WorldWideScience

Sample records for dielectric window material

  1. Dielectric changes in neutron-irradiated rf window materials

    International Nuclear Information System (INIS)

    Frost, H.M.; Clinard, F.W. Jr.

    1987-01-01

    Ceramics used for windows in ECRH heating systems for magnetically-confined fusion reactors must retain adequate properties during and after intense neutron irradiation. Of particular concern is a decrease in transmissivity, a parameter inversely related to the product of dielectric constant K and loss tangent tanδ. Samples of polycrystalline Al 2 O 3 and BeO were irradiated to 1 x 10 26 n/m 2 at 660K in the EBR-II fission reactor, and the above properties subsequently measured at 95 GHz. It was found that ktanδ for both materials doubled, implying a doubling of thermal stresses and a consequent reduction of time-to-failure from an assumed one year to 20 min for beryllia and 2 s for alumina. In the case of BeO, a large increase in reflectance of the incident millimeter-wave power results from dielectrically uncompensated swelling. This phenomenon could significantly degrade source performance

  2. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Hiroyuki, E-mail: hiroyuki.ao@j-parc.jp [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Asano, Hiroyuki [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Naito, Fujio [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ouchi, Nobuo; Tamura, Jun [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Takata, Koji [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-11

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al{sub 2}O{sub 3}. The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density.

  3. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    International Nuclear Information System (INIS)

    Ao, Hiroyuki; Asano, Hiroyuki; Naito, Fujio; Ouchi, Nobuo; Tamura, Jun; Takata, Koji

    2014-01-01

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al 2 O 3 . The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density

  4. Dielectric characterization of high-performance spaceflight materials

    Science.gov (United States)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola

    2015-03-01

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  5. Dielectric properties during electron irradiation of alternative materials for gyrotron windows

    International Nuclear Information System (INIS)

    Vila, R.; Ibarra, A.; Hodgson, E.R.

    1996-01-01

    Recent work on high power gyrotron windows has focused interest on some homopolar insulators as alternatives to sapphire due to their combined low dielectric loss and high thermal conductivity. The two main candidates at this moment, CVD diamond and high resistivity silicon, have been studied. As an indicator of their radiation behaviour, loss tangent and permittivity at about 15 GHz have been measured under 1.8 MeV electron irradiation at RT. In the case of silicon the previously observed radiation-induced decrease of loss tangent has been confirmed reaching a lower saturation level of 3.5 x 10 -5 at higher doses, and falling with increasing frequency. An even more important observation is that the sensitivity to ionizing radiation dropped by 4 orders of magnitude due to the radiation dose. First results for diamond are also promising, only a small degradation at relatively short times being seen with no further changes up to the maximum dose used. (orig.)

  6. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  7. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  8. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  9. Dielectric window development for the ITER ICRF vacuum transmission line

    International Nuclear Information System (INIS)

    Heikinheimo, L.; Heikkinen, J.; Hytoenen, Y.

    1998-08-01

    A vacuum window block design is presented for the ITER (International Thermonuclear Experimental Reactor) ion cyclotron radio frequency heating vacuum transmission line. The vacuum windows in various auxiliaries of the present fusion facilities and in future fusion reactors are essential and most vulnerable components, as they provide ultimate vacuum and tritium containment. Various existing windows, e.g. those at the ASDEX Upgrade tokamak (IPP, Garching), Tore Supra (CEA, Cadarache), and at JET Tokamak (Euratom, Culham), have provided a starting point for the present work, but the large size, remote handling and cooling requirements, as well as the strong neutron radiation in the fusion reactors have called a new design, where new material combinations for the dielectric and conductor have deemed to be necessary. Conventional and well tested design solutions have been chosen wherever possible. A preprototype construction has been launched to test the design principles, in particular the joining of the ceramics to a titanium conductor by brazing which has not been possible so far in this size and geometry. First results of the preprototype tests are reported here. The present final report is a combination of the results achieved with the support of two different projects; an industrial project funded by EFET and a NET Research and Design project funded by the Euratom/TEKES within the Euratom fusion programme. (orig.)

  10. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  11. Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials

    Science.gov (United States)

    Motaharifar, E.; Pierce, R. G.; Islam, R.; Henderson, R.; Hsu, J. W. P.; Lee, Mark

    2018-01-01

    In the effort to push the high-frequency performance of electronic circuits and signal interconnects from millimeter waves to beyond 1 THz, a quantitative knowledge of complex refraction index values and dispersion in potential dielectric substrate, encapsulation, waveguide, and packaging materials becomes critical. Here we present very broadband measurements of the real and imaginary index spectra of four polymeric dielectric materials considered for use in high-frequency electronics: benzocyclobutene (BCB), polyethylene naphthalate (PEN), the photoresist SU-8, and polydimethylsiloxane (PDMS). Reflectance and transmittance spectra from 3 to 75 THz were made using a Fourier transform spectrometer on freestanding material samples. These data were quantitatively analyzed, taking into account multiple partial reflections from front and back surfaces and molecular bond resonances, where applicable, to generate real and imaginary parts of the refraction index as a function of frequency. All materials showed signatures of infrared active organic molecular bond resonances between 10 and 50 THz. Low-loss transmission windows as well as anti-window bands of high dispersion and loss can be readily identified and incorporated into high-frequency design models.

  12. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  13. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  14. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  15. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  16. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  17. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  18. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  19. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  20. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    Science.gov (United States)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  1. Switchable Materials for Smart Windows.

    Science.gov (United States)

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  2. Inverse design of dielectric materials by topology optimization

    DEFF Research Database (Denmark)

    Otomori, M.; Andkjær, Jacob Anders; Sigmund, Ole

    2012-01-01

    The capabilities and operation of electromagnetic devices can be dramatically enhanced if artificial materials that provide certain prescribed properties can be designed and fabricated. This paper presents a systematic methodology for the design of dielectric materials with prescribed electric...... permittivity. A gradient-based topology optimization method is used to find the distribution of dielectric material for the unit cell of a periodic microstructure composed of one or two dielectric materials. The optimization problem is formulated as a problem to minimize the square of the difference between...

  3. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    International Nuclear Information System (INIS)

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al 2 O 3 were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE 02 wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows

  4. Dielectric material options for integrated capacitors

    NARCIS (Netherlands)

    Ruhl, G.; Lehnert, W.; Lukosius, M.; Wenger, C.; Baristiran Kaynak, C.; Blomberg, T.; Haukka, S.; Baumann, P.K.; Besling, W.F.A.; Roest, A.L.; Riou, B.; Lhostis, S.; Halimaou, A.; Roozeboom, F.; Langereis, E.; Kessels, W.M.M.; Zauner, A.; Rushworth, S.A.

    2014-01-01

    Future MIM capacitor generations will require significantly increased specific capacitances by utilization of high-k dielectric materials. In order to achieve high capacitance per chip area, these dielectrics have to be deposited in three-dimensional capacitor structures by ALD or AVD (atomic vapor

  5. Thermo-stimulated current and dielectric loss in composite materials

    International Nuclear Information System (INIS)

    Nishijima, S.; Hagihara, T.; Okada, T.

    1986-01-01

    Thermo-stimulated current and dielectric loss measurements have been performed on five kinds of commercially available composite materials in order to study the electric properties of composite materials at low temperatures. Thermo-stimulated current measurements have been made on the composite materials in which the matrix quality was changed intentionally. The changes in the matrices were introduced by gamma irradiation or different curing conditions. Thermo-stimulated current and dielectric loss measurements revealed the number and the molecular weight of dipolar molecules. The different features of thermo-stimulated current and dielectric losses were determined for different composite materials. The gamma irradiation and the curing conditions especially affect the thermo-stimulated current features. The changes in macroscopic mechanical properties reflect those of thermo-stimulated current. It was found that the change in quality and/or degradation of the composite materials could be detected by means of thermo-stimulated current and/or dielectric loss measurements

  6. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  7. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  8. Dielectric characterization of materials at microwave frequency range

    Directory of Open Access Journals (Sweden)

    J. de los Santos

    2003-01-01

    Full Text Available In this study a coaxial line was used to connect a microwave-frequency Network Analyzer and a base moving sample holder for dielectric characterization of ferroelectric materials in the microwave range. The main innovation of the technique is the introduction of a special sample holder that eliminates the air gap effect by pressing sample using a fine pressure system control. The device was preliminary tested with alumina (Al2O3 ceramics and validated up to 2 GHz. Dielectric measurements of lanthanum and manganese modified lead titanate (PLTM ceramics were carried out in order to evaluate the technique for a high permittivity material in the microwave range. Results showed that such method is very useful for materials with high dielectric permittivities, which is generally a limiting factor of other techniques in the frequency range from 50 MHz to 2 GHz.

  9. High-κ gate dielectrics: Current status and materials properties considerations

    Science.gov (United States)

    Wilk, G. D.; Wallace, R. M.; Anthony, J. M.

    2001-05-01

    Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal-oxide-semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward successful integration into the expected processing conditions for future CMOS technologies, especially due to their tendency to form at interfaces with Si (e.g. silicates). These pseudobinary systems also thereby enable the use of other high-κ materials by serving as an interfacial high-κ layer. While work is ongoing, much research is still required, as it is clear that any material which is to replace SiO2 as the gate dielectric faces a formidable challenge. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.

  10. Nanostructure multilayer dielectric materials for capacitors and insulators

    Science.gov (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  11. An Approach for Measuring the Dielectric Strength of OLED Materials

    Directory of Open Access Journals (Sweden)

    Sujith Sudheendran Swayamprabha

    2018-06-01

    Full Text Available Surface roughness of electrodes plays a key role in the dielectric breakdown of thin-film organic devices. The rate of breakdown will increase when there are stochastic sharp spikes on the surface of electrodes. Additionally, surface having spiking morphology makes the determination of dielectric strength very challenging, specifically when the layer is relatively thin. We demonstrate here a new approach to investigate the dielectric strength of organic thin films for organic light-emitting diodes (OLEDs. The thin films were deposited on a substrate using physical vapor deposition (PVD under high vacuum. The device architectures used were glass substrate/indium tin oxide (ITO/organic material/aluminum (Al and glass substrate/Al/organic material/Al. The dielectric strength of the OLED materials was evaluated from the measured breakdown voltage and layer thickness.

  12. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  13. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    Science.gov (United States)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  14. Data base of radiation-resistant dielectric and insulating materials

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Sunazuka, Hideo; Nashiyama, Isamu; Kakuta, Tsunemi.

    1987-01-01

    In the data base of radiation-resistant dielectric and insulating materials, the data format contains such items as to give the summary; the data sheet contains the data in concrete form of respective properties from the references; the sheet of references contains the references in the former two. In the above three, there are attached code No., data sheet No., reference No. and key words. In the three areas as radiation-resistant dielectric and insulating materials, i.e., organic materials, inorganic materials and optical fibers, the following are explained: data format, data sheet and objectives. (Mori, K.)

  15. High-strain actuator materials based on dielectric elastomers

    DEFF Research Database (Denmark)

    Pelrine, R.; Kornbluh, R.; Kofod, G.

    2000-01-01

    Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black) and patt......Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black...

  16. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  17. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  18. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  19. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  20. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    Science.gov (United States)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  1. The possibility of giant dielectric materials for multilayer ceramic capacitors.

    Science.gov (United States)

    Ishii, Tatsuya; Endo, Makoto; Masuda, Kenichiro; Ishida, Keisuke

    2013-02-11

    There have been numerous reports on discovery of giant dielectric permittivity materials called internal barrier layer capacitor in the recent years. We took particular note of one of such materials, i.e., BaTiO 3 with SiO 2 coating. It shows expressions of giant electric permittivity when processed by spark plasma sintering. So we evaluated various electrical characteristics of this material to find out whether it is applicable to multilayer ceramic capacitors. Our evaluation revealed that the isolated surface structure is the sole cause of expressions of giant dielectric permittivity.

  2. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  3. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  4. In-waveguide measurements of MMW dielectric properties of ceramic materials for the US fusion reactor materials research program

    International Nuclear Information System (INIS)

    Kennedy, J.C. III; Farnum, E.F.; Clinard, F.W. Jr.

    1992-01-01

    The objective is to obtain accurate measurements of dielectric properties of candidate ceramic insulating materials for fusion reactors. As part of an IEA collaboration, a set of round-robin materials was purchased for comparing dielectric measurements at laboratories in the United Kingdom, Spain, Germany, US, and Japan. P. Pells at Aldermasten, UK, purchased MACOR 9658, a glass-mica composite, and Roger Stoller, from ORNL, purchased WESGO AL-300 and AL-995, polycrystalline alumina standards. The authors obtained some of each of these materials for making these measurements. The results have been shared with the other IEA partners, and P. Pells is preparing a summary document. They used the millimeter wave apparatus described below and elsewhere in detail to measure the dielectric properties of these materials at 90 to 100 Ghz at room temperature. The nominal purity of AL-300 was 0.967; the nominal purity of AL-995 was 0.995. Their method was to measure the power transmission coefficient. They used computerized data reduction techniques to compute k (the dielectric constant) and tanδ (the loss tangent) directly from transmission maxima and their corresponding frequencies; to verify this method, they applied the same technique to theoretically derived channel spectra that were obtained by solving exactly the complex transmission coefficient, given k and tanδ. The alumina material with a lower level of purity resulted in higher loss but lower dielectric constant. They obtained dielectric constants that were higher for all the materials than manufacturer-reported values taken at lower frequencies. In addition, they obtained higher dielectric constant values than those found by other investigators at 100 GHz for AL-995 and MACOR. Tanδ values were in good agreement with those of other investigators obtained by free-space methods and dispersive Fourier-transform techniques in the same frequency range

  5. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows

    Directory of Open Access Journals (Sweden)

    S.M. El-Bashir

    Full Text Available Rose Bengal (RB is a new organic semiconductor with the highly stable layer, was deposited on highly cleaned conductive glass substrate known as (FTO glass with different thickness in the range from 80 to 292 nm. XRD showed an entirely amorphous structure of the studied film thicknesses. The observed peaks are the indexed peaks for FTO layer. Spectrophotometric data as transmittance, reflectance, and absorbance were used for the analysis the optical constant of RB/FTO optical thin film system. Refractive index was calculated using Fresnel’s equation with the aid of reflectance and absorption index. The dielectric constant, dielectric loss and dissipation factor were discussed and analyzed according to the applied optical theories. Nonlinear parameters such as third order nonlinear optical susceptibility and the nonlinear refractive index were calculated based on the linear refractive index of the applications of this material in nonlinear media. The results showed that Rose Bengal is a proving material for wide scale optoelectronic applications such as infrared blocking windows. Keywords: Rose Bengal, Dielectric parameters, Linear/nonlinear optics, Dye/FTO, IR blocking windows

  6. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials.

    Science.gov (United States)

    Petronijevic, E; Sibilia, C

    2016-12-26

    Electromagnetically induced transparency (EIT) is a pump-induced narrowband transparency window within an absorption line of the probe beam spectrum in an atomic system. In this paper we propose a way to bring together the all-dielectric metamaterials to have EIT-like effects and to optically tune the response by hybridizing them with a layer of a phase change material. We propose a design of the metamaterial based on Si nanoresonators that can support an EIT-like resonant response. On the top of the resonators we consider a thin layer of a chalcogenide phase change material, which we will use to tune the optical response. Our choice is Ge2Sb2Te5 (GST), since it has two stable phases at room temperature, namely amorphous and crystalline, between which it can be switched quickly, nonvolatively and reversibly, sustaining a large number of switching cycles. They differ in optical properties, while still having moderately low losses in telecom range. Since such dielectric resonators do not have non-radiative losses of metals around 1550nm, they can lead to a high-Q factor of the EIT-like response in this range. Firstly, we optimize the starting structure so that it gives an EIT-like response at 1550 nm when the GST layer is in the amorphous state. Our starting design uses glass as a substrate, but we also consider implementation in SOI technology. If we then switch the thin layer of GST to its crystalline phase, which has higher losses, the EIT-like response is red shifted, providing around 10:1 contrast at 1550nm. This reversible tuning can be done with an ns visible pulsed laser. We discuss the results of the simulation of the dielectric metasurface for different configurations and the tuning possibility.

  7. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    Directory of Open Access Journals (Sweden)

    Siang-Wen Lan

    2016-07-01

    Full Text Available In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

  8. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  9. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    Science.gov (United States)

    Peterson, Kenneth A [Albuquerque, NM

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  10. Window and dome technologies and materials; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Klocek, Paul

    1989-09-01

    Papers on window and dome technologies and methodologies are presented, covering the processing and application of window and dome materials such as polycrystalline MgAl2O4 spinel, yttria and lanthana-doped yttria, transparent aluminum oxynitride, sapphire materials, fluoride glass, zinc sulfide, and germanium materials. Other topics include high modulus layers as protective coatings for window materials, ultrahard coatings for IR materials, IR applications of GeC thin filems, CVD diamond for IR applications, amorphic diamond films grown with a laser-ion source, dome cooling, microwave shielding effectiveness of electrically conductive coated optical windows, and the window evaluation program for an airborne FLIR system. In addition, papers are presented on modeling optical properties of window materials, lattice symmetries and thermal expansion, rain damage protection for IR materials, optical window materials for hypersonic flow, the IR emission due to aerodynamic heating of missile domes, a ZnS window for the IR instrumentation system, hypersonic aerooptical effects, optical and semiconductor properties of lead telluride coatings, boron phosphide for coating IR transparencies, and the measurement of high out-of-band filter rejection characteristics.

  11. Dielectric materials electrization by fast electrons

    International Nuclear Information System (INIS)

    Dyrkov, V.A.; Kononov, B.A.

    1990-01-01

    Electrization of short-circuited high-ohmage targets under irradiation by 50-200 keV electrons non-uniformly by volume is investigated both experimentally and theoretically. The obtained data show that effect of space charge field increases monotonically up to stationary state during irradiation. Time constant for space charge accumulation constitutes 1-10 min and has lower value for polymethylmethacrylate as compared with polyethyleneterephthalate and decreases with increase of beam current density. Good agreement of experimental and theoretical results for both materials confirms the validity of main positions of phonomenological model of space charge formation in dielectric materials under fast electron irradiation

  12. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  13. ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers

    Science.gov (United States)

    Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory

    2018-03-01

    Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.

  14. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses

  15. Influence of the local structure in phase-change materials on their dielectric permittivity.

    Science.gov (United States)

    Shportko, Kostiantyn V; Venger, Eugen F

    2015-01-01

    Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.

  16. The Impact of Dielectric Material and Temperature on Dielectric Charging in RF MEMS Capacitive Switches

    Science.gov (United States)

    Papaioannou, George

    The present work attempts to provide a better insight on the dielectric charging in RF-MEMS capacitive switches that constitutes a key issue limiting parameter of their commercialization. The dependence of the charging process on the nature of dielectric materials widely used in these devices, such as SiO2, Si3N4, AlN, Al2O3, Ta2O5, HfO2, which consist of covalent or ionic bonds and may exhibit piezoelectric properties is discussed taking into account the effect of deposition conditions and resulting material stoichiometry. Another key issue parameter that accelerates the charging and discharging processes by providing enough energy to trapped charges to be released and to dipoles to overcome potential barriers and randomize their orientation is the temperature will be investigated too. Finally, the effect of device structure will be also taken into account.

  17. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  18. Dielectric barrier discharge processing of aerospace materials

    International Nuclear Information System (INIS)

    Scott, S J; Figgures, C C; Dixon, D G

    2004-01-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin

  19. Study made of dielectric properties of promising materials for cryogenic capacitors

    Science.gov (United States)

    Mathes, K. N.; Minnich, S. H.

    1967-01-01

    Experimental investigations were conducted to determine dielectric properties of promising materials for cryogenic capacitors to be used in energy storage and pulse applications. The three classes of materials investigated were inorganic bonded ferroelectric materials, anodic coatings on metal foils, and polar low temperature liquids.

  20. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  1. Development of a new prototype system for measuring the permittivity of dielectric materials

    Directory of Open Access Journals (Sweden)

    Jiajia Jiang

    2014-06-01

    Full Text Available A simple prototype for measuring the properties of dielectric materials is introduced in this Letter. A homogeneous dielectric sample placed in a field produced by a nearby antenna will affect the input impedance of the antenna. The permittivity and the loss of the dielectric sample can then be determined from the change of the input impedance of the antenna. The prototype has been validated by experiments.

  2. Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material

    OpenAIRE

    Lin, Yu-Hsien; Chou, Jay-Chi

    2014-01-01

    This study investigated the temperature effect on amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) using hafnium oxide (HfO2) gate dielectric material. HfO2 is an attractive candidate as a high-κ dielectric material for gate oxide because it has great potential to exhibit superior electrical properties with a high drive current. In the process of integrating the gate dielectric and IGZO thin film, postannealing treatment is an essential process for completing the chem...

  3. Machinability studies of infrared window materials and metals

    International Nuclear Information System (INIS)

    Arnold, J.B.; Morris, T.O.; Sladky, R.E.; Steger, P.J.

    1976-01-01

    Diamond machining of materials for optical applications is becoming an important fabrication process. Development work in material-removal technology to better understand the mechanics of the diamond-turning process, its limitations, and applications is described. The technique is presently limited to a select group of metals, most of which are of a face-center-cubic crystal structure. Machinability studies were done which were designed to better understand diamond compatibility and thus expand the range of applicable materials. Nonconventional methods such as ultrasonic tool stimulation were investigated. Work done to determine the machinability of infrared window materials indicates that this is a viable fabrication technique for many materials, although additional effort is needed to optimize the process for particular materials

  4. Evolutionary search for new high-k dielectric materials: methodology and applications to hafnia-based oxides.

    Science.gov (United States)

    Zeng, Qingfeng; Oganov, Artem R; Lyakhov, Andriy O; Xie, Congwei; Zhang, Xiaodong; Zhang, Jin; Zhu, Qiang; Wei, Bingqing; Grigorenko, Ilya; Zhang, Litong; Cheng, Laifei

    2014-02-01

    High-k dielectric materials are important as gate oxides in microelectronics and as potential dielectrics for capacitors. In order to enable computational discovery of novel high-k dielectric materials, we propose a fitness model (energy storage density) that includes the dielectric constant, bandgap, and intrinsic breakdown field. This model, used as a fitness function in conjunction with first-principles calculations and the global optimization evolutionary algorithm USPEX, efficiently leads to practically important results. We found a number of high-fitness structures of SiO2 and HfO2, some of which correspond to known phases and some of which are new. The results allow us to propose characteristics (genes) common to high-fitness structures--these are the coordination polyhedra and their degree of distortion. Our variable-composition searches in the HfO2-SiO2 system uncovered several high-fitness states. This hybrid algorithm opens up a new avenue for discovering novel high-k dielectrics with both fixed and variable compositions, and will speed up the process of materials discovery.

  5. Precision Characterization of Gyrotron Window Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Charles R. [North Carolina Central Univ., Durham, NC (United States)

    2012-12-31

    The response of dielectric material to electromagnetic waves in the millimeter wavelength range (30 to 300 GHz) has received relatively little study and the processes that give rise to absorption in this region are often poorly understood. Understanding the origin of absorption at these wavelengths has basic significance for solid state physics as well as importance for development of technology in this region of the RF spectrum. This project has provided high-quality data on the temperature dependence of the dielectric loss in high-purity, semi-insulating silicon carbide (HPSI SiC), a material that holds much promise for application, especially in devices that must operate in the high power and high frequency regime. Comparison of this experimental data with theoretical predictions for various loss processes provides convincing evidence that the loss in HPSI SiC arises almost entirely from intrinsic lattice loss (ILL) as described by Garin. Fitting the data to this model yields an accurate value for the Debye temperature that characterizes crystalline SiC. In addition, our results refute a previous study(2) which reported much higher loss, attributed to the presence of free charge. The quality of the data acquired in this project is clear evidence for the value of the experimental technique that was employed here. This technique combines the excitation of a high-quality open resonator by a phase-locked backward wave oscillator (BWO) with use of a spectrum analyzer to measure the change in the resonator response curve when the sample is inserted. This system has demonstrated consistent results for very challenging measurements and does not suffer from the artifacts that often arise when using other techniques that rely on thermal sources. The low absorption loss found in HPSI SiC, when combined with its other outstanding material properties, e.g. high thermal conductivity, high tensile strength, and high carrier mobility, should provide incentive for designers to

  6. Contamination aspects in integrating high dielectric constant and ferroelectric materials into CMOS processes

    OpenAIRE

    Boubekeur, Hocine

    2004-01-01

    n memory technology, new materials are being intensively investigated to overcome the integration limits of conventional dielectrics for Giga-bit scale integration, or to be able to produce new types of non-volatile low power memories such as FeRAM. Perovskite type high dielectric constant films for use in Giga-bit scale memories or layered perovskite films for use in non-volatile memories involve materials to semiconductor process flows, which entail a high risk of contamination. The introdu...

  7. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  8. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials

    Directory of Open Access Journals (Sweden)

    Kevin Rubrice

    2016-10-01

    Full Text Available Nowadays, many types of materials are elaborated for microwave absorption applications. Carbon-based nanoparticles belong to these types of materials. Among these, graphene presents some distinctive features for electromagnetic radiation absorption and thus microwave isolation applications. In this paper, the dielectric characteristics and microwave absorption properties of epoxy resin loaded with graphene particles are presented from 2 GHz to 18 GHz. The influence of various parameters such as particle size (3 µm, 6–8 µm, and 15 µm and weight ratio (from 5% to 25% are presented, studied, and discussed. The sample loaded with the smallest graphene size (3 µm and the highest weight ratio (25% exhibits high loss tangent (tanδ = 0.36 and a middle dielectric constant ε′ = 12–14 in the 8–10 GHz frequency range. As expected, this sample also provides the highest absorption level: from 5 dB/cm at 4 GHz to 16 dB/cm at 18 GHz.

  9. Sensitivity of radiation methods of diagnosis of electric potentials in dielectric materials

    International Nuclear Information System (INIS)

    Sapozhkov, Yu.I.; Smekalin, L.F.; Yagushkin, N.I.

    1985-01-01

    On the base of the albedo method the characteristics of radiation methods of diagnosis of electric potentials inside dielectrics, such as sensitivity and resolution are considered. Investigations are carried out for electron energies of tens keV. It is shown that with energy growth the sensitivity to electric field in the dielectrics volume drops. The target atomic number growth reduces the sensitivity approximately 1/lnz. The albedo method resolution in the investigated energy range is constant. The results obtained testify to the usability radiation methods of the diagnosis for control of electric fields of dielectric structural materials in the course of their operation

  10. The influence of non-homogenous dielectric material in the waveguide propagation modes

    Directory of Open Access Journals (Sweden)

    Ion VONCILA

    2006-12-01

    Full Text Available The aim of this paper is to indicate the equations of electromagnetic wave in homogenous and non-homogenous dielectric material, estabilising the bundary conditions and solves by FEM the equations of the electromagnetic wave in the rectangular cavity. By numeric simulation of the waveguide in the cavity there have been studied the modifications of both the ways of propagation and the field’s distribution. The non-homogenous mediums afectes the field’s amplitude, obtaining a non-homogenous distribution. Poyting vector of the wave’s transmision, indicates the energetic flux’s concentration in the air besides the dielectric material.

