WorldWideScience

Sample records for dielectrics-an engineering approach

  1. Engineering students' sustainability approaches

    Science.gov (United States)

    Haase, S.

    2014-05-01

    Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The empirical base of the article is a nation-wide, web-based survey sent to all newly enrolled engineering students in Denmark commencing their education in the fall term 2010. The response rate was 46%. The survey focused on a variety of different aspects of what can be conceived as sustainability. By means of cluster analysis, three engineering student approaches to sustainability are identified and described. The article provides knowledge on the different prerequisites of engineering students in relation to the role of sustainability in engineering. This information is important input to educators trying to target new engineering students and contribute to the provision of engineers equipped to meet sustainability challenges.

  2. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  3. Homogenization approach in engineering

    International Nuclear Information System (INIS)

    Babuska, I.

    1975-10-01

    Homogenization is an approach which studies the macrobehavior of a medium by its microproperties. Problems with a microstructure play an essential role in such fields as mechanics, chemistry, physics, and reactor engineering. Attention is concentrated on a simple specific model problem to illustrate results and problems typical of the homogenization approach. Only the diffusion problem is treated here, but some statements are made about the elasticity of composite materials. The differential equation is solved for linear cases with and without boundaries and for the nonlinear case. 3 figures, 1 table

  4. Engineering Students' Sustainability Approaches

    Science.gov (United States)

    Haase, S.

    2014-01-01

    Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The…

  5. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  6. Interdisciplinary Approach in Engineering Education

    Directory of Open Access Journals (Sweden)

    Anda Zeidmane

    2011-04-01

    Full Text Available The analysis of the scientific literature available on the types of general competences and their classification caused the authors to conclude that it is necessary to implement interdisciplinary approach in engineering education to develop competences necessary for engineers to make them competitive in the labour market. The attention should be paid to a professional foreign language, computer literacy and educational psychology recommendations. To improve professional foreign language skills, CLIL (Content and Language Integrated Learning method should be integrated in the study process of engineering education. In order to develop information literacy competence, it is important to create a single e-study environment. The academic staff, developing study subjects for engineering programmes, should focus on the study content and study methods. As regards the content, the compromise should be sought between fundamental acquisition of the knowledge of the subject matter, the know-how of the application of this knowledge as well as the use of brand new software in the calculations. The paper presents the examples of the application of the interdisciplinary approach in the universities, where the authors of the paper are affiliated: the LUA (Latvia University of Agriculture and the RTU (Riga Technical University, respectively.

  7. Nonlinear approaches in engineering applications 2

    CERN Document Server

    Jazar, Reza N

    2013-01-01

    Provides updated principles and applications of the nonlinear approaches in solving engineering and physics problems Demonstrates how nonlinear approaches may open avenues to better, safer, cheaper systems with less energy consumption Has a strong emphasis on the application, physical meaning, and methodologies of nonlinear approaches in different engineering and science problems

  8. Rethinking engineering education the CDIO approach

    CERN Document Server

    Crawley, Edward F; Östlund, Sören; Brodeur, Doris R; Edström, Kristina

    2014-01-01

    This book describes an approach to engineering education that integrates a comprehensive set of personal, interpersonal, and professional engineering skills with engineering disciplinary knowledge in order to prepare innovative and entrepreneurial engineers.  The education of engineers is set in the context of engineering practice, that is, Conceiving, Designing, Implementing, and Operating (CDIO) through the entire lifecycle of engineering processes, products, and systems. The book is both a description of the development and implementation of the CDIO model and a guide to engineering programs worldwide that seek to improve the education of young engineers.   Provides an overview of the CDIO approach, then chapters organized according to the CDIO Standards; Includes in each chapter objectives, discussion questions, case studies and clear diagrams to support key concepts and processes; Avoids the jargon of education specialists and clearly explains education terms in the context of their initial presentatio...

  9. Software engineering a practitioner's approach

    CERN Document Server

    Pressman, Roger S

    1997-01-01

    This indispensable guide to software engineering exploration enables practitioners to navigate the ins and outs of this rapidly changing field. Pressman's fully revised and updated Fourth Edition provides in-depth coverage of every important management and technical topic in software engineering. Moreover, readers will find the inclusion of the hottest developments in the field such as: formal methods and cleanroom software engineering, business process reengineering, and software reengineering.

  10. Alternative Approach to Power Engineering

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Havemann, Henrik

    2000-01-01

    as young and dynamic. Consequently, the new courses apply IT as a gateway to power engineering. The courses present the students with: (1) a meaningful, easy understandable power engineering problem; (2) a realistic set-up in the laboratory; and (3) a microprocessor system used as a tool to solve...

  11. Social Engineering a General Approach

    OpenAIRE

    Valerica GREAVU-SERBAN; Oana SERBAN

    2014-01-01

    Social engineering is considered to be a taboo subject in nowadays society. It involves the use of social skills or to obtain usernames, passwords, credit card data, or to compromise or altering the information and systems of an entity. Social engineering methods are numerous and people using it are extremely ingenious and adaptable. This technique takes advantage of the intrinsic nature of mankind, to manipulate and obtain sensitive information, persuading people into divulge it, using excep...

  12. A systematic approach to engineering ethics education.

    Science.gov (United States)

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  13. Social Engineering a General Approach

    Directory of Open Access Journals (Sweden)

    Valerica GREAVU-SERBAN

    2014-01-01

    Full Text Available Social engineering is considered to be a taboo subject in nowadays society. It involves the use of social skills or to obtain usernames, passwords, credit card data, or to compromise or altering the information and systems of an entity. Social engineering methods are numerous and people using it are extremely ingenious and adaptable. This technique takes advantage of the intrinsic nature of mankind, to manipulate and obtain sensitive information, persuading people into divulge it, using exceptional communication skills. Thus, five models of persuasion were identified, based on: simplicity, interest, incongruity, confidence and empathy, exploiting key factors which predispose people to fall victim to attacks of social engineering such as greed, self-interest, guilt or ignorance. It is well known fact that security is as strong as the weakest link in its chain (individuals therefore, beyond technical measures, staff training is the key to success in defending against such attacks.

  14. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  15. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  16. An ontological approach to domain engineering

    NARCIS (Netherlands)

    Falbo, R.A.; Guizzardi, G.; Duarte, K.

    2002-01-01

    Domain engineering aims to support systematic reuse, focusing on modeling common knowledge in a problem domain. Ontologies have also been pointed as holding great promise for software reuse. In this paper, we present ODE (Ontology-based Domain Engineering), an ontological approach for domain

  17. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  18. Thought-evoking approaches in engineering problems

    CERN Document Server

    2014-01-01

    In creating the value-added product in not distant future, it is necessary and inevitable to establish a holistic and though-evoking approach to the engineering problem, which should be at least associated with the inter-disciplinary knowledge and thought processes across the whole engineering spheres. It is furthermore desirable to integrate it with trans-disciplinary aspects ranging from manufacturing culture, through liberal-arts engineering, and industrial sociology.   The thought-evoking approach can be exemplified and typified by representative engineering problems: unveiling essential features in ‘Tangential Force Ratio and Interface Pressure’, prototype development for ‘Bio-mimetic Needle’ and application of ‘Water-jet Machining to Artificial Hip Joint’, product innovation in ‘Heat Sink for Computer’, application of ‘Graph Theory’ to similarity evaluation of production systems, leverage among reciprocity attributes in ‘Industrial and Engineering Designs for Machine Enclosure’,...

  19. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparing Two Approaches for Engineering Education Development

    DEFF Research Database (Denmark)

    Edström, Kristina; Kolmos, Anette

    2012-01-01

    During the last decade there have been two dominating models for reforming engineering education: Problem/Project Based Learning (PBL) and the CDIO Initiative. The aim of this paper is to compare the PBL and CDIO approaches to engineering education reform, to identify and explain similarities...... and differences. CDIO and PBL will each be defined and compared in terms of the original need analysis, underlying educational philosophy and the essentials of the respective approaches to engineering education. In these respects we see many similarities. Circumstances that explain differences in history...... approaches have much in common and can be combined, and especially that the practitioners have much to learn from each other’s experiences through a dialogue between the communities. This structured comparison will potentially indicate specifically what an institution experienced in one of the communities...

  1. Engineering design: A cognitive process approach

    Science.gov (United States)

    Strimel, Greg Joseph

    research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  2. Systems engineering approach to preconceptual design

    International Nuclear Information System (INIS)

    1981-01-01

    Steps in the typical pre-conceptual engineering study are: problem identification, identify alternatives, evaluate alternatives, and recommend solution. Three examples of the use of pre-conceptual approach to save money are given; they include the water supply for fire protection in the 200-West Area of Hanford, emergency power for the Purex plant, and new filter for the Purex plant canyon exhaust

  3. Combining engineering and data-driven approaches

    DEFF Research Database (Denmark)

    Fischer, Katharina; De Sanctis, Gianluca; Kohler, Jochen

    2015-01-01

    Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many assump...... to the calibration of a generic fire risk model for single family houses to Swiss insurance data. The example demonstrates that the bias in the risk estimation can be strongly reduced by model calibration.......Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many...... assumptions that may result in a biased risk assessment. In two related papers we show how engineering and data-driven modelling can be combined by developing generic risk models that are calibrated to statistical data on observed fire events. The focus of the present paper is on the calibration procedure...

  4. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  5. Enterprise architecture approach to mining companies engineering

    Directory of Open Access Journals (Sweden)

    Ilin’ Igor

    2017-01-01

    Full Text Available As Russian economy is still largely oriented on commodities production, there are a lot of cities where mining and commodity-oriented enterprises are the backbone of city economy. The mentioned enterprises mostly define the life quality of citizens in such cities, thus there are high requirements for engineering of city-forming enterprises. The paper describes the enterprise architecture approach for management system engineering of the mining enterprises. The paper contains the model of the mining enterprise architecture, the approach to the development and implementation of an integrated management system based on the concept of enterprise architecture and the structure of information systems and information technology infrastructure of the mining enterprise.

  6. Engineering electrical properties of graphene: chemical approaches

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Yuna; Hong, Byung Hee; Novoselov, Konstantin

    2015-01-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed. (topical review)

  7. NPP site selection: A systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Pwani, Henry; Kamanja, Florah; Zolkaffly, Zulfakar; Jung, J. C. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2012-10-15

    The necessity for improved decision making concerning the siting and licensing of major power facilities has been accelerated in the past decade by the increased environmental consciousness of the public and by the energy crisis. These problems are exceedingly complex due to their multiple objective nature, the many interest groups, the long range time horizons, and the inherent uncertainties of the potential impacts of any decision. Along with the relatively objective economic and engineering concerns, the more subjective factors involving safety, environmental, and social issues are crucial to the problem. The preferences of the general public, as consumers, the utility companies, as builders and operators of power plant facilities, and environmentalists and the government must be accounted for in analyzing power plant siting and licensing issues. We advocate for a systems engineering approach that articulates stake holder's requirements, expert judgements, and a systems decision making approach. The appropriateness and application of systems decision making process is illustrated in this paper.

  8. NPP site selection: A systems engineering approach

    International Nuclear Information System (INIS)

    Pwani, Henry; Kamanja, Florah; Zolkaffly, Zulfakar; Jung, J. C.

    2012-01-01

    The necessity for improved decision making concerning the siting and licensing of major power facilities has been accelerated in the past decade by the increased environmental consciousness of the public and by the energy crisis. These problems are exceedingly complex due to their multiple objective nature, the many interest groups, the long range time horizons, and the inherent uncertainties of the potential impacts of any decision. Along with the relatively objective economic and engineering concerns, the more subjective factors involving safety, environmental, and social issues are crucial to the problem. The preferences of the general public, as consumers, the utility companies, as builders and operators of power plant facilities, and environmentalists and the government must be accounted for in analyzing power plant siting and licensing issues. We advocate for a systems engineering approach that articulates stake holder's requirements, expert judgements, and a systems decision making approach. The appropriateness and application of systems decision making process is illustrated in this paper

  9. A POGIL approach to teaching engineering hydrology

    Science.gov (United States)

    Rutten, M.

    2012-12-01

    This paper presents a case study of the author's experience using Problem Guided Inquiry Learning (POGIL) in an engineering hydrology course. This course is part of an interdisciplinary Water Management program at Bachelor level in the Netherlands. The aims of this approach were to promote constructivism of knowledge, activate critical thinking and reduce math anxiety. POGIL was developed for chemistry education in the United States. To the authors knowledge this is the first application of this approach in Europe. A first trial was done in 2010-2011 and a second trial in 2011-2012 and 55 students participated. The problems that motivated the novel approach, general information on POGIL, its implementation in the course are discussed and the results so far are evaluated.

  10. Polymer reaction engineering, an integrated approach

    NARCIS (Netherlands)

    Meyer, T.; Keurentjes, J.T.F.; Meyer, T.; Keurentjes, J.T.F.

    2005-01-01

    Summary This chapter contains sections titled: Polymer Materials A Short History of Polymer Reaction Engineering The Position of Polymer Reaction Engineering Toward Integrated Polymer Reaction Engineering The Disciplines in Polymer Reaction Engineering The Future: Product-inspired Polymer Reaction

  11. Document Clustering Approach for Meta Search Engine

    Science.gov (United States)

    Kumar, Naresh, Dr.

    2017-08-01

    The size of WWW is growing exponentially with ever change in technology. This results in huge amount of information with long list of URLs. Manually it is not possible to visit each page individually. So, if the page ranking algorithms are used properly then user search space can be restricted up to some pages of searched results. But available literatures show that no single search system can provide qualitative results from all the domains. This paper provides solution to this problem by introducing a new meta search engine that determine the relevancy of query corresponding to web page and cluster the results accordingly. The proposed approach reduces the user efforts, improves the quality of results and performance of the meta search engine.

  12. The engineering approach to winter sports

    CERN Document Server

    Cheli, Federico; Maldifassi, Stefano; Melzi, Stefano; Sabbioni, Edoardo

    2016-01-01

    The Engineering Approach to Winter Sports presents the state-of-the-art research in the field of winter sports in a harmonized and comprehensive way for a diverse audience of engineers, equipment and facilities designers, and materials scientists. The book examines the physics and chemistry of snow and ice with particular focus on the interaction (friction) between sports equipment and snow/ice, how it is influenced by environmental factors, such as temperature and pressure, as well as by contaminants and how it can be modified through the use of ski waxes or the microtextures of blades or ski soles. The authors also cover, in turn, the different disciplines in winter sports:  skiing (both alpine and cross country), skating and jumping, bob sledding and skeleton, hockey and curling, with attention given to both equipment design and on the simulation of gesture and  track optimization.

  13. The approach to engineering tasks composition on knowledge portals

    Science.gov (United States)

    Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya

    2017-08-01

    The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.

  14. System engineering approach to GPM retrieval algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rose, C. R. (Chris R.); Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Ground validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do

  15. Software quality engineering a practitioner's approach

    CERN Document Server

    Suryn, Witold

    2014-01-01

    Software quality stems from two distinctive, but associated, topics in software engineering: software functional quality and software structural quality. Software Quality Engineering studies the tenets of both of these notions, which focus on the efficiency and value of a design, respectively. The text addresses engineering quality on both the application and system levels with attention to Information Systems and Embedded Systems as well as recent developments. Targeted at graduate engineering students and software quality specialists, the book analyzes the relationship between functionality

  16. Global Software Engineering: A Software Process Approach

    Science.gov (United States)

    Richardson, Ita; Casey, Valentine; Burton, John; McCaffery, Fergal

    Our research has shown that many companies are struggling with the successful implementation of global software engineering, due to temporal, cultural and geographical distance, which causes a range of factors to come into play. For example, cultural, project managementproject management and communication difficulties continually cause problems for software engineers and project managers. While the implementation of efficient software processes can be used to improve the quality of the software product, published software process models do not cater explicitly for the recent growth in global software engineering. Our thesis is that global software engineering factors should be included in software process models to ensure their continued usefulness in global organisations. Based on extensive global software engineering research, we have developed a software process, Global Teaming, which includes specific practices and sub-practices. The purpose is to ensure that requirements for successful global software engineering are stipulated so that organisations can ensure successful implementation of global software engineering.

  17. Engineering Sustainability: A Technical Approach to Sustainability

    OpenAIRE

    Rosen, Marc A.

    2012-01-01

    Sustainability is a critically important goal for human activity and development. Sustainability in the area of engineering is of great importance to any plans for overall sustainability given 1) the pervasiveness of engineering activities in societies, 2) their importance in economic development and living standards, and 3) the significant impacts that engineering processes and systems have had, and continue to have, on the environment. Many factors that need to be considered and appropriate...

  18. An Innovative Approach for online Meta Search Engine Optimization

    OpenAIRE

    Manral, Jai; Hossain, Mohammed Alamgir

    2015-01-01

    This paper presents an approach to identify efficient techniques used in Web Search Engine Optimization (SEO). Understanding SEO factors which can influence page ranking in search engine is significant for webmasters who wish to attract large number of users to their website. Different from previous relevant research, in this study we developed an intelligent Meta search engine which aggregates results from various search engines and ranks them based on several important SEO parameters. The r...

  19. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  20. Knowledge Engineering Approach to the Geotectonic Discourse

    Science.gov (United States)

    Pshenichny, Cyril

    2014-05-01

    The intellectual challenge of geotectonics is, and always was, much harder than that of most of the sciences: geotectonics has to say much when there is objectively not too much to say. As the target of study (the genesis of regional and planetary geological structures) is vast and multidisciplinary and is more or less generic for many geological disciplines, its more or less complete description is practically inachievable. Hence, the normal pathway of natural-scientific research - first acquire data, then draw conclusion - unlikely can be the case here. Geotectonics does quite the opposite; its approach is purely abductive: first to suggest a conceptualization (hypothesis) based on some external grounds (either general planetary/cosmic/philosophic/religious considerations, or based on experience gained from research of other structures/regions/planets) and then to acquire data that either support or refute it. In fact, geotectonics defines the context for data acquisition, and hence, the paradigm for the entire body of geology. Being an obvious necessity for a descriptive science, this nevertheless creates a number of threats: • Like any people, scientists like simplicity and unity, and therefore a single geotectonic hypothesis may seem preferable once based on the data available at the moment and oppress other views which may acquire evidence in the future; • As impartial data acquisition is rather a myth than reality even in most of the natural sciences, in a study like geology this process becomes strongly biased by the reigning hypothesis and controlled to supply only supportive evidence; • It becomes collectively agreed that any, or great many, domains of geological knowledge are determined by a geotectonic concept, which is, in turn, offered by a reigning hypothesis (sometimes reclassified as theory) - e.g., exploration geologists must involve the global geotectonic terminology in their technical reports on assessment of mineral or hydrocarbon

  1. Recent Approaches in Tooth Engineering Research

    Czech Academy of Sciences Publication Activity Database

    Švandová, Eva; Veselá, Barbora; Křivánek, J.; Hampl, A.; Matalová, Eva

    2014-01-01

    Roč. 60, Suppl 1 (2014), s. 21-29 ISSN 0015-5500 R&D Projects: GA ČR GAP304/11/1418; GA MZd(CZ) NT11420 Institutional support: RVO:67985904 Keywords : engineering * tooth * stem cells * culture techniques Subject RIV: EA - Cell Biology Impact factor: 1.000, year: 2014

  2. Greenhouse engineering: New technologies and approaches

    NARCIS (Netherlands)

    Montero, J.I.; Henten, van E.J.; Son, J.E.; Castilla, N.

    2011-01-01

    Firstly, this article discusses the greenhouse engineering situation in three geographic areas which are relevant in the field of protected cultivation: Northern Asia, The Netherlands and the Mediterranean. For each area, the prevailing greenhouse type and equipment is briefly described. Secondly,

  3. Biomedical Engineering Education: A Conservative Approach

    Science.gov (United States)

    Niemi, Eugene E., Jr.

    1973-01-01

    Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)

  4. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  5. Helicopter Gas Turbine Engine Performance Analysis : A Multivariable Approach

    NARCIS (Netherlands)

    Arush, Ilan; Pavel, M.D.

    2017-01-01

    Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test data in order to predict the available output power under different atmospheric

  6. The JPL Cost Risk Analysis Approach that Incorporates Engineering Realism

    Science.gov (United States)

    Harmon, Corey C.; Warfield, Keith R.; Rosenberg, Leigh S.

    2006-01-01

    This paper discusses the JPL Cost Engineering Group (CEG) cost risk analysis approach that accounts for all three types of cost risk. It will also describe the evaluation of historical cost data upon which this method is based. This investigation is essential in developing a method that is rooted in engineering realism and produces credible, dependable results to aid decision makers.

  7. System engineering approach to planning anticancer therapies

    CERN Document Server

    Świerniak, Andrzej; Smieja, Jaroslaw; Puszynski, Krzysztof; Psiuk-Maksymowicz, Krzysztof

    2016-01-01

    This book focuses on the analysis of cancer dynamics and the mathematically based synthesis of anticancer therapy. It summarizes the current state-of-the-art in this field and clarifies common misconceptions about mathematical modeling in cancer. Additionally, it encourages closer cooperation between engineers, physicians and mathematicians by showing the clear benefits of this without stating unrealistic goals. Development of therapy protocols is realized from an engineering point of view, such as the search for a solution to a specific control-optimization problem. Since in the case of cancer patients, consecutive measurements providing information about the current state of the disease are not available, the control laws are derived for an open loop structure. Different forms of therapy are incorporated into the models, from chemotherapy and antiangiogenic therapy to immunotherapy and gene therapy, but the class of models introduced is broad enough to incorporate other forms of therapy as well. The book be...

  8. Agile Service Development: A Rule-Based Method Engineering Approach

    NARCIS (Netherlands)

    dr. Martijn Zoet; Stijn Hoppenbrouwers; Inge van de Weerd; Johan Versendaal

    2011-01-01

    Agile software development has evolved into an increasingly mature software development approach and has been applied successfully in many software vendors’ development departments. In this position paper, we address the broader agile service development. Based on method engineering principles we

  9. Enterprise Engineering Method supporting Six Sigma Approach

    OpenAIRE

    Jochem, Roland

    2007-01-01

    Enterprise Modeling (EM) is currently in operation either as a technique to represent and understand the structure and behavior of the enterprise, or as a technique to analyze business processes, and in many cases as support technique for business process reengineering. However, EM architectures and methodes for Enterprise Engineering can also used to support new management techniques like SIX SIGMA, because these new techniques need a clear, transparent and integrated definition and descript...

  10. Merged ontology for engineering design: Contrasting empirical and theoretical approaches to develop engineering ontologies

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Storga, M

    2009-01-01

    to developing the ontology engineering design integrated taxonomies (EDIT) with a theoretical approach in which concepts and relations are elicited from engineering design theories ontology (DO) The limitations and advantages of each approach are discussed. The research methodology adopted is to map......This paper presents a comparison of two previous and separate efforts to develop an ontology in the engineering design domain, together with an ontology proposal from which ontologies for a specific application may be derived. The research contrasts an empirical, user-centered approach...

  11. Engineering approach to modeling of piled systems

    International Nuclear Information System (INIS)

    Coombs, R.F.; Silva, M.A.G. da

    1980-01-01

    Available methods of analysis of piled systems subjected to dynamic excitation invade areas of mathematics usually beyond the reach of a practising engineer. A simple technique that avoids that conflict is proposed, at least for preliminary studies, and its application, compared with other methods, is shown to be satisfactory. A corrective factor for parameters currently used to represent transmitting boundaries is derived for a finite strip that models an infinite layer. The influence of internal damping on the dynamic stiffness of the layer and on radiation damping is analysed. (Author) [pt

  12. Radio systems engineering a tutorial approach

    CERN Document Server

    Santos, Héctor J De Los; Ponte, Juan

    2015-01-01

    This book is intended for readers who already have knowledge of devices and circuits for radio-frequency (RF) and microwave communication and are ready to study the systems engineering-level aspects of modern radio communications systems. The authors provide a general overview of radio systems with their components, focusing on the analog parts of the system and their non-idealities. Based on the physical functionality of the various building blocks of a modern radio system, block parameters are derived, which allows the examination of their influence on the overall system performance. The dis

  13. Systems engineering: A formal approach. Part 1: System concepts

    Science.gov (United States)

    Vanhee, K. M.

    1993-03-01

    Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.

  14. An algebraic approach to modeling in software engineering

    International Nuclear Information System (INIS)

    Loegel, C.J.; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form

  15. A civil engineering approach to ideal MHD

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1992-01-01

    It is well known that a magnetic field can be conceived as a medium where an isotropic compressive stress, B 2 /2μ 0 , is superimposed on a tensile stress, B 2 /μ 0 , parallel to the lines of force. When a stationary ideal MHD plasma is present in the magnetic field, the particle pressure adds to the magnetic stresses to form a combined stress tensor. Calculations of plasma equilibria based on this concept are very similar to calculations in civil engineering of static structures based on compressive, tensile, and shear stresses. Therefore the very simple physical pictures known from civil engineering when used in plasma physics provide simple physical understanding and facilitate the physical interpretation of the results. In an earlier paper the concept was used to derive and discuss the equilibrium equations for θ-, Z-, and screw pinches and the Grad-Shafranov shift in a tokamak plasma with circular cross sections of the flux surfaces. Here the concept is used to discuss the virial theorem and to obtain a simple physical interpretation of this theorem. We also reconsider the Grad-Shafranov shift in a tokamak plasma and show that a situation where all flux surfaces have circular cross sections cannot be an exact solution to the ideal MHD equations. (author) 3 refs., 3 figs

  16. A Systems Engineering Approach to Architecture Development

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  17. Engine Icing Data - An Analytics Approach

    Science.gov (United States)

    Fitzgerald, Brooke A.; Flegel, Ashlie B.

    2017-01-01

    Engine icing researchers at the NASA Glenn Research Center use the Escort data acquisition system in the Propulsion Systems Laboratory (PSL) to generate and collect a tremendous amount of data every day. Currently these researchers spend countless hours processing and formatting their data, selecting important variables, and plotting relationships between variables, all by hand, generally analyzing data in a spreadsheet-style program (such as Microsoft Excel). Though spreadsheet-style analysis is familiar and intuitive to many, processing data in spreadsheets is often unreproducible and small mistakes are easily overlooked. Spreadsheet-style analysis is also time inefficient. The same formatting, processing, and plotting procedure has to be repeated for every dataset, which leads to researchers performing the same tedious data munging process over and over instead of making discoveries within their data. This paper documents a data analysis tool written in Python hosted in a Jupyter notebook that vastly simplifies the analysis process. From the file path of any folder containing time series datasets, this tool batch loads every dataset in the folder, processes the datasets in parallel, and ingests them into a widget where users can search for and interactively plot subsets of columns in a number of ways with a click of a button, easily and intuitively comparing their data and discovering interesting dynamics. Furthermore, comparing variables across data sets and integrating video data (while extremely difficult with spreadsheet-style programs) is quite simplified in this tool. This tool has also gathered interest outside the engine icing branch, and will be used by researchers across NASA Glenn Research Center. This project exemplifies the enormous benefit of automating data processing, analysis, and visualization, and will help researchers move from raw data to insight in a much smaller time frame.

  18. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Systems engineering approach towards performance monitoring of emergency diesel generator

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Lee, Y.K.

    2013-01-01

    Full-text: Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort. (author)

  20. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  1. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  2. A modular approach to creating large engineered cartilage surfaces.

    Science.gov (United States)

    Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D

    2018-01-23

    Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimisation of Multilayer Insulation an Engineering Approach

    CERN Document Server

    Chorowski, M; Parente, C; Riddone, G

    2001-01-01

    A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.

  4. Modular co-culture engineering, a new approach for metabolic engineering.

    Science.gov (United States)

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  6. Systems engineering approach for future automotive microcontroller solutions; Systems-Engineering-Ansatz zur Entwicklung zukuenftiger Mikrocontroller

    Energy Technology Data Exchange (ETDEWEB)

    Hilgert, J.; Turski, K.; Vollhardt, S. [NEC Electronics Europe, Duesseldorf (Germany)

    2005-09-01

    In the future, microcontrollers used in automotive applications will have to meet escalating demands from different areas. For this reason, NEC Electronics (Europe) regards the concept of Systems Engineering as the key to handling the development of the complex system vehicle. This article describes how the Systems Engineering approach is applied to the development of new microcontrollers. The example used is the development platform for NEC's upcoming gateway product. (orig.)

  7. Perspectives for Cell-homing Approaches to Engineer Dental Pulp.

    Science.gov (United States)

    Galler, Kerstin M; Widbiller, Matthias

    2017-09-01

    Sufficient proof is available today to demonstrate that dental pulp tissue engineering is possible. The body of evidence was generated mainly on cell transplantation; however, because of several severe problems afflicted with this approach, it might not be feasible for a clinical setting in the near future. More recently, cell homing has been proposed as a viable alternative. We suggest a modification of the tissue engineering paradigm, where resident cells are attracted by endogenous, dentin-derived growth factors that further induce cell proliferation and differentiation and a bioactive scaffold material laden with these growth factors that serves as a template for tissue formation. This article highlights the latest developments regarding scaffold materials, stem cells, and dentin-derived growth factors specifically for a cell-homing approach to engineer dental pulp and summarizes new ideas. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. An engineering approach to extending lifespan in C. elegans.

    Directory of Open Access Journals (Sweden)

    Dror Sagi

    Full Text Available We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome.

  9. Engineering system dynamics a unified graph-centered approach

    CERN Document Server

    Brown, Forbes T

    2006-01-01

    For today's students, learning to model the dynamics of complex systems is increasingly important across nearly all engineering disciplines. First published in 2001, Forbes T. Brown's Engineering System Dynamics: A Unified Graph-Centered Approach introduced students to a unique and highly successful approach to modeling system dynamics using bond graphs. Updated with nearly one-third new material, this second edition expands this approach to an even broader range of topics. What's New in the Second Edition? In addition to new material, this edition was restructured to build students' competence in traditional linear mathematical methods before they have gone too far into the modeling that still plays a pivotal role. New topics include magnetic circuits and motors including simulation with magnetic hysteresis; extensive new material on the modeling, analysis, and simulation of distributed-parameter systems; kinetic energy in thermodynamic systems; and Lagrangian and Hamiltonian methods. MATLAB(R) figures promi...

  10. Towards Multi-Method Research Approach in Empirical Software Engineering

    Science.gov (United States)

    Mandić, Vladimir; Markkula, Jouni; Oivo, Markku

    This paper presents results of a literature analysis on Empirical Research Approaches in Software Engineering (SE). The analysis explores reasons why traditional methods, such as statistical hypothesis testing and experiment replication are weakly utilized in the field of SE. It appears that basic assumptions and preconditions of the traditional methods are contradicting the actual situation in the SE. Furthermore, we have identified main issues that should be considered by the researcher when selecting the research approach. In virtue of reasons for weak utilization of traditional methods we propose stronger use of Multi-Method approach with Pragmatism as the philosophical standpoint.

  11. Sundanese ancient manuscripts search engine using probability approach

    Science.gov (United States)

    Suryani, Mira; Hadi, Setiawan; Paulus, Erick; Nurma Yulita, Intan; Supriatna, Asep K.

    2017-10-01

    Today, Information and Communication Technology (ICT) has become a regular thing for every aspect of live include cultural and heritage aspect. Sundanese ancient manuscripts as Sundanese heritage are in damage condition and also the information that containing on it. So in order to preserve the information in Sundanese ancient manuscripts and make them easier to search, a search engine has been developed. The search engine must has good computing ability. In order to get the best computation in developed search engine, three types of probabilistic approaches: Bayesian Networks Model, Divergence from Randomness with PL2 distribution, and DFR-PL2F as derivative form DFR-PL2 have been compared in this study. The three probabilistic approaches supported by index of documents and three different weighting methods: term occurrence, term frequency, and TF-IDF. The experiment involved 12 Sundanese ancient manuscripts. From 12 manuscripts there are 474 distinct terms. The developed search engine tested by 50 random queries for three types of query. The experiment results showed that for the single query and multiple query, the best searching performance given by the combination of PL2F approach and TF-IDF weighting method. The performance has been evaluated using average time responds with value about 0.08 second and Mean Average Precision (MAP) about 0.33.

  12. A new approach to heart valve tissue engineering

    DEFF Research Database (Denmark)

    Kaasi, Andreas; Cestari, Idágene A.; Stolf, Noedir A G.

    2011-01-01

    The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes...... chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber...

  13. A scientific approach to writing for engineers and scientists

    CERN Document Server

    Berger, Robert E

    2014-01-01

    This book is a guide to technical writing, presented in a systematic framework that mirrors the logic associated with the scientific process itself. Other English books merely define concepts and provide rules; this one explains the reasoning behind the rules. Other writing books for scientists and engineers focus primarily on how to gather and organize materials; this one focuses primarily on how to compose a readable sentence. The approach should be satisfying not only to scientists and engineers, but also to anyone that once took a grammar course but can't remember the rules - because there was no exposure to underlying principles.

