-off. • Developed careful control of intake dilution and in-cylinder excess ratio. • Enabled ultra-low NOx in both diesel and dual-fuel combustion via EGR control. - Abstract: Exhaust gas recirculation (EGR) is a commonly recognized primary technique for reducing NOx emissions in IC engines. However, depending on the extent of its use, the application of EGR in diesel engines is associated with an increase in smoke emissions and a reduction in thermal efficiency. In this work, empirical investigations and parametric analyses are carried out to assess the impact of EGR in attaining ultra-low NOx emissions while minimizing the smoke and efficiency penalties. Two fuelling strategies are studied, namely diesel-only injection and dual-fuel injection. In the dual-fuel strategy, a high volatility liquid fuel is injected into the intake ports, and a diesel fuel is injected directly into the cylinder. The results suggest that the reduction in NOx can be directly correlated with the intake dilution caused by EGR and the correlation is largely independent of the fuelling strategy, the intake boost, and the engine load level. Simultaneously ultra-low NOx and smoke emissions can be achieved at high intake boost and intake dilution levels in the diesel-only combustion strategy and at high ethanol fractions in the dual-fuel strategy. The efficiency penalty associated with EGR is attributed to two primary factors; the combustion off-phasing and the reduction in combustion efficiency. The combustion off-phasing can be minimized by the closed loop control of the diesel injection timing in both the fuelling strategies, whereas the combustion efficiency can be improved by limiting the intake dilution to moderate levels. The

  5. New perspectives for advanced automobile diesel engines

    Science.gov (United States)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  6. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  7. Cummins Light Truck Diesel Engine Progress Report

    International Nuclear Information System (INIS)

    John H. Stang

    2000-01-01

    The Automotive Market in the United States is moving in the direction of more Light Trucks and fewer Small Cars. The customers for these vehicles have not changed, only their purchase decisions. Cummins has studied the requirements of this emerging market. Design and development of an engine system that will meet these customer needs has started. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of early testing are presented which show that the diesel is possibly a good solution

  8. Aplicación de la medida de NOx para el control de motores diesel sobrealimentados

    OpenAIRE

    Cabrera López, Pedro

    2013-01-01

    Los motores de combusti'on interna est'an inmersos en una constante evoluci'on tecnol'ogica con el ¿n de mejorar sus prestaciones y satisfacer adem'as las cada vez m'as restrictivas normas anticontaminantes. En el caso de los motores diesel esto concierne especialmente a las emisiones de NOx y part'¿culas. Los sistemas destinados a reducir estas emisiones (inyecci'on directa common-rail, sobrealimentaci'on con geometr'¿a variable, recirculaci'on de gases de escape, trampas de part'¿c...

  9. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  10. 46 CFR 58.10-10 - Diesel engine installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  11. Experimental investigation of pistacia lentiscus biodiesel as a fuel for direct injection diesel engine

    International Nuclear Information System (INIS)

    Khiari, K.; Awad, S.; Loubar, K.; Tarabet, L.; Mahmoud, R.; Tazerout, M.

    2016-01-01

    Highlights: • Biodiesel is prepared from Pistacia Lentiscus oil. • Biodiesel yield is 94% when using 6:1 methanol/oil and 1% KOH catalyst at 50 °C. • BSFC and NOx emissions have increased with the use of biodiesel and its blends. • Biodiesel reduces significantly HC, CO and particulate emissions at high engine load. - Abstract: Biodiesel is currently seen as an interesting substitute for diesel fuel due to the continuing depletion of petroleum reserves and the environment pollution emerging from exhaust emissions. The present work is an experimental study conducted on a DI diesel engine running with either pistacia lentiscus (PL) biodiesel or its blends with conventional diesel fuel. PL biodiesel is obtained by converting PL seed oil via a single-step homogenous alkali catalyzed transesterification process. The PL biodiesel physicochemical properties, which are measured via standard methods, are similar to those of diesel fuel. A single cylinder, naturally aspirated DI diesel engine is operated at 1500 rpm with either PL biodiesel or its blends with diesel fuel for several ratios (50, 30 and 5 by v%) and engine load conditions. The combustion parameters, performance and pollutant emissions of PL biodiesel and its blends are compared with those of diesel fuel. The results show that the thermal efficiency is 3% higher for PL biodiesel than for diesel fuel. The emission levels of carbon monoxide (CO), unburned hydrocarbon (HC) and particulate matter are considerably reduced at full engine load (around 25%, 45% and 17% respectively). On the other hand, the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions increase (around 10% and 4% respectively).

  12. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2008-01-01

    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  13. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  14. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME produced through hydrodynamic cavitation process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2018-03-01

    Full Text Available In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester blended with diesel in proportions of 10%, 20%, 30% and 50% by volume and pure diesel was used as fuel. Engine performance (specific fuel consumption and brake thermal efficiency and exhaust emission (CO, CO2 and NOx were measured to evaluate the behaviour of the diesel engine running on biodiesel. The results show that the brake thermal efficiency of diesel is higher and brake specific fuel consumption is lower at all loads followed by blends of SOME and diesel. The performance parameter for B10, B20, B30 and B50 were also closer to diesel and the CO emission was found to be lesser than diesel while there was a slight increase in the CO2 and NOx. SOME produced by using hydrodynamic cavitation seems to be efficient, time saving and industrially viable. The experimental results revel that SOME-diesel blends up to 50% (v/v can be used in a diesel engine without modifications. Keywords: Performance, Emission, Diesel engine, Schleichera Oleosa Oil, Biodiesel hydrodynamic cavitation (HC

  15. Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration

    International Nuclear Information System (INIS)

    Patil, K.R.; Thipse, S.S.

    2015-01-01

    Highlights: • First ever study on DEE–kerosene–diesel blends used in CI engine. • DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine. • Optimum performance blend has been found as DE15D. • Adulteration effects of kerosene with diesel have also been investigated. • Additions of kerosene with DE15D blend have deteriorated the overall engine performance. - Abstract: An experimental investigation had been carried out to evaluate the effects of oxygenated cetane improver diethyl ether (DEE) blends with kerosene and diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. Initially, 2%, 5%, 8%, 10%, 15%, 20% and 25% DEE (by volume) were blended into diesel. The DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine and the optimum performance blend has been found as DE15D. Similarly, 5%, 10% and 15% kerosene (by volume) were blended into diesel to investigate the adulteration effect. In addition, a study was carried out to evaluate the effects of kerosene adulteration on DE15D by blending with 5%, 10% and 15% kerosene (by volume). The engine tests were carried out at 10%, 25%, 50%, 75% and 100% of full load for all test fuels. Laboratory fuel tests showed that the DEE is completely miscible with diesel and kerosene in any proportion. It was observed that the density, kinematic viscosity and calorific value of the blends decreases, while the oxygen content and cetane number of the blends increases with the concentration of DEE addition. The experimental test results showed that the DEE–kerosene–diesel blends have low brake thermal efficiency, high brake specific fuel consumption, high smoke at full load, low smoke at part load, overall low NO, almost similar CO, high HC at full load and low HC at part load as compared to DE15D blend

  16. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  17. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact

    International Nuclear Information System (INIS)

    Chen, Zheng; Wu, Zhenkuo; Liu, Jingping; Lee, Chiafon

    2014-01-01

    Highlights: • Effects of EGR on high n-butanol/diesel ratio blend (Bu40) were investigated and compared with neat diesel (Bu00). • Bu40 has higher NOx due to wider combustion high-temperature region. • Bu40 has lower soot due to local lower equivalence ratio distribution. • Bu40 has higher CO due to lower gas temperature in the late expansion process. • For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. - Abstract: In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher NOx due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low NOx and soot emissions simultaneously while maintaining high thermal efficiency level

  18. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  19. DIESEL ENGINE RETROFIT TECHNOLOGY VERIFICATION

    Science.gov (United States)

    This presentation wil be given at the EPA Science Forum 2005 in Washington, DC. According to recent estimates, there are approximately 7.9 million heavy-duty diesel trucks and buses in use in the United States. Emissions from these vehicles account for substantial portions of t...

  20. Application of diagnostic system for diesel engine

    International Nuclear Information System (INIS)

    Yoshinaga, Takeshi; Hayashi, Haruji; Usui, Hiromi; Tsuruzono, Atsuya; Matsuda, Takafumi

    2008-01-01

    The Japan Atomic Power Company (JAPC) began to implement Condition Based Maintenance (CBM) for rotating components (pumps, fans and electric motors) from 1999 and, also has begun to apply diesel engine diagnostic techniques at our three nuclear power plants since 2004. This paper provides a description of the CBM methods used for diesel engines in nuclear standby service, a summary of the procedures to introduce these diagnostic techniques to our nuclear power plants, and experience with the application of these methods to JAPC nuclear power plants. (author)

  1. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C. [Univ. of California, San Diego, La Jolla, CA (United States)

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  2. Soot and NOx simultaneous reduction by use of CO2 mixed fuel; Ekika CO2 yokai nenryo ni yoru diesel kikan no susu, NOx no doji teigen

    Energy Technology Data Exchange (ETDEWEB)

    Senda, J; Yokoyama, T; Ikeda, M; Fujimoto, H [Doshisha University, Kyoto (Japan); Ifuku, Y [Kubota Corp., Osaka (Japan)

    1997-10-01

    We propose the new fuel injection system by use of diesel fuel dissolved with CO2 to reduce both soot and NOx simultaneously. In this paper spray combustion characteristics of CO2 mixed fuel is reported. It is revealed that flame temperature and KL factor at the CO2 mixed fuel combustion are lower than at the only n-tridecane combustion due to separation or partly flashing of CO2component. And the result of exhaust gas measurement shows the capability that CO2 mixed fuel is able to reduce both soot and NOx simultaneously. 12 refs., 7 figs., 1 tab.

  3. The effect of the position of oxygen group to the aromatic ring to emission performance in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Goey, de L.P.H.

    2012-01-01

    In this paper the soot-NOx trade-off and fuel efficiency of various aromatic oxygenates is investigated in a modern DAF heavy-duty diesel engine. All oxygenates were blended to diesel fuel such that the blend oxygen concentration was 2.59 wt.-%. The oxygenates in question, anisole, benzyl alcohol

  4. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  5. Marine Diesel Engine Control to meet Emission Requirements and Maintain Maneuverability

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2018-01-01

    International shipping has been reported to account for 13% of global NOx emissions and 2.1% of global green house gas emissions. Recent restrictions of NOx emissions from marine vessels have led to the development of exhaust gas recirculation (EGR) for large two-stroke diesel engines. Meanwhile......, the same engines have been downsized and derated to optimize fuel efficiency. The smaller engines reduce the possible vessel acceleration, and to counteract this, the engine controller must be improved to fully utilize the physical potential of the engine. A fuel index limiter based on air/fuel ratio...... was recently developed [1], but as it does not account for EGR, accelerations lead to excessive exhaust smoke formation which could damage the engine when recirculated. This paper presents two methods for extending a fuel index limiter function to EGR engines. The methods are validated through simulations...

  6. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  7. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    OpenAIRE

    Arifin Nur; Yanuandri Putrasari; Iman Kartolaksono Reksowardojo

    2012-01-01

    The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices we...

  8. Performance evaluation of a diesel engine using biodiesel

    International Nuclear Information System (INIS)

    Shahid, E.M.; Jamal, Y.

    2011-01-01

    This article is a comparative study of use of mineral diesel and biodiesel derived from cotton seed oil of Pakistani origin. The main problems associated with biodiesel are, its very high viscosity and specific gravity, which are due to long chain triglyceride esters with free fatty acids. The esters are converted into simple structure mono-glycerides esters via transesterification process. The experiments were carried out using blends of diesel and biodiesel with different ratios, to investigate the performance characteristics of engine and exhaust emissions. The experimental results show that the engine using B100 resulting in about 10% higher brake specific fuel consumption and about 10% lower brake thermal efficiency as compared to the use of B0. The engine emissions were almost free from SO/sub x/, having reduced amount of CO, CO/sub 2/0, and THC, but having higher amount of NOx, when B100 was used as fuel. The fuel is becoming more popular due to the reduction in nasty pollutant emissions. (author)

  9. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  10. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  11. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  12. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  13. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  14. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  15. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    Science.gov (United States)

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  16. Comparative study of performance and emissions of a diesel engine using Chinese pistache and jatropha biodiesel

    International Nuclear Information System (INIS)

    Huang, Jincheng; Wang, Yaodong; Qin, Jian-bin; Roskilly, Anthony P.

    2010-01-01

    An experimental study of the performances and emissions of a diesel engine is carried out using two different biodiesels derived from Chinese pistache oil and jatropha oil compared with pure diesel. The results show that the diesel engine works well and the power outputs are stable running with the two selected biodiesels at different loads and speeds. The brake thermal efficiencies of the engine run by the biodiesels are comparable to that run by pure diesel, with some increases of fuel consumptions. It is found that the emissions are reduced to some extent when using the biodiesels. Carbon monoxide (CO) emissions are reduced when the engine run at engine high loads, so are the hydrocarbon (HC) emissions. Nitrogen oxides (NOx) emissions are also reduced at different engine loads. Smoke emissions from the engine fuelled by the biodiesels are lowered significantly than that fuelled by diesel. It is also found that the engine performance and emissions run by Chinese pistache are very similar to that run by jatropha biodiesel. (author)

  17. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  18. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  19. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  20. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  1. Study on biogas premixed charge diesel dual fuelled engine

    International Nuclear Information System (INIS)

    Duc, Phan Minh; Wattanavichien, Kanit

    2007-01-01

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  2. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  3. Revisiting diesel fuel formulation from Petroleum light and middle refinery streams based on optimized engine behavior

    OpenAIRE

    Ben Amara , Arij; Dauphin , Roland; Babiker , Hassan; Viollet , Yoann; Chang , Junseok; Jeuland , Nicolas; Amer , Amer

    2016-01-01

    International audience; The share of diesel fuel in European transport sector, which currently represents over 50% of total 11 demand, is increasing, requiring massive imports of this product, while at the same time, gasoline fuels are 12 today in surplus. In terms of air pollutant emissions, gasoline and kerosene streams have shown potential 13 in achieving lower emissions in Compression Ignition (CI) engines, particularly nitrogen oxides (NOx) 14 and particulates. A new fuel formulation app...

  4. Investigation of split injection in a single cylinder optical diesel engine

    OpenAIRE

    Díez Rodríguez, Álvaro

    2009-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxide (NOx) and particulate matter (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes like homogeneous charge compression ignition (HCCI) combustion and...

  5. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  6. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Saleh [Mattaria, Helwan University, Cairo (Egypt). Department of Mechanical Power Engineering

    2008-10-15

    This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel No. 3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel No. 3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method. 26 refs., 15 figs., 5 tabs.

  7. Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Tobias Nüesch

    2014-05-01

    Full Text Available Motivated by the fact that the real driving NOx emissions (RDE of conventional diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with a diesel parallel hybrid electric vehicle (HEV is proposed. By extending the well-known equivalent consumption minimization strategy (ECMS, the power split degree of freedom is used to control the NOx emissions and the battery state of charge (SOC simultaneously. Through an appropriate formulation of the problem, the feedback control is shown to be separable into two dependent PI controllers. By hardware-in-the-loop (HIL experiments, as well as by simulations, the proposed method is shown to minimize the fuel consumption while tracking a given reference trajectory for both the NOx emissions and the battery SOC.

  8. Appliance of high EGR rates with a short and long route EGR system on a heavy duty diesel engine

    NARCIS (Netherlands)

    Aken, van M.; Willems, F.P.T.; Jong, de D.J.

    2007-01-01

    The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is

  9. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  10. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  11. Effect of oxygen enriched combustion and water–diesel emulsion on the performance and emissions of turbocharged diesel engine

    International Nuclear Information System (INIS)

    Liang, Youcai; Shu, Gequn; Wei, Haiqiao; Zhang, Wei

    2013-01-01

    Highlights: • Emulsion is effective to mitigate increased NOx caused by OEC. • OEC and WDE have significant influence on particle mode formation. • OEC and WDE have significant influence on combustion characteristics. • The application potential of combination of OEC and WDE has been proved. - Abstract: Oxygen enriched combustion (OEC) is potential to improve emissions, thermal efficiency and brake power output of diesel engine. The purpose of this investigation is to study whether it is feasible to apply water diesel emulsion to mitigate the increasing NOx caused by OEC with comparable BSFC and power output. Effect of OEC on particle size and number concentration was also analyzed in this paper. Oxygen concentration of intake air varied from 21% to 24% by volume. Water content in tested fuels was 0%, 10%, 20%, and 30% by volume respectively. The result indicated that lower BSFC, higher cylinder pressure and shorter ignition delay were observed when OEC was applied, while opposite trends were found when using WDE. Reduction of PM and NOx can be realized simultaneously by applying OE combined with WDE. Particle number concentration of nucleation mode increases with increasing oxygen concentration, while that of accumulation mode decreases. Optimal operating condition was realized when water content in emulsion was below 20% along with low oxygen enrichment

  12. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  13. Emission characteristics of a diesel engine using waste cooking oil ...

    African Journals Online (AJOL)

    In this study, the use of waste cooking oil (WCO) methyl ester as an alternative fuel in a four-stroke turbo diesel engine with four cylinders, direct injection and 85 HP was analyzed. A test was applied in which an engine was fueled with diesel and three different blends of diesel/biodiesel (B25, B50 and B75) made from WCO.

  14. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, Vitaly Y. [ORNL; Pihl, Josh A. [ORNL; Toops, Todd J. [ORNL; Parks, II, James E. [ORNL

    2018-04-01

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.