  11. Dielectric Properties of PE/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. David

    2013-01-01

    Full Text Available Polyethylene/nanoclay specimens containing from 0 to 5% nanoclays were prepared from a commercially available premixed PE/nanoclay masterbatch containing 50% wt of nanoclay. The masterbatch was diluted to the desired concentration by adding PE along with various amounts of compatibilizer in order to achieve the best possible dispersion of the nanoclay platelets. The dielectric response of the compounded samples was investigated using a combination of time and frequency-domain spectroscopy in order to cover a wide frequency window. Both techniques were in good agreement when the time-domain data was transformed into frequency-domain data. Despite their low concentration, the addition of the dispersed nanoclays led to a significant alteration of the material dielectric response in the form of the appearance of various interfacial relaxation processes and an increase of charge carrier transport within the insulation material. Moreover, an onset of nonlinear charge transport process was observed at moderate fields for specimens containing a relatively low level of nanoclays. The high-field breakdown strength was shown to have been improved by the incorporation of the nanoparticles, particularly when the exfoliation was enhanced by the use of a maleic anhydride grafted polyethylene compatibilizer.

  12. Mechanical reliability of current alumina and beryllia ceramics used in microwave windows for gyrotrons

    International Nuclear Information System (INIS)

    Becher, P.F.; Ferber, M.K.

    1983-02-01

    The mechanical reliability was evaluated for the alumina and beryllia ceramics now used as microwave windows in the high-power (greater than or equal to 200 kW) high-frequency (greater than or equal to 60 GHz) gyrotron tubes being developed for plasma heating in fusion systems. Analysis of the stresses generated in the various window configurations and tube operating conditions indicated that significant tensile stresses are generated in the ceramic window by dielectric heating. As a result, we characterized the static and dynamic fatigue behavior and the inert strength distributions for these two ceramics (i.e., fatigue studies included the behavior in the fluorocarbon fluid used for window cooling at 22 and 48 0 C and in both air (65% relative humidity) and distilled water at 22 0 C. These data were then analyzed in order to construct reliability diagrams for these materials

  13. Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-01-01

    Full Text Available This study investigated the temperature effect on amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using hafnium oxide (HfO2 gate dielectric material. HfO2 is an attractive candidate as a high-κ dielectric material for gate oxide because it has great potential to exhibit superior electrical properties with a high drive current. In the process of integrating the gate dielectric and IGZO thin film, postannealing treatment is an essential process for completing the chemical reaction of the IGZO thin film and enhancing the gate oxide quality to adjust the electrical characteristics of the TFTs. However, the hafnium atom diffused the IGZO thin film, causing interface roughness because of the stability of the HfO2 dielectric thin film during high-temperature annealing. In this study, the annealing temperature was optimized at 200°C for a HfO2 gate dielectric TFT exhibiting high mobility, a high ION/IOFF ratio, low IOFF current, and excellent subthreshold swing (SS.

  14. Ferroelectric polymer dielectrics: Emerging materials for future electrostatic energy storage applications

    Science.gov (United States)

    Panda, Maheswar

    2018-05-01

    In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.

  15. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  16. Control of the hyperbolic dispersion of dielectrics by an ultrashort laser pulse

    Science.gov (United States)

    Zhang, Xiaoqin; Wang, Feng; Zhang, Fengshou; Yao, Yugui

    2018-01-01

    An idea of controlling hyperbolic dispersion of dielectric materials by an ultrashort laser pulse is proposed. Taking the diamond as a concrete example and using time-dependent density functional theory calculations, we show that the permittivity tensor of the material can be effectively tuned by an ultrashort laser pulse, serving as a transient hyperbolic medium with wide working frequency window. With easily tunable laser parameters, the material can even be switched by reversal of both elliptic and hyperbolic for a particular light frequency. Our result points out a route toward transient hyperbolic materials, and it offers methods to achieve tunable hyperbolic dispersion with great potential for ultrafast device applications.

  17. Nano-materials Enabled Thermoelectricity from Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-13

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 206C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  18. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm-3.

    Science.gov (United States)

    Cortes, Francisco Javier Quintero; Phillips, Jonathan

    2015-09-17

    The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm - ³, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 10⁵, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO₂ based TSDM were found to have dielectric constants at ~0 Hz greater than 10⁷ in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  19. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm−3

    Directory of Open Access Journals (Sweden)

    Francisco Javier Quintero Cortes

    2015-09-01

    Full Text Available The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC, with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC, also known as supercapacitors, are reported. The first generation super dielectric materials (SDM are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM, introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  20. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  1. ELABORATION AND DIELECTRIC CHARACTERIZATION OF A DOPED FERROELECTRIC MATERIAL TYPE PZT

    Directory of Open Access Journals (Sweden)

    M. Abba

    2013-12-01

    Full Text Available The main objective of this work is based on the synthesis and dielectric characterization of a new material in ceramic PZT with a perovskite structure ABO3. We are interested to study the Quaternary system (doping in site A and site B of general formula: Pb0.96Ba0.02Ca0.02[(Zr0.52Ti0.480.94(Zn1/3Ta2/30.03(In1/3Sb2/30.03]O3 short PZT-PBC-ZTIS. The sample selected for this study was prepared by the method of synthesis with solid way. Heat treatment was applied to these compositions at different temperatures: 1100, 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: tgδ = 7.62%, for the composition sintered to 1180 ° C included in the phase morphotropique zone (FMP.

  2. ELABORATION AND DIELECTRIC CHARACTERIZATION OF A DOPED FERROELECTRIC MATERIAL TYPE PZT

    Directory of Open Access Journals (Sweden)

    M. Abba

    2015-07-01

    Full Text Available The main objective of this work is based on the synthesis and dielectric characterization of a new material in ceramic PZT with a perovskite structure ABO3. We are interested to study the Quaternary system (doping in site A and site B of general formula: Pb0.96Ba0.02Ca0.02[(Zr0.52Ti0.480.94(Zn1/3Ta2/30.03(In1/3Sb2/30.03]O3 short PZT-PBC-ZTIS. The sample selected for this study was prepared by the method of synthesis with solid way. Heat treatment was applied to these compositions at different temperatures: 1100, 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: tgδ = 7.62%, for the composition sintered to 1180 ° C included in the phase morphotropique zone (FMP.

  3. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  4. Influence of Water Absorption on Volume Resistivity and the Dielectric Properties of Neat Epoxy Material

    KAUST Repository

    Sulaimani, Anwar Ali

    2014-07-15

    Influence of Water Absorption on the Dielectric Properties and Volume Resistivity of Neat Epoxy Material Anwar Ali Sulaimani Epoxy resins are widely used materials in the industry as electrical insulators, adhesives and in aircrafts structural components because of their high mechanical sti ness, strength and high temperature and chemical resistance properties. But still, the in uence of water uptake due to moisture adsorption is not fully understood as it detrimentally modi es the electrical and chemical properties of the material. Here, we investigate the in uence of water moisture uptake on the neat epoxy material by monitoring the change in the volume resistivity and dielectric properties of epoxy material at three di erent thickness con gurations: 0.250 mm, 0.50 mm and 1 mm thicknesses. Gravimetric analysis was done to monitor the mass uptake behaviour, Volume Resistivity was measured to monitor the change in conductivity of the material, and the dielectric properties were mapped to characterise the type of water mechanism available within the material during two ageing processes of sorption and desorption. Two-stage behaviours of di usion and reaction have been identi ed by the mass uptake analysis. Moreover, the plot of volume resistivity versus mass uptake has indi- cated a non-uniform relationship between the two quantities. However, the analysis of the dielectric spectrum at medium range of frequency and time has showed a change 5 in the dipolar activities and also showed the extent to which the water molecules can be segregated between bounding to the resin or existing as free water.

  5. The impact of porosity on the formation of manganese based copper diffusion barrier layers on low-κ dielectric materials

    International Nuclear Information System (INIS)

    McCoy, A P; Bogan, J; Walsh, L; Byrne, C; O’Connor, R; Hughes, G; Woicik, J C

    2015-01-01

    This work investigates the impact of porosity in low-κ dielectric materials on the chemical and structural properties of deposited Mn thin films for copper diffusion barrier layer applications. X-ray photoelectron spectrscopy (XPS) results highlight the difficulty in distinguishing between the various Mn oxidation states which form at the interlayer dielectric (ILD)/Mn interface. The presence of MnSiO 3 and MnO were identified using x-ray absorption spectroscopy (XAS) measurements on both porous and non-porous dielectric materials with evidence of Mn 2 O 3 and Mn 3 O 4 in the deposited film on the latter surface. It is shown that a higher proportion of deposited Mn converts to Mn silicate on an ILD film which has 50% porosity compared with the same dielectric material with no porosity, which is attributed to an enhanced chemical interaction with the effective larger surface area of porous dielectric materials. Transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDX) data shows that the Mn overlayer remains predominately surface localised on both porous and non-porous materials. (paper)

  6. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  7. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.

    Science.gov (United States)

    Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L

    2017-03-03

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  8. A history of semi-active laser dome and window materials

    Science.gov (United States)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  9. Evaluation of polysulfone film as a capacitor dielectric material for neutron generator applications

    International Nuclear Information System (INIS)

    Sidnell, N.A.

    1984-01-01

    A modified polysulfone film, as manufactured by Bayer (West Germany), is a candidate dielectric material for applications where radiation resistant properties superior to those of Mylar polyester are required. In 1981 it was concluded that polysulfone films exhibited a dielectric strength 20 to 25% lower than Mylar at elevated temperatures of 74 0 C. Consequently, a new design comparable to the SA2954 Mylar capacitor was formulated with equivalent dielectric strength. This design also demonstrated an improvement in overall reliability as compared to the Mylar design when based on functional electrical test and environmental test performance. This design description and accompanying test results are presented in this report

  10. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  11. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  12. Windows forensic analysis toolkit advanced analysis techniques for Windows 7

    CERN Document Server

    Carvey, Harlan

    2012-01-01

    Now in its third edition, Harlan Carvey has updated "Windows Forensic Analysis Toolkit" to cover Windows 7 systems. The primary focus of this edition is on analyzing Windows 7 systems and on processes using free and open-source tools. The book covers live response, file analysis, malware detection, timeline, and much more. The author presents real-life experiences from the trenches, making the material realistic and showing the why behind the how. New to this edition, the companion and toolkit materials are now hosted online. This material consists of electronic printable checklists, cheat sheets, free custom tools, and walk-through demos. This edition complements "Windows Forensic Analysis Toolkit, 2nd Edition", (ISBN: 9781597494229), which focuses primarily on XP. It includes complete coverage and examples on Windows 7 systems. It contains Lessons from the Field, Case Studies, and War Stories. It features companion online material, including electronic printable checklists, cheat sheets, free custom tools, ...

  13. Influence of refraction index strength on the light propagation in dielectrics material with periodic refraction index

    International Nuclear Information System (INIS)

    Hidayat, Arif; Latifah, Eny; Kurniati, Diana; Wisodo, Hari

    2016-01-01

    This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.

  14. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  15. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Directory of Open Access Journals (Sweden)

    S. Kasrani

    Full Text Available Abstract In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 1013 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9.

  16. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T., E-mail: souad478@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: sebarama@usa.com, E-mail: foughali_lazhar@yahoo.fr, E-mail: mtb25dz@gmail.com [Ceramics Lab. Mentouri University of Constantine (Algeria); Aldhayan, D.M., E-mail: aldhayan@ksu.edu.sa [Chemistry Department, Riyadh, King Saud University (Saudi Arabia)

    2016-10-15

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10{sup 13} Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  17. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    International Nuclear Information System (INIS)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T.; Aldhayan, D.M.

    2016-01-01

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10 13 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  18. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Science.gov (United States)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  19. Theory of radiation pressure on magneto–dielectric materials

    International Nuclear Information System (INIS)

    Barnett, Stephen M; Loudon, Rodney

    2015-01-01

    We present a classical linear response theory for a magneto–dielectric material and determine the polariton dispersion relations. The electromagnetic field fluctuation spectra are obtained and polariton sum rules for their optical parameters are presented. The electromagnetic field for systems with multiple polariton branches is quantized in three dimensions and field operators are converted to 1–dimensional forms appropriate for parallel light beams. We show that the field–operator commutation relations agree with previous calculations that ignored polariton effects. The Abraham (kinetic) and Minkowski (canonical) momentum operators are introduced and their corresponding single–photon momenta are identified. The commutation relations of these and of their angular analogues support the identification, in particular, of the Minkowski momentum with the canonical momentum of the light. We exploit the Heaviside–Larmor symmetry of Maxwell’s equations to obtain, very directly, the Einsetin–Laub force density for action on a magneto–dielectric. The surface and bulk contributions to the radiation pressure are calculated for the passage of an optical pulse into a semi–infinite sample. (paper)

  20. Light programmable organic transistor memory device based on hybrid dielectric

    Science.gov (United States)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  1. Materials And Devices In Electrochromic Window Development

    Science.gov (United States)

    Cogan, Stuart F.; Anderson, Elizabeth J.; Plante, Timothy D.; Rauh, R. David

    1985-12-01

    Windows with switchable electrochromic glazings are potentially useful for regulating solar input to building interiors. In this article, we describe the structure and operation of a proposed solid-state electrochromic glazing based on crystalline LixWO3 (c-LiXWO3) and a low coloration efficiency counter electrode material such as amorphous Nb2O5 (a-Nb2O5). The importance of reversibility in electrochromic glazing operation is emphasized, and optical switching experiments that demonstrate reversible lithium insertion/extraction in c-LixW03, a-LixWO3, and a-LixNb2O5 are described. Additional optical switching experiments in tandem electrochromic cells comprised of c-LixWO3/a-Nb2O5 and a-LixWO3/a-Nb2O5 demonstrated the proposed design, indicating reversible optical switching over 500 and 200 complete cycles, respectively, without degradation. Optical data on the evolution of reflective and absorp-tive modulation in c-LixWO3 are presented and solar attenuation results are used to demon-strate the advantage of using crystalline electrochromics to conserve daylighting during electrochromic window operation.

  2. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  3. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    Unknown

    the angular frequency and c0 the velocity of light, c the thickness of the ... Dielectric parameters, absorption index and refractive index for pure PSF and pure PMMA at 8⋅92 GHz frequency and at 35°C temperature. Dielectric. Dielectric. Loss. Relaxation. Conductivity Absorption. Refractive. Thickness, constant loss tangent.

  4. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  5. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  6. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    International Nuclear Information System (INIS)

    Lin, Y. H.; Chou, J. C.

    2015-01-01

    We investigated amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT_s) using different high-Κ gate dielectric materials such as silicon nitride (Si_3N_4) and aluminum oxide (Al_2O_3) at low temperature process (<300 degree) and compared them with low temperature silicon dioxide (SiO_2). The IGZO device with high-Κ gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, post annealing treatment is an essential process for completing the process. The chemical reaction of the high-κ/IGZO interface due to heat formation in high-Κ/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-Κ gate dielectric materials and explained the interface effect by charge band diagram.

  7. A large coaxial reflection cell for broadband dielectric characterization of coarse-grained materials

    Science.gov (United States)

    Bore, Thierry; Bhuyan, Habibullah; Bittner, Tilman; Murgan, Vignesh; Wagner, Norman; Scheuermann, Alexander

    2018-01-01

    Knowledge of the frequency-dependent electromagnetic properties of coarse-grained materials is imperative for the successful application of high frequency electromagnetic measurement techniques for near and subsurface monitoring. This paper reports the design, calibration and application of a novel one-port large coaxial cell for broadband complex permittivity measurements of civil engineering materials. It was designed to allow the characterization of heterogeneous material with large aggregate dimensions (up to 28 mm) over a frequency range from 1 MHz-860 MHz. In the first step, the system parameters were calibrated using the measured scattering function in a perfectly known dielectric material in an optimization scheme. In the second step, the method was validated with measurements made on standard liquids. Then the performance of the cell was evaluated on a compacted coarse-grained soil. The dielectric spectra were obtained by means of fitting the measured scattering function using a transverse electromagnetic mode propagation model considering the frequency-dependent complex permittivity. Two scenarios were systematically analyzed and compared. The first scenario consisted of a broadband generalized dielectric relaxation model with two Cole-Cole type relaxation processes related to the interaction of the aqueous phase and the solid phase, a constant high frequency contribution as well as an apparent direct current conductivity term. The second scenario relied on a three-phase theoretical mixture equation which was used in a forward approach in order to calibrate the model. Both scenarios provide almost identical results for the broadband effective complex relative permittivity. The combination of both scenarios suggests the simultaneous estimation of water content, density, bulk and pore water conductivity for road base materials for in situ applications.

  8. Periodicity effects on compound waves guided by a thin metal slab sandwiched between two periodically nonhomogeneous dielectric materials

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-10-01

    Surface-plasmon-polariton waves can be compounded when a sufficiently thin metal layer is sandwiched between two half spaces filled with dissimilar periodically nonhomogeneous dielectric materials. We solved the boundary-value problem for compound waves guided by a layer of a homogeneous and isotropic metal sandwiched between a structurally chiral material (SCM) and a periodically multilayered isotropic dielectric (PMLID) material. We found that the periodicities of the PMLID material and the SCM are crucial to excite a multiplicity of compound guided waves arising from strong coupling between the two interfaces.

  9. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  10. Preliminary Broadband Measurements of Dielectric Permittivity of Planetary Regolith Analog Materials Using a Coaxial Airline

    Science.gov (United States)

    Boivin, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2014-12-01

    When considering radar observations of airless bodies containing regolith, the radar backscatter coefficient is dependent upon the complex dielectric permittivity of the regolith materials. In many current applications of imaging radar data, uncertainty in the dielectric permittivity precludes quantitative estimates of such important parameters as regolith thickness and depth to buried features (e.g., lava flows on the Aristarchus Plateau on the Moon and the flows that surround the Quetzalpetlatl Corona on Venus). For asteroids, radar is an important tool for detecting and characterizing regoliths. Many previous measurements of the real and/or complex parts of the dielectric permittivity have been made, particularly for the Moon (on both Apollo samples and regolith analogues). However, no studies to date have systematically explored the relationship between permittivity and the various mineralogical components such as presence of FeO and TiO2. For lunar materials, the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor controlling the loss tangent (tanδ, the ratio of the imaginary and real components of the dielectric permittivity). Ilmenite, however, is not the only mineral to contain iron in the lunar soil and our understanding of the effect of iron on the loss tangent is insufficient. Beyond the Moon, little is known about the effects on permittivity of carbonaceous materials. This is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, a carbonaceous asteroid whose regolith composition is largely unknown. Here we present preliminary broadband (300 Mhz to 14 GHz) measurements on materials intended as planetary regolith analogs. Our ultimate goal is to establish a database of the effects of a wide range mineralogical components on dielectric permittivity, in support of the OSIRIS REx mission and ongoing Earth-based radar investigation of the Moon

  11. Light-induced space-charge fields for the structuration of dielectric materials

    International Nuclear Information System (INIS)

    Eggert, H.A.

    2006-11-01

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  12. Dielectric relaxations in non-metallic materials related to Y-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bennani, H.; Pilet, J.C. (Lab. Instrumentation, Rennes-1 Univ., 35 (France)); Guilloux-Viry, M.; Perrin, C.; Perrin, A.; Sergent, M. (Lab. de Chimie Minerale B, C.N.R.S., 35 - Rennes (France))

    1990-10-15

    In relation with high Tc superconducting material studies, dielectric measurements have been carried out, in the frequency range 10 Hz - 100 kHz, on two powdered compounds belonging to the Y-Ba-Cu-O system. The non-metallic tetragonal phases YBa{sub 2}Cu{sub 3}O{sub 6+x} exhibit dielectric relaxations: for the studied samples (x<0.4) the activation energy U is observed in the range 0.5dielectric relaxation has been detected at higher temperature, near 400 K. Additional measurements to 77 K at 1 MHz give a value of dielectric constant {epsilon}'=3 and a low loss factor tg{delta}=10{sup -3}: this latter value is comparable to the one of lanthanum gallate recently proposed as a substrate for high frequency uses. This result enhances the previously reported potential interest of this material as substrate or buffer layer for preparation of superconducting thin films for high frequency applications. (orig.).

  13. Dielectric properties of materials at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The paper introduces the review of the present state of art in the measurement of the interaction of electromagnetic waves with different kinds of materials. It is analysis of the possibilities of the mea­surement of the interaction of high frequencies waves (microwaves with materials and proposal of the experimental method for the studies mentioned above.The electromagnetic field consists of two components: electric and magnetic field. The influence of these components on materials is different. The influence of the magnetic field is negligible and it has no impact on practical use. The influence of the electric field is strong as the interaction between them results in the creation of electric currents in the material (Křivánek and Buchar, 1993.Experiments focused on the evaluation of the complex dielectric permitivity of different materials have been performed. The permitivity of solid material is also measurable by phasemethod, when the specimen is a part of transmission sub-circuit. Microwave instrument for complex permittivity measurement works in X frequency band (8.2–12.5 GHz, the frequency 10.1 GHz was used for all the measurement in the laboratory of physics, Mendel University in Brno. The extensive number of experimental data have been obtained for different materials. The length of the square side of the ae­rial open end was 50 mm and internal dimensions of waveguides were 23 mm × 10 mm. The samples have form of the plate shape with dimensions 150 mm × 150 mm × 4 mm.

  14. Weathering effects on materials from historical stained glass windows

    Directory of Open Access Journals (Sweden)

    García-Heras, M.

    2003-06-01

    Full Text Available A selection of materials (stained glasses, lead cames, support elements and putty from historical stained glass windows of different periods (13th-19th centuries have been studied. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry and X-ray diffraction were used as characterization techniques. Degradation of historical stained glass windows is due to the particular chemical composition oftlie materials used for their production: stained glasses, lead network, metallic support elements and refilling putty. However, the presence of a given chemical composition is not the only factor involved in the degradation process. It is necessary the occurrence of other external factors that contribute to the development and progress of alteration problems in the materials mentioned above. The presence of gaseous pollution in the air produces a negative interaction with the surface of the stained glass windows materials. Firstly, the stained glasses and the grisailles begin a dealkalinisation process and a silica gel layer is formed during the early contact between the glasses and the wet environment. After that, insoluble salt deposits and corrosion crusts are formed as a consequence of a deeper chemical attack which results in a depolymerisation of the glass network. The lead cames and the metallic support elements are also altered by weathering. Such materials are oxidized and both pits and crusts appear on their surfaces. The transport of ions and other substances from the corrosion crusts of the metallic elements gives rise new deposits upon the stained glasses, which could intensify their own degradation processes. The putty experiments a noticeable shrinkage and cracking. Likewise, adverse environmental conditions favour the transport of putty substances towards the other materials of the stained glass window, thereby increasing the crusts thickness and adding elements that contribute to the total alteration of the

  15. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  16. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Badot, Jean-Claude, E-mail: jc.badot@chimie-paristech.fr [Institut de Recherche de Chimie Paris, UMR CNRS 8247, Réseau sur le Stockage Electrochimique de l' Energie (RS2E), Chimie Paris Tech, PSL*, 11 rue P. et M. Curie, 75231 Cedex 05 Paris (France); Lestriez, Bernard [Institut des Matériaux Jean Rouxel, UMR CNRS 6502, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes (France); Dubrunfaut, Olivier [GeePs | Group of electrical engineering – Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette CEDEX, Paris (France)

    2016-11-15

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li{sub 2}CO{sub 3} on LiNiO{sub 2} and carbon coating on LiFePO{sub 4}). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO{sub 2} (ageing and degradation in air) and LiFePO{sub 4} (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li{sub 1.1}V{sub 3}O{sub 8}) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  17. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    International Nuclear Information System (INIS)

    Badot, Jean-Claude; Lestriez, Bernard; Dubrunfaut, Olivier

    2016-01-01

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li_2CO_3 on LiNiO_2 and carbon coating on LiFePO_4). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO_2 (ageing and degradation in air) and LiFePO_4 (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li_1_._1V_3O_8) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  18. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  19. Dielectric study on hierarchical water structures restricted in cement and wood materials

    International Nuclear Information System (INIS)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-01-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials. (paper)

  20. Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2013-05-01

    Full Text Available Hysteresis mechanism of pentacene organic field-effect transistors (OFETs with polyvinyl alcohol (PVA and/or polymethyl methacrylate (PMMA dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ∼ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.

  1. Preliminary investigation of polystyrene/MoS{sub 2}-Oleylamine polymer composite for potential application as low-dielectric material in microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Giovanni, E-mail: glandi@unisa.it [Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P. Enrico Fermi 1, 80055 Portici (Italy); Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano (Italy); Altavilla, Claudia; Iannace, Salvatore; Sorrentino, Andrea, E-mail: andrea.sorrentino@cnr.it [Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P. Enrico Fermi 1, 80055 Portici (Italy); Ciambelli, Paolo [Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano (Italy); Centre NANO-MATES, University of Salerno, Fisciano, Via G. Paolo II 132, 84084 Fisciano (Italy); Neitzert, Heinrich C. [Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    Insulating materials play a vital role in the design and performance of electrical systems for both steady and transient state conditions. Among the other properties, also in this field, polymer nanocomposites promise to offer exciting improvements. Many studies in the last decade has witnessed significant developments in the area of nano-dielectric materials and significant effects of nano-scale fillers on electric, thermal and mechanical properties of polymeric materials have been observed. However, the developments of new and advanced materials to be used the miniaturization of electronic devices fabrication require extensive studies on electrical insulation characteristics of these materials before they can be used in commercial systems. In this work, Polystyrene (PS) composites were prepared by the blend solution method using MoS{sub 2}@Oleylamine nanosheets as filler. The dielectric properties of the resulting comoposite have been investigated at 300K and in the frequency range between 1000 Hz and 1 MHz. The addition of the MoS{sub 2}@Oleylamine nanosheets leads to a decreasing of the relative dielectric constant and of the electrical conductivity measured in the voltage range between ±500V. Thanks to a possibility to tune the electrical permittivity with the control of MoS{sub 2} concentration, these materials could be used as a low-dielectric material in the microelectronics applications.

  2. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)

    Science.gov (United States)

    Gamaly, E. G.; Rode, A. V.

    2018-03-01

    Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the `Die-Met' states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ɛ 0 > ɛ re > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.

  3. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  4. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    International Nuclear Information System (INIS)

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  5. An experimental study of electrical and dielectric properties of consolidated clayey materials

    International Nuclear Information System (INIS)

    Comparon, L.

    2005-06-01

    This study is devoted to the electrical and dielectric properties of consolidated clays. A better understanding of the conduction and polarization phenomena in clays is necessary to better interpret in situ measurements in terms of water saturation and texture. An experimental study was carried out on synthetic clay samples (kaolinite and smectite) compacted with various water contents, porosities and mineralogical compositions, on a large frequency range, using three laboratory setups. The electrical properties of natural argillites (from ANDRA) were then investigated. We found that the response of the synthetic samples is mainly controlled by water content on the whole frequency range; two polarization phenomena were observed, which were related to the Maxwell-Wagner polarization and the electrical double layer polarization around the clay particles. The electrical response of argillites is more complex; it is controlled by water content but also by the microstructure of the rock. In these rocks, the electrical and dielectric anisotropies are high; anisotropy was also measured for the synthetic clays. The existing models explain the high frequency limit of the dielectric permittivity of the clayey materials, but the low frequency part of the spectra (≤1 MHz) needs theoretical developments. (author)

  6. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  7. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    Science.gov (United States)

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-26

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  8. W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    Science.gov (United States)

    Cravey, Robin L.; Tiemsin, Pacita I.

    1997-01-01

    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements.