  14. The Need for Integrated Approaches in Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  15. Learning intervention and the approach to study of engineering undergraduates

    Science.gov (United States)

    Solomonides, Ian Paul

    The aim of the research was to: investigate the effect of a learning intervention on the Approach to Study of first year engineering degree students. The learning intervention was a local programme of learning to learn' workshops designed and facilitated by the author. The primary aim of these was to develop students' Approaches to Study. Fifty-three first year engineering undergraduates at The Nottingham Trent University participated in the workshops. Approaches to Study were quantified using data obtained from the Revised Approach to Study Inventory (RASI) which was also subjected to a validity and reliability study using local data. Quantitative outcomes were supplemented using a qualitative analysis of essays written by students during the workshops. These were analysed for detail regarding student Approach to Study. It was intended that any findings would inform the local system of Engineering Education, although more general findings also emerged, in particular in relation to the utility of the research instrument. It was concluded that the intervention did not promote the preferential Deep Approach and did not affect Approaches to Study generally as measured by the RASI. This concurred with previous attempts to change student Approaches to Study at the group level. It was also established that subsequent years of the Integrated Engineering degree course are associated with progressively deteriorating Approaches to Study. Students who were exposed to the intervention followed a similar pattern of deteriorating Approaches suggesting that the local course context and its demands had a greater influence over the Approach of students than the intervention did. It was found that academic outcomes were unrelated to the extent to which students took a Deep Approach to the local assessment demands. There appeared therefore to be a mis-match between the Approach students adopted to pass examinations and those that are required for high quality learning outcomes. It is

  16. Nuclear engineering education: A competence based approach to curricula development

    International Nuclear Information System (INIS)

    2014-01-01

    Maintaining nuclear competencies in the nuclear industry is a one of the most critical challenges in the near future. With the development of a number of nuclear engineering educational programmes in several States, this publication provides guidance to decision makers in Member States on a competence based approach to curricula development, presenting the established practices and associated requirements for educational programmes in this field. It is a consolidation of best practices that will ensure sustainable, effective nuclear engineering programmes, contributing to the safe, efficient and economic operation of nuclear power plants. The information presented is drawn from a variety of recognized nuclear engineering programmes around the world and contributes to the main areas that are needed to ensure a viable and robust nuclear industry

  17. Parallel science and engineering applications the Charm++ approach

    CERN Document Server

    Kale, Laxmikant V

    2016-01-01

    Developed in the context of science and engineering applications, with each abstraction motivated by and further honed by specific application needs, Charm++ is a production-quality system that runs on almost all parallel computers available. Parallel Science and Engineering Applications: The Charm++ Approach surveys a diverse and scalable collection of science and engineering applications, most of which are used regularly on supercomputers by scientists to further their research. After a brief introduction to Charm++, the book presents several parallel CSE codes written in the Charm++ model, along with their underlying scientific and numerical formulations, explaining their parallelization strategies and parallel performance. These chapters demonstrate the versatility of Charm++ and its utility for a wide variety of applications, including molecular dynamics, cosmology, quantum chemistry, fracture simulations, agent-based simulations, and weather modeling. The book is intended for a wide audience of people i...

  18. Flow-based approach for holistic factory engineering and design

    OpenAIRE

    Constantinescu, C.; Westkämper, E.

    2010-01-01

    The engineering of future factories requires digital tools along life cycle phases from investment planning to ramp-up. Manufacturers need scientific-based integrated highly dynamic data management systems for the participative and integrated factory planning. The paper presents a new approach for the continuously integrated product design, factory and process planning, through a service-oriented architecture for the implementation of digital factory tools. A first prototype of the digital fa...

  19. ADVANCED APPROACH TO PRODUCTION WORKFLOW COMPOSITION ON ENGINEERING KNOWLEDGE PORTALS

    OpenAIRE

    Novogrudska, Rina; Kot, Tatyana; Globa, Larisa; Schill, Alexander

    2016-01-01

    Background. In the environment of engineering knowledge portals great amount of partial workflows is concentrated. Such workflows are composed into general workflow aiming to perform real complex production task. Characteristics of partial workflows and general workflow structure are not studied enough, that affects the impossibility of general production workflowdynamic composition.Objective. Creating an approach to the general production workflow dynamic composition based on the partial wor...

  20. A Predictive Approach to Network Reverse-Engineering

    Science.gov (United States)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  1. Esophageal tissue engineering: a new approach for esophageal replacement.

    Science.gov (United States)

    Totonelli, Giorgia; Maghsoudlou, Panagiotis; Fishman, Jonathan M; Orlando, Giuseppe; Ansari, Tahera; Sibbons, Paul; Birchall, Martin A; Pierro, Agostino; Eaton, Simon; De Coppi, Paolo

    2012-12-21

    A number of congenital and acquired disorders require esophageal tissue replacement. Various surgical techniques, such as gastric and colonic interposition, are standards of treatment, but frequently complicated by stenosis and other problems. Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function. We review the literature of esophageal tissue engineering, discuss its implications, compare the methodologies that have been employed and suggest possible directions for the future. Medline, Embase, the Cochrane Library, National Research Register and ClinicalTrials.gov databases were searched with the following search terms: stem cell and esophagus, esophageal replacement, esophageal tissue engineering, esophageal substitution. Reference lists of papers identified were also examined and experts in this field contacted for further information. All full-text articles in English of all potentially relevant abstracts were reviewed. Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation. When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality. Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration, whilst omental wrapping to induce vascularization of the construct has an uncertain benefit. Decellularized matrices have been recently suggested as the optimal choice for scaffolds, but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution. Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds

  2. Broadening of nuclear engineering programs: An engineering physics approach at Rensselaer

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1990-01-01

    With the maturing of nuclear engineering as an academic discipline and the uncertainty surrounding the nuclear industry, attention is being increasingly turned to ways in which the base of traditional nuclear engineering programs in universities can be broadened to make them more attractively useful to a wider class of potential students and employers while maintaining the strengths in mainstream areas of nuclear technology. An approach that seems to provide a natural evolution combining the existing programmatic strengths, infrastructure, and resources with the trending needs of a broad segment of diversified industries is the development and initiation of an engineering physics degree program as an adjunct to an established nuclear engineering curriculum. In line with these developments, a new comprehensive academic program offering baccalaureate, master's, and doctoral degrees in engineering physics has been developed and formally instituted at Rensselaer Polytechnic Institute (RPI). It provides a valuable opportunity for students to pursue education and research that cuts across traditional disciplinary lines, leading to a wide variety of career opportunities in industry, government, national research and defense laboratories, and academia

  3. Alternative approaches to providing engineering expertise on shift

    International Nuclear Information System (INIS)

    Olson, J.; Schreiber, R.E.; Melber, B.D.

    1984-05-01

    This report represents the conclusions of a project studying the role of engineering expertise on shift in nuclear power plants. Using the present shift technical advisor (STA) position as the base case, several alternatives are analyzed. On-shift alternatives included the STA, the SS (shift supervisor), and the SE (shift engineer). The SE is degreed, experienced, trained, and licensed as a Senior Reactor Operator. Some non-shift alternatives were also studied. These included a cadre of on-call engineers and specialists within continual contact and easy reach of the plant; a technical system of phone and data lines linking the plant with a facility similar to an on-site technical support center; and finally, an SPDS (safety parameter display system) to agument technical upgrading of operator aids presently available. Potential problems considered in the analysis of implementation of these alternatives included job content constraints, problems of crew acceptance, and problems of labor supply and retention. Of the considered alternatives, the SE and SS options appear superior to the current STA approach. The SE approach appears the easiest to implement and the most effective under varied plant conditions. The SE may also serve as liaison to off-site support facilities

  4. Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines

    Directory of Open Access Journals (Sweden)

    Dario Pastrone

    2012-01-01

    Full Text Available Hybrid rocket engines are promising propulsion systems which present appealing features such as safety, low cost, and environmental friendliness. On the other hand, certain issues hamper the development hoped for. The present paper discusses approaches addressing improvements to one of the most important among these issues: low fuel regression rate. To highlight the consequence of such an issue and to better understand the concepts proposed, fundamentals are summarized. Two approaches are presented (multiport grain and high mixture ratio which aim at reducing negative effects without enhancing regression rate. Furthermore, fuel material changes and nonconventional geometries of grain and/or injector are presented as methods to increase fuel regression rate. Although most of these approaches are still at the laboratory or concept scale, many of them are promising.

  5. Model-Based Systems Engineering Approach to Managing Mass Margin

    Science.gov (United States)

    Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris

    2012-01-01

    When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).

  6. Implementing CDIO Approach in preparing engineers for Space Industry

    Directory of Open Access Journals (Sweden)

    Daneykin Yury

    2017-01-01

    Full Text Available The necessity to train highly qualified specialists leads to the development of the trajectory that can allow training specialists for the space industry. Several steps have been undertaken to reach this purpose. First, the University founded the Space Instrument Design Center that promotes a wide range of initiatives in the sphere of educating specialists, retraining specialists, carrying out research and collaborating with profiled enterprises. The University introduced Elite Engineering Education system to attract talented specialist and help them to follow individual trajectory to train unique specialist. The paper discusses the targets necessary for achievement to train specialists. Moreover, the paper presents the compliance of the attempts with the CDIO Approach, which is widely used in leading universities to improve engineering programs.

  7. Multi-hazard approaches to civil infrastructure engineering

    CERN Document Server

    LaFave, James

    2016-01-01

    This collection focuses on the development of novel approaches to address one of the most pressing challenges of civil engineering, namely the mitigation of natural hazards. Numerous engineering books to date have focused on, and illustrate considerable progress toward, mitigation of individual hazards (earthquakes, wind, and so forth.). The current volume addresses concerns related to overall safety, sustainability and resilience of the built environment when subject to multiple hazards: natural disaster events that are concurrent and either correlated (e.g., wind and surge); uncorrelated (e.g., earthquake and flood); cascading (e.g., fire following earthquake); or uncorrelated and occurring at different times (e.g., wind and earthquake). The authors examine a range of specific topics including methodologies for vulnerability assessment of structures, new techniques to reduce the system demands through control systems; instrumentation, monitoring and condition assessment of structures and foundations; new te...

  8. Engineering approach to model and compute electric power markets settlements

    International Nuclear Information System (INIS)

    Kumar, J.; Petrov, V.

    2006-01-01

    Back-office accounting settlement activities are an important part of market operations in Independent System Operator (ISO) organizations. A potential way to measure ISO market design correctness is to analyze how well market price signals create incentives or penalties for creating an efficient market to achieve market design goals. Market settlement rules are an important tool for implementing price signals which are fed back to participants via the settlement activities of the ISO. ISO's are currently faced with the challenge of high volumes of data resulting from the increasing size of markets and ever-changing market designs, as well as the growing complexity of wholesale energy settlement business rules. This paper analyzed the problem and presented a practical engineering solution using an approach based on mathematical formulation and modeling of large scale calculations. The paper also presented critical comments on various differences in settlement design approaches to electrical power market design, as well as further areas of development. The paper provided a brief introduction to the wholesale energy market settlement systems and discussed problem formulation. An actual settlement implementation framework and discussion of the results and conclusions were also presented. It was concluded that a proper engineering approach to this domain can yield satisfying results by formalizing wholesale energy settlements. Significant improvements were observed in the initial preparation phase, scoping and effort estimation, implementation and testing. 5 refs., 2 figs

  9. Approaches to Improve Mixing in Compression Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Boot, M.D.

    2010-04-20

    This thesis presents three approaches to suppress soot emissions in compression ignition (CI) engines. First, a fuel chemistry approach is proposed. A particular class of fuels - cyclic oxygenates - is identified which is capable of significantly reducing engine-out soot emissions. By means of experiments in 'closed' and optical engines, as well as on an industrial burner, two possible mechanisms are identified that could account for the observed reduction in soot: a) an extended ignition delay (ID) and b) a longer flame lift-length (FLoL). Further analysis of the available data suggests that both mechanisms are related to the inherently low reactivity of the fuel class in question. These findings are largely in line with data found in literature. In the second approach, it is attempted to reduce soot by adopting an alternative combustion concept: early direct injection premixed charge compression ignition (EDI PCCI). In this concept, fuel is injected relatively early in the compression stroke instead of conventional, close to top-dead-center (TDC), injection schemes. While the goal of soot reduction can indeed be achieved via this approach, an important drawback must be addressed before this concept can be considered practically viable. Due to the fact that combustion chamber temperature and pressure is relatively low early in the compression stroke, fuel impingement against the cylinder liner (wall-wetting) often occurs. Consequently, high levels of unburned hydrocarbons (UHC), oil dilution and poor efficiency are observed. Several strategies, combining a limited engine modification with dedicated air management and fueling settings, are investigated to tackle this drawback. All of these strategies, and especially their combination, resulted in significantly lower UHC emissions and improved fuel economy. Although UHC emissions are typically a tell-tale sign of wall-wetting, as mentioned earlier, the relation between these two has long been hypothetical

  10. An Event-driven, Value-based, Pull Systems Engineering Scheduling Approach

    Science.gov (United States)

    2012-03-01

    combining a services approach to systems engineering with a kanban -based scheduling system. It provides the basis for validating the approach with...agent-based simulations. Keywords-systems engineering; systems engineering process; lean; kanban ; process simulation I. INTRODUCTION AND BACKGROUND...approaches [8], [9], we are investigating the use of flow-based pull scheduling techniques ( kanban systems) in a rapid response development

  11. Process support for Opticam: a concurrent engineering approach

    Science.gov (United States)

    Czajkowski, Walter C.; Tipps, Joe D., Jr.

    1992-12-01

    Although the principles of concurrent engineering and rapid product cycles are not new concepts in the industrial sector, the optics manufacturing industry has witnessed few technological advances since the 1940's. At present the optics industry maintains outdated stand-alone manufacturing equipment and systems that do little to foster integration or communications. 'Islands of Technology', spawned from the latest offerings of CNC controlled equipment, are generally stand alone systems incapable of supporting communication with other process equipment, not to mention the total business enterprise. This approach increases the cost in design and manufacture of optical systems while negatively impacting competitiveness in the global marketplace.

  12. Sustainable solid waste management a systems engineering approach

    CERN Document Server

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  13. Energy systems a new approach to engineering thermodynamics

    CERN Document Server

    Gicquel, Renaud

    2011-01-01

    Forewords, About the Author, General introduction, Structure of the book, Objectives, A working tool on many levels, Mind Maps, List of Symbols, Conversion FactorsI First Steps in Engineering Thermodynamics1 A New Educational Paradigm1.1 Introduction1.2 General remarks on the evolution of training specifi cations1.3 Specifi cs of applied thermodynamics teaching1.4 A new educational paradigm1.5 Diapason modules1.6 A three-step progressive approach1.7 Main pedagogic innovations brought by Thermoptim1.8 Digital resources of the Thermoptim-UNIT portal1.9 Comparison with other tools with teaching p

  14. Esophageal tissue engineering: A new approach for esophageal replacement

    Institute of Scientific and Technical Information of China (English)

    Giorgia Totonelli; Panagiotis Maghsoudlou; Jonathan M Fishman; Giuseppe Orlando; Tahera Ansari; Paul Sibbons; Martin A Birchall

    2012-01-01

    A number of congenital and acquired disorders require esophageal tissue replacement.Various surgical techniques,such as gastric and colonic interposition,are standards of treatment,but frequently complicated by stenosis and other problems.Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function.We review the literature of esophageal tissue engineering,discuss its implications,compare the methodologies that have been employed and suggest possible directions for the future.Medline,Embase,the Cochrane Library,National Research Register and ClinicalTrials.gov databases were searched with the following search terms:stem cell and esophagus,esophageal replacement,esophageal tissue engineering,esophageal substitution.Reference lists of papers identified were also examined and experts in this field contacted for further information.All full-text articles in English of all potentially relevant abstracts were reviewed.Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation.When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality.Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration,whilst omental wrapping to induce vascularization of the construct has an uncertain benefit.Decellularized matrices have been recently suggested as the optimal choice for scaffolds,but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution.Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds prior to implantation is a

  15. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  17. Some approaches to system reliability improvement in engineering design

    International Nuclear Information System (INIS)

    Shen, Kecheng.

    1990-01-01

    In this thesis some approaches to system reliability improvement in engineering design are studied. In particular, the thesis aims at developing alternative methodologies for ranking of component importance which are more related to the design practice and which are more useful in system synthesis than the existing ones. It also aims at developing component reliability models by means of stress-strength interference which will enable both component reliability prediction and design for reliability. A new methodology for ranking of component importance is first developed based on the notion of the increase of the expected system yield. This methodology allows for incorporation of different improvement actions at the component level such as parallel redundancy, standby redundancy, burn-in, minimal repair and perfect replacement. For each of these improvement actions, the increase of system reliability is studied and used as the component importance measure. A possible connection between the commonly known models of component lifetimes and the stress-strength interference models is suggested. Under some general conditions the relationship between component failure rate and the stress and strength distribution characteristics is studied. A heuristic approach for obtaining bounds on failure probability through stress-strength interference is also presented. A case study and a worked example are presented, which illustrate and verify the developed importance measures and their applications in the analytical as well as synthetical work of engineering design. (author)

  18. Engineering nanomaterials with a combined electrochemical and molecular biomimetic approach

    Science.gov (United States)

    Dai, Haixia

    Biocomposite materials, such as bones, teeth, and shells, are created using mild aqueous solution-based processes near room temperature. Proteins add flexibility to these processes by facilitating the nucleation, growth, and ordering of specific inorganic materials into hierarchical structures. We aim to develop a biomimetic strategy for engineering technologically relevant inorganic materials with controlled compositions and structures, as Nature does, using proteins to orchestrate material formation and assembly. This approach involves three basic steps: (i) preparation of inorganic substrates compatible with combinatorial polypeptide screening; (ii) identification of inorganic-binding polypeptides and their engineering into inorganic-binding proteins; and (iii) protein-mediated inorganic nucleation and organization. Cuprous oxide (Cu2O), a p-type semiconductor, has been used to demonstrate all three steps. Zinc oxide (ZnO), an n-type semiconductor, has been used to show the generality of selected steps. Step (i), preparation of high quality inorganic substrates to select inorganic-binding polypeptides, was accomplished using electrochemical microfabrication to grow and pattern Cu2O and ZnO. Raman spectroscopy and x-ray photoelectron spectroscopy were used to verify phase purity and compositional stability of these surfaces during polypeptide screening. Step (ii), accomplished in collaboration with personnel in Prof Baneyx' lab at the University of Washington, involved incubating the inorganic substrates with the FliTrx(TM) random peptide library to identify cysteine-constrained dodecapeptides that bind the targeted inorganic. Insertion of a Cu2O-binding dodecapeptide into the DNA-binding protein TraI endowed the engineered TraI with strong affinity for Cu2O (Kd ≈ 10 -8 M). Finally, step (iii) involved nonequilibrium synthesis and organization of Cu2O nanoparticles, taking advantage of the inorganic and DNA recognition properties of the engineered TraI. The

  19. Fatigue in engineering structures. A three fold analysis approach

    International Nuclear Information System (INIS)

    Malik, Afzaal M.; Qureshi, Ejaz M.; Dar, Naeem Ullah; Khan, Iqbal

    2007-01-01

    The integrity in most of the engineering structures in influenced by the presence of cracks or crack like defects. These structures fail, even catastrophically if a crack greater than a critically safe size exist. Although most of the optimal designed structures are initially free from critical cracks, sub-critical cracks can lead to failures under cyclic loadings, called fatigue crack growth. It is nearly impractical to prevent sub-critical crack growth in engineering structures particularly in crack sensitive structures like most of the structures in nuclear, aerospace and aeronautical domains. However, it is essential to predict the fatigue crack growth for these structures to preclude the in service failures causing loss of assets. The present research presents an automatic procedure for the prediction of fatigue crack growth in three dimensional engineering structures and the key data for the fracture mechanics based design: the stress intensity factors. Three fold analysis procedures are adopted to investigate the effects of repetitive (cyclic) loadings on the fatigue life of different geometries of aluminum alloy 2219-O. A general purpose Finite Element (FE) Code ANSYS-8.0 is used to predict/estimate the fatigue life of the geometries. Computer codes utilizing the Green's Function are developed to calculate the stress intensity factors. Another code based on superposition technique presented by Shivakumara and Foreman is developed to calculate the fatigue crack growth rate, fatigue life (No. of loading cycles are developed to validate the results and finally full scale laboratory tests are conducted for the comparison of the results. The results showing a close co-relation between the different techniques employed gives the promising feature of the analysis approach for the future work. (author)

  20. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.

    Science.gov (United States)

    Cunha, Carla; Panseri, Silvia; Antonini, Stefania

    2011-02-01

    Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Complex approach in telecommunication engineering education: develop engineering skills by a team project

    Directory of Open Access Journals (Sweden)

    Scripcariu Luminița

    2017-01-01

    Full Text Available This paper provides an overview of the educational process of telecommunication engineering students by presenting the preparation of a team project focused on information security. Our educational approach combines basic knowledge such as mathematics with specialized engineering notions and various skills. The project theme is to design, implement and test an encryption algorithm. Students are provided with online courses, specific software programs and Internet access. They have to choose an encryption algorithm, to study its details and to write the script of the encryption algorithm in MATLAB program. The algorithm is implemented in C/C++ programming language and tested. Finally, a concurrent team tries to break the algorithm by finding the decryption key. It is an interactive approach which combines various education methods including gaming concepts. The covered topics provide students professional outcomes such as knowledge and use of specific mathematical tools and software environments (C/C ++ programming languages, MATLAB, abilities to design, develop, implement and test software algorithms. The project also provides transversal outcomes such as ability to team work, skills of computer use and information technology and capability to take responsibilities. Creativity is also encouraged by extending the algorithm to other encryption key lengths than the usual ones.

  2. Approaches to nontraditional delivery of nuclear engineering education

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1991-01-01

    At Rensselaer Polytechnic Institute, the faculty of the nuclear engineering and engineering physics department have, over the years, been involved in a variety of such approaches in response to the changing needs of nuclear industry personnel. A number of different types of short course and workshop programs have been developed and implemented both on and off campus in such areas as basic nuclear technology, reactor design computer codes and applications, nuclear power plant design and maintenance, reactor operations, health physics, modern developments in boiling heat transfer and two-phase flow, and probabilistic risk assessment. Customized coursed tailored to meet the particular needs of personnel in specialized areas can also be offered on specific industrial site locations, generally resulting in substantial savings of time as well as costs associated with tuition, travel, lodging. The Rensselaer Satellite Video Program (RSVP) brings the latest technological aids to the nontraditional delivery of courses and provides the facilities and opportunities for off-campus students and professional personnel to participate in regular academic programs and courses without leaving their industrial sites

  3. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    Science.gov (United States)

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.

  4. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    Science.gov (United States)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  5. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  6. The catchment based approach using catchment system engineering

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  7. Sustainable Development in Engineering Education: A Pedagogical Approach

    Science.gov (United States)

    Ahrens, A.; Zascerinska, J.

    2012-01-01

    Engineering education is facing a challenge of the development of student engineers' social responsibility in the context of sustainable development. The aim of the research is to analyze efficiency of engineering curriculum in the context of sustainable development underpinning elaboration of pedagogical guidelines on the development of students'…

  8. A Novel Approach to Physiology Education for Biomedical Engineering Students

    Science.gov (United States)

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  9. A Systems Engineering Approach to Electro-Mechanical Actuator Diagnostic and Prognostic Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The authors have formulated a Comprehensive Systems Engineering approach to Electro-Mechanical Actuator (EMA) Prognostics and Health Management (PHM) system...

  10. ECSIN's methodological approach for hazard evaluation of engineered nanomaterials

    Science.gov (United States)

    Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico

    2013-04-01

    The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,"devil is in the detail".

  11. ECSIN's methodological approach for hazard evaluation of engineered nanomaterials

    International Nuclear Information System (INIS)

    Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico

    2013-01-01

    The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,'devil is in the detail'.

  12. A unified approach to failure assessment of engineering structures

    International Nuclear Information System (INIS)

    Harrison, R.P.

    1977-01-01

    A codified procedure for the failure assessment of engineering structures is presented which has as its basis the two criteria approach of Dowling and Townley (Int. J. Press. Vessels and Piping; 3:77 (1975)) and the Bilby, Cottrell and Swinden (Proc. R. Soc.; A272:304 (1963)) and Dugdale (J. Mech. Phys. Sol.; 8:100 (1960)) model of yielding ahead of a crack tip. The procedure consists of independently assessing the risk of failure (a) under linear elastic conditions only and (b) under plastic collapse conditions only. These two limiting criteria are then plotted as a co-ordinate point on a Failure Assessment Diagram. From this a measure of the degree of safety of the structure can be obtained. As examples, several of the HSST vessel tests are used to indicate the simplicity and versatility of the procedure. It is shown how maximum allowable pressures or defect sizes can be obtained and how safety factors can be readily incorporated on any of the parameters used in the assessment. It is also demonstrated how helpful the procedure is in designing not only working structures, but also structures that are to be used for testing. (author)

  13. A TOTAL QUALITY MANAGEMENT APPROACH TO CIVIL ENGINEERING CONSULTING

    Directory of Open Access Journals (Sweden)

    G.A.L. Ambrose

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The article describes the development of a framework for the implementation of a Total Quality Management (TQM approach in the civil consulting industry through the five phases of the typical civil engineering project. For any project to be successful the project team members must take collective and individual responsibility for their role in the project implementation. The organisational goal is “to make money now and in the future”. To achieve this goal the organization must provide value to its clientele. The clients are searching for the silver bullet; double the performance at half the price. TQM provides a means to achieve this goal.

    AFRIKAANSE OPSOMMING: Die artikel beskryf die ontwikkeling van 'n raamwerk vir die implementering van 'n gehaltebestuurstelsel vir die siviele raadgewende bedryf soos dit deelneem aan die vyf fases van 'n tipiese siviele ingenieursprojek. Vir die suksesvolle afhandeling van 'n projek is dit noodsaaklik dat alle projekspanlede gesamentlik en afsonderlik verantwoordelikheid moet aanvaar vir hulle eie betrokkenheid by die projekimplementering. Die organisasie se oogmerk is om “nou en in die toekoms geld te maak”. Ten einde hierdie oogmerk te bereik moet die organisasie waarde vir sy kliënte bied. 'n Gehaltebestuurstelsel voorsien die gereedskap om hierdie doelwit te bereik.

  14. Defining Resilience and Vulnerability Based on Ontology Engineering Approach

    Science.gov (United States)

    Kumazawa, T.; Matsui, T.; Endo, A.

    2014-12-01

    It is necessary to reflect the concepts of resilience and vulnerability into the assessment framework of "Human-Environmental Security", but it is also in difficulty to identify the linkage between both concepts because of the difference of the academic community which has discussed each concept. The authors have been developing the ontology which deals with the sustainability of the social-ecological systems (SESs). Resilience and vulnerability are also the concepts in the target world which this ontology covers. Based on this point, this paper aims at explicating the semantic relationship between the concepts of resilience and vulnerability based on ontology engineering approach. For this purpose, we first examine the definitions of resilience and vulnerability which the existing literatures proposed. Second, we incorporate the definitions in the ontology dealing with sustainability of SESs. Finally, we focus on the "Water-Energy-Food Nexus Index" to assess Human-Environmental Security, and clarify how the concepts of resilience and vulnerability are linked semantically through the concepts included in these index items.

  15. Systems approach to managing educational quality in the engineering classroom

    Science.gov (United States)

    Grygoryev, Kostyantyn

    Today's competitive environment in post-secondary education requires universities to demonstrate the quality of their programs in order to attract financing, and student and academic talent. Despite significant efforts devoted to improving the quality of higher education, systematic, continuous performance measurement and management still have not reached the level where educational outputs and outcomes are actually produced---the classroom. An engineering classroom is a complex environment in which educational inputs are transformed by educational processes into educational outputs and outcomes. By treating a classroom as a system, one can apply tools such as Structural Equation Modeling, Statistical Process Control, and System Dynamics in order to discover cause-and-effect relationships among the classroom variables, control the classroom processes, and evaluate the effect of changes to the course organization, content, and delivery, on educational processes and outcomes. Quality improvement is best achieved through the continuous, systematic application of efforts and resources. Improving classroom processes and outcomes is an iterative process that starts with identifying opportunities for improvement, designing the action plan, implementing the changes, and evaluating their effects. Once the desired objectives are achieved, the quality improvement cycle may start again. The goal of this research was to improve the educational processes and outcomes in an undergraduate engineering management course taught at the University of Alberta. The author was involved with the course, first, as a teaching assistant, and, then, as a primary instructor. The data collected from the course over four years were used to create, first, a static and, then, a dynamic model of a classroom system. By using model output and qualitative feedback from students, changes to the course organization and content were introduced. These changes led to a lower perceived course workload and

  16. Developing a New Industrial Engineering Curriculum Using a Systems Engineering Approach

    Science.gov (United States)

    Buyurgan, Nebil; Kiassat, Corey

    2017-01-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have…

  17. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  18. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  19. Arctic Ice Management: an integrated approach to climate engineering

    Science.gov (United States)

    Desch, S. J.; Hartnett, H. E.; Groppi, C. E.; Romaniello, S. J.

    2017-12-01

    The warming climate is having the most rapid and pronounced effects in the high Arctic. The loss of Arctic sea ice is not only changing the physical oceanography of the Arctic Ocean and its coastlines; it is also promoting new conversations about the dangers and benefits for trade, transportation, and industry in the Arctic. The rate of decrease of summer sea ice in the Arctic is currently -300 km3 yr-1, a rate that will lead to complete loss of end-summer sea ice as soon as 2030. Preventing the strong positive feedbacks and increased warming due to sea ice albedo loss must be an important component of climate mitigation strategies. Here, we explore a direct engineering approach we call Arctic Ice Management (AIM) to reduce the loss of Arctic sea ice. We predict that pumping seawater onto the ice surface during the Arctic winter using wind-powered pumps can thicken sea ice by up to 1 m per year, reversing the current loss rates and prolonging the time until the Arctic Ocean is ice-free. Thickening sea ice would not change CO2 levels, which are the underlying cause of ice loss, but it would prevent some of the strongest feedbacks and would buy time to develop the tools and governance systems necessary to achieve carbon-neutrality. We advocate exploration of AIM as a mitigation strategy employed in parallel with CO2 reduction efforts. The opportunity and risk profiles of AIM differ from other geoengineering proposals. While similar in principle to solar radiation management, AIM may present fewer large-scale environmental risks. AIM is separate from greenhouse gas emission reduction or sequestration, but might help prevent accelerated release of methane from thawing permafrost. Further, AIM might be usefully employed at regional and local scales to preserve Arctic ecosystems and possibly reduce the effects of ice-loss induced coastal erosion. Through presentation of the AIM concept, we hope to spark new conversations between scientists, stakeholders, and decision

  20. An Industrial Engineering Approach to Cost Containment of Pharmacy Education.

    Science.gov (United States)

    Duncan, Wendy; Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-11-25

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students' recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes.

  1. Engineering the just war: examination of an approach to teaching engineering ethics.

    Science.gov (United States)

    Haws, David R

    2006-04-01

    The efficiency of engineering applied to civilian projects sometimes threatens to run away with the social agenda, but in military applications, engineering often adds a devastating sleekness to the inevitable destruction of life. The relative crudeness of terrorism (e.g., 9/11) leaves a stark after-image, which belies the comparative insignificance of random (as opposed to orchestrated) belligerence. Just as engineering dwarfs the bricolage of vernacular design 'moving us past the appreciation of brush-strokes, so to speak' the scale of engineered destruction makes it difficult to focus on the charred remains of individual lives. Engineers need to guard against the inappropriate military subsumption of their effort. Fortunately, the ethics of warfare has been an ongoing topic of discussion for millennia. This paper will examine the university core class I've developed (The Moral Dimensions of Technology) to meet accreditation requirements in engineering ethics, and the discussion with engineering and non-engineering students focused by the life of electrical engineer Vannevar Bush, with selected readings in moral philosophy from the Dao de Jing, Lao Tze, Cicero, Aurelius Augustinus, Kant, Annette Baier, Peter Singer, Elizabeth Anscombe, Philippa Foot, and Judith Thomson.

  2. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    Science.gov (United States)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  3. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  4. A resilience engineering approach to assess major accident risks

    DEFF Research Database (Denmark)

    Hollnagel, E.

    2013-01-01

    This chapter describes how the principles of Resilience Engineering can be used to make a risk assessment of an Integrated Operations (IO) scenario. It refers to the case study provided in Chapter 12.......This chapter describes how the principles of Resilience Engineering can be used to make a risk assessment of an Integrated Operations (IO) scenario. It refers to the case study provided in Chapter 12....

  5. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    Science.gov (United States)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  6. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  7. A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems

    DEFF Research Database (Denmark)

    Fan, Zhun; Hu, J.; Seo, K.

    2004-01-01

    This paper presents an approach to engineering design of mixed-domain dynamic systems. The approach aims at system-level design and has two key features: first, it generates engineering designs that satisfy predefined specifications in an automatic manner; second, it can design systems belonging ...... often encountered in evolutionary computation, a HFC (Hierarchical Fair Competition) model is adopted in this work. Examples of an analog filter design and a MEM filter design illustrate the application of the approach....

  8. Reducing Diesel Engine Emission Using Reactivity Controlled Approach

    Directory of Open Access Journals (Sweden)

    Osama Hasib Ghazal

    2018-01-01

    Full Text Available Several automobile manufacturers are interested in investigating of dual fuel internal combustion engines, due to high efficiencand low emissions. Many alternative fuels have been used in dual fuel mode for IC engine, such as methane, hydrogen, and natural gas. In the present study, a reactivity controlled compression ignition (RCCI engine using gasoline/diesel (G/D dual fuel has been investigated. The effectof mixing gasoline with diesel fuel on combustion characteristic, engine performance and emissions has been studied. The gasoline was injected in the engine intake port, to produce a homogeneous mixture with air. The diesel fuel was injected directly to the combustion chamber during compression stroke to initiate the combustion process. A direct injection compression ignition engine has been built and simulated using ANSYS Forte professional code. The gasoline amount in the simulation varied from (50%-80% by volume. The diesel fuel was injected to the cylinder in two stages. The model has been validated and calibrated for neat diesel fuel using available data from the literature. The results show that the heat release rate and the cylinder pressure increased when the amount of added gasoline is between 50%-60% volume of the total injected fuels, compared to the neat diesel fuel. Further addition of gasoline will have a contrary effect. In addition, the combustion duration is extended drastically when the gasoline ratio is higher than 60% which results in an incomplete combustion. The NO emission decreased drastically as the gasoline ratio increased. Moreover, addition of gasoline to the mixture increased the engine power, thermal efficienc and combustion efficienc compared to neat diesel fuel.