  15. Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load

    International Nuclear Information System (INIS)

    Pedrozo, Vinícius B.; May, Ian; Dalla Nora, Macklini; Cairns, Alasdair; Zhao, Hua

    2016-01-01

    Highlights: • Dual-fuel combustion offers promising results on a stock heavy-duty diesel engine. • The use of split diesel injections extends the benefits of the dual-fuel mode. • Ethanol–diesel dual-fuel combustion results in high indicated efficiencies. • NOx and soot emissions are significantly reduced. • Combustion efficiency reaches 98% with an ethanol energy ratio of 53%. - Abstract: Conventional diesel combustion produces harmful exhaust emissions which adversely affect the air quality if not controlled by in-cylinder measures and exhaust aftertreatment systems. Dual-fuel combustion can potentially reduce the formation of nitrogen oxides (NOx) and soot which are characteristic of diesel diffusion flame. The in-cylinder blending of different fuels to control the charge reactivity allows for lower local equivalence ratios and temperatures. The use of ethanol, an oxygenated biofuel with high knock resistance and high latent heat of vaporisation, increases the reactivity gradient. In addition, renewable biofuels can provide a sustainable alternative to petroleum-based fuels as well as reduce greenhouse gas emissions. However, ethanol–diesel dual-fuel combustion suffers from poor engine efficiency at low load due to incomplete combustion. Therefore, experimental studies were carried out at 1200 rpm and 0.615 MPa indicated mean effective pressure on a heavy-duty diesel engine. Fuel delivery was in the form of port fuel injection of ethanol and common rail direct injection of diesel. The objective was to improve combustion efficiency, maximise ethanol substitution, and minimise NOx and soot emissions. Ethanol energy fractions up to 69% were explored in conjunction with the effect of different diesel injection strategies on combustion, emissions, and efficiency. Optimisation tests were performed for the optimum fuelling and diesel injection strategy. The resulting effects of exhaust gas recirculation, intake air pressure, and rail pressure were

  16. Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst.

    Science.gov (United States)

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2010-01-15

    The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe

    Science.gov (United States)

    Jonson, J. E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C.

    2017-09-01

    Diesel cars have been emitting four to seven times more NOx in on-road driving than in type approval tests. These ‘excess emissions’ are a consequence of deliberate design of the vehicle’s after-treatment system, as investigations during the ‘Dieselgate’ scandal have revealed. Here we calculate health and environmental impacts of these excess NOx emissions in all European countries for the year 2013. We use national emissions reported officially under the UNECE Convention for Long-range Transport of Atmospheric Pollutants and employ the EMEP MSC-W Chemistry Transport Model and the GAINS Integrated Assessment Model to determine atmospheric concentrations and resulting impacts. We compare with impacts from hypothetical emissions where light duty diesel vehicles are assumed to emit only as much as their respective type approval limit value or as little as petrol cars of the same age. Excess NO2 concentrations can also have direct health impacts, but these overlap with the impacts from particulate matter (PM) and are not included here. We estimate that almost 10 000 premature deaths from PM2.5 and ozone in the adult population (age >30 years) can be attributed to the NOx emissions from diesel cars and light commercial vehicles in EU28 plus Norway and Switzerland in 2013. About 50% of these could have been avoided if diesel limits had been achieved also in on-road driving; and had diesel cars emitted as little NOx as petrol cars, 80% of these premature deaths could have been avoided. Ecosystem eutrophication impacts (critical load exceedances) from the same diesel vehicles would also have been reduced at similar rates as for the health effects.

  18. Performance and emission characteristics of an agricultural diesel engine fueled with blends of Sal methyl esters and diesel

    International Nuclear Information System (INIS)

    Pali, Harveer S.; Kumar, N.; Alhassan, Y.

    2015-01-01

    Highlights: • Sal seed oil is unexplored biodiesel feedstock which is abundantly found in India. • Sal seed oil has good oxidation stability. • Performance and emission characteristics of the blends of Sal methyl esters with diesel evaluated. • At higher loads, CO, HC and smoke emissions of SME blends were lower than diesel. - Abstract: The present work deals with an underutilized vegetable oil; Sal seed oil (Shorea robusta) as a feedstock for biodiesel production. The production potential of Sal seed oil is very promising (1.5 million tons in a year) in India. The pressure filtered Sal seed oil was transesterified into Sal Methyl Ester (SME). The kinematic viscosity (5.89 cSt), density (0.8764 g/cc) and calorific value (39.65 MJ/kg) of the SME were well within the ASTM/EN standard limits. Various test fuels were prepared for the engine trials by blending 10%, 20%, 30% and 40% of SME in diesel on volumetric basis and designated as SME10, SME20, SME30 and SME40 respectively. The BTE, in general, was found to be decreased with increased volume fraction of SME in the blends. At full load, BSEC for SME10, SME20, SME30 and SME40 were 13.6 MJ/kW h, 14.3 MJ/kW h, 14.7 MJ/kW h and 14.8 MJ/kW h respectively as compared to 13.9 MJ/kW h in case of diesel. At higher load conditions, CO, UHC and smoke emissions were found lower for all SME blends in comparison to neat diesel due to oxygenated nature of fuel. SME10, SME20, SME30 and SME40 showed 51 ppm, 44 ppm, 46 ppm and 48 ppm of UHC emissions respectively as compared to 60 ppm of diesel. The NOx emissions were found to be increased for SME based fuel in comparison to neat diesel operation. At peak load condition, SME10, SME20, SME30 and SME40 had NOx emissions of 612 ppm, 644 ppm, 689 ppm and 816 ppm as compared to 499 ppm for diesel. It may be concluded from the experimental investigations that Sal seed biodiesel is a potential alternative to diesel fuel for reducing dependence on crude petroleum derived fuels and

  19. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Chen, Zhenbin; Wang, Xiaochen; Pei, Yiqiang; Zhang, Chengliang; Xiao, Mingwei; He, Jinge

    2015-01-01

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NO X emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NO x and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NO x emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  20. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  1. Study on a small diesel engine with direct injection impinging distribution spray combustion system. Optimum of injection system and combustion chamber; Shototsu kakusan hoshiki kogata diesel kikan ni kansuru kenkyu. Funshakei to nenshoshitsu no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K; Kato, S; Saito, T [Kanazawa Institute of Technology, Ishikawa (Japan); Tanabe, H [Gunma University, Gunma (Japan)

    1997-10-01

    This study is concerned with a small bore (93mm) diesel engine using impinged fuel spray, named OSKA system. The higher rate of injection show lower smoke emission with higher NOx Emission. The exhaust emission and performance were investigated under different compression ratio with higher rate of injection. The experimental results show that this OSKA system is capable for reducing the smoke emission without the deterioration of NOx emission and fuel consumption compared with the conventional DI diesel engine. 5 refs., 8 figs., 3 tabs.

  2. Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine.

    Science.gov (United States)

    Ravikumar, J; Saravanan, S

    2017-02-01

    Yellow grease from restaurants is typically waste cooking oil (WCO) free from suspended food particles with free fatty acid (FFA) content less than 15%. This study proposes an approach to formulate a renewable, eco-friendly fuel by recycling WCO with diesel (D) and n-pentanol (P) to improve fuel-spray characteristics. Three ternary blends (D50-WCO45-P5, D50-WCO40-P10 and D50-WCO30-P20) were selected based on the stability tests and prepared with an objective to substitute diesel by 50% with up to 45% recycled component (WCO) and up to 20% bio-component (n-pentanol) by volume. The fuel properties of these ternary blends were measured and compared. The emission impacts of these blends on a diesel engine were analysed in comparison with diesel and D50-WCO50 (50% of diesel + 50% of WCO) under naturally articulated and EGR (exhaust gas recirculation) approaches. Doping of n-pentanol showed improved fuel properties when compared to D50-WCO50. Viscosity is reduced up to 45%. Cetane number and density were comparable to that of diesel. Addition of n-pentanol to D50-WCO50 presented improved brake specific fuel consumption (BSFC) for all ternary blends. Brake thermal efficiency (BTE) of D50-WCO30-P20 blend is comparable to diesel due to improved atomization. Smoke opacity reduced, HC emissions increased and CO emissions remained unchanged with doping n-pentanol in the WCO. NOx emission increases with increase in n-pentanol and remained lower than diesel and all load conditions. However, NOx can be decreased by up to threefold using EGR. By adopting this approach, WCO can be effectively reused as a clean energy source by negating environmental hazards before and after its use in diesel engines, instead of being dumped into sewers and landfills.

  3. The diesel engine and the environment

    International Nuclear Information System (INIS)

    1991-01-01

    For more than 15 years, the development of engines has been oriented towards reducing the emissions of exhaust substances that are harmful to the environment. In the case of diesel engines, emission control is mainly concentrated to nitrogen oxides (NO x ) and particulates. Exhaust emission control has already advanced so far that the results achieved would have been regarded unrealistic a mere ten years ago. Diesel exhaust gases also include hydrocarbons (HC) and carbon monoxide (CO), although technology is approaching the stage at which these substances will have been eliminated. This report summarizes problem areas of exhaust emission control, exhaust emission theory, exhaust gas substances and environmental chemistry, emission regulations, risks of automotive exhaust gases, among others. 33 refs

  4. EFFECT OF OXYGENATED HYDROCARBON ADDITIVES ON EXHAUST EMISSIONS OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    C. Sundar Raj

    2010-12-01

    Full Text Available The use of oxygenated fuels seems to be a promising solution for reducing particulate emissions in existing and future diesel motor vehicles. In this work, the influence of the addition of oxygenated hydrocarbons to diesel fuels on performance and emission parameters of a diesel engine is experimentally studied. 3-Pentanone (C5H10O and Methyl anon (C7H12O were used as oxygenated fuel additives. It was found that the addition of oxygenated hydrocarbons reduced the production of soot precursors with respect to the availability of oxygen content in the fuel. On the other hand, a serious increase of NOx emissions is observed. For this reason the use of exhaust gas recirculation (EGR to control NOx emissions is examined. From the analysis of it is examined experimental findings, it is seen that the use of EGR causes a sharp reduction in NOx and smoke simultaneously. On the other hand, EGR results in a slight reduction of engine efficiency and maximum combustion pressure which in any case does not alter the benefits obtained from the oxygenated fuel.

  5. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine

    International Nuclear Information System (INIS)

    Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K.

    2017-01-01

    Highlights: • Neat lemongrass oil can be used as an alternate fuel in diesel engine. • The combined effect of nano emulsion and EGR using LGO25-DEE-Diesel is investigated. • The BTE is improved for nano emulsion fuel blend. • The NO_x and smoke emissions decrease significantly. • Cylinder pressure and Heat release rate increase with longer ignition delay. - Abstract: In the present experimental study, the combined effects of nanoemulsion and exhaust gas recirculation (EGR) on the performance, combustion and emission characteristics of a single cylinder, four stroke, variable compression ratio diesel engine fueled with neat lemongrass oil (LGO)-diesel-DEE (diethyl ether) blend are investigated. The Neat Lemongrass oil could be used as a new alternate fuel in compression ignition engines without any engine modifications. The entire investigation was conducted in the diesel engine using the following test fuels: emulsified LGO25, cerium oxide blended emulsified LGO25 and DEE added emulsified LGO25 with EGR respectively and compared with standard diesel and LGO25 (75% by volume of diesel and 25% by volume of lemongrass oil) fuels. The combined effect of DEE added nano-emulsified LGO25 with EGR yielded a significant reduction in NO_x and smoke emission by 30.72% and 11.2% respectively compared to LGO25. Furthermore, the HC and CO emissions were reduced by 18.18% and 33.31% respectively than with LGO25. The brake thermal efficiency and brake specific fuel consumption increased by 2.4% and 10.8% respectively than LGO25. The combustion characteristics such as cylinder pressure and heat release rate increased by 4.46% and 3.29% respectively than with LGO25. The combustion duration and ignition delay increase at nano-emulsified LGO25 with DEE and EGR mode but decrease for nano-emulsified LGO25 fuel.

  6. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  7. Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol–diesel blends

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Yang, Ruzhi; Zhu, Tianru; Zhao, Ruiqing; Wang, Yaodong

    2015-01-01

    Highlights: • The effects of pre-injected timing and pre-injected mass were studied in CI engine. • The addition of n-butanol consumed OH free radicals, which delayed the ignition time. • With the increase of n-butanol, the BSFC and MPRR increased, NO_x and soot decreased. • With the advance of pilot injection timing, the BSFC increased, NO_x and soot decreased. • With the increase of pilot injection mass, NO_x increased, soot decreased then increased. - Abstract: The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in high-speed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NO_x and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NO_x emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NO_x and soot emissions decreasing. The simulation of the combustion of n-butanol–diesel fuel blends, which was based on the n-heptane–n-butanol–PAH–toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals

  8. A comprehensive study on the emission characteristics of E-diesel dual-fuel engine

    Directory of Open Access Journals (Sweden)

    A. Avinash

    2016-03-01

    Full Text Available Each year, the ultimate goal of emission legislation is to force technology to the point where a practically viable zero emission vehicle becomes a reality. Albeit the direction to reach this target is a formidable challenge, homogeneous charge compression ignition (HCCI is a new combustion concept to produce ultra low nitrogen oxides (NOx and smoke emissions. By the way, an endeavor has been made in this work to achieve a simultaneous reduction in both NOx and smoke levels in a direct injection compression ignition engine converted to operate on premixed charge compression ignition mode. Indeed, these promises were made possible in this work by preparing premixed fuel–air mixture outside the engine cylinder. For this purpose, ethanol was injected in the intake port at various premixed ratios (5%, 10%, 15%, 20%, 25% and 30% and conventional diesel was injected as usual. It was extrapolated from the experimental results that e-diesel operation can significantly reduce NOx and smoke levels. In addition, NOx and smoke levels reduced in this experimental study with increase in premixed fraction. Nevertheless, unburned hydrocarbons (UBHC and carbon monoxide (CO emissions exhibited reverse trend with increase in premixed fraction and the maximum value of HC and CO emission levels was noted with 30% premixed fraction.

  9. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  11. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    Science.gov (United States)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  12. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  13. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  14. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  15. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  16. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  17. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  18. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    Science.gov (United States)

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially

  19. EPA and California Air Resources Board Approve Remedy to Reduce Excess NOx Emissions from Automatic Transmission “Generation 2” 2.0-Liter Diesel Vehicles

    Science.gov (United States)

    On May 17, 2017, EPA and the California Air Resources Board (CARB) approved an emissions modification proposed by Volkswagen that will reduce NOx emissions from automatic transmission diesel Passats for model years 2012-2014.

  20. Exhaust Emission Characteristics of Heavy Duty Diesel Engine During Cold and Warm Start

    Directory of Open Access Journals (Sweden)

    YANG Rong

    2014-07-01

    Full Text Available Through experiment conducted on a six cylinder direct injection diesel engine with SCR catalyst, effects of coolant temperature on rail pressure, injection quantity, excess air coefficient and emissions characteristics during cold and warm start were investigated. The results showed that, the maximum injection quantity during a starting event was several times higher than idling operation mode, so was the maximal opacity in the cold and warm starting process. When coolant temperature rose up to above 20℃, NOX emissions in the starting process exhibited peculiar rise which was times higher than idling mode. Compared with engine warm start, rail pressure, cycle fuel quantity, opacity, CO and HC emissions during engine cold start were higher in the course from their transient maximal values towards stabilized idling status. NOX in the same transient course, however, were lower in cold start. As coolant temperature rose, the maximal and the idling value of rail pressure and cycle fuel injection quantity during diesel engine starting process decreased gradually, the excess air coefficient increased to a certain degree, and the maximal and idling values of NOX increased gradually.

  1. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends

    Science.gov (United States)

    Karthickeyan, V.

    2018-01-01

    Depletion of fossil fuel has created a threat to the nation's energy policy, which in turn led to the development of new source renewable of energy. Biodiesel was considered as the most promising alternative to the traditional fossil fuel. In the present study, raw neem oil was considered as a principle source for the production of biodiesel and converted into Neem Oil Methyl Ester (NOME) using two stage transesterification process. The chemical compositions of NOME was analysed using Fourier Transform Infra-Red Spectroscopy (FTIR) and Gas Chromatography- Mass Spectrometry (GC-MS). Baseline readings were recorded with diesel, 25NOME (25% NOME with 75% diesel) and 50NOME (50% NOME with 50% diesel) in a direct injection, four stroke, water cooled diesel engine. Thermal Barrier Coating (TBC) was considered as a better technique for emission reduction in direct injection diesel engine. In the present study, Partially Stabilized Zirconia (PSZ) was used as a TBC material to coat the combustion chamber components like cylinder head, piston head and intake and exhaust valves. In coated engine, 25NOME showed better brake thermal efficiency and declined brake specific fuel consumption than 50NOME. Decreased exhaust emissions like CO, HC and smoke were observed with 25NOME in coated engine except NOx. [Figure not available: see fulltext.

  2. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  3. Emission Characterization of Diesel Engine Run on Coconut Oil ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Diesel engine, diesel, coconut oil biodiesel, blends, emissions. Introduction ... Automobile exhaust ... power loss, the increase in fuel consumption and the increase in ... diesel fuel in terms of power and torque and none or ... gas analyzer (Motorscan 8050) made in Italy which .... different injection pressures.

  4. Emission characterization of diesel engine run on coconut oil ...

    African Journals Online (AJOL)

    The use of biodiesel in running diesel has been called for, with a view to mitigating the environmental pollution, depletion, cost and scarcity associated with the use diesel in running diesel engine. So the need to characterize the emissions from these biodiesel, cannot be overemphasized, hence this paper presents the ...

  5. Gear ratting noise reduction of diesel engine; Diesel engine no gear hauchi soon teigen

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Miura, Y [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    Gear raffling noise of diesel engine at idling condition is required to reduce for keeping quiet environment and comfort of driver and passengers on track and bus. Decrease of gear backlash is generally adopted for reducing gear rattling noise. On the other hand, it has been found that newly devised measurement of gear teeth speed and gear meshing error has clarified phenomena of gear rattling between the crankshaft gear and the camshaft gear of the diesel engine. And it has been also found that gear ratting noise is reduced by changing meshing between the crankshaft gear and the camshaft gear. 2 refs., 10 figs.