  9. ITER ECRH Upper Launcher: Test plan for qualification of the Diamond Torus Window Prototype III

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Sabine, E-mail: sabine.schreck@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Aiello, Gaetano; Meier, Andreas; Strauss, Dirk [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gagliardi, Mario; Saibene, Gabriella [F4E, Antennas and Plasma Engineering, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Scherer, Theo [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • A qualification program for the ITER diamond torus window is being developed. • The testing program for the qualification of the bare diamond disk is defined. • First qualification tests show a very good quality of the diamond disk prototypes. - Abstract: The diamond window is part of the electron cyclotron heating upper launcher system for ITER. Together with the isolation valve it constitutes the primary vacuum boundary and it also acts as first tritium barrier. Therefore the window is classified as Safety/Protection Important Component (SIC/PIC) with the nuclear safety function “confinement”. As the diamond window unit is not entirely covered by standard codes, an ad-hoc qualification program needs to be defined, including analysis, prototyping and testing. In the framework of a contract with F4E, the test program for a diamond window prototype is being developed with the aim to prove its operability for normal, accidental and incidental conditions as identified in the ITER load specifications. Tests range from dielectric loss measurements for the bare Chemical Vapour Deposition (CVD) diamond disk up to mechanical and vacuum tests for the complete window assembly. Finally mm-wave properties have to be characterized for the complete window. A clear definition of the testing requirements and of the acceptance criteria is necessary as well as a complete documentation of the process. This paper will present the development of the test plan for a window prototype, which is currently under manufacturing. First tests are directed to the characterization of the bare diamond disk with a focus on its dielectric properties.

  10. Application of Learning Methods to Local Electric Field Distributions in Defected Dielectric Materials

    Science.gov (United States)

    Ferris, Kim; Jones, Dumont

    2014-03-01

    Local electric fields reflect the structural and dielectric fluctuations in a semiconductor, and affect the material performance both for electron transport and carrier lifetime properties. In this paper, we use the LOCALF methodology with periodic boundary conditions to examine the local electric field distributions and its perturbations for II-VI (CdTe, Cd(1-x)Zn(x)Te) semiconductors, containing Te inclusions and small fluctuations in the local dielectric susceptibility. With inclusion of the induced-field term, the electric field distribution shows enhancements and diminishments compared to the macroscopic applied field, reflecting the microstructure characteristics of the dielectric. Learning methods are applied to these distributions to assess the spatial extent of the perturbation, and determine an electric field defined defect size as compared to its physical dimension. Critical concentrations of defects are assessed in terms of defect formation energies. This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-08-X-00872-e. This support does not constitute an express or implied endorsement on the part of the Gov't.

  11. 30 CFR 18.30 - Windows and lenses.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...

  12. Advanced passivation techniques for Si solar cells with high-κ dielectric materials

    International Nuclear Information System (INIS)

    Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma; Hwang, Huey-Liang; Kyznetsov, Fedor A.; Smirnova, Tamara P.; Saraev, Andrey A.; Kaichev, Vasily V.

    2014-01-01

    Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al 2 O 3 , HfO 2 ) and their compounds H (Hf) A (Al) O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al 2 O 3 film has been found to provide negative fixed charge (−6.4 × 10 11  cm −2 ), whereas HfO 2 film provides positive fixed charge (3.2 × 10 12  cm −2 ). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO 2 film would provide better passivation properties than that of the ALD-Al 2 O 3 film in this research work.

  13. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  14. Dielectric materials and electrostatics

    CERN Document Server

    Gallot-Lavalle, Olivier

    2013-01-01

    An introduction to the physics of electrical insulation, this book presents the physical foundations of this discipline and the resulting applications. It is structured in two parts. The first part presents a mathematical and intuitive approach to dielectrics; various concepts, including polarization, induction, forces and losses are discussed. The second part provides readers with the keys to understanding the physics of solid, liquid and gas insulation. It comprises a phenomenological description of discharges in gas and its resulting applications. Finally, the main electrical properties

  15. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    International Nuclear Information System (INIS)

    Bhardwaj, Sumit; Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-01-01

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications

  16. Determination of the reduced matrix of the piezoelectric, dielectric, and elastic material constants for a piezoelectric material with C∞ symmetry.

    Science.gov (United States)

    Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K

    2011-09-01

    We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.

  17. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  18. Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene.

    Science.gov (United States)

    Wang, Sai; Xu, Zuqiang; Wang, Tingting; Xiao, Tangxin; Hu, Xiao-Yu; Shen, Ying-Zhong; Wang, Leyong

    2018-04-30

    Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene (EGP6) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments.

  19. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    Science.gov (United States)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  20. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances.

    Science.gov (United States)

    Yao, Zhonghua; Song, Zhe; Hao, Hua; Yu, Zhiyong; Cao, Minghe; Zhang, Shujun; Lanagan, Michael T; Liu, Hanxing

    2017-05-01

    The demand for dielectric capacitors with higher energy-storage capability is increasing for power electronic devices due to the rapid development of electronic industry. Existing dielectrics for high-energy-storage capacitors and potential new capacitor technologies are reviewed toward realizing these goals. Various dielectric materials with desirable permittivity and dielectric breakdown strength potentially meeting the device requirements are discussed. However, some significant limitations for current dielectrics can be ascribed to their low permittivity, low breakdown strength, and high hysteresis loss, which will decrease their energy density and efficiency. Thus, the implementation of dielectric materials for high-energy-density applications requires the comprehensive understanding of both the materials design and processing. The optimization of high-energy-storage dielectrics will have far-reaching impacts on the sustainable energy and will be an important research topic in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... been an important driver for the development of new window solutions in Denmark, increasing the inner-surface temperature at the sealing of window panes. However, it will not stop complaints fromconsumers, as this temperature is calculated under standardized conditions. Increasing requirements...

  2. Study of Super Dielectric Material for Novel Paradigm Capacitors

    Science.gov (United States)

    2018-03-01

    density, power density, dielectric constant, constant current, constant voltage, electric field minimization, dipole 15. NUMBER OF PAGES 85 16. PRICE... Technology and Strategies for Improvement ..................................................................................6 4. Super Dielectric...ds infinitesimal displacement dt infinitesimal time DT discharge time dV infinitesimal voltage E electric field Etot total energy EC Lab

  3. Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array

    International Nuclear Information System (INIS)

    Liu, Xiaoshan; Liu, Guiqiang; Fu, Guolan; Liu, Mulin; Liu, Zhengqi

    2016-01-01

    Monochromatic filtering with ultra-narrowband and high spectral contrast is desirable for wide applications in display, image, and other optoelectronics. However, owing to the inherent omhic losses in the metallic materials, a broadband spectrum with a low Q-factor down to 10 inevitably limits the device performance. Herein, we for the first time theoretically propose and demonstrate an ultra-narrowband color-filtering platform based on the layered all-dielectric meta-material (LADM), which consists of a triple-layer high/low/high-index dielectrics cavity structure. Owing to the lossless dielectric materials used, sharp resonances with the bandwidth down to sub-10 nm are observed in the sub-wavelength LADM-based filters. A spectral Q-factor of 361.6 is achieved, which is orders of magnitude larger than that of the plasmonic resonators. Moreover, for the other significant factor for evaluation of filtering performance, the spectral contrast reaches 94.5%. These optical properties are the main results of the excitation of the resonant modes in the LADMs. Furthermore, polarization-manipulated light filtering is realized in this LADM. The classical Malus law is also confirmed in the reflective spectrum by tuning the polarization state. More interestingly and importantly, the filtering phenomenon shows novel features of the wavelength-independent and tunable resonant intensity for the reflective spectrum when the LADM-based filter is illuminated under an oblique state. High scalability of the sharp reflective spectrum is obtained by tuning the structural parameters. A single-wavelength reflective filtering window is also achieved in the visible frequencies. These features hold promise for the LADM-based filter with wide applications in color engineering, displaying, imaging, etc. (paper)

  4. Towards all-dielectric, polarization-independent optical cloaks

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    Fully enclosing, all-dielectric cloaks working for both E-z and H-z polarizations simultaneously are presented in this letter. The cloaks are effective for two antiparallel angles of incidence, and the layout of standard dielectric material in the cloak is determined by topology optimization. Sca...... effectively when distributing a material with lower permittivity than the background material....

  5. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    Science.gov (United States)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  6. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Mapes, M.; Leonhardt, W.J.

    1993-01-01

    Large aperture, low mass, thin vacuum windows are required to minimize beam loss in the beam lines of particle accelerators as the products of nuclear collisions move from upstream targets to downstream detectors. This article describes the design, fabrication, testing, and operating experience of a large rectangular vacuum window, 122 cmx61 cm, and two circular windows of 91.4 and 96.5 cm diam. These window designs utilize a composite Kevlar 29 fabric and Mylar laminate as a window material with a typical combined thickness of 0.35 mm. Data for several material thicknesses are also presented. The windows are usually designed to withstand a pressure differential of two to three atmospheres to achieve the required factor of safety. These windows are typically used in the medium vacuum range of 10 -4 Torr. The equations used to predict the behavior of the window material will also be discussed

  7. Reality of dielectric materials in special environment with radiation and others

    International Nuclear Information System (INIS)

    1993-01-01

    In this report, the results of investigation by the expert committee on the title problem in the Institute of Electrical Engineers of Japan from April, 1989 to March, 1992 are summarized. The objectives were to collect the data on the deterioration of dielectric and insulation materials in the special environment including radiation, to investigate the deterioration mechanism, and to grasp the state of development of the materials which can withstand special environment. The actual conditions of temperature, humidity and radiation in nuclear reactors, nuclear fuel cycle facilities, spaceships, accelerator facilities and nuclear fusion experiment facilities are reported. As the new materials which can withstand special environment, the properties of aromatic engineering plastics such as polyimide, PEEK and others, no-halogen incombustible materials, thermoplastic polyurethane, ethylene propylene rubber, cross-linked polyethylene, ceramics, high temperature superconductors, fiber-reinforced composite materials, silica glass and quartz optical fibers are shown. The factors of material deterioration, the method of forecasting lifetime and the examples are explained. The new methods of measuring material properties such as ion microprobe, positron annihilation, scanning tunnel microscopes, optical detection magnetic resonance and so on are explained. (K.I.)

  8. Study of a Modified AC Bridge Technique for Loss Angle Measurement of a Dielectric Material

    Directory of Open Access Journals (Sweden)

    S. C. BERA

    2008-09-01

    Full Text Available A Wheatstone’s bridge network like Schering Bridge, DeSauty Bridge etc measures the loss angle or tangent of loss angle (tanδ of a dielectric material. In high voltage application this loss angle is generally measured by high voltage Schering Bridge. But continuous measurement of tan δ is not possible by these techniques. In the present paper a modified operational amplifiers based Schering Bridge network has been proposed for continuous measurement of tanδ in the form of a bridge network output voltage. Mathematical analysis of the proposed bridge network has been discussed in the paper and experimental work has been performed assuming the lossy dielectric material as a series combination of loss less capacitor and a resistor. Experimental results are reported in the paper. From the mathematical analysis and experimental results it is found that the output of the proposed bridge network is almost linearly related with tanδ.

  9. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  10. New window materials for high power gyrotron

    International Nuclear Information System (INIS)

    Afsar, M.N.; Hua Chi

    1993-01-01

    A single free standing synthetic diamond window seems to have higher absorption coefficient value at millimeter wavelength region at this time although it is claimed that it possesses good mechanical strength and higher thermal conductivity characteristics. It certainly does not rule out the use of diamond film on single crystal high resistivity silicon to improve its mechanical strength and thermal conductivity. One may have to use an appropriate film thickness for a particular wavelength in gyrotron window application. It is also necessary to use an appropriate thickness for the silicon perhaps equivalent to a quaterwavelength in order to avoid the reflection mismatch

  11. AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION

    International Nuclear Information System (INIS)

    ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.

    2002-01-01

    Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined

  12. A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

    Science.gov (United States)

    Wallace, Robert M.

    2001-03-01

    Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.13 um complementary metal oxide semiconductor (CMOS) technology. The prospect of replacing SiO2 is a formidable task because the alternate gate dielectric must provide many properties that are, at a minimum, comparable to those of SiO2 yet with a much higher permittivity. A systematic examination of the required performance of gate dielectrics suggests that the key properties to consider in the selection an alternative gate dielectric candidate are (a) permittivity, band gap and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. We will review the performance requirements for materials associated with CMOS scaling, the challenges associated with these requirements, and the state-of-the-art in current research for alternate gate dielectrics. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.

  13. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  14. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M. [Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30318 (United States)

    2016-05-15

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  15. Determination of levels of polychlorinated biphenyls (PCBs) present in caulk and window glazing material samples from older buildings

    Science.gov (United States)

    Levels of polychlorinated biphenyls (PCBs) in caulk and window glazing material samples from older buildings were determined, using a method developed for this purpose. This method was evaluated by analyzing a combination of 47 samples of caulk, glazing materials, including quali...

  16. Synthesis and Characterization of High-Dielectric-Constant Nanographite-Polyurethane Composite

    Science.gov (United States)

    Mishra, Praveen; Bhat, Badekai Ramachandra; Bhattacharya, B.; Mehra, R. M.

    2018-05-01

    In the face of ever-growing demand for capacitors and energy storage devices, development of high-dielectric-constant materials is of paramount importance. Among various dielectric materials available, polymer dielectrics are preferred for their good processability. We report herein synthesis and characterization of nanographite-polyurethane composite with high dielectric constant. Nanographite showed good dispersibility in the polyurethane matrix. The thermosetting nature of polyurethane gives the composite the ability to withstand higher temperature without melting. The resultant composite was studied for its dielectric constant (ɛ) as a function of frequency. The composite exhibited logarithmic variation of ɛ from 3000 at 100 Hz to 225 at 60 kHz. The material also exhibited stable dissipation factor (tan δ) across the applied frequencies, suggesting its ability to resist current leakage.

  17. Reduction of damage threshold in dielectric materials induced by negatively chirped laser pulses

    International Nuclear Information System (INIS)

    Louzon, E.; Henis, Z.; Pecker, S.; Ehrlich, Y.; Fisher, D.; Fraenkel, M.; Zigler, A.

    2005-01-01

    The threshold fluence for laser induced damage in wide band gap dielectric materials, fused silica and MgF 2 , is observed to be lower by up to 20% for negatively (down) chirped pulses than for positively (up) chirped, at pulse durations ranging from 60 fs to 1 ps. This behavior of the threshold fluence for damage on the chirp direction was not observed in semiconductors (silicon and GaAs). Based on a model including electron generation in the conduction band and Joule heating, it is suggested that the decrease in the damage threshold for negatively chirped pulse is related to the dominant role of multiphoton ionization in wide gap materials

  18. Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges

    International Nuclear Information System (INIS)

    Lothongkam, Chaiyaporn

    2014-01-01

    A novel optical detection method for partial discharge in HV/EHV cable terminations has been proposed. Optical sensor fibres integrated into the HV equipment provide high sensitivity as well as immunity to electromagnetic interference and enable therefore on-line monitoring in electromagnetically noisy environment. The availability of optically transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial prerequisite for the implementation of this method. The optically transparent silicone rubbers can be applied for the fabrication of a modern rubber stress cone as well as for the development of a new optical sensing element sensitive to PD activities. In this thesis, AC dielectric strength behaviour and mechanical properties of three types of commercially available silicone rubbers were investigated. One of the characterized silicone rubbers was a translucent type whereas the two others were optically transparent types, however with different chemical curing reactions. The measurements of tensile strength and elongation at break were carried out according to the ISO 37 standard. For investigation of the dielectric strength E b behaviour of the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same time, highly reliable and efficient, saves time and reduces material consumption in comparison to previously reported methodologies. The key component of this methodology is a specifically developed test facility. Furthermore, the methodology comprises determinations for easy preparation and handling of high-quality test specimens. This test method provides various advantages over other methods that have previously been used for measurement of the fundamental quantity E b value of silicone rubbers. Both technical and economic demands are satisfied. The new facility also enables cost-effective routine tests in material research laboratories. The high quality of the obtained test results was verified by

  19. Analyzing the effect of gate dielectric on the leakage currents

    Directory of Open Access Journals (Sweden)

    Sakshi

    2016-01-01

    Full Text Available An analytical threshold voltage model for MOSFETs has been developed using different gate dielectric oxides by using MATLAB software. This paper explains the dependency of threshold voltage on the dielectric material. The variation in the subthreshold currents with the change in the threshold voltage sue to the change of dielectric material has also been studied.

  20. The materials physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Introduction to Materials Physics: Structure of matter. Solid state physics. Dynamic properties of solids. Dielectric Properties of Materials: Dielectric properties. Ferroelectric and piezoelectric materials. Dielectric breakdown. Applications of dielectrics. Magnetic Properties of Materials: Magnetic properties. Magnetic moment. Spontaneous magnetization. Superconductivity.

  1. Management of the flabby ridge using a modified window technique and polyvinylsiloxane impression material

    Directory of Open Access Journals (Sweden)

    Nawaf Labban

    2018-01-01

    Full Text Available Flabby ridge is a common clinical finding affecting the alveolar ridges of the mandibular or maxillary arches. The anterior region of maxilla is the most affected area in edentulous patients. Dentures on flabby ridges have compromised stability, support, and retention unless adequate measures for its management are employed. Methods applied for flabby ridge management, include surgical removal and augmentation, special impression techniques, balanced distribution of occlusal loads and implant therapy. Special impressions often involve window technique for static impression of flabby area, which present multiple challenges. The purpose of this technique report is to present a modified window technique for the impression of anterior maxillary flabby tissues for improved and controlled application of polyvinylsiloxane impression material that are routinely available in dental practice.

  2. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave

  3. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chang [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Fang Qingqing, E-mail: physfangqq@126.com [School of Physics and Material Science, Anhui University, Hefei 230036 (China) and Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China)

    2012-05-15

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<-5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<-5 dB and RL<-8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was -29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: Black-Right-Pointing-Pointer We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. Black-Right-Pointing-Pointer ZnO dielectric property increased absorption effect and absorption bandwidth. Black-Right-Pointing-Pointer Absorbing frequence of composites is expanding to low frequency direction. Black-Right-Pointing-Pointer The craft of high energy ball milling is easy to realize commerce production.

  4. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    International Nuclear Information System (INIS)

    Zhou Chang; Fang Qingqing; Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong

    2012-01-01

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0–20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: ► We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. ► ZnO dielectric property increased absorption effect and absorption bandwidth. ► Absorbing frequence of composites is expanding to low frequency direction. ► The craft of high energy ball milling is easy to realize commerce production.

  5. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  6. On structural, optical and dielectric properties of zinc aluminate ...

    Indian Academy of Sciences (India)

    reports on the dielectric properties of this material is very rarely found in literature. ... C placed on a heating man- ... and dielectric loss of the material using the equation ε = ε tan δ, ..... ble mechanism of a.c. conduction in zinc aluminate particles.

  7. Organic dielectrics in high voltage cables

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  8. Some properties of 2-D dielectric-based ENG/MNG material parameters extracted using the S-parameter method

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    This work presents a systematic investigation of material parameters for two-dimensional epsilon-negative (ENG) and mu-negative (MNG) materials as obtained by the scattering parameter method. The unit cell consists of infinite dielectric cylinders, their sizes and permittivities are chosen...... to enable the ENG and MNG behaviors. For the both configurations, the permittivity and the permeability is reported. Influence of several effects on the extracted material parameters is examined, including the loss inside the cylinders and the size of the unit cells...

  9. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  10. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  11. Understanding Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Mechanical property changes in porous low-k dielectric thin films during processing

    Energy Technology Data Exchange (ETDEWEB)

    Stan, G., E-mail: gheorghe.stan@nist.gov; Gates, R. S. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kavuri, P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Torres, J.; Michalak, D.; Ege, C.; Bielefeld, J.; King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2014-10-13

    The design of future generations of Cu-low-k dielectric interconnects with reduced electronic crosstalk often requires engineering materials with an optimal trade off between their dielectric constant and elastic modulus. This is because the benefits associated with the reduction of the dielectric constant by increasing the porosity of materials, for example, can adversely affect their mechanical integrity during processing. By using load-dependent contact-resonance atomic force microscopy, the changes in the elastic modulus of low-k dielectric materials due to processing were accurately measured. These changes were linked to alterations sustained by the structure of low-k dielectric films during processing. A two-phase model was used for quantitative assessments of the elastic modulus changes undergone by the organosilicate skeleton of the structure of porous and pore-filled dielectrics.

  13. Dielectric material in lead-based perovskite and fabrication process for multilayer ceramic capacitor with copper internal electrode

    International Nuclear Information System (INIS)

    Kato, J.; Yokotani, Y.; Kagata, H.; Nakatani, S.; Kugimiya, K.

    1990-01-01

    This paper reports on the development of a multilayer ceramic capacitor with copper internal electrodes. Dielectric materials of the capacitor is lead- based perovskite (Pb a Ca b ) (Mg 1/3 Nb 2/3 ) x Ti y (Ni 1/2 W 1/2 ) z O 2 + a + b where a + b gt 1 and x + y + z = 1. The materials can be fired below 1000 degrees C and have high resistivity even when fired in the atmosphere below the equilibrium oxygen partial pressure of copper and CuO. The fabrication process of the capacitor has following features. The electrode paste is composed of copper oxide to prevent breaking of the laminated body in a burn out process. Then the copper oxide is first metalized and fired in a controlled atmosphere. The obtained capacitor of 20 dielectric layers of 17 micron meter meets to Z5U specification and has low loss tangent of 0.6% and stability under d.c. bias voltage and high a.c. field

  14. Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materials

    International Nuclear Information System (INIS)

    Ting, Tzu-Hao; Chiang, Chih-Chia; Lin, Po-Chuan; Lin, Chia-Huei

    2013-01-01

    An optimised composite sample was prepared using two dielectric materials manganese dioxide (MnO 2 ) and multi-wall carbon nanotubes (MWNTs) in an epoxy-resin matrix. Structural characterisations of both the synthesised manganese dioxide (MnO 2 ) and the multi-wall carbon nanotubes (MWNTs) were performed by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microwave absorption properties of dielectric composites with different weight fractions of MnO 2 were investigated by measuring the complex permittivity, the complex permeability and the reflection loss in the 2–18 and 18–40 GHz microwave frequency ranges using the free space method. The complex permittivity varied with the MnO 2 content, and the results show that a high concentration of fillers increased the dielectric constant. Therefore, the appropriate combination of components and experimental conditions can produce materials with specific characteristic for use as wide-band microwave absorbers. - Highlights: ► This paper analyses optimised microwave absorption for MnO 2 /MWNT composites. ► Structural characterisations were performed by using XRD and SEM. ► Increasing MnO 2 content enhances the complex permittivity in MnO 2 /MWNT matrix. ► The reflection loss varies with changes content of MnO 2 for required frequency bands

  15. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  16. PLZT capacitor and method to increase the dielectric constant

    Science.gov (United States)

    Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.

    2017-12-12

    A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.

  17. 14 CFR 29.775 - Windshields and windows.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will not...

  18. 14 CFR 27.775 - Windshields and windows.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not break...

  19. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  20. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  1. Composition of 12-18th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings

    International Nuclear Information System (INIS)

    Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwe, Danielle

    2007-01-01

    A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th -18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making

  2. Composition of 12-18 th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings

    Science.gov (United States)

    Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwé, Danielle

    2007-07-01

    A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th-18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making.

  3. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  4. Atomic layer deposition of dielectrics for carbon-based electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jiyoung.kim@utdallas.edu; Jandhyala, S.

    2013-11-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics.

  5. Atomic layer deposition of dielectrics for carbon-based electronics

    International Nuclear Information System (INIS)

    Kim, J.; Jandhyala, S.

    2013-01-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics

  6. 14 CFR 25.775 - Windshields and windows.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 25.775 Section 25... § 25.775 Windshields and windows. (a) Internal panes must be made of nonsplintering material. (b.... (d) The design of windshields and windows in pressurized airplanes must be based on factors peculiar...

  7. 14 CFR 23.775 - Windshields and windows.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 23.775 Section 23... Personnel and Cargo Accommodations § 23.775 Windshields and windows. (a) The internal panels of windshields and windows must be constructed of a nonsplintering material, such as nonsplintering safety glass. (b...

  8. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  9. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  10. A simple experimental setup for magneto-dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  11. A simple experimental setup for magneto-dielectric measurements

    International Nuclear Information System (INIS)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  12. Dielectric materials for use in thin-film capacitors

    Science.gov (United States)

    Carr, H. E.; Foster, W. D.; Fromhold, A. T., Jr.; Harbuck, T. A.

    1969-01-01

    Investigation report presents details of dielectric properties of various metals measured at 300 degrees K for thermally evaporated oxides from 300 to 6000 A in thickness. It is relevant to the medium of integrated circuitry.

  13. Passive multi-frequency brain imaging and hyperthermia irradiation apparatus: the use of dielectric matching materials in phantom experiments

    International Nuclear Information System (INIS)

    Gouzouasis, Ioannis; Karathanasis, Konstantinos; Karanasiou, Irene; Uzunoglu, Nikolaos

    2009-01-01

    In this paper a hybrid system able to provide focused microwave radiometry and deep brain hyperthermia is experimentally tested. The system's main module is an ellipsoidal conductive wall cavity which acts as a beam former, focusing the electromagnetic energy on the medium of interest. The system's microwave radiometry component has extensively been studied theoretically and experimentally in the past few years with promising results. In this work, further investigation concerning the improvement of the hybrid system's focusing properties is conducted. Specifically, microwave radiometry and hyperthermia experiments are performed using water phantoms surrounded by dielectric layers used as matching material to enhance detection/penetration depth and spatial resolution. The results showed that the dielectric material reduces the reflected electromagnetic energy on the air–phantom interface, resulting in improved temperature resolution and higher detection or penetration of the energy when microwave radiometry and hyperthermia are applied respectively

  14. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges

    International Nuclear Information System (INIS)

    Wang, Y. H.; Zhang, Y. T.; Wang, D. Z.; Kong, M. G.

    2007-01-01

    In this letter, evidence of temporal plasma nonlinearity in which atmospheric dielectric-barrier discharges undergo period multiplication and chaos using a one-dimensional fluid model is reported. Under the conditions conducive for chaotic states, several frequency windows are identified in which period multiplication and secondary bifurcations are observed. Such time-domain nonlinearity is important for controlling instabilities in atmospheric glow discharges

  15. VIS-IR transmitting BGG glass windows

    Science.gov (United States)

    Bayya, Shyam S.; Chin, Geoff D.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2003-09-01

    BaO-Ga2O3-GeO2 (BGG) glasses have the desired properties for various window applications in the 0.5-5 μm wavelength region. These glasses are low cost alternatives to the currently used window materials. Fabrication of a high optical quality 18" diameter BGG glass window has been demonstrated with a transmitted wave front error of λ/10 at 632 nm. BGG substrates have also been successfully tested for environmental weatherability (MIL-F-48616) and rain erosion durability up to 300 mph. Preliminary EMI grids have been successfully applied on BGG glasses demonstrating attenuation of 20dB in X and Ku bands. Although the mechanical properties of BGG glasses are acceptable for various window applications, it is demonstrated here that the properties can be further improved significantly by the glassceramization process. The ceramization process does not add any significant cost to the final window material. The crystallite size in the present glass-ceramic limits its transmission to the 2-5 μm region.