  9. An engineering approach to an integrated value proposition design framework

    Directory of Open Access Journals (Sweden)

    Van Der Merwe, Carmen

    2015-05-01

    Full Text Available Numerous problems with product quality and time-to-market launches can be traced back to how the product lifecycle process is managed within the organisation. This article provides insight into how an integrated value proposition design framework shifts product lifecycle management from a product-centric view to a customer-centric view, through the use of good engineering practices as found in the systems engineering discipline. Combining this with methods and tools such as the Refined Kano model, Blue Ocean strategy, and the Generalised Bass model enables the organisation to enhance product and service quality while reducing the time-to-market for new value proposition launches.

  10. Quantum Information Processing and Quantum Error Correction An Engineering Approach

    CERN Document Server

    Djordjevic, Ivan

    2012-01-01

    Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer

  11. A systems engineering management approach to resource management applications

    Science.gov (United States)

    Hornstein, Rhoda Shaller

    1989-01-01

    The author presents a program management response to the following question: How can the traditional practice of systems engineering management, including requirements specification, be adapted, enhanced, or modified to build future planning and scheduling systems for effective operations? The systems engineering management process, as traditionally practiced, is examined. Extensible resource management systems are discussed. It is concluded that extensible systems are a partial solution to problems presented by requirements that are incomplete, partially immeasurable, and often dynamic. There are positive indications that resource management systems have been characterized and modeled sufficiently to allow their implementation as extensible systems.

  12. On a New Approach to Education about Ethics for Engineers at Meijou University

    Science.gov (United States)

    Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu

    We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.

  13. The Company Approach to Software Engineering Project Courses

    Science.gov (United States)

    Broman, D.; Sandahl, K.; Abu Baker, M.

    2012-01-01

    Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…

  14. A multi-agent approach to professional software engineering

    NARCIS (Netherlands)

    M. Lützenberger; T. Küster; T. Konnerth; A. Thiele; N. Masuch; A. Heßler; J. Keiser; M. Burkhardt; S. Kaiser (Silvan); J. Tonn; M. Kaisers (Michael); S. Albayrak; M. Cossentino; A. Seghrouchni; M. Winikoff

    2013-01-01

    htmlabstractThe community of agent researchers and engineers has produced a number of interesting and mature results. However, agent technology is still not widely adopted by industrial software developers or software companies - possibly because existing frameworks are infused with academic

  15. Object-oriented approach for gas turbine engine simulation

    Science.gov (United States)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  16. A Constrained and Guided Approach for Managing Software Engineering Course Projects

    Science.gov (United States)

    Cheng, Y.-P.; Lin, J. M.-C.

    2010-01-01

    This paper documents several years of experimentation with a new approach to organizing and managing projects in a software engineering course. The initial failure and subsequent refinements that the new approach has been through since 2004 are described herein. The "constrained and guided" approach, as it is called, has helped to reduce…

  17. A Holistic Approach to Delivering Sustainable Design Education in Civil Engineering

    Science.gov (United States)

    Vemury, Chandra Mouli; Heidrich, Oliver; Thorpe, Neil; Crosbie, Tracey

    2018-01-01

    Purpose: The purpose of this paper is to present pedagogical approaches developed and implemented to deliver sustainable design education (SDE) to second-year undergraduate students on civil engineering programmes in the (then) School of Civil Engineering and Geosciences at Newcastle University. In doing so, the work presented offers an example of…

  18. An Investigation of First-Year Engineering Student and Instructor Perspectives of Learning Analytics Approaches

    Science.gov (United States)

    Knight, David B.; Brozina, Cory; Novoselich, Brian

    2016-01-01

    This paper investigates how first-year engineering undergraduates and their instructors describe the potential for learning analytics approaches to contribute to student success. Results of qualitative data collection in a first-year engineering course indicated that both students and instructors\temphasized a preference for learning analytics…

  19. Experimental Approach of Fault Movement on an Engineered Barrier System

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna

    2012-01-01

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required

  20. Experimental Approach of Fault Movement on an Engineered Barrier System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required.

  1. Wildland fire management. Volume 1: Prevention methods and analysis. [systems engineering approach to California fire problems

    Science.gov (United States)

    Weissenberger, S. (Editor)

    1973-01-01

    A systems engineering approach is reported for the problem of reducing the number and severity of California's wildlife fires. Prevention methodologies are reviewed and cost benefit models are developed for making preignition decisions.

  2. Developing a new industrial engineering curriculum using a systems engineering approach

    Science.gov (United States)

    Buyurgan, Nebil; Kiassat, Corey

    2017-11-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.

  3. The Purdue Mechanics Freeform Classroom: A New Approach to Engineering Mechanics Education

    OpenAIRE

    Rhoads, Jeffrey F.; Nauman, Eric; Holloway, Beth M; Krousgrill, Charles Morton

    2014-01-01

    The [REMOVED] Mechanics Freeform Classroom: A New Approach to Engineering Mechanics EducationMotivated by the need to address the broad spectrum of learning styles embraced by today’sengineering students, a desire to encourage active, peer-to-peer, and self-learning, and a goal ofinteracting with every student despite ever-expanding enrollments, the mechanics faculty at[REMOVED] University have developed the [REMOVED] Mechanics Freeform Classroom(PMFC) -- a new approach to engineering mechani...

  4. A Hybrid approach for aeroacoustic analysis of the engine exhaust system

    OpenAIRE

    Sathyanarayana, Y; Munjal, ML

    2000-01-01

    This paper presents a new hybrid approach for prediction of noise radiation from engine exhaust systems. It couples the time domain analysis of the engine and the frequency domain analysis of the muffler, and has the advantages of both. In this approach, cylinder/cavity is analyzed in the time domain to calculate the exhaust mass flux history at the exhaust valve by means of the method of characteristics, avoiding the tedious procedure of interpolation at every mesh point and solving a number...

  5. Approaches to improve angiogenesis in tissue-engineered skin.

    Science.gov (United States)

    Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila

    2004-01-01

    A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.

  6. Computer aided approach for qualitative risk assessment of engineered systems

    International Nuclear Information System (INIS)

    Crowley, W.K.; Arendt, J.S.; Fussell, J.B.; Rooney, J.J.; Wagner, D.P.

    1978-01-01

    This paper outlines a computer aided methodology for determining the relative contributions of various subsystems and components to the total risk associated with an engineered system. Major contributors to overall task risk are identified through comparison of an expected frequency density function with an established risk criterion. Contributions that are inconsistently high are also identified. The results from this analysis are useful for directing efforts for improving system safety and performance. An analysis of uranium hexafluoride handling risk at a gaseous diffusion uranium enrichment plant using a preliminary version of the computer program EXCON is briefly described and illustrated

  7. Writing Compilers and Interpreters A Software Engineering Approach

    CERN Document Server

    Mak, Ronald

    2011-01-01

    Long-awaited revision to a unique guide that covers both compilers and interpreters Revised, updated, and now focusing on Java instead of C++, this long-awaited, latest edition of this popular book teaches programmers and software engineering students how to write compilers and interpreters using Java. You?ll write compilers and interpreters as case studies, generating general assembly code for a Java Virtual Machine that takes advantage of the Java Collections Framework to shorten and simplify the code. In addition, coverage includes Java Collections Framework, UML modeling, object-oriented p

  8. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The equivalent energy method: an engineering approach to fracture

    International Nuclear Information System (INIS)

    Witt, F.J.

    1981-01-01

    The equivalent energy method for elastic-plastic fracture evaluations was developed around 1970 for determining realistic engineering estimates for the maximum load-displacement or stress-strain conditions for fracture of flawed structures. The basis principles were summarized but the supporting experimental data, most of which were obtained after the method was proposed, have never been collated. This paper restates the original bases more explicitly and presents the validating data in graphical form. Extensive references are given. The volumetric energy ratio, a modelling parameter encompassing both size and temperature, is the fundamental parameter of the equivalent energy method. It is demonstrated that, in an engineering sense, the volumetric energy ratio is a unique material characteristic for a steel, much like a material property except size must be taken into account. With this as a proposition, the basic formula of the equivalent energy method is derived. Sufficient information is presented so that investigators and analysts may judge the viability and applicability of the method to their areas of interest. (author)

  10. A Topic-Driven Modular Approach to Engineering Education Delivery

    Directory of Open Access Journals (Sweden)

    Ruba Akram Amarin

    2013-03-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida, provides a useful tool for engineers and scientists through unique features compared to the most used traditional electrical circuit textbooks available in the market. TechEBook has comprised the two worlds of classical circuit books and an interactive operating platform that can be run on mobile devices, laptops and desktops utilizing Java Virtual Machine operator. The TechEBook provides an interactive applets screen that holds many modules, in which each had a specific application in the self learning process. In this paper the main goals and objectives behind the MeLearning concept will be identified. The paper will describe the differences between the traditional curriculum delivery and the MeLearning concept in details accompanied by the main tools used and a description of the different modules features.

  11. Building habitats on the Moon engineering approaches to lunar settlements

    CERN Document Server

    Benaroya, Haym

    2018-01-01

    Designing a habitat for the lunar surface? You will need to know more than structural engineering. There are the effects of meteoroids, radiation, and low gravity. Then there are the psychological and psychosocial aspects of living in close quarters, in a dangerous environment, far away from home. All these must be considered when the habitat is sized, materials specified, and structure designed. This book provides an overview of various concepts for lunar habitats and structural designs and characterizes the lunar environment - the technical and the nontechnical. The designs take into consideration psychological comfort, structural strength against seismic and thermal activity, as well as internal pressurization and 1/6 g. Also discussed are micrometeoroid modeling, risk and redundancy as well as probability and reliability, with an introduction to analytical tools that can be useful in modeling uncertainties.

  12. A Theoretical Approach to Engineering a New Enzyme

    International Nuclear Information System (INIS)

    Anderson, Greg; Gomatam, Ravi; Behera, Raghu N.

    2016-01-01

    Density function theory, a subfield of quantum mechanics (QM), in combination with molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we report theoretical calculations done using QM/MM to examine whether the regioselectivity and rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. Although the protonation state of the niobium substituted enzyme is calculated to be different from than that of the natural vanadium substituted enzyme, our calculations show that the catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic differences between the niobium substituted enzyme and the natural enzyme. We conclude by briefly examining how good of a model QM/MM provides for understanding the mechanism of catalysis of chloroperoxidase. (paper)

  13. Encouraging Deep Approach to Learning in Civil and Geodetic Engineering

    Directory of Open Access Journals (Sweden)

    Gašper Mrak

    2016-10-01

    Full Text Available This paper presents activities and changes applied to the teaching process within selected courses offered by Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia. Theoretical background, evaluated from the point of the technical education needs, is presented. It can be seen that special focus has to be made to the students' motivation for deep learning which guarantees optimal balance between acquisition of concepts and skills, information processing and integration of fragmented pieces of knowledge into complex structures. Three case studies used to test theoretical points of departure are presented. Results of the introduced novelties and changes have been evaluated through the assessment of knowledge, students' satisfaction and teaching staff evaluations. For conclusive results, monitoring over a longer period of time should be conducted.

  14. Beyond Diversity as Usual: Expanding Critical Cultural Approaches to Marginalization in Engineering Education

    Science.gov (United States)

    Secules, Stephen

    In general, what we think of as "diversity work" in undergraduate engineering education focuses in the following ways: more on the overlooked assets of minority groups than on the acts of overlooking, more on the experiences of marginalized groups than on the mechanisms of marginalization by dominant groups, more on supporting and increasing minority student retention than on critiquing and remediating the systems which lead minority students to leave engineering. This dissertation presents a series of arguments which push beyond a status quo understanding of diversity in engineering education. The first approach the dissertation takes up is to problematize educational facts around failure by interrogating their roots in interactions and cultural norms in an engineering classroom. In another argument, the dissertation places the engineering classroom cultural norms of competition, whiteness, and masculinity in a critical historical context of the discipline at large. Finally, I demonstrate how engaging students in a critique of marginalizing educational culture can be an important source of agency. In addition to applying and demonstrating the value of specific novel approaches in engineering education, the dissertation contributes to the research community by discussing the respective affordances between these and other possible scholarly approaches to culture and marginalization in education. I also suggest how a consideration of the taken-for-granted culture of engineering education can be an important tool for instructors seeking to gain insight into persistent educational problems. In addition, this dissertation makes implications for diversity support practice, envisioning new forms of support programming rooted in intersectionality and critical praxis.

  15. Safety Concepts in Structural Glass Engineering : Towards an Integrated Approach

    NARCIS (Netherlands)

    Bos, F.P.

    2009-01-01

    This dissertation proposes the Integrated Approach to Structural Glass Safety, based on four clearly defined element safety properties, damage sensitivity, relative resistance, redundancy, and fracture mode. The Element Safety Diagram (ESD) is introduced to provide an easy-to-read graphical

  16. Adapting advanced engineering design approaches to building design - potential benefits

    NARCIS (Netherlands)

    Hopfe, C.J.; Struck, C.; Hensen, J.L.M.; Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  17. A Blended Learning Approach to Teach Fluid Mechanics in Engineering

    Science.gov (United States)

    Rahman, Ataur

    2017-01-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…

  18. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  19. Towards modeling future energy infrastructures - the ELECTRA system engineering approach

    DEFF Research Database (Denmark)

    Uslar, Mathias; Heussen, Kai

    2016-01-01

    of the IEC 62559 use case template as well as needed changes to cope particularly with the aspects of controller conflicts and Greenfield technology modeling. From the original envisioned use of the standards, we show a possible transfer on how to properly deal with a Greenfield approach when modeling....

  20. A Triangular Approach to Integrate Research, Education and Practice in Higher Engineering Education

    Science.gov (United States)

    Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka

    2017-01-01

    Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is…

  1. A Knowledge Engineering Approach to Developing Educational Computer Games for Improving Students' Differentiating Knowledge

    Science.gov (United States)

    Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Yang, Li-Hsueh; Huang, Iwen

    2013-01-01

    Educational computer games have been recognized as being a promising approach for motivating students to learn. Nevertheless, previous studies have shown that without proper learning strategies or supportive models, the learning achievement of students might not be as good as expected. In this study, a knowledge engineering approach is proposed…

  2. A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated

    Science.gov (United States)

    Liu, Shang; Shi, Dongyan; Zhang, Ying

    Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.

  3. Reactor technology assessment and selection utilizing systems engineering approach

    Science.gov (United States)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  4. A Resilience Engineering Approach for Sustainable Safety in Green Construction

    Directory of Open Access Journals (Sweden)

    Lucio V. Rosa

    2017-12-01

    Full Text Available Sustainable construction is a complex endeavour, involving various stakeholders and resulting in situations that are incompletely described or underspecified. Traditional risk assessment methods require a detailed description of the system and safety, focusing on undesirable outcomes, losses, incidents and accidents. Developing this principle, this research describes a new way to deal with risk assessment in the green construction industry using a resilience engineering method based on the functional resonanceanalysis method and analytic hierarchy process methodologies. The functional resonance analysis method defines a systemic framework to model complex systems based on combinations of function variabilities during normal work. Therefore, to quantify the outcomes for risk assessment, this method was used together with the analytic hierarchy process in a case study during the modernisation work on the Maracanã stadium in Rio de Janeiro. The results of this case study demonstrate that the combined utilisation of the functional resonance analysis method and analytic hierarchy process can be utilised to recognise situations where developments could potentially be without control, which enables this to be used as a basis for performing indicators or a monitoring system. Furthermore, this combined technique can be used to assess and quantify the performance variabilities that may lead to occupational or environmental accidents, and provide new recommendations about how work processes should function, minimising production losses, incidents and accidents.

  5. An engineering approach to common mode failure analysis

    International Nuclear Information System (INIS)

    Gangloff, W.C.; Franke, T.H.

    1975-01-01

    Safety systems for nuclear reactors can be designed using standard reliability engineering techniques such that system failure due to random component faults is extremely unlikely. However, the common-mode failure where several components fail together from a common cause is not susceptible to prevention by the usual tactics. In systems where a high degree of redundancy has been employed, the actual reliability of the system in service may be limited by common-mode failures. A methodical and thorough procedure for evaluation of system vulnerability to common-mode failures is presented. This procedure was developed for use in nuclear reactor safety systems and has been applied specifically to reactor protection. The method offers a qualitative assessment of a system whereby weak points can be identified and the resistance to common-mode failure can be judged. It takes into account all factors influencing system performance including design, manufacturing, installation, operation, testing, and maintenance. It is not a guarantee or sure solution, but rather a practical tool which can provide good assurance that the probability of common-mode protection failure has been made acceptably low. (author)

  6. Nonlinear approaches in engineering applications applied mechanics, vibration control, and numerical analysis

    CERN Document Server

    Jazar, Reza

    2015-01-01

    This book focuses on the latest applications of nonlinear approaches in different disciplines of engineering. For each selected topic, detailed concept development, derivations, and relevant knowledge are provided for the convenience of the readers. The topics range from dynamic systems and control to optimal approaches in nonlinear dynamics. The volume includes invited chapters from world class experts in the field. The selected topics are of great interest in the fields of engineering and physics and this book is ideal for engineers and researchers working in a broad range of practical topics and approaches. This book also: ·         Explores the most up-to-date applications and underlying principles of nonlinear approaches to problems in engineering and physics, including sections on analytic nonlinearity and practical nonlinearity ·         Enlightens readers to the conceptual significance of nonlinear approaches with examples of applications in scientific and engineering problems from v...

  7. Nonlinear approaches in engineering applications advanced analysis of vehicle related technologies

    CERN Document Server

    Dai, Liming

    2016-01-01

    This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

  8. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  9. Proceedings International Workshop on Formal Engineering approaches to Software Components and Architectures

    OpenAIRE

    Kofroň, Jan; Tumova, Jana

    2017-01-01

    These are the proceedings of the 14th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on April 22, 2017 in Uppsala (Sweden) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'17). The aim of the FESCA workshop is to bring together junior researchers from formal methods, software engineering, and industry interested in the development and application of formal modelling ...

  10. Proceedings 10th International Workshop on Formal Engineering Approaches to Software Components and Architectures

    OpenAIRE

    Buhnova, Barbora; Happe, Lucia; Kofroň, Jan

    2013-01-01

    These are the proceedings of the 10th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on March 23, 2013 in Rome (Italy) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'13). The aim of the FESCA workshop is to bring together both young and senior researchers from formal methods, software engineering, and industry interested in the development and application of formal...

  11. Alternative approach to automated management of load flow in engineering networks considering functional reliability

    Directory of Open Access Journals (Sweden)

    Ирина Александровна Гавриленко

    2016-02-01

    Full Text Available The approach to automated management of load flow in engineering networks considering functional reliability was proposed in the article. The improvement of the concept of operational and strategic management of load flow in engineering networks was considered. The verbal statement of the problem for thesis research is defined, namely, the problem of development of information technology for exact calculation of the functional reliability of the network, or the risk of short delivery of purpose-oriented product for consumers

  12. An Agent Based Approach To Finding Expertise In The Engineering Design Environment

    OpenAIRE

    Crowder, Richard; Hughes, Gareth; Hall, Wendy

    2003-01-01

    During the engineering design process people need to locate colleagues with knowledge to resolve a problem. As identified by discussions with practicing designers the use of computer based systems that assist users with finding such expertise will become increasingly important. In this paper we discuss the development of an agent based Expertise Finder suitable for use within an engineering design environment. A key feature of our approach is that the Expertise Finder returns both recommended...

  13. MULTIPLE CRITERIA DECISION MAKING APPROACH FOR INDUSTRIAL ENGINEER SELECTION USING FUZZY AHP-FUZZY TOPSIS

    OpenAIRE

    Deliktaş, Derya; ÜSTÜN, Özden

    2018-01-01

    In this study, a fuzzy multiple criteria decision-making approach is proposed to select an industrial engineer among ten candidates in a manufacturing environment. The industrial engineer selection problem is a special case of the personal selection problem. This problem, which has hierarchical structure of criteria and many decision makers, contains many criteria. The evaluation process of decision makers also includes ambiguous parameters. The fuzzy AHP is used to determin...

  14. Linking biomedical engineering ethics case study approach and policy.

    Science.gov (United States)

    Dibrell, William; Dobie, Elizabeth Ann

    2007-01-01

    In this paper we link bioengineering case study methods to the development of policy. The case study approach to ethics is an excellent way to show the complex nature of practical/moral reasoning. This approach can, however, lead to a kind of overwhelming complexity. The individual nature of each case makes it difficult to identify the most important information and difficult to see what moral considerations are most relevant. In order to make the overwhelming complexity less debilitating, we present a framework for moral decision making derived from suggestions made by W.D. Ross and Virginia Held. Ross articulates the multiple sources of morality and Held deepens the discussion by reminding us of the foundational importance of care and sympathy to our moral natures. We show how to use the notion of prima facie duty and discuss moral conflict. In doing this, we show how the framework, applied to cases, can be of assistance in helping us develop policies and codes of ethics with sufficient plasticity to be useful in the complex world of the bioengineer.

  15. A systematic approach for introducing innovative product design in courses with engineering and nonengineering students.

    Science.gov (United States)

    Patterson, P E

    2007-01-01

    In our new global economy, biomedical product development teams need to be even more innovative in an environment constrained by fewer resources with less time from concept to market. Teams are often comprised of individuals spread around the world. To simulate this setting, we revised an existing course to incorporate teams of on-campus and distance students, with each team including both engineers and other specialties. Through interactive lectures and projects, we presented a systematic approach to innovation that should be useful to engineers and non-engineers alike. Students found the course challenging and exciting, displaying an improved ability to work in distributed teams and in developing innovative design solutions.

  16. Performance analysis of irreversible molten carbonate fuel cell – Braysson heat engine with ecological objective approach

    International Nuclear Information System (INIS)

    Açıkkalp, Emin

    2017-01-01

    Highlights: • An irreversible MCFC - Braysson heat engine is considered. • Its performance is investigated with ecological approach. • A new ecological criteria are presented called as modified ecological function. • Result are obtained numerically and discussed. - Abstract: An irreversible hybrid molten carbonate fuel cell-Braysson heat engine is taken into account. Basic thermodynamics parameters including power output, efficiency and exergy destruction rate are considered. In addition ecological function and new criteria, which is based on ecological function, for heat engines called as modified ecological function is suggested. Optimum conditions for mentioned parameters above are determined. Numerical results are obtained and plotted. Finally, results are discussed.

  17. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  18. A blended learning approach to teach fluid mechanics in engineering

    Science.gov (United States)

    Rahman, Ataur

    2017-05-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand written tutorial solutions, discussion board and online practice quizzes. The lecture and tutorial class times have been primarily utilised to discuss confusing topics and engage students with practical issues in applying the theories learnt in fluid mechanics. Based on the data of over 734 students over a 4-year period, it has been shown that a BLA has improved the learning experience of the fluid mechanics students in UWS. The overall percentage of student satisfaction in this subject has increased by 18% in the BLA case compared with the traditional one.

  19. Environmental Engineering Approaches toward Sustainable Management of Spider Mites.

    Science.gov (United States)

    Suzuki, Takeshi

    2012-10-26

    Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies.

  20. An Iterative and Incremental Approach for E-Learning Ontology Engineering

    Directory of Open Access Journals (Sweden)

    Sudath Rohitha Heiyanthuduwage

    2009-03-01

    Full Text Available Abstract - There is a boost in the interest on ontology with the developments in Semantic Web technologies. Ontologies play a vital role in semantic web. Even though there is lot of work done on ontology, still a standard framework for ontology engineering has not been defined. Even though current ontology engineering methodologies are available they need improvements. The effort of our work is to integrate various methods, techniques, tools and etc to different stages of proposed ontology engineering life cycle to create a comprehensive framework for ontology engineering. Current methodologies discuss ontology engineering stages and collaborative environments with user collaboration. However, discussion on increasing effectiveness and correct inference has been given less attention. More over, these methodologies provide little discussion on usability of domain ontologies. We consider these aspects as more important in our work. Also, ontology engineering has been done for various domains and for various purposes. Our effort is to propose an iterative and incremental approach for ontology engineering especially for e-learning domain with the intention of achieving a higher usability and effectiveness of e-learning systems. This paper introduces different aspects of the proposed ontology engineering framework and evaluation of it.

  1. Engineering Attractiveness in the European Educational Environment: Can Distance Education Approaches Make a Difference?

    Directory of Open Access Journals (Sweden)

    Konstantinos Katzis

    2018-01-01

    Full Text Available The recent phenomenon of worldwide declining enrolments in engineering-related degrees has led to the gradual decrease in the number of engineering graduates. This decrease occurs at a time of increasing demand in the labour market for highly qualified engineers, who are necessary for the implementation of fundamental societal functions. This paper initially presents a survey of practices, which are currently employed by academic institutions in Europe in order to increase the attractiveness of their engineering studies. It then provides a detailed analysis of the benefits and proliferation of distance education to increase attractiveness of engineering studies based on a set of interviews. Results of this study, highlight a lack of a distance-learning dimension in the implementation of engineering studies in the European Area and discusses in detail ways in which distance learning can be utilised in engineering studies for the benefit of increasing their attractiveness. It has also been noted that institutions employing distance learning as part of their engineering studies, see this as highly beneficial for their students but also for the academic institution itself with some reservations in terms of the pedagogical adequacy of materials and instructional approaches used in distance education courses.

  2. A thermodynamic approach to obtain materials properties for engineering applications

    Science.gov (United States)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  3. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  4. Artificial neural network approach to predicting engine-out emissions and performance parameters of a turbo charged diesel engine

    Directory of Open Access Journals (Sweden)

    Özener Orkun

    2013-01-01

    Full Text Available This study details the artificial neural network (ANN modelling of a diesel engine to predict the torque, power, brake-specific fuel consumption and pollutant emissions, including carbon dioxide, carbon monoxide, nitrogen oxides, total hydrocarbons and filter smoke number. To collect data for training and testing the neural network, experiments were performed on a four cylinder, four stroke compression ignition engine. A total of 108 test points were run on a dynamometer. For the first part of this work, a parameter packet was used as the inputs for the neural network, and satisfactory regression was found with the outputs (over ~95%, excluding total hydrocarbons. The second stage of this work addressed developing new networks with additional inputs for predicting the total hydrocarbons, and the regression was raised from 75 % to 90 %. This study shows that the ANN approach can be used for accurately predicting characteristic values of an internal combustion engine and that the neural network performance can be increased using additional related input data.

  5. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.

    Science.gov (United States)

    Li, Yang; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei

    2017-07-31

    Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine. Here, engineering-derived iPSC approaches are reviewed according to three aspects of iPSC studies: preparation, expansion, differentiation and applications. Engineering strategies, such as 3D systems establishment, cell-matrix mechanics and the regulation of biophysical and biochemical cues, together with engineering techniques, such as 3D scaffolds, cell microspheres and bioreactors, have been applied to iPSC studies and have generated insightful results and even mini-organs such as retinas, livers and intestines. Specific results are given to demonstrate how these approaches impact iPSC behavior, and related mechanisms are discussed. In addition, cell printing technologies are presented as an advanced engineering-derived approach since they have been applied in both iPSC studies and the construction of diverse tissues and organs. Further development and possible innovations of cell printing technologies are presented in terms of creating complex and functional iPSC-derived living tissues and organs.

  6. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Science.gov (United States)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  7. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering

    Science.gov (United States)

    Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping

    2018-02-01

    Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.

  8. Knowledge management through the e-learning approach - a case study of online engineering courses

    Science.gov (United States)

    Aichouni, Mohamed; Benchicou, Soraya; Nehari, Dris

    2013-06-01

    Though it is universally accepted that the face-to-face approach is the best way for education and training, however, with the advent of the information and communication technologies (mainly the World Wide Web) it became possible to enhance further the methods we are using to teach our students and to share the teaching material within a broaden engineering, technical and business communities. This paper is dedicated to making a review of the basic concepts of knowledge management and e-learning and to show how these two modern concepts can be integrated into engineering education to produce knowledge, disseminate it and share it within virtual interest groups and networks of engineering students, academic teachers and industrial engineers and technicians and business managers. A practical case study will be presented and discussed.

  9. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.

    2014-01-01

    Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...... are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing...

  10. A Story-Telling Approach for a Software Engineering Course Design

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2009-01-01

    Advanced programming and software engineering techniques are challenging to learn due to their inherent complexity. However, to the average student they are even more challenging because they have never experienced the context in which the techniques are appropriate. For instance, why learn design...... patterns to increase maintainability when student exercises are never maintained? In this paper, we outline the contextual problems that software engineering teaching has to deal with and present a story telling approach for course design as a remedy. We outline the stories that over the last five years...... have structured lecturing and mandatory exercises for our advanced programming/software engineering course, and present benefits, liabilities, and experiences with the approach comparing it to the normal, topic structured, course design....

  11. Optimizing Online Suicide Prevention: A Search Engine-Based Tailored Approach.

    Science.gov (United States)

    Arendt, Florian; Scherr, Sebastian

    2017-11-01

    Search engines are increasingly used to seek suicide-related information online, which can serve both harmful and helpful purposes. Google acknowledges this fact and presents a suicide-prevention result for particular search terms. Unfortunately, the result is only presented to a limited number of visitors. Hence, Google is missing the opportunity to provide help to vulnerable people. We propose a two-step approach to a tailored optimization: First, research will identify the risk factors. Second, search engines will reweight algorithms according to the risk factors. In this study, we show that the query share of the search term "poisoning" on Google shows substantial peaks corresponding to peaks in actual suicidal behavior. Accordingly, thresholds for showing the suicide-prevention result should be set to the lowest levels during the spring, on Sundays and Mondays, on New Year's Day, and on Saturdays following Thanksgiving. Search engines can help to save lives globally by utilizing a more tailored approach to suicide prevention.

  12. Modeling bidding decision in engineering field with incomplete information: A static game–based approach

    Directory of Open Access Journals (Sweden)

    Zhi-xing Huang

    2016-01-01

    Full Text Available Corporate investment decision about engineering projects is a key issue for project management. This article aims to study the process of bidding decision-making in engineering field under the condition of incomplete information and investigating the influence of bidders’ game behaviors on investment decision. With reasonable assumed scenes, this article uses an approach to describe the decision process for bidding. The approach is based on the static game theory. With the proposed model, the effectiveness of game participants and the objective function are put forward, and the characteristics of price quotation and the best strategies of bidders under the equilibrium condition are discussed. The results can give a better understanding of investment decision in engineering management and are helpful for tenderees to avoid excessive competition among bidders.

  13. A controls engineering approach for analyzing airplane input-output characteristics

    Science.gov (United States)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  14. A Systems Thinking Approach to Engineering Challenges of Military Systems-of-Systems

    Science.gov (United States)

    2016-09-01

    as part of organizational thinking , processes and practice; and 2) an adequate SoSE practice supporting environment created and used to enable SoS...UNCLASSIFIED UNCLLASIFIED A Systems Thinking Approach to Engineering Challenges of Military Systems-of-Systems Pin Chen and Mark...their products and outcomes. This report introduces a systems thinking -based approach, SoS thinking , which offers a language and a thoughtful process

  15. Precipitation in Powder Metallurgy, Nickel Base Superalloys: Review of Modeling Approach and Formulation of Engineering (Postprint)

    Science.gov (United States)

    2016-12-01

    AFRL-RX-WP-JA-2016-0333 PRECIPITATION IN POWDER- METALLURGY , NICKEL-BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF...PRECIPITATION IN POWDER- METALLURGY , NICKEL- BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF ENGINEERING (POSTPRINT) 5a...and kinetic parameters required for the modeling of γ′ precipitation in powder- metallurgy (PM), nickel-base superalloys are summarized. These

  16. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering

    NARCIS (Netherlands)

    Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive

  17. Validation of a LES turbulence modeling approach on a steady engine head flow

    NARCIS (Netherlands)

    Huijnen, V.; Somers, L.M.T.; Baert, R.S.G.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The application of the LES turbulence modeling approach in the Kiva-environment is validated on a complex geometry. Results for the steady flow in a realistic geometry of a production type heavy-duty diesel engine head with 120 mm cylinder bore are presented. The bulk Reynolds number is Reb = 1 fl

  18. Involvement of Thermodynamic Cycle Analysis in a Concurrent Approach to Reciprocating Engine Design

    Directory of Open Access Journals (Sweden)

    J. Macek

    2001-01-01

    Full Text Available A modularised approach to thermodynamic optimisation of new concepts of volumetric combustion engines concerning efficiency and emissions is outlined. Levels of primary analysis using a computerised general-change entropy diagram and detailed multizone, 1 to 3-D finite volume methods are distinguished. The use of inverse algorithms based on the same equations is taken into account.

  19. A Flipped Mode Teaching Approach for Large and Advanced Electrical Engineering Courses

    Science.gov (United States)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-01-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper…

  20. A story-telling approach for a software engineering course design

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2009-01-01

    patterns to increase maintainability when student exercises are never maintained? In this paper, we outline the contextual problems that software engineering teaching has to deal with and present a story telling approach for course design as a remedy. We outline the stories that over the last five years...

  1. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    Science.gov (United States)

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    Science.gov (United States)

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-08-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.