  6. Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications

    International Nuclear Information System (INIS)

    Sakellaridis, Nikolaos F.; Raptotasios, Spyridon I.; Antonopoulos, Antonis K.; Mavropoulos, Georgios C.; Hountalas, Dimitrios T.

    2015-01-01

    Engine cycle simulation models are increasingly used in diesel engine simulation and diagnostic applications, reducing experimental effort. Turbocharger simulation plays an important role in model's ability to accurately predict engine performance and emissions. The present work describes the development of a complete engine simulation model for marine Diesel engines based on a new methodology for turbocharger modelling utilizing physically based meanline models for compressor and turbine. Simulation accuracy is evaluated against engine bench measurements. The methodology was developed to overcome the problem of limited experimental maps availability for compressor and turbine, often encountered in large marine diesel engine simulation and diagnostic studies. Data from the engine bench are used to calibrate the models, as well as to estimate turbocharger shaft mechanical efficiency. Closed cycle and gas exchange are modelled using an existing multizone thermodynamic model. The proposed methodology is applied on a 2-stroke marine diesel engine and its evaluation is based on the comparison of predictions against measured engine data. It is demonstrated model's ability to predict engine response with load variation regarding both turbocharger performance and closed cycle parameters, as well as NOx emission trends, making it an effective tool for both engine diagnostic and optimization studies. - Highlights: • Marine two stroke diesel engine simulation model. • Turbine and compressor simulation using physical meanline models. • Methodology to derive T/C component efficiency and T/C shaft mechanical efficiency. • Extensive validation of predictions against experimental data.

  7. Fuel system for diesel engine with multi-stage heated

    Science.gov (United States)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  8. Lignocellulosic Biobutanol as Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Martin Pexa

    2016-05-01

    Full Text Available Energy recovery of lignocellulosic waste material in the form of liquid fractions can yield alcohol-based fuels such as bioethanol or biobutanol. This study examined biobutanol derived from lignocellulosic material that was then used as an additive for diesel engines. Biobutanol was used in fuel mixtures with fatty acid methyl ester (FAME obtained by esterification of animal fat (also a waste material in the amounts of 10%, 30%, and 50% butanol. 100% diesel and 100% FAME were used as reference fuels. The evaluation concerned the fuel’s effect on the external speed characteristics, harmful exhaust emissions, and fuel consumption while using the Non-Road Steady Cycle test. When the percentage of butanol was increased, the torque and the power decreased and the brake specific fuel consumption increased. The main advantage of using biobutanol in fuel was its positive effect on reducing the fuel’s viscosity.

  9. Development of a robust and compact kerosene–diesel reaction mechanism for diesel engines

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Mohan, Balaji; An, Hui; Zhou, Dezhi; Yu, Wenbin

    2016-01-01

    Highlights: • An approach is used to develop a robust kerosene–diesel reaction mechanism. • Ignition delay of the kerosene sub-mechanism is well validated with experiments. • The kerosene sub-mechanism reproduces the flame lift-off lengths of Jet-A reasonably well. • The kerosene sub-mechanism performs reasonably well under engine conditions. - Abstract: The use of kerosene fuels in internal combustion engines is getting more widespread. The North Atlantic Treaty Organization military is pushing for the use of a single fuel on the battlefield in order to reduce logistical issues. Moreover, in some countries, fuel adulteration is a serious matter where kerosene is blended with diesel and used in diesel engines. So far, most investigations done regarding the use of kerosene fuels in diesel engines are experimental and there is negligible simulation work done in this area possibly because of the lack of a robust and compact kerosene reaction mechanism. This work focuses on the development of a small but reliable kerosene–diesel reaction mechanism, suitable to be used for diesel engine simulations. The new kerosene–diesel reaction mechanism consists only of 48 species and 152 reactions. Furthermore, the kerosene sub-mechanism in this new mechanism is well validated for its ignition delay times and has proven to replicate kerosene combustion well in a constant volume combustion chamber and an optical engine. Overall, this new kerosene–diesel reaction mechanism is proven to be robust and practical for diesel engine simulations.

  10. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    Science.gov (United States)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  11. 40 CFR 86.336-79 - Diesel engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  12. Common Rail Direct Injection Mode of CI Engine Operation with Different Injection Strategies - A Method to Reduce Smoke and NOx Emissions Simultaneously

    Directory of Open Access Journals (Sweden)

    S. V. Khandal

    2018-03-01

    Full Text Available Compression ignition (CI engines are most efficient and robust prime movers used in transportation, power generation applications but suffer from the problems of higher level of exhaust smoke and NOx tailpipe emissions with increased use of fossil fuels. Alternative fuel that replaces diesel and at the same time that result in lower smoke and NOx emissions is presently needed. Therefore the main aim of this experimental study is to lower the smoke and NOx emissions and to use non edible oils that replace the diesel. For this locally available honge biodiesel (BHO and cotton seed biodiesel (BCO were selected as alternative fuels to power CI engine operated in common rail direct injection (CRDI mode. In the first part, optimum fuel injection timing (IT and injection pressure (IP for maximum engine brake thermal efficiency (BTE was obtained. In the second part, performance, combustion and emission characteristics of the CRDI engine was studied with two different fuel injectors having 6 and 7 holes each having 0.2 mm orifice diameter. The CRDI engine results obtained were compared with the baseline date reported. The combustion chamber (CC used for the study was toroidal re-entrant (TRCC. The experimental tests showed that BHO and BCO fuelled CRDI engine showed overall improved performance with 7 hole injector when engine was operated at optimized fuel IT of 10° before top dead centre (bTDC and IP of 900 bar. The smoke emission reduced by 20% to 26% and NOx reduced by 16% to 20% in diesel and biodiesel powered CRDI engine as compared to conventional CI mode besides replacing diesel by biodiesel fuel (BDF.

  13. Formation and emission of organic pollutants from diesel engines

    International Nuclear Information System (INIS)

    Bertoli, C.; Ciajolo, A.; D'Anna, A.; Barbella, R.

    1993-01-01

    The emission of soot and polycyclic aromatic hydrocarbons (PAH) from diesel engines results from the competition between oxidative and pyrolytic routes which the fuel takes in the unsteady, heterogeneous conditions of the diesel combustion process. In-cylinder sampling and analysis of particulate (soot and condensed hydrocarbon species), light hydrocarbons and gaseous inorganic species were carried out in two locations of a single cylinder direct injection diesel engine by means of a fast sampling valve in order to follow the behaviour of a diesel fuel during the engine cycle. The effect of fuel quality (volatility, aromatic content, cetane number) and air/fuel mass feed ratio on soot, PAH, and light and heavy hydrocarbons was also investigated by direct sampling and chemical analysis of the exhausts emitted from a direct injection diesel engine (D.I.) and an indirect injection diesel engine (I.D.I.)

  14. Effects of Injection Rate Profile on Combustion Process and Emissions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fuqiang Bai

    2017-01-01

    Full Text Available When multi-injection is implemented in diesel engine via high pressure common rail injection system, changed interval between injection pulses can induce variation of injection rate profile for sequential injection pulse, though other control parameters are the same. Variations of injection rate shape which influence the air-fuel mixing and combustion process will be important for designing injection strategy. In this research, CFD numerical simulations using KIVA-3V were conducted for examining the effects of injection rate shape on diesel combustion and emissions. After the model was validated by experimental results, five different shapes (including rectangle, slope, triangle, trapezoid, and wedge of injection rate profiles were investigated. Modeling results demonstrate that injection rate shape can have obvious influence on heat release process and heat release traces which cause different combustion process and emissions. It is observed that the baseline, rectangle (flat, shape of injection rate can have better balance between NOx and soot emissions than the other investigated shapes. As wedge shape brings about the lowest NOx emissions due to retarded heat release, it produces the highest soot emissions among the five shapes. Trapezoid shape has the lowest soot emissions, while its NOx is not the highest one. The highest NOx emissions were produced by triangle shape due to higher peak injection rate.

  15. Fueling diesel engines with methyl-ester soybean oil

    International Nuclear Information System (INIS)

    Schumacher, L.G.; Hires, W.G.; Borgelt, S.C.

    1993-01-01

    Two 5.9 liter Cummins engines were fueled for a combined total of more than 80,467 km (50,000 miles). One truck, a 1991 Dodge, has been driven approximately 48,280 km (30,000 miles). The other, a 1992 Dodge, has been driven approximately 32,187 km (20,000 miles). Fueling these engines with soydiesel increase engine power by 3 percent (1991 engine) and reduced power by 6 percent (1992 engine). The pickups averaged more than 7.1 km/L (16.7 mpg). Analysis of used engine oil samples indicated that the engines were wearing at normal rate. The black exhaust smoke normally observed when a diesel engine accelerates was reduced as much as 86 percent when the diesel engine was fueled with 100% soydiesel. Increased EPA exhaust emissions requirements for diesel engines have created much interest in the use of soydiesel as fuel for diesel engines

  16. Conversion of diesel engines to dual fuel (propane/diesel) operations

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S W; DeMaere, D A

    1984-02-01

    A device to convert a diesel engine to dual fuel (propane/diesel) operation was developed and evaluated. Preliminary experimentation has indicated that as much as 30% of the diesel fuel consumed in diesel engines could be displaced with propane, accompanied by an improvement in fuel efficiency, engine maintenance and an overall reduction in emission levels. Dual fuel operations in both transportation and stationary applications would then project a saving of ca 90,000 barrels of diesel fuel per day by the year 1990. A turbo-charged 250 hp diesel engine was directly coupled to a dynamometer under laboratory conditions, and operated at speeds between 500 and 2500 rpm and at various torque levels. At each rpm/torque point the engine first operated on diesel fuel alone, and then increasing quantities of propane were induced into the air intake until detonation occured. Results indicate that the proportion of propane that can be safely induced into a diesel engine varies considerably with rpm and torque so that a sophisticated metering system would be required to maximize diesel oil displacement by propane. Conversion is not cost effective at 1983 price levels.

  17. Combustion performance and emission analysis of diesel engine fuelled with water-in-diesel emulsion fuel made from low-grade diesel fuel

    International Nuclear Information System (INIS)

    Ithnin, Ahmad Muhsin; Ahmad, Mohamad Azrin; Bakar, Muhammad Aiman Abu; Rajoo, Srithar; Yahya, Wira Jazair

    2015-01-01

    Highlights: • Effect of using emulsified fuel made from low-grade fuel in engine are investigated. • Specific fuel consumption of the engine is reduced overall for all types of W/D. • Comparable maximum in-cylinder pressure and pressure rise rate compared to D2. • NOx and PM are found to be reduced for all types of W/D. • CO and CO 2 emissions increase compared to D2 at low load and high load. - Abstract: In the present research, an experiment is designed and conducted to investigate the effect of W/D originating from low-grade diesel fuel (D2) on the combustion performance and emission characteristics of a direct injection diesel engine under varying engine loads (25–100%) and constant engine speed (3000 rpm). Four types of W/D are tested, which consist of different water percentages (5%, 10%, 15% and 20%), with constant 2% of surfactant and labelled as E5, E10, E15 and E20, respectively. The specific fuel consumption (SFC) of the engine when using each type of W/D is found to be reduced overall. This is observed when the total amount of diesel fuel in the emulsion is compared with that of neat D2. E20 shows a comparable maximum in-cylinder pressure and pressure rise rate (PRR) compared to D2 in all load conditions. In addition, it produces the highest maximum rate of heat release (MHRR) in almost every load compared to D2 and other W/Ds. NOx and PM are found to be reduced for all types of W/D. The carbon monoxide (CO) and carbon dioxide (CO 2 ) emissions increase compared to D2 at low load and high load, respectively. Overall, it is observed that the formation of W/D from low-grade diesel is an appropriate alternative fuel method that can bring about greener exhaust emissions and fuel savings without deteriorating engine performance

  18. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  19. Crude palm oil as fuel extender for diesel engines

    International Nuclear Information System (INIS)

    Mohamed M El-Awad; Fuad Abas; Mak Kian Sin

    2000-01-01

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  20. Synthesis and utilization of catalytically cracked cashew nut shell liquid in a diesel engine

    KAUST Repository

    Vedharaj, S.

    2015-09-30

    In this study, CNSL (Cashew nut shell liquid), an economically viable feedstock among the other contemporary resources, has been considered as an appropriate source of alternate fuel. Herein, CNSL was extracted from cashew nut outer shell, a waste product, through a unique approach of steam treatment process followed by mechanical crushing technique. In contrast to the past studies that have attempted to use unprocessed CNSL directly as substitute for diesel, this study has resorted to use processed CNSL by cracking it using zeolite catalyst. Thus, both the extraction of CNSL from cashew nut outer shell and processing of it through catalytic cracking process to help synthesize CC-CNSL (catalytically cracked CNSL) are different, which underscores the significance of the current work. In wake of adopting such distinct methodologies with fuel characterization, the properties of CC-CNSL such as viscosity and calorific value were figured out to be improved. Subsequently, CC-CNSL20 (20% CC-CNSL and 80% diesel) was tested at different fuel injection pressure such as 200 bar, 235 bar, 270 bar and 300 bar so as to optimize its use in a single cylinder diesel engine. From the engine experimental study, CC-CNSL20 was found to evince better engine performance than diesel and the composite emissions of CO (carbon monoxide), HC (hydrocarbon), NOX (oxides of nitrogen) and smoke, computed based on ISO 8178 D2 standard test cycle, were found to be better than diesel and incompliance with the legislative norms for genset.

  1. Synthesis and utilization of catalytically cracked cashew nut shell liquid in a diesel engine

    KAUST Repository

    Vedharaj, S.; Vallinayagam, R.; Yang, W.M.; Saravanan, C.G.; Roberts, William L.

    2015-01-01

    In this study, CNSL (Cashew nut shell liquid), an economically viable feedstock among the other contemporary resources, has been considered as an appropriate source of alternate fuel. Herein, CNSL was extracted from cashew nut outer shell, a waste product, through a unique approach of steam treatment process followed by mechanical crushing technique. In contrast to the past studies that have attempted to use unprocessed CNSL directly as substitute for diesel, this study has resorted to use processed CNSL by cracking it using zeolite catalyst. Thus, both the extraction of CNSL from cashew nut outer shell and processing of it through catalytic cracking process to help synthesize CC-CNSL (catalytically cracked CNSL) are different, which underscores the significance of the current work. In wake of adopting such distinct methodologies with fuel characterization, the properties of CC-CNSL such as viscosity and calorific value were figured out to be improved. Subsequently, CC-CNSL20 (20% CC-CNSL and 80% diesel) was tested at different fuel injection pressure such as 200 bar, 235 bar, 270 bar and 300 bar so as to optimize its use in a single cylinder diesel engine. From the engine experimental study, CC-CNSL20 was found to evince better engine performance than diesel and the composite emissions of CO (carbon monoxide), HC (hydrocarbon), NOX (oxides of nitrogen) and smoke, computed based on ISO 8178 D2 standard test cycle, were found to be better than diesel and incompliance with the legislative norms for genset.

  2. Fuel efficiency of conventional design tractors diesel engines in relation to new design

    Directory of Open Access Journals (Sweden)

    Jevtić Jeremija

    2006-01-01

    Full Text Available Total consumption of all types of energies is rather high nowadays with constant tendency of increasing. Transport section is one of the highest consumers of energy obtained from fossil fuels. It is absolutely clear that the reduction of energy consumption and the protection of environment - exhaust emission reduction, i. e. cleaner air, will be one of the main tasks of automotive industry in the first decades of the 21st century. In spite of its superiority over the petrol engine in respect of the fuel consumption, a diesel engine "suffers" from the increased exhaust emission, particles and NOx first of all and also from the noise and vibrations. The paper gives a review of fuel efficiency of conventional design tractors diesel engines in relation to new design. .

  3. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    Science.gov (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  4. An experimental investigation on engine performance and emissions of a supercharged H{sub 2}-diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Murari Mohon [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi [Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo (Japan)

    2010-01-15

    This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen and ignited by a pilot amount of diesel fuel in dual-fuel mode. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with charge dilution. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first with hydrogen-operation condition up to the maximum possible fuel-air equivalence ratio of 0.3. A maximum IMEP of 908 kPa and a thermal efficiency of about 42% were obtained. Equivalence ratio could not be further increased due to knocking of the engine. The emission of CO was only about 5 ppm, and that of HC was about 15 ppm. However, the NOx emissions were high, 100-200 ppm or more. The charge dilution by N{sub 2} was then performed to obtain lower NOx emissions. The 100% reduction of NOx was achieved. Due to the dilution by N{sub 2} gas, higher amount of energy could be supplied from hydrogen without knocking, and about 13% higher IMEP was produced than without charge dilution. (author)

  5. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  7. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  8. Lemon peel oil – A novel renewable alternative energy source for diesel engine

    International Nuclear Information System (INIS)

    Ashok, B.; Thundil Karuppa Raj, R.; Nanthagopal, K.; Krishnan, Rahul; Subbarao, Rayapati

    2017-01-01

    Highlights: • Novel biofuel is extracted from lemon peels through steam distillation process. • Lemon peel oil is found to be a potential, renewable alternate eco-friendly fuel. • Significant vibration is observed with 100% lemon peel oil. • Reduction of CO, HC and smoke emission are observed with lemon peel oil blends. • Lemon peel oil blends are showed higher brake thermal efficiency than diesel fuel. - Abstract: The present research work has embarked on to exploit the novel renewable and biodegradable source of energy from lemon fruit rinds. A systematic approach has been made in this study to find the suitability of lemon peel oil for internal combustion engines and gensets applications. Extracted lemon peel oil is found to exhibit comparatively very low viscosity, flash point and boiling point than that of conventional diesel. Various blends of lemon peel oil have been prepared with conventional diesel with volumetric concentration of 20%, 40%, 50% and 100% and their physical and chemical properties are evaluated for its suitability in direct injection diesel engine. Lower cetane index of lemon peel oil significantly influences the ignition delay period and peak heat release rate that lead to the penalty in NOx emissions. Interestingly, the diesel engine performance characteristics have been improved to a remarkable level with higher proportions of lemon peel oil in the blends. In addition, the reduction of BSCO, BSHC and smoke emission is proportional to the lemon oil concentration in the blends. Overall diesel engine characteristics indicated that lemon peel oil can partially or completely replace the petroleum diesel usage to a great extent in developing countries like India.