  16. Extraction and dielectric properties of curcuminoid films grown on Si substrate for high-k dielectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Dakhel, A.A.; Jasim, Khalil E. [Department of Physics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503 (Bahrain); Henari, F.Z., E-mail: fzhenari@rcsi-mub.com [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503 (Bahrain)

    2013-09-20

    Highlights: • The unknown insulating properties of curcuminoid extract are systematically studied. • Optical study gives a bandgap of 3.15 eV and a refractive index of 1.92 at 505 nm. • Turmeric is a high-k environmental friendly material for use in microelectronics. • Curcuminoid extract can be used as insulator of MIS devices with ε{sup ′}{sub ∞}≈54.2. -- Abstract: Curcuminoids were extracted from turmeric powder and evaporated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The optical absorption spectrum of the prepared amorphous film was not identical to that of the molecular one, which was identified by a strong wide absorption band in between ∼220 and 540 nm. The onset energy of the optical absorption of the film was calculated by using Hamberg et al. method. The dielectric properties of this material were systematically studied for future eco friendly applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed in-terms of dielectric impedance Z{sup *}(ω) and modulus M{sup *}(ω). Generally, the curcuminoid complex can be considered as a high-k material and can be used in the environmental friendly production of microelectronic devices.

  17. Extraction and dielectric properties of curcuminoid films grown on Si substrate for high-k dielectric applications

    International Nuclear Information System (INIS)

    Dakhel, A.A.; Jasim, Khalil E.; Cassidy, S.; Henari, F.Z.

    2013-01-01

    Highlights: • The unknown insulating properties of curcuminoid extract are systematically studied. • Optical study gives a bandgap of 3.15 eV and a refractive index of 1.92 at 505 nm. • Turmeric is a high-k environmental friendly material for use in microelectronics. • Curcuminoid extract can be used as insulator of MIS devices with ε ′ ∞ ≈54.2. -- Abstract: Curcuminoids were extracted from turmeric powder and evaporated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The optical absorption spectrum of the prepared amorphous film was not identical to that of the molecular one, which was identified by a strong wide absorption band in between ∼220 and 540 nm. The onset energy of the optical absorption of the film was calculated by using Hamberg et al. method. The dielectric properties of this material were systematically studied for future eco friendly applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed in-terms of dielectric impedance Z * (ω) and modulus M * (ω). Generally, the curcuminoid complex can be considered as a high-k material and can be used in the environmental friendly production of microelectronic devices

  18. Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor

    Science.gov (United States)

    Madan, Jaya; Gupta, R. S.; Chaujar, Rishu

    2015-09-01

    In this work, an analytical drain current model for gate dielectric engineered (hetero dielectric)-dual material gate-gate all around tunnel field effect transistor (HD-DMG-GAA-TFET) has been developed. Parabolic approximation has been used to solve the two-dimensional (2D) Poisson equation with appropriate boundary conditions and continuity equations to evaluate analytical expressions for surface potential, electric field, tunneling barrier width and drain current. Further, the analog performance of the device is studied for three high-k dielectrics (Si3N4, HfO2, and ZrO2), and it has been investigated that the problem of lower ION, can be overcome by using the hetero-gate architecture. Moreover, the impact of scaling the gate oxide thickness and bias variations has also been studied. The HD-DMG-GAA-TFET shows an enhanced ION of the order of 10-4 A. The effectiveness of the proposed model is validated by comparing it with ATLAS device simulations.

  19. Construction of electron accelerator for studying secondary emission in dielectric materials

    International Nuclear Information System (INIS)

    Hessel, R.

    1990-01-01

    An acelerator for the generation of low energy electrons (in the 0.4 to 20 keV range) was constructed. The accelerator is equipped with some devices especially designed for the investigation of the electrical properties of electron-irradiated dielectrics. In this work we have employed it for the study of the secondary electron emission of irradiated polymers. Reference is made to a method proposed by H. von Seggern (IEEE Trans. Nucl. Sci. NS-32, p.1503 (1985)] which was intended for the determination of the electron emission yield especially between the two cross-over points in a single run, here called the dynamical method. We have been able to prove that, contrary to expectation, this method does not give correct results over the entire emission curve. Rather it gives yield values which are too low by 25% in the region where the emission exhibits a maximum, due to the interaction between the electron emission process and the positive surface charge of the dielectric. However the method needs not to be dismissed entirely. As it is, it can be used advantageously for the precise determination of the energy of the second cross-over point. In addition, with the same set up, the method could be improved by replacing the continuous irradiation of the sample by a pulsed irradiation, leading to results essentially the same as those shown in the literature. Finally analysing the process of interaction between the positive charge of the dielectric and the mechanism of electron emission in several situations, we were able: I) to determine the maximum value and the average value of the escape depth of the emitted electrons; II) for a sample with a net positive charge, to show that the positive charge resides very near the surface of incidence; III) for a sample with a net negative charge, to show that the positive charge also resides near the surface while the (prevalent) negative charge resides in the bulk of the material. (author)

  20. Optical and electrical phenomena in dielectric materials under irradiation

    CERN Document Server

    Plaksin, O A; Stepanov, P A; Demenkov, P V; Chernov, V M; Krutskikh, A O

    2002-01-01

    Optical and acoustic properties of the materials based on Al sub 2 O sub 3 , SiO sub 2 and BN under 8 MeV proton irradiation (<10 sup 4 Gy/s) have been measured. Electric charge partitioning has been shown to result in charging the microscopic regions in the bulk of the dielectrics under irradiation, which is due to different mobility of free electrons and holes (sapphire), concentration inhomogeneity in the system of charge carrier traps (alumina), or thermodynamic instability of the homogeneous distribution of the filled traps (silica glasses). Prevalent charge carrier recombination in the grain boundaries causes re-crystallization of pyrolytic boron nitride under irradiation, which shows up as simultaneous decrease of the intensity of radiation-induced luminescence (RIL) of the centres in the grain boundaries and the BN. The local charging results in optical inhomogeneity of the silica glasses which is sustained by the optical loss spectra of the irradiated glasses, features of kinetics of bleaching, RI...

  1. Design of viewing windows for controlled-atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    A guide to the design of safe viewing windows is presented. Design criteria, the properties of materials, the problems of structural design in unreliable materials such as glass, the mathematics of reliability and redundance, and problems associated with testing windows are discussed, and formulas are presented for the design of windows. Criteria adopted at ORNL for controlled-atmosphere chambers are presented, a program for surveying and upgrading the safety of existing facilities is described, and the results of this program are reported

  2. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  3. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  4. Window Glazing Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Window Frame Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Window Operator Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    International Nuclear Information System (INIS)

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials possess intrinsic flexibility which can be investigated using geometric simulation. We review framework flexibility properties in energy materials and present novel results on the flexibility window of the EMT zeolite framework containing 18-crown-6 ether as a structure directing agent (SDA). Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO 4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework

  8. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  9. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  10. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  11. Microwave measurement and modeling of the dielectric properties of vegetation

    Science.gov (United States)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  12. Study of water mass transfer dynamics in frescoes by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Olmi, R.; Riminesi, C.

    2008-01-01

    The knowledge of moisture content (M C) is essential for determining the state of preservation of various types of hand-work: from building materials such as bricks and concrete, to objects of artistic value, in particular frescoes and mural paintings. In all above, moisture is the primary source of damages, as it affects the durability of porous materials. Dielectric properties of porous materials are strongly affected by the presence of water, suggesting dielectric spectroscopy as a suitable non-invasive diagnostic technique. The development of a quantitative relationship between M C and permittivity requires to investigate the dynamics of water mass transfer in porous media, and to determine its effect on the dielectric properties. In this paper a coupled mass transfer/dielectric problem is introduced and solved numerically, based on a finite element model. Results are compared to experimental dielectric measurements performed on plaster samples by the open coaxial method. The application of the dielectric technique to frescoes monitoring is proposed, showing the results obtained is an on-site study.

  13. Encapsulation methods and dielectric layers for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  14. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

    Science.gov (United States)

    Anand, Sunny; Sarin, R. K.

    2017-02-01

    In this paper, charge-plasma-based tunnel FET is proposed by employing dual material gate with hetero gate dielectric technique and it is named hetero-dielectric dual material gate doping-less TFET (HD_DMG_DLTFET). It is compared with conventional doping-less TFET (DLTFET) and dual material gate doping-less TFET (DMG_DLTFET) on the basis of analog and RF performance. The HD_DMG_DLTFET provides better ON state current ({I}\\text{ON}=94 μ \\text{A}/μ \\text{m}), {I}\\text{ON}/{I}\\text{OFF}(≈ 1.36× {10}13), \\text{point} (≈ 3\\text{mV}/\\text{dec}) and average subthreshold slope (\\text{AV}-\\text{SS}=40.40 \\text{mV}/\\text{dec}). The proposed device offers low total gate capacitance (C gg) along with higher drive current. However, with a better transconductance (g m) and cut-off frequency (f T), the HD_DMG_DLTFET can be a good candidate for RF circuitry. The early voltage (V EA) and output conductance (g d) are also moderate for the proposed device with comparison to other devices and therefore can be a candidate for analog devices. From all these simulation results and their study, it is observed that HD_DMG_DLTFET has improved analog/RF performance compared to DLTFET and DMG_DLTFET.

  15. Optimising the performance of the window

    Energy Technology Data Exchange (ETDEWEB)

    Luther, M.B. [Deakin Univ., Geelong, VIC (Australia); Boland, J. [South Australia Univ., Adelaide, SA (Australia)

    1996-12-31

    Glass is a versatile material in the design and performance of windows. Advancements in the technologies of the glass material have produced variable degrees of window thermal performance. A closer look at the glazing system itself in reference to overall building thermal performance will hopefully explain when, where and how the window is a benefit under specific climatic conditions. The optimization of equatorially facing window area for either single or double glazing systems is investigated in another paper in this conference, and it is now queried as to how the design of the window itself can benefit the annual performance of a residence. Two locations were investigated, each for a hot summer and cold winter week. Separate glazing analysis programs are also used independent of the thermal residential program CHEETAH. Three glazing systems, single 3 mm, double 3 mm, and a spectrally-selective double 3 mm system were investigated. There appears to be little difference in the total overall performance between a clear and a selective double insulated glazing system. It is further suggested that there is room for future improvement to thermal simulation programs by incorporating rigorous glazing simulation. 9 figs., 8 refs.

  16. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    OpenAIRE

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  17. Light-induced space-charge fields for the structuration of dielectric materials; Lichtinduzierte Raumladungsfelder zur Strukturierung dielektrischer Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, H A

    2006-11-15

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  18. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  19. High power testing oa ANL X-band dielectric-loaded accelerating structures

    International Nuclear Information System (INIS)

    Power, J. G.; Gai, W.; Jing, C.; Konecny, R.; Gold, S. H.; Kinkead, A. K.

    2002-01-01

    In the second phase of a program to develop a compact accelerator based on a dielectric-loaded accelerating structure, we have conducted high power tests on a traveling-wave and a standing-wave prototype. Indications are that the traveling-wave structure achieved an accelerating gradient of 3-5 MV/m before the input coupling window failed, while the standing wave structure was poorly matched at high power due to contamination of copper residue on its coupling window. To solve both of these problems, a new method for coupling RF into the structures has been developed. The new couplers and the rest of the modular structure are currently under construction and will be tested at the Naval Research Laboratory shortly

  20. Enhancing the Performance of the Microwave Absorbing Materials by Using Dielectric Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Omar H. Al-Zoubi

    2017-01-01

    Full Text Available We present a technique for enhancing the performance of microwave absorbing materials in terms of weight, thickness, and bandwidth. The introduced technique is based on fabricating the microwave absorbing (MA material in a structure comprised of an array of circular cylinder dielectric resonators (CDR backed by a perfect electric conductor (PEC ground plane. Numerical electromagnetic methods are employed to study the properties of the proposed MA array structures, where 3D full wave simulation using finite-element method is implemented. The obtained results show that the performance of the MA-CDR arrays significantly outperforms that of a flat layer composed of the same material and having equivalent thickness. A flat layer of MA material with thickness of 5 mm backed by perfect electric conductor (PEC shows as low as -50 dB reflection loss (RL peak and ~3 GHz 10-dB bandwidth, whereas an MA-CDR array, composed of the same MA material, of height of 4 mm can achieve as low as ~−50 dB RL peak and ~12 GHz 10-dB RL bandwidth.

  1. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  2. Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn{sub 2/3}Ta{sub 1/3})O{sub 3} electronic material

    Energy Technology Data Exchange (ETDEWEB)

    Halder, S.; Bhuyan, S.; Das, S.N.; Sahoo, S.; Choudhary, R.N.P.; Parida, K. [Siksha ' O' Anusandhan University, Bhubaneswar (India); Das, P. [Midnapore College, Department of Physics, Midnapore, West Bengal (India)

    2017-12-15

    A lead-free dielectric material [Bi(Zn{sub 2/3}Ta{sub 1/3})O{sub 3}] has been prepared using a solid state reaction technique at high-temperature. The resistive, conducting and capacitive characteristics of the prepared electronic material have been studied in different experimental conditions. The determination of basic crystal parameters and reflection indices confirm the development of polycrystalline compound with orthorhombic crystal structure. The study of frequency-temperature dependence of ac conductivity illustrates the nature and conduction mechanism of the material. On the basis of observed impedance data and detailed dielectric analysis, the existence of non-Debye type relaxation has been affirmed. The electronic charge carriers of compound have short range order that has been validated from the complex modulus and impedance spectrum. The detailed studies of resistive, capacitive, microstructural characteristics of the prepared material provide some useful data for considering the material as an electronic component for fabrication of devices. (orig.)

  3. Proper Installation of Replacement Windows | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  4. Optical, magnetic, and dielectric properties of opal matrices with intersphere nanocavities filled with crystalline multiferroic, piezoelectric, and segnetoelectric materials

    Czech Academy of Sciences Publication Activity Database

    Samoilovich, M.I.; Rinkevich, A.B.; Bovtun, Viktor; Belyanin, A.F.; Kempa, Martin; Nuzhnyy, Dmitry; Tsvetkov, M.Yu.; Klescheva, S.M.

    2013-01-01

    Roč. 83, č. 11 (2013), s. 2132-2147 ISSN 1070-3632 R&D Projects: GA ČR GAP204/12/0232 Institutional support: RVO:68378271 Keywords : composites * opal matrices * optical, magnetic, and dielectric properties Subject RIV: JI - Composite Materials Impact factor: 0.418, year: 2013

  5. Self-Healing, High-Permittivity Silicone Dielectric Elastomer

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...... or cuts made directly to the material due to the reassembly of the ionic bonds that are broken during damage. The dielectric elastomers presented in this paper pave the way to increased lifetimes and the ability of dielectric elastomers to survive millions of cycles in high-voltage conditions....

  6. Performance Standards for Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Benefits of Efficient Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. Assessing Window Replacement Options | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  9. Windows for New Construction | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  10. Effects of LiF on microwave dielectric properties of 0.25Ca0.8Sr0 ...

    Indian Academy of Sciences (India)

    Administrator

    telecommunications. Generally, it is not easy to find materials which satisfy these three characteristics for microwave dielectric applications, because the materials with high dielectric constant have a high dielectric loss and large τf value. After the dielectric characteristics of the perovskite structure A1–xA′xBO3 are reported ...

  11. Dielectric and polarization behaviour of cellulose electro-active paper (EAPap)

    International Nuclear Information System (INIS)

    Yun, Gyu-Young; Kim, Joo-Hyung; Kim, Jaehwan

    2009-01-01

    Dielectric and polarization behaviour of electro-active paper (EAPap) were studied to understand the detailed material behaviour of EAPap as a novel smart material. It was revealed that the dielectric constant of EAPap was temperature and frequency dependent. The largest change in the dielectric constant was observed near 0 0 C while the highest dielectric constant was obtained at around 100 0 C, which might be related to the dipolar behaviour of the hydroxyl structure of cellulose and adsorbed or existing internal water molecules in cellulose EAPap. By thermal stimulated current measurement for polarization behaviour of cellulose EAPap, it was shown that the maximum current was observed in the temperature range 105-110 0 C. Compared with the polarization behaviour in the low temperature range, abnormal polarization was observed under an applied field mainly due to the trapped space charge in EAPap, which indicates that cellulose EAPap has a similar material behaviour to that of electret polymers. (fast track communication)

  12. The behaviour of charge distributions in dielectric media

    NARCIS (Netherlands)

    van Duijnen, Petrus; de Gier, Hilde D.; Broer, Ria; Havenith, Remco W. A.

    2014-01-01

    Screened Coulomb interaction in dielectrics is often used as an argument for a lower exciton binding energy and easier exciton dissociation in a high dielectric material. In this paper, we show that at length scales of excitons (10-20 angstrom), the screened Coulomb law is invalid and a microscopic

  13. On dielectric breakdown statistics

    International Nuclear Information System (INIS)

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  14. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  15. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  16. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    Science.gov (United States)

    Farrington, Stephen P.

    2018-05-15

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance is directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.

  17. Toward superlensing with metal-dielectric composites and multilayers

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Bundgaard; Thoreson, M.D.; Chen, W.

    2010-01-01

    We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically...... and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses...

  18. Structural behavior of window laminated glass plies using new interlayer materials

    Directory of Open Access Journals (Sweden)

    Mostafa El-Shami

    2018-01-01

    Full Text Available In most cases for the structural design of architectural glazing systems under a wide range of environmental conditions, the designers follow procedures provided by model building codes to design window glass. These codes commonly use design charts to determine design strength based on nominal glass thickness and aspect ratio. Glass plies are the principal components of laminated glass (LG where a thin ply of elastomeric material Polyvinyl butyral (PVB is used to bond glass plies (normally two plies to form the LG. Because of the reduction in LG design strength by most building codes and design guidelines, designers avoid architectural LG applications, other than for safety consideration. In this research a higher order mathematical model based on Mindlin plate theory is presented. LG was modeled using finite element methodology with new interlayer (NI. It consists of two plies of PVB with a hard ply of film material in between. In the FEM, properties of PVB/film material can be easily controlled regardless of their thicknesses. The finite element model (FEM was extended to account the design recommendations of ASTM (2012 to develop the design charts for LG with NI. The current FEM was verified and used to study the stresses transformation through NI. Design charts for samples of LG with NI were developed and presented. It has been found that using NI enhances the total behavior of LG and reflects on the design charts for this type of interlayer material.

  19. Preparation and Characterization of Pure Organic Dielectric Composites for Capacitors

    Directory of Open Access Journals (Sweden)

    Mao Xin

    2018-01-01

    Full Text Available This work reports the excellent dielectric composites were prepared from polyimide (PI and poly(vinylidene fluoride (PVDF via solution blending and thermal imidization or chemical imidization. The dielectric and thermal properties of the composites were studied. Results indicated that the dielectric properties of the composites synthesized by these two methods were enhanced through the introduction of PVDF, and the composites exhibited excellent thermal stability. Compared to the thermal imidization, the composites prepared by chemical imidization exhibited superior dielectric properties. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.

  20. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    Science.gov (United States)

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  1. Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material

    International Nuclear Information System (INIS)

    Ren Chun-Yu; Xiang Zhi-Hai; Cen Zhang-Zhi

    2011-01-01

    We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials

    International Nuclear Information System (INIS)

    Mouskeftaras, Alexandros

    2013-01-01

    We have carried out detailed time resolved experimental studies of the mechanism of electron excitation-relaxation, when an ultrashort (60 fs -1 ps) laser (UV and IR) pulse interacts with a wide band gap dielectric material. The studies cover a range of different dielectric materials and the investigated regimes span from nondestructive ionization of the material at the low power end (∼TW/cm 2 ) to ablative domain at a higher laser power (∼10 TW/cm 2 ). This gives fundamental insight into the understanding of the laser damaging process taking place under our irradiation conditions. The usage of time-resolved spectral interferometry technique allows to directly measure the electron density of the irradiated material under different excitation conditions and hence leads to quantification of the process. The measurements, carried out at the optical breakdown threshold utilizing different pulse durations, raise questions regarding the usage of critical excitation density as a universal ablation criterion. A new criterion related to the exchanged energy is proposed. Additionally, the use of an experimental setup implementing a double pump pulse allows the identification of different excitation mechanisms taking place at time scales of the order of the pulse duration used. Electronic avalanche is observed in some materials (SiO 2 , NaCl) while this is not the case for others (Al 2 O 3 , MgO). These differences are discussed in detail. Next, we measure the energy spectrum of excited electrons with a complementary technique: the photoemission spectroscopy. These results allow us on one hand to show a crossed effect between the two 'pump' pulses and on the other hand to measure electron relaxation characteristic times, as a function of their kinetic energy. Finally, a morphological study of craters resulting from ablation in the case of a single pulse has been carried out for different irradiation parameters: number of shots, energy and pulse duration. This work has

  3. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  4. Filter and window behavior for the Advanced Photon Source beamline front end

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Shu, Deming; Dejus, R.

    1993-01-01

    Synchrotron x-ray windows are vacuum separators and are usually made of thin beryllium metal. Filters are provided upstream to absorb the soft x-rays so that the window is protected from overheating, which could result in failure. The filters are made of thin carbon products or sometimes beryllium, the same material as the window. Because the window is a vacuum separator, understanding its potential structural failure under thermal load is of utmost importance. The planned insertion devices and bending magnets for the Advanced Photon Source (APS) generate very high heat fluxes. To guarantee the integrity of the filter and window, extensive investigations have been carried out on both components. The material selection for filters and windows from among the possible candidate materials was investigated first. Then a series of thermal and structural analyses were performed on the filter and window. Results are presented from power absorption, analytical results from thermal, and structural analyses as well as application of the failure criteria suggested by Wang and Kuzay to the filters and windows

  5. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    Science.gov (United States)

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; Lereu, Aude; Passian, Ali; Zapien, Juan Antonio; Lequime, Michel

    2018-02-01

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. We introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the bounding media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.

  6. Hot working alkali halides for laser window applications

    International Nuclear Information System (INIS)

    Koepke, B.G.; Anderson, R.H.; Stokes, R.J.

    1975-01-01

    The techniques used to hot work alkali halide crystals into laser window blanks are reviewed. From the point of view of high power laser window applications one of the materials with a high figure of merit is KCl. Thus the materials examined are KCl and alloys of KCl-KBr containing 5 mole percent KBr. The fabrication techniques include conventional and constrained press forging, isostatic press forging and hot rolling. Optical properties are paramount to the ultimate usefulness of these materials. Results on the optical properties of the hot worked material are included together with mechanical properties and microstructural data

  7. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  8. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  9. Dielectric elastomer actuators using Slide-Ring Material® with increased permittivity

    International Nuclear Information System (INIS)

    Tsuchitani, Shigeki; Miki, Hirofumi; Sunahara, Tokiharu

    2015-01-01

    The inclusion of high permittivity nanoparticles in elastomeric materials for dielectric elastomer actuators (DEAs) is one promising method to achieve large strain at relatively low applied voltages. However, the addition of these nanoparticles tends to increase the stiffness of the elastomer and disturbs the actuation of the DEA. This is attributed to restriction of the chain motion in the elastomer by the nanoparticles. Slide-Ring Material ® (SRM) is a cross-linked polymeric material with freely movable cross-linking sites. The internal stresses in this structure are dramatically homogenized by the pulley effect; therefore, the restriction of chain motion due to the nanoparticles is expected to be significantly reduced. We have employed SRM as a host elastomer for a DEA with the addition of ferroelectric BaTiO 3 (BT) nanoparticles. The effects of BT addition on the permittivity, stiffness and viscosity of the SRM–BT nanocomposites, and the actuation strain of DEAs using SRM were evaluated. The permittivity of the nanocomposites increased linearly with the concentration of BT and reached 3.6 times that for pure SRM at 50 wt%. The elastic modulus and the viscosity remained almost constant up to 20 wt% and then decreased above this concentration. The actuation strain of a planar actuator using SRM and 50 wt% BT was four times larger than that of the DEA with pure SRM. (paper)

  10. Dielectric properties of KDP-type ferroelectric crystals in the ...

    Indian Academy of Sciences (India)

    Hamiltonian for KDP-type ferroelectrics, expressions for field-dependent shift, width, ... For the calculation, method of statistical double-time temperature- ... roelectric phase transition and dielectric behaviour of KDP and its isomorphs is .... The dissipation of power in dielectric material can conveniently be expressed as.

  11. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  12. Nanocomposite dielectrics-properties and implications

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J K; Hu, Y [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2005-01-21

    The incorporation of nanoparticles into thermosetting resins is seen to impart desirable dielectric properties when compared with conventional (micron-sized particulates) composites. Although the improvements are accompanied by the mitigation of internal charge in the materials, the nature of the interfacial region is shown to be pivotal in determining the dielectric behaviour. In particular, it is shown that the conditions and enhanced area of the interface changes the bonding that may give rise to an interaction zone, which affects the interfacial polarization through the formation of local conductivity.

  13. The morphological evolution and internal convection of ExB-drifting plasma clouds: Theory, dielectric-in-cell simulations, and N-body dielectric simulations

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Hansen, P.J.

    1998-01-01

    The evolution of ExB-drifting plasma clouds is investigated with the aid of a computational technique denoted here as open-quotes dielectric-in-cell.close quotes Many of the familiar phenomena associated with clouds of collisionless plasma are seen and explained and less-well-known phenomena associated with convection patterns, with the stripping of cloud material, and with the evolution of plasma clouds composed of differing ion species are investigated. The effects of spatially uniform diffusion are studied with the dielectric-in-cell technique and with another computational technique denoted as open-quotes N-body dielectric;close quotes the suppression of convection, the suppression of structure growth, the increase in material stripping, and the evolution of cloud anisotropy are examined. copyright 1998 American Institute of Physics

  14. Replacement Windows for Existing Homes Homes | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  15. Dielectric elastomer actuators used for pneumatic valve technology

    International Nuclear Information System (INIS)

    Giousouf, Metin; Kovacs, Gabor

    2013-01-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications. (paper)

  16. Design Guidance for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Selection Process for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Selection Process for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Design Guidance for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Proper Installation of New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  2. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Shukla, A. K. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pulikkotil, J. J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Computation and Networking Facility, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  3. Mechanical characterization of zeolite low dielectric constant thin films by nanoindentation

    International Nuclear Information System (INIS)

    Johnson, Mark; Li Zijian; Wang Junlan; Ya, Yushan

    2007-01-01

    With semiconductor technologies continuously pushing the miniaturization limits, there is a growing interest in developing novel low dielectric constant materials to replace the traditional dense SiO 2 insulators. In order to survive the multi-level integration process and provide reliable material and structure for the desired integrated circuits (IC) functions, the new low-k materials have to be mechanically strong and stable. Therefore the material selection and mechanical characterization are vital for the successful development of next generation low-k dielectrics. A new class of low-k materials, nanoporous pure-silica zeolite, is prepared in thin films using IC compatible spin coating process and characterized using depth sensing nanoindentation technique. The elastic modulus of the zeolite thin films is found to be significantly higher than that of other low-k materials with similar porosity and dielectric constants. Correlations between the mechanical, microstructural and electrical properties of the thin films are discussed in detail

  4. Dielectric constant and electrical conductivity of contaminated fine-grained soils and barrier materials

    International Nuclear Information System (INIS)

    Kaya, A.; Fang, H.Y.; Inyang, H.I.