  3. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    Science.gov (United States)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix

  4. Approaches to the embedding of sustainability into the engineering curriculum - where are we now, and how do our graduates become global engineers?

    OpenAIRE

    Steiner, Simon; Penlington, Roger

    2010-01-01

    This paper presents a resume of how the topic of sustainability can become fully-integrated into the engineering curriculum in the UK, and how this needs to evolve toward consideration of how graduates could be better developed as global engineers. The paper begins by providing a justification as to why sustainability is an important feature of the already overcrowded engineering curriculum, and briefly reports, through illustrative examples, on alternative approaches which currently embed su...

  5. Integrating Communication into Engineering Curricula: An Interdisciplinary Approach to Facilitating Transfer at New Mexico Institute of Mining and Technology

    Science.gov (United States)

    Ford, Julie Dyke

    2012-01-01

    This program profile describes a new approach towards integrating communication within Mechanical Engineering curricula. The author, who holds a joint appointment between Technical Communication and Mechanical Engineering at New Mexico Institute of Mining and Technology, has been collaborating with Mechanical Engineering colleagues to establish a…

  6. Regenerative endodontics as a tissue engineering approach: past, current and future.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala

    2012-12-01

    With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  7. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  8. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  9. An analysis of extended entity relationship constructs extraction in database reverse engineering approaches

    International Nuclear Information System (INIS)

    Jilani, M.A.; Aziz, A.; Hussain, T.

    2008-01-01

    Database reverse Engineering is technique used for transforming relational schema into a conceptual schema for finding and fixing design flaw for maintaining and re-engineering database systems for the integration of database system with another and migration of a database system from one platform to another. We studied the approaches from year 1993 to 2006 to find out which EER construct cannot be retrieved by most of the DBRE approaches so that they can be retrieved in the future. For each EER construct that can be retrieved by using a given DBRE approach. We show whether they are retrieved without user involvement (automatically). Partial user involvement (semi-automatically) or full user involvement (manually). We also discuss the relevant advantages and limitations of each DBRE technique considered in this paper. (author)

  10. Engineering approach to relative quantitative assessment of safety culture and related social issues in NPP operation

    International Nuclear Information System (INIS)

    Sivokon, V.; Gladyshev, M.; Malkin, S.

    2005-01-01

    The report is devoted to presentation of engineering approach and software tool developed for Safety Culture (SC) assessment as well as to the results of their implementation at Smolensk NPP. The engineering approach is logic evolution of the IAEA ASSET method broadly used at European NPPs in 90-s. It was implemented at Russian and other plants including Olkiluoto NPP in Finland. The approach allows relative quantitative assessing and trending the aspects of SC by the analysis of evens features and causes, calculation and trending corresponding indicators. At the same time plant's operational performances and related social issues, including efficiency of plant operation and personnel reliability, can be monitored. With the help of developed tool the joint team combined from personnel of Smolensk NPP and RRC 'Kurchatov Institute' ('KI') issued the SC self-assessment report, which identifies: families of recurrent events, main safety and operational problems ; their trends and importance to SC and plant efficiency; recommendations to enhance SC and operational performance

  11. Human factors and systems engineering approach to patient safety for radiotherapy.

    Science.gov (United States)

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  12. Durable ideas in software engineering concepts, methods and approaches from my virtual toolbox

    CERN Document Server

    J Cusick, James

    2013-01-01

    ""Software Engineering now occupies a central place in the development of technology and in the advancement of the economy. From telecommunications to aerospace and from cash registers to medical imaging, software plays a vital and often decisive role in the successful accomplishment of a variety of projects. The creation of software requires a variety of techniques, tools, and especially, properly skilled engineers. This e-book focuses on core concepts and approaches that have proven useful to the author time and time again on many industry projects over a quarter century of research, develo

  13. Integrated approach for stress analysis of high performance diesel engine cylinder head

    Science.gov (United States)

    Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.

    2018-03-01

    Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.

  14. Human Factors and Systems Engineering Approach to Patient Safety for Radiotherapy

    International Nuclear Information System (INIS)

    Rivera, A. Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety

  15. Numerical Prediction of CCV in a PFI Engine using a Parallel LES Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ameen, Muhsin M; Mirzaeian, Mohsen; Millo, Federico; Som, Sibendu

    2017-10-15

    Cycle-to-cycle variability (CCV) is detrimental to IC engine operation and can lead to partial burn, misfire, and knock. Predicting CCV numerically is extremely challenging due to two key reasons. Firstly, high-fidelity methods such as large eddy simulation (LES) are required to accurately resolve the incylinder turbulent flowfield both spatially and temporally. Secondly, CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. Ameen et al. (Int. J. Eng. Res., 2017) developed a parallel perturbation model (PPM) approach to dissociate this long time-scale problem into several shorter timescale problems. The strategy is to perform multiple single-cycle simulations in parallel by effectively perturbing the initial velocity field based on the intensity of the in-cylinder turbulence. This strategy was demonstrated for motored engine and it was shown that the mean and variance of the in-cylinder flowfield was captured reasonably well by this approach. In the present study, this PPM approach is extended to simulate the CCV in a fired port-fuel injected (PFI) SI engine. Two operating conditions are considered – a medium CCV operating case corresponding to 2500 rpm and 16 bar BMEP and a low CCV case corresponding to 4000 rpm and 12 bar BMEP. The predictions from this approach are also shown to be similar to the consecutive LES cycles. Both the consecutive and PPM LES cycles are observed to under-predict the variability in the early stage of combustion. The parallel approach slightly underpredicts the cyclic variability at all stages of combustion as compared to the consecutive LES cycles. However, it is shown that the parallel approach is able to predict the coefficient of variation (COV) of the in-cylinder pressure and burn rate related parameters with sufficient accuracy, and is also able to predict the qualitative trends in CCV with changing operating conditions. The convergence of the statistics

  16. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan

    2014-01-01

    Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  17. A Dynamic Intelligent Decision Approach to Dependency Modeling of Project Tasks in Complex Engineering System Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2013-01-01

    Full Text Available Complex engineering system optimization usually involves multiple projects or tasks. On the one hand, dependency modeling among projects or tasks highlights structures in systems and their environments which can help to understand the implications of connectivity on different aspects of system performance and also assist in designing, optimizing, and maintaining complex systems. On the other hand, multiple projects or tasks are either happening at the same time or scheduled into a sequence in order to use common resources. In this paper, we propose a dynamic intelligent decision approach to dependency modeling of project tasks in complex engineering system optimization. The approach takes this decision process as a two-stage decision-making problem. In the first stage, a task clustering approach based on modularization is proposed so as to find out a suitable decomposition scheme for a large-scale project. In the second stage, according to the decomposition result, a discrete artificial bee colony (ABC algorithm inspired by the intelligent foraging behavior of honeybees is developed for the resource constrained multiproject scheduling problem. Finally, a certain case from an engineering design of a chemical processing system is utilized to help to understand the proposed approach.

  18. A Value-Based Business Approach to Product Line Software Engineering

    Directory of Open Access Journals (Sweden)

    Raman K. Agrawalla

    2009-08-01

    Full Text Available The present conceptual paper is an attempt to provide a Value-Based Business Approach (VBBA to product line software engineering. It argues that Product line software engineering should be seen as a system and considered as a means towards the end of appropriating more and more value for the business firm; contingent upon the fact that it provides value to customer and customer's customers operating its value creating system with agility, speed, economy and innovation; getting governed by the positive sum value creation outlook and guided by value- based management. With our value-based business triad, the product line engineering process can hope to achieve simultaneously value, variety and volume, product differentiation and cost leadership enabling the business firm to land on the virtuous value spiral.

  19. An engineering approach to modelling, decision support and control for sustainable systems.

    Science.gov (United States)

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  20. An approach in building a chemical compound search engine in oracle database.

    Science.gov (United States)

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.

  1. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment : Proceedings of the 19th ISPE International Conference on Concurrent Engineering

    CERN Document Server

    Rock, Georg; Bil, Cees

    2013-01-01

    The CE Conference series is organized annually by the International Society for Productivity Enhancement (ISPE) and constitutes an important forum for international scientific exchange on concurrent and collaborative enterprise engineering. These international conferences attract a significant number of researchers, industrialists and students, as well as government representatives, who are interested in the recent advances in concurrent engineering research and applications. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment: Proceedings of the 19th ISPE International Conference on Concurrent Engineering contains papers accepted, peer reviewed and presented at the annual conference held  at the University of Applied Sciences in Trier, Germany, from 3rd-7th of September 2012. This covers a wide range of cutting-edge topics including: •Systems Engineering and Innovation •Design for Sustainability •Knowledge Engineering and Management •Managing pro...

  2. Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach

    Directory of Open Access Journals (Sweden)

    Yiqiu Lv

    2013-01-01

    Full Text Available Different approaches for gas path performance estimation of dynamic systems are commonly used, the most common being the variants of the Kalman filter. The extended Kalman filter (EKF method is a popular approach for nonlinear systems which combines the traditional Kalman filtering and linearization techniques to effectively deal with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based on the assumption that the probability density function (PDF of the state vector can be approximated to be Gaussian. Recent investigations have focused on the particle filter (PF based on Monte Carlo sampling algorithms for tackling strong nonlinear and non-Gaussian models. Considering the aircraft engine is a complicated machine, operating under a harsh environment, and polluted by complex noises, the PF might be an available way to monitor gas path health for aircraft engines. Up to this point in time a number of Kalman filtering approaches have been used for aircraft turbofan engine gas path health estimation, but the particle filters have not been used for this purpose and a systematic comparison has not been published. This paper presents gas path health monitoring based on the PF and the constrained extend Kalman particle filter (cEKPF, and then compares the estimation accuracy and computational effort of these filters to the EKF for aircraft engine performance estimation under rapid faults and general deterioration. Finally, the effects of the constraint mechanism and particle number on the cEKPF are discussed. We show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that the cEKPF is the best choice for turbofan engine health monitoring.

  3. COMPARISONS BETWEEN AND COMBINATIONS OF DIFFERENT APPROACHES TO ACCELERATE ENGINEERING PROJECTS

    Directory of Open Access Journals (Sweden)

    H. Steyn

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: In this article, traditional project management methods such as PERT and CPM, as well as fast-tracking and systems approaches, viz. concurrent engineering and critical chain, are reviewed with specific reference to their contribution to reducing the duration of the execution phase of engineering projects. Each of these techniques has some role to play in the acceleration of project execution. Combinations of approaches are evaluated by considering the potential of sets consisting of two different approaches each. While PERT and CPM approaches have been combined for many years in a technique called PERT/CPM, new combinations of approaches are discussed. Certain assumptions inherent to PERT and often wrong are not made by the critical chain approach.

    AFRIKAANSE OPSOMMING: In hierdie artikel word tradisionele projekbestuurbenaderings soos PERT en CPM asook projekversnelling en stelselbenaderings, naamlik gelyktydige ingenieurswese, en kritiekeketting-ondersoek met betrekking tot die bydrae wat elk tot die versnelling van die uitvoeringsfase van ingenieursprojekte kan lewer. Elk van hierdie benaderings kan ‘n spesifieke bydrae tot die versnelling van projekte lewer. Kombinasies, elk bestaande uit twee verskillende benaderings, word geëvalueer. Terwyl PERT en CPM reeds baie jare lank in kombinasie gebruik word, word nuwe kombinasies ook hier bespreek. Sekere aannames inherent aan die PERT-benadering is dikwels foutief. Hierdie aannames word nie deur die kritieke-ketting-benadering gemaak nie.

  4. Systematic Approach to Training for System Engineers in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kwak, Jeong-keun

    2015-01-01

    In my paper, comprehensive preparations, tangible applications, and final establishments of training for system engineers are described using practical materials in KHNP. The purpose of this paper is to formulate SAT based training in KHNP, especially for system engineers. Hence, to achieve this goal, over one year study was performed considering voluminous materials and working experiences. Through the process, SAT based training package for system engineers was finished, in the end. In terms of training in NPPs, SAT methodology is the unwavering trend in South Korea since NPPs export to UAE. Therefore, materialization of SAT based training for system engineers from the origin of SAT to the finalization of SAT should not be overlooked. A variety of accident preventive approaches have been adopted since the first commercial NPP operation in Calder Hall, United Kingdom. Among diverse event preventive ways, training has played an important role for the improvement of NPPs reliability and safety. This is reason why nuclear industry in every country has established and maintained own training institutes and methods. Since the Three Mile Island (TMI) accident, United States Nuclear Regulatory Commission (USNRC) recommended many betterment plans to US nuclear industry for the elevation of NPPs safety. In the suggested considerations, systematic approach to training, so called SAT appeared in the world. Basically, SAT is composed of five stages, what is called ADDIE. Hence, through ADDIE process, holistic and trustworthy training could be realized in the actual NPPs operation and maintenance. For this reason, SAT is the representative training methodology in the US nuclear business

  5. Systematic Approach to Training for System Engineers in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jeong-keun [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of)

    2015-10-15

    In my paper, comprehensive preparations, tangible applications, and final establishments of training for system engineers are described using practical materials in KHNP. The purpose of this paper is to formulate SAT based training in KHNP, especially for system engineers. Hence, to achieve this goal, over one year study was performed considering voluminous materials and working experiences. Through the process, SAT based training package for system engineers was finished, in the end. In terms of training in NPPs, SAT methodology is the unwavering trend in South Korea since NPPs export to UAE. Therefore, materialization of SAT based training for system engineers from the origin of SAT to the finalization of SAT should not be overlooked. A variety of accident preventive approaches have been adopted since the first commercial NPP operation in Calder Hall, United Kingdom. Among diverse event preventive ways, training has played an important role for the improvement of NPPs reliability and safety. This is reason why nuclear industry in every country has established and maintained own training institutes and methods. Since the Three Mile Island (TMI) accident, United States Nuclear Regulatory Commission (USNRC) recommended many betterment plans to US nuclear industry for the elevation of NPPs safety. In the suggested considerations, systematic approach to training, so called SAT appeared in the world. Basically, SAT is composed of five stages, what is called ADDIE. Hence, through ADDIE process, holistic and trustworthy training could be realized in the actual NPPs operation and maintenance. For this reason, SAT is the representative training methodology in the US nuclear business.

  6. Development of field programmable gate array-based reactor trip functions using systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Cheon; Ahmed, Ibrahim [Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

  7. Application of a Systems Engineering Approach to Support Space Reactor Development

    International Nuclear Information System (INIS)

    Wold, Scott

    2005-01-01

    In 1992, approximately 25 Russian and 12 U.S. engineers and technicians were involved in the transport, assembly, inspection, and testing of over 90 tons of Russian equipment associated with the Thermionic System Evaluation Test (TSET) Facility. The entire Russian Baikal Test Stand, consisting of a 5.79 m tall vacuum chamber and related support equipment, was reassembled and tested at the TSET facility in less than four months. In November 1992, the first non-nuclear operational test of a complete thermionic power reactor system in the U.S. was accomplished three months ahead of schedule and under budget. A major factor in this accomplishment was the application of a disciplined top-down systems engineering approach and application of a spiral development model to achieve the desired objectives of the TOPAZ International Program (TIP). Systems Engineering is a structured discipline that helps programs and projects conceive, develop, integrate, test and deliver products and services that meet customer requirements within cost and schedule. This paper discusses the impact of Systems Engineering and a spiral development model on the success of the TOPAZ International Program and how the application of a similar approach could help ensure the success of future space reactor development projects

  8. An engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.; German, M.D.; Kumar, V.

    1981-01-01

    Progress made in two research programmes, sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterising crack initiation and continued extension are summarised. An engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is developed. The ultimate goal in the development of such a methodology is to establish an improved basis for analysing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering components. Extensive experimental and analytical investigations undertaken to evaluate potential criteria for crack initiation and growth and the selection of the final criteria for analysing crack growth and stability in flawed structures are summarised. The experimental and analytical results obtained to date suggest that parameters based on the J-integral and the crack tip opening displacement, delta, are the most promising. This is not surprising since, from a theoretical basis, the two approaches are similar if certain conditions are met. An engineering/design approach for the assessment of crack growth and instability in flawed structures is outlined. (author)

  9. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  10. Engineering approaches to transdermal drug delivery: a tribute to contributions of prof. Robert Langer.

    Science.gov (United States)

    Mitragotri, S

    2013-01-01

    Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field. © 2013 S. Karger AG, Basel.

  11. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  12. Systems engineering approach to U.S. Department of Energy's commercial nuclear waste transportation program

    International Nuclear Information System (INIS)

    Pardue, W.M.

    1987-01-01

    The U.S Department of Energy (DOE) has been given the responsibility of developing a program to transport commercially produced spent nuclear fuel and high-level radioactive wastes to disposal sites or storage facilities safely and cost-effectively. To accomplish this task it is desirable to plan, perform, and document all technical activities based on systems engineering principles. This paper presents an overview of the systems engineering approach being developed by Battelle for consideration by DOE, specifically the early identification of the required technical activities and approaches to technical management and decision making. The program should support the development of an integrated, well-documented transportation system acceptable to regulatory agencies and the public

  13. Pedagogic project of the Environmental Engineering Course of UNIPINHAL: structure, curricular emphasis and approaches

    OpenAIRE

    Maurício Salvetti; Marcelo Della Mura Jannini; Maria Eugenia Garcia Porto; Celso Henrique Zuppi da Conceição; Maristela Della Libera Reis Piccinini; Marta Wilk Donida; Ana Claudia Camargo Lima Tresmondi; Rogéria Maria Alves de Almeida; Nirlei Maria Oliveira; André Luis Paradela; Carlos Antonio Centurion Maciel; Gilberto José Hussar; Fabio Augusto Gomes Vieira Reis; Gerson Araujo de Medeiros; Mônica Luri Giboshi

    2006-01-01

    The courses of environmental engineering have increasingly become more common in Brazil. In spite of the common legislation that defines the subjects of basic, professional and specific graduation, there has been a variation in the focus given in the list of subjects of these courses, which have been strongly influenced by the vocation of the Institution of Undergraduate Teaching (IES). The objective of this essay is to present the structure, the curricular emphasis and the approaches used by...

  14. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development

    Science.gov (United States)

    Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.

    2017-01-01

    NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between

  15. Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations

    Science.gov (United States)

    2016-09-01

    GROUND COMBAT VEHICLE SURVIVABILITY IN URBAN OPERATIONS 5. FUNDING NUMBERS N/A 6. AUTHOR(S) Luhai Wong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...distance of 100m in the model , which is reasonable due to the constrained nature of an urban environment. This thesis also uses the key parameters...ENGINEERING APPROACH TO GROUND COMBAT VEHICLE SURVIVABILITY IN URBAN OPERATIONS by Luhai Wong September 2016 Thesis Advisor: Christopher A

  16. Role-play and the Industrial Revolution: an STS approach to the teaching of steam engines

    Science.gov (United States)

    Sabka, Diego; Pereira de Pereira, Alexsandro; Lima Junior, Paulo

    2016-11-01

    Role-play is an interesting, although underexplored, way of teaching physics in high school. This paper presents a science-technology-society (STS) approach to the teaching of heat engines based on a role-play of the Industrial Revolution. Enacting the role-play, students are presented not only to scientific concepts, but also to the social and technological controversies of industrial development.

  17. A multi-criteria optimization and decision-making approach for improvement of food engineering processes

    Directory of Open Access Journals (Sweden)

    Alik Abakarov

    2013-04-01

    Full Text Available The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demonstrated using experimental data obtained on osmotic dehydration of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses, namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality. Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP and the Tabular Method (TM, were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.

  18. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    Science.gov (United States)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  19. A flipped mode teaching approach for large and advanced electrical engineering courses

    Science.gov (United States)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-05-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.

  20. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    Science.gov (United States)

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  1. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    Science.gov (United States)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  2. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines

    Science.gov (United States)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic

  3. On a Vision to Educating Students in Sustainability and Design—The James Madison University School of Engineering Approach

    Directory of Open Access Journals (Sweden)

    Olga Pierrakos

    2011-12-01

    Full Text Available In order for our future engineers to be able to work toward a sustainable future, they must be versed not only in sustainable engineering but also in engineering design. An engineering education must train our future engineers to think flexibly and to be adaptive, as it is unlikely that their future will have them working in one domain. They must, instead, be versatilists. The School of Engineering at James Madison University has been developed from the ground up to provide this engineering training with an emphasis on engineering design, systems thinking, and sustainability. Neither design nor sustainability are mutually exclusive, and consequently, an education focusing on design and sustainability must integrate these topics, teaching students to follow a sustainable design process. This is the goal of the James Madison University School of Engineering. In this paper, we present our approach to curricular integration of design and sustainability as well as the pedagogical approaches used throughout the curriculum. We do not mean to present the School’s model as an all or nothing approach consisting of dependent elements, but instead as a collection of independent approaches, of which one or more may be appropriate at another university.

  4. Deformation and fracture of solid-state materials field theoretical approach and engineering applications

    CERN Document Server

    Yoshida, Sanichiro

    2015-01-01

    This book introduces a comprehensive theory of deformation and fracture to engineers and applied scientists. The author explains the gist of local symmetry (gauge invariance) intuitively so that engineers and applied physicists can digest it easily, rather than describing physical or mathematical details of the principle. Applications of the theory to practical engineering are also described, such as nondestructive testing, in particular, with the use of an optical interferometric technique called ESPI (Electronic Speckle-Pattern Interferometry). The book provides information on how to apply physical concepts to engineering applications. This book also: ·         Describes a highly original way to reveal loading hysteresis of a given specimen ·         Presents a fundamentally new approach to deformation and fracture, which offers potential for new applications ·         Introduces the unique application of Electric Speckle-Pattern Interferometry—reading fringe patterns to connect...

  5. Building international experiences into an engineering curriculum - a design project-based approach

    Science.gov (United States)

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-07-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.

  6. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    International Nuclear Information System (INIS)

    Li, Ning; Liang, Caiping; Yang, Jianguo; Zhou, Rui

    2016-01-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner–Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated. (paper)

  7. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    Science.gov (United States)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  8. Adipose tissue engineering: state of the art, recent advances and innovative approaches.

    Science.gov (United States)

    Tanzi, Maria Cristina; Farè, Silvia

    2009-09-01

    Adipose tissue is a highly specialized connective tissue found either in white or brown forms, the white form being the most abundant in adult humans. Loss or damage of white adipose tissue due to aging or pathological conditions needs reconstructive approaches. To date, two main strategies are being investigated for generating functional adipose tissue: autologous tissue/cell transplantation and adipose tissue engineering. Free-fat transplantation rarely achieves sufficient tissue augmentation owing to delayed neovascularization, with subsequent cell necrosis and graft volume shrinkage. Tissue engineering approaches represent, instead, a more suitable alternative for adipose tissue regeneration; they can be performed either with in situ or de novo adipogenesis. In situ adipogenesis or transplantation of encapsulated cells can be useful in healing small-volume defects, whereas restoration of large defects, where vascularization and a rapid volumetric gain are strict requirements, needs de novo strategies with 3D scaffold/filling matrix combinations. For adipose tissue engineering, the use of adult mesenchymal stem cells (both adipose- and bone marrow-derived stem cells) or of preadipocytes is preferred to the use of mature adipocytes, which have low expandability and poor ability for volume retention. This review intends to assemble and describe recent work on this topic, critically presenting successes obtained and drawbacks faced to date.

  9. Overview of tracheal tissue engineering: clinical need drives the laboratory approach.

    Science.gov (United States)

    Ott, Lindsey M; Weatherly, Robert A; Detamore, Michael S

    2011-08-01

    Breathing is a natural function that most of us do not even think about, but for those who suffer from disease or damage of the trachea, the obstruction of breathing can mean severe restrictions to quality of life or may even be fatal. Replacement and reconstruction of the trachea is one of the most difficult procedures in otolaryngology/head and neck surgery, and also one of the most vital. Previous reviews have focused primarily on clinical perspectives or instead on engineering strategies. However, the current review endeavors to bridge this gap by evaluating engineering approaches in a practical clinical context. For example, although contemporary approaches often include in vitro bioreactor pre-culture, or sub-cutaneous in vivo conditioning, the limitations they present in terms of regulatory approval, cost, additional surgery, and/or risk of infection challenge engineers to develop the next generation of biodegradable/resorbable biomaterials that can be directly implanted in situ. Essentially, the functionality of the replacement is the most important requirement. It must be the correct shape and size, achieve an airtight fit, resist collapse as it is replaced by new tissue, and be non-immunogenic. As we look to the future, there will be no one-size-fits-all solution.

  10. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends.

    Science.gov (United States)

    Oliveira, Sara M; Reis, Rui L; Mano, João F

    2015-11-01

    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Reverse engineering of a railcar prototype via energetic macroscopic representation approach

    International Nuclear Information System (INIS)

    Agbli, Kréhi Serge; Hissel, Daniel; Sorrentino, Marco; Chauvet, Frédéric; Pouget, Julien

    2016-01-01

    Highlights: • A complex EMR model of a new railcar range has been developed. • A satisfactory assessment of the fuel consumption of the railcar. • The significant potential benefits are attainable by hybridizing the original railcar. • The regenerative braking can provide up to 240 kW h saving. - Abstract: Energetic Macroscopic Representation (EMR) modelling approach is proposed to perform model-based reverse-engineering of a new railcar range, having six propulsion units, each consisting of a diesel engine and a traction motor. Particularly, EMR intrinsic features were exploited to perform phenomenological structuration of power flows, thus allowing proper and comprehensive modelling of complex systems, such as the under-study railcar. Based on some prospective real trips, selected in such a way as to enable realistic evaluation of effective railcar effort, EMR-based prediction of railcar energy consumption is performed. Furthermore, physical consistency of each powertrain component operation was carefully verified. The suitability of EMR approach was thus proven effective to perform reverse-engineering of known specifications and available experimental data, with the final aim of reconstructing a high fidelity computational tool that meets computational burden requirements for subsequent model-based tasks deployment. Finally, specific simulation analyses were performed to evaluate the potential benefits attainable through electric hybridization of the original powertrain.

  12. An approach to evaluating system well-being in engineering reliability applications

    International Nuclear Information System (INIS)

    Billinton, Roy; Fotuhi-Firuzabad, Mahmud; Aboreshaid, Saleh

    1995-01-01

    This paper presents an approach to evaluating the degree of system well-being of an engineering system. The functionality of the system is identified by healthy, marginal and risk states. The state definitions permit the inclusion of deterministic considerations in the probabilistic indices used to monitor the system well-being. A technique is developed to determine the three operating state probabilities based on minimal path concepts. The identified indices provide system engineers with additional information on the degree of system well-being in the form of system health and margin state probabilities. A basic planning objective should be to design a system such that the probabilities of the health and risk states are acceptable. The application of the technique is illustrated in this paper using a relatively simple network

  13. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  14. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  15. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  16. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  17. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  18. Software engineering techniques applied to agricultural systems an object-oriented and UML approach

    CERN Document Server

    Papajorgji, Petraq J

    2014-01-01

    Software Engineering Techniques Applied to Agricultural Systems presents cutting-edge software engineering techniques for designing and implementing better agricultural software systems based on the object-oriented paradigm and the Unified Modeling Language (UML). The focus is on the presentation of  rigorous step-by-step approaches for modeling flexible agricultural and environmental systems, starting with a conceptual diagram representing elements of the system and their relationships. Furthermore, diagrams such as sequential and collaboration diagrams are used to explain the dynamic and static aspects of the software system.    This second edition includes: a new chapter on Object Constraint Language (OCL), a new section dedicated to the Model-VIEW-Controller (MVC) design pattern, new chapters presenting details of two MDA-based tools – the Virtual Enterprise and Olivia Nova, and a new chapter with exercises on conceptual modeling.  It may be highly useful to undergraduate and graduate students as t...

  19. A control systems engineering approach for adaptive behavioral interventions: illustration with a fibromyalgia intervention.

    Science.gov (United States)

    Deshpande, Sunil; Rivera, Daniel E; Younger, Jarred W; Nandola, Naresh N

    2014-09-01

    The term adaptive intervention has been used in behavioral medicine to describe operationalized and individually tailored strategies for prevention and treatment of chronic, relapsing disorders. Control systems engineering offers an attractive means for designing and implementing adaptive behavioral interventions that feature intensive measurement and frequent decision-making over time. This is illustrated in this paper for the case of a low-dose naltrexone treatment intervention for fibromyalgia. System identification methods from engineering are used to estimate dynamical models from daily diary reports completed by participants. These dynamical models then form part of a model predictive control algorithm which systematically decides on treatment dosages based on measurements obtained under real-life conditions involving noise, disturbances, and uncertainty. The effectiveness and implications of this approach for behavioral interventions (in general) and pain treatment (in particular) are demonstrated using informative simulations.

  20. An Approach to Developing Independent Learning and Non-Technical Skills Amongst Final Year Mining Engineering Students

    Science.gov (United States)

    Knobbs, C. G.; Grayson, D. J.

    2012-01-01

    There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called "soft" skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was…

  1. Strengthening the Link between Theory and Practice in Teaching Design Engineering: An Empirical Study on a New Approach

    Science.gov (United States)

    Tempelman, E.; Pilot, A.

    2011-01-01

    In 2007, the Faculty of Industrial Design Engineering of the Delft University of Technology introduced a new bachelor program. Based on theories of learning and instruction three design principles were used to develop an approach that aims to make it easier for students to bridge the gap between theoretical design engineering courses and practical…

  2. Providing Formative Assessment to Students Solving Multipath Engineering Problems with Complex Arrangements of Interacting Parts: An Intelligent Tutor Approach

    Science.gov (United States)

    Steif, Paul S.; Fu, Luoting; Kara, Levent Burak

    2016-01-01

    Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…

  3. A Hybrid Approach to Cognitive Engineering: Supporting Development of a Revolutionary Warfighter-Centered Command and Control System

    National Research Council Canada - National Science Library

    Ockerman, Jennifer; McKneely, Jennifer A; Koterba, Nathan

    2005-01-01

    ...) for the requirements analysis and design of revolutionary command and control systems and domains. This hybrid approach uses knowledge elicitation and representation techniques from several current cognitive engineering methodologies...

  4. Methodologic model to scheduling on service systems: a software engineering approach

    Directory of Open Access Journals (Sweden)

    Eduyn Ramiro Lopez-Santana

    2016-06-01

    Full Text Available This paper presents an approach of software engineering to a research proposal to make an Expert System to scheduling on service systems using methodologies and processes of software development. We use the adaptive software development as methodology for the software architecture based on the description as a software metaprocess that characterizes the research process. We make UML’s diagrams (Unified Modeling Language to provide a visual modeling that describes the research methodology in order to identify the actors, elements and interactions in the research process.

  5. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joe

    2000-01-01

    This paper describes, in viewgraph form, the faster, better, cheaper approach to space missions. The topics include: 1) What drives "Faster, Better, Cheaper"? 2) Why Space Programs are Costly; 3) Background; 4) Aerospace Project Management (Old Culture); 5) Aerospace Project Management (New Culture); 6) Scope of Analysis Limited to Engineering Management Culture; 7) Qualitative Analysis; 8) Some Basic Principles of the New Culture; 9) Cause and Effect; 10) "New Ways of Doing Business" Survey Results; 11) Quantitative Analysis; 12) Recent Space System Cost Trends; 13) Spacecraft Dry Weight Trend; 14) Complexity Factor Trends; 15) Cost Normalization; 16) Cost Normalization Algorithm; 17) Unnormalized Cost vs. Normalized Cost; and 18) Concluding Observations.

  6. Model-based system engineering approach for the Euclid mission to manage scientific and technical complexity

    Science.gov (United States)

    Lorenzo Alvarez, Jose; Metselaar, Harold; Amiaux, Jerome; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis M.; Salvignol, Jean-Christophe; Laureijs, René J.; Vavrek, Roland

    2016-08-01

    In the last years, the system engineering field is coming to terms with a paradigm change in the approach for complexity management. Different strategies have been proposed to cope with highly interrelated systems, system of systems and collaborative system engineering have been proposed and a significant effort is being invested into standardization and ontology definition. In particular, Model Based System Engineering (MBSE) intends to introduce methodologies for a systematic system definition, development, validation, deployment, operation and decommission, based on logical and visual relationship mapping, rather than traditional 'document based' information management. The practical implementation in real large-scale projects is not uniform across fields. In space science missions, the usage has been limited to subsystems or sample projects with modeling being performed 'a-posteriori' in many instances. The main hurdle for the introduction of MBSE practices in new projects is still the difficulty to demonstrate their added value to a project and whether their benefit is commensurate with the level of effort required to put them in place. In this paper we present the implemented Euclid system modeling activities, and an analysis of the benefits and limitations identified to support in particular requirement break-down and allocation, and verification planning at mission level.

  7. V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.

    Science.gov (United States)

    Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae

    2018-02-01

    Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.

  8. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems

    Science.gov (United States)

    Náprstek, Jiří

    2015-03-01

    Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their

  9. A top-down approach in control engineering third-level teaching: The case of hydrogen-generation

    Science.gov (United States)

    Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo

    2017-09-01

    This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.

  10. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine (u)

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, Charles R [Los Alamos National Laboratory

    2010-12-14

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. SPU memory management strategies such as data preloading cannot be applied to the irregular memory storage patterns of unstructured meshes; and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  11. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, Charles R [Los Alamos National Laboratory

    2010-01-01

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. The most common SPU memory management strategies cannot be applied to the irregular memory access patterns of unstructured meshes, and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  12. E-learning and blended learning in textile engineering education: a closed feedback loop approach

    Science.gov (United States)

    Charitopoulos, A.; Vassiliadis, S.; Rangoussi, M.; Koulouriotis, D.