  9. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  10. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  11. Oil soot measurement system of diesel engine; Diesel engine no oil sutsu sokutei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Y; Moritsugu, M; Kato, N [Nippon Soken, Inc., Tokyo (Japan); Osaki, R [Denso Corp., Aichi (Japan)

    1997-10-01

    For use evaluate diesel engine in laboratory, we have developed a apparatus which can measure soot density in engine oil instantly and accurately. We have achieved accuracy of 0.03 wt% by employing the following; (1) utilize a ligh-reflecting oil soot sensor, (2) regurate the temperature and flow of the in-coming oil to be constant. 4 refs., 12 figs., 2 tabs.

  12. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2013-01-01

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (η th ) are found to have maximum values under these conditions. The emission CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  13. Embarked diagnosis applied to a mechanical system "diesel engine ...

    African Journals Online (AJOL)

    The implementation of OBD (on-board diagnostic) systems for diesel engines has become an unavoidable necessity. From the models described in the literature, the latest generation diesel engine models as well as defects affecting it were established. A board diagnostic system based on the use of fuzzy pattern ...

  14. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  15. Investigation on utilization of biogas and Karanja oil biodiesel in dual fuel mode in a single cylinder DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna Pattanaik, Bhabani; Nayak, Chandrakanta [Department of Mechanical Eng., Gandhi Institute for Technological Advancement, Madanpur, Bhubaneswar - 752054, Odisha (India); Kumar Nanda, Basanta [Department of Mechanical Eng., Maharaja Institute of Technology, Bhubaneswar, Odisha (India)

    2013-07-01

    In this work, experiments were performed on a single cylinder DI diesel engine by using bio-gas as a primary fuel and Karanja oil biodiesel and diesel oil as secondary fuels in dual fuel operation. The experiments were performed to measure performance parameters i.e. (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emission parameters such as carbon monoxide, carbon dioxide, nitrogen oxide unburned hydro carbon and smoke etc. at different load conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by gas injectors. The study showed that, the engine performance parameters like BP, BTE and EGT gradually increase with increase in engine load for all test conditions using both pilot fuels diesel and KOBD. However, the BSFC of the engine showed decreasing slope with increase in engine load for all test conditions. Above 40% engine load the BSFC values for all test fuels are very close to each other. The engine emission analysis showed that the CO2, CO and NOx emissions increase with increase in engine load for both single and dual fuel mode operation using both pilot fuels. The NOx concentration of exhaust gases in dual fuel mode is superior than that of single mode.

  16. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    Science.gov (United States)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  17. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  18. Application of bioethanol/RME/diesel blend in a Euro5 automotive diesel engine: Potentiality of closed loop combustion control technology

    International Nuclear Information System (INIS)

    Guido, Chiara; Beatrice, Carlo; Napolitano, Pierpaolo

    2013-01-01

    Highlights: ► Effects of a bioethanol/biodiesel/diesel blend on Euro5 diesel engine. ► Potentiality of combustion control technology with alternative fuels. ► Strong smoke and NOx emissions reduction. ► No power penalties burning bioethanol blend by means of combustion control activation. -- Abstract: The latest European regulations require the use of biofuels by at least 10% as energy source in transport by 2020. This goal could be reached by means of the use of different renewable fuels; bioethanol (BE) is one of the most interesting for its low production cost and availability. BE usually replaces gasoline in petrol engines but it can be also blended in low concentrations to feed diesel engines. In this paper the results of an experimental activity aimed to study the impact of a BE/biodiesel/mineral diesel blend on performance and emissions in a last generation automotive diesel engine are presented. The tests were performed in steady-state in eight partial load engine conditions and at 2500 rpm in full load. Two fuel blends have been compared: the Rapeseed Methyl Ester (RME)/diesel with 10% of biodiesel by volume (B10), and the BE/RME/diesel with 20% of BE and 10% of biodiesel by volume (E20B10). The experimental campaign was carried out on a 2.0 L diesel engine compliant with Euro5 regulation. The engine features the closed loop combustion control (CLCC), which enables individual and real-time control of injection phasing and cylinder inner torque by means of in-cylinder pressure sensors connected with the Electronic Control Unit (ECU). As expected, the results showed a strong smoke emissions reduction for E20B10 in all tested conditions, mainly due to the high oxygen content of BE. Also a reduction of NOx emissions were observed with BE addiction. The results confirm that the CLCC adoption enables a significant improvement in the robustness of the engine performance and emissions when blends with low heat content and very low cetane number (as BE

  19. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  20. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE)

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri

    2017-01-01

    Highlights: • Performance of a diesel engine is simulated by finite time thermodynamics. • Effect of steam injection on performance of a Miller cycle engine is examined. • Model results are verified with the experimental data with less than 7% error. - Abstract: In this study, application of the steam injection method (SIM), Miller cycle (MC) and turbo charging (TC) techniques into a four stroke, direct-injection diesel engine has been numerically and empirically conducted. NOx emissions have detrimental influences on the environment and living beings. They are formed at the high temperatures, thus the Diesel engines are serious NOx generation sources since they have higher compression ratios and higher combustion temperatures. The international regulations have decreased the emission limits due to environmental reasons. The Miller cycle (MC) application and steam injection method (SIM) have been popular to abate NOx produced from the internal combustion engines (ICEs), in the recent years. However, the MC application can cause a reduction in power output. The most known technique which maximizes the engine power and abates exhaust emissions is TC. Therefore, if these three techniques are combined, the power loss can be tolerated and pollutant emissions can be minimized. While the application of the MC and SIM causes to diminish in the brake power and brake thermal efficiency of the engine up to 6.5% and 10%, the TC increases the brake power and brake thermal efficiency of the engine up to 18% and 12%. The experimental and theoretical results have been compared in terms of the torque, the specific fuel consumption (SFC), the brake power and the brake thermal efficiency. The results acquired from theoretical modeling have been validated with empirical data with less than 7% maximum error. The results showed that developed combination can increase the engine performance and the method can be easily applied to the Diesel engines.

  1. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  2. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  3. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    OpenAIRE

    S Abbasi; H Bahrami; B Ghobadian; M Kiani Deh Kiani

    2018-01-01

    Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel a...

  4. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    Directory of Open Access Journals (Sweden)

    Mariasiu Florin

    2015-01-01

    Full Text Available In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol. Reductions in brake specific fuel consumption and NOx pollutant emissions are correlated with the use of ultrasonic fumigation of bioethanol fuel, comparative to use of biodiesel-bioethanol blend. Considering the fuel consumption as diesel engine’s main performance parameter, the proposed bioethanol’s fumigation method, offers the possibility to use more efficient renewable biofuels (bioethanol, with immediate effects on environmental protection.

  5. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  6. Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases

    International Nuclear Information System (INIS)

    Yun, Byoung Kyu; Kim, Man Young

    2013-01-01

    A numerical simulation for prediction of NO X conversion over a commercial V 2 O 5 catalyst with NH 3 as a reductant was performed for a heavy duty diesel engine applications. The chemical behaviors of the SCR reactor are described by using the global NO X kinetics including standard, fast, and NH 3 oxidation reactions with the Langmuir–Hinshelwood (LH) mechanism incorporated into the commercial Boost code. After introducing mathematical models for the SCR reaction with specific reaction parameters, the effects of various parameters such as space velocities, the O 2 , H 2 O, NO 2 , and NH 3 concentrations on the NOx conversion are thoroughly studied and validated by comparing with the experimental data available in the literature. It is found that NO X conversion increases with decreasing space velocity, H 2 O concentration, and NH 3 /NO X ratio, and increasing O 2 concentration and NO 2 /NO X ratio. The study shows that not only is the present approach adopted is flexible in treating performance of the commercial V 2 O 5 based SCR catalyst, it is also accurate and efficient for the prediction of NO X conversion in diesel exhaust environments. - Highlights: ► To find the reaction parameters for LH mechanism over a commercial V2O5 catalyst. ► To investigate the effects of various parameters on the SCR NO X conversion. ► To present benchmark solutions on SCR behavior with diesel exhaust environments.

  7. Heavy-Duty Diesel Fuel Analysis

    Science.gov (United States)

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  8. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  9. Experimental study on the particulate matter and nitrogenous compounds from diesel engine retrofitted with DOC+CDPF+SCR

    Science.gov (United States)

    Zhang, Yunhua; Lou, Diming; Tan, Piqiang; Hu, Zhiyuan

    2018-03-01

    The increasingly stringent emission regulations will mandate the retrofit of after-treatment devices for in-use diesel vehicles, in order to reduce their substantial particulate matter and nitrogen oxides (NOX) emissions. In this paper, a combination of DOC (diesel oxidation catalyst), CDPF (catalytic diesel particulate filter) and SCR (selective catalytic reduction) retrofit for a heavy-duty diesel engine was employed to perform experiment on the engine test bench to evaluate the effects on the particulate matter emissions including particle number (PN), particle mass (PM), particle size distributions and nitrogenous compounds emissions including NOX, nitrogen dioxide (NO2)/NOX, nitrous oxide (N2O) and ammonia (NH3) slip. In addition, the urea injection was also of our concern. The results showed that the DOC+CDPF+SCR retrofit almost had no adverse effect on the engine power and fuel consumption. Under the test loads, the upstream DOC and CDPF reduced the PN and PM by an average of 91.6% and 90.9%, respectively. While the downstream SCR brought about an average decrease of 85% NOX. Both PM and NOX emission factors based on this retrofit were lower than China-Ⅳ limits (ESC), and even lower than China-Ⅴ limits (ESC) at medium and high loads. The DOC and CDPF changed the particle size distributions, leading to the increase in the proportion of accumulation mode particles and the decrease in the percentage of nuclear mode particles. This indicates that the effect of DOC and CDPF on nuclear mode particles was better than that of accumulation mode ones. The upstream DOC could increase the NO2/NOX ratio to 40%, higher NO2/NOX ratio improved the efficiency of CDPF and SCR. Besides, the N2O emission increased by an average of 2.58 times after the retrofit and NH3 slip occurred with the average of 26.7 ppm. The rate of urea injection was roughly equal to 8% of the fuel consumption rate. The DOC+CDPF+SCR retrofit was proved a feasible and effective measurement in terms

  10. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Science.gov (United States)

    2010-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  12. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  13. Prospects of biogas as dual fuel in small diesel engines

    International Nuclear Information System (INIS)

    Singh, Irvinder; Mittal, V.K.

    1992-01-01

    A study was conducted on diesel engines to find out the effect of induction rate of biogas on engine performance indices. The results of dual fuel engine performance was compared with diesel mode for various levels of biogas induction rate (0.3 to 7.2 l/s) engine load (20% to full load) and injection timing (20.6 to 48 before top dead centre). At full and 80% brake load, the best energy mix between diesel and biogas was 1.5:1 and 4:1 respectively. (author). 7 refs., 7 figs., 4 tabs

  14. Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.

  15. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  16. Modal extraction on a diesel engine in operation

    DEFF Research Database (Denmark)

    Møller, Nis; Herlufsen, Henrik; Brincker, Rune

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented. The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-Down. The response data were analyzed using two different...

  17. Research of biofuels on performance, emission and noise of diesel engine under high-altitude area

    Science.gov (United States)

    Xu, Kai; Huang, Hua

    2018-05-01

    At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).

  18. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  20. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects

    OpenAIRE

    Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H.; Fleischer, F.

    2011-01-01

    The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fue...

  1. Biodiesel as an Alternative Fuel for Diesel Engines

    OpenAIRE

    F. Halek; A. Kavousi; M. Banifatemi

    2009-01-01

    There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) ...

  2. An experimental investigation of performance of diesel to CNG engine

    Science.gov (United States)

    Misra, Sheelam; Gupta, Ayush; Garg, Ashutosh

    2018-05-01

    Over the past few decades, diesel engines are widely used in automobiles which is responsible for hazardous increase in pollution. Around the world, many countries are trying to reduce it by replacing diesel with CNG as a fuel which is more economical and leads to pollution free environment. Engineers came up with an idea to convert diesel engine to CNG engine. This conversion is possible by doing some alteration of engine components and it also include adding some extra components to the system which includes spark plug, valves etc. and by decreasing the compression ratio of the engine. It is used worldwide today and many countries have many programs to convert older, polluting diesel vehicles to CNG enable vehicles so that they can run on clean, economical natural gas. This is, an excellent way to reduce fuel cost, reduce pollution, reduce noise with minimum possible capital costs.first, second, and third level headings.

  3. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  4. Biogas Production and Engine Conversion From Diesel Engine to Biogas Engine for Lighting in Rural Area

    OpenAIRE

    Tun, Seint Thandar

    2012-01-01

    The research of alternative fuels implemented in internal combustion engines are becoming the subjects of interest nowadays. This paper describes a production of biogas from cow dung, diesel engine conversion process with piston modification of ZH1115 diesel engine. To produce biogas, the usual practice is to mix water with some organic material, such as cow dung (a free source of the appropriate micro-organisms). The slurry is placed in a leak-proof container (called a digester) and leaves i...

  5. Super Turbocharging the Direct Injection Diesel engine

    Science.gov (United States)

    Boretti, Albert

    2018-03-01

    The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result

  6. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel

    International Nuclear Information System (INIS)

    Annamalai, M.; Dhinesh, B.; Nanthagopal, K.; SivaramaKrishnan, P.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • A novel biofuel, lemongrass is used as a renewable energy source. • Emulsion prepared using 5% of water, 93% of lemongrass oil and 2% of surfactant. • Emulsified nano biofuel performance profile stayed closer to diesel fuel. • Drastic reduction in HC, CO, NO_X and marginal decrease of smoke compared with diesel. - Abstract: The consequence of using cerium oxide (CeO_2) nanoparticle as additive in Lemongrass Oil (LGO) emulsion fuel was experimentally investigated in a single cylinder, constant speed diesel engine. A novel biofuel plant was introduced in this project, namely lemongrass whose binomial name is Cymbopogon flexuosus. The main objective of the project is to reduce the level of harmful pollutants in the exhaust such as unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NO_X), and smoke. The engine performance could also be increased due to the addition of CeO_2 nanoparticle. The LGO emulsion fuel was prepared in the proportion of 5% of water, 93% of LGO and 2% of span80 by volume basis. Span80 acted as surfactant and it would reduce surface tension between the liquids with a hydrophilic-lipophilic balance (HLB) value of 4.2. The ceria nanoparticle was dispersed with the LGO emulsion fuel in the dosage of 30 ppm (ppm). The diesel engine performance, combustion behavior and emission magnitude were compared with diesel and LGO as the base fuels. The whole investigation was conducted with a single cylinder diesel engine using the following fuels, namely neat diesel, neat LGO, LGO emulsion and LGO nano emulsion fuels respectively. The LGO emulsion fuel could reduce smoke and NO_X emissions and could improve Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC) compared with neat LGO despite the marginal increase in HC and CO emissions. For ceria nanoparticle blended test fuel, the drastic reduction of carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen (NO_X) and marginal decrease of

  7. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    Science.gov (United States)

    2016-05-01

    system does not provide direct current power to the preamplifier, equivalent pre-amplifiers with external power inputs were purchased , but the... behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission. Tribology International 39 (12) 12 / 01 / 1634-1642...diesel engine using in-cylinder pressure and acoustic emission techniques. Dyanmics for Sustainable Engineering 1 454-463 26. Lowe, D. P., et al

  8. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  9. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  10. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    Science.gov (United States)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  11. An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions

    International Nuclear Information System (INIS)

    Kowalski, Jerzy

    2014-01-01

    Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO 2 emission increase and NOx emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO 2 emission and the decrease of NOx emission. - Highlights: •Chosen malfunctions of the fuel injection pump of marine engine are simulated. •Changes of thermodynamic parameters of marine engine are analyzed. •Changes of CO, CO 2 and NOx emission characteristics of marine engine are analyzed. •Injection pump malfunctions take significant changes in emission characteristics

  12. Effects of ethanol added fuel on exhaust emissions and combustion in a premixed charge compression ignition diesel engine

    Directory of Open Access Journals (Sweden)

    Kim Yungjin

    2015-01-01

    Full Text Available The use of diesel engines for vehicle has been increasing recently due to its higher thermal efficiency and lower CO2 emission level. However, in the case of diesel engine, NOx increases in a high temperature combustion region and particulate matter is generated in a fuel rich region. Therefore, the technique of PCCI (premixed charge compression ignition is often studied to get the peak combustion temperature down and to make a better air-fuel mixing. However it also has got a limited operating range and lower engine power produced by the wall wetting and the difficulty of the ignition timing control. In this research, the effect of injection strategies on the injected fuel behavior, combustion and emission characteristics in a PCCI engine were investigated to find out the optimal conditions for fuel injection, and then ethanol blended diesel fuel was used to control the ignition timing. As a result, the combustion pressures and ROHR (rate of heat release of the blended fuel became lower, however, IMEP showed fewer differences. Especially in the case of triple injection, smoke could be reduced a little and NOx emission decreased a lot by using the ethanol blended fuel simultaneously without much decreasing of IMEP compared to the result of 100% diesel fuel.