    1997-01-01

    Characterization of contaminated fine-grained soils and tracking of contaminant migration within barriers have been challenging because current methods and/or procedures are labor and time-intensive, and destructive. To demonstrate the effective use of both dielectric constant and electrical conductivity in the characterization of contaminated fine-grained soils, pore fluids were prepared at different ionic strengths, and were used as permeates for kaolinite, bentonite and a local soil. Then, both dielectric constant and electrical conductivity of the soils were measured by means of a capacitor over a wide range of frequencies and moisture content. It was observed that although each soil has its unique dielectric constant and electrical conductivity at a given moisture content, increases in ionic strength cause a decrease in the dielectric constant of the system at very high frequencies (MHZ), whereas the dielectric constant increases at low frequencies (kHz). Electrical conductivity of a soil-water system is independent of frequency. However, it is a function of ionic strength of the pore fluid. It is clearly demonstrated that dielectric constant and electrical conductivity of soils are functions of both moisture content and ionic strength, and can be used to characterize the spatial and temporal levels of contamination. This method/procedure can be used in estimating the level of contamination as well as the direction of contaminant movement in the subsurface without the use of extensive laboratory testing. Based on obtained results, it was concluded that the proposed method/procedure is promising because it is non-destructive and provides a quick means of assessing the spatial distribution of contaminants in fine-grained soils and barriers

  5. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  6. Correlation between stress-induced leakage current and dielectric degradation in ultra-porous SiOCH low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C., E-mail: Chen.Wu@imec.be; De Wolf, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Materials Engineering, KU Leuven, 3000 Leuven (Belgium); Li, Y.; Leśniewska, A.; Varela Pedreira, O.; Marneffe, J.-F. de; Ciofi, I.; Verdonck, P.; Baklanov, M. R.; Bömmels, J.; Tőkei, Zs.; Croes, K. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-10-28

    Stress-Induced Leakage Current (SILC) behavior during the dielectric degradation of ultra-porous SiOCH low-k materials was investigated. Under high voltage stress, SILC increases to a critical value before final hard breakdown. This SILC increase rate is mainly driven by the injected charges and is negligibly influenced by temperature and voltage. SILC is found to be transient and shows a t{sup −1} relaxation behavior, where t is the storage time at low voltages. This t{sup −1} transient behavior, described by the tunneling front model, is caused by both electron charging of neutral defects in the dielectric close to the cathode interface and discharging of donor defects close to the anode interface. These defects have a uniform density distribution within the probed depth range, which is confirmed by the observed flat band voltage shift results collected during the low voltage storage. By applying an additional discharging step after the low voltage storage, the trap energies and spatial distributions are derived. In a highly degraded low-k dielectric, the majority of defects have a trap depth between 3.4 eV and 3.6 eV and a density level of 1 × 10{sup 18 }eV{sup −1 }cm{sup −3}. The relation between the defect density N and the total amount of the injected charges Q is measured to be sub-linear, N ∼ Q{sup 0.45±0.07}. The physical nature of these stress-induced defects is suggested to be caused by the degradation of the Si-O based skeleton in the low-k dielectric.

  7. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  8. Tank 101-SY Window E core sample: Interpretation of results

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1993-02-01

    A full depth core sample was taken for tank 241-SY-101 in December 1991 during a time period called ''Window E.'' This was the second full depth core sample from this tank during the year. The core had two major portions that are known as the convective zone and the nonconvective zone. A crust was on the top of tank but as poorly sampled. The analysis of the Window E core sample stressed segment composite chemical analysis instead of segment by segment as in Window C. Adiabatic calorimetry on samples from both cores showed a slow self heating reaction above 150 degrees C on dried samples. The exothermic events were milder than similar synthetic samples. The chemical and physical properties complemented the information from Window C. The Window E material from the convective zone was more viscous than the Window C convective zone material. The nonconvective zone viscosities were similar for both cores. Heating and dilution tests were made to test mitigation concepts

  9. Tank 101-SY Window E core sample: Interpretation of results

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.

    1993-02-01

    A full depth core sample was taken for tank 241-SY-101 in December 1991 during a time period called ``Window E.`` This was the second full depth core sample from this tank during the year. The core had two major portions that are known as the convective zone and the nonconvective zone. A crust was on the top of tank but as poorly sampled. The analysis of the Window E core sample stressed segment composite chemical analysis instead of segment by segment as in Window C. Adiabatic calorimetry on samples from both cores showed a slow self heating reaction above 150{degrees}C on dried samples. The exothermic events were milder than similar synthetic samples. The chemical and physical properties complemented the information from Window C. The Window E material from the convective zone was more viscous than the Window C convective zone material. The nonconvective zone viscosities were similar for both cores. Heating and dilution tests were made to test mitigation concepts.

  10. Accelerating Dielectrics Design Using Thinking Machines

    Science.gov (United States)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  11. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  12. Mathematical Modeling of Electrical Conductivity of Dielectric with Dispersed Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are increasingly used for application in engineering as structural, thermal protection and functional materials, including dielectrics, because of a wide variety of properties. The relative dielectric constant and the dielectric loss tangent are basic functional characteristics of a composite used as a dielectric. The quantitative level of these characteristics is mainly affected by the properties of the composite matrix and inclusions as well as their shape and volume concentration. Metallic inclusions in a dielectric, which serves as a function of the composite matrix, expand electrical properties of the composite in particular increase its dielectric constant and dielectric loss tangent and thereby greatly expand its application field. Dielectric losses are defined by the imaginary component of the complex value of the relative dielectric constant of the dielectric. At a relatively low vibration frequency of electromagnetic field affecting the dielectric, this value is proportional to the electrical conductivity of the dielectric and inversely proportional to the frequency. In order to predict the expected value of the electric conductivity of the dielectric with metallic inclusions, a mathematical model that properly describes the structure of the composite and the electrical interaction of the matrix and inclusions is required.In the paper, a mathematical model of the electrical interaction of the representative element of the composite structure and a homogeneous isotropic medium with electrical conductivity, which is desired characteristics of the composite, is constructed. Globular shape of the metallic inclusions as an average statistical form of dispersed inclusions with a comparable size in all directions is adopted. The inclusion is covered with a globular layer of electrical insulation to avoid percolation with increasing volume concentration of inclusions. Outer globular layer of representative structure of composite

  13. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  14. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties

    International Nuclear Information System (INIS)

    Abdullah, M. M.; Rajab, Fahd M.; Al-Abbas, Saleh M.

    2014-01-01

    The structural, optical and dielectric properties of as-grown Cr 2 O 3 nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Å; c = 13.578 Å, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr–O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr 2 O 3 nanostructures attest the potential candidature of the material as an efficient dielectric medium

  15. Three-dimensional periodic dielectric structures having photonic Dirac points

    Science.gov (United States)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  16. Three-dimensional periodic dielectric structures having photonic Dirac points

    Energy Technology Data Exchange (ETDEWEB)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  17. Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells

    Science.gov (United States)

    Pedesseau, L.; Kepenekian, M.; Sapori, D.; Huang, Y.; Rolland, A.; Beck, A.; Cornet, C.; Durand, O.; Wang, S.; Katan, C.; Even, J.

    2016-03-01

    A method based on DFT is used to obtained dielectric profiles. The high frequency Ɛ∞(z) and the static Ɛs(z) dielectric profiles are compared for 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP). A dielectric confinement is observed for the 2D materials between the high dielectric constant of the inorganic part and the low dielectric constant of the organic part. The effect of the ionic contribution on the dielectric constant is also shown. The quantum and dielectric confinements of 3D HOP nanoplatelets are then reported. Finally, a numerical simulation based on the SILVACO code of a HOP based solar cell is proposed for various permittivity of MAPbI3.

  18. Dielectric properties of PMMA/Soot nanocomposites.

    Science.gov (United States)

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  19. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  20. Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils

    Science.gov (United States)

    Behzadnezhad, Bahareh; Collick, Bruce D.; Behdad, Nader; McMillan, Alan B.

    2018-04-01

    Additive manufacturing provides a low-cost and rapid means to translate 3D designs into the construction of a prototype. For MRI, this type of manufacturing can be used to construct various components including the structure of RF coils. In this paper, we characterize the material properties (dielectric constant and loss tangent) of several common 3D-printed polymers in the MRI frequency range of 63-300 MHz (for MRI magnetic field strengths of 1.5-7 T), and utilize these material properties in full-wave electromagnetic simulations to design and construct a very low-cost subject/anatomy-specific 3D-printed receive-only RF coil that fits close to the body. We show that the anatomy-specific coil exhibits higher signal-to-noise ratio compared to a conventional flat surface coil.

  1. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    Science.gov (United States)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  2. Compact UHV valve with field replaceable windows

    International Nuclear Information System (INIS)

    Johnson, E.D.; Freeman, J.; Powell, F.

    1991-01-01

    There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs

  3. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  4. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  5. ZnO as dielectric for optically transparent non-volatile memory

    International Nuclear Information System (INIS)

    Salim, N. Tjitra; Aw, K.C.; Gao, W.; Wright, Bryon E.

    2009-01-01

    This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (E a ) of the electron transport in the conduction band of the ZnO film. The ρ of 2 x 10 4 -5 x 10 7 Ω-cm corresponds to E a of 0.36-0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O 2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol-gel dielectric of varying thickness. A pronounced clockwise capacitance-voltage (C-V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.

  6. Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Rajwali, Khan; Fang Ming-Hu

    2015-01-01

    Polycrystalline samples of (Zn, Co) co-doped SnO 2 nanoparticles were prepared using a co-precipitation method. The influence of (Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the (Zn, Co) co-doped SnO 2 powder samples have the same tetragonal structure of SnO 2 . A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO 2 samples exhibits room temperature ferromagnetism. Our results illustrate that (Zn, Co) co-doped SnO 2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these (Zn, Co) co-doped SnO 2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics. (paper)

  7. Reversible dielectric property degradation in moisture-contaminated fiber-reinforced laminates

    Science.gov (United States)

    Rodriguez, Luis A.; García, Carla; Fittipaldi, Mauro; Grace, Landon R.

    2016-03-01

    The potential for recovery of dielectric properties of three water-contaminated fiber-reinforced laminates is investigated using a split-post dielectric resonant technique at X-band (10 GHz). The three material systems investigated are bismaleimide (BMI) reinforced with an eight-harness satin weave quartz fabric, an epoxy resin reinforced with an eight- harness satin weave glass fabric (style 7781), and the same epoxy reinforced with a four-harness woven glass fabric (style 4180). A direct correlation between moisture content, dielectric constant, and loss tangent was observed during moisture absorption by immersion in distilled water at 25 °C for five equivalent samples of each material system. This trend is observed through at least 0.72% water content by weight for all three systems. The absorption of water into the BMI, 7781 epoxy, and 4180 epoxy laminates resulted in a 4.66%, 3.35%, and 4.01% increase in dielectric constant for a 0.679%, 0.608%, and 0.719% increase in water content by weight, respectively. Likewise, a significant increase was noticed in loss tangent for each material. The same water content is responsible for a 228%, 71.4%, and 64.1% increase in loss tangent, respectively. Subsequent to full desorption through drying at elevated temperature, the dielectric constant and loss tangent of each laminate exhibited minimal change from the dry, pre-absorption state. The dielectric constant and loss tangent change after the absorption and desorption cycle, relative to the initial state, was 0.144 % and 2.63% in the BMI, 0.084% and 1.71% in the style 7781 epoxy, and 0.003% and 4.51% in the style 4180 epoxy at near-zero moisture content. The similarity of dielectric constant and loss tangent in samples prior to absorption and after desorption suggests that any chemical or morphological changes induced by the presence of water have not caused irreversible changes in the dielectric properties of the laminates.

  8. Carbon Footprint versus Performance of Aluminum, Plastic, and Wood Window Frames from Cradle to Gate

    Directory of Open Access Journals (Sweden)

    Andreja Kutnar

    2012-12-01

    Full Text Available Window frame material has significant impact on the thermal performance of the window. Moreover, with sustainable design becoming a necessity, window frame materials need to have higher levels of environmental performance to be considered sustainable. As a result, a holistic performance metric is needed to assess window frame material. Three similar frames were considered, manufactured from aluminum, polyvinyl chloride (PVC, and wood. First their thermal performance was evaluated and compared using a heat transfer model. Then, carbon footprints of the three materials were considered for 1m2 of window area with a similar thermal performance. It was found that the thermal, as well as the environmental, performance of the wooden window frame was superior to those of aluminum and PVC. On the other hand aluminum frames had high environmental impacts and comparatively lower thermal performance. This study provides a holistic viewpoint on window frames by considering both environmental and thermal performance.

  9. Postbuckling behavior of windows subjected to synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Wang, Z.; Kuzay, T.M.; Sharma, S.K.

    1993-01-01

    Analyses performed on two Be windows (250 and 100 μm thick) show that the additional postbuckling strength still exists after initial window buckling and this part can be used by a thin window design in the working stage. However, the load factor to complate failure is not as big as the load factor to failure of a uniformly compressed window (the case for a thick window where buckling stress is larger than yielding stress of the window material). That is, the load factor of a thin window to collapse is not as large as that of a thick window without buckling. Hence, unless there is a special need for a thin window, buckling of the windows in normal working stage should not be recommended. Although shakedown was not considered, a similar conclusion can be expected for that case

  10. Dielectric spectra of proteins in conducting media

    International Nuclear Information System (INIS)

    Ruderman, G.; Xammar Oro, J.R. de

    1990-10-01

    Dielectric measurements of serum albumin and myoglobin in solutions of varying conductivities were performed. The results presented confirm that also for protein solutions, the Maxwell predictions of a threshold frequency in conducting materials holds. The threshold frequency of a serum albumin solution was experimentally determined. Attention should be recalled that, if the dielectric spectra of proteins solutions want to be measured, three distinct frequency regions are to be observed: a low frequency region, where the sample behaves like a conductor; an intermediate region centered around the threshold frequency, where the free charges partially screen the fixed ones; and a high frequency region where the sample behaves like a good dielectric. (author). 8 refs, 5 figs

  11. Characterization of a dielectric microdroplet thermal interface material with dispersed nanoparticles

    International Nuclear Information System (INIS)

    Hamdan, A.; Sahli, F.; Richards, R.; Richards, C.

    2012-01-01

    This work presents the fabrication and characterization of a dielectric microdroplet thermal interface material (TIM). Glycerin droplets, 1 μL, were tested as TIMs in this study. Copper nanoparticles having a diameter of 25 nm were dispersed in glycerin at different volume fractions to enhance its thermal conductivity. An increase of 57.5% in the thermal conductivity of glycerin was measured at a volume fraction of 15%. A minimum thermal interface resistance of 30.37 mm 2 K/W was measured for the glycerin microdroplets at a deformed droplet height of 10.2 μm. Good agreement between experimental measurements and the predictions of a model based on Maxwell’s equation of rules of mixtures was obtained. The effect of nanoparticles' size on the effective thermal conductivity of glycerin was studied. Nanoparticles with diameters of 60–80 and 300 nm were dispersed in glycerin at a volume fraction of 5%, and their results were compared to those of the 25 nm particles.

  12. Breakdown, fractoemission, diffusion: role of defects in dielectrics

    International Nuclear Information System (INIS)

    Vigouroux, J.P.; Serruys, Y.

    1987-01-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  13. The Dielectric Behavior of Cyano-Substituted Poly imides

    International Nuclear Information System (INIS)

    Elshazly, E.S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.

    2013-01-01

    A number of amorphous poly imides containing polar functional groups, cyano group, have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The piezoelectric constants are related to the polarization. The remanent polarization and hence piezoelectric response of a material is determined by dielectric relaxation strength which is the difference in dielectric constant at the glass transition temperature vicinity. The intent of this work is to clarify the mechanism and key components required for developing piezoelectricity in amorphous polymers and further to apply this understanding in designing a unique high temperature piezoelectric polyimide. In this paper, experimental investigations of dielectric constant of piezoelectric cyano -substituted poly imides have been tested as a function of temperature to measure the dielectric relaxation strength in the glass transition temperature region.

  14. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...

  15. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  16. A preliminary study on the dielectric constant of WPC based on some tropical woods

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Chua, P.H.; Hon, Y.S.; Lee, E.

    1986-01-01

    The use of WPC as an important insulating material is studied by determining its dielectric constant. The variation of dielectric constant with moisture content is also investigated. Preliminary results show that all untreated woods studied have a higher dielectric constant than their polymer composites with the exception of Kapur and Keruing. It is therefore postulated that the presence of polymers has led to a decrease in the number of polarizable units. Such a material may be useful commercially. (author)

  17. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  18. Atomistic determination of flexoelectric properties of crystalline dielectrics

    Science.gov (United States)

    Maranganti, R.; Sharma, P.

    2009-08-01

    Upon application of a uniform strain, internal sublattice shifts within the unit cell of a noncentrosymmetric dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectricity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has both bulk and surface contributions: the strength of the bulk contribution can be characterized by means of a material property tensor called the bulk flexoelectric tensor. Several recent studies suggest that strain-gradient induced polarization may be responsible for a variety of interesting and anomalous electromechanical phenomena in materials including electromechanical coupling effects in nonuniformly strained nanostructures, “dead layer” effects in nanocapacitor systems, and “giant” piezoelectricity in perovskite nanostructures among others. In this work, adopting a lattice dynamics based microscopic approach we provide estimates of the flexoelectric tensor for certain cubic crystalline ionic salts, perovskite dielectrics, III-V and II-VI semiconductors. We compare our estimates with experimental/theoretical values wherever available and also revisit the validity of an existing empirical scaling relationship for the magnitude of flexoelectric coefficients in terms of material parameters. It is interesting to note that two independent groups report values of flexoelectric properties for perovskite dielectrics that are orders of magnitude apart: Cross and co-workers from Penn State have carried out experimental studies on a variety of materials including barium titanate while Catalan and co-workers from Cambridge used theoretical ab initio techniques as well as experimental techniques to study paraelectric strontium titanate as well as ferroelectric barium titanate and lead titanate. We find that, in the case of perovskite

  19. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  20. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju

    2017-04-15

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  1. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    Science.gov (United States)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  2. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  3. Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods

    Directory of Open Access Journals (Sweden)

    Yeo Beom Yoon

    2014-04-01

    Full Text Available Windows are the primary aperture to introduce solar radiation to the interior space of a building. This experiment explores the use of EnergyPlus software for analyzing the illuminance level on the floor of a room with reference to its distance from the window. For this experiment, a double clear glass window has been used. The preliminary modelling in EnergyPlus showed a consistent result with the experimentally monitored data in real time. EnergyPlus has two mainly used daylighting algorithms: DElight method employing radiosity technique and Detailed method employing split-flux technique. Further analysis for illuminance using DElight and Detailed methods showed significant difference in the results. Finally, we compared the algorithms of the two analysis methods in EnergyPlus.

  4. Extrinsic and intrinsic contributions for dielectric behavior of La{sub 2}NiMnO{sub 6} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhenzhu, E-mail: czz03@163.com [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China); Liu, Xiaoting; He, Weiyan [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China); Ruan, Xuezheng [Key Laboratory of Inorganic Function Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gao, Yanfang; Liu, Jinrong [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China)

    2015-11-15

    The influences of electrode material, DC bias and temperature on the electrical and dielectric properties of LNMO ceramic have been investigated using impedance spectroscopy and dielectric measurements. Evidences from dielectric and impedance analysis showed that the giant dielectric constant and its notable tunability originated from extrinsic contribution from interface polarization. Low temperature and high frequency dielectric characterization revealed the low intrinsic dielectric constant.

  5. New perovskite-related oxides having high dielectric constant ...

    Indian Academy of Sciences (India)

    Unknown

    static and dynamic random access memories, the static dielectric constant of the material. ¶Dedicated to .... 1100°C. It is also observed from the SEM pictures that the materials are highly dense .... Both these oxides merit attention for their.

  6. Defects in codoped NiO with gigantic dielectric response

    Science.gov (United States)

    Wu, Ping; Ligatchev, Valeri; Yu, Zhi Gen; Zheng, Jianwei; Sullivan, Michael B.; Zeng, Yingzhi

    2009-06-01

    We combine first-principles, statistical, and phenomenological methods to investigate the electronic and dielectric properties of NiO and clarify the nature of the gigantic dielectric response in codoped NiO. Unlike previous models which are dependent on grain-boundary effects, our model based on small polaron hopping in homogeneous material predicts the dielectric permittivity (104-5) for heavily Li- and MD -codoped NiO (MD=Ti,Al,Si) . Furthermore, we reproduce the experimental trends in dielectric properties as a function of the dopants nature and their concentrations, as well as the reported activation energies for the relaxation in Li- and Ti-codoped NiO (0.308 eV or 0.153 eV depending on the Fermi-level position). In this study, we demonstrate that small polaron hopping on dopant levels is the dominant mechanism for the gigantic dielectric response in these codoped NiO.

  7. How to be smart and energy efficient: A general discussion on thermochromic windows

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2014-01-01

    A window is a unique element in a building because of its simultaneous properties of being “opaque” to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a “smart” window behave? Is a “smart” window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided. PMID:25233891

  8. Application issues for large-area electrochromic windows incommercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  9. Radiation damage in diagnostic windows for the TFTR

    International Nuclear Information System (INIS)

    Primak, W.

    1979-01-01

    Radiation effects in diagnostic window materials are being estimated and additional experimental data on the radiation behavior are being sought. The materials considered thus far are vitreous silica, crystal quartz, and synthetic sapphire

  10. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  11. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  12. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  13. Large Acrylic Spherical Windows In Hyperbaric Underwater Photography

    Science.gov (United States)

    Lones, Joe J.; Stachiw, Jerry D.

    1983-10-01

    Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.

  14. A Flexible Capacitive Sensor with Encapsulated Liquids as Dielectrics

    Directory of Open Access Journals (Sweden)

    Yasunari Hotta

    2012-03-01

    Full Text Available Flexible and high-sensitive capacitive sensors are demanded to detect pressure distribution and/or tactile information on a curved surface, hence, wide varieties of polymer-based flexible MEMS sensors have been developed. High-sensitivity may be achieved by increasing the capacitance of the sensor using solid dielectric material while it deteriorates the flexibility. Using air as the dielectric, to maintain the flexibility, sacrifices the sensor sensitivity. In this paper, we demonstrate flexible and highly sensitive capacitive sensor arrays that encapsulate highly dielectric liquids as the dielectric. Deionized water and glycerin, which have relative dielectric constants of approximately 80 and 47, respectively, could increase the capacitance of the sensor when used as the dielectric while maintaining flexibility of the sensor with electrodes patterned on flexible polymer substrates. A reservoir of liquids between the electrodes was designed to have a leak path, which allows the sensor to deform despite of the incompressibility of the encapsulated liquids. The proposed sensor was microfabricated and demonstrated successfully to have a five times greater sensitivity than sensors that use air as the dielectric.

  15. Design and Verification of Critical Pressurised Windows for Manned Spaceflight

    Science.gov (United States)

    Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.

    2014-06-01

    The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.

  16. Rb2Ti2O5 : Superionic conductor with colossal dielectric constant

    Science.gov (United States)

    Federicci, Rémi; Holé, Stéphane; Popa, Aurelian Florin; Brohan, Luc; Baptiste, Benoît.; Mercone, Silvana; Leridon, Brigitte

    2017-08-01

    Electrical conductivity and high dielectric constant are in principle self-excluding, which makes the terms insulator and dielectric usually synonymous. This is certainly true when the electrical carriers are electrons, but not necessarily in a material where ions are extremely mobile, electronic conduction is negligible, and the charge transfer at the interface is immaterial. Here we demonstrate in a perovskite-derived structure containing five-coordinated Ti atoms, a colossal dielectric constant (up to 109) together with very high ionic conduction 10-3Scm-1 at room temperature. Coupled investigations of I -V and dielectric constant behavior allow us to demonstrate that, due to ion migration and accumulation, this material behaves like a giant dipole, exhibiting colossal electrical polarization (of the order of 0.1Ccm-2 ). Therefore it may be considered as a "ferro-ionet" and is extremely promising in terms of applications.

  17. Dielectric properties of carbon nanotubes/epoxy composites.

    Science.gov (United States)

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  18. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  19. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  20. Study of dielectric materials irradiated with electron beam by using the Pulsed Electro-Acoustic (PEA) method

    International Nuclear Information System (INIS)

    Nguyen, Xuan Truong

    2014-01-01

    Dielectric materials are frequently used as electrical insulators in spatial applications. Due to their dielectric nature, these dielectrics are likely to accumulate electric charges during their service. Under certain critical conditions, these internal or surface space charges can lead to an electrostatic surface discharge. To understand these phenomena, an experimental device has been developed in the laboratory. This device allows us to simulate the electronic irradiation conditions encountered in space. The aim of our study is to characterize the electrical behavior of insulating materials irradiated by electron beam, to investigate charge storage and transport phenomena and anticipate electrostatic discharges. In this work, the device based on the Pulsed Electro-Acoustic (PEA) technique has been chosen. It has been implanted in the irradiation chamber. It allows us to obtain the spatial distribution of charges injected between two periods of irradiation and during relaxation. However the PEA method offers a limited resolution and does not allow the detection of injected charges when they are too close to the surface. First, we performed a parameters signal processing analysis that we will call the spreading factor and the resolution factor. The preliminary study post-irradiation in air of experimental measurements showed that the resolution factor choice is important for the analysis and interpretation of the signal when the space charge is localized near the surface. Then, a comparison to the spreading parameter used in some deconvolution technique was established. In the second time, space charge distribution measurements in vacuum have been carried out on Poly Tetra Fluoro Ethylene (PTFE) films irradiated by an electron beam in the range [10-100] keV. Results from irradiation periods with increasing energies [10 keV → 100 keV] of the electron beam have been compared with results from irradiation periods with decreasing energies [100 keV → 10 keV]. In

  1. Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8

    CERN Document Server

    Webber-Cross, Geoff

    2014-01-01

    This book is based around a case study game which was written for the book. This means that the chapters progress in a logical way and build upon lessons learned as we go. Real-world examples are provided for each topic that are practical and not given out-of-context so they can be applied directly to other applications.If you are a developer who wishes to build Windows 8 and Phone 8 applications and integrate them with Windows Azure Mobile Services, this book is for you. Basic C# and JavaScript skills are advantageous, as well as some knowledge of building Windows 8 or Windows Phone 8 applica

  2. Environmental, economic and social analysis of materials for doors and windows in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Abeysundra, U.G. Yasantha; Babel, Sandhya; Sharp, Alice [Environmental Technology Program, Sirindhorn International Institute of Technology (SIIT), Thammasat University, P.O. Box 22, Pathumthani 12121 (Thailand); Gheewala, Shabbir [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology, School of Energy and Materials Building, Bangkok 10140 (Thailand)

    2007-05-15

    This paper compares the environmental, economic and social impacts of two types of doors and windows (elements), namely timber and aluminum taking into consideration the life cycle perspective. These elements are widely used for the buildings in Sri Lanka. Thus, it will help in the decision-making process when selecting materials for these elements. Major materials used for these elements are timber, brass, glass, paint, aluminum, rubber, steel and PVC boards. Environmental burdens associated with these materials are analyzed in terms of embodied energy, and environmental impacts that are relevant to Sri Lanka, such as global warming (GWP), acidification (ACP) and nutrient enrichment (NEP). Economic analysis is done using market prices of materials and affordability for those materials. Social concerns such as thermal comfort, good interior (aesthetics), ability to construct fast, and durability are analyzed based on the data collected through the questionnaires and also, interviews with the stakeholders of the buildings such as engineers, architects, building contractors and building users. It was found that timber elements are superior to aluminum elements in environmental scores (GWP, ACP and NEP). On economic score, also, timber elements are better. But on social score, aluminum elements are better than timber. It was also found that the higher the recycling percentage of aluminum, the higher the environmental favorability of the aluminum. (author)

  3. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  4. Dielectric loss against piezoelectric power harvesting

    International Nuclear Information System (INIS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-01-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems. (fast track communications)

  5. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  6. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types...