    2017-10-01

    E-learning has gained a significant role in typical education and in professional training, thanks to the flexibility it offers to the time and location parameters of the education event framework. Purely e-learning scenarios are mostly limited either to Open University-type higher education institutions or to graduate level or professional degrees; blended learning scenarios are progressively becoming popular thanks to their balanced approach. The aim of the present work is to propose approaches that exploit the e-learning and the blended-learning scenarios for Textile Engineering education programmes, especially for multi-institutional ones. The “E-Team” European MSc degree programme organized by AUTEX is used as a case study. The proposed solution is based on (i) a free and open-source e-learning platform (moodle) and (ii) blended learning educational scenarios. Educational challenges addressed include student engagement, student error / failure handling, as well as collaborative learning promotion and support.

  13. The Evaluation of Industry Practical of Mechanical Engineering in Vocational Education: A CIPP Model Approach

    Science.gov (United States)

    Kamaludin, M.; Munawar, W.; Mahdan, D.; Simanjuntak, M. V.; Wendi, H. F.

    2018-02-01

    The learning system is not only studied on campus but also practicing in the world of work. Industry Practical aims to enable students to develop their skills in accordance with the real world of work. To know the success of the implementation of industry practical program then held evaluation. The evaluation of the program in this study used the CIPP evaluation approach (Context, Input, Process, Product). The purpose of this research is to know the extent of achievement and success of industry practical program at vocational school in Bandung with descriptive research method using mix method approach. The sample in this research is students majoring in mechanical engineering in the city of Bandung who have done industry practical.

  14. Finite element methods for engineering sciences. Theoretical approach and problem solving techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chaskalovic, J. [Ariel University Center of Samaria (Israel); Pierre and Marie Curie (Paris VI) Univ., 75 (France). Inst. Jean le Rond d' Alembert

    2008-07-01

    This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. (orig.)

  15. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.

    Science.gov (United States)

    He, Xiaojia; Aker, Winfred G; Leszczynski, Jerzy; Hwang, Huey-Min

    2014-03-01

    In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano-bio-eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes. Copyright © 2014. Published by Elsevier B.V.

  16. A Model-Free Diagnosis Approach for Intake Leakage Detection and Characterization in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Ghaleb Hoblos

    2015-07-01

    Full Text Available Feature selection is an essential step for data classification used in fault detection and diagnosis processes. In this work, a new approach is proposed, which combines a feature selection algorithm and a neural network tool for leak detection and characterization tasks in diesel engine air paths. The Chi square classifier is used as the feature selection algorithm and the neural network based on Levenberg-Marquardt is used in system behavior modeling. The obtained neural network is used for leak detection and characterization. The model is learned and validated using data generated by xMOD. This tool is used again for testing. The effectiveness of the proposed approach is illustrated in simulation when the system operates on a low speed/load and the considered leak affecting the air path is very small.

  17. A top-down approach to crystal engineering of a racemic Δ2-isoxazoline.

    Science.gov (United States)

    Lombardo, Giuseppe M; Rescifina, Antonio; Chiacchio, Ugo; Bacchi, Alessia; Punzo, Francesco

    2014-02-01

    The crystal structure of racemic dimethyl (4RS,5RS)-3-(4-nitrophenyl)-4,5-dihydroisoxazole-4,5-dicarboxylate, C13H12N2O7, has been determined by single-crystal X-ray diffraction. By analysing the degree of growth of the morphologically important crystal faces, a ranking of the most relevant non-covalent interactions determining the crystal structure can be inferred. The morphological information is considered with an approach opposite to the conventional one: instead of searching inside the structure for the potential key interactions and using them to calculate the crystal habit, the observed crystal morphology is used to define the preferential lines of growth of the crystal, and then this information is interpreted by means of density functional theory (DFT) calculations. Comparison with the X-ray structure confirms the validity of the strategy, thus suggesting this top-down approach to be a useful tool for crystal engineering.

  18. Green Materials Science and Engineering Reduces Biofouling: Approaches for Medical and Membrane-based Technologies

    Directory of Open Access Journals (Sweden)

    Kerianne M Dobosz

    2015-03-01

    Full Text Available Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  19. Vibration Monitoring of Gas Turbine Engines: Machine-Learning Approaches and Their Challenges

    Directory of Open Access Journals (Sweden)

    Ioannis Matthaiou

    2017-09-01

    Full Text Available In this study, condition monitoring strategies are examined for gas turbine engines using vibration data. The focus is on data-driven approaches, for this reason a novelty detection framework is considered for the development of reliable data-driven models that can describe the underlying relationships of the processes taking place during an engine’s operation. From a data analysis perspective, the high dimensionality of features extracted and the data complexity are two problems that need to be dealt with throughout analyses of this type. The latter refers to the fact that the healthy engine state data can be non-stationary. To address this, the implementation of the wavelet transform is examined to get a set of features from vibration signals that describe the non-stationary parts. The problem of high dimensionality of the features is addressed by “compressing” them using the kernel principal component analysis so that more meaningful, lower-dimensional features can be used to train the pattern recognition algorithms. For feature discrimination, a novelty detection scheme that is based on the one-class support vector machine (OCSVM algorithm is chosen for investigation. The main advantage, when compared to other pattern recognition algorithms, is that the learning problem is being cast as a quadratic program. The developed condition monitoring strategy can be applied for detecting excessive vibration levels that can lead to engine component failure. Here, we demonstrate its performance on vibration data from an experimental gas turbine engine operating on different conditions. Engine vibration data that are designated as belonging to the engine’s “normal” condition correspond to fuels and air-to-fuel ratio combinations, in which the engine experienced low levels of vibration. Results demonstrate that such novelty detection schemes can achieve a satisfactory validation accuracy through appropriate selection of two parameters of the

  20. A Survey of Automatic Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View

    Directory of Open Access Journals (Sweden)

    Baraka D. Sija

    2018-01-01

    Full Text Available A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic Protocol Reverse Engineering (APRE defines the way of extracting the structure of a network protocol without accessing its specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation, and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards Protocol Reverse Engineering (PRE and classifies them into four divisions, approaches that reverse engineer protocol finite state machines, protocol formats, and both protocol finite state machines and protocol formats to approaches that focus directly on neither reverse engineering protocol formats nor protocol finite state machines. The efficiency of all approaches’ outputs based on their selected inputs is analyzed in general along with appropriate reverse engineering inputs format. Additionally, we present discussion and extended classification in terms of automated to manual approaches, known and novel categories of reverse engineered protocols, and a literature of reverse engineered protocols in relation to the seven layers’ OSI (Open Systems Interconnection model.

  1. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  2. Engineering and training simulators: A combined approach for nuclear plant construction projects

    International Nuclear Information System (INIS)

    Harnois, Olivier; Gain, Pascal; Bartak, Jan; Gathmann, Ralf

    2007-01-01

    Full text: Simulation technologies have always been widely used on nuclear applications, but with a clear division between engineering application, using highly validated code run in batch mode, and training purpose where real time computation is a mandatory requirement. Thanks to the flexibility of modern simulation technology and the increased performance of computers, it becomes now possible to develop Nuclear Power plant simulators that can be used both for engineering and training purposes. In the last years, the revival of nuclear industry raised a number of new construction or plant finishing projects in which the application of this combined approach would result in decisive improvement on plant construction lead times, better project control and cost optimizations. The simulator development is to be executed in a step-wise approach, scheduled in parallel with the plant design and construction phases. During a first step, the simulator will model the plant nuclear island systems plus the corresponding instrumentation and control, specific malfunctions and local commands. It can then be used for engineering activities defining and validating the plant operating strategies in case of incidents or accidents. The Simulator executive Station and Operator Station will be in prototype version with an interface imagery enabling monitoring and control of the simulator. Availability of such simulation platform leads to a significant increase in efficiency of the engineering works, the possibility to validate basic design hypotheses and detect defects and conflicts early. The second phase will consist in the fully detailed simulation of Main Control Room plant supervision and control MMI, taking into account I and C control loops detailed design improvement, while having sufficient fidelity in order to be suitable for the future operator training. Its use will enable the engineering units not only to specify and validate normal, incident and accident detailed plant

  3. A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs

    Science.gov (United States)

    Li, Lei; Zhou, Wanting; Liu, Huihua

    2012-12-01

    This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.

  4. App Factory: A flexible approach to rehabilitation engineering in an era of rapid technology advancement.

    Science.gov (United States)

    Jones, Michael; Mueller, James; Morris, John

    2017-01-01

    This article describes a flexible and effective approach to research and development in an era of rapid technological advancement. The approach relies on secondary dispersal of grant funds to commercial developers through a competitive selection process. This "App Factory" model balances the practical reliance on multi-year funding needed to sustain a rehabilitation engineering research center (RERC), with the need for agility and adaptability of development efforts undertaken in a rapidly changing technology environment. This approach also allows us to take advantage of technical expertise needed to accomplish a particular development task, and provides incentives to deliver successful products in a cost-effective manner. In this article, we describe the App Factory structure, process, and results achieved to date; and we discuss the lessons learned and the potential relevance of this approach for other grant-funded research and development efforts. Data presented on the direct costs and number of downloads of the 16 app development projects funded in the App Factory's first 3 years show that it can be an effective means for supporting focused, short-term assistive technology development projects.

  5. Measurement of student attitudes in first year engineering - A mixed methods approach

    Science.gov (United States)

    Malik, Qaiser Hameed

    This research study focused on freshman attitudes towards engineering in a newly implemented cornerstone sequence that emphasized holistic design experiences. The students' initial attitudes and changes in these attitudes were examined with the explanatory mixed methods approach that allows a sequential examination of the target population with two methods, using two sets of data, to investigate the treatment effects. In the quantitative phase, the study compared changes in freshman attitude towards engineering, between the new 'design sequence' group (composed of freshmen in the cornerstone sequence) and the prior 'traditional sequence' group (composed of all other freshmen), over the course of one semester. The data were collected in fall 2008 at two time intervals and changes in the two groups' attitudes were examined with repeated measures analysis of covariance models. The analyses reported here include data from 389 students out of the total population of 722 freshmen. The analyses revealed that engineering freshmen joined the program with positive or strongly positive attitudes towards engineering. Those strong attitudes were durable and resistant to change. Students in the design sequence group had higher ACT scores, enjoyed math and science the most, and did not believe engineering to be an exact science. However, no appreciable time-group interaction was observed. To validate the quantitative results, an interview protocol was developed to investigate initial freshman attitudes and changes, if any, that took place as a result of the new cornerstone sequence. One-on-one interviews with a sample of ten students out of the population of 272 freshmen revealed that freshmen in the cornerstone sequence entered the program full of enthusiasm and idealism, and with strongly positive attitudes towards engineering. The strong motivational factors included parental/teacher influences, childhood motivations, and high school extra-curricular experiences. The

  6. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  7. Determination of TDC in internal combustion engines by a newly developed thermodynamic approach

    International Nuclear Information System (INIS)

    Pipitone, Emiliano; Beccari, Alberto

    2010-01-01

    In-cylinder pressure analysis is nowadays an indispensable tool in internal combustion engine research and development. It allows the measure of some important performance related parameters, such as indicated mean effective pressure (IMEP), mean friction pressure, indicated fuel consumption, heat release rate, mass fraction burned, etc. Moreover, future automotive engine will probably be equipped with in-cylinder pressure sensors for continuous combustion monitoring and control, in order to fulfil the more and more strict emission limits. For these reasons, in-cylinder pressure analysis must be carried out with maximum accuracy, in order to minimize the effects of its characteristic measurement errors. The exact determination of crank position when the piston is at top dead centre (TDC) is of vital importance, since a 1 deg. error can cause up to a 10% evaluation error on IMEP and 25% error on the heat released by the combustion: the position of the crank shaft (and hence the volume inside the cylinder) should be known with the precision of at least 0.1 crank angle degrees, which is not an easy task, even if the engine dimensions are well known: it corresponds to a piston movement in the order of one tenth of micron, which is very difficult to estimate. A good determination of the TDC position can be pursued by means of a dedicated capacitive TDC sensor, which allows a dynamic measurement (i.e. while engine is running) within the required 0.1 deg. precision . Such a sensor has a substantial cost and its use is not really fast, since it must be fitted in the spark plug or injector hole of the cylinder. A different approach can be followed using a thermodynamic method, whose input is in-cylinder pressure sampled during the compression and expansion strokes: some of these methods, more or less valid, can be found in literature . This paper will discuss a new thermodynamic approach to the problem of the right determination of the TDC position. The base theory of the

  8. Development of a Study Module on and Pedagogical Approaches to Industrial Environmental Engineering and Sustainability in Mozambique

    Science.gov (United States)

    Husgafvel, Roope; Martikka, Mikko; Egas, Andrade; Ribiero, Natasha; Dahl, Olli

    2017-01-01

    Addressing the sustainability challenges in the forest sector in Mozambique requires capacity building for higher education and training of new skilled expert and future decision-makers. Our approach was to develop a study module on and pedagogical approaches to industrial environmental engineering and sustainability. The idea was to develop a…

  9. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  10. Linking biogeomorphic feedbacks from ecosystem engineer to landscape scale: a panarchy approach

    Science.gov (United States)

    Eichel, Jana

    2017-04-01

    Scale is a fundamental concept in both ecology and geomorphology. Therefore, scale-based approaches are a valuable tool to bridge the disciplines and improve the understanding of feedbacks between geomorphic processes, landforms, material and organisms and ecological processes in biogeomorphology. Yet, linkages between biogeomorphic feedbacks on different scales, e.g. between ecosystem engineering and landscape scale patterns and dynamics, are not well understood. A panarchy approach sensu Holling et al. (2002) can help to close this research gap and explain how structure and function are created in biogeomorphic ecosystems. Based on results from previous biogeomorphic research in Turtmann glacier foreland (Switzerland; Eichel, 2017; Eichel et al. 2013, 2016), a panarchy concept is presented for lateral moraine slope biogeomorphic ecosystems. It depicts biogeomorphic feedbacks on different spatiotemporal scales as a set of nested adaptive cycles and links them by 'remember' and 'revolt' connections. On a small scale (cm2 - m2; seconds to years), the life cycle of the ecosystem engineer Dryas octopetala L. is considered as an adaptive cycle. Biogeomorphic succession within patches created by geomorphic processes represents an intermediate scale adaptive cycle (m2 - ha, years to decades), while geomorphic and ecologic pattern development at a landscape scale (ha - km2, decades to centuries) can be illustrated by an adaptive cycle of ‚biogeomorphic patch dynamics' (Eichel, 2017). In the panarchy, revolt connections link the smaller scale adaptive cycles to larger scale cycles: on lateral moraine slopes, the development of ecosystem engineer biomass and cover controls the engineering threshold of the biogeomorphic feedback window (Eichel et al., 2016) and therefore the onset of the biogeomorphic phase during biogeomorphic succession. In this phase, engineer patches and biogeomorphic structures can be created in the patch mosaic of the landscape. Remember connections

  11. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth.

    Science.gov (United States)

    Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Silvagno, Francesca

    2017-09-21

    To date, the choice of the characteristics of the extremely low-frequency electromagnetic field beneficial in proliferative disorders is still empirical. In order to make the ELF interaction selective, we applied the thermodynamic and biochemical principles to the analysis of the thermo-chemical output generated by the cell in the environment. The theoretical approach applied an engineering bio-thermodynamic approach recently developed in order to obtain a physical-mathematical model that calculated the frequency of the field able to maximize the mean entropy changes as a function of cellular parameters. The combined biochemical approach envisioned the changes of entropy as a metabolic shift leading to a reduction of cell growth. The proliferation of six human cancer cell lines was evaluated as the output signal able to confirm the correctness of the mathematical model. By considering the cell as a reactive system able to respond to the unbalancing external stimuli, for the first time we could calculate and validate the frequencies of the field specifically effective on distinct cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of scientific and engineering approaches to the treatment of mixed wastes

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Bowers, J.S.

    1993-12-01

    This paper discusses two approaches to the treatment of mixed waste. (Mixed waste, defined as radioactive waste that is co-contaminated with hazardous waste as defined in the Resource Conservation and Conservation Act, is presently stored throughout the United States awaiting the establishment of treatment capability.)The first approach employs conventional engineering that focuses on low risk technology which has been proven in other industries in similar applications and is adaptable for waste treatment use. The term ''low risk'' means that implementation success is relatively certain, and the major uncertainty is the degree of success. Technologies under consideration include centrifugation, evaporation, microfiltration and stabilization. Process offgases are treated with traditional scrubbers and carbon absorption units.For the scientific approach, Lawrence Livermore National Laboratory is in the conceptual design phase of a project to demonstrate incinerator alternatives to destroy organic contaminants in radioactive waste streams without the use of incineration. This Mixed Waste Management Facility will use approximately 15000 square feet of an existing facility to demonstrate an integrated waste management system. Robotic and telerobotic systems will be employed for waste segregation, characterization and feed preparation. Waste feeds will be treated using molten salt oxidation, mediated electrochemical oxidation and wet oxidation. Residues, which can be managed as radioactive-only waste, will be immobilized in an organic matrix prior to shipment to an authorized disposal site

  13. A biomedical engineering approach to mitigate the errors of prostate biopsy.

    Science.gov (United States)

    Ahmed, Hashim Uddin; Emberton, Mark; Kepner, Gordon; Kepner, Jeremy

    2012-02-07

    The current protocol for detecting and ruling out prostate cancer involves serum PSA testing followed by sampling of the prostate using a transrectal ultrasonography (TRUS)-guided biopsy. Many specialists have discussed how PSA screening has contributed to underdetection of clinically significant prostate cancer, overdiagnosis of clinically insignificant disease and poor risk stratification; however, little consideration has been given to the role of TRUS-guided biopsy in these errors. The performance of TRUS-guided biopsy is constrained by the biomechanical attributes of the sampling strategy, resulting in suboptimal detection efficiency of each core. By using a biomedical engineering approach, a uniform grid sampling strategy could be used to improve the detection efficiency of prostate biopsy. Moreover, the calibration of the sampling can be adjusted by altering the distance between needle deployments. Our model shows that for any given number of needle trajectories, a uniform grid approach will be superior to a divergent, nonuniform strategy for the detection of clinically important disease. This is an important message that should result in a move away from divergent sampling to a uniform grid approach for prostate biopsy.

  14. Integrating Human Factors Engineering and Information Processing Approaches to Facilitate Evaluations in Criminal Justice Technology Research.

    Science.gov (United States)

    Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy

    2015-06-01

    Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.

  15. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  16. Data Quality Indicators Composition and Calculus: Engineering and Information Systems Approaches

    Directory of Open Access Journals (Sweden)

    Leon REZNIK

    2015-02-01

    Full Text Available Big Data phenomenon is a result of novel technological developments in sensor, computer and communication technologies. Nowadays more and more data are produced by nanoscale photonic, optoelectronic and electronic devices. However, their quality characteristics could be very low. The paper proposes new methods of the data management with huge data amounts that is based on associating of data quality indicators with each data entity. To achieve this goal, one needs to define the composition of the data quality indicators and to develop their integration calculus. As data quality evaluation involves multi-disciplinary research, various metrics have been investigated. The paper describes two major approaches in assigning the data quality indicators and developing their integration calculus. The information systems approach employs traditional high-level metrics like data accuracy, consistency and completeness. The engineering approach utilizes signal characteristics processed with the probability based calculus. The data quality metrics composition and calculus are discussed. The tools developed to automate the metrics selection and calculus procedures are presented. The user- friendly interface examples are provided.

  17. Engineering Leadership Education--The Search for Definition and a Curricular Approach

    Science.gov (United States)

    Schuhmann, Richard J.

    2010-01-01

    While industry and academia agree that leadership skills are critical for engineering graduates, there exists no consensus regarding the definition of "engineering leadership". The engineering leadership development program at Penn State University has a decade-long experience in teaching leadership to engineering undergraduates. In…

  18. An engineering approach to knowledge-based systems, the alarm processing and diagnostic system

    International Nuclear Information System (INIS)

    Mah, E.; Damon, L.

    1992-01-01

    The number of alarms that may be initiated during transients or accidents in nuclear-generating control rooms may temporarily exceed an operator's ability to assimilate and respond. This phenomenon is characterized as Cognitive Overload. The Alarm Processing and Diagnostic System (APDS) was designed to deal with this problem through a unique and operationally sensitive method of alarm prioritization and filtration. The approach taken attempts to parallel the operator's situation assessment methodology when dealing with transient conditions. A strong criteria for the development methodology employed was its ultimate acceptance by parties engaged in the operation of nuclear power facilities. As such, the methodology used had to be easily understood and consistent with the acceptance standards of nuclear power. This necessitated the verifiable practices found in engineering design. While APDS remains rooted in artificial intelligence or expert systems, it goes beyond the paradigm of rules and inferencing to an object-oriented structure that allows traditional and well-documented engineering-based decision methods to be applied. These features have important consequences when considering final acceptance, implementation, and maintenance. 3 refs., 1 tab

  19. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    Directory of Open Access Journals (Sweden)

    Ting Gong

    2016-01-01

    Full Text Available Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration.

  1. Control of bovine spongiform encephalopathy by genetic engineering: possible approaches and regulatory considerations

    International Nuclear Information System (INIS)

    Gavora, J.S.; Kochhar, H.P.S.; Gifford, G.A.

    2005-01-01

    Transmissible spongiform encephalopathies (TSE) include bovine spongiform encephalopathy (BSE), scrapie in sheep and Creutzfeldt-Jakob disease (CJD) in humans. A new CJD variant (nvCJD) is believed to be related to consumption of meat from BSE cattle. In TSE individuals, prion proteins (PrP) with approximately 250 amino acids convert to the pathogenic prion PrP Sc , leading to a dysfunction of the central neural system. Research elsewhere with mice has indicated a possible genetic engineering approach to the introduction of BSE resistance: individuals with amino acid substitutions at positions 167 or 218, inoculated with a pathogenic prion protein, did not support PrP Sc replication. This raises the possibility of producing prion-resistant cattle with a single PrP amino acid substitution. Since prion-resistant animals might still harbour acquired prion infectivity, regulatory assessment of the engineered animals would need to ascertain that such possible 'carriers' do not result in a threat to animal and human health. (author)

  2. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Ronald [Chrysler Group LLC., Auburn Hills, MI (United States)

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  3. An Approach to Integrating Health Disparities within Undergraduate Biomedical Engineering Education.

    Science.gov (United States)

    Vazquez, Maribel; Marte, Otto; Barba, Joseph; Hubbard, Karen

    2017-11-01

    Health disparities are preventable differences in the incidence, prevalence and burden of disease among communities targeted by gender, geographic location, ethnicity and/or socio-economic status. While biomedical research has identified partial origin(s) of divergent burden and impact of disease, the innovation needed to eradicate health disparities in the United States requires unique engagement from biomedical engineers. Increasing awareness of the prevalence and consequences of health disparities is particularly attractive to today's undergraduates, who have undauntedly challenged paradigms believed to foster inequality. Here, the Department of Biomedical Engineering at The City College of New York (CCNY) has leveraged its historical mission of access-and-excellence to integrate the study of health disparities into undergraduate BME curricula. This article describes our novel approach in a multiyear study that: (i) Integrated health disparities modules at all levels of the required undergraduate BME curriculum; (ii) Developed opportunities to include impacts of health disparities into undergraduate BME research projects and mentored High School summer STEM training; and (iii) Established health disparities-based challenges as BME capstone design and/or independent entrepreneurship projects. Results illustrate the rising awareness of health disparities among the youngest BMEs-to-be, as well as abundant undergraduate desire to integrate health disparities within BME education and training.

  4. Application of heuristic and machine-learning approach to engine model calibration

    Science.gov (United States)

    Cheng, Jie; Ryu, Kwang R.; Newman, C. E.; Davis, George C.

    1993-03-01

    Automation of engine model calibration procedures is a very challenging task because (1) the calibration process searches for a goal state in a huge, continuous state space, (2) calibration is often a lengthy and frustrating task because of complicated mutual interference among the target parameters, and (3) the calibration problem is heuristic by nature, and often heuristic knowledge for constraining a search cannot be easily acquired from domain experts. A combined heuristic and machine learning approach has, therefore, been adopted to improve the efficiency of model calibration. We developed an intelligent calibration program called ICALIB. It has been used on a daily basis for engine model applications, and has reduced the time required for model calibrations from many hours to a few minutes on average. In this paper, we describe the heuristic control strategies employed in ICALIB such as a hill-climbing search based on a state distance estimation function, incremental problem solution refinement by using a dynamic tolerance window, and calibration target parameter ordering for guiding the search. In addition, we present the application of a machine learning program called GID3* for automatic acquisition of heuristic rules for ordering target parameters.

  5. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    Science.gov (United States)

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  6. Use of Time- and Frequency-Domain Approaches for Damage Detection in Civil Engineering Structures

    Directory of Open Access Journals (Sweden)

    V. H. Nguyen

    2014-01-01

    Full Text Available The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures and to assess their capability for damage detection. The methodology is based on Principal Component Analysis of the Hankel matrix built from output-only measurements and of Frequency Response Functions. Damage detection is performed using the concept of subspace angles between a current (possibly damaged state and a reference (undamaged state. The first structure is the Champangshiehl Bridge located in Luxembourg. Several damage levels were intentionally created by cutting a growing number of prestressed tendons and vibration data were acquired by the University of Luxembourg for each damaged state. The second example consists in reinforced and prestressed concrete panels. Successive damages were introduced in the panels by loading heavy weights and by cutting steel wires. The illustrations show different consequences in damage identification by the considered techniques.

  7. A multidimensional approach to examine student interdisciplinary learning in science and engineering in higher education

    Science.gov (United States)

    Spelt, Elisabeth Jacoba Hendrika; Luning, Pieternelleke Arianne; van Boekel, Martinus A. J. S.; Mulder, Martin

    2017-11-01

    Preparing science and engineering students to work in interdisciplinary teams necessitates research on teaching and learning of interdisciplinary thinking. A multidimensional approach was taken to examine student interdisciplinary learning in a master course on food quality management. The collected 615 student experiences were analysed for the cognitive, emotional, and social learning dimensions using the learning theory of Illeris. Of these 615 experiences, the analysis showed that students reported 214, 194, and 207 times on, respectively, the emotional, the cognitive, and the social dimension. Per learning dimension, key learning experiences featuring interdisciplinary learning were identified such as 'frustrations in selecting and matching disciplinary knowledge to complex problems' (emotional), 'understanding how to apply theoretical models or concepts to real-world situations' (cognitive), and 'socially engaging with peers to recognise similarities in perceptions and experiences' (social). Furthermore, the results showed that students appreciated the cognitive dimension relatively more than the emotional and social dimensions.

  8. Development of an automated guided vehicle controller using a systems engineering approach

    Directory of Open Access Journals (Sweden)

    Ferreira, Tremaine

    2016-08-01

    Full Text Available Automated guided vehicles (AGVs are widely used for transporting materials in industry and commerce. In this research, an intelligent AGV-based material-handling system was developed using a model- based systems engineering (MBSE approach. The core of the AGV, the controller, was designed in the system modelling language environment using Visual Paradigm software, and then implemented in the hardware. As the result, the AGV’s complex tasks of material handling, navigation, and communication were successfully accomplished and tested in the real industrial environment. The developed AGV is capable of towing trolleys with a weight of up to 200kg at walking speed. The AGV can be incorporated into an intelligent material-handling system with multiple autonomous vehicles and work stations, thus providing flexibility and reconfigurability for the whole manufacturing system. Ergonomic and safety aspects were also considered in the design of the AGV. A comprehensive safety system that is compliant with industrial standards was implemented.

  9. MINA-2008: an approach renewed to the Masters of Nuclear Engineering and its Applications in Spain

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia-Cuesta, J. C.; Falcon, S.; Marco, M.; Couhoud, M.

    2008-01-01

    Inspired by the so-called nuclear renaissance, the challenge of preserving nuclear knowledge and expertise and on the basis of the European Education Area, the Master's degree in Nuclear Engineering and Applications (MINA) has been set up by CIEMAT, in close collaboration with Spanish Universities and the national nuclear industries, with a drastically renewed approach. The MINA, born as a professionalizing masters intends to build a bridge between University education and technical know-how demanded by todays nuclear industry and organizations. In short, an enabling training that will provide participants with the actual skills that nuclear sector needs. The five major MINA keystone become are professional orientation, full scope, integrating policy, excellence in mastering and plural academic acceptance. These principles as well as other major MINA features are described in detail in this paper. (Author)

  10. Understanding ill-structured engineering ethics problems through a collaborative learning and argument visualization approach.

    Science.gov (United States)

    Hoffmann, Michael; Borenstein, Jason

    2014-03-01

    As a committee of the National Academy of Engineering recognized, ethics education should foster the ability of students to analyze complex decision situations and ill-structured problems. Building on the NAE's insights, we report about an innovative teaching approach that has two main features: first, it places the emphasis on deliberation and on self-directed, problem-based learning in small groups of students; and second, it focuses on understanding ill-structured problems. The first innovation is motivated by an abundance of scholarly research that supports the value of deliberative learning practices. The second results from a critique of the traditional case-study approach in engineering ethics. A key problem with standard cases is that they are usually described in such a fashion that renders the ethical problem as being too obvious and simplistic. The practitioner, by contrast, may face problems that are ill-structured. In the collaborative learning environment described here, groups of students use interactive and web-based argument visualization software called "AGORA-net: Participate - Deliberate!". The function of the software is to structure communication and problem solving in small groups. Students are confronted with the task of identifying possible stakeholder positions and reconstructing their legitimacy by constructing justifications for these positions in the form of graphically represented argument maps. The argument maps are then presented in class so that these stakeholder positions and their respective justifications become visible and can be brought into a reasoned dialogue. Argument mapping provides an opportunity for students to collaborate in teams and to develop critical thinking and argumentation skills.

  11. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    Science.gov (United States)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  12. Application of a Sensemaking Approach to Ethics Training in the Physical Sciences and Engineering

    Science.gov (United States)

    Kligyte, Vykinta; Marcy, Richard T.; Waples, Ethan P.; Sevier, Sydney T.; Godfrey, Elaine S.; Mumford, Michael D.; Hougen, Dean F.

    2008-06-01

    Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.

  13. An Interdisciplinary Approach Between Medical Informatics and Social Sciences to Transdisciplinary Requirements Engineering for an Integrated Care Setting.

    Science.gov (United States)

    Vielhauer, Jan; Böckmann, Britta

    2017-01-01

    Requirements engineering of software products for elderly people faces some special challenges to ensure a maximum of user acceptance. Within the scope of a research project, a web-based platform and a mobile app are approached to enable people to live in their own home as long as possible. This paper is about a developed method of interdisciplinary requirements engineering by a team of social scientists in cooperation with computer scientists.

  14. A Software Engineering Approach based on WebML and BPMN to the Mediation Scenario of the SWS Challenge

    Science.gov (United States)

    Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina

    Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).

  15. Product design for energy reduction in concurrent engineering: An Inverted Pyramid Approach

    Science.gov (United States)

    Alkadi, Nasr M.

    on product, process, and system design parameters. In depth evaluation to how the design and manufacturing normally happen in concurrent engineering provided a framework to develop energy system levels in machining within the concurrent engineering environment using the method of "Inverted Pyramid Approach", (IPA). The IPA features varying levels of output energy based information depending on the input design parameters that is available during each stage (level) of the product design. The experimental work, the in-depth evaluation of design and manufacturing in CE, and the developed energy system levels in machining provided a solid base for the development of the model for the design for energy reduction in CE. The model was used to analyze an example part where 12 evolving designs were thoroughly reviewed to investigate the sensitivity of energy to design parameters in machining. The model allowed product design teams to address manufacturing energy concerns early during the design stage. As a result, ranges for energy sensitive design parameters impacting product manufacturing energy consumption were found in earlier levels. As designer proceeds to deeper levels in the model, this range tightens and results in significant energy reductions.

  16. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers.

    Science.gov (United States)

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-06-06

    The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A chemical genetic approach to engineer phototropin kinases for substrate labeling.

    Science.gov (United States)

    Schnabel, Jonathan; Hombach, Peter; Waksman, Thomas; Giuriani, Giovanni; Petersen, Jan; Christie, John M

    2018-04-13

    Protein kinases (PKs) control many aspects of plant physiology by regulating signaling networks through protein phosphorylation. Phototropins (phots) are plasma membrane-associated serine/threonine PKs that control a range of physiological processes that collectively serve to optimize photosynthetic efficiency in plants. These include phototropism, leaf positioning and flattening, chloroplast movement, and stomatal opening. Despite their identification over two decades ago, only a handful of substrates have been identified for these PKs. Progress in this area has been hampered by the lack of a convenient means to confirm the identity of potential substrate candidates. Here we demonstrate that the kinase domain of Arabidopsis phot1 and phot2 can be successfully engineered to accommodate non-natural ATP analogues by substituting the bulky gatekeeper residue threonine for glycine. This approach circumvents the need for radioactivity to track phot kinase activity and follow light-induced receptor autophosphorylation in vitro by incorporating thiophosphate from N 6 -benzyl-ATPγS. Consequently, thiophosphorylation of phot substrate candidates can be readily monitored when added or co-expressed with phots in vitro Furthermore, gatekeeper-modified phot1 retained its functionality and its ability to accommodate N 6 -benzyl-ATPγS as a phosphodonor when expressed in Arabidopsis We therefore anticipate that this chemical genetic approach will provide new opportunities for labeling and identifying substrates for phots and other related AGC kinases under in vitro and near-native in vivo conditions. © 2018 Schnabel et al.

  18. Alternative approaches to reliability modeling of a multiple engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.