  13. Performance and Emission Analysis of a Diesel Engine Using Linseed Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    M. M. Tunio

    2018-06-01

    Full Text Available The core object of this study is to examine the suitability of linseeds for biodiesel production. The performance of an engine at different proportions of linseed blends with petro-diesel and the amount of emissions rate were investigated. Initially, linseed biodiesel was produced through transesterification process, and then it was mixed with petro-diesel fuel (D100 blends at volumetric ratios of 10% (LB10, 20% (LB20, and 30% (LB30. The properties of linseed biodiesel and its blends were investigated and compared with petro-diesel properties with reference to ASTM standards. It has been observed that the fuel properties of produced biodiesel are within ASTM permissible limits. The specific fuel consumption (SFC of LB10 blend has been found lesser compared to LB20 and LB30. SFC of D100 is slightly less than that of all the blends. The brake thermal efficiency (BTE of LB30 is greater than that of pure diesel D100 at maximum load and greater than that of LB10 and LB20. The heat dissipation rate in all linseed blends is found to have been less than that of D100. Carbon monoxide, carbon dioxide and NOx emissions of linseed blends are mostly lower in comparison with D100’s. Among all blends, LB10 was found more suitable alternative fuel for diesel engines and can be blended with petro diesel without engine modifications. It can be concluded that cultivation and production of linseed in Pakistan is very promising, therefore, it is recommended that proper exploitation and use of linseed for energy production may be encouraged through pertinent agencies of Pakistan.

  14. A study on the 0D phenomenological model for diesel engine simulation: Application to combustion of Neem methyl esther biodiesel

    International Nuclear Information System (INIS)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi; Ayissi, Zacharie Merlin; Obonou, Marcel

    2015-01-01

    Highlights: • We elaborate a 0D model for prediction of diesel engine operating parameters. • We implement the model for Neem methyl ester biodiesel combustion. • We show methyl butanoate and butyrate can be used as surrogates for biodiesel. • The model predicts fuel spray, in cylinder gaseous state and NOx emissions. • We show the model can be effective both in accuracy and computational speed. - Abstract: The design and monitoring of modern diesel engines running on alternative fuels require reliable models that can validly substitute experimental tests and predict their operating characteristics under different load conditions. Although there exists a multitude of models for diesel engines, 0D phenomenological models present the advantages of giving fast and accurate computed results. These models are useful for predicting fuel spray characteristics and instantaneous gas state. However, there are few reported studies on the application of 0D phenomenological models on biodiesel fuel combustion in diesel engines. This work reports the elaboration, validation and application on Neem methyl ester biodiesel (NMEB) combustion of a 0D phenomenological model for diesel engine simulation. The model addresses some specific aspects of diesel engine modeling found in previous studies such as the compromise between computers cost, accurateness and model simplicity, the reduction of the number of empirical fitting constant, the prediction of combustion kinetics with reduction of the need of experimental curve fitting, the ability to simultaneously predict under various loads engine thermodynamic and spray parameters as well as emission characteristics and finally the ability to simulate diesel engine parameters when fueled by alternative fuels. The proposed model predicts fuel spray behavior, in cylinder combustion and nitric oxides (NOx) emissions. The model is implemented through a Matlab code. The model is mainly based on Razlejtsev’s spray evaporation model

  15. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and

  16. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  17. Chemiluminescence analysis of the effect of butanol-diesel fuel blends on the spray-combustion process in an experimental common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia S.

    2015-01-01

    Full Text Available Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40 were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40% together with a strong smoke number decrease (>80% and NOx concentration increase (@50% were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.

  18. Diesel engines and air pollution: facts and figures

    International Nuclear Information System (INIS)

    Chaaban, Farid

    1998-01-01

    Traffic densities and resulting air pollution, in any country are directly related to the degree of urbanization and the size and characteristics of the transportation sector. In Lebanon, the car ownership rate is among the highest in the world and its consequence is the drastic deterioration in ambient air quality in Greater Beirut and other organized regions. In this article, features of diesel engines are described. The environmental impacts of diesel engines, in relation of petrol engines are briefly presented. Pollutants provocated by diesel fuel, due to its contents in Carbon , Sulfur and gaseous emissions (noise level, smoke, Carbon Monoxide emissions, smell) as well as the economical aspects are given in comparison with petrol engines. Conclusion is given that diesel engines will help in reducing air pollution caused by transport sector in Lebanon, only if some required vehicles conditions are satisfied

  19. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  20. The possibility of controlled auto-ignition (CAI) in gasoline engine and gas to liquid (GTL) as a fuel of diesel engine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, D. [Korea Inst. of Machinery and Materials, Daejou (Korea)

    2005-07-01

    A significant challenge grows from the ever-increasing demands for the optimization of performance, emissions, fuel economy and drivability. The most powerful technologies in the near future to improve these factors are believed Controlled Auto-Ignition (CAI) in gasoline engine and Gas to Liquid (GTL) as a fuel of Diesel engine. In recent years there has been an increasing trend to use more complex valvetrain designs from traditional camshaft driven mechanical systems to camless electromagnetic or electrohydraulic solutions. Comparing to fixed valve actuation systems, variable valve actuation (VVA) should be powerful to optimize the engine cycle. The matching of valve events to the engine performance and to emission requirements at a given engine or vehicle operating condition can be further optimized to the Controlled Auto-Ignition (CAI) in gasoline engine, which has benefits in NOx emission, fuel consumption, combustion stability and intake throttle load. In case of Diesel engine, the increasing demands for NOx and soot emission reduction have introduced aftertreatment technologies recently, but been in need of basic solution for the future, such as a super clean fuel like Gas to Liquid (GTL), which has benefits in comparability to diesel fuel, independency from crude oil and reduction of CO, THC and soot emissions. Korea looks to the future with these kinds of technologies, and tries to find the possibility for reaching the future targets in the internal combustion engine. (orig.)

  1. Improvement of ecological characteristics of the hydrogen diesel engine

    Science.gov (United States)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  2. Soot and smoke emissions numerical evaluation for a direct injection (DI diesel engine

    Directory of Open Access Journals (Sweden)

    Radu Bogdan

    2017-01-01

    Full Text Available The reduction of Diesel internal combustion engines emissions is one of the major concerns of the engines manufacturers. Despite the fact that the efficiency of the gas post-treatment systems has been significantly improved, decreasing the smoke and the soot from the cylinder inside remains a main research goal. This work is proposing a theoretical study on these pollutants formation for different kinds of direct injection methods. By dividing the in-cylinder injection the heat release characteristic could be modified, leading to different temperature and pressure levels. Using exhaust gas recirculation (EGR the reduction of the gas temperatures might also be decreased, limiting NOx formation. To evaluate the level of the cylinder gas emissions formation a two-step procedure could be followed. First, by using a numerical calculation system the heat release characteristic can be highlighted concerning a Diesel engine with stratified injection; then, using an experimental relationship applying a large data base, the amount of the gas emissions can be subsequently provided. The authors propose some combinations between injection characteristics and EGR used fractions which could generate successfully results speaking in terms of NOx, soot and smoke formation.

  3. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  4. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  5. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  6. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-12-15

    emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  7. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  8. Analysis of combustion behavior in DI diesel engine at low temperature; DI diesel engine ni okeru teionji no nensho kyodo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuya, Y; Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Aoki, S; Itatsu, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    For NOx reduction of a DI diesel engine, the retard of fuel injection timing is effective. However, it causes the white smoke at low temperature and low load. To analyze the mechanism of white smoke generation, a new visualizing system of fuel spray and flame behavior has been developed. This system can be also applied to a 4-valves per cylinder production engine by integrating two optical systems for image and lighting. From the visualization of the fuel spray and the flame behavior in the combustion chamber at low temperature, it has been proved that prompt fuel evaporation before reaching the wall surface of combustion chamber is required to reduce the white smoke. 6 refs., 10 figs., 3 tabs.

  9. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Directory of Open Access Journals (Sweden)

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  10. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling

    International Nuclear Information System (INIS)

    Mobasheri, Raouf; Peng, Zhijun; Mirsalim, Seyed Mostafa

    2012-01-01

    Highlights: ► Explore the effects of advanced multiple injection strategies in a DI-diesel engine. ► Achieving good agreement between the predicted results and experimental values. ► Analyzing three factors for optimization including pilot, main and post-injection. ► Injecting adequate fuel in each pulse accompanied with an appropriate EGR rate. ► Beneficial effects for significant soot reduction without a NOx penalty rate. - Abstract: An Advanced CFD simulation has been carried out in order to explore the combined effects of pilot-, post- and multiple-fuel injection strategies and EGR on engine performance and emission formation in a heavy duty DI-diesel engine. An improved version of the ECFM-3Z combustion model has been applied coupled with advanced models for NOx and soot formation. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and good agreement between predicted and measured in-cylinder pressure, heat release rate, NOx and soot emissions was obtained. The optimizations were conducted separately for different split injection cases without pilot injection and then, for various multiple injection cases. Totally, three factors were considered for the injection optimization, which included EGR rate, the separation between main injection and post-injection and the amount of injected fuel in each pulse. For the multiple injection cases, two more factors (including double and triple injections during main injection) were also added. Results show that using pilot injection accompanied with an optimized main injection has a significant beneficial effect on combustion process so that it could form a separate 2nd stage of heat release which could reduce the maximum combustion temperature, which leads to the reduction of the NOx formation. In addition, it has found that injecting adequate fuel in post-injection at an appropriate EGR allows significant soot reduction without a NOx penalty rate.

  12. Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine

    Science.gov (United States)

    Said, Mazlan; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad

    2012-06-01

    The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine, and to compare the outcomes to that of the D2 fuel. Engine performances, exhaust emissions, and some other important parameters were observed as a function of engine load and speed. In addition, the effect of modifying compression ratio was also carried out in this study. From the engine experimental work, neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption, thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2, operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO, CO2, and HC were also lower using blended mixtures and in its neat form. However, NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

  13. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  14. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  15. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    Raheman, H.; Phadatare, A.G.

    2004-01-01

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NO x to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  16. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    Science.gov (United States)

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  17. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  18. The characteristic of spray using diesel water emulsified fuel in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Kim, Hyungik; Lee, Kihyung

    2016-01-01

    Highlights: • Water in oil emulsion is produced using ceramic membrane. • Surfactant type affect stability performance and droplet size distribution. • Evaporation characteristic of DE is poor compared with neat diesel. • Coefficient of variation maintains below 2.0% both DE and neat diesel. - Abstract: In this study, it was applied to the diesel–water emulsified (DE) fuel that carried out the experiment for the characteristic of sprat using diesel water emulsified fuel in a diesel engine, and the possibility of its application to conventional diesel engines was evaluated from the fundamental characteristics of diesel–water emulsified fuel. According to the results of the spray characteristics such as spray penetration and spray distribution were measured in the experiment, and then analyzed through digital image processing. The DEs were applied to actual diesel engines and their combustion, emission, and fuel consumption characteristics were compared with those of diesel. The results showed that the experiments were confirmed as the spray atomization characteristics at the various emulsified fuels.

  19. Characterization of Toxicologically Relevant Compounds From Diesel Emissions: Phase II

    National Research Council Canada - National Science Library

    Yost, Douglas M; Schulman, Matthew E; Frame, Edwin A

    2004-01-01

    A light-duty diesel engine fitted with a common-rail fuel injection system was calibrated on several alternative type test fuels to achieve low engine-out oxides of nitrogen (NOx) exhaust emissions...

  20. Imitating model of the electronic regulator frequencies of rotation of the automobile diesel engine

    OpenAIRE

    Тырловой, С. И.

    2011-01-01

    The imitating model of an frequency electronic regulator of rotation of high-speed diesel engine an automobile diesel engine with the distributive fuel pump of Bosch company is resulted. Is executed simulation transitive modes of a diesel engine with mechanic and electronic regulators. Deterioration influence plungers steams on dinamic and economic indicators of a diesel engine is analysed. Operational indicators of a diesel engine with mechanic and electronic regulators are compared. The obt...

  1. Remanufacture Systems for Category 1 and 2 Marine Diesel Engines

    Science.gov (United States)

    EPA maintains a list of remanufacture systems, or “kits”, certified for use with Category 1 and 2 marine diesel engines according to the provisions of 40 CFR Part 1042, Subpart I, and is periodically updated.

  2. Oxygenated fuels for clean heavy-duty diesel engines

    NARCIS (Netherlands)

    Frijters, P.J.M.; Baert, R.S.G.

    2006-01-01

    Abstract: For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been

  3. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed; Hernandez Perez, Francisco; Vallinayagam, R.; Vedharaj, S.; Johansson, Bengt; Im, Hong G.

    2017-01-01

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics

  4. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  5. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    OpenAIRE

    Arsie Ivan; Di Leo Rocco; Pianese Cesare; De Cesare Matteo

    2015-01-01

    In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS) is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer ...

  6. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.

    Science.gov (United States)

    O'Driscoll, Rosalind; Stettler, Marc E J; Molden, Nick; Oxley, Tim; ApSimon, Helen M

    2018-04-15

    In this study CO 2 and NO x emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO 2 emissions 13-66% higher than diesel. During urban driving, the average CO 2 emission factor was 210.5 (sd. 47) gkm -1 for gasoline and 170.2 (sd. 34) gkm -1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines cars. The average urban NO x emission from Euro 6 diesel vehicles 0.44 (sd. 0.44) gkm -1 was 11 times higher than for gasoline 0.04 (sd. 0.04) gkm -1 . We also analysed two gasoline-electric hybrids which out-performed both gasoline and diesel for NO x and CO 2 . We conclude action is required to mitigate the public health risk created by excessive NO x emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO 2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO 2 and NO x emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NO x and CO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Nagendran, A.

    2016-01-01

    Highlights: • Four higher-alcohols namely, iso-butanol, n-pentanol, n-hexanol and n-octanol, were used. • Iso-butanol/diesel blend presented longest ignition delay, highest peak pressures and peak heat release rates. • NOx emissions were high for n-pentanol/diesel and n-hexanol/diesel blends at high load conditions. • Smoke opacity is highest for n-octanol/diesel blend and lowest for iso-butanol/diesel blend. • HC emissions are high for iso-butanol/diesel and n-pentanol/diesel blends. - Abstract: Higher alcohols are attractive next generation biofuels that can be extracted from sugary, starchy and ligno-cellulosic biomass feedstocks using sustainable pathways. Their viability for use in diesel engines has greatly improved ever since extended bio-synthetic pathways have achieved substantial yields of these alcohols using engineered micro-organisms. This study sets out to compare and analyze the effects of some higher alcohol/diesel blends on combustion and emission characteristics of a direct-injection diesel engine. Four test fuels containing 30% by vol. of iso-butanol, n-pentanol, n-hexanol and n-octanol (designated as ISB30, PEN30, HEX30 and OCT30 respectively) in ultra-low sulfur diesel (ULSD) were used. Results indicated that ISB30 experienced longest ignition delay and produced highest peaks of pressure and heat release rates (HRR) compared to other higher-alcohol blends. The ignition delay, peak pressure and peak HRR are found to be in the order of (from highest to lowest): ISB30 > PEN30 > HEX30 > OCT30 > ULSD. The combustion duration (CD) for all test fuels is in the sequence (from shortest to longest): ISB30 OCT30 > HEX30 > PEN30 > ISB30. HC emissions are high for ISB30 and PEN30 while it decreased favorably for HEX30 and OCT30. It was of the order (from highest to lowest): ISB30 > PEN30 > ULSD > HEX30 > OCT30. CO emissions of the blends followed the trend of smoke emissions and remained lower than ULSD with the following order (from highest to

  8. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  9. Application of wear resistant spraying for diesel engine; Diesel kikan eno taimamo yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Y. [Mitsui Engineering and Shipbuliding Co. Ltd., Tokyo (Japan)

    1999-03-31

    Diesel engines used widely as propelling engines of ships have increasingly been provided with a high output and a high thermal efficiency; their structural members, particularly, the component parts for combustion chambers are therefore used under severe conditions, giving rise to the need of surface treatment and surface reforming of the members. Parts for marine diesel engines are huge, so that the technology applicable to the surface treatment and reforming are limited in point of facility and cost; therefore, most suitable is thermal spraying. This paper primarily discusses, among marine diesel engines, a 2-cycle low-speed engine with a 260-980mm bore used for the main engine of a merchant ship such as a container ship, bulk carrier or a tanker, and a 4-cycle medium-speed engine with a 300-420mm bore used for the main engine of a naval vessel; the paper explains the application status of a thermal spraying technology which is in progress to cope with the high output and high thermal efficiency of the diesel engines, explaining particularly the story of the development and the technological features of the wear resistant thermal spraying, which has been put to practical use, on the cylinder liner and the piston ring of the 4-cycle medium-speed engine. (NEDO)

  10. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  11. Combustion Heat Release Rate Comparison of Algae Hydroprocessed Renewable Diesel to F-76 in a Two-Stroke Diesel Engine

    Science.gov (United States)

    2013-06-01

    was recorded. Figure 14 shows the gauge on the rocker arm during calibration . Figure 14. Mechanical Injector Rocker Arm Strain Gauge. D. DATA...RELEASE RATE COMPARISON OF ALGAE HYDROPROCESSED RENEWABLE DIESEL TO F-76 IN A TWO-STROKE DIESEL ENGINE by John H. Petersen June 2013 Thesis...RELEASE RATE COMPARISON OF ALGAE HYDROPROCESSED RENEWABLE DIESEL TO F-76 IN A TWO-STROKE DIESEL ENGINE 5. FUNDING NUMBERS 6. AUTHOR(S) John H

  12. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  13. Development of catalyst for diesel engine; Diesel engine yo shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, H; Furutani, T; Nagami, T [Toyota Motor Corp., Aichi (Japan); Aono, N; Goshima, H; Kasahara, K [Cataler Industrial Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The new concept catalyst for diesel engine has been developed. When the exhaust temperature is low, SOF and HC are temporarily adsorbed by the adsorbent within the catalyst and are oxidized as the temperature rise. The process of this development have manifested as follows. (1) The coating material is important factor to govern the oxidation activity. (2) SOF is reduced by the coating material in low temperature less than 200degC. (3) The coating material, which has low SO2 adsorbing rate suppress the sulfate formation at high temperature. 2 refs., 11 figs., 1 tab.