  7. RF windows used at s-band pulsed klystrons in KEK linac

    Energy Technology Data Exchange (ETDEWEB)

    Michizono, S.; Saito, Y. [KEK, National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    The breakdown of the alumina RF-windows used in high-power klystrons is one of the most serious problems in the development of klystrons. This breakdown results from excess heating of alumina due to multipactor bombardments and/or localized RF dissipations. A statistical research of window materials was carried out, and high-power tests were performed in order to develop RF windows having high durability for the KEKB klystrons. The breakdown mechanism of RF windows is being considered. An improved RF window installed in a KEKB klystron is also being tested. (J.P.N)

  8. Vegetable oil based liquid nanocomposite dielectric

    Directory of Open Access Journals (Sweden)

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  9. Novel organic semiconductors and dielectric materials for high performance and low-voltage organic thin-film transistors

    Science.gov (United States)

    Yoon, Myung-Han

    Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on

  10. Numerical analysis of the feasibility of a beam window for TEF target

    International Nuclear Information System (INIS)

    Obayashi, H.; Takei, H.; Iwamoto, H.; Sasa, T.

    2015-01-01

    In the various research activities for ADS (accelerator-driven systems), the construction of the Transmutation Experimental Facility (TEF) is planned within the framework of the J-PARC project as a preceding step before the construction of a pilot ADS. The ADS proposed by JAEA is a tank-type subcritical reactor with a thermal power of 800 MWth which uses lead-bismuth eutectic (LBE) alloy as a target material and a coolant, driven by a 30 MW superconducting proton linac. The beam window of ADS, which separates the proton accelerator and the LBE subcritical core vessel, is exposed to the high-temperature environment induced by the incidence of proton beam. Therefore, the feasibility of the beam window is the most important factor for the realisation of TEF. The objective of this study is to evaluate the feasibility of a designed beam window of TEF target by the numerical analysis with a three-dimensional model. The analysis was performed by considering: (1) the current density and shape of the incident beam, (2) the thermal-fluid behaviour of LBE around the beam window as a function of the flow rate and inlet temperature, (3) the material and the thickness of the beam window, (4) the structural strength of the beam window. In the reference case, the current density and the profile of the proton beam were 20 μA/cm 2 and a Gaussian shape, respectively. The flow rate of LBE and temperature at the inlet were 1 l/s and 350 C. degrees. The material of a beam window was SUS316 stainless steel 2 mm thick. In this reference case, the maximum velocity of LBE and the maximum temperature located at the top of the beam window were about 1.2 m/sec and 477 C. degrees. By increasing the flow rate of LBE up to 4 l/s, the maximum temperature of a beam window was reduced to around 420 C. degrees. The maximum shear stress was 194 MPa, which was observed at the centre on the outside surface of the beam window. The analysed stress in the reference case was lower than the tolerance level

  11. Investigation of plasma etch damage to porous oxycarbosilane ultra low-k dielectric

    International Nuclear Information System (INIS)

    Bruce, R L; Engelmann, S; Purushothaman, S; Volksen, W; Frot, T J; Magbitang, T; Dubois, G; Darnon, M

    2013-01-01

    There has been much interest recently in porous oxycarbosilane (POCS)-based materials as the ultra-low k dielectric (ULK) in back-end-of-line (BEOL) applications due to their superior mechanical properties compared to traditional organosilicate-based ULK materials at equivalent porosity and dielectric constant. While it is well known that plasma etching and strip processes can cause significant damage to ULK materials in general, little has been reported about the effect of plasma damage to POCS as the ULK material. We investigated the effect of changing the gas discharge chemistry and substrate bias in the dielectric trench etch and also the subsequent effect of the cap-open etch on plasma damage to POCS during BEOL integration. Large differences in surface roughness and damage behaviour were observed by changing the fluorocarbon depositing conditions. These damage behaviour trends will be discussed and potential rationalizations offered based on the formation of pits and craters at the etch front that lead to surface roughness and microtrenching. (paper)

  12. High dielectric permittivity elastomers from well-dispersed expanded graphite in low concentrations

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hassouneh, Suzan Sager; Kostrzewska, Malgorzata

    2013-01-01

    The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the last years due to their use in for example dielectric electroactive polymers. For this particular use, both the electrically insulating properties - as well as the mechanical...

  13. Dielectric behaviour of Pb-substituted BZT ceramics

    Indian Academy of Sciences (India)

    Administrator

    /90) material suitable for more applications. Thus, in the present work, material series with compositional formula Ba1–xPbxTi0⋅90Zr0⋅10O3. (0 ≤ x ≤ 0⋅20 in steps of 0⋅05) were studied. Their struc- tural and dielectric properties and their ...

  14. Optical materials technology for energy efficiency and solar energy conversion XI: Chromogenics for smart windows; Proceedings of the Meeting, Toulouse, France, May 19, 21, 1992

    International Nuclear Information System (INIS)

    Hugot-le Goff, A.; Granqvist, C.G.; Lampert, C.M.

    1992-01-01

    The present conference discusses electrochromic tungsten oxide and nickel oxide films, electrochromic smart window devices, and thermochromic and variable light-scattering materials. Attention is given to the structural and physical properties of WO3 films prepared by CVD, the degradation of electrochromic amorphous WO3 films after coloration, the electrochromic mechanism of RF diode-sputtered nickel oxide films, and the optical and electrochemical properties of CeO2 and CeO2-TiO2 coatings. Also discussed are new solid electrolytes for electrochromic smart windows, electrochromic glazing, a smart window using a proton-conducting polymer as an electrolyte, and the electrochromism of colloidal WO3 and IrO2

  15. Dielectric studies of Graphene and Glass Fiber reinforced composites

    Science.gov (United States)

    Praveen, D.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres are one of the key materials used currently due to their unique chemical and mechanical properties. Lately graphene has attracted many researchers across academic fraternity as it can yield better properties with lesser reinforcement percentages. The current research emphasizes on the development of graphene-based nanocomposites and its investigation on dielectric applications. The composites were fabricated by adding graphene reinforcements from 1%-3% by weight using conventional Hand-lay process. A thorough investigation was carried out to determine the dielectric behaviour of the nano-composites using impedance analyser according to ASTM standards. The dielectric measurements were carried out in the temperature range of 300K to 400K in a step of 20K. The current research proposes the material for application in capacitor industry as the sample of 2.5% weight fraction showed highest value of K with 14 at 26.1 Hz and 403K.

  16. Attractive electromagnetic Casimir stress on a spherical dielectric shell

    International Nuclear Information System (INIS)

    Graham, N.; Quandt, M.; Weigel, H.

    2013-01-01

    Based on calculations involving an idealized boundary condition, it has long been assumed that the stress on a spherical conducting shell is repulsive. We use the more realistic case of a Drude dielectric to show that the stress is attractive, matching the generic behavior of Casimir forces in electromagnetism. We trace the discrepancy between these two cases to interactions between the electromagnetic quantum fluctuations and the dielectric material

  17. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  18. Measurement of subcutaneous fibrosis after postmastectomy radiotherapy by dielectric properties of breast skin

    International Nuclear Information System (INIS)

    Lahtinen, T.; Tirkkonen, A.; Tenhunen, M.; Nuutinen, J.; Nuortio, L.; Auvinen, P.

    1995-01-01

    Dielectric properties of a biological material determine the interaction of high frequency electromagnetic (EM) fields and material. Since radiation induces changes in the structure and composition of the tissue, measurement of the altered dielectric properties could yield useful data on the radiation reactions. Dielectric constant of irradiated breast skin of 36 patients was measured 64 to 99 months after postmastectomy radiotherapy with three dose-fractionation schedules. A single dose-fractionation schedule consisted of a photon and electron or a photon and 150 kV x-ray beam. An EM frequency of 300 MHz was guided into the skin via a specially constructed coaxial probe. The attenuation and the phase shift of the reflected wave was measured by the network analyzer. From these data the dielectric constant of the skin could be calculated. Although there was a general tendency that the dielectric constant in the treated side was higher than in the untreated side, the increase was statistically significant only with one photon and electron beam. A significant negative correlation was found between the dielectric constant and the occurrence of clinically assessed mild fibrosis or when all degrees of fibrosis were combined. The study demonstrates that the dielectric measurements are useful in the assessment of the response of radiotherapy dose-fractionation schedules for the development and follow-up of subcutaneous fibrosis. Due to the large variation of the dielectric constants between patients in various dose-fractionation schedules, the dielectric measurements are not capable of differentiating different degrees of fibrosis

  19. Dielectric Spectroscopy of Biomolecules up to 110 GHz

    Science.gov (United States)

    Laux, Eva-Maria; Ermilova, Elena; Pannwitz, Daniel; Gibbons, Jessica; Hölzel, Ralph; Bier, Frank F.

    2018-03-01

    Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function.

  20. DETERMINING PARAMETERS OF THE DIELECTRIC FUNCTION OF A SUBSTANCE IN AQUEOUS SOLUTION BY SELF-REFERENCED REFLECTION THZ SPECTROSCOPY

    DEFF Research Database (Denmark)

    2008-01-01

    Method and apparatus for determining dielectric function of liquid solutions and thereby concentrations of substances in aqueous solution or the volatile/non-volatile nature of the liquid by self-referenced reflection THz spectroscopy. Having the aqueous solution in any container with a window al....... The invention is particularly useful for determining alcohol (ethanol) content in aqueous solution containing other substances and particles....

  1. Lobster eye as a collector for water window microscopy

    Science.gov (United States)

    Pina, L.; Maršíková, V.; Inneman, A.; Nawaz, M. F.; Jančárek, A.; Havlíková, R.

    2017-08-01

    Imaging in EUV, SXR and XR spectral bands of radiation is of increasing interest. Material science, biology and hot plasma are examples of relevant fast developing areas. Applications include spectroscopy, astrophysics, Soft X-ray Ray metrology, Water Window microscopy, radiography and tomography. Especially Water Window imaging has still not fully recognized potential in biology and medicine microscopy applications. Theoretical study and design of Lobster Eye (LE) optics as a collector for water window (WW) microscopy and comparison with a similar size ellipsoidal mirror condensor are presented.

  2. Advances in low-cost long-wave infrared polymer windows

    Science.gov (United States)

    Weimer, Wayne A.; Klocek, Paul

    1999-07-01

    Recent improvements in engineered polymeric material compositions and advances in processing methodologies developed and patented at Raytheon Systems Company have produced long wave IR windows at exceptionally low costs. These UV stabilized, high strength windows incorporating subwavelength structured antireflection surfaces are enabling IR imaging systems to penetrate commercial markets and will reduce the cost of systems delivered to the military. The optical and mechanical properties of these windows will be discussed in detail with reference to the short and long-term impact on military IR imaging systems.

  3. Functional silicone copolymers and elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    Dielectric elastomers (DEs) are a new and promising transducer technology and are often referred to as ‘artificial muscles’, due to their ability to undergo large deformations when stimulated by electric fields. DEs consist of a soft and thin elastomeric film sandwiched between compliant electrodes......, thereby forming a capacitor [1]. Silicone elastomers are one of the most used materials for DEs due to their high efficiency, fast response times and low viscous losses. The major disadvantage of silicone elastomers is that they possess relatively low dielectric permittivity, which means that a high...... electrical field is necessary to operate the DE. The necessary electrical field can be lowered by creating silicone elastomers with higher dielectric permittivity, i.e. with a higher energy density.The aim of this work is to create new and improved silicone elastomers with high dielectric permittivity...

  4. ITER ECRH upper launcher torus diamond window – Prototyping, testing and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Sabine, E-mail: sabine.schreck@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano; Meier, Andreas; Strauss, Dirk [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Ikeda, Ryosuke; Oda, Yasuhisa; Sakamoto, Keishi; Takahashi, Koji [Japan Atomic Energy Agency (JAEA), Plasma Heating Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Scherer, Theo [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • The diamond window prototype shows a very good transmission capability during high power RF experiments. • An ad-hoc qualification programme for the diamond torus window is being developed (contract between KIT and F4E). • The window design has been updated focused on its mechanical integrity and manufacturing aspects. - Abstract: The diamond window assembly is part of the ITER primary vacuum boundary and acts as the first tritium barrier and therefore it is classified as Safety/Protection Important Component (SIC/PIC). It consists of an ultra-low loss CVD diamond disk mounted in a system of metallic parts (copper/steel) and has to fulfil adequate transmission capability for high power mm-waves. High power RF experiments with a 1st window prototype had shown parasitic heating due to small gaps in the housing. After a design optimization directed to the mm-wave properties, the parasitic excitations of oscillations have been avoided in a 2nd prototype. This one is equipped with inserted waveguide structures, which cover gaps in the metallic structure of the window housing. From high power RF-measurements with a 0.86 MW/100 s pulse a loss tangent of 7.1 × 10{sup −6} could be estimated, corresponding to an increase of temperature of only 120 mK between inlet and outlet of the cooling system. The diamond window assemblies cannot be entirely covered by codes and standards. To comply with the French safety regulations, instead an ad-hoc qualification programme is required, being developed in the framework of a contract between KIT and F4E. A new prototype (3rd) will be built, which is designed to fit to the single HELICOFLEX sealed waveguide structures of the ex-vessel mm-system of the EC upper launcher (UL). The testing programme ranges from mechanical to vacuum tests up to dielectric loss measurements at low and high power. A clear definition of the testing requirements and of the acceptance criteria is necessary as well as a complete

  5. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  6. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    International Nuclear Information System (INIS)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly

    2011-01-01

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  7. Windows server cookbook for Windows server 2003 and Windows 2000

    CERN Document Server

    Allen, Robbie

    2005-01-01

    This practical reference guide offers hundreds of useful tasks for managing Windows 2000 and Windows Server 2003, Microsoft's latest server. These concise, on-the-job solutions to common problems are certain to save you many hours of time searching through Microsoft documentation. Topics include files, event logs, security, DHCP, DNS, backup/restore, and more

  8. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.

    Science.gov (United States)

    Le Bras, David; Strømme, Maria; Mihranyan, Albert

    2015-05-07

    Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.

  9. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    Lately, dielectric elastomers (DEs) which consist of an elastomer sandwiched between electrodes on both sides, have gained interest as materials for actuators, generators, and sensors. An ideal elastomer for DE uses is characterized by high extensibility, flexibility and good mechanical fatigue...... elastomers were prepared by mixing different mass ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6) between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, as well.......Moreover, a series of elastomers with the same mass ratio (7:3) between long and short PDMS chains were made at different humidity (90%, 70%, 50%, 30%, 10%) at 23oC. The dielectric and mechincal properties of the resulting elastomers were shown to depend strongly on the atmospheric humidity level.In addition...

  10. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  11. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  12. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Toor, Anju, E-mail: atoor@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); So, Hongyun, E-mail: hyso@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Pisano, Albert P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 (United States)

    2017-08-31

    Highlights: • Ligand-modified gold NP/SU-8 nanocomposites were synthesized and demonstrated. • Particle agglomeration and dispersion were characterized with different NPs concentration. • Nanocomposites showed higher average dielectric permittivity compared to SU-8 only. • Relatively lower dielectric loss (average 0.09 at 1 kHz) was achieved with 10 % w/w NPs. - Abstract: This article reports the enhanced dielectric properties of a photodefinable polymer nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of the dielectric permittivity and loss tangent on the particle concentration, and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  13. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    Science.gov (United States)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  14. Thickness-Dependent Dielectric Constant of Few-Layer In 2 Se 3 Nanoflakes

    KAUST Repository

    Wu, Di

    2015-11-17

    © 2015 American Chemical Society. The dielectric constant or relative permittivity (εr) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured εr increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  15. MS Windows domēna darbstaciju migrācija no MS Windows XP uz Windows Vista.

    OpenAIRE

    Tetere, Agate

    2009-01-01

    Kvalifikācijas darbā izpētīju darbstaciju migrācijas no Windows XP uz Windows Vista plusus un mīnusus. Darba gaitā tika veikti sekojoši uzdevumi: 1.Veikta Windows XP un Windows Vista darbstaciju instalācija, iestatījumu konfigurēšana un tika pārbaudīta sistēmas darbība 2.Veikta Windows Server 2003 un Windows Server 2008 instalācija, iestatījumu konfigurēšana un tika pārbaudīta sistēmas darbība 3.Izstrādāts migrācijas modelis 4.Veikta migrācijas optimizēšana 5.Veikta datu migrāc...

  16. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  17. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  18. Thermal and structural behavior of filters and windows for synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Wang, Z.; Hahn, U.; Dejus, R.; Kuzay, T.

    1993-01-01

    This report contains the following discussions: Introduction: Use of filters and windows in the front end designs; An interactive code for 3D graphic viewing of absorbed power in filters/windows and a new heat load generation algorithm for the finite element analysis; Failure criteria and analysis methods for the filter and window assembly; Comparison with test data and existing devices in HASYLAB; Cooling the filter: Radiation cooling or conduction cooling?; Consideration of window and filter thickness: Thicker or thinner?; Material selection criteria for filters/windows; Photon transmission through filters/windows; Window and filter design for APS undulators; Window and filter design for APS wigglers; and Window design for APS bending magnet front ends

  19. Imaging performance of an isotropic negative dielectric constant slab.

    Science.gov (United States)

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  20. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Shi Hong; Wang Yanhui; Wang Dezhen

    2008-01-01

    A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.

  1. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    Science.gov (United States)

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.

  2. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    Unknown

    India's annual coal production is used in about 72 power- generating plants and ... performance of this material as cracking catalyst was investigated with ... Chemically, the FA was silica to an extent of 55–70%, followed by ... Cu, Pb, Cd, Ag, Mn, Fe, Ti, Na, Mo, S, P, Zn and Cl in different ... two-probe method. The dielectric ...

  3. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    Dielectric elastomers (DE) are used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. For many applications, one of the major factors that limits the DE performance is premature electrical breakdown. There are many approaches that have been......, the lifetime of elastomer materials needs further investigation. Therefore, in the second strategy, several DE parameters such as Young’s moduli, breakdown strengths and dielectric permittivities of PDMS elastomers filled with hard filler particles were investigated after being subjected to pre...

  4. Grab Windows training opportunities; check CERN Windows roadmap!

    CERN Multimedia

    IT Department

    2011-01-01

    CERN Operating Systems and Information Services group (IT-OIS) actively monitors market trends to check how new software products correspond to CERN needs. In the Windows world, Windows 7 has been a big hit, with over 1500 Windows 7 PCs within less than a year since its support was introduced at CERN. No wonder: Windows XP is nearly 10 years old and is steadily approaching the end of its life-cycle. At CERN, support for Windows XP will stop at the end of December 2012. Compared to Vista, Windows 7 has the same basic hardware requirements, but offers higher performance, so the decision to upgrade is rather straightforward. CERN support for Vista will end in June 2011. In the world of Microsoft Office, version 2007 offers better integration with the central services than the older version 2003. Progressive upgrade from 2003 to 2007 is planned to finish in September 2011, but users are encouraged to pro-actively upgrade at their convenience. Please note that Office 2007 brings an important change in the area of ...

  5. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    Science.gov (United States)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  6. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  7. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-López, Manuel Angel Quevedo

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  8. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-Ló pez, Manuel Angel Quevedo; Wondmagegn, Wudyalew T.; Alshareef, Husam N.; Ramí rez-Bon, Rafael; Gnade, Bruce E.

    2011-01-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  9. Charge transport in polycrystalline alumina materials: application to the optimization of dielectric breakdown strength; Transport de charges dans les alumines polycristallines: application a l'optimisation de la rigidite dielectrique

    Energy Technology Data Exchange (ETDEWEB)

    Touzin, M.

    2005-12-15

    Dielectric breakdown constitutes an important limitation in the use of insulating materials under high-tension since it leads to the local fusion and the sublimation of material. The microstructure (average grain size, intergranular phase) has a great influence on the ability of material to resist this catastrophic phenomenon. Indeed, the interfaces between the various phases constitute potential sites of trapping for the charges. The optimization of the dielectric breakdown strength of a polycrystalline alumina sintered with a liquid phase passes necessarily through the control of the microstructural parameters. Thus, it is shown that by controlling the conditions of the process (rate of sintering aids, powder grain size and thermal cycle), it is possible to control the density (by the average grain size) but also the nature (by the crystallization or not of anorthite) of the grain boundaries. The study of the influence of these two parameters as well temperature on the properties of charge transport and storage was carried out by methods ICM and SEMME. The results, interpreted in light of the numerical simulation of the charge transport in bulk alumina sample during electron beam irradiation, allowed to highlight behaviors, and the corresponding microstructures, favourable to the dielectric breakdown resistance according to the considered temperature. Thus, at room temperature a high density of interfaces (low grain size and crystallized intergranular phase) makes it possible material to durably trap a great amount of charges, which leads to a high dielectric strength. On the other hand, at higher temperature, the presence of shallow traps (vitreous intergranular phase) supports the charge diffusion and makes it possible to delay breakdown. (author)

  10. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    Science.gov (United States)

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  11. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  12. Possible Lead Free Nanocomposite Dielectrics for High Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Kurpati

    2017-03-01

    Full Text Available There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, the present brief review work focuses on the feasibility of development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. It is expected that Lead-free sodium Niobate nanowires (NaNbO3 and Boron nitride will be a future candidate to be synthesized using simple hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF/ divinyl tetramethyl disiloxanebis (benzocyclobutene matrix using a solution-casting method for Nanocomposites fabrication. The energy density of NaNbO3 and BN based composites are also be compared with that of lead-containing (PbTiO3/PVDF Nano composites to show the feasibility of replacing lead-containing materials from high-energy density dielectric capacitors. Further, this paper explores the feasibility of these materials for space applications because of high energy storage capacity, more flexibility and high operating temperatures. This paper is very much useful researchers who would like to work on polymer nanocomposites for high energy storage applications.

  13. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-09-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  14. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    International Nuclear Information System (INIS)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon; King, Sean W.; Clarke, James S.; Nishi, Yoshio

    2014-01-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities

  15. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  16. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    Science.gov (United States)

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  17. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  18. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  19. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  20. Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymer

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Galantini, F.; Mazurek, Piotr Stanislaw

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of ,!-diallyl PPO with a tetra-functional thiol. The elastomer...... was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability...... of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910...

  1. FDTD simulations and analysis of thin sample dielectric properties measurements using coaxial probes

    Energy Technology Data Exchange (ETDEWEB)

    Bringhurst, S.; Iskander, M.F.; White, M.J. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.

    1996-12-31

    A metallized ceramic probe has been designed for high temperature broadband dielectric properties measurements. The probe was fabricated out of an alumina tube and rod as the outer and inner conductors respectively. The alumina was metallized with a 3 mil layer of moly-manganese and then covered with a 0.5 mil protective layer of nickel plating. The probe has been used to make complex dielectric properties measurements over the complete frequency band from 500 MHz to 3 GHz, and for temperatures as high as 1,000 C. A 3D Finite-Difference Time-Domain (FDTD) code was used to help investigate the feasibility of this probe to measure the complex permittivity of thin samples. It is shown that by backing the material under test with a standard material of known dielectric constant, the complex permittivity of thin samples can be measured accurately using the developed FDTD algorithm. This FDTD procedure for making thin sample dielectric properties measurements will be described.

  2. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  3. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    Science.gov (United States)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ priced target.

  4. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  5. Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel

    Directory of Open Access Journals (Sweden)

    Martin Koláček

    2017-07-01

    Full Text Available This paper reports the experimental and simulation analysis of a window system incorporating Phase Change Materials (PCMs. In this study, the latent heat storage material is exploited to increase the thermal mass of the building component. A PCM-filled window can increase the possibilities of storage energy from solar radiation and reduce the heating cooling demand. The presented measurements were performed on a specific window panel that integrates a PCM. The PCM window panel consists of four panes of safety glass with three gaps, of which the first one contains a prismatic glass, the second a krypton gas, and the last one a PCM. New PCM window panel technology uses the placement of the PCM in the whole space of the window cavity. This technology improves the thermal performance and storage mass of the window panel. The results show the incongruent melting of salt hydrates and the high thermal inertia of the PCM window panel. The simulation data showed that the PCM window panel and the double glazing panel markedly reduced the peak temperature on the interior surface, reduced the air temperature inside the room, and also considerably improved the thermal mass of the building. This means that the heat energy entering the building through the panel is reduced by 66% in the summer cycle.

  6. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and wh...

  7. Windows 10 simplified

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

  8. Windows and doors

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    A complete manual is presented on windows and doors for the housing contractor. In order to understand the role of windows and doors in a house's energy performance, an introduction explains the house as a system of components that can have effects on each other. Further chapters explain in detail the parts of a window, window types and RSI values; window servicing and repair; window replacement; parts of a door, door types and RSI values; door service and repair, including weatherstripping; door replacement; and how to ensure quality, service, and customer satisfaction. A glossary of terms is included. 61 figs., 3 tabs.

  9. Phase analysis and dielectric properties of ceramics in PbO–MgO ...

    Indian Academy of Sciences (India)

    sintering these phases at 1000°C the perovskite phase content decreased. The dielectric constant of the compo- site materials formed by the ceramic route was in the region of 14 to 20 and varied little with frequency. The composites obtained by the molten salt method, however, showed much larger dielectric constants in ...

  10. Effect of the dielectric constant of mesoscopic particle on the exciton binding energy

    International Nuclear Information System (INIS)

    Lai Zuyou; Gu Shiwei

    1991-09-01

    For materials with big exciton reduced mass and big dielectric constant, such as TiO 2 , the variation of dielectric constant with the radius of an ultrafine particle (UFP) is important for determining the exciton binding energy. For the first time a phenomenological formula of the dielectric constant of a UFP with its radius in mesoscopic range is put forward in order to explain the optical properties of TiO 2 UFP. (author). 22 refs, 3 figs, 1 tab

  11. Development and production of radiation shielding window (RSW) glass: Indian scenario

    International Nuclear Information System (INIS)

    Phani, K.K.