    1994-01-01

    The lifetime of the engineered barrier system used for containment of high-level radioactive waste will significantly impact the total performance of a geological repository facility. Currently two types of designs are under consideration for an engineered barrier system, single engineered barrier system and multiple engineered barrier system. Multiple engineered barrier system consists of several metal barriers and the waste form (cladding). Some recent work show that a significant improvement of performance can be achieved by utilizing multiple engineered barrier systems. Considering sequential failures for each barrier, we model the reliability of the multiple engineered barrier system. Weibull and exponential lifetime distributions are used through out the analysis. Furthermore, the number of failed engineered barrier systems in a repository at a given time is modeled using a poisson approximation

  19. Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2012-03-01

    Full Text Available In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature and a heat sink (at temperature . The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for modeling endoreversible heat engines. This approach makes it possible for example to find in a simple way the characteristics of the optimal operating point at which the maximum mechanical power of the endoreversible heat engine is obtained with entropy flow rate as control variable. Furthermore it provides the analytical expressions of the optimal operating point of an irreversible heat engine where the energy conversion is accompanied by irreversibilities related to internal heat transfer and heat dissipation phenomena. This original approach, applied to an analysis of the performance of a thermoelectric generator, will be the object of a future publication.

  20. A systems engineering approach to implementation of safety management systems in the Norwegian fishing fleet

    International Nuclear Information System (INIS)

    McGuinness, Edgar; Utne, Ingrid B.

    2014-01-01

    The fishing industry is plagued by a long history of fatality and injury occurrence. Commercial fishing is hence recognized as the most dangerous and difficult of professional callings, in all jurisdictions. Fishing vessels have their own unique set of hazards, a myriad collection of complex occupational accident potentials, barely controlled, co-existing in a perilous work environment. The work in this article is directed by the Norwegian Systematic Health, Environmental and Safety Activities in Enterprises (1997) (Internal Control Regulations [1]), the ISM Code [2] for vessels and their recent applicability to the fishing fleet of Norway. Both safety management works place requirements on the vessel operators and crew to actively manage safety as an on-going concern. The application of these safety management system (SMS) control documents to fishing vessels is just the latest instalment in a continual drive to improve safety in this sector. The difficulty is that there has been no previous systematic approach to safety within the fishing fleet. This article uses the tenants of systems engineering to determine the requirements for such a SMS, detailing the limiting factors and restrictive issues of this complex operating environment. - Highlights: • Systems engineer is applied as a tool for determining requirements for design and construction of a safety management system (SMS). • Outlining a simplistic format, identifying, designingand facilitating improvement opportunities in the conduction and application of SMS’s on fishing vessels. • Knowledge provision is a key requirement of management systems, through provision of understanding, detail orientation and applicable skills for realization. • Outlining, what is to be done and how it is to be completed to accomplish compliance with pertinent legislative requirements. • Promoting a combination of documentation and communication arrangements by which the actionsnecessary for management can be

  1. A divide and conquer approach to determine the Pareto frontier for optimization of protein engineering experiments

    Science.gov (United States)

    He, Lu; Friedman, Alan M.; Bailey-Kellogg, Chris

    2016-01-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. PMID:22180081

  2. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Fernando Sánchez Lasheras

    2015-03-01

    Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  3. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada.

    Science.gov (United States)

    Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze

    2018-03-15

    Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and

  4. Engineering Attractiveness in the European Educational Environment: Can Distance Education Approaches Make a Difference?

    Science.gov (United States)

    Katzis, Konstantinos; Dimopoulos, Christos; Meletiou-Mavrotheris, Maria; Lasica, Ilona-Elefteryja

    2018-01-01

    The recent phenomenon of worldwide declining enrolments in engineering-related degrees has led to the gradual decrease in the number of engineering graduates. This decrease occurs at a time of increasing demand in the labour market for highly qualified engineers, who are necessary for the implementation of fundamental societal functions. This…

  5. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules

    NARCIS (Netherlands)

    Topuz, E.; van Gestel, C.A.M.

    2016-01-01

    The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and

  6. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

    Science.gov (United States)

    Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim

    2013-12-06

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.

  7. Incorporating a Systems Approach into Civil and Environmental Engineering Curricula: Effect on Course Redesign, and Student and Faculty Attitudes

    Science.gov (United States)

    Hayden, Nancy J.; Rizzo, Donna M.; Dewoolkar, Mandar M.; Neumann, Maureen D.; Lathem, Sandra; Sadek, Adel

    2011-01-01

    This paper presents a brief overview of the changes made during our department level reform (DLR) process (Grant Title: "A Systems Approach for Civil and Environmental Engineering Education: Integrating Systems Thinking, Inquiry-Based Learning and Catamount Community Service-Learning Projects") and some of the effects of these changes on…

  8. A user-centered, iterative engineering approach for advanced biomass cookstove design and development

    Science.gov (United States)

    Shan, Ming; Carter, Ellison; Baumgartner, Jill; Deng, Mengsi; Clark, Sierra; Schauer, James J.; Ezzati, Majid; Li, Jiarong; Fu, Yu; Yang, Xudong

    2017-09-01

    Unclean combustion of solid fuel for cooking and other household energy needs leads to severe household air pollution and adverse health impacts in adults and children. Replacing traditional solid fuel stoves with high efficiency, low-polluting semi-gasifier stoves can potentially contribute to addressing this global problem. The success of semi-gasifier cookstove implementation initiatives depends not only on the technical performance and safety of the stove, but also the compatibility of the stove design with local cooking practices, the needs and preferences of stove users, and community economic structures. Many past stove design initiatives have failed to address one or more of these dimensions during the design process, resulting in failure of stoves to achieve long-term, exclusive use and market penetration. This study presents a user-centered, iterative engineering design approach to developing a semi-gasifier biomass cookstove for rural Chinese homes. Our approach places equal emphasis on stove performance and meeting the preferences of individuals most likely to adopt the clean stove technology. Five stove prototypes were iteratively developed following energy market and policy evaluation, laboratory and field evaluations of stove performance and user experience, and direct interactions with stove users. The most current stove prototype achieved high performance in the field on thermal efficiency (ISO Tier 3) and pollutant emissions (ISO Tier 4), and was received favorably by rural households in the Sichuan province of Southwest China. Among household cooks receiving the final prototype of the intervention stove, 88% reported lighting and using it at least once. At five months post-intervention, the semi-gasifier stoves were used at least once on an average of 68% [95% CI: 43, 93] of days. Our proposed design strategy can be applied to other stove development initiatives in China and other countries.

  9. Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation.

    Science.gov (United States)

    Decaris, Martin L; Leach, J Kent

    2011-04-01

    The presentation of extracellular matrix (ECM) proteins provides an opportunity to instruct the phenotype and behavior of responsive cells. Decellularized cell-secreted matrix coatings (DM) represent a biomimetic culture surface that retains the complexity of the natural ECM. Microenvironmental culture conditions alter the composition of these matrices and ultimately the ability of DMs to direct cell fate. We employed a design of experiments (DOE) multivariable analysis approach to determine the effects and interactions of four variables (culture duration, cell seeding density, oxygen tension, and media supplementation) on the capacity of DMs to direct the osteogenic differentiation of human mesenchymal stem cells (hMSCs). DOE analysis revealed that matrices created with extended culture duration, ascorbate-2-phosphate supplementation, and in ambient oxygen tension exhibited significant correlations with enhanced hMSC differentiation. We validated the DOE model results using DMs predicted to have superior (DM1) or lesser (DM2) osteogenic potential for naïve hMSCs. Compared to cells on DM2, hMSCs cultured on DM1 expressed 2-fold higher osterix levels and deposited 3-fold more calcium over 3 weeks. Cells on DM1 coatings also exhibited greater proliferation and viability compared to DM2-coated substrates. This study demonstrates that DOE-based analysis is a powerful tool for optimizing engineered systems by identifying significant variables that have the greatest contribution to the target output.

  10. Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach.

    Science.gov (United States)

    Guruceaga, Elizabeth; Garin-Muga, Alba; Prieto, Gorka; Bejarano, Bartolomé; Marcilla, Miguel; Marín-Vicente, Consuelo; Perez-Riverol, Yasset; Casal, J Ignacio; Vizcaíno, Juan Antonio; Corrales, Fernando J; Segura, Victor

    2017-12-01

    The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.

  11. A hybrid bio-jetting approach for directly engineering living cells

    International Nuclear Information System (INIS)

    Kwok, Albert; Irvine, Scott; Arumuganathar, Sumathy; Jayasinghe, Suwan N; McEwan, Jean R

    2008-01-01

    This paper reports developments on a hybrid cell-engineering protocol coupling both bio-electrosprays and aerodynamically assisted bio-jets for process-handling living cells. The current work demonstrates the ability to couple these two cell-jetting protocols for handling a wide range of cells for deposition. The post-treated cells are assessed for their viability by way of flow cytometry, which illustrates a significant population of viable cells post-treatment in comparison to those controls. This work is the first example of coupling these two protocols for the process handling of living cells. The hybrid protocol demonstrates the achievement of stable cone jetting of a cellular suspension in the single-needle configuration which was previously unachieved with single-needle bio-electrosprays. Furthermore the living cells explored in these investigations expressed GFP, thus demonstrating the ability to couple gene therapy with this hybrid protocol. Hence, this approach could one day be explored for building biologically viable tissues incorporating a therapeutic payload for combating a range of cellular/tissue-based pathologies

  12. Genetic engineering represents a safe approach for innovations improving nutritional contents of major food crops

    Directory of Open Access Journals (Sweden)

    Werner Arber

    2017-05-01

    Full Text Available About 70 years ago early microbial genetic research revealed that inherited phenotypic traits become determined by DNA filaments composed of 4 different nucleotides that are linearly arranged. In the meantime we know that genes, the determinants of specific life functions, are genomic segments of an average size of about 1000 nucleotides, i.e. a very small part of a genome. Fundamental insights into the structures and functions of selected genes can be reached by sorting out the relevant short DNA segment, splicing this fragment into a natural gene vector such as a viral genome or a fertility plasmid. This allows the researchers to transfer the genetic hybrid into an appropriate host cell in order to produce many copies that can then serve for functional and structural analysis. This research approach became efficient in the 1970s. On the request of involved researchers, safety guidelines became proposed 1975 at the Asilomar Conference on Recombinant DNA (Berg, Baltimore, Brenner, Roblin, & Singer, 1975, then generally introduced and still largely followed nowadays. Carefully carried out genetic engineering by horizontally transferring a selected and functionally well known DNA segment into the genome of another organism has in many published biosafety investigations never shown any unexpected harmful effect. We will present below selected examples of research contributions enabling innovations for the benefit of human life conditions.

  13. A knowledge engineering approach for improving secondary recovery in offshore reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Milton P.; Tovar, Felipe T.R.; Guerra, Fabio A. [Parana Institute of Technology (TECPAR), Curitiba, PR (Brazil). Artificial Intelligence Div.; Andrade, Cynthia; Baptista, Walmar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Tecnologia de Materiais, Equipamentos e Corrosao

    2004-07-01

    Secondary recovery in offshore petroleum reservoirs by seawater injection is a technique traditionally applied in oil and gas industry. However, the injected water quality must be compatible with the reservoir characteristics in order to prevent corrosion, formation plugging and reservoir souring. So, the seawater must be treated before injection in the reservoirs and on-line monitoring equipment are employed to check the treatments efficacy. Nevertheless, the amount of data to analyze is quite big and involves many different experts, which make their evaluation and the establishment of correlations very difficult. For these cases, where it's crucial to detect the contaminants presence as soon as they occur to indicate corrective procedures, the application of knowledge engineering techniques and the development of expert systems are a good solution proposal. This paper presents the expert system InjeX (heuristic approach), developed for seawater injection treatment plants to maintain the water quality in offshore platforms. The description and the analysis of the problem, a proposed solution and some preliminary results are detailed and discussed along the paper. (author)

  14. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    Science.gov (United States)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  15. Problem Solution Processes of Musicians and Engineers: What do Their Approaches Look Like

    Directory of Open Access Journals (Sweden)

    Säde-Pirkko Nissilä

    2015-06-01

    Full Text Available PBL is learning through becoming conscious of practical and abstract problems and finding ways how to solve them. It can be a pattern which doesn’t follow traditional divisions of disciplines. In this article the material was collected from two, in the first sight, very different groups. One was music students (N = 62 who had to learn to solve various practical and theoretical problems in preparing a program for a series of concerts as collective and individual action. The method used was the 7-step method which divides learning into seven phases proceeding from creating the social frame of reference and mental models (steps 1–4 through actual work (steps 5–6 to the evaluation of the outcomes (step 7. Another group consisted of international, multicultural business leaders in engineering (N = 6. In using earlier the 7-step method, the approaches resembled those of the music students: deepening their professional competences. To engage their ability to use imagination and connect reality with brainstorming and mental flexibility, the creative PBL method 635 was used. Three practical problems were solved so that the solutions included new viewpoints which would be applied to meet the real needs in the near future. The results show that not only were the learning targets of both groups reached but, with reflection included, the processes widened the professional competences of the participants.

  16. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Hafiz M N; Guo, Shuqi; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-03-01

    Over the past years, technological and scientific advances have proven biocatalysis as a sustainable alternative than traditional chemical catalysis including organo- or metallocatalysis. In this context, immobilization based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type derivatives. Many enzymes including oxidoreductases have been engineered by rational and directed evolution, to realize the catalytic activity, enantioselectivity, and stability attributes which are essential for their biotechnological exploitation. Induce yet stable activity in enzyme catalysis offer new insights and motivation to engineer efficient catalysts for practical and commercial purposes. It has now become possible to envisage substrate accessibility to the catalytic site of the enzyme by current computational capabilities that reduce the experimental work related to the enzyme selection, screening, and engineering. Herein, state-of-the-art protein engineering approaches for improving enzymatic activities including chemical modification, directed evolution, and rational design or their combination methods are discussed. The emphasis is also given to the applications of the resulting tailored catalysts ranging from fine chemicals to novel pharmaceutical compounds that use biocatalysts as a vital step. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according...

  18. A novel transient wall heat transfer approach for the start-up of SI engines with gasoline direct injection

    Science.gov (United States)

    Lejsek, David; Kulzer, André; Hammer, Jürgen

    2010-11-01

    The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the worldwide stringent emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the engine control unit makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. For this running mode of the engine the current models for calculation of the transient wall heat fluxes were found to be misleading. With a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis. Based on the measurements of transient wall heat transfer densities during the start-up presented in a former work (Lejsek and Kulzer in Investigations on the transient wall heat transfer at start-up for SI engines with gasoline direct injection. SAE Paper), the paper describes the development of adaptations to the known correlations by Woschni (MTZ 31:491, 1970), Hohenberg (Experimentelle Erfassung der Wandwärme von Kolbenmotoren. TU Graz, Habil., 1980) and Bargende (Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. TH Darmstadt, PhD-Thesis, 1991) for the application during engine start-up. To demonstrate the high accuracy of the model, the results of the cyclic resolved thermodynamic analysis using the presented novel approaches were compared with the results of the measurements. It is shown, that the novel heat flux models for the engine start-up process gives a cyclic resolved thermodynamic analysis to optimize the engine start-up pretty efficient.

  19. An eLearning Standard Approach for Supporting PBL in Computer Engineering

    Science.gov (United States)

    Garcia-Robles, R.; Diaz-del-Rio, F.; Vicente-Diaz, S.; Linares-Barranco, A.

    2009-01-01

    Problem-based learning (PBL) has proved to be a highly successful pedagogical model in many fields, although it is not that common in computer engineering. PBL goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to a course in a computer engineering degree at the University of…

  20. An Effective Industry-Based Mentoring Approach for the Recruitment of Women and Minorities in Engineering

    Science.gov (United States)

    Ilumoka, Abby; Milanovic, Ivana; Grant, Natalie

    2017-01-01

    This article reflects upon an investigative study of the powerful impact that mentoring partnerships have on pre-college students and young engineering professionals in Hartford, CT. It was found that these partnerships can provide very strong foundations for a diverse pre-college student engineering pipeline that includes significant numbers of…

  1. A Systematic Approach to Teaching Critical Thinking Skills to Electrical and Computer Engineering Undergraduates

    Science.gov (United States)

    Welch, Karla Conn; Hieb, Jeffrey; Graham, James

    2015-01-01

    Coursework that instills patterns of rigorous logical thought has long been a hallmark of the engineering curriculum. However, today's engineering students are expected to exhibit a wider range of thinking capabilities both to satisfy ABET requirements and to prepare the students to become successful practitioners. This paper presents the initial…

  2. An Engineering-Oriented Approach to the Introductory Differential Equations Course

    Science.gov (United States)

    Pennell, S.; Avitabile, P.; White, J.

    2009-01-01

    The introductory differential equations course can be made more relevant to engineering students by including more of the engineering viewpoint, in which differential equations are regarded as systems with inputs and outputs. This can be done without sacrificing any of the usual topical coverage. This point of view is conducive to student…

  3. An approach to teaching and research of simulation for environmental engineering design

    NARCIS (Netherlands)

    Bartak, M.; Drkal, F.; Hensen, J.L.M.; Schwarzer, J.; Lain, M.; Sourek, B.

    2003-01-01

    This paper starts out by elaborating why computer modeling and simulation is such an important technique/ tool for modern state-of-the-art environmental engineering. It then continues with how this is currently integrated in engineering analysis and design. The paper continues with describing what

  4. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  5. A Strategic Approach for Supporting the Future of Civil Engineering Education in Europe

    Science.gov (United States)

    Angelides, Demos C.; Loukogeorgaki, Eva

    2005-01-01

    A new strategic vision of the extensively debated European higher education is proposed with focus on civil engineering. Civil engineering education for the future is considered with relevance to potential world-wide trends and anticipated societal requirements and, therefore, required employee qualifications of the construction-related providers…

  6. Introduction of Sustainability Concepts into Industrial Engineering Education: A Modular Approach

    Science.gov (United States)

    Nazzal, Dima; Zabinski, Joseph; Hugar, Alexander; Reinhart, Debra; Karwowski, Waldemar; Madani, Kaveh

    2015-01-01

    Sustainability in operations, production, and consumption continues to gain relevance for engineers. This trend will accelerate as demand for goods and services grows, straining resources and requiring ingenuity to replace boundless supply in meeting the needs of a more crowded, more prosperous world. Industrial engineers are uniquely positioned…

  7. The Romanian educational system in nuclear engineering field - experience and new approaches

    International Nuclear Information System (INIS)

    Dragusin, O.; Burghelea, A.

    2001-01-01

    In this paper we would like to present the actual status of the education in the nuclear engineering field at 'Pantholic' University Bucharest, Romania, Power Engineering Faculty, Nuclear Power Plant Department, and also the efforts of integration of the educational system of Romania into the international system and the development of new concepts concerning the education of the new specialists generation. (authors)

  8. Some Practical Approaches to a Course on Paraconsistent Logic for Engineers

    Science.gov (United States)

    Lambert-Torres, Germano; de Moraes, Carlos Henrique Valerio; Coutinho, Maurilio Pereira; Martins, Helga Gonzaga; Borges da Silva, Luiz Eduardo

    2017-01-01

    This paper describes a non-classical logic course primarily indicated for graduate students in electrical engineering and energy engineering. The content of this course is based on the vision that it is not enough for a student to indefinitely accumulate knowledge; it is necessary to explore all the occasions to update, deepen, and enrich that…

  9. Cycle-skipping strategies for pumping loss reduction in spark ignition engines: An experimental approach

    International Nuclear Information System (INIS)

    Yüksek, Levent; Özener, Orkun; Sandalcı, Tarkan

    2012-01-01

    Highlights: ► A cycle density variation technique called cycle-skipping was applied. ► Effect on fuel consumption and gaseous emissions was investigated. ► Fuel consumption and gaseous tail-pipe emissions improved at partial loading conditions. - Abstract: Spark ignition (SI) engines are widely used for power generation, especially in the automotive industry. SI engines have a lower thermal efficiency than diesel engines due to a lower compression ratio, higher charge-induction work and lower end of compression stroke pressure. A significant amount of charge induction work is lost when an SI engine runs under partial loading conditions. Under partial loading conditions, a lower intake charge is required, which can be theoretically achieved by varying the displacement volume or the stroke number of the engine without using a throttle. Reducing the displacement volume to control the engine load can be achieved by skipping cycles in single-cylinder engines. This study investigates the effect of cycle-skipping strategies on the brake specific fuel consumption (BSFC) and exhaust emissions of an SI engine under partial loading conditions. Three different skipping modes were applied: normal, normal-skip and normal-normal-skip. A significant improvement in BSFC and carbon monoxide emission was obtained by applying cycle-skipping strategies.

  10. An Interactive Simulator-Based Pedagogical (ISP) Approach for Teaching Microcontrollers in Engineering Programs

    Science.gov (United States)

    Tang, Shensheng

    2014-01-01

    Microcontrollers is a required course in most Electrical, Computer, and Mechanic Engineering (Technology) programs at U.S. universities. Most engineering courses (e.g., microcontrollers), by nature, introduce abstract concepts, definitions, and models, and use primarily lectures and readings (words, symbols) to transmit information. This…

  11. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Đặng Van Uy

    2018-03-01

    Full Text Available The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixed fuel supplying to diesel engines inline. In order to ensure a quality of the mixed fuel created by continuous mixer, a homogeneous testing was introduced with believable results. Then, the continuous mixer has been installed into fuel supply system of diesel engine 6LU32 at a lab of Vietnam Maritime University in terms of checking a real operation of the fuel continuous mixer with diesel engine.

  12. Computer-Aided Software Engineering - An approach to real-time software development

    Science.gov (United States)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  13. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  14. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-05-14

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  15. An integrated approach for the in vitro dosimetry of engineered nanomaterials

    Science.gov (United States)

    2014-01-01

    Background There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time. Results The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated). Conclusions Our findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems

  16. Exploring Barriers to Medication Safety in an Ethiopian Hospital Emergency Department: A Human Factors Engineering Approach

    Directory of Open Access Journals (Sweden)

    Ephrem Abebe

    2018-02-01

    Full Text Available Objective: To describe challenges associated with the medication use process and potential medication safety hazards in an Ethiopian hospital emergency department using a human factors approach. Methods: We conducted a qualitative study employing observations and semi-structured interviews guided by the Systems Engineering Initiative for Patient Safety model of work system as an analytical framework. The study was conducted in the emergency department of a teaching hospital in Ethiopia. Study participants included resident doctors, nurses, and pharmacists. We performed content analysis of the qualitative data using accepted procedures. Results: Organizational barriers included communication failures, limited supervision and support for junior staff contributing to role ambiguity and conflict. Compliance with documentation policy was minimal. Task related barriers included frequent interruptions and work-related stress resulting from job requirements to continuously prioritize the needs of large numbers of patients and family members. Person related barriers included limited training and work experience. Work-related fatigue due to long working hours interfered with staff’s ability to document and review medication orders. Equipment breakdowns were common as were non-calibrated or poorly maintained medical devices contributing to erroneous readings. Key environment related barriers included overcrowding and frequent interruption of staff’s work. Cluttering of the work space compounded the problem by impeding efforts to locate medications, medical supplies or medical charts. Conclusions: Applying a systems based approach allows a context specific understanding of medication safety hazards in EDs from low-income countries. When developing interventions to improve medication and overall patient safety, health leaders should consider the interactions of the different factors. Conflict of Interest We declare no conflicts of interest or

  17. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  18. Applied Laplace transforms and z-transforms for scientists and engineers a computational approach using a Mathematica package

    CERN Document Server

    Graf, Urs

    2004-01-01

    The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z­ transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathema...

  19. CO{sub 2}-balance in the athmosphere and CO{sub 2}-utilisation : an engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, H.

    2012-07-01

    The subject of the thesis was to analyze by an engineering approach the global CO{sub 2} balance and CO{sub 2} utilisation. The aim was to apply methods and knowledge used in engineering sciences to describe the global CO{sub 2} balance and the role of CO{sub 2} in anthropogenic utilisation applications. Moreover barriers restricting commercialisation of new applications are discussed. These subjects were studied by literature reviews and calculations based on thermodynamics models. Engineering methods have shown to be applicable to describe the global balance of CO{sub 2} and to define by a numerical way the Earth's system carrying capacity. Direct and indirect actions, which mitigate the overload situation, were derived from the results. To screen out the attractive CO{sub 2} properties in utilisation applications a mapping analysis was carried out. Properties, which enhance mass and heat transfer, are one of the most meaningful characteristics from the chemical engineering point of view. Attractive properties are often achieved at the supercritical state. Engineering thermodynamic methods were used in fluid phase determination of the case studies. Even simple methods are sufficient to advice experimental research work. The thermodynamic knowledge is the basement in creation of industrial scale chemical processes. If detailed information on system properties is needed, a model development due to the special requirements of high pressure systems and CO{sub 2} features is required. This knowledge covers property information from all the components involved in chemical reactions. In addition to engineering knowledge successful technology transfer requires positive social structure as well. Finally, if the humankind is willing to mimic Nature and use light of the Sun as an energy source in engineering systems, development of thermodynamic methods is required also in this area. Especially the work terms, originally defined in classical mechanical thermodynamics

  20. Study of Modern Approach to Build the Functional Models of Managerial and Engineering Systems in Training Specialists for Space Industry

    Directory of Open Access Journals (Sweden)

    N. V. Arhipova

    2016-01-01

    Full Text Available The SM8 Chair at Bauman Moscow State Technological University (BMSTU trains specialists majoring not only in design and manufacture, but also in operation and maintenance of space ground-based infrastructure.The learning courses in design, production, and operation of components of the missile and space technology, give much prominence to modeling. The same attention should be given to the modeling of managerial and engineering systems, with which deal both an expert and a leadman. It is important to choose the modeling tools for managerial and engineering systems with which they are to work and to learn how to apply these tools.The study of modern approach to functional modeling of managerial and engineering systems is held in the format of business game in laboratory class. A structural analysis and design technique (IDEFØ is considered as the means of modeling.The article stresses the IDEFØ approach advantages, namely: comprehensible graphical language, applicability to all-types and all-levels-of-hierarchy managerial and engineering systems modeling, popularity, version control means, teamwork tools. Moreover, the IDEFØ allows us to illustrate such notions, as point of view, system bounders, structure, control, feedback as applied to the managerial and engineering systems.The article offers a modified procedure to create an IDEFØ model in the context of training session. It also suggests a step-by-step procedure of the instruction session to be held, as well as of student self-training to have study credits, and a procedure of the work defense (final test.The approach under consideration can be applied to other training courses. The article proves it giving information about positive experience of its application.

  1. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  2. Impact of pedagogical approaches on cognitive complexity and motivation to learn: Comparing nursing and engineering undergraduate students.

    Science.gov (United States)

    McComb, Sara A; Kirkpatrick, Jane M

    2016-01-01

    The changing higher education landscape is prompting nurses to rethink educational strategies. Looking beyond traditional professional boundaries may be beneficial. We compare nursing to engineering because engineering has similar accreditation outcome goals and different pedagogical approaches. We compare students' cognitive complexity and motivation to learn to identify opportunities to share pedagogical approaches between nursing and engineering. Cross-sectional data were collected from 1,167 freshmen through super senior students. Comparisons were made across years and between majors. Overall nursing and engineering students advance in cognitive complexity while maintaining motivation for learning. Sophomores reported the lowest scores on many dimensions indicating that their experiences need review. The strong influence of the National Council Licensure Examination on nursing students may drive their classroom preferences. Increased intrinsic motivation, coupled with decreased extrinsic motivation, suggests that we are graduating burgeoning life-long learners equipped to maintain currency. The disciplines' strategies for incorporating real-world learning opportunities differ, yet the students similarly advance in cognitive complexity and maintain motivation to learn. Lessons can be exchanged across professional boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Most common road safety engineering deficiencies in South Eastern Europe as a part of safe system approach

    Science.gov (United States)

    Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.

    2017-10-01

    Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.

  4. Post engineered nanomaterials lifespan: nanowastes classification, legislative development/implementation challenges, and proactive approaches

    CSIR Research Space (South Africa)

    Musee, N

    2012-05-01

    Full Text Available -1 NANOLCA Symposium, "Safety issues and regulatory challenges of nanomaterials", San Sebastian, Spain, 3-4 May 2012 Post engineered nanomaterials lifespan: nanowastes classification, legislative development/implementation challenges, and proactive...

  5. A New Statistical Approach for Cyclic Life Tracking of Engine Critical Parts

    National Research Council Canada - National Science Library

    Kiang, Robert

    1999-01-01

    This paper describes a flight data based statistical method that allows missing low cycle fatigue data in engine critical parts to be filled in with appropriate values that are not overly conservative...

  6. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam; Johansson, Bengt

    2017-01-01

    towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using

  7. Geomorphic Approach to Regional Sediment Management in Engineered and Restored Fluvial Systems

    National Research Council Canada - National Science Library

    Thorne, Colin

    2001-01-01

    This document reviews contemporary practice in regional sediment management. It examines whether catchment wide sediment issues have been considered in the design of engineering and restoration/rehabilitation projects...

  8. A Systems Engineering Approach to Address Human Capital Management Issues in the Shipbuilding Industry

    National Research Council Canada - National Science Library

    Todd, Hal M; Parten, Douglas S

    2008-01-01

    .... This study investigated current DoD Human Capital Management (HCM) strategies for attracting, developing, retaining, and managing competencies and intellectual resources for science and engineering talent within the shipbuilding industry...

  9. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  10. A Survey of Automatic Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View

    OpenAIRE

    Baraka D. Sija; Young-Hoon Goo; Kyu-Seok Shim; Huru Hasanova; Myung-Sup Kim

    2018-01-01

    A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic Protocol Reverse Engineering (APRE) defines the way of extracting the structure of a network protocol without accessing its specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation, and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards ...

  11. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    Science.gov (United States)

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.

  12. Enhancing vehicle’s engine warm up using integrated mechanical approach

    Science.gov (United States)

    Ibrahim, T. M.; Syahir, A. Z.; Zulkifli, N. W. M.; Masjuki, H. H.; Osman, A.

    2017-06-01

    Transportation sector covers a large portion of the total energy consumption shares and is highly associated to global warming. Growing concern over the harmful gases being emitted from vehicles and their environmental implications has urged the need for pollutant reduction through more efficient engines. Good engine thermal management especially during cold-start warm up phase has been proven to enhance the engine efficiency in terms of fuel economy and greenhouse emissions specifically. In this study, the viability engine split cooling system was tested in two separate test. The parameters of interest include coolant and transmission temperature as these both parameters indicate the internal engine condition and highly associated with engine efficiency. In the first idle test, coolant temperature within the modified cooling configuration reached the optimum coolant temperature of 60 °C about 41.28% faster when compared to baseline configuration. The modified configuration also heat up the transmission oil around 4 times faster. In the second NEDC test which simulates the real time driving condition, the coolant of the modified vehicle reached the optimum temperature around 28.26% compared to the baseline.

  13. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M; Jiang, Tao; Wirtel, Anthony J; Deng, Meng; Lv, Qing; Nair, Lakshmi S; Doty, Steven B; Laurencin, Cato T

    2008-08-12

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials.

  14. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M.; Jiang, Tao; Wirtel, Anthony J.; Deng, Meng; Lv, Qing; Nair, Lakshmi S.; Doty, Steven B.; Laurencin, Cato T.

    2008-01-01

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials. PMID:18678895

  15. A fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVM

    International Nuclear Information System (INIS)

    Yu, Liu; Junhong, Zhang; Fengrong, Bi; Jiewei, Lin; Wenpeng, Ma

    2015-01-01

    Targeting the non-stationary characteristics of the vibration signals of a diesel engine valve train, and the limitation of the autoregressive (AR) model, a novel approach based on the improved intrinsic time-scale decomposition (ITD) and relevance vector machine (RVM) is proposed in this paper for the identification of diesel engine valve train faults. The approach mainly consists of three stages: First, prior to the feature extraction, non-uniform B-spline interpolation is introduced to the ITD method for the fitting of baseline signal, then the improved ITD is used to decompose the non-stationary signals into a set of stationary proper rotation components (PRCs). Second, the AR model is established for each PRC, and the first several AR coefficients together with the remnant variance of all PRCs are regarded as the fault feature vectors. Finally, a new separability based directed acyclic graph (SDAG) method is proposed to determine the structure of multi-class RVM, and the fault feature vectors are classified using the SDAG-RVM classifier to recognize the fault of the diesel engine valve train. The experimental results demonstrate that the proposed fault diagnosis approach can effectively extract the fault features and accurately identify the fault patterns. (paper)

  16. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  17. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    Science.gov (United States)

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  18. A tissue engineering approach to anterior cruciate ligament regeneration using novel shaped capillary channel polymer fibers

    Science.gov (United States)

    Sinclair, Kristofer D.

    2009-12-01

    Ruptures of the anterior cruciate ligament (ACL) are the most frequent of injuries to the knee due to its role in preventing anterior translation of the tibia. It is estimated that as many as 200,000 Americans per year will suffer from a ruptured ACL, resulting in management costs on the order of 5 billion dollars. Without treatment these patients are unable to return to normal activity, as a consequence of the joint instability found within the ACL deficient knee. Over the last thirty years, a variety of non-degradable, synthetic fibers have been evaluated for their use in ACL reconstruction; however, a widely accepted prosthesis has been unattainable due to differences in mechanical properties of the synthetic graft relative to the native tissue. Tissue engineering is an interdisciplinary field charged with the task of developing therapeutic solutions for tissue and organ failure by enhancing the natural wound healing process through the use of cellular transplants, biomaterials, and the delivery of bioactive molecules. The capillary channel polymer (CC-P) fibers used in this research were fabricated by melt extrusion from polyethylene terephthalate and polybutylene terephthalate. These fibers possess aligned micrometer scale surface channels that may serve as physical templates for tissue growth and regeneration. This inherent surface topography offers a unique and industrially viable approach for cellular contact guidance on three dimensional constructs. In this fundamental research the ability of these fiber channels to support the adhesion, alignment, and organization of fibroblasts was demonstrated and found to be superior to round fiber controls. The results demonstrated greater uniformity of seeding and accelerated formation of multi-layered three-dimensional biomass for the CC-P fibers relative to those with a circular cross-section. Furthermore, the CC-P geometry induced nuclear elongation consistent with that observed in native ACL tissue. Through the

  19. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.