  14. Diesel Engine Valve Clearance Detection Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Fathi Elamin

    2010-01-01

    Full Text Available This paper investigated, using experimental method, the suitability of acoustic emission (AE technique for the condition monitoring of diesel engine valve faults. The clearance fault was adjusted experimentally in an exhaust valve and successfully detected and diagnosed in a Ford FSD 425 four-cylinder, four-stroke, in-line OHV, direct injection diesel engine. The effect of faulty exhaust valve clearance on engine performance was monitored and the difference between the healthy and faulty engine was observed from the recorded AE signals. The measured results from this technique show that using only time domain and frequency domain analysis of acoustic emission signals can give a superior measure of engine condition. This concludes that acoustic emission is a powerful and reliable method of detection and diagnosis of the faults in diesel engines and this is considered to be a unique approach to condition monitoring of valve performance.

  15. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  16. Numerical simulation of fuel sprays and combustion in a premixed lean diesel engine; Kihaku yokongo diesel kikan ni okeru nenryo funmu to nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, T; Harada, A; Sasaki, S; Shimazaki, N; Hashizume, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Fuel sprays and combustion in a direct injection Premixed lean Diesel Combustion (PREDIC) engine, which can make smokeless combustion with little NOx emission, is studied numerically. Numerical simulation was carried out by means of KIVA II based computer code with a combustion submodel. The combustion submodel describes the formation of combustible fuel vapor by turbulent mixing and four-step chemical reaction which includes low temperature oxidation. Comparison between computation and experiment shows qualitatively good agreement in terms of heat release rate and NO emission. Computational results indicate that the combustion is significantly influenced by fuel spray characteristics and injection timing to vary NO emission. 10 refs., 8 figs., 1 tab.

  17. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Haiwen Song

    2016-01-01

    Full Text Available Effects of oxygen content of fuels on combustion characteristics and emissions were investigated on both an optical single cylinder direct injection (DI diesel engine and a multi-cylinder engine. Three fuels were derived from conventional diesel fuel (Finnish City diesel summer grade by blending Rapeseed Methyl Ester (RME or Diglyme and Butyl-Diglyme of different quantities to make their oxygen content 3%, 3% and 9%, respectively. The experimental results with three tested fuels show that the fuel spray development was not affected apparently by the oxygenating. Compared with the base fuel, the ignition delay to pilot injection was shortened by 0%, 11% and 19% for three oxygenated fuels, respectively. The ignition delay to main injection was shortened by 10%, 19% and 38%, respectively. With regard to emissions, the smoke level was reduced by 24% to 90%, depending on fuel properties and engine running conditions. The penalties of increased NOx emissions and fuel consumption were up to 19% and 24%, respectively.

  18. Proceedings of the 1997 diesel engine emissions reduction workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was held July 28--31, 1997 in La Jolla, California. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on diesel engine emissions issues. Diesel engine manufacturers have significantly reduced emission of nitrogen oxides and particulates over the last 12 years. Currently there is concern about the 4% contribution of carbon dioxide from the combustion of fossil fuels to the atmosphere and its role in the greenhouse effect. The 56 papers in this report are arranged under the following topical headings: Agency diesel engine emissions and concerns; Human health effects -- Diesel exhaust; Aftertreatment -- Non-thermal plasma; Aftertreatment and in-cylinder emissions reduction; Combustion, fuel, and air management; Fuels and associated technology; and Advanced technology. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-09-01

    ... diesel piston engines, with high-pressure (HP) fuel pump, part number (P/N) E4A- 30-100-000, installed... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pressure supply for excessive oscillations to determine if high-pressure (HP) fuel pumps have been exposed...

  20. Determining the optimum conditions for modified diesel fuel combustion considering its emission, properties and engine performance

    International Nuclear Information System (INIS)

    Fayyazbakhsh, Ahmad; Pirouzfar, Vahid

    2016-01-01

    Highlights: • Gas emissions, fuel properties and performance engine modeling. • Optimization of new modified fuel prepared from n-Butanol and Nano particles. • Model accuracy analysis. - Abstract: This essay scrutinizes an experimental study conducted to appraise the influence of using n-Butanol with diesel fuel in 5% and 10% (volume) n-Butanol, 1% nitro methane (NM), injection timing and two Nano-particles (alumina and a type of silica powder) on the engine performance (brake specific fuel consumption and engine power), fuel properties (Cetane number and flash point) and exhaust emissions (soot, NO_x and CO) of an engine with 4-cylinder (with a system of common rail fuel injection), intercooling, cooled exhaust gas recirculation (EGR), and turbocharged. The tests are conducted by varying the engine load (25 and 75 nm) and changing engine speed (1500 and 2200 rpm). Normal Butanol presents better brake specific fuel consumption (BSFC) but this blend doesn’t reflect better engine power. All the percentages of n-Butanol in the fuel make Cetane number decrease but adding 1% of nitro methane makes Cetane number increase. For all the n-Butanol, the percentage flash makes the fuel decrease in comparison to pure diesel fuel. The current experimental study demonstrates that adding the n-Butanol and nitro methane to diesel fuel direct into diminishing soot emission. In contrast, this blend raises NO_x and CO emissions. Furthermore, this research indicates that the increase of engine speed dwindle air pollutants and enhances BSFC. It also remarks that power gets increased at low engine speed. However, power gets reducedat high speed. This article represents that the increasing of engine load leads to increasing all of air pollutant, increasing of power and decreasing of brake specific fuel consumption. Both the Cetane number and flash point are independent from engine speed and engine load. The present paper shows that the effect of silica with high percentage of n

  1. Detection of greenhouse gas precursors from diesel engines using electrochemical and photoacoustic sensors.

    Science.gov (United States)

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO(2) Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NO(x) and SO(2) from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range.

  2. Detection of Greenhouse Gas Precursors from Diesel Engines Using Electrochemical and Photoacoustic Sensors

    Directory of Open Access Journals (Sweden)

    Aline Rocha

    2010-11-01

    Full Text Available Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO2 Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NOx and SO2 from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range.

  3. Real-time modelling of the diesel engine combustion process; Echtzeitfaehige Modellierung des dieselmotorischen Verbrennungsprozesses

    Energy Technology Data Exchange (ETDEWEB)

    Merz, B.

    2008-07-01

    The publication investigates single-zone models of diesel engine combustion which are capable, in addition to pre-injection and main injection, to represent post-injection processes on a physical basis. These must function in real time as they are used in ''hardware-in-the-loop'' test stands. Methods to adapt the models to other engine types are explained. Validation is made across the whole characteristic field on the basis of measured data provided by two serial engines. For assessing pollutant production, models are integrated that are capable of calculating NOx and soot formation. These, too, are calculated in real time using appropriate hardware systems. A runtime analysis compares the computing times of the models. (orig.)

  4. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  5. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  6. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  7. Commercial introduction of the Advanced NOxTECH system

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, B.C. [NOxTECH, Inc., Irvine, CA (United States)

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  8. Experimental investigation of the impact of using alcohol- biodiesel-diesel blending fuel on combustion of single cylinder CI engine

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.; Awad, Omar. I.

    2016-11-01

    The effect of alcohol addition has been experimentally in vestgated in the current study by blending it with diesel and palm based biodiesel on the combustion of a compression ignition engine. The experiment was run by single-cylinder, naturally aspirated, direct injection, four-stroke diesel engine. Based on the pressure-crank angle data collected from the pressure transducer and crank angle encoder, the combustion analysis such as incylinder pressure, incylinder temperature, energy release rate, cumulative energy release and ignition delay are analysed. In this comparative study, the effects of alcohols namely butanol BU20 (20% butanol addition on the commercially available diesel biodiesel emulsion) is compared and evaluated with pure diesel (D100). The results revealed that the the ignition delay for BU20 is longer as compared to that of D100 in all engine speeds and loads compared. Besides, the incylinder temperatures were rudecued with the butanol addition. The energy release rate for BU20 was higher than that for diesel, whereas the peak positions concerning the energy release rate for BU20 was discovered at 2400 rpm. Therefore addition of butanol will have positive role on the NOx emissions and stability of the engine due to its higher latent heat of vaporization.

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  10. Effects of pilot injection timing and EGR on a modern V6 common rail direct injection diesel engine

    Science.gov (United States)

    Rosli Abdullah, Nik; Mamat, Rizalman; Wyszynski, Miroslaw L.; Tsolakis, Anthanasios; Xu, Hongming

    2013-12-01

    Nitric oxide and smoke emissions in diesel engine can be controlled by optimising the air/fuel mixture. Early injection produces premixed charge resulted in simultaneous NOx and smoke emissions reduction. However, there could be an increase in hydrocarbons and CO emissions due to fuel impinged to the cylinder wall. The focus of the present work is to investigate the effects of a variation of pilot injection timing with EGR to NOx and smoke level on a modern V6 common rail direct injection. This study is carried out at two different engine load conditions of 30 Nm and 55 Nm, at constant engine speed of 2000 rpm. The results show that the early pilot injection timing contributed to the lower smoke level and higher NOx emissions. The higher level of NOx is due to higher combustion temperatures resulting from the complete combustion. Meanwhile, the lower smoke level is due to complete fuel combustion and soot oxidation. The early pilot injection timing produces an intermediate main ignition delay which also contributed to complete combustion. The formation of smoke is higher at a high engine load compared with low engine load due to the higher amount of fuel being injected.

  11. Experimental investigations of LPG use at the automotive diesel engine

    Directory of Open Access Journals (Sweden)

    Nutu Cristian

    2017-01-01

    Full Text Available The liquefied petroleum gas has a great potential to improve energetically and pollution performance of compression ignition engines due to its good combustion properties. This paper presents results of the researches carried on a car compression ignition engine with a 1.5 dm3 displacement, fuelled with diesel fuel and liquefied petroleum gas by diesel-gas method at the operating regimens of 70% and 55% engine load, engine speed of 2000 rpm and for substitute ratios between (6–19%. A specific objective of this paper is to establish a correlation between the optimum adjustments and the substitute ratio of the diesel fuel with liquefied petroleum gas for the investigated regimens to limit the maximum pressure and smoke level, knock and rough engine functioning and having regard to decrease the fuel consumption and the level of the pollutant emissions.

  12. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  13. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels

    International Nuclear Information System (INIS)

    Singh, Devendra; Singal, S.K.; Garg, M.O.; Maiti, Pratyush; Mishra, Sandhya; Ghosh, Pushpito K.

    2015-01-01

    Highlights: • B100 biodiesels from Jatropha (BJ) and marine microalga (BA) compared. • 17% lower NOx and 6% lower specific fuel consumption of BA over BJ. • Brake specific fuel consumption (BSFC) highest in urban mode in all cases. • NOx, HC and CO highest in rural-, motorway-and urban modes, respectively. • Microalga Chlorella variabilis is a promising feedstock for renewable fuels. - Abstract: Biodiesel is a renewable alternative to petro-diesel used in compression ignition (CI) engine. Two B100 biodiesel samples were prepared by patented routes from the lipids extracted from marine microalga Chlorella variabilis (BA) cultivated in salt pans and wasteland-compatible Jatropha curcas (BJ). The fuels complied with ASTM D-6751 and European Standard EN-14214 specifications. Standard Petro-diesel served as a control. Transient performance and emission characteristics of a heavy duty diesel engine fuelled with these B100 fuels (BJ and BA) were studied over European Transient Cycle. Test results showed that both B100 biodiesels outperformed petro-diesel in terms of particulate matter (PM), carbon monoxide (CO) and hydrocarbon (HC) emissions, with slight penalty on NOx emissions. Among the two biodiesels, merits of BA were established over BJ in terms of nitrogen oxides (NOx) emissions and specific fuel consumption. Mode-wise transient emission analysis revealed that NOx was highest in rural mode, CO was highest in urban and HC was highest in motorway mode for all fuels. BA may be considered as a promising alternative fuel for diesel engine which can be produced sustainably through cultivation of the marine microalga in coastal locations using seawater as culture medium, obviating thereby concerns around land use competition for food and fuel.

  14. Reducing Diesel Engine Emission Using Reactivity Controlled Approach

    Directory of Open Access Journals (Sweden)

    Osama Hasib Ghazal

    2018-01-01

    Full Text Available Several automobile manufacturers are interested in investigating of dual fuel internal combustion engines, due to high efficiencand low emissions. Many alternative fuels have been used in dual fuel mode for IC engine, such as methane, hydrogen, and natural gas. In the present study, a reactivity controlled compression ignition (RCCI engine using gasoline/diesel (G/D dual fuel has been investigated. The effectof mixing gasoline with diesel fuel on combustion characteristic, engine performance and emissions has been studied. The gasoline was injected in the engine intake port, to produce a homogeneous mixture with air. The diesel fuel was injected directly to the combustion chamber during compression stroke to initiate the combustion process. A direct injection compression ignition engine has been built and simulated using ANSYS Forte professional code. The gasoline amount in the simulation varied from (50%-80% by volume. The diesel fuel was injected to the cylinder in two stages. The model has been validated and calibrated for neat diesel fuel using available data from the literature. The results show that the heat release rate and the cylinder pressure increased when the amount of added gasoline is between 50%-60% volume of the total injected fuels, compared to the neat diesel fuel. Further addition of gasoline will have a contrary effect. In addition, the combustion duration is extended drastically when the gasoline ratio is higher than 60% which results in an incomplete combustion. The NO emission decreased drastically as the gasoline ratio increased. Moreover, addition of gasoline to the mixture increased the engine power, thermal efficienc and combustion efficienc compared to neat diesel fuel.

  15. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  16. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2010-01-01

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.

  17. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  18. STEADY STATE PERFORMANCES ANALYSIS OF MODERN MARINE TWO-STROKE LOW SPEED DIESEL ENGINE USING MLP NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Ozren Bukovac

    2016-01-01

    Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.

  19. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  20. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  1. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  2. Theoretical Study for The Influence of Biodiesel Addition on The Combustion, Performance and Emissions Parameters of Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody

    2017-08-01

    Full Text Available This study examines the characteristics of combustion, performance and emission of constant speed compression ignition engine fed with different percentages of diesel fuel and rapeseed methyl ester (RME on a volume basis by using the well-known software simulation Diesel-RK. As the percentage of RME increased, the maximal pressure is noticed to be closer to top dead center (TDC. It was found that 47.27 %, 81.06 %, 82.56 % and 93.36 % reduction in the Bosch smoke number is obtainable with 10% RME, 20% RME, 50% RME and 100% RME respectively, compared with ordinary diesel. The blends of RME are noticed to emit higher NOx emissions. The result signals that 10% RME is the promising ratio of blending which reports less performance variations and reduced carbon emissions as well. The effect of variable injection timings is studied to moderate biodiesel NOx effects on the 10% RME and 18 degree crank angle before top dead center (BTDC was recorded as the advisable injection timing which gives a promising reduction in NOx emissions.

  3. Supply and demand of diesel engine for 2010

    International Nuclear Information System (INIS)

    2006-03-01

    This document takes stock on the diesel engine situation in France, in order to define the future policy for 2010. The first part is a state of the art concerning the description and characteristics of the diesel, the diesel production in refineries, the biofuels, the supply and demand. The second part details the evolutions, the investments and the fiscality impacts. The last part concludes on the necessity of a fiscal neutrality and on the fact that no new refinery is justified in France. It proposes different scenario of the imports evolution. (A.L.B.)

  4. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine.

    Science.gov (United States)

    Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir

    2017-10-01

    This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.

  5. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    Science.gov (United States)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  6. Investigation on parameters of methanol fuel and its blend on a diesel dual fuel engine

    Directory of Open Access Journals (Sweden)

    G. K. Prashant

    2016-06-01

    Full Text Available An experimental investigation has been performed on a 4 cylinder (turbocharged and intercooled 62.5 kW gen-set dual fuel diesel engine. Break specific fuel consumption (bsfc, break thermal efficiency (bte along with HC, CO, CO2 and NOx at various mixture ratios of methanol substitutions and loads have been investigated. The minimum and maximum BSFC were found to be 0.18 and 1.01 at 40 and 10% of full engine load and 40 and 60% of methanol substitution compared to pure diesel operation where the minimum and maximum BSFC were found to be 0.26 and 0.434 at 20 and 10% of full load condition. The minimum and maximum BTE were found to be 7.19 and 40.8 at 60 and 40% methanol substitution and at 10 and 40% load conditions whilst for pure diesel operation it was found to be 19.7 and 40.4 at 10 and 40% load conditions respectively. A two factor, three-level full factorial design was employed and the experimental results are in accordance with the results obtained.

  7. Experimental investigation on a diesel engine using neem oil and its methyl ester

    Directory of Open Access Journals (Sweden)

    Sivalakshmi S.

    2011-01-01

    Full Text Available Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO and its methyl ester (NOME on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at full load, peak cylinder pressure is higher for NOME; peak heat release rate during the premixed combustion phase is lower for neat NeO and NOME. Ignition delay is lower for neat NeO and NOME when compared with diesel at full load. The brake thermal efficiency is slightly lower for NeO at all engine loads, but in the case of NOME slightly higher at full load. It has been observed that there is a reduction in NOx emission for neem oil and its methyl ester along with an increase in CO, HC and smoke emissions.

  8. Hydraulic Characterization of Diesel Engine Single-Hole Injectors

    OpenAIRE

    Arco Sola, Javier

    2015-01-01

    Due to world trend on the emission regulations and greater demand of fuel economy,the research on advanced diesel injector designs is a key factor for the next generation diesel engines. For that reason, it is well established that understanding the effects of the nozzle geometry on the spray development, fuel-air mixing, combustion and pollutants formation is of crucial importance to achieve these goals.In the present research, the influence of the injector nozzle geometry on the internalflo...

  9. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    distributions of PLII signals help understand the soot distributions within diesel/ biodiesel flames. In addition, planar laser-induced Figure 1. Transported ...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 9/14/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll This project investigated biodiesel ...emissions testing. 1 FINAL REPORT Project title: Understanding combustion and soot formation in biodiesel fuelled diesel engines Lead Institute and

  10. Utilization of Variable Consumption Biofuel in Diesel Engine

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. The advantages of vegetables origin fuels using as engine fuels are shown. Diesel engine operation on mixtures of petroleum diesel and rapeseed oil is researched. A fuel delivery system of mixture biofuel with a control system of the fuel compound is considered. The results of the system experimental researches of fuel delivery of mixture biofuel are led.