    2006-01-01

    Nuclear energy/power and its peaceful applications play an ever increasing role in India. Irradiated nuclear fuels, irradiated structural materials from reactors, nuclear wastes and radio-isotopes emit high energy gamma radiations which are extremely health hazardous. These materials are handled remotely by manipulators inside the hot cells, which are constructed by shielding materials such as lead and concrete walls. The direct visual control of processes in the hot cells during operation demands the windows in the radiation shielding walls. These windows must provide the clear viewing but yet ensure the good protection to the working personnel from the high energy radiation

  12. Solution-Processed Smart Window Platforms Based on Plasmonic Electrochromics

    KAUST Repository

    Abbas, Sara

    2018-04-30

    Electrochromic smart windows offer a viable route to reducing the consumption of buildings energy, which represents about 30% of the worldwide energy consumption. Smart windows are far more compelling than current static windows in that they can dynamically modulate the solar spectrum depending on climate and lighting conditions or simply to meet personal preferences. The latest generation of smart windows relies on nominally transparent metal oxide nanocrystal materials whose chromism can be electrochemically controlled using the plasmonic effect. Plasmonic electrochromic materials selectively control the near infrared (NIR) region of the solar spectrum, responsible for solar heat, without affecting the visible transparency. This is in contrast to conventional electrochromic materials which block both the visible and NIR and thus enables electrochromic devices to reduce the energy consumption of a building or a greenhouse in warm climate regions due to enhancements of both visible lighting and heat blocking. Despite this edge, this technology can benefit from important developments, including low-cost solution-based manufacturing on flexible substrates while maintaining durability and coloration efficiency, demonstration of independent control in the NIR and visible spectra, and demonstration of self-powering capabilities. This thesis is focused on developing low-temperature and all-solution processed plasmonic electrochromic devices and dual-band electrochromic devices. We demonstrate new device fabrication approaches in terms of materials and processes which enhance electrochromic performance all the while maintaining low processing temperatures. Scalable fabrication methods are used to highlight compatibility with high throughput, continuous roll-to-roll fabrication on flexible substrates. In addition, a dualband plasmonic electrochromic device was developed by combining the plasmonic layer with a conventional electrochromic ion storage layer. This enables

  13. Studies on dielectric properties of ferrocenylhydrazone coordinated polymers irradiated by γ-rays

    International Nuclear Information System (INIS)

    Lin Yun; Chen Jie; Lin Zhanru

    2007-01-01

    The three ferrocenylhydrazone coordinated metal polymers were synthesized (PZM). The effect of the 60 Co γ irradiation on microwave dielectric properties and their temperature-dielectric properties were studies. It has been found that the dielectric parameters (ε', tgδ) of coordinated polymers increase along with the absorbed doses and coordinated metals in order Cu, Co, Ni, However, the dependent curves of dielectric parameters on arise-down temperature are universal. On the other hand, the small changes in chemical structure before and after irradiation were confirmed by IR differential spectrometry and SEM. It is possible to make such coordinated polymers as a multifunctional polymeric material with optical, electric and magnetic properties, which may be potentially used in microwave communication. (authors)

  14. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.

    Science.gov (United States)

    Siddabattuni, Sasidhar; Schuman, Thomas P; Dogan, Fatih

    2013-03-01

    The interface between the polymer and the particle has a critical role in altering the properties of a composite dielectric. Polymer-ceramic nanocomposites are promising dielectric materials for many electronic and power devices, combining the high dielectric constant of ceramic particles with the high dielectric breakdown strength of a polymer. Self-assembled monolayers of electron rich or electron poor organophosphate coupling groups were applied to affect the filler-polymer interface and investigate the role of this interface on composite behavior. The interface has potential to influence dielectric properties, in particular the leakage and breakdown resistance. The composite films synthesized from the modified filler particles dispersed into an epoxy polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, and leakage current measurements. The data indicate that significant reduction in leakage currents and dielectric losses and improvement in dielectric breakdown strengths resulted when electropositive phenyl, electron-withdrawing functional groups were located at the polymer-particle interface. At a 30 vol % particle concentration, dielectric composite films yielded a maximum energy density of ~8 J·cm(-3) for TiO2-epoxy nanocomposites and ~9.5 J·cm(-3) for BaTiO3-epoxy nanocomposites.

  15. Structural, spectral and dielectric properties of piezoelectric–piezomagnetic composites

    International Nuclear Information System (INIS)

    Hemeda, O.M.; Tawfik, A.; Amer, M.A.; Kamal, B.M.; El Refaay, D.E.

    2012-01-01

    Composite materials of spinel ferrite (SF) NiZnFe 2 O 4 (NZF) and barium titanate (BT) BaTiO 3 were prepared by double sintering ceramic technique. X-ray diffraction patterns for the composite system (1–x) NZF+x BT, showed the presence of mainly of 2 phases, hence confirming the successful preparation of the composite. Some structural and microstructural parameters like porosity, X-ray density, particle size and lattice constant were deduced from the analysis of X-ray data for both phases. Scan electron microscope (SEM) analysis shows nearly a homogeneous microstructure with good dispersion of BT grains as well as the presence of some pores. There was also an enlargement of BT grains with increasing its content. Infra red (IR) spectra of the composite system indicate that BT content affects the intermolecular character of the SF phase. A rise in the dielectric constant occurred at high temperature which was attributed to the effect of space change resulting from the increase of the change carriers in the paramagnetic region. The dielectric loss (tan δ) decreased by increasing BT content. - Highlights: ► Double phase NZF-BT composite has a high magnetoelectric coefficient compared with other materials. ► This makes it strongly candidates for electromagnetic wave sensors. ► Addition of BT phase enhance dielectric constant which make it very useful for capacitor industry. ► Ni ferrite shifts the transition temperature of BT from 120 °C near room temperature. ► Decrease of dielectric loss which supply with good material with law eddy current loss for cores of t ransformers at microwave frequency.

  16. MS Windows domēna darbstacijas migrācijas iespējas no MS Windows XP uz MS Windows 7.

    OpenAIRE

    Zariņš, Valdis

    2009-01-01

    Kvalifikācijas darbā tiek aprakstītas MS Windows domēna darbstacijas migrācijas iespējas no MS Windows XP uz MS Windows 7, kā servera operētājsistēmas izmantojot tādus Microsoft produktus, kā Microsoft Windows Server 2003 un Microsoft Windows Server 2008. Kvalifikācijas darba teorētiskaja daļā tiek apskatīti Microsoft Windows 7 priekšrocības un uzlabojumus gan no darbstacijas lietotāja , gan no darbstacijas administratora puses. Ir aprakstītas Microsoft Windows Server 2008 jauninājumu ie...

  17. Insight into the dielectric response of transformer oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-02-01

    Full Text Available The oil-based nanofluids with greater dielectric strength have attracted much attention as a crucial insulating materials in high-voltage oil-immersed power equipment. In fact, the different microstructures of the transformer oil-based nanofluids (TNFs would result in different dielectric properties. In this work, the broadband dielectric spectroscopy measurement was used to establish the linkage between the electric double layer (EDL and dielectric response properties of TNFs which was performed at 298K temperature and with frequency range from 10-2Hz∼106Hz. The modified Havriliak-Negami (HN model function was used to analyze the measured results. The results demonstrate that both the real and imaginary parts of dielectric spectra of two kinds of oil are composed of the conductivity and polarization process. Compared with pure oil, two polarization process could be observed for the TNFs, explained by the EDL structure reasonably. The introduction of the EDL structure provides an idea to account for the insulating strength improvement of TNFs for the first time.

  18. Vertical dielectric screening of few-layer van der Waals semiconductors.

    Science.gov (United States)

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  19. Low mass large aperture vacuum window development at CEBAF

    International Nuclear Information System (INIS)

    Keppel, C.

    1995-01-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed

  20. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  1. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  2. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  3. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    Science.gov (United States)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  4. Magnetic and magneto-dielectric properties of magneto-electric field effect capacitor using Cr2O3

    OpenAIRE

    Takeshi, Yokota; Shotaro, Murata; Takaaki, Kuribayashi; Manabu, Gomi

    2008-01-01

    We investigated the magnetic and dielectric properties of a metal (Pt)/insulator (Cr_2O_3)/magnetic floating gate (Fe)/tunnel layer (CeO_2)/semiconductor (Si) capacitor. This capacitor shows capacitance-voltage (C-V) properties typical of a Si Metal-Insulator-Semiconductor (MIS) capacitor with hysteresis, which indicates that electrons have been injected into the Fe layer. The capacitor also shows ferromagnetic properties. The C-V curve has a hysteresis window with a clockwise trace. This hys...

  5. Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Links | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Efficient Windows Collaborative | Home

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. FAQ | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  9. Glossary | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  10. Development and Investigation of Evacuated Windows Based on Monolithic Silica Xerogel Spacers

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    hydrophobic it has to be protected against liquid water, that will demolish the pore structure of the material due to the surface tensions. For the application in window glazings the protection against liquid water is formed by placing the xerogel in between two sheets of glass and sealing the rim...... conductivity. Furthermore, properties necessary for the application (task 3) were investigated: Thermal expansion, elastic modulus and long term (inelastic) creep as well as water vapour adsorption and hence condensation risk.The thermal properties make the monolithic silica xerogel a well suited material...... with the low thermal conductivity offers good possibilities for production of energy efficient windows. For the xerogel window system it is necessary to have the xerogel sufficiently dried, if not hydrophobic xerogels are used, because residual water vapour adsorbed in the material will cause condensation...

  11. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  12. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  13. Detection with Enhanced Energy Windowing Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Bass, David A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Enders, Alexander L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    This document reviews the progress of Phase I of the Detection with Enhanced Energy Windowing (DEEW) project. The DEEW project is the implementation of software incorporating an algorithm which reviews data generated by radiation portal monitors and utilizes advanced and novel techniques for detecting radiological and fissile material while not alarming on Naturally Occurring Radioactive Material. Independent testing indicated that the Enhanced Energy Windowing algorithm showed promise at reducing the probability of alarm in the stream of commerce compared to existing algorithms and other developmental algorithms, while still maintaining adequate sensitivity to threats. This document contains a brief description of the project, instructions for setting up and running the applications, and guidance to help make reviewing the output files and source code easier.

  14. Effects of Radiation on Capacitor Dielectrics

    Science.gov (United States)

    Bouquet, F. L.; Somoano, R. B.; Frickland, P. O.

    1987-01-01

    Data gathered on key design parameters. Report discusses study of electrical and mechanical properties of irradiated polymer dielectric materials. Data compiled for use by designers of high-energy-density capacitors that operate in presence of ionizing radiation. Study focused on polycarbonates, polyetheretherketones, polymethylpentenes, polyimides (including polyetherimide), polyolefins, polysulfones (including polyethersulfone and polyphenylsulfone), and polyvinylidene fluorides.

  15. Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit

    Directory of Open Access Journals (Sweden)

    Francesca Romana d’Ambrosio Alfano

    2016-09-01

    Full Text Available Energy saving and Indoor Air Quality (IAQ in buildings are strongly affected by air leakages. Several studies reveal that the energy loss owing to leaky windows can account for up to 40% of the total building energy demand. Furthermore, at the design stage, the possible infiltration of outdoor air through windows is not taken into account when determining the nominal outdoor airflow rate of the ventilation system. This practice may result in an oversizing of the ventilation system and consequent energy waste. Thus, the air-tightness class of a wall assembly should be assessed for each window component considering the type of material, the presence of the seal, the type of closure, the sealing and the maintenance condition. In this paper, the authors present the experimental results of air-tightness measurements carried out using the fan pressurization method in three residential buildings located in the Mediterranean region before and after a window retrofit. Two different window retrofits were investigated: the application of rubber seals on window frames and the substitution of existing windows with new certified high performance windows. The effectiveness of such retrofits was estimated also in terms of energy saving. Test results demonstrated a high variability of the building air tightness after window retrofits, despite the fact that air tight–certified windows were used.

  16. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  17. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  18. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  19. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  20. An experimental study of electrical and dielectric properties of consolidated clayey materials; Etude experimentale des proprietes electriques et dielectriques des materiaux argileux consolides

    Energy Technology Data Exchange (ETDEWEB)

    Comparon, L

    2005-06-15

    This study is devoted to the electrical and dielectric properties of consolidated clays. A better understanding of the conduction and polarization phenomena in clays is necessary to better interpret in situ measurements in terms of water saturation and texture. An experimental study was carried out on synthetic clay samples (kaolinite and smectite) compacted with various water contents, porosities and mineralogical compositions, on a large frequency range, using three laboratory setups. The electrical properties of natural argillites (from ANDRA) were then investigated. We found that the response of the synthetic samples is mainly controlled by water content on the whole frequency range; two polarization phenomena were observed, which were related to the Maxwell-Wagner polarization and the electrical double layer polarization around the clay particles. The electrical response of argillites is more complex; it is controlled by water content but also by the microstructure of the rock. In these rocks, the electrical and dielectric anisotropies are high; anisotropy was also measured for the synthetic clays. The existing models explain the high frequency limit of the dielectric permittivity of the clayey materials, but the low frequency part of the spectra ({<=}1 MHz) needs theoretical developments. (author)

  1. T25 ITER ECH window development 110 GHz ECH distributed window development. Final report, May 1, 1994 - December 31, 1995

    International Nuclear Information System (INIS)

    Olstad, R.A.; Moeller, C.P.; Grunloh, H.J.

    1998-01-01

    Electron Cyclotron Heating (ECH) is one of the major candidates for Heating and Current Drive on ITER. ECH is extremely attractive from a reactor engineering point of view, offering compact launch structures, high injected power density, and a simple interface with the shield/blanket. Economic deployment of ECH for ITER requires MW unit microwave sources (gyrotrons). The present technology limitation is the availability of suitable low loss output windows. These are needed for the torus as well as the tube. The torus window, in particular, is a demanding application as it also serves as a tritium barrier. Several distinct window concepts are under development by the various Parties. This report summarizes the efforts to make and test a open-quotes distributedclose quotes window suitable for 1 MW cw operation at 110 GHz. A companion report (Final Report on Task 245+) describes the efforts to make a distributed window suitable for 1 MW cw operation at 170 GHz, the main frequency of interest to ITER. General Atomics (GA) fabricated a 4 in. x 4 in. 110 GHz distributed window which was delivered in September 1995 to Communications and Power Industries (CPI). Hot tests at CPI confirmed the power handling capability of the window. Tests were conducted with a reduced beam size at 200 kW with 0.7 s pulses without any arcing or excessive window temperatures. The power density and pulse length were equivalent to that in a full size 1.2 MW CW beam with a peak-to-average power ratio of 2.7. This window was assembled using a gold braze material to bond the sapphire strips to the niobium frame. The braze was successful except for small leaks at two locations, and re-braze efforts were unsuccessful

  2. Methods of making a high dielectric constant, resistive phase of YBa2Cu3OX and methods of using the same

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1991-01-01

    This patent describes an electrical device. It comprises a dielectric material configured so as to have a pair of opposite sides, the dielectric material comprising a high dielectric constant, high electrical resistivity material phase of yttrium barium copper oxide obtained by heating the yttrium barium copper oxide to at least about 850 degrees Celsius and then quenching the yttrium barium copper oxide from the at least about 850 degrees Celsius at a sufficiently rapid rate so as to produce the high dielectric constant, high electrical resistivity material phase in the yttrium barium copper oxide; a first plate means for storing electrical charge provided on a first one of the pair of opposite sides of the dielectric material; a second plate means for storing electrical charge provided on a second one of the pair of opposite sides of the dielectric material; a first lead means adjacent to and in electrical contact with the first plate means for permitting electrical contact to the first plate means; and a second lead means adjacent to and in electrical contact with the second plate means for permitting electrical contact to the second plate means; wherein the electrical device is a capacitor having a useful, desired capacitance and is adapted to be used in diverse electrical and electronic applications for the storage of electrical charge

  3. Multilevel integration of patternable low-κ material into advanced Cu BEOL

    Science.gov (United States)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  4. Atomic scale engineering of HfO2-based dielectrics for future DRAM applications

    International Nuclear Information System (INIS)

    Dudek, Piotr

    2011-01-01

    Modern dielectrics in combination with appropriate metal electrodes have a great potential to solve many difficulties associated with continuing miniaturization process in the microelectronic industry. One significant branch of microelectronics incorporates dynamic random access memory (DRAM) market. The DRAM devices scaled for over 35 years starting from 4 kb density to several Gb nowadays. The scaling process led to the dielectric material thickness reduction, resulting in higher leakage current density, and as a consequence higher power consumption. As a possible solution for this problem, alternative dielectric materials with improved electrical and material science parameters were intensively studied by many research groups. The higher dielectric constant allows the use of physically thicker layers with high capacitance but strongly reduced leakage current density. This work focused on deposition and characterization of thin insulating layers. The material engineering process was based on Si cleanroom compatible HfO 2 thin films deposited on TiN metal electrodes. A combined materials science and dielectric characterization study showed that Ba-added HfO 2 (BaHfO 3 ) films and Ti-added BaHfO 3 (BaHf 0.5 Ti 0.5 O 3 ) layers are promising candidates for future generation of state-of-the-art DRAMs. In especial a strong increase of the dielectric permittivity k was achieved for thin films of cubic BaHfO 3 (k∝38) and BaHf 0.5 Ti 0.5 O 3 (k∝90) with respect to monoclinic HfO 2 (k∝19). Meanwhile the CET values scaled down to 1 nm for BaHfO 3 and ∝0.8 nm for BaHf 0.5 Ti 0.5 O 3 with respect to HfO 2 (CET=1.5 nm). The Hf 4+ ions substitution in BaHfO 3 by Ti 4+ ions led to a significant decrease of thermal budget from 900 C for BaHfO 3 to 700 C for BaHf 0.5 Ti 0.5 O 3 . Future studies need to focus on the use of appropriate metal electrodes (high work function) and on film deposition process (homogeneity) for better current leakage control. (orig.)

  5. High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Musarrat; Nguyen, Manh-Cuong; Kim, Hyojin; You, Seung-Won; Jeon, Yoon-Seok; Tong, Duc-Tai; Lee, Dong-Hwi; Jeong, Jae Kyeong; Choi, Rino, E-mail: rino.choi@inha.ac.kr

    2015-08-31

    This paper reports a solution processed electrical device with zirconium oxide gate dielectric that was fabricated at a low enough temperature appropriate for flexible electronics. Both inorganic dielectric and channel materials were synthesized in the same organic solvent. The dielectric constant achieved was 13 at 250 °C with a reasonably low leakage current. The bottom gate transistor devices showed the highest mobility of 75 cm{sup 2}/V s. The device is operated at low voltage with high-k dielectric with excellent transconductance and low threshold voltage. Overall, the results highlight the potential of low temperature solution based deposition in fabricating more complicated circuits for a range of applications. - Highlights: • We develop a low temperature inorganic dielectric deposition process. • We fabricate oxide semiconductor channel devices using all-solution processes. • Same solvent is used for dielectric and oxide semiconductor deposition.

  6. Structural-optical study of high-dielectric-constant oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, M.M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Luchena, M. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Capezzuto, P. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry and INSTM Universita di bari, Via Orabona 4, 70126 Bari (Italy); Toro, R.G. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Malandrino, G. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Fragala, I.L. [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM-UdR Catania, Viale A. Doria 6, I-95125 Catania (Italy); Nigro, R. Lo [Istituto di Microelettronica e Microsistemi, IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy)

    2006-10-31

    High-k polycrystalline Pr{sub 2}O{sub 3} and amorphous LaAlO{sub 3} oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr{sub 2}O{sub 3} films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO{sub 3} films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.

  7. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    Science.gov (United States)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers

  8. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  9. Race for novel high-index all-dielectric and hybrid metal-dielectric nanophotonic materials: Pit-stop optical tests

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Ivanova, A. K.; Kudryavtseva, A. D.; Tchiernega, N. V.; Ionin, A. A.; Kuchmizhak, A. A.; Zayarny, D. A.

    2017-09-01

    Magnetic dipolar Mie-resonance of nanodiamonds supports their highly-efficient stimulated low-frequency Raman scattering via nanosecond laser excitation of their fundamental breathing mode, with strong additional plasmonic enhancement of the Raman conversion efficiency upon ablative capping of the resonant nanodiamond core by a silver nanoshell with a broad overlapping electrical dipolar Mie-resonance. Also, crystalline selenium nanoparticles, exhibiting the high refractive index in the visible/near-IR ranges, were demonstrated as promising all-dielectric sensing building nanoblocks in nanophotonics.

  10. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  11. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  12. Energy-loss return gate via liquid dielectric polarization.

    Science.gov (United States)

    Kim, Taehun; Yong, Hyungseok; Kim, Banseok; Kim, Dongseob; Choi, Dukhyun; Park, Yong Tae; Lee, Sangmin

    2018-04-12

    There has been much research on renewable energy-harvesting techniques. However, owing to increasing energy demands, significant energy-related issues remain to be solved. Efforts aimed at reducing the amount of energy loss in electric/electronic systems are essential for reducing energy consumption and protecting the environment. Here, we design an energy-loss return gate system that reduces energy loss from electric/electronic systems by utilizing the polarization of liquid dielectrics. The use of a liquid dielectric material in the energy-loss return gate generates electrostatic potential energy while reducing the dielectric loss of the electric/electronic system. Hence, an energy-loss return gate can make breakthrough impacts possible by amplifying energy-harvesting efficiency, lowering the power consumption of electronics, and storing the returned energy. Our study indicates the potential for enhancing energy-harvesting technologies for electric/electronics systems, while increasing the widespread development of these systems.

  13. Particle nature of light waves in dielectric media

    International Nuclear Information System (INIS)

    Tan, C.Z.

    2009-01-01

    Wave-particle duality is a foundation for modern science. The speed of light waves in dielectric media is less than c. The corresponding particles thus have mass. Combining wave-particle duality with the theory of relativity, an exactly solvable problem was proposed, concerning the transition from photons in vacuum to particles in dielectric media. The rest mass, the momentum, and the total energy of material particles are shown to be the functions of the refractive index of the medium and the wavelength of the incident light. The proposed relationships were applied to study the wavelength-dependent index of refraction of dielectrics and the correlation of the refractive indices of anisotropic crystals, which were confirmed by the experimental results. Variation of the refractive index with wavelength is found to obey the proposed relation. The refractive indices of anisotropic crystals are shown to be the correlated quantities.

  14. LIBS: study of elemental profile of different layers of the optical window of Tokamak

    International Nuclear Information System (INIS)

    Maurya, Gulab Singh; Jyotsna, Aradhana; Rai, Awadhesh Kumar; Ajai Kumar

    2012-01-01

    In the Tokamak, during confinement of plasma, impurities are deposited on optical window, mirror, limiters, etc. of the tokamak. Thus a layer of impurity on the surface of the optical window causes less visibility which creates problem in the study of plasma parameters and other diagnostics of the plasma generated in the tokamak. Laser Induced Breakdown Spectroscopy (LIBS) is a useful atomic spectroscopic technique for analysis of materials in any phase (Solid, Liquid, Gas etc). LIBS spectra of optical window have been recorded in the spectral range of 200-500 nm. In present study we have focused laser on the surface of the window, to study the layer-wise elemental profile of optical window, we have recorded the LIBS spectra with increasing number of laser shots on the same point of the window. In first laser shot, spectral signature of Cr, Fe, and Ni etc. are present in the LIBS spectra, which is related with the impurity but after five to six laser shots at the same point of the optical window spectral signature Si, B are observed which is related to the glass material. Thus our study demonstrates the capability of LIBS as an in-situ monitoring tool for detection of elemental profile in different layers of optical window of the Tokamak. (author)

  15. Structure and Properties of Epitaxial Dielectrics on gallium nitride

    Science.gov (United States)

    Wheeler, Virginia Danielle

    GaN is recognized as a possible material for metal oxide semiconductor field effect transistors (MOSFETs) used in high temperature, high power and high speed electronic applications. However, high gate leakage and low device breakdown voltages limit their use in these applications. The use of high-kappa dielectrics, which have both a high permittivity (ε) and high band gap energy (Eg), can reduce the leakage current density that adversely affects MOS devices. La2O3 and Sc2O 3 are rare earth oxides with a large Eg (6.18 eV and 6.3 eV respectively) and a relatively high ε (27 and 14.1 respectively), which make them good candidates for enhancing MOSFET performance. Epitaxial growth of oxides is a possible approach to reducing leakage current and Fermi level pinning related to a high density of interface states for dielectrics on compound semiconductors. In this work, La2O3 and Sc2O 3 were characterized structurally and electronically as potential epitaxial gate dielectrics for use in GaN based MOSFETs. GaN surface treatments were examined as a means for additional interface passivation and influencing subsequent oxide formation. Potassium persulfate (K2(SO4)2) and potassium hydroxide (KOH) were explored as a way to achieve improved passivation and desired surface termination for GaN films deposited on sapphire substrates by metal organic chemical vapor deposition (MOCVD). X-ray photoelectron spectroscopy (XPS) showed that KOH left a nitrogen-rich interface, while K2(SO 4)2 left a gallium-rich interface, which provides a way to control surface oxide formation. K2(SO4)2 exhibited a shift in the O1s peak indicating the formation of a gallium-rich GaOx at the surface with decreased carbon contaminants. GaO x acts as a passivating layer prior to dielectric deposition, which resulted in an order of magnitude reduction in leakage current, a reduced hysteresis window, and an overall improvement in device performance. Furthermore, K2(SO4)2 resulted in an additional 0.4 eV of

  16. Structural, spectral and dielectric properties of piezoelectric-piezomagnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Taif University, Al-Hawiah, P.O. Box 888, Taif 21974 (Saudi Arabia); Physics Department, Faculty of Science, Tanta University (Egypt); Tawfik, A.; Amer, M.A. [Physics Department, Faculty of Science, Tanta University (Egypt); Kamal, B.M.; El Refaay, D.E. [Physics Department, Faculty of Science, Suez Canal University (Egypt)

    2012-10-15

    Composite materials of spinel ferrite (SF) NiZnFe{sub 2}O{sub 4} (NZF) and barium titanate (BT) BaTiO{sub 3} were prepared by double sintering ceramic technique. X-ray diffraction patterns for the composite system (1-x) NZF+x BT, showed the presence of mainly of 2 phases, hence confirming the successful preparation of the composite. Some structural and microstructural parameters like porosity, X-ray density, particle size and lattice constant were deduced from the analysis of X-ray data for both phases. Scan electron microscope (SEM) analysis shows nearly a homogeneous microstructure with good dispersion of BT grains as well as the presence of some pores. There was also an enlargement of BT grains with increasing its content. Infra red (IR) spectra of the composite system indicate that BT content affects the intermolecular character of the SF phase. A rise in the dielectric constant occurred at high temperature which was attributed to the effect of space change resulting from the increase of the change carriers in the paramagnetic region. The dielectric loss (tan {delta}) decreased by increasing BT content. - Highlights: Black-Right-Pointing-Pointer Double phase NZF-BT composite has a high magnetoelectric coefficient compared with other materials. Black-Right-Pointing-Pointer This makes it strongly candidates for electromagnetic wave sensors. Black-Right-Pointing-Pointer Addition of BT phase enhance dielectric constant which make it very useful for capacitor industry. Black-Right-Pointing-Pointer Ni ferrite shifts the transition temperature of BT from 120 Degree-Sign C near room temperature. Black-Right-Pointing-Pointer Decrease of dielectric loss which supply with good material with law eddy current loss for cores of t ransformers at microwave frequency.

  17. Nano-CMOS gate dielectric engineering

    CERN Document Server

    Wong, Hei

    2011-01-01

    According to Moore's Law, not only does the number of transistors in an integrated circuit double every two years, but transistor size also decreases at a predictable rate. At the rate we are going, the downsizing of CMOS transistors will reach the deca-nanometer scale by 2020. Accordingly, the gate dielectric thickness will be shrunk to less than half-nanometer oxide equivalent thickness (EOT) to maintain proper operation of the transistors, leaving high-k materials as the only viable solution for such small-scale EOT. This comprehensive, up-to-date text covering the physics, materials, devic

  18. Problems with conductors and dielectrics for cryogenic cables

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, G; Penczynski, P [Siemens A.G., Erlangen (F.R. Germany). Abt. Reaktortechnik

    1976-06-01

    The most important problems which need to be solved if superconducting power cables are to be used on a large scale are connected with the superconducting cable materials and the dielectrics used for insulation. Research work on superconducting materials for ac and dc cables is briefly reviewed together with stabilization problems for these materials. Three types of insulation are considered - vacuum, subcooled or supercritical helium, and foil wound insulation. The merits and problems encountered in each case are discussed.