    Science.gov (United States)

    Son, Dae-Yong; Kim, Seul-Gi; Seo, Ja-Young; Lee, Seon-Hee; Shin, Hyunjung; Lee, Donghwa; Park, Nam-Gyu

    2018-01-31

    Organic-inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)-voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J-V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO 2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH 3 NH 3 PbI 3 and HC(NH 2 ) 2 PbI 3 , and the mixed cation/anion perovskites, FA 0.85 MA 0.15 PbI 2.55 Br 0.45 and FA 0.85 MA 0.1 Cs 0.05 PbI 2.7 Br 0.3 , with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K + energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (-0.65 V for CH 3 NH 3 PbI 3 vs -1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.

  20. Determination of performance degradation of a marine diesel engine by using curve based approach

    International Nuclear Information System (INIS)

    Kökkülünk, Görkem; Parlak, Adnan; Erdem, Hasan Hüseyin

    2016-01-01

    Highlights: • Mathematical model was developed for a marine diesel engine. • Measurements were taken from Main Engine of M/V Ince Inebolu. • The model was validated for the marine diesel engine. • Curve Based Method was performed to evaluate the performance. • Degradation values of a marine diesel engine were found for power and SFC. - Abstract: Nowadays, energy efficiency measures on ships are the top priority topic for the maritime sector. One of the important key parameters of energy efficiency is to find the useful tool to improve the energy efficiency. There are two steps to improve the energy efficiency on ships: Measurement and Evaluation of performance of main fuel consumers. Performance evaluation is the method that evaluates how much the performance changes owing to engine component degradation which cause to reduce the performance due to wear, fouling, mechanical problems, etc. In this study, zero dimensional two zone combustion model is developed and validated for two stroke marine diesel engine (MITSUI MAN B&W 6S50MC). The measurements are taken from a real ship named M/V Ince Inebolu by the research team during the normal operation of the main engine in the region of the Marmara Sea. To evaluate the performance, “Curve based method” is used to calculate the total performance degradation. This total degradation is classified as parameters of compression pressure, injection timing, injection pressure, scavenge air temperature and scavenge air pressure by means of developed mathematical model. In conclusion, the total degradation of the applied ship is found as 620 kW by power and 26.74 g/kW h by specific fuel consumption.

  1. Design and Development of Mixed-Metal Oxide Photocatalysts: the Band Engineering Approach

    Science.gov (United States)

    Boltersdorf, Jonathan Andrew

    The design and development of mixed-metal oxides incorporating Ag(I), Pb(II), Sn(II), and Bi(III), i.e., with filled d10 or d10s2 electron configurations, have yielded new approaches to tune optical and photocatalytic properties for solar energy conversion. My research efforts in the area of solid-state photochemistry have focused on utilizing flux-mediated ion-exchange methods in conjunction with the band engineering approach to synthesize new materials for solar energy driven total water splitting. Layered perovskite phases and the polysomatic family of tantalate/niobate structures, with the general formula Am+ ( n+1)/mB(3 n+1)O(8n +3) (A = Na, Ag; B = Ta, Nb), have received increasing attention owing to their synthetic flexibility, tunable optical band gaps, and photocatalytic activities for total water splitting. Structures in the family of A m+ (n+1)/ mB(3n +1)O(8n+3) structures are based on the stacking of pentagonal bipyramidal layers, where n defines the average thickness (1 ≤ n ≤ 2) of the BO7 layers that alternate with isolated BO6 octahedra surrounded by A-site cations. Synthetic limitations in the discovery of new phases within the layered perovskites and the Am + (n+1)/mB(3 n+1)O(8n +3) structural families can be addressed with the aid of a metal-salt solvent, known as the molten-salt flux method. The flux synthetic route requires the use of an inorganic salt heated above its melting temperature in order to serve as a solvent system for crystallization. Molten fluxes allow for synthetic modification of particle characteristics and can enable the low temperature stabilization of new compositions and phases with limited stability using ion-exchange reactions (e.g., PbTa4O11, AgLaNb 2O7). Solid-state and flux-mediated exchange methods were utilized in order to synthetically explore and investigate the layered perovskites ALaNb2O7, AA2Nb3O 10, A'2La2Ti3O10 (A' = Rb, Ag; A = Ca, Sr), the Am+ (n+1)/mB 3n+1O(8 n+3) structural family (Am + = Na(I), Ag

  2. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  3. Engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.

    1980-01-01

    Progress made in two research programs sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterizing crack initiation and continued extension, and to develop an engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is reported. The goal in the development of such methodology is to establish an improved basis for analyzing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering structures

  4. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. Sustainability assessment of turbofan engine with mixed exhaust through exergetic approach

    Science.gov (United States)

    Saadon, S.; Redzuan, M. S. Mohd

    2017-12-01

    In this study, the theory, methods and example application are described for a CF6 high-bypass turbofan engine with mixed exhaust flow based on exergo-sustainable point of view. To determine exergetic sustainability index, the turbofan engine has to undergo detailed exergy analysis. The sustainability indicators reviewed here are the overall exergy efficiency of the system, waste exergy ratio, exergy destruction factor, environmental effect factor and the exergetic sustainability index. The results obtained for these parameters are 26.9%, 73.1%, 38.6%, 2.72 and 0.37, respectively, for the maximum take-off condition of the engine. These results would be useful to better understand the connection between the propulsion system parameters and their impact to the environment in order to make it more sustainable for future development.

  6. Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering

    Science.gov (United States)

    Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping

    2018-07-01

    The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.

  7. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  8. A Project-based Learning curricular approach in a Production Engineering Program

    Directory of Open Access Journals (Sweden)

    Simone Borges Simão Monteiro

    2017-09-01

    Full Text Available Abstract The Industrial Engineering undergraduate program offered at the University of Brasília was structured on Project Based Learning (PBL methodology. This innovative educational proposal allows the students to deploy their technical competencies through real problem solving situations. The methodology also stimulates the development of the students’ soft skills, by exposing them to a challenging environment. At the end of each project, the results are presented to an external agent, and are subsequently implemented. The objective of this paper is to present the evolution of the PSP courses, which adopt as guidelines both the PMBOK project management framework, as well as content from specific technical courses related to the project’s subject. One other relevant aspect of the PSP courses is their involvement of both undergraduate and graduate students from different Engineering areas, such as Industrial, Mechanical and Civil Engineering, which serves to foster a more holistic and integrated problem-solving skillset.

  9. Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine

    International Nuclear Information System (INIS)

    Formosa, Fabien; Badel, Adrien; Lottin, Jacques

    2014-01-01

    Highlights: • An equivalent electrical network modeling of Stirling engine is proposed. • This model is applied to a membrane low temperate double acting Stirling engine. • The operating conditions (self-startup and steady state behavior) are defined. • An experimental engine is presented and tested. • The model is validated against experimental results. - Abstract: This work presents a network model to simulate the periodic behavior of a double acting free piston type Stirling engine. Each component of the engine is considered independently and its equivalent electrical circuit derived. When assembled in a global electrical network, a global model of the engine is established. Its steady behavior can be obtained by the analysis of the transfer function for one phase from the piston to the expansion chamber. It is then possible to simulate the dynamic (steady state stroke and operation frequency) as well as the thermodynamic performances (output power and efficiency) for given mean pressure, heat source and heat sink temperatures. The motion amplitude especially can be determined by the spring-mass properties of the moving parts and the main nonlinear effects which are taken into account in the model. The thermodynamic features of the model have then been validated using the classical isothermal Schmidt analysis for a given stroke. A three-phase low temperature differential double acting free membrane architecture has been built and tested. The experimental results are compared with the model and a satisfactory agreement is obtained. The stroke and operating frequency are predicted with less than 2% error whereas the output power discrepancy is of about 30%. Finally, some optimization routes are suggested to improve the design and maximize the performances aiming at waste heat recovery applications

  10. BUSINESS MANAGEMENT THEORY DEVELOPED ON THE BASIS OF SYSTEM APPROACH AND BUSINESS ENGINEERING TOOLS

    Directory of Open Access Journals (Sweden)

    N. I. Strich

    2011-01-01

    Full Text Available Management should be carried out with due account of the system theory and using tools and opportunities offered by such modern management components as business engineering and reengineering. Main points of this theory are given along with detailed determination of business engineering and reengineering particularly efficient while determining measures needed to reorganize an enterprise (or a group of enterprises through updating its organizational structure as well as economic, personnel or other system. Out-sourcing also described in detail is considered as modern enterprise management system’s most efficient instrument.

  11. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming

    Science.gov (United States)

    Shea, John E.

    The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum

  12. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    OpenAIRE

    Đặng Van Uy; Tran The Nam

    2018-01-01

    The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixe...

  13. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam

    2017-04-03

    The worldwide demand for transport fuels will increase significantly but will still be met substantially (a share of around 90%) from petroleum-based fuels. This increase in demand will be significantly skewed towards commercial vehicles and hence towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using conventional diesel fuels which ignite very easily. Gasoline compression ignition engines can be run on gasoline-like fuels with a long ignition delay to make low-nitrogen-oxide low-soot combustion very much easier. Moreover, the research octane number of the optimum fuel for gasoline compression ignition engines is likely to be around 70 and hence the surplus low-octane components could be used without much further processing. Also, the final boiling point can be higher than those of current gasolines. The potential advantages of gasoline compression ignition engines are as follows. First, the engine is at least as efficient and clean as current diesel engines but is less complicated and hence could be cheaper (lower injection pressure and after-treatment focus on control of carbon monoxide and hydrocarbon emissions rather than on soot and nitrogen oxide emissions). Second, the optimum fuel requires less processing and hence would be easier to make in comparison with current gasoline or diesel fuel and will have a lower greenhouse-gas footprint. Third, it provides a path to mitigate the global demand imbalance between heavier fuels and lighter fuels that is otherwise projected and improve the sustainability of refineries. The concept has been well demonstrated in research engines but development work is needed to make it feasible on practical vehicles, e.g. on cold start, adequate control of exhaust carbon monoxide and hydrocarbons and control of noise at medium to high loads

  14. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  15. A contemporary view of systems engineering. [definition of system and discussion of systems approach

    Science.gov (United States)

    Miles, R. F., Jr.

    1974-01-01

    The concept of a 'system' is defined, and the 'systems approach' is discussed. Four contemporary examples of the systems approach are presented: an operations research project, the planning-programming-budgeting system, an information processing system, and aerospace programs.

  16. Risk evaluation method for faults by engineering approach. (1) Nuclear safety for accident scenario and measures for fault movement

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Chiba, Go; Okamoto, Koji; Kameda, Hiroyuki; Ebisawa, Katsumi; Yamazaki, Haruo; Konagai, Kazuo; Kamiya, Masanobu; Nagasawa, Kazuyuki

    2016-01-01

    Japan, as a frequent earthquake country, has a responsibility to resolve efficient measures to enhance nuclear safety, to continue utilizing the nuclear power, based on the risks and importance levels in the scientific and rational manner. In his paper describes how to evaluate the risk of faults movement by engineering approach. An open fruitful discussion by experts in the various area of earthquake, geology, geotechnical, civil, and a seismic design as well as other stakeholders such as academia professors, nuclear reactor engineers, regulators, and licensees. The Atomic Energy Society established an Investigation Committee on Development of Activity and Risk Evaluation Method for Faults by Engineering Approach (IC-DAREFEA) on October 1st, a 2014. The Investigation Committee utilizes the most advanced scientific and rational judgement, and continuous discussions and efforts in the global field, in order to collect and organize these knowledge and reflect the global standards and nuclear regulations, such as risk evaluation method for the faults movements and prevention of severe accidents, based on the accumulated database in the world, including Chuetsuoki Earthquake, North Nagano Earthquake and Kumamoto Earthquake. (author)

  17. Establishing the Overall Service Quality of Engineering Education: Fuzzy Logic Approach

    Science.gov (United States)

    Shekhar, N. Chandra; Venkatasubbaiah, K.; Kandukuria, N. R.

    2012-01-01

    Measuring overall service quality (OSQ) is gaining prominence in higher education due to the increased competition among engineering education institutions (EEIs) and growing awareness about value for money among the public. Determination of OSQ on certain institutional aspects is done by various agencies throughout the world. Each system uses a…

  18. Beyond Diversity as Usual: Expanding Critical Cultural Approaches to Marginalization in Engineering Education

    Science.gov (United States)

    Secules, Stephen

    2017-01-01

    In general, what we think of as "diversity work" in undergraduate engineering education focuses in the following ways: more on the overlooked assets of minority groups than on the acts of overlooking, more on the experiences of marginalized groups than on the mechanisms of marginalization by dominant groups, more on supporting and…

  19. Towards a Sustainable Approach to Nanotechnology by Integrating Life Cycle Assessment into the Undergraduate Engineering Curriculum

    Science.gov (United States)

    Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J.

    2012-01-01

    Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…

  20. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    Science.gov (United States)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  1. The MEOW lunar project for education and science based on concurrent engineering approach

    Science.gov (United States)

    Roibás-Millán, E.; Sorribes-Palmer, F.; Chimeno-Manguán, M.

    2018-07-01

    The use of concurrent engineering in the design of space missions allows to take into account in an interrelated methodology the high level of coupling and iteration of mission subsystems in the preliminary conceptual phase. This work presents the result of applying concurrent engineering in a short time lapse to design the main elements of the preliminary design for a lunar exploration mission, developed within ESA Academy Concurrent Engineering Challenge 2017. During this program, students of the Master in Space Systems at Technical University of Madrid designed a low cost satellite to find water on the Moon south pole as prospect of a future human lunar base. The resulting mission, The Moon Explorer And Observer of Water/Ice (MEOW) compromises a 262 kg spacecraft to be launched into a Geostationary Transfer Orbit as a secondary payload in the 2023/2025 time frame. A three months Weak Stability Boundary transfer via the Sun-Earth L1 Lagrange point allows for a high launch timeframe flexibility. The different aspects of the mission (orbit analysis, spacecraft design and payload) and possibilities of concurrent engineering are described.

  2. Trends and approaches in N-Glycosylation engineering in Chinese hamster ovary cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    will summarize a group of recent strategies andapproaches and come up with case studies for N-glycosylation engineering in CHO cells and show several examples of relevantstudy cases from our research: 1) media and feed design, 2) culture process optimization, 3) substrate addition, 4) geneticengineering, 5...

  3. Application of the Total Quality Management Approach Principles and the ISO 9000 Standards in Engineering Education.

    Science.gov (United States)

    Waks, Shlomo; Frank, Moti

    1999-01-01

    Discusses the applicability of the definition, principles, and underlying strategies of total quality management (TQM) for engineering education. Describes several tools and methods for the implementation of TQM and its suitability for a variety of school activities. Presents a TQM course outline combining lectures, discussions, suggested…

  4. A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering

    Science.gov (United States)

    Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar

    2018-01-01

    This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…

  5. Facebook and the engineering of connectivity: a multi-layered approach to social media platforms

    NARCIS (Netherlands)

    van Dijck, J.

    2013-01-01

    This article aims to explain how Web 2.0 platforms in general, and Facebook in particular, engineers online connections. Connectivity has become the material and metaphorical wiring of our culture, a culture in which technologies shape and are shaped not only by economic and legal frames, but also

  6. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    Science.gov (United States)

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-01-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to…

  7. SysML for systems engineering a model-based approach

    CERN Document Server

    Holt, Jon

    2013-01-01

    This new edition of this popular text has been fully updated to reflect SysML 1.3, the latest version of the standard, and the discussion has been extended to show the power of SysML as a tool for systems engineering in an MBSE context.

  8. Approaches to evaluating weathering effects on release of engineered nanomaterials from solid matrices

    Science.gov (United States)

    Increased production and use of engineered nanomaterials (ENMs) over the past decade has increased the potential for the transport and release of these materials into the environment. Here we present results of two separate studies designed to simulate the effects of weathering o...

  9. Factors Affecting Students' Satisfaction in Engineering Disciplines: Traditional vs. Blended Approaches

    Science.gov (United States)

    Martinez-Caro, Eva; Campuzano-Bolarin, Francisco

    2011-01-01

    In this paper a two-year field study was carried out to analyse how satisfaction differs across the traditional and blended learning methods. Altogether, 21 courses for graduate and postgraduate engineering students were evaluated. Several variables and their relationship with student satisfaction in the first year, with all courses delivered in…

  10. The Chemical Engineer's Toolbox: A Glass Box Approach to Numerical Problem Solving

    Science.gov (United States)

    Coronell, Daniel G.; Hariri, M. Hossein

    2009-01-01

    Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…

  11. Prognostic and health management for engineering systems: a review of the data-driven approach and algorithms

    Directory of Open Access Journals (Sweden)

    Thamo Sutharssan

    2015-07-01

    Full Text Available Prognostics and health management (PHM has become an important component of many engineering systems and products, where algorithms are used to detect anomalies, diagnose faults and predict remaining useful lifetime (RUL. PHM can provide many advantages to users and maintainers. Although primary goals are to ensure the safety, provide state of the health and estimate RUL of the components and systems, there are also financial benefits such as operational and maintenance cost reductions and extended lifetime. This study aims at reviewing the current status of algorithms and methods used to underpin different existing PHM approaches. The focus is on providing a structured and comprehensive classification of the existing state-of-the-art PHM approaches, data-driven approaches and algorithms.

  12. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.

    Science.gov (United States)

    Santo, Vítor E; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-07-01

    The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.

  13. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules.

    Science.gov (United States)

    Topuz, Emel; van Gestel, Cornelis A M

    2016-01-01

    The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A Pragmatic Approach to Ethical Decision-Making in Engineering Practice: Characteristics, Evaluation Criteria, and Implications for Instruction and Assessment.

    Science.gov (United States)

    Zhu, Qin; Jesiek, Brent K

    2017-06-01

    This paper begins by reviewing dominant themes in current teaching of professional ethics in engineering education. In contrast to more traditional approaches that simulate ethical practice by using ethical theories to reason through micro-level ethical dilemmas, this paper proposes a pragmatic approach to ethics that places more emphasis on the practical plausibility of ethical decision-making. In addition to the quality of ethical justification, the value of a moral action also depends on its effectiveness in solving an ethical dilemma, cultivating healthy working relationships, negotiating existing organizational cultures, and achieving contextual plausibility in everyday professional practice. This paper uses a cross-cultural ethics scenario to further elaborate how a pragmatic approach can help us rethink ethical reasoning, as well as ethics instruction and assessment. This paper is expected to be of interest to educators eager to improve the ability of engineers and other professional students to effectively and appropriately deal with the kinds of everyday ethical issues they will likely face in their careers.

  15. Evaluation of FCS self and peer-assessment approach based on Cooperative and Engineering Design learning.

    Science.gov (United States)

    Cvetkovic, Dean

    2013-01-01

    The Cooperative Learning in Engineering Design curriculum can be enhanced with structured and timely self and peer assessment teaching methodologies which can easily be applied to any Biomedical Engineering curriculum. A study was designed and implemented to evaluate the effectiveness of this structured and timely self and peer assessment on student team-based projects. In comparing the 'peer-blind' and 'face-to-face' Fair Contribution Scoring (FCS) methods, both had advantages and disadvantages. The 'peer-blind' self and peer assessment method would cause high discrepancy between self and team ratings. But the 'face-to-face' method on the other hand did not have the discrepancy issue and had actually proved to be a more accurate and effective, indicating team cohesiveness and good cooperative learning.

  16. Philosophical Approach to Engineering Education Under the Introduction of the Smart Grid Concept in Russia

    Directory of Open Access Journals (Sweden)

    Makienko Marina A.

    2015-01-01

    Full Text Available The development of power industry in the world today is driven by two main trends: the search for renewable energy sources and their use and the energy efficiency which require the development of smart grids. This paper brings up the issue of staff training for professional development of the Smart Grid technology and for use of its elements by customers in households. The problem of consumer readiness for the use of smart meters was studied. It was revealed that the considerable part of the respondents was not familiar with the definition of Smart Grid. That required the development of communication skills by energy engineering students and their social activity as well. The reasons mentioned make actual the following elements of engineering education: social responsibility, stress resistance, ability to forecast the future.

  17. Very Low Surface Energy (Membrane Separations: An Integrated Polymer Chemistry/Engineering Approach and The Influence of Backpulsing on Fouling Properties of Novel Nanofiltration Membranes for Wastewater Remediation

    National Research Council Canada - National Science Library

    Freeman, Benny

    1998-01-01

    ...: An Integrated Polymer Chemistry/Engineering Approach, is to explore several new classes of polymeric materials to identify promising routes for developing low-fouling nanofiltration membranes for wastewater remediation...

  18. Using a Formal Approach for Reverse Engineering and Design Recovery to Support Software Reuse

    Science.gov (United States)

    Gannod, Gerald C.

    2002-01-01

    This document describes 3rd year accomplishments and summarizes overall project accomplishments. Included as attachments are all published papers from year three. Note that the budget for this project was discontinued after year two, but that a residual budget from year two allowed minimal continuance into year three. Accomplishments include initial investigations into log-file based reverse engineering, service-based software reuse, and a source to XML generator.

  19. Effective therapeutic approach for head and neck cancer by an engineered minibody targeting the EGFR receptor.

    Directory of Open Access Journals (Sweden)

    Young Pil Kim

    Full Text Available Cetuximab, a chimeric monoclonal antibody developed for targeting the Epidermal Growth Factor Receptor (EGFR, has been intensively used to treat cancer patients with metastatic colorectal cancer and head and neck cancer. Intact immunoglobulin G (IgG antibody like cetuximab, however, has some limitations such as high production cost and low penetration rate from vasculature into solid tumor mass due to its large size. In attempt to overcome these limitations, we engineered cetuximab to create single chain variable fragments (scFv-CH3; Minibody that were expressed in bacterial system. Among three engineered minibodies, we found that MI061 minibody, which is composed of the variable heavy (VH and light (VL region joined by an 18-residue peptide linker, displays higher solubility and better extraction properties from bacterial lysate. In addition, we validated that purified MI061 significantly interferes ligand binding to EGFR and blocks EGFR's phosphorylation. By using a protein microarray composed of 16,368 unique human proteins covering around 2,400 plasma membrane associated proteins such as receptors and channels, we also demonstrated that MI061 only recognizes the EGFR but not other proteins as compared with cetuximab. These results indicated that engineered MI061 retains both binding specificity and affinity of cetuximab for EGFR. Although it had relatively short half-life in serum, it was shown to be highly significant anti-tumor effect by inhibiting ERK pathway in A431 xenograft model. Taken together, our present study provides compelling evidence that engineered minibody is more effective and promising agent for in vivo targeting of solid tumors.

  20. A Problem-Solving Approach to Teaching Creativity for Engineering and Other Disciplines

    Directory of Open Access Journals (Sweden)

    Chelsey Bradford

    2014-08-01

    Full Text Available Creativity is an integral part in the careers of every professional, including artists, actors, as well as businessmen and engineers. Engineers, the focus of this effort, are traditionally considered to be systematic thinkers and implementers of constrained procedures and algorithms. In order to challenge this perception, ECE490DI is a class designed to show engineering students that their majors and future careers will not only use creativity, but be fully immersed in it. Once the students realize this fact, the next step is to help them discover their own creativity skills and show them that creativity, like other talents, can be nurtured and strengthened through repetitive use. To accomplish these goals, students in ECE490DI take a class trip to renowned theme parks in Orlando, FL, where they attend multiple workshops in the areas of leadership, teamwork, and creativity. The workshops allow students to exercise their leadership, teamwork, and creativity and show them several tools to expand and further improve their abilities in those areas. Students are also given the chance to meet and interact with theme parks' engineers, also known as "Imagineers," to see the practical applications of creativity in a hands-on creative work environment. While the objectives of ECE490DI were successfully met in previous semesters, the class was redesigned to have a broader scope and a multidisciplinary nature. The multidisciplinary version of the class builds on the assessment results of the previous offerings as well as feedback from participating students, faculty members, and theme parks staff members. The new version of the class includes more meetings throughout the semester to further reinforce the ideas and concepts from the workshops.

  1. A Systems Engineering Approach to Address Human Capital Management Issues in the Shipbuilding Industry

    Science.gov (United States)

    2008-09-01

    sons Nicholas and David. They each experienced the highs and lows (and stress ) of the SEM PD-21 Program as much or more than I, and took up the...Langford, 2007b). For example, a 57 telecommuter (stakeholder) may have a problem with the speed of their home internet service. Needs derived...industry have echoed this need. In Keane’s (2007) presentation to the National Naval Engineering Education Conference, he stressed that successful

  2. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří

    2015-01-01

    Roč. 338, March (2015), s. 2-41 ISSN 0022-460X R&D Projects: GA ČR(CZ) GC13-34405J Institutional support: RVO:68378297 Keywords : strongly nonlinear oscillators * moment Lyapunov exponents * predator-prey system * differential-equations Subject RIV: JM - Building Engineering Impact factor: 2.107, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022460X14005355

  3. A modern approach to storing of 3D geometry of objects in machine engineering industry

    Science.gov (United States)

    Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.

    2017-02-01

    3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.

  4. Service Engineering as an Approach to Designing Industrial Product Service Systems

    OpenAIRE

    Schuh, G.; Gudergan, G.

    2009-01-01

    Organised by: Cranfield University Unique customer solutions which integrate products and services into a high value offering have the potential to successfully differentiate from competition even prices are dictating product markets. However, companies face tremendous challenges to develop customer solutions. Service engineering is considered to be the scientific discipline which supports the design task of intangible offerings and thus a foundation for solution design. We enh...

  5. Phase-Change Memory Materials by Design: A Strain Engineering Approach.

    Science.gov (United States)

    Zhou, Xilin; Kalikka, Janne; Ji, Xinglong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-04-20

    Van der Waals heterostructure superlattices of Sb2 Te1 and GeTe are strain-engineered to promote switchable atomic disordering, which is confined to the GeTe layer. Careful control of the strain in the structures presents a new degree of freedom to design the properties of functional superlattice structures for data storage and photonics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Engineering students approaching the mathematics textbook as a potential learning tool – opportunities and constraints

    OpenAIRE

    Randahl, Mira

    2016-01-01

    Doktorgradsavhandling It is usually assumed that the students at tertiary level work intensively and individually with the new mathematical concepts (Wood, 2001). In this context the mathematics textbook might be an important learning tool. This thesis addresses the issue of what factors might influence the role of the mathematics textbook as a learning tool. The study is situated in the context of the basic mathematics course taken by first-year engineering students. A b...

  7. A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles

    OpenAIRE

    Picado, Ana; Paixão, Susana M.; Moita, Liliana; Silva, Luís Manuel; Diniz, M. S.; Lourenço, Joana; Peres, Isabel; Castro, Luísa; Correia, J. Brito; Pereira, Joana; Ferreira, Isabel; Matos, A. Alves de; Barquinha, Pedro; Mendonça, E.

    2015-01-01

    The new properties of engineered nanoparticles drive the need for new knowledge on the safety, fate, behavior and biologic effects of these particles on organisms and ecosystems. Titanium dioxide nanoparticles have been used extensively for a wide range of applications, e.g, self-cleaning surface coatings, solar cells, water treatment agents, topical sunscreens. Within this scenario increased environmental exposure can be expected but data on the ecotoxicological evaluation of nanoparticles a...

  8. TOPSIS Multi-Criteria Decision Modeling Approach for Biolubricant Selection for Two-Stroke Petrol Engines

    Directory of Open Access Journals (Sweden)

    Masoud Dehghani Soufi

    2015-12-01

    Full Text Available Exhaust pollutants from two-stroke petrol engines are a problem for the environment. Biolubricants are a new generation of renewable and eco-friendly vegetable-based lubricants, which have attracted a lot of attention in recent years. In this paper, the applicability of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS method to support the process of building the scoring system for selecting an appropriate two-stroke lubricant has been analyzed. For this purpose, biolubricants (TMP-triesters based on castor oil, palm oil, and waste cooking oil were produced and then utilized in a 200 cc two-stroke gasoline engine to investigate their effects on its performance and exhaust emissions. The results obtained from the use of the entropy technique in the TOPSIS algorithm showed that palm oil-based lubricant took up the greatest distance from the Negative Ideal Solution (NIS and was selected as the most optimal lubricant for these types of engines.

  9. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

    Science.gov (United States)

    Lamas, M. I.; Rodríguez, C. G.; Rodríguez, J. D.; Telmo, J.

    2013-12-01

    Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce NOx (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to 120°, modification of the intake valve closing from 510 to 570°, and modification of the cooling water temperature from 70 to 90 oC. NOx was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in NOx, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

  10. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

    Directory of Open Access Journals (Sweden)

    M.I. Lamas

    2013-12-01

    Full Text Available Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce NOx (nitrogen oxides and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to 120°, modification of the intake valve closing from 510 to 570°, and modification of the cooling water temperature from 70 to 90 °C. NOx was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in NOx, but an increase in CO (carbon monoxide, HC (hydrocarbons and consumption.

  11. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  12. The structural approach to shared knowledge: an application to engineering design teams.

    Science.gov (United States)

    Avnet, Mark S; Weigel, Annalisa L

    2013-06-01

    We propose a methodology for analyzing shared knowledge in engineering design teams. Whereas prior work has focused on shared knowledge in small teams at a specific point in time, the model presented here is both scalable and dynamic. By quantifying team members' common views of design drivers, we build a network of shared mental models to reveal the structure of shared knowledge at a snapshot in time. Based on a structural comparison of networks at different points in time, a metric of change in shared knowledge is computed. Analysis of survey data from 12 conceptual space mission design sessions reveals a correlation between change in shared knowledge and each of several system attributes, including system development time, system mass, and technological maturity. From these results, we conclude that an early period of learning and consensus building could be beneficial to the design of engineered systems. Although we do not examine team performance directly, we demonstrate that shared knowledge is related to the technical design and thus provide a foundation for improving design products by incorporating the knowledge and thoughts of the engineering design team into the process.

  13. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    Science.gov (United States)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  14. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    Science.gov (United States)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  15. Implementation of an industrial systems-engineering approach to reduce the incidence of methicillin-resistant Staphylococcus aureus infection.

    Science.gov (United States)

    Muder, Robert R; Cunningham, Candace; McCray, Ellesha; Squier, Cheryl; Perreiah, Peter; Jain, Rajiv; Sinkowitz-Cochran, Ronda L; Jernigan, John A

    2008-08-01

    To measure the effectiveness of an industrial systems-engineering approach to a methicillin-resistant Staphylococcus aureus (MRSA) prevention program. Before-after intervention study. An intensive care unit (ICU) and a surgical unit that was not an ICU in the Pittsburgh Veterans Administration hospital. All patients admitted to the study units. We implemented an MRSA infection control program that consisted of the following 4 elements: (1) the use of standard precautions for all patient contact, with emphasis on hand hygiene; (2) the use of contact precautions for interactions with patients known to be infected or colonized with MRSA; (3) the use of active surveillance cultures to identify patients who were asymptomatically colonized with MRSA; and (4) use of an industrial systems-engineering approach, the Toyota Production System, to facilitate consistent and reliable adherence to the infection control program. The rate of healthcare-associated MRSA infection in the surgical unit decreased from 1.56 infections per 1,000 patient-days in the 2 years before the intervention to 0.63 infections per 1,000 patient-days in the 4 years after the intervention (a 60% reduction; P = .003). The rate of healthcare-associated MRSA infection in the ICU decreased from 5.45 infections per 1,000 patient-days in the 2 years before to the intervention to 1.35 infections per 1,000 patient-days in the 3 years after the intervention (a 75% reduction; P = .001). The combined estimate for reduction in the incidence of infection after the intervention in the 2 units was 68% (95% confidence interval, 50%-79%; P systems-engineering approach can be adapted to facilitate consistent and reliable adherence to MRSA infection prevention practices in healthcare facilities.

  16. A new technology perspective and engineering tools approach for large, complex and distributed mission and safety critical systems components

    Science.gov (United States)

    Carrio, Miguel A., Jr.

    1988-01-01

    Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.

  17. Design approaches for enhancing the engineering feasibility of tokamak power reactors

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1977-01-01

    The design approach developed in the ORNL Fusion Power Demonstration Study is reviewed. The design concepts having greatest impact on reactor feasibility by the application of current or near term technology are described briefly. These are: blanket structural material, blanket coolant, power conversion system, and pulsed electrical system. Concepts relative to the approach taken to simplify the overall reactor design are listed

  18. The Formation of Conservation-Based Behaviour of Mechanical Engineering Students through Contextual Learning Approach

    Science.gov (United States)

    Sudarman; Djuniadi; Sutopo, Yeri

    2017-01-01

    This study was aimed to figure out: (1) the implementation of contextual learning approaches; (2) the learning outcome of conservation education using contextual approach on the internship program preparation class; (3) the conservation-based behaviour of the internship program participants; (4) the contribution of conservation education results…

  19. Project-Based Approach in a First-Year Engineering Course to Promote Project Management and Sustainability

    Directory of Open Access Journals (Sweden)

    Pooya Taheri

    2018-05-01

    Full Text Available To safeguard the environment and satisfy the energy needs of the present, without compromising the ability of future generations to do the same, sustainable energy development is urgently needed. This complex task is riddled with social, political, scientific, technical, and environmental challenges. Education is essential if we are to meet the energy demands of the world in the most sustainable manner available to us. Langara College offers a first-year engineering course that is meant to introduce students to engineering design and case studies, in addition to providing a brief glance on the history, ethics, and the different disciplines of engineering (APSC 1010. Using a project-based learning approach that promotes teamwork and research, this course uses a variety of instructional methods including lectures, class discussions, and guest appearances by experts in their fields. Introductions to technical concepts, such as soldering, 3D printing, and microcontroller, are also addressed in this course. This paper demonstrates how this, or similar courses, are optimized to raise awareness of the sustainability issues this planet is facing. Learning outcomes are evaluated using an anonymous student survey which demonstrates how the students’ project-management and presentation skills have improved.

  20. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    Science.gov (United States)

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  1. Integrating security issues in nuclear engineering curriculum in Indonesia. Classical vs policy approaches

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Rosita, Widya; Sihana, Fnu; Ferdiansjah; Santosa, Haryono Budi; Muharini, Anung

    2015-01-01

    Recently, risk management for nuclear facilities becomes more complex due to security issue addressed by IAEA. The harmonization between safety, safeguards and security is still questionable. It also challenges to nuclear engineering curriculum in the world how to appropriately lecture the new issue. This paper would like to describe how to integrate this issue in developing nuclear engineering curriculum in Indonesia. Indonesia has still no nuclear power plant, but there are 3 research reactors laid in Indonesia. As addition, there are several hospitals and industries utilizing radioisotopes in their activities. The knowledge about nuclear security of their staffs is also not enough for handling radioactive material furthermore the security officers. Universitas Gadjah Mada (UGM) is the only university in Indonesia offering nuclear engineering program, as consequently the university should actively play the role in overcoming this issue not only in Indonesia, but also in Southeast Asia. In the other hand, students has to have proper knowledge in order to complete in the global nuclear industry. After visited several universities in USA and participated in INSEN meeting, we found that most of universities in the world anticipate this issue by giving the student courses related to policy (non-technical) study based on IAEA NSS 12. In the other hand, the rest just make nuclear security as a case study on their class. Furthermore, almost all of programs are graduate level. UGM decided to enhance several present related undergraduate courses with security topics as first step to develop the awareness of student to nuclear security. The next (curriculum 2016) is to integrate security topics into the entire of curriculum including designing a nuclear security elective course for undergraduate level. The first trial has successfully improved the student knowledge and awareness on nuclear security. (author)

  2. Cold flow simulation of an internal combustion engine with vertical valves using layering approach

    Science.gov (United States)

    Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.

    2015-11-01

    Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.

  3. Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach.

    Science.gov (United States)

    Clearfield, Drew; Nguyen, Andrew; Wei, Mei

    2018-04-01

    The zonal organization of osteochondral tissue underlies its long term function. Despite this, tissue engineering strategies targeted for osteochondral repair commonly rely on the use of isotropic biomaterials for tissue reconstruction. There exists a need for a new class of highly biomimetic, anisotropic scaffolds that may allow for the engineering of new tissue with zonal properties. To address this need, we report the facile production of monolithic multidirectional collagen-based scaffolds that recapitulate the zonal structure and composition of osteochondral tissue. First, superficial and osseous zone-mimicking scaffolds were fabricated by unidirectional freeze casting collagen-hyaluronic acid and collagen-hydroxyapatite-containing suspensions, respectively. Following their production, a lyophilization bonding process was used to conjoin these scaffolds with a distinct collagen-hyaluronic acid suspension mimicking the composition of the transition zone. Resulting matrices contained a thin, highly aligned superficial zone that interfaced with a cellular transition zone and vertically oriented calcified cartilage and osseous zones. Confocal microscopy confirmed a zone-specific localization of hyaluronic acid, reflecting the depth-dependent increase of glycosaminoglycans in the native tissue. Poorly crystalline, carbonated hydroxyapatite was localized to the calcified cartilage and osseous zones and bordered the transition zone. Compressive testing of hydrated scaffold zones confirmed an increase of stiffness with scaffold depth, where compressive moduli of chondral and osseous zones fell within or near ranges conducive for chondrogenesis or osteogenesis of mesenchymal stem cells. With the combination of these biomimetic architectural and compositional cues, these multidirectional scaffolds hold great promise for the engineering of zonal osteochondral tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 948-958, 2018. © 2017 Wiley Periodicals

  4. Engine rotor health monitoring: an experimental approach to fault detection and durability assessment

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George

    2015-03-01

    Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.

  5. Suggested approach for establishing a rehabilitation engineering information service for the state of California

    Science.gov (United States)

    Christy, L. F.; Kelton-Fogg, G.; Lizak, R.; Vahlkamp, C.

    1978-01-01

    An ever expanding body of rehabilitation engineering technology is developing in this country, but it rarely reaches the people for whom it is intended. The increasing concern of state and federal departments of rehabilitation for this technology lag was the stimulus for a series of problem-solving workshops held in California during 1977. As a result of the workshops, the recommendation emerged that the California Department of Rehabilitation take the lead in the development of a coordinated delivery system that would eventually serve the entire state and be a model for similar systems across the nation.

  6. A methodological approach of 'environmental engineering' for the rescue and protection of a territory

    International Nuclear Information System (INIS)

    Cautilli, F.; Polizzano, C.; Tassoni, E.; Zarlenga, F.

    1989-02-01

    In this report the methodological process, that should be followed when an environmental protection and restoration problem is dealt with, is described. Moreover the actions that 'the environmental engineer' has to carry out to study every multidisciplinary problem on territory protection and restoration are synthesized, keeping in mind that the territory knowledge and the geological hazard specification are the essential bases for research work. Finally, some typical territory protection actions against the hydrogeological failures, the quarry excavation activity and the hazardous waste disposal impact, are briefly described. (author)

  7. Meteorological and engineering approach to the regionalization of tornado wind criteria for nuclear power plant design

    International Nuclear Information System (INIS)

    1975-01-01

    Data on general meteorological factors governing tornado frequency and intensity in various locations throughout the USA are revised. A climatological model of multiple outbreak and long track tornadoes and the relation between the speed of a hurricane and the frequency of tornado occurrence over land and sea are discussed. Data from a structural engineering assessment of tornado damage are summarized and applications of the data for the development of design criteria for buildings and nuclear power plants to minimize tornado damage are suggested. It was concluded that it is very difficult to predict tornado risk and alternate methods and areas of study are presented for consideration

  8. A personalized and control systems engineering conceptual approach to target childhood anxiety in the contexts of cultural diversity.

    Science.gov (United States)

    Pina, Armando A; Holly, Lindsay E; Zerr, Argero A; Rivera, Daniel E

    2014-01-01

    In the child and adolescent anxiety area, some progress has been made to develop evidence-based prevention protocols, but less is known about how to best target these problems in children and families of color. In general, data show differential program effects with some minority children benefiting significantly less. Our preliminary data, however, show promise and suggest cultural parameters to consider in the tailoring process beyond language and cultural symbols. It appears that a more focused approach to culture might help activate intervention components and its intended effects by focusing, for example, on the various facets of familismo when working with some Mexican parents. However, testing the effects and nuances of cultural adaption vis-à-vis a focused personalized approach is methodologically challenging. For this reason, we identify control systems engineering design methods and provide example scenarios relevant to our data and recent intervention work.

  9. Safety of genetically engineered foods: approaches to assessing unintended health effects

    National Research Council Canada - National Science Library

    Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, National Research Council

    2004-01-01

    .... It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues...

  10. A Taguchi PCA fuzzy-based approach for the multi-objective extended optimization of a miniature optical engine

    International Nuclear Information System (INIS)

    Fan Yichin; Tzeng Yihfong; Li Sixiang

    2008-01-01

    The paper proposes a hybrid approach, integrating a combination of Taguchi methods, principal component analysis (PCA) and fuzzy theory for the extended optimization of multiple quality characteristics in optimization experiments of non-image optics; a miniature light emitting diode pocket-sized projection display system is demonstrated in this research as an optimization sample. Traditionally, the performance of projector optics can be evaluated by modulation transfer function and its optimization method is DLS (damped least square). Comparatively, light efficiency and uniformity play a part in non-image optics where the optimized method is based on the concept of non-sequential rays; for example, in the optical engine of a projector, which demands better light efficiency and uniformity. The DLS method is occasionally employed in the optimization of non-image optics such as optical engines, but it is sometimes sensitive to the number of rays employed and some over-optimization problems. In this research we propose as an alternative method to optimize in an extended way the optical engine of a miniature projector. Control factors were checked and then repeatedly examined before the experiments started. In the experiment, optimization works through an L18 orthogonal array. Finally, this proposed optimization work shows good success for the optimization of non-image optical engines because this method is less sensitive to the number of non-sequential rays. Compared with the initial design, the optimized parameter design is able to improve the luminous flux by 11.46 dB, the illumination uniformity by 3.14 and the packing size by 1.125 dB

  11. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  12. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  13. Implementation of special engineering safety features for severe accident management. New SAMG approach

    International Nuclear Information System (INIS)

    Grigorov, D.; Borisov, E.; Mancheva, K.

    2012-01-01

    Conclusions: As a result of the thermohydraulic analysis conducted the following main conclusions are formulated: The operator actions for accident management are effective and allow reaching conditions for application of the new engineering safety features for SAMG; The new engineering safety features application is effective and prevents severe core damage for Scenario 1. For the Scenario 2 they prevents degradation and relocation of the reactor core for a long period of time (in the analysis this period is 10 h, but the unit could be kept in safe condition for longer time which is not specifically analysed).The maximal fuel cladding temperature for Scenario 1 reaches 558 o C. This low fuel cladding temperature gradient is achieved by applying a complex of operator actions which prevent any core damage. If the additional discharge line with DN 100 mm from the PRZ is not opened then a severe core damage occurs; The maximal fuel cladding temperature for Scenario 2 reaches 1307 o C. One of the possibilities for keeping this temperature below 1200 o C is to mount second line (the first SFP line is between YT12S03.S04) from the SFP to the TQ22 pipeline which is connected to YT14B01 hydroaccumulator line, between the check valves YT14S03.S04

  14. An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs.

    Science.gov (United States)

    Leferink, Anne M; Reis, Diogo Santos; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2018-04-11

    When tissue engineering strategies rely on the combination of three-dimensional (3D) polymeric or ceramic scaffolds with cells to culture implantable tissue constructs in vitro, it is desirable to monitor tissue growth and cell fate to be able to more rationally predict the quality and success of the construct upon implantation. Such a 3D construct is often referred to as a 'black-box' since the properties of the scaffolds material limit the applicability of most imaging modalities to assess important construct parameters. These parameters include the number of cells, the amount and type of tissue formed and the distribution of cells and tissue throughout the construct. Immunolabeling enables the spatial and temporal identification of multiple tissue types within one scaffold without the need to sacrifice the construct. In this report, we concisely review the applicability of antibodies (Abs) and their conjugation chemistries in tissue engineered constructs. With some preliminary experiments, we show an efficient conjugation strategy to couple extracellular matrix Abs to fluorophores. The conjugated probes proved to be effective in determining the presence of collagen type I and type II on electrospun and additive manufactured 3D scaffolds seeded with adult human bone marrow derived mesenchymal stromal cells. The conjugation chemistry applied in our proof of concept study is expected to be applicable in the coupling of any other fluorophore or particle to the Abs. This could ultimately lead to a library of probes to permit high-contrast imaging by several imaging modalities.

  15. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  16. Educational analysis of a first year engineering physics experiment on standing waves: based on the ACELL approach

    International Nuclear Information System (INIS)

    Bhathal, Ragbir; Sharma, Manjula D; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The experiment is likely to be found in many physics departments, hence is appropriate to illustrate the ACELL approach in physics. The concepts associated with standing waves are difficult; however, they are underpinned by mathematical formulation which lend themselves to be visualized in experiments. The challenge is to strike a balance between these two for the particular student cohort. In this study, this balance is achieved by using simple equipment and providing appropriate scaffolds for students to associate abstract concepts with concrete visuals. In essence the experiment is designed to adequately manage cognitive resources. Students work in pairs and are questioned and assisted by demonstrators and academic staff during a 2 h practical class. Students were surveyed using the ACELL instrument. Analysis of the data showed that by completing the practical students felt that their understanding of physics had increased. Furthermore, students could see the relevance of this experiment to their engineering studies and that it provided them with an opportunity to take responsibility for their own learning. Overall they had a positive learning experience. In short there is a lot of dividend from a small outlay of resources.

  17. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    Science.gov (United States)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  18. Task to Training Matrix Design for Decommissioning Engineer on the basis of Systematic Approach to Training Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jeong Keun [KHNP, Ulsan (Korea, Republic of)

    2016-10-15

    In nuclear history, before Chernobyl Accident, Three Mile Island (TMI) Accident was the severest accident. For this reason, to resolve the disclosed or potential possibilities of nuclear accident, more than one hundred countermeasures were proposed by United States Nuclear Regulatory Commission (USNRC). Among various recommendations by USNRC, one suggestion was related to training aspect. It was Systematic Approach to Training (SAT) and this event was the initiation of SAT methodology in the world. In Korea, upcoming June 2017, Kori Unit-1 NPP is scheduled to be shut down and it will experience NPP decommissioning for the first time. Present study aims to establish concrete training foundation for NPP decommissioning engineers based on Systematic Approach to Training (SAT) methodology, in particular, Task to Training Matrix (TTM). The objective of this paper is to organize TTM on the basis of SAT for NPP decommissioning engineer. For this reason, eighteen tasks are yielded through Job and Task Analysis (JTA) process. After that, for the settlement of Task to Training Matrix (TTM), various data are determined such as element, condition, standard, knowledge and skill, learning objective and training setting. When it comes to training in nuclear industry, SAT methodology has been the unwavering principle in Korea since NPPs export to UAE.

  19. Orthographic Software Modelling: A Novel Approach to View-Based Software Engineering

    Science.gov (United States)

    Atkinson, Colin

    The need to support multiple views of complex software architectures, each capturing a different aspect of the system under development, has been recognized for a long time. Even the very first object-oriented analysis/design methods such as the Booch method and OMT supported a number of different diagram types (e.g. structural, behavioral, operational) and subsequent methods such as Fusion, Kruchten's 4+1 views and the Rational Unified Process (RUP) have added many more views over time. Today's leading modeling languages such as the UML and SysML, are also oriented towards supporting different views (i.e. diagram types) each able to portray a different facets of a system's architecture. More recently, so called enterprise architecture frameworks such as the Zachman Framework, TOGAF and RM-ODP have become popular. These add a whole set of new non-functional views to the views typically emphasized in traditional software engineering environments.

  20. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%

    Science.gov (United States)

    Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming

    2017-10-01

    The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.

  1. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    International Nuclear Information System (INIS)

    Tsai, D.-B.; Goan, H.-S.

    2008-01-01

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10 -6 that is below the error threshold of 10 -4 required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.

  2. Engineering safe and secure cyber-physical systems the specification PEARL approach

    CERN Document Server

    Gumzej, Roman

    2016-01-01

    This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system’s safety and using appropriate hardware and software components inherently safe system’s architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels.

  3. Unifying the Classical Approach with New Technologies: An Innovative Proposal for Teaching Mathematics in Engineering

    Directory of Open Access Journals (Sweden)

    Sergio Amat

    2015-08-01

    Full Text Available The aim of this paper is to present a teaching experience developed in the Polytechnic University of Cartagena and, more specifically, in the subject of Mathematical Methods Applied to Civil Engineering, that belongs to the Master Degree of Paths, Channels and Ports. Our classes were a mix between the traditional system and the new educational system. Moreover, we tried to adapt the evaluation process to the new European Framework for Higher Education. We have used videos developed by us and by students in our classes. We have noticed that the interest and motivation in class has grown. Also the grades have improved. We did a survey during this academic year and the results were strongly positive for both students and teachers.

  4. Enhancing Project-Based Learning in Software Engineering Lab Teaching through an E-Portfolio Approach

    Science.gov (United States)

    Macias, J. A.

    2012-01-01

    Project-based learning is one of the main successful student-centered pedagogies broadly used in computing science courses. However, this approach can be insufficient when dealing with practical subjects that implicitly require many deliverables and a great deal of feedback and organizational resources. In this paper, a worked e-portfolio is…

  5. Knowledge Management through the E-Learning Approach-- A Case Study of Online Engineering Courses

    Science.gov (United States)

    Aichouni, Mohamed; Benchicou, Soraya; Nehari, Dris

    2013-01-01

    Though it is universally accepted that the face-to-face approach is the best way for education and training, however, with the advent of the information and communication technologies (mainly the World Wide Web) it became possible to enhance further the methods we are using to teach our students and to share the teaching material within a broaden…

  6. The Emergence of the Skills Approach in Industry and Its Consequences for the Training of Engineers

    Science.gov (United States)

    Pascail, Laurent

    2006-01-01

    It is striking to notice that the notion of skill is not only used in industry but also in higher education in most major industrialized countries. If a significant number of companies have taken a skills approach, one notices that this term is also used in higher education to determine teaching programmes according to a simple idea: higher…

  7. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach

    NARCIS (Netherlands)

    Koutinas, M.; Kiparissides, A.; Silva-Rocha, R.; Lam, M.C.; Martins Dos Santos, V.A.P.; Lorenzo, de V.; Pistikopoulos, E.N.; Mantalaris, A.

    2011-01-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is

  8. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  9. Building a Community Memory in Communities of Practice of E-Learning: A Knowledge Engineering Approach

    Science.gov (United States)

    Sarirete, Akila; Chikh, Azeddine; Noble, Elizabeth

    2011-01-01

    Purpose: The purpose of this paper is to define a community memory for a virtual communities of practice (CoP) based on organizational learning (OL) concept and ontologies. Design/methodology/approach: The paper focuses on applying the OL concept to virtual CoP and proposes a framework for building the CoP memory by identifying several layers of…

  10. How Can We Educate Students on the Web Engineering Discipline via the Web? The NTUA's Approach.

    NARCIS (Netherlands)

    Retalis, Symeon; Avgeriou, Paris; Skordalakis, Manolis

    2000-01-01

    Over the last years the Web has been increasingly used as a platform for supporting the delivery of flexible and interactive hypermedia applications. However, it is admitted that the dominant approach is ad hoc development. Developers should be educated in the use of effective processes, process

  11. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  12. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  13. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    Science.gov (United States)

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  14. A New Robust Tracking Control Design for Turbofan Engines: H∞/Leitmann Approach

    Directory of Open Access Journals (Sweden)

    Muxuan Pan

    2017-04-01

    Full Text Available In this paper, a H ∞ /Leitmann approach to the robust tracking control design is presented for an uncertain dynamic system. This new method is developed in the following two steps. Firstly, a tracking dynamic system with simultaneous consideration of parameter uncertainty and noise is modeled based on a linear system and a reference model. Accordingly, a “nominal system” from the tracking system is defined and controlled by a H ∞ control to obtain the asymptotical stability and noise resistance. Secondly, by making use of a Lyapunov function and the norm boundedness, a new robust control with the “Leitmann approach” is designed to cope with the uncertainty. The two controls collaborate with each other to achieve “uniform tracking boundedness” and “uniform ultimate tracking boundedness”. The new approach is then applied to an aircraft turbofan control design, and the numerical simulation results show the prescribed performances of the closed-loop system and the advantage of the developed approach.

  15. Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient.

    Science.gov (United States)

    An, Gary; Faeder, James; Vodovotz, Yoram

    2008-01-01

    The pathophysiology of the burn patient manifests the full spectrum of the complexity of the inflammatory response. In the acute phase, inflammation may have negative effects via capillary leak, the propagation of inhalation injury, and development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later stage processes of wound healing. Despite the volume of information concerning the cellular and molecular processes involved in inflammation, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective clinical therapeutic regimens. Translational systems biology (TSB) is the application of dynamic mathematical modeling and certain engineering principles to biological systems to integrate mechanism with phenomenon and, importantly, to revise clinical practice. This study will review the existing applications of TSB in the areas of inflammation and wound healing, relate them to specific areas of interest to the burn community, and present an integrated framework that links TSB with traditional burn research.

  16. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  17. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    Directory of Open Access Journals (Sweden)

    Natalie Jane de Vries

    Full Text Available Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  18. A new framework for assessing hospital crisis management based on resilience engineering approach.

    Science.gov (United States)

    Shirali, Gh A; Azadian, Sh; Saki, A

    2016-06-14

    In recent years, an increasing number of natural and man-made disasters have exposed many people and properties to various disasters. This has resulted in approximately 75,000 deaths worldwide every year due to disasters. Crisis management is becoming increasingly important to cope effectively with the magnitude and potential damage resulting from disasters. Hospitals, as the final point in the rescue chain, have a key role in the crisis management and need to be resilient against disasters. The purpose of this paper is to present a new framework for assessing the crisis management based on resilience principles in hospital infrastructure of a developing country. A questionnaire was developed and completed by 310 staff (nurses and managers) of eight hospitals in Iran. The findings indicate that the eight hospitals included in the study have moderate conditions in general, while hospitals X3, X4, and X7 have poor conditions in the crisis management. Consequently, it seems that the crisis management system was not resilient in all these hospitals in general. Using resilience engineering in assessing crisis management can improve and develop the ability of the hospitals' management to cope with any type of disaster.

  19. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    International Nuclear Information System (INIS)

    Anderson, J.E.

    1997-01-01

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands of perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions

  20. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    Science.gov (United States)

    de Vries, Natalie Jane; Carlson, Jamie; Moscato, Pablo

    2014-01-01

    Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  1. An Integrated Reverse Engineering Approach for Accuracy Control of Free-Form Objects

    Directory of Open Access Journals (Sweden)

    Pathak Vimal Kumar

    2016-12-01

    Full Text Available Computer-aided tools help in shortening and eradicating numerous repetitive tasks that reduces the gap between digital model and actual product. Use of these tools assists in realizing free-form objects such as custom fit products as described by a stringent interaction with the human body. Development of such a model presents a challenging situation for reverse engineering (RE which is not analogous with the requirement for generating simple geometric models. Hence, an alternating way of producing more accurate three-dimensional models is proposed. For creating accurate 3D models, point clouds are processed through filtering, segmentation, mesh smoothing and surface generation. These processes help in converting the initial unorganized point data into a 3D digital model and simultaneously influence the quality of model. This study provides an optimum balance for the best accuracy obtainable with maximum allowable deviation to lessen computer handling and processing time. A realistic non trivial case study of free-form prosthetic socket is considered. The accuracy obtained for the developed model is acceptable for the use in medical applications and FEM analysis.

  2. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines

    International Nuclear Information System (INIS)

    Wu, Yuhu; Kumar, Madan; Shen, Tielong

    2016-01-01

    Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.

  3. A Social Cognitive Approach to Understanding Engineering Career Interest and Expectations among Underrepresented Students in School-Based Clubs

    Science.gov (United States)

    Dika, Sandra L.; Alvarez, Jaquelina; Santos, Jeannette; Suárez, Oscar Marcelo

    2016-01-01

    Interest in engineering at early stages of the educational career is one important precursor to choosing to study engineering in college, and engineering-related clubs are designed to foster such interest and diversify the engineering pipeline. In this study, the researchers employed a social cognitive career theory framework to examine level of…

  4. An Interdisciplinary Approach for Biology, Technology, Engineering and Mathematics (BTEM to Enhance 21st Century Skills in Malaysia.

    Directory of Open Access Journals (Sweden)

    Lee Chuo Hiong

    2015-07-01

    Full Text Available An interdisciplinary approach for Biology, Technology, Engineering and Mathematics (BTEM is suggested to develop 21st century skills in the Malaysian context. BTEM allows students to master biological knowledge and at the same time to be adroit in other sub discipline skills. Students master factual knowledge of biology and skills of the 21st century simultaneously. The two main teaching and learning strategies applied in BTEM are problem-based learning and inquiry-based learning. Students are exposed to real world problems that require them to undergo inquiry processes to discover the inventive solutions. The content knowledge of biology adheres to the Malaysian Integrated Curriculum for Secondary Schools. The essence of engineering is inventive problem solving. Incorporation of information communication technologies in teaching and learning will be able to fulfil the needs of the current Net Generation. Mathematics plays an important role as computational tools, especially in analysing data. The highlighted 21st century skills in BTEM include digital literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values.

  5. Methodical Approach to Assessment of Quality of Labour Life of Industrial Employees Using Example of Engineering Enterprises

    Directory of Open Access Journals (Sweden)

    Stamatin Oleksandr V.

    2014-03-01

    Full Text Available The goal of the article is presentation of results of study of factors of influence upon quality of labour life of industrial employees and justification of a scorecard of its assessment at the micro-economic level with the use of statistical methods of study. The article proves that the quality of labour life is based on enterprise capabilities, which depend on economic results, identified by the use of financial, material and human resources, effectiveness of the innovation and investment activity. The article reveals main factors that influence the quality of labour life of industrial employees using example of engineering enterprises: labour remuneration, social provisions, possibility to develop personnel, progressive state of fixed assets, financial sustainability of the enterprise, and effectiveness of investing into innovation activity. The article proves expediency of use of statistical methods of study for assessment of quality of labour life of employees, namely: multi-dimensional factor analysis, neural networks and folded additive technique. Their use helped to reveal indicators that are the most sensitive to managerial impact for ensuring quality of labour life. The article justifies stages of methodical approach to assessment of the quality of labour life of industrial employees, which was applied at engineering enterprises, which proves its significance and theoretical substantiation.

  6. Active Learning Strategies: An illustrative approach to bring out better learning outcomes from Science, Technology, Engineering and Mathematics (STEM students

    Directory of Open Access Journals (Sweden)

    Adusumilli Srinath

    2014-10-01

    Full Text Available Teaching in a Teacher centric manner has been the mainframe teaching style in engineering education, however students feel it as a single sided approach and feel they are only passive listeners thus this style has now paved way to a Learner centric style of teaching-learning which is ACTIVE LEARNING, wherein every student is actively involved in one or the other form of learning and thus gets a chance to develop the key aspects of the course either on their own or by being a member of an active-learning group. They thus not only learn and practice the course contents but also learn managerial and team skills which are of much importance in present scenario in regard to Industries and companies where these students will be ultimately hired as employees. Professional education is making one’s students ready for the profession which includes team work, management and technical skills, thus Active learning has emerged as a mainframe tool for cherishing this aim of professional education, especially Science, Technology, Engineering and Management (STEM education. This paper aims to focus on a few facets of this active learning process and give an overview to the teaching faculty as well as students on what their individual roles must be like in this process for getting the most out of this process.

  7. Data-driven technology for engineering systems health management design approach, feature construction, fault diagnosis, prognosis, fusion and decisions

    CERN Document Server

    Niu, Gang

    2017-01-01

    This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as feature-based fault diagnosis and prognosis. The book includes a wealth of illustrations and tables to help explain the algorithms, as well as practical examples showing how to use this tool to solve situations for which analytic solutions are poorly suited. It equips readers to apply the concepts discussed in order to analyze and solve a variety of problems in PHM system design, feature construction, fault diagnosis and prognosis.

  8. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    Science.gov (United States)

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  9. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    Science.gov (United States)

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    Science.gov (United States)

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  11. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    Science.gov (United States)

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Engineering melon plants with improved fruit shelf life using the TILLING approach.

    Directory of Open Access Journals (Sweden)

    Fatima Dahmani-Mardas

    2010-12-01

    Full Text Available Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect.We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.

  13. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    Directory of Open Access Journals (Sweden)

    Antonio Boccaccio

    Full Text Available Functionally Graded Scaffolds (FGSs are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards

  14. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design...

  15. Simple engineering design for complex thermoelectric generators based on reduced current approach

    DEFF Research Database (Denmark)

    Wijesooriyage, Waruna Dissanayaka; Rezaniakolaei, Alireza; Rosendahl, Lasse

    2015-01-01

    Thermoelectric generators (TEGs) are niche candidate for the field of energy management as electrical generator devices. Generally, comprehensive and accurate design techniques for TEGs (thermoelectric generators), such as reduced current approach (RCA), are complex and time consuming processes....... This study develops a simple, comprehensive and accurate TEG designing technique based on RCA. The proposed method can predict the most efficient TEG architecture with more than 97% accuracy comparing to the RCA over wide range of possible temperature and zT for present TEG applications. Moreover...

  16. Impact of environmental inputs on reverse-engineering approach to network structures.

    Science.gov (United States)

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  17. Technology Development as a Normative Practice: A Meaning-Based Approach to Learning About Values in Engineering-Damming as a Case Study.

    Science.gov (United States)

    Nia, Mahdi G; Harandi, Mehdi F; de Vries, Marc J

    2017-11-10

    Engineering, as a complex and multidimensional practice of technology development, has long been a source of ethical concerns. These concerns have been approached from various perspectives. There are ongoing debates in the literature of the philosophy of engineering/technology about how to organize an optimized view of the values entailed in technology development processes. However, these debates deliver little in the way of a concrete rationale or framework that could comprehensively describe different types of engineering values and their multi-aspect interrelations in real engineering practices. Approaching engineering values from a meaning-based perspective, as in this paper, can be a reliable method of tackling such a controversial problem. This paper therefore proposes that technology development be considered a systemic normative practice and attempts to provide a comprehensive view of various built-in values, their different origins and features, and a way of prioritizing them in real engineering processes. Studying two cases of the Zayandeh Rood Dam and the Abbasi Dam will lead to practical insights into how to understand norms in technology development and incorporate them into engineering practice.

  18. Example of a Human Factors Engineering approach to a medication administration work system: potential impact on patient safety.

    Science.gov (United States)

    Beuscart-Zéphir, Marie-Catherine; Pelayo, Sylvia; Bernonville, Stéphanie

    2010-04-01

    The objectives of this paper are: In this approach, the implementation of such a complex IT solution is considered a major redesign of the work system. The paper describes the Human Factor (HF) tasks embedded in the project lifecycle: (1) analysis and modelling of the current work system and usability assessment of the medication CPOE solution; (2) HF recommendations for work re-design and usability recommendations for IT system re-engineering both aiming at a safer and more efficient work situation. Standard ethnographic methods were used to support the analysis of the current work system and work situations, coupled with cognitive task analysis methods and documents review. Usability inspection (heuristic evaluation) and both in-lab (simulated tasks) and on-site (real tasks) usability tests were performed for the evaluation of the CPOE candidate. Adapted software engineering models were used in combination with usual textual descriptions, tasks models and mock-ups to support the recommendations for work and product re-design. The analysis of the work situations identified different work organisations and procedures across the hospital's departments. The most important differences concerned the doctor-nurse communications and cooperation modes and the procedures for preparing and administering the medications. The assessment of the medication CPOE functions uncovered a number of usability problems including severe ones leading to impossible to detect or to catch errors. Models of the actual and possible distribution of tasks and roles were used to support decision making in the work design process. The results of the usability assessment were translated into requirements to support the necessary re-engineering of the IT application. The HFE approach to medication CPOE efficiently identifies and distinguishes currently unsafe or uncomfortable work situations that could obviously benefit from an IT solution from other work situations incorporating efficient work

  19. Agent based approach for engineering and control of micro-grids

    International Nuclear Information System (INIS)

    Basso, Gillian

    2013-01-01

    Energy management is, nowadays, a subject of uttermost importance. Indeed, we are facing growing concerns such as petroleum reserve depletion, earth global warming or power quality (e.g. avoiding blackouts during peak times). Smart grids is an attempt to solve such problems, by adding to power grids bidirectional communications and ICT capabilities in order to provide an intelligent autonomic management for the grid. This thesis focuses on the management of micro-grids thanks to multi-agent systems (MAS). Micro-grids are low-power networks, composed of small and decentralized energy producers (possibly renewable) and consumers. These networks can be connected to the main grid or islanded, this make them more complex. Due to their complexity and their geographical distribution, smart grids and micro-grids can not be easily managed by a centralized system. Distributed artificial intelligences especially MAS appear to be a solution to resolve problems related to smart grids. Firstly we defined an approach implementing feedback loops. These feedback loops exist in complex systems which can be defined with several abstraction levels. Two levels are interacting. The micro-level contains a set of agents owning behaviours that can be combined. The result of the combination impact the state of the system. The macro-level processes these influences to define a new state of the system which will impact the agents behaviours at the micro-level. This feedback loop separates behaviours on several levels. This approach is used to defined a demand and supply matching problem in micro-grid. This problem afford to manage a set of goals which currently are independently processed. Finally, an application is developed using MAS that ensures grid stability thanks to storage systems. This application was thought to be integrated to the approach detailed above. Secondly, a grid simulator id developed. This simulator allows dynamic control of devices. It is based on three main principles

  20. Selection of engineering materials for heat exchangers (An expert system approach)

    International Nuclear Information System (INIS)

    Ahmed, K.; Abou-Ali, M.; Bassuni, M.

    1997-01-01

    The materials selection as a part of the design process of the heat exchangers is one of the most important steps in the whole industry. The clear recognition of the service requirements of the different types of the heat exchangers is very important to select the adequate and economic materials to meet such requirements. of course the manufacturer should ensure that failure does not occur in service specially it is one of the main and fetal component of the nuclear reactor, pressurized water type (PWR). It is necessary to know the possible mechanisms of failure. Also the achievement of the materials selection using the expert system approach in the process sequence of heat exchanger manufacturing is introduced. Different parameters and requirements controlling each process and the linkage between these parameters and the final product will be shown. 2 figs., 3 tabs