  11. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  12. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  13. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  14. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao

    2017-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  15. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  16. Selection of Fuel System for Modern Heavy Duty Diesel Engines

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonok

    2004-01-01

    Full Text Available Fuel systems of diesel engines have been analyzed. The paper shows components of the systems, peculiarities of their manufacturing process. Difference in efficiency of the systems, their application and market prospects are considered in the paper. While solving problems to design a power installation the essence of fuel system selection is given on the basis of an internal combustion engine.

  17. Efficient EGR technology for future HD diesel engine emission targets

    NARCIS (Netherlands)

    Baert, R.S.G.; Beckman, D.E.; Veen, A.

    1999-01-01

    Different systems for achieving short-route cooled EGR on turbocharged and aftercooled heavy-duty diesel engines have been tested on a 12 litre 315 kW engine with 4 valves per cylinder and an electronically controlled unit pump fuel injection system. In all of these systems the exhaust gas was

  18. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  19. Low Temperature Combustion in a Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ehleskog, Malin

    2012-07-01

    In recent years, there have been major efforts to reduce engine emissions and fuel consumption. The studies described in this thesis were conducted with the aim of identifying methods for reducing harmful engine-out emissions of soot and nitrogen oxides (NOx) under high load without increasing fuel consumption. The first part of the project focused on low temperature combustion using very high levels of EGR. It was found that very low soot and NOx emissions could be achieved at low loads. Unfortunately, these conditions resulted in high fuel consumption as well as high emissions of HC and CO. The increased emissions could be mitigated by optimising the timing of the SOI and increasing the injection pressure, but the high fuel consumption remained problematic. Intermediate levels of EGR can be used to increase the ignition delay and thereby achieve partially premixed combustion. When soot and NOx emissions are plotted against the amount of EGR, there is an intersection point at which the soot emissions are just beginning to increase but the recirculated exhaust gas has greatly reduced the NOx emissions. At this point, the HC and CO emissions and the fuel consumption remain acceptably low. If the onset of the increased soot emissions could be shifted to a higher EGR level or if the peak soot emissions could be reduced in magnitude, the tradeoff between soot and NOx emissions at intermediate EGR levels could be improved. By increasing the charge air pressure, the size of the soot bump is reduced and the point of intersection between the soot and NOx curves is shifted to a higher EGR percentage. The soot-NOx tradeoff can also be improved by increasing the injection pressure to reduce the soot peak while using EGR levels that are high enough to suppress NOx formation. To further investigate the potential of partially premixed combustion, the effects of varying the timing of late inlet valve closure were investigated. The results show that reducing the effective

  20. Avaliação da emissão de co, no e nox na exaustão de motor diesel abastecido com combustível aditivado

    Directory of Open Access Journals (Sweden)

    Gilson Rodrigo de Miranda

    2011-01-01

    Full Text Available A poluição atmosférica tem emergido como um dos maiores problemas globais. Na última década, o desenvolvimento de novos motores, o uso de diferentes formas de tratamento dos gases na exaustão e o aumento na qualidade dos combustíveis foram medidas utilizadas na redução de poluentes (regulamentados ou não. Entre os vários desenvolvimentos para reduzir as emissões, a aplicação de aditivos oxigenados e parafínicos ao óleo diesel é uma medida que vem se mostrando efetiva e rápida para a redução dos poluentes emitidos. Neste trabalho estudou-se a influência de compostos oxigenados (Dietil Eter (DEE, 1-Dodecanol (DOD, Acetato de 2-Metoxietila (MEA e Terc-butanol (TERC e parafínicos (Heptano (HEPT e n-Hexadecano (CET adicionados ao óleo diesel com o intuito de melhorar a qualidade das emissões de CO, NO e NOx na exaustão de motor diesel, monocilíndrico. Os combustíveis utilizados nos estudos são formulações do óleo diesel de referência, nomeado aqui S10, que contém baixo teor de enxofre (Abstract Air pollution has emerged as major global problems. In the last decade, the development of new engines, the use of different forms of treatment of exhaust gases and the increase in fuel quality were used to reduce pollutants (regulated or not. Among the various developments to reduce emissions, the use of oxygenated additives to diesel and paraffin is a quick and effective measure to reduce pollutants. In this work we studied the influence of oxygenated compounds (diethyl ether (DEE, 1-dodecanol (DOD, 2-methoxy-acetate (MEA and terc-butanol (TERC and paraffin (heptane (HEPT and n- hexadecane (CET added to diesel in order to improve the quality of CO, NO and NOx in the exhaust of diesel engine, single cylinder. The fuels used in the studies are formulations of diesel reference, here named S10, which contains low sulfur (

  1. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  2. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  3. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  4. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  5. A Piston Geometry and Nozzle Spray Angle Investigation in a DI Diesel Engine by Quantifying the Air-Fuel Mixture

    Directory of Open Access Journals (Sweden)

    Pavlos Dimitriou

    2015-03-01

    Full Text Available Low temperature diesel combustion has been widely investigated over the last few years for reducing in-cylinder emissions of Direct Injection (DI diesel engines without sacrificing efficiency and fuel consumption. The spatial distribution of the fuel within the combustion chamber and the air-fuel mixing quality are the key factors affecting temperature generation within the cylinder. Avoiding fuel rich areas within the cylinder can significantly reduce the local high temperatures resulting in low NOx formation. This paper investigates the effects of the combustion chamber geometry and spray angle on the air-fuel mixing and emissions formation of a DI diesel engine. A new quantitative factor measuring the air-fuel mixing quality has been adopted in order to analyze and compare air-fuel mixing quality for different piston geometries. The results have shown that pistons with a narrow entrance and a deep combustion re-entrant chamber benefit from increased air-fuel mixtures due to the significantly higher swirl generated within the cylinder. However, the improved air-fuel mixing does not consequently lead to a reduced NOx generation, which is highly affected by the combustion efficiency of the engine.

  6. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  7. Laser-based diagnostics on NO in a diesel engine

    International Nuclear Information System (INIS)

    Brugman, T.M.

    1999-01-01

    -processing methods are introduced which enable the correction of imaged NO fluorescence distributions for both soot-deposits on the windows and in-cylinder laser extinction. In chapter 5 these image processing methods are applied to NO fluorescence distributions recorded at various crank angles and loads of the diesel-fuel-driven engine. The sensitivity of the 2D-LIF signal to the local gas temperature is calculated using Boltzmann statistics. In the absence of data on the in-cylinder temperature distributions, the pixel-averaged LIF intensities found in the corrected fluorescence distributions are subsequently corrected for overall temperature effects and collisional quenching on the basis of a simplified fluorescence model. The resulting curves of the NO density versus the crank angle (i.e., in-cylinder pressure) at various loads are calibrated by comparing the densities at BDC (atmospheric pressure) with the corresponding tail-pipe densities as recorded by a NOx-monitor. Both the reproducibility of the combustion and the experimental error are assessed on the basis of a statistical criterion. This chapter also contains two NO excitation spectra recorded from the loaded engine at atmospheric pressure and at an in-cylinder pressure of 0.5 MPa, respectively. The reliability of the fluorescence model used in chapter 5 is studied in more detail in chapter 6 on the basis of a large set of excitation spectra recorded from various NO sample gases in a high-pressure high-temperature cell. In these experiments both broadband and narrow-band fluorescence detection are used as to investigate the effects of interfering fluorescence from other molecules than NO. The pressure-broadening of the NO R 1 (24.5)/Q 1 (30.5) D-X resonance as directly observed in the spectra is compared with the broadening as derived from the fluorescence model. According to this model, the comparison of the observed LIF peak intensities at atmospheric pressure for the various NO sample gases provides a way to

  8. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  9. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  10. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  11. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    Science.gov (United States)

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  12. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  14. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun

    2013-01-01

    Highlights: • Injection pressure of pilot fuel in dual fuel combustion (DFC) affects the engine power and exhaust emissions. • In the biodiesel–CNG DFC mode, the combustion begins and ends earlier as the pilot-fuel injection pressure increases. • The ignition delay in the DFC mode is about 1.2–2.6 °CA longer than that in the diesel single fuel combustion (SFC) mode. • The smoke and NOx emissions are significantly reduced in the DFC mode. - Abstract: Biodiesel–compressed natural gas (CNG) dual fuel combustion (DFC) system is studied for the simultaneous reduction of particulate matters (PM) and nitrogen oxides (NOx) from diesel engine. In this study, biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC system. In particular, the pilot injection pressure is controlled to investigate the characteristics of engine performance and exhaust emissions in a single cylinder diesel engine. The results show that the indicated mean effective pressure (IMEP) of biodiesel–CNG DFC mode is lower than that of diesel single fuel combustion (SFC) mode at higher injection pressure. However, the combustion stability of biodiesel–CNG DFC mode is increased with the increase of pilot injection pressure. At the same injection pressure, the start of combustion of biodiesel–CNG DFC is delayed compared to diesel SFC due to the increase of ignition delay of pilot fuel. On the contrary, it is observed that as the pilot injection pressure increase, the combustion process begins and ends a little earlier for biodiesel–CNG DFC. The ignition delay in the DFC is about 1.2–2.6 °CA longer compared to diesel SFC, but decreases with increases of pilot injection pressure. Smoke and NOx emissions are decreased and increased, respectively, as the pilot injection pressure increases in the biodiesel–CNG DFC. In comparison to diesel SFC, smoke emissions are significantly reduced over all the operating conditions and NOx emissions also exhibited similar

  15. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  16. Visualization techniques in diesel engine research. Diesel Engine kenkyu ni okeru kashika gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Komori, M.; Tsujimura, K. (New ACE., Tsukuba (Japan))

    1993-04-01

    In order to grasp the phenomena actually occurring in the combustion chamber for improving the combustion and for reducing the exhaust gas emission of the diesel engines, the visualization techniques are becoming to be essential and indispensable. The authors have observed the spray and combustion, when proceeding the combustion improvement by the high pressure injection, and then have performed the image processing and simulation calculation based on them. The high pressure injection devices used for the experiment are the intensifier type and accumulator type which can generate the injection pressure more than 200MPa, and both of them are the electronic controlled hydraulic drive type, and are driven separately from the engine. Since it was found that the analysis of high pressure injection by the hologram is limited in the conditions, as for the spray, the spray analysis was performed by the transmitted light attenuation method and laser sheet method. As for the combustion, the engine for observing the combustion was trially made, and then the combustion state was observed by the high speed photograph. Furthermore, the flame temperature analysis by the image processing using the combustion photograph and the analysis of flow and turbulence of the flame were carried out. 9 refs., 16 figs.

  17. DIESEL ENGINE RETROFIT TECHNOLOGY VERIFICATION (POSTER)

    Science.gov (United States)

    ETV is presenting a poster at the EPA's 2005 Science Forum from May 16-18, 2005 in Washington, DC. This poster will contain a summary of the performance results realized by the six verified diesel retrofit technologies, as well as potential impacts that could be realized if sigi...

  18. Adaptive feedforward control of exhaust recirculation in large diesel engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2017-01-01

    is generalized to a class of first order Hammerstein systems with sensor delay and exponentially converging bounds of the control error are proven analytically. It is then shown how to apply the method to the EGR system of a two-stroke crosshead diesel engine. The controller is validated by closed loop......Environmental concern has led the International Maritime Organization to restrict NO푥 emissions from marine diesel engines. Exhaust gas recirculation (EGR) systems have been introduced in order to comply to the new standards. Traditional fixed-gain feedback methods are not able to control the EGR...

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  1. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  3. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  4. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R [Texaco Technology Ghent (Belgium)

    1998-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  5. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    OpenAIRE

    Radivoje B Pešić; Saša T Milojević; Stevan P Veinović

    2010-01-01

    The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minim...

  6. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  7. An Efficient Energy Regeneration System for Diesel Engines

    OpenAIRE

    HUANG, Ying; YANG, Fuyuan; OUYANG, Minggao; CHEN, Lin; GAO, Guojing; He, Yongsheng

    2010-01-01

    In order to further improve the fuel economy of vehicles, an efficient energy regeneration system for diesel engines is designed and constructed. An additional automatic clutch is added between the engine and the motor in a conventional ISG (Integrated Starter and Generator) system. During regenerative braking, the clutch can be disengaged and the engine braking is avoided. Control strategy is redesigned to determine the braking torque distribution and coordinate all the components. The gener...

  8. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    International Nuclear Information System (INIS)

    Ho, R J; Yusoff, M Z; Palanisamy, K

    2013-01-01

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NO x ) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  11. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine

    Directory of Open Access Journals (Sweden)

    Nader Raeie

    2014-06-01

    Full Text Available It is well known that injection strategies including the injection timing and pressure play the most important role in determining engine performance, especially in pollutant emissions. However, the injection timing and pressure quantitatively affect the performance of diesel engine with a turbo charger are not well understood. In this paper, the fire computational fluid dynamics (CFD code with an improved spray model has been used to simulate the spray and combustion processes of diesel with early and late injection timings and six different injection pressure (from 275 bar to 1000 bar. It has been concluded that the use of early injection provides lower soot and higher NOx emissions than the late injection. In this study, it has been tried using the change of fuel injection time at these two next steps: before top dead center (BTDC and after top dead center (ATDC in order to achieving optimum emission and power in a specific point.

  12. 75 FR 28820 - Notice of Public Meeting by Teleconference Concerning Heavy Duty Diesel Engine Consent Decrees

    Science.gov (United States)

    2010-05-24

    ... implementation of the provisions of the seven consent decrees signed by the United States and diesel engine..., or anticipates receiving, requests from the diesel engine manufacturers for termination of their respective decrees. This meeting notice is also available on EPA's Diesel Engine Settlement Web site at http...

  13. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  14. An Experimental Study on the Diesel Engine Performance with Rape Seed Oil

    International Nuclear Information System (INIS)

    Oh, Yeong Og

    2002-02-01

    A four cycle diesel engine performance test was performed with four kinds of oils such as rape seed oil, effective micro-organism rape seed oil, activated clay rape seed oil and light oil. The experiment was conducted at full load condition with constant injection time of the engine and the test oil temperature was maintained at 70±2 .deg. C. 1. The torque and the horsepower with rape seed fuel is increased about 10% compare with light seed oil at full load condition of the engine. High viscosity of the rape makes oil films in the combustor which leads to higher compression ratio and explosion. The results of the high viscosity make higher torque of the engine. The brake specific fuel consumption of the rape seed fuel increased 8%∼10% than that of the light oil. This effect could be the difference of heating value between the two kinds of oil. 2. The emission of the smoke gas was decreased 29%, 38% and 52% compare with light oil in rape seed oil, effective micro-organism rape seed oil and activated clay rape respectively due to the low volatility and high viscosity of the soot. The NOx emission with rape seed oil is twice larger than that of the light oil at full load condition. The reason is that the fuel temperature increment effects on the combustor temperature and it makes thermal NOx of the engine. 3. The test engine could be started over 40 .deg. C of the rape seed oil. Engine inspection results shows that the soot adherence amount of the cylinder head piston head is higher in following order; activated clay rape seed oil > effective micro-organism rape seed oil > rape seed oil > light oil

  15. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  16. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  17. Fuel supply system for diesel engines. Kraftstoffzufuhrsystem fuer Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mowbray, D F; Jarrett, B A

    1979-10-05

    The invention deals with a fuel feeding system, in particular for diesel engines with direct injection, provided with electromagnetic fuel pumps and injection nozzles for every combustion chamber. The pumps are equiped with control systems, which are actuated during the injection process. Switch valves with magnetic control devices serve as controllers.

  18. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; van Schijndel, J.; Heemels, W.P.M.H.; Willems, F.

    2017-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  19. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; Schijndel, J. van; Heemels, W.P.M.H.; Willems, F.P.T.

    2016-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  20. Dynamic programming for Integrated Emission Management in diesel engines

    NARCIS (Netherlands)

    Schijndel, J. van; Donkers, M.C.F.; Willems, F.P.T.; Heemels, W.P.M.H.

    2014-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that aims at minimizing the operational costs of diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In previous work on IEM, a suboptimal real-time implementable solution

  1. Optimal control of diesel engines with waste heat recovery systems

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.; Waschl, H.; Kolmanovsky, I.; Steinbuch, M.; Del Re, L.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO 2 - NO x trade-off by minimizing the operational costs associated with fuel and AdBlue

  2. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  3. Automated model fit method for diesel engine control development

    NARCIS (Netherlands)

    Seykens, X.L.J.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.J.H.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  4. TRIBOLOGICAL PERFORMANCE OF PISTON RING IN MARINE DIESEL ENGINE

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    From a tribology point of view, it is the two dead centers that are the main area of interest for experimental study of piston rings in large marine diesel engines. Therefore, in this work the performance of piston rings is studied to mark the importance of the two dead centers. A test rig based...

  5. Swirling flow in a two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Ingvorsen, Kristian Mark; Walther, Jens Honore

    2013-01-01

    Computational fluid dynamic simulations are performed for the turbulent swirling flow in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the work is to investigate the accuracy of different turbulence models including two-equation Reynolds- Averaged Navier...

  6. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  7. Optimization of diesel engine performance by the Bees Algorithm

    Science.gov (United States)

    Azfanizam Ahmad, Siti; Sunthiram, Devaraj

    2018-03-01

    Biodiesel recently has been receiving a great attention in the world market due to the depletion of the existing fossil fuels. Biodiesel also becomes an alternative for diesel No. 2 fuel which possesses characteristics such as biodegradable and oxygenated. However, there are facts suggested that biodiesel does not have the equivalent features as diesel No. 2 fuel as it has been claimed that the usage of biodiesel giving increment in the brake specific fuel consumption (BSFC). The objective of this study is to find the maximum brake power and brake torque as well as the minimum BSFC to optimize the condition of diesel engine when using the biodiesel fuel. This optimization was conducted using the Bees Algorithm (BA) under specific biodiesel percentage in fuel mixture, engine speed and engine load. The result showed that 58.33kW of brake power, 310.33 N.m of brake torque and 200.29/(kW.h) of BSFC were the optimum value. Comparing to the ones obtained by other algorithm, the BA produced a fine brake power and a better brake torque and BSFC. This finding proved that the BA can be used to optimize the performance of diesel engine based on the optimum value of the brake power, brake torque and BSFC.

  8. Occupational exposure to diesel engine exhaust and serum cytokine levels

    NARCIS (Netherlands)

    Dai, Yufei; Ren, Dianzhi; Bassig, Bryan A.; Vermeulen, Roel; Hu, Wei; Niu, Yong; Duan, Huawei; Ye, Meng; Meng, Tao; Xu, Jun; Li, Ping; Shen, Meili; Yang, Jufang; Fu, Wei; Meliefste, Kees; Silverman, Debra T.; Rothman, Nathaniel; Lan, Qing; Zheng, Yuxin

    The International Agency for Research on Cancer has classified diesel engine exhaust (DEE) as a human lung carcinogen. Given that inflammation is suspected to be an important underlying mechanism of lung carcinogenesis, we evaluated the relationship between DEE exposure and the inflammatory response

  9. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine

    International Nuclear Information System (INIS)

    Rimkus, Alfredas; Žaglinskis, Justas; Rapalis, Paulius; Skačkauskas, Paulius

    2015-01-01

    Highlights: • Researched physical–chemical and performance properties of diesel fuel and BTL blend (85/15 V/V). • BTL additive reduced Brake Specific Fuel Consumption, improved engine efficiency. • Simpler BTL molecular chains and lower C/H ratio reduced CO_2 emission and smokiness. • Higher cetane number of BTL reduced heat release in beginning of combustion and NO_x emission. • Advanced start of fuel injection caused reduced fuel consumption and smokiness, increased NO_x emission. - Abstract: This paper presents the comparable research results of the physical–chemical and direct injection (DI) diesel engine properties of diesel fuel and BTL (biomass-to-liquid) blend (85/15 V/V). The energy, ecological and in-cylinder parameters were analysed under medium engine speed and brake torque load regimes; the start of fuel injection was also adjusted. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that the BTL additive shortened the fuel ignition delay phase, reduced the heat release in the pre-mixed intensive combustion phase, reduced the nitrogen oxide (NO_x) concentration in the engine exhaust gases and reduced the thermal and mechanical load of the crankshaft mechanism. BTL additive reduced the rates of carbon dioxide (CO_2), incompletely burned hydrocarbons (HC) emission and smokiness due to its chemical composition and combustion features. BTL also reduced Brake Specific Fuel Consumption (BSFC, g/kW h) and improved engine efficiency (η_e); however, the volumetric fuel consumption changed due to the lower density of BTL. The start of fuel injection was adjusted for maximum engine efficiency; concomitantly, reductions in the CO_2 concentration, HC concentration and smokiness were achieved. However, the NO_x and thermo-mechanical engine load increased.

  10. Finite element analysis of a crankshaft of diesel engine

    International Nuclear Information System (INIS)

    Bannikiv, M.G.

    2005-01-01

    This research was a part of the project aimed at the increase in power of the direct injection turbocharged twelve- cylinder V-type diesel engine. Crankshaft of a high power high speed diesel engine is subjected to complex loading conditions and undergoes high cyclic loads of the order of 107 to 108 cycles. Therefore, durability of this component is of critical importance. Strength analysis was based on the assessment of factor of safety (FOS) of the engine augmented by brake mean effective pressure (bmep) and/or engine speed. In the first part of the study, mechanical loads due to gas pressure and inertia forces were obtained from engine cycle simulation. Relationships for displacement, velocity and acceleration of an articulated connecting rod piston as a function of engine geometry and crank angle were derived. In the second part, the range of bmep and engine speed was determined over which engine performance is satisfactory on the basis of fatigue. It was shown that with limitations imposed (unchanged design and material of the crankshaft) the crankshaft of the given engine can withstand increase in power up to 15%. It was recommended, that required increase in engine power should be realized by the increase in bmep, since the increase in engine speed would deteriorate combustion efficiency. Finite Element Analysis was used to verify stresses calculations. New features of procedure used and relationships obtained in this research apply to strength analysis of other types of internal combustion engines. (author)

  11. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends

    International Nuclear Information System (INIS)

    Chen, Guisheng; Shen, Yinggang; Zhang, Quanchang; Yao, Mingfa; Zheng, Zunqing; Liu, Haifeng

    2013-01-01

    In the paper, combustion and emissions of a multi-cylinder CI (compression-ignition) engine fueled with DMF–diesel, n-butanol–diesel and gasoline–diesel blends were experimentally investigated, and fuel characteristics of DMF, n-butanol and gasoline were compared. Diesel was used as the base fuel. And 30% of DMF, n-butanol and gasoline were blended with the base fuel by volume respectively, referred to as D30, B30 and G30. Results show that compared to B30 and G30, D30 has longer ignition delay because of lower cetane number, which leads to faster burning rate and higher pressure rise rate. With increasing EGR (exhaust gas recirculation) rate, D30 gets the lowest soot emissions, and extended ignition delay and fuel oxygen are two key factors reducing soot emissions, and ignition delay has greater effects than fuel oxygen on soot reduction. In addition, D30 and B30 improve the trade-off of NO x -soot remarkably and extend low-emission region without deteriorating fuel efficiency by utilizing medium EGR rates ( x , THC and CO emissions and BSFC, but reduce soot greatly. • Fuel oxygen is more efficient than air oxygen while ignition delay has greater effects than fuel oxygen to reduce soot. • As diesel additive, DMF is superior to n-butanol and gasoline for reducing soot emissions. • Using DMF–diesel blends combined with medium EGR may be a better way to meet future emission standards

  12. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  13. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    Science.gov (United States)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn

  14. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  15. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  16. Cylinder-Pressure Based Injector Calibration for Diesel Engines

    OpenAIRE

    König, Johan

    2008-01-01

    One way of complying with future emission restrictions for diesel engines is to use pressure sensors for improved combustion control. Implementation of pressure sensors into production engines would lead to new possibilities for fuel injection monitoring where one potential use is injector calibration. The scope of this thesis is to investigate the possibility of using pressure sensors for finding the minimal energizing time necessary for fuel injection. This minimal energizing time varies ov...

  17. Thermographic study of the preheating plugs in diesel engines

    OpenAIRE

    Royo Pastor, Rafael; Albertos Arranz, M.A.; CÁRCEL CUBAS, JUAN ANTONIO; Payá Herrero, Jorge

    2012-01-01

    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to underst...

  18. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  19. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  20. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  1. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  2. Effect of biodiesel fuels on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Armas, Octavio; Rodriguez-Fernandez, Jose [Escuela Tecnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Avda. Camilo Jose Cela, s/n. 13071 Ciudad Real (Spain)

    2008-04-15

    The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions. (author)

  3. Measurements of ion concentration in gasoline and diesel engine exhaust

    Science.gov (United States)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  4. Novel technique for enhancement of diesel fuel: Impact of aqueous alumina nano-fluid on engine's performance and emissions

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2017-09-01

    Full Text Available Nanofluids are suspensions of nanoparticles mixed in liquids and show significant enhancement in some thermophysical and combustion properties of the resulting suspension. In this study, the changes in the performance and emissions characteristics of a conventional diesel engine are verified experimentally using the combustion of a mixture of nanofluid (water and Al2O3 and conventional Iraqi diesel fuel. The nano-Al2O3 (51 nm diameter was used in this study; multiple weight ratios of this nanoparticle were mixed with water to form a nanoparticle suspension. The weight fractions used were 1%, 3%, 5%, 7%, and 10%. After that, a fixed volume ratio of the resulting suspension (10% was added to the diesel and completely mixed. The results indicate that the addition of the nano-alumina-water suspension has increased the brake thermal efficiency up to 5.5%, and reduced the relative fuel consumption up to 3.94%, compared to diesel fuel. In the analysis of emitted exhaust emissions, CO, HC, NOx, PM and noise emissions, they were found to be lower than diesel fuel, while CO2 emissions increased.

  5. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Science.gov (United States)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  6. Heat Transfer Analysis of a Diesel Engine Head

    Directory of Open Access Journals (Sweden)

    M. Diviš

    2003-01-01

    Full Text Available This paper documents the research carried out at the Josef Božek Research Center of Engine and Automotive Engineering dealing with extended numerical stress/deformation analyses of engines parts loaded by heat and mechanical forces. It contains a detailed description of a C/28 series diesel engine head FE model and a discussion of heat transfer analysis tunning and results. The head model consisting of several parts allows a description of contact interaction in both thermal and mechanical analysis.

  7. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  8. Analysis of BJ493 diesel engine lubrication system properties

    Science.gov (United States)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  9. Design and operation of a medium speed 12-cylinder coal-fueled diesel engine. Phase 2: Improvements

    Science.gov (United States)

    Confer, G. L.; Hsu, B. D.; McDowell, R. E.; Gal, E.; Vankleunen, W.; Kaldor, S.; Mengel, M.

    Under the sponsorship of the US Department of Energy, General Electric has been pioneering the development of a coal fired diesel engine to power a locomotive. The feasibility of using a coal water slurry (CWS) mixture as a fuel in a medium speed diesel engine has been demonstrated with the first successful locomotive systems test in 1991 on the GE Transportation Systems test track in Erie, PA. Phase 2 of the development process incorporates the results of the programs research in durable engine parts, improved combustion efficiency, and emissions reduction. A GE 7FDL12 engine has been built using diamond insert injector nozzles, tungsten carbide coated piston rings, and tungsten carbide coated liners to overcome power assembly wear. Electronic controlled fuel injection for both diesel pilot and main CWS injector were incorporated to control injection timing. An envelop filter and copper oxide sorbent system were used to cleanup engine emissions. The system is capable of removing over 99% of the particulates, 90% of the SO2, and 85% of NO(x).

  10. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  11. Vibration aging of diesel-engine mounted electrical equipment

    International Nuclear Information System (INIS)

    Lee, B.J.; Morton, W.C.

    1994-01-01

    The Emergency Diesel Generator (EDG) in a Nuclear Power Plant is considered to be a component which is essential to safe plant operation. Failures of auxiliary equipment directly mounted on the EDG creates costly repairs, and compromises the engine's availability and reliability. Although IEEE-323 requires addressing of safety-related components due to mechanically induced vibration, very few guidelines exist in the nuclear industry to show how this may be accounted for. Most engine vendors rely on the empirical experience data as the basis of their evaluation for vibration. Upgrade of engine controls, addition of monitoring devices and other engine modifications require design and installation of new equipment to be mounted directly on the engine. This necessitates the evaluation for engine-induced vibration which is considered to be one of the most severe design parameters. This paper discusses the engine vibration characteristics, and the acquisition of extensive field vibration data on the diesel engine under operating conditions. The data is then used to develop life cycle vibration qualification test profiles that can be applied with confidence in a laboratory environment to qualify engine-mounted equipment. The intent is to validate a product's ability to survive under worst case, extended service on-engine conditions. This paper describes the procedures and approaches used to achieve those goals, and provides developed profile examples and test results

  12. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  13. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  14. Effect of a sustainable biofuel – n-octanol – on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Anish, V.; Nagendran, A.

    2016-01-01

    Highlights: • It is possible to operate a DI diesel engine with up to 30% n-octanol/diesel blends without modifications. • Addition of n-octanol prolonged the ignition delay, generated higher peaks of pressure and heat release rates. • Simultaneous reduction of NOx and smoke is possible under both naturally-aspirated and EGR conditions. • Engine performance improved with n-octanol addition. • HC and CO emissions decreased favorably with n-octanol addition. - Abstract: Higher alcohols above n-butanol can be excellent alternative fuels for diesel engines owing to their high energy content and high cetane number. The last three years has witnessed an advent of several sustainable pathways for n-octanol bio-synthesis using engineered-microbes like Escherichia coli and Clostridium species. Therefore an investigation to evaluate the compatibility of n-octanol in diesel engines becomes essential. The influence of blending n-octanol by up to 30 vol% with fossil diesel on combustion, performance and emission characteristics of a single cylinder direct-injection (DI) diesel engine under both naturally aspirated and exhaust gas recirculation (EGR) modes was investigated with reference to diesel. Results showed that n-octanol prolonged the ignition delay generating higher peaks of in-cylinder pressure and heat release rates (HRR) during the pre-mixed combustion phase. Brake thermal efficiency (BTE) increased while brake specific fuel consumption (BSFC) decreased with an increase in n-octanol fraction. Smoke, NOx (nitrogen oxides), HC (hydro-carbons) and CO (carbon monoxide) emissions decreased with n-octanol addition. NOx and smoke emissions also remained low at all EGR rates. Both BTE and BSFC suffered at increased EGR rates. HC and CO emissions increased with escalating EGR rates. n-Octanol was found to be very promising for replacing fossil-diesel by up to 30% (subject to long term durability tests), in terms of emissions and performance at both naturally

  15. Variability in operation-based NO(x) emission factors with different test routes, and its effects on the real-driving emissions of light diesel vehicles.

    Science.gov (United States)

    Lee, Taewoo; Park, Junhong; Kwon, Sangil; Lee, Jongtae; Kim, Jeongsoo

    2013-09-01

    The objective of this study is to quantify the differences in NO(x) emissions between standard and non-standard driving and vehicle operating conditions, and to estimate by how much NO(x) emissions exceed the legislative emission limits under typical Korean road traffic conditions. Twelve Euro 3-5 light-duty diesel vehicles (LDDVs) manufactured in Korea were driven on a chassis dynamometer over the standard New European Driving Cycle (NEDC) and a representative Korean on-road driving cycle (KDC). NO(x) emissions, average speeds and accelerations were calculated for each 1-km trip segment, so called averaging windows. The results suggest that the NO(x) emissions of the tested vehicles are more susceptible to variations in the driving cycles than to those in the operating conditions. Even under comparable operating conditions, the NO(x) control capabilities of vehicles differ from each other, i.e., NO(x) control is weaker for the KDC than for the NEDC. The NO(x) emissions over the KDC for given vehicle operating conditions exceed those over the NEDC by more than a factor of 8. Consequently, on-road NO(x) emission factors are estimated here to exceed the Euro 5 emission limit by up to a factor of 8, 4 and 3 for typical Korean urban, rural, and motorway road traffic conditions, respectively. Our findings support the development of technical regulations for supplementary real-world emission tests for emission certification and the corresponding research actions taken by automotive industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    Science.gov (United States)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  17. Prediction of the production of nitrogen oxide (NOx) in turbojet engines

    Science.gov (United States)

    Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo

    Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO

  18. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  19. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experimental investigation review of biodiesel usage in bus diesel engine

    Directory of Open Access Journals (Sweden)

    Kegl Breda

    2017-01-01

    Full Text Available This paper assembles and analyses extensive experimental research work conducted for several years in relation to biodiesel usage in a MAN bus Diesel engine with M injection system. At first the most important properties of the actually used neat rapeseed biodiesel fuel and its blends with mineral diesel are discussed and compared to that of mineral diesel. Then the injection, fuel spray, and engine characteristics for various considered fuel blends are compared at various ambient conditions, with special emphasis on the influence of low temperature on fueling. Furthermore, for each tested fuel the optimal injection pump timing is determined. The obtained optimal injection pump timings for individual fuels are then used to determine and discuss the most important injection and combustion characteristics, engine performance, as well as the emission, economy, and tribology characteristics of the engine at all modes of emission test cycles test. The results show that for each tested fuel it is possible to find the optimized injection pump timing, which enables acceptable engine characteristics at all modes of the emission test cycles test.

  1. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    OpenAIRE

    Mantas Smolnikovas; Gintas Viselga; Greta Viselgaitė; Algirdas Jasinskas

    2016-01-01

    The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  2. 77 FR 4678 - Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-01-31

    ...), optimized turbo-charging, optimized fuel injection, diesel particulate filters), plus liquid urea based...-Highway Heavy Heavy-Duty Diesel Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Interim... manufacturers of heavy heavy-duty diesel engines in model years 2012 and 2013 for emissions of oxides of...

  3. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    Directory of Open Access Journals (Sweden)

    Mantas Smolnikovas

    2016-02-01

    Full Text Available The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  4. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  5. Effect of Engine Modifications on Performance and Emission Characteristics of Diesel Engines with Alternative Fuels

    OpenAIRE

    Venkateswarlu, K.; Murthy, B.S.R

    2010-01-01

    Performance and emission characteristics unmodified diesel engines operating on different alternative fuels with smaller blend proportions are comparable with pure diesel operation. But with increased blend proportions due to the associated problems of vegetable oils like high viscosity and low volatility pollution levels increase which however is accompanied by operating and durability problems with the long term usage of engine. This paper discusses the necessary modifications required to o...

  6. Biodiesel production and performance evaluation of coconut, palm and their combined blend with diesel in a single-cylinder diesel engine

    International Nuclear Information System (INIS)

    Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Ashraful, A.M.; Mobarak, H.M.

    2014-01-01

    Highlights: • Palm, coconut and their combined biodiesel blend (PB15CB15) was studied. • Characterization and effect on engine performance and emission was analyzed. • Combined blend improves BP, BSFC and NOx emission compared to coconut. • Combined blend improves CO, HC emissions and BTE compared to palm. - Abstract: Biodiesel is a renewable and sustainable alternative fossil fuel that is derived from vegetable oils and animal fats. This study investigates the production, characterization, and effect of biodiesel blends from two prominent feedstocks, namely, palm and coconut (PB30 and CB30), on engines. To aggregate the advantages of high ignition quality of palm and high oxygen content of coconut, combined blend of this two biodiesels (PB15CB15) is examined to evaluate its effect on