  19. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  20. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  1. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  2. Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET

    Science.gov (United States)

    Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-02-01

    In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.

  3. Study of the dielectric properties of barium titanate-polymer composites

    International Nuclear Information System (INIS)

    Pant, H.C.; Patra, M.K.; Verma, Aditya; Vadera, S.R.; Kumar, N.

    2006-01-01

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO 3 ) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO 3 with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO 3 with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO 3 . This behavior of the dielectric constant is explained on the basis of coating of BaTiO 3 particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies

  4. Windows 2012 Server network security securing your Windows network systems and infrastructure

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    Windows 2012 Server Network Security provides the most in-depth guide to deploying and maintaining a secure Windows network. The book drills down into all the new features of Windows 2012 and provides practical, hands-on methods for securing your Windows systems networks, including: Secure remote access Network vulnerabilities and mitigations DHCP installations configuration MAC filtering DNS server security WINS installation configuration Securing wired and wireless connections Windows personal firewall

  5. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  6. Windows 8.1 bible

    CERN Document Server

    Boyce, Jim; Tidrow, Rob

    2014-01-01

    Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

  7. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    Science.gov (United States)

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components.

  8. Top-gate dielectric induced doping and scattering of charge carriers in epitaxial graphene

    Science.gov (United States)

    Puls, Conor P.; Staley, Neal E.; Moon, Jeong-Sun; Robinson, Joshua A.; Campbell, Paul M.; Tedesco, Joseph L.; Myers-Ward, Rachael L.; Eddy, Charles R.; Gaskill, D. Kurt; Liu, Ying

    2011-07-01

    We show that an e-gun deposited dielectric impose severe limits on epitaxial graphene-based device performance based on Raman spectroscopy and low-temperature transport measurements. Specifically, we show from studies of epitaxial graphene Hall bars covered by SiO2 that the measured carrier density is strongly inhomogenous and predominantly induced by charged impurities at the grapheme/dielectric interface that limit mobility via Coulomb interactions. Our work emphasizes that material integration of epitaxial graphene and a gate dielectric is the next major road block towards the realization of graphene-based electronics.

  9. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  10. Effective photons in weakly absorptive dielectric media and the Beer–Lambert–Bouguer law

    International Nuclear Information System (INIS)

    Judge, A C; Brownless, J S; Martijn de Sterke, C; Bhat, N A R; Sipe, J E; Steel, M J

    2014-01-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers–Kronig dielectric in the limit of weak absorption. Each mode is associated with a mode field distribution that includes the effects of both material and structural dispersion, and an effective line-width that determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer–Lambert–Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials

  11. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors.

    Science.gov (United States)

    Baek, Seung Woon; Ha, Jong-Woon; Yoon, Minho; Hwang, Do-Hoon; Lee, Jiyoul

    2018-06-06

    Shellac, a natural polymer resin obtained from the secretions of lac bugs, was evaluated as a dielectric layer in organic field-effect transistors (OFETs) on the basis of donor (D)-acceptor (A)-type conjugated semiconducting copolymers. The measured dielectric constant and breakdown field of the shellac layer were ∼3.4 and 3.0 MV/cm, respectively, comparable with those of a poly(4-vinylphenol) (PVP) film, a commonly used dielectric material. Bottom-gate/top-contact OFETs were fabricated with shellac or PVP as the dielectric layer and one of three different D-A-type semiconducting copolymers as the active layer: poly(cyclopentadithiophene- alt-benzothiadiazole) with p-type characteristics, poly(naphthalene-bis(dicarboximide)- alt-bithiophene) [P(NDI2OD-T2)] with n-type characteristics, and poly(dithienyl-diketopyrrolopyrrole- alt-thienothiophene) [P(DPP2T-TT)] with ambipolar characteristics. The electrical characteristics of the fabricated OFETs were then measured. For all active layers, OFETs with a shellac film as the dielectric layer exhibited a better mobility than those with PVP. For example, the mobility of the OFET with a shellac dielectric and n-type P(NDI2OD-T2) active layer was approximately 2 orders of magnitude greater than that of the corresponding OFET with a PVP insulating layer. When P(DPP2T-TT) served as the active layer, the OFET with shellac as the dielectric exhibited ambipolar characteristics, whereas the corresponding OFET with the PVP dielectric operated only in hole-accumulation mode. The total density of states was analyzed using technology computer-aided design simulations. The results revealed that compared with the OFETs with PVP as the dielectric, the OFETs with shellac as the dielectric had a lower trap-site density at the polymer semiconductor/dielectric interface and much fewer acceptor-like trap sites acting as electron traps. These results demonstrate that shellac is a suitable dielectric material for D-A-type semiconducting

  12. High voltage capacitor design and the determination of solid dielectric voltage breakdown

    International Nuclear Information System (INIS)

    Hutapea, S.

    1976-01-01

    The value of the external field intensity serves as an electrical insulating material and is a physical characteristic of the substance. Capacitor discharge in the dielectric medium are experimentally investigated. The high voltage power supply and other instrument needed are briefly discussed. Capacitors with working voltage of 30.000 volt and the plastic being used for dielectrics in the capacitors are also discussed. (author)

  13. Strain tunable ferroelectric and dielectric properties of BaZrO3

    International Nuclear Information System (INIS)

    Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2014-01-01

    The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO 3 (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO 3 , while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.

  14. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    Directory of Open Access Journals (Sweden)

    Xin Mi Yang

    2015-12-01

    Full Text Available Design of bandwidth-enhanced circularly polarized (CP patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM. In particular, the embedded meander line (EML structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  15. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  16. Improved Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  17. Plasmonic versus dielectric enhancement in thin-film solar cells

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    to its metallic counterpart. We show that the enhanced normalized short-circuit current for a cell with silicon strips can be increased 4 times compared to the best performance for strips of silver, gold, or aluminium. For this particular case, the simple dielectric grating may outperform its plasmonic......Several studies have indicated that broadband absorption of thin-film solar cells can be enhanced by use of surface-plasmon induced resonances of metallic parts like strips or particles. The metallic parts may create localized modes or scatter incoming light to increase absorption in thin......-film semiconducting material. For a particular case, we show that coupling to the same type of localized slab-waveguide modes can be obtained by a surface modulation consisting of purely dielectric strips. The purely dielectric device turns out to have a significantly higher broadband enhancement factor compared...

  18. Synthesis, fabrication and characterization of magnetic and dielectric nanoparticles and nanocomposite films

    Science.gov (United States)

    Liu, Xiaohua

    Materials science is an interdisciplinary field investigating the structure-property relationship in solid-state materials scientifically and technologically. Nanoscience is concerned with the distinctive properties that matter exhibits when confined to physical dimensions on the order of 10-9 meters. At these length scales, behaviors of particles or elaborate structures are often governed by the rules of quantum mechanics in addition to the physical properties associated with the bulk material. The work reported here seeks to employ nanocystals, binary nanocomposites and thin films of materials, to build versatile, functional systems and devices. With a focus on dielectric, ferroelectric, and magnetoelectric performance, a series of materials has been synthesized and different types of nanocomposites have been built. Barium strontium titannate particles at various sizes was developed, aiming at high dielectric constant and low loss at high frequency range. Cobalt ferrite-polymer nanocomposite was fabricated with potential magnetoelectric coupling. Along with synthesis, advanced electron microscopies (TEM, SEM, STEM, EELS) at atomic resolution were employed to thoroughly investigate the crystallinity, morphology and composition. By means of spin-coating and printing techniques, single and multiple layered capacitors featuring improved dielectric performance (high k, low loss, high breakdown voltage, etc.) were developed through a) electrode deposition, b) dielectric layer deposition, and c) parylene evaporation. Such capacitors are further incorporated into electric power converters for LED lighting. Hopefully in the future we can make electronic devices more efficient, sustainable, smaller and cheaper. By advancing our knowledge of nanomaterials, especially those with potential of multifunction, energy efficiency and sustainability, we have strived to push the limits of synthesis, characterization, fabrication and property analysis of nanostructures towards new

  19. A prospective randomized controlled trial of the two-window technique without membrane versus the solo-window technique with membrane over the osteotomy window for maxillary sinus augmentation.

    Science.gov (United States)

    Yu, Huajie; He, Danqing; Qiu, Lixin

    2017-12-01

    Maturation of the grafted volume after lateral sinus elevation is crucial for the long-term survival of dental implants. To compare endo-sinus histomorphometric bone formation between the solo- and two-window maxillary sinus augmentation techniques with or without membrane coverage for the rehabilitation of multiple missing posterior teeth. Patients with severely atrophic posterior maxillae were randomized to receive lateral sinus floor elevation via the solo-window technique with membrane coverage (Control Group) or the two-window technique without coverage (Test Group). Six months after surgery, bone core specimens harvested from the lateral aspect were histomorphometrically analyzed. Ten patients in each group underwent 21 maxillary sinus augmentations. Histomorphometric analysis revealed mean newly formed bone values of 26.08 ± 16.23% and 27.14 ± 18.11%, mean connective tissue values of 59.34 ± 12.42% and 50.03 ± 17.13%, and mean residual graft material values of 14.6 ± 14.56% and 22.78 ± 10.83% in the Test and Control Groups, respectively, with no significant differences. The two-window technique obtained comparative maturation of the grafted volume even without membrane coverage, and is a viable alternative for the rehabilitation of severely atrophic posterior maxillae with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.

  20. Growth, optical, thermal and dielectric studies of an amino acid organic nonlinear optical material: L-Alanine

    International Nuclear Information System (INIS)

    Caroline, M. Lydia; Sankar, R.; Indirani, R.M.; Vasudevan, S.

    2009-01-01

    Good transparent bulk single crystals of L-alanine (nonlinear optical material) have been grown successfully by slow cooling technique from aqueous solution at pH value of 2.0. Optically transparent crystals with dimensions 2.4 cm x 1.2 cm x 1.6 cm, were grown by optimizing the growth parameters within a growth period of 2 weeks. The crystallinity of L-alanine crystal was confirmed by the powder X-ray diffraction study and diffraction peaks are indexed. The vibrational structure of the molecule is elucidated from FTIR spectra. The thermal behaviour of the grown crystal was investigated by thermogravimetric (TG) and differential thermal analyses (DTA) techniques in a nitrogen atmosphere. The result showed that the material starts decomposing at 297 deg. C. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance between the wavelengths ranging from 200 to 1200 nm. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time

  1. Experimental investigation of the dielectric properties of soil under hydraulic loading

    International Nuclear Information System (INIS)

    Bittner, Tilman; Bore, Thierry; Karlovšek, Jurij; Scheuermann, Alexander; Wagner, Norman

    2017-01-01

    An experimental set-up was developed in order to determine the coupled hydraulic, dielectric and mechanical properties of granular media under hydraulic loading. The set-up consisted of a modified column for permeability tests involving a flow meter and pressure transducers along the sample to quantify the hydraulic gradient. A newly developed open-ended coaxial probe allowed the measurement of the frequency dependent dielectric permittivity of the material under test. The shear strength of the sample within the column was measured using a conventional vane shear device. In this paper, the overall set-up is introduced with focus on the open-ended coaxial probe. The design and calibration of the probe are introduced in detail. A numerical study showed that the sensitive cylindrical volume of the probe was approximately 150 mm in diameter with a depth of 65 mm. An investigation with glass beads showed that the set-up allowed the parameterization of the hydraulic, mechanic and dielectric parameters of granular materials under the influence of vertical flow. A satisfactorily good correlation between porosity and the real part of the dielectric permittivity was detected. The critical hydraulic gradient defining the transition of a fixed bed of particles to fluidization was characterized by a sharp peak in the evolution of the hydraulic conductivity and could easily be determined from the measurements. The shear strength of the material under test reduces linearly with increasing hydraulic gradient. Future investigations will be carried out to provide the required parameterizations for experimental and numerical investigations of the internal erosion of granular media. (paper)

  2. Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films

    Science.gov (United States)

    Soltani, Osswa; Zaghdoudi, Jihene; Kanzari, Mounir

    2018-06-01

    By means of two fluid model and transfer matrix method (TMM), we investigate theoretically the transmittance properties of a defective hybrid dielectric-dielectric photonic crystal that contains a superconducting material as a defect layer. The considered hybrid photonic structure is: H(LH) 7(HLSLH) P H(LH) 7 , where H is the high refractive index dielectric, L is the low refractive index dielectric, S is the superconducting material and P is the repetitive number. The results show that the variation of the number and the positions of the transmissions modes depend strongly on the repetitive number P, the temperature T and the thickness of the layer S. An improvement of the spectral response is obtained with the exponential gradation of layer thicknesses dj =d0 + βejα , where d0 is the initial thickness of the layer j, α and β are two particular constants for each material. In addition, the effect of the incident angle for both transverse electric (TE) and transverse magnetic (TM) polarizations on the transmittance spectrum is discussed. As a result, we propose a tunable narrow stop-band polychromatic filter that covers the visible wavelength.

  3. Compact, Wearable Antennas for Battery-Less Systems Exploiting Fabrics and Magneto-Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Costanzo

    2014-08-01

    Full Text Available In this paper, we describe some promising solutions to the modern need for wearable, energy-aware, miniaturized, wireless systems, whose typical envisaged application is a body area network (BAN. To reach this goal, novel materials are adopted, such as fabrics, in place of standard substrates and metallizations, which require a systematic procedure for their electromagnetic characterization. Indeed, the design of such sub-systems represents a big issue, since approximate approaches could result in strong deviations from the actual system performance. To face this problem, we demonstrate our design procedure, which is based on the concurrent use of electromagnetic software tools and nonlinear circuit-level techniques, able to simultaneously predict the actual system behavior of an antenna system, consisting of the radiating and of the nonlinear blocks, at the component level. This approach is demonstrated for the design of a fully-wearable tri-band rectifying antenna (rectenna and of a button-shaped, electrically-small antenna deploying a novel magneto-dielectric substrate. Simulations are supported by measurements, both in terms of antenna port parameters and far-field results.

  4. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  5. Prehistory effect on dielectric properties of NaNbO3-Gd1/3NbO3

    International Nuclear Information System (INIS)

    Burkhanov, A.I.; Bondarenko, P.V.; Shil'nikov, A.V.; Raevskaya, S.I.; Raevskij, I.P.

    2006-01-01

    One studied the low- and the infralow-frequency dielectric response of 0.9NaNbO 3 -0.1Gd 1/3 NbO 3 (NNG10) composition ceramics and single crystal at the material different prehistory. One revealed the differences in the nature of dielectric aging in NaNbO 3 antiferroelectric base material with a diffused phase transition in contrast to manifestation of similar phenomena in ferroelectrics-relaxors [ru

  6. Influence of color on dielectric properties of marinated poultry breast meat.

    Science.gov (United States)

    Samuel, D; Trabelsi, S

    2012-08-01

    The dielectric behavior of foods when exposed to radio-frequency and microwave electric fields is highly influenced by moisture content and the degree of water binding with constituents of the food materials. The ability to correlate specific food quality characteristics with the dielectric properties can lead to the development of rapid, nondestructive techniques for such quality measurements. Water-holding capacity is a critical attribute in meat quality. Up to 50% of raw poultry meat in the United States is marinated with mixtures of water, salts, and phosphates. The objective of this study was to determine if variations in breast meat color would affect the dielectric properties of marinated poultry meat over a broad frequency range from 500 MHz to 50 GHz. Poultry meat was obtained from a local commercial plant in Georgia (USA). Color and pH measurements were taken on the breast filets. Groups of breast filets were sorted into classes of pale and normal before adding marination pickup percentages of 0, 5, 10, and 15. Breast filets were vacuum-tumbled and weighed for pickup percentages. Dielectric properties of the filets were measured with a coaxial open-ended probe on samples equilibrated to 25°C. Samples from pale meat exhibited higher dielectric properties than samples from normal meat. No differences could be observed between samples from pale and normal meat after marination of the samples. Overall, dielectric properties increased as the marination pickup increased (α=0.05). Marination pickup strongly influenced the dielectric loss factor. Differences between samples marinated at different pickup levels were more pronounced at lower frequencies for the dielectric loss factor. As frequency increased, the differences between samples decreased. Differences in dielectric constant between samples were not as consistent as those seen with the dielectric loss factor.

  7. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    Science.gov (United States)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  8. Examination of Critical Length Effect in Copper Interconnects With Oxide and Low-k Dielectrics

    International Nuclear Information System (INIS)

    Thrasher, Stacye; Gall, Martin; Justison, Patrick; Hernandez, Richard; Kawasaki, Hisao; Capasso, Cristiano; Nguyen, Timothy

    2004-01-01

    As technology moves toward faster microelectronic devices with smaller feature sizes, copper is replacing aluminum-copper alloy and low-k dielectric is replacing oxide as the materials of choice for advanced interconnect integrations. Copper not only brings to the table the advantage of lower resistivity, but also exhibits better electromigration performance when compared to Al(Cu). Low-k dielectric materials are advantageous because they reduce power consumption and improve signal delay. Due to these advantages, the industry trend is moving towards integrating copper and low-k dielectric for high performance interconnects. The purpose of this study is to evaluate the critical length effect in single-inlaid copper interconnects and determine the critical product (jl)c, for a variety of integrations, examining the effect of ILD (oxide vs. low-k), geometry, and stress temperature

  9. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    Science.gov (United States)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  10. Reinforced poly(propylene oxide): a very soft and extensible dielectric electroactive polymer

    International Nuclear Information System (INIS)

    Goswami, K; Mazurek, P; Daugaard, A E; Skov, A L; Galantini, F; Gallone, G

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of α,ω-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 10 3 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss. (paper)

  11. Longitudinally mounted light emitting plasma in a dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Gilliard, Richard; DeVincentis, Marc; Hafidi, Abdeslam; O' Hare, Daniel; Hollingsworth, Gregg [LUXIM Corporation, 1171 Borregas Avenue, Sunnyvale, CA 94089 (United States)

    2011-06-08

    Methods for coupling power from a dielectric resonator to a light-emitting plasma have been previously described (Gilliard et al IEEE Trans. Plasma Sci. at press). Inevitably, regardless of the efficiency of power transfer, much of the emitted light is absorbed in the resonator itself which physically surrounds much if not all of the radiating material. An investigation into a method is presented here for efficiently coupling power to a longitudinally mounted plasma vessel which is mounted on the surface of the dielectric material of the resonator, thereby eliminating significant absorption of light within the resonator structure. The topology of the resonator and its physical properties as well as those of the metal halide plasma are presented. Results of basic models of the field configuration and plasma are shown as well as a configuration suitable as a practical light source.

  12. A Method for Coupling a Direct Current Power Source Across a Dielectric Membrane or Other Non-Conducting Membrane

    National Research Council Canada - National Science Library

    Steinbrecher, Donald H

    2008-01-01

    .... A second set of plates on the second side of the membrane form a set of coupling capacitors wherein the non-conducting dielectric membrane becomes part of the coupling-capacitor dielectric material...

  13. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  14. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...

  15. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Science.gov (United States)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  16. Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  17. Medium band gap polymer based solution-processed high-κ composite gate dielectrics for ambipolar OFET

    Science.gov (United States)

    Canımkurbey, Betül; Unay, Hande; Çakırlar, Çiğdem; Büyükköse, Serkan; Çırpan, Ali; Berber, Savas; Altürk Parlak, Elif

    2018-03-01

    The authors present a novel ambipolar organic filed-effect transistors (OFETs) composed of a hybrid dielectric thin film of Ta2O5:PMMA nanocomposite material, and solution processed poly(selenophene, benzotriazole and dialkoxy substituted [1,2-b:4, 5-b‧] dithiophene (P-SBTBDT)-based organic semiconducting material as the active layer of the device. We find that the Ta2O5:PMMA insulator shows n-type conduction character, and its combination with the p-type P-SBTBDT organic semiconductor leads to an ambipolar OFET device. Top-gated OFETs were fabricated on glass substrate consisting of interdigitated ITO electrodes. P-SBTBDT-based material was spin coated on the interdigitated ITO electrodes. Subsequently, a solution processed Ta2O5:PMMA nanocomposite material was spin coated, thereby creating the gate dielectric layer. Finally, as a gate metal, an aluminum layer was deposited by thermal evaporation. The fabricated OFETs exhibited an ambipolar performance with good air-stability, high field-induced current and relatively high electron and hole mobilities although Ta2O5:PMMA nanocomposite films have slightly higher leakage current compared to the pure Ta2O5 films. Dielectric properties of the devices with different ratios of Ta2O5:PMMA were also investigated. The dielectric constant varied between 3.6 and 5.3 at 100 Hz, depending on the Ta2O5:PMMA ratio.

  18. Nanocrystals of a new complex perovskite dielectric Ba{sub 2}TmSbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nair, V.M. [Department of Physics, University College, Trivandrum 695034, Kerala (India); Jose, R., E-mail: rjose@ump.edu.my [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan (Malaysia); Anil Kumar, G.M. [Noritake Co Ltd, 300 Higashiyama, Miyoshi, Aichi 470-0293 (Japan); Yusoff, Mashitah M. [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan (Malaysia); Wariar, P.R.S. [Department of Physics, University College, Trivandrum 695034, Kerala (India)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer A new material, Ba{sub 2}TmSbO{sub 6}, has been synthesized as nanocrystals for the first time. Black-Right-Pointing-Pointer A combustion process, characterized by a one-pot procedure, was adopted to synthesize Ba{sub 2}TmSbO{sub 6} as nanocrystals. Black-Right-Pointing-Pointer Crystal structure and dielectric properties of the Ba{sub 2}TmSbO{sub 6} have been studied and compared with similar materials. - Abstract: Nanocrystals of a new complex perovskites ceramic oxide, barium thulium antimony oxide - Ba{sub 2}TmSbO{sub 6}, were synthesized using a single step auto-ignition combustion process. The combustion product was single phase and composed of aggregates of nanocrystals of sizes in the range 20-50 nm. Ba{sub 2}TmSbO{sub 6} crystallized in cubic perovskite structure with lattice parameter, a = 8.4101 Angstrom-Sign . The polycrystalline fluffy combustion product was sintered to high density ({approx}97%) at {approx}1450 Degree-Sign C for 4 h. Resistivity of the sintered specimen was {approx}5 M{Omega}/cm. The Ba{sub 2}TmSbO{sub 6} has dielectric constant ({epsilon} Prime ) and dielectric loss (tan {delta}) of 17 and {approx}10{sup -4} at 5 MHz; the new material would probably be developed as a low-loss dielectric material.

  19. Ab-initio study of the dielectric response of high-permittivity perovskites for energy storage

    International Nuclear Information System (INIS)

    Do-Amaral-De-Andrade-Sophia, Gustavo

    2014-01-01

    Many of materials based on transition metals have a wide range of applications, such as the storage of energy, due to their peculiar properties (high-dielectric constants, ferro-electricity,...). The knowledge of their bulk properties is essential in designing targeted devices with high performance. For instance, ABO 3 perovskites are peculiarly interesting for their atomic structural flexibility, allowing high number of atoms substitution and giving them specific chemical and electrical properties compared to the pure compounds. In this context, first principles calculations can be useful to understand the structural and electronic properties of these materials. The pressure-induced giant dielectric anomaly of ABO 3 perovskites has been investigated at the ab initio level. Its mechanism has been analyzed in terms of thermodynamic phase stability, structural and phonon contributions and Born effective charges. It is shown that the IR-active soft phonon is responsible for the anomaly. This mode always involves a displacement and a deformation of the oxygen octahedra, while the roles of A and B ions vary among the materials and between high- and low-pressure phase transitions. A sharp increase in the phonon amplitude near the phase transition gives rise to the dielectric anomaly. The use of hybrid functionals is required for agreement with experimental data. The calculations show that the dielectric anomaly in the pressure-induced phase transitions of these perovskites is a property of the bulk material. (author)

  20. Measurement of valence band structure in arbitrary dielectric films

    International Nuclear Information System (INIS)

    Uhm, Han S.; Choi, Eun H.

    2012-01-01

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  1. Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid

    Science.gov (United States)

    Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.

    2018-01-01

    This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

  2. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  3. Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells.

    Science.gov (United States)

    Juarez-Perez, Emilio J; Sanchez, Rafael S; Badia, Laura; Garcia-Belmonte, Germá; Kang, Yong Soo; Mora-Sero, Ivan; Bisquert, Juan

    2014-07-03

    Organic-inorganic lead trihalide perovskites have emerged as an outstanding photovoltaic material that demonstrated a high 17.9% conversion efficiency of sunlight to electricity in a short time. We have found a giant dielectric constant (GDC) phenomenon in these materials consisting on a low frequency dielectric constant in the dark of the order of ε0 = 1000. We also found an unprecedented behavior in which ε0 further increases under illumination or by charge injection at applied bias. We observe that ε0 increases nearly linearly with the illumination intensity up to an additional factor 1000 under 1 sun. Measurement of a variety of samples of different morphologies, compositions, and different types of contacts shows that the GDC is an intrinsic property of MAPbX3 (MA = CH3NH3(+)). We hypothesize that the large dielectric response is induced by structural fluctuations. Photoinduced carriers modify the local unit cell equilibrium and change the polarizability, assisted by the freedom of rotation of MA. The study opens a way for the understanding of a key aspect of the photovoltaic operation of high efficiency perovskite solar cells.

  4. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    Science.gov (United States)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  5. Experimental Technique for Producing and Recording Precise Particle Impacts on Transparent Window Materials

    Science.gov (United States)

    Gray, Perry; Guven, Ibrahim

    2016-01-01

    A new facility for making small particle impacts is being developed at NASA. Current sand/particle impact facilities are an erosion test and do not precisely measure and document the size and velocity of each of the impacting particles. In addition, evidence of individual impacts is often obscured by subsequent impacts. This facility will allow the number, size, and velocity of each particle to be measured and adjusted. It will also be possible to determine which particle produced damage at a given location on the target. The particle size and velocity will be measured by high speed imaging techniques. Information as to the extent of damage and debris from impacts will also be recorded. It will be possible to track these secondary particles, measuring size and velocity. It is anticipated that this additional degree of detail will provide input for erosion models and also help determine the impact physics of the erosion process. Particle impacts will be recorded at 90 degrees to the particle flight path and also from the top looking through the target window material.

  6. Nonexistence of Smooth Electromagnetic Fields in Nonlinear Dielectrics. II. Shock Development in a Half-Space.

    Science.gov (United States)

    1982-03-01

    NUMB9ER 00 AU THOR(s) 8. CON7RACT OR GRANT .%Uv3ERHj) Frederick Bloom AFOSR-81-0171 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PrOGRAK ELEMAE:NT...material coff -iceret which may be associated with a particular nonlinear dielectric substance. For most common nonlinear dielectric substance, e

  7. Windows 10 for dummies

    CERN Document Server

    Rathbone, Andy

    2015-01-01

    The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

  8. Holmium hafnate: An emerging electronic device material

    Science.gov (United States)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  9. Provide Views | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  10. Reduced Fading | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. EWC Members | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Visible Transmittance | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. Gas Fills | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. EWC Membership | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Reducing Condensation | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. Improved Comfort | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Financing & Incentives | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Tools & Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Books & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Design Considerations | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards