WorldWideScience

Sample records for dielectric cherenkov maser

  1. Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser

    Institute of Scientific and Technical Information of China (English)

    Zhao Ding; Ding Yao-Gen

    2012-01-01

    To rapidly and accurately investigate the performance of the dielectric loaded rectangular Cerenkov maser,a simplified nonlinear theory is proposed,in which the variations of wave amplitude and wave phase are determined by two coupled first-order differential equations.Through combining with the relativistic equation of motion and adopting the forward wave assumption,the evolutions of the forward wave power,the power growth rate,the axial wave number,the accumulated phase offset,and the information of the particle movement can be obtained in a single-pass calculation.For an illustrative example,this method is used to study the influences of the beam current,the gap distance between the beam and the dielectric surface,and the momentum spread on the forward wave.The variations of the saturated power and the saturation length with the working frequency for the beams with different momentum spreads have also been studied.The result shows that the beam-wave interaction is very sensitive to the electron beam state.To further verify this simplified theory,a comparison with the result produced from a rigorous method is also provided,we find that the evolution curves of the forward wave power predicted by the two methods exhibit excellent agreement.In practical applications,the developed theory can be used for the design and analysis of the rectangular Cerenkov maser.

  2. Relativistic Cherenkov radiation in a magneto-dielectric media

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available In this paper, relativistic Cherenkov radiation was studied in a 3-D magneto-dielectric medium. Electric permittivity and magnetic permeability of the medium as functions of frequency, are assumed to satisfy Kramers- Kronig equations. A new interaction Hamiltonian, which is different from Hamiltonian term in non-relativistic state, was introduced by the quantized vector potential field and particle field operator obtained from the second quantization method. The rate of electron energy dissipation was calculated using Fermi’s golden rule.

  3. Superradiance driven by coherent spontaneous emission in a Cherenkov free-electron maser amplifier

    CERN Document Server

    Jaroszynski, D A; McNeil, B W J; Robb, G R M; Aitken, P; Phelps, A D R; Cross, A W; Ronald, K; Shpak, V G; Yalandin, M I; Ginzburg, N S

    2000-01-01

    Superradiance (SR) initiated by coherent spontaneous emission (CSE) has been studied in a 35 GHz high gain free-electron Cherenkov maser. We present experimental results that show the development of ultra-short pulses of radiation in the non-linear superradiant regime which are characterised by a quadratic dependence of the intensity on the current. The self-similar pulses that develop have a duration that scales inversely with the fourth root of the intensity leading to three cycle long pulses at the highest intensity (few MW). The non-linear SR regime is preceded by a stage of linear exponential growth of the microwave pulses with a gain length of 1 cm. The superradiant pulse is shown to evolve from a CSE seed by extrapolating the growth curve. Further confirmation of CSE has been obtained by varying the current pulse shape. By varying the slope of the leading edge, and thus the Fourier components of the longitudinal spectral density, we are able to vary the strength of the CSE source. We compare the experi...

  4. About Modeling the Excitation Conditions of Cherenkov and Diffraction Radiations in Periodic Metal-dielectric Structures

    Directory of Open Access Journals (Sweden)

    G.S. Vorobjov

    2015-06-01

    Full Text Available General procedure for modeling the excitation conditions of Cherenkov and diffraction radiations in periodic metal-dielectric structures is described. It is based on the representation of the electron beam space-charge wave in the form of a dielectric waveguide surface-wave. On the experimental facility of millimeter-wave the basic modes of excitation conditions of spatial harmonics of the Cherenkov and diffraction radiations are simulated. The method is tested by comparing the numerical analysis and experimental results on the layout of the device of the orotron type - generator of diffraction radiation.

  5. Cherenkov radiation and dielectric based accelerating structures: Wakefield generation, power extraction and energy transfer efficiency

    Science.gov (United States)

    Kanareykin, Alexei

    2010-06-01

    We present here our recent results of the Euclid Techlabs LLC/Argonne National Laboratory/St.Petersburg Electrotechnical University "LETI" collaboration on wakefield high energy acceleration of electron bunches in dielectric based accelerating structures. This program concentrates primarily on Cherenkov radiation studies providing efficient high energy generation aimed at a future 1 TeV collider. We report here on recent experiments in high power Cherenkov radiation and corresponding dielectric material developments and characterizations. Progress in diamond, quartz and microwave low-loss ceramic structure development in GHz and THz frequency ranges is presented. Beam Breakup effects and transverse bunch stability are discussed as well. We e report on recent progress on tunable dielectric based structure development. A special subject of our paper is transformer ratio enhancement schemes providing energy transfer efficiency for the dielectric based wakefield acceleration.

  6. Cherenkov radiation from the target with predetermined dielectric properties, produced by a 3D-printer

    Science.gov (United States)

    Naumenko, G.; Potylitsyn, A.; Bleko, V.; Soboleva, V.; Stuchebrov, S.

    2017-07-01

    Most targets made of industrial materials, used for the generation of Cherenkov radiation (ChR) have a refractive index n > 1.4 in millimeter wavelength region. It is often a problem to get out the radiation from such cylindrical or flat targets because the angle of incidence of ChR on the outer surface of target is greater than the angle of total internal reflection. In this work we present the solution of this problem by the usage of the targets with predetermined dielectric properties, manufactured using 3-D printer. We demonstrate the emission of ChR in millimeter wavelength region from the such flat target with the refractive index n = 1.37 . Suggested technique allows us to fabricate targets with turned refractive index.

  7. Passive maser development at NRL

    Science.gov (United States)

    White, J. D.; Frank, A.; Folen, V.

    1981-01-01

    The application of passive hydrogen masers to satellites was investigated. The NRL maser is of compact design suitable for the space environment. It is based on a dielectrically loaded sapphire cavity and uses a computer optimized set of four shields. The servo design is a phase sensitive method which directly measures the phase dispersion of the interrogating signal as it passes through the cavity.

  8. Cherenkov radiation threshold in random inhomogeneous media

    CERN Document Server

    Grichine, V M

    2009-01-01

    Cherenkov radiation in media with random inhomogeneities like aerogel or Earth atmosphere is discussed. The spectral-angular distribution of Cherenkov photons emitted by relativistic charged particle and averaged over the dielectric permittivity fluctuations shows angular broadening similarly to the case of media with the photon absorption. The broadening results in the smoothing of Cherenkov threshold, and therefore media with strong photon scattering have more extended dependence of Cherenkov light output on the particle speed. It can be potentially used for the particle identification

  9. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  10. The Cherenkov Radiation for Non-Trivial Systems; La Radiacion Cherenkov en Sistemas No Triviales

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.

    2002-07-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs.

  11. Class I methanol masers: Masers with EGOs

    CERN Document Server

    Chen, Xi; Shen, Zhi-Qiang

    2009-01-01

    We have compared the results of a number of published class I methanol maser surveys with the catalogue of high-mass outflow candidates identified from the GLIMPSE survey (known as extended green objects or EGOs). We find class I methanol masers associated with approximately two-thirds of EGOs. Although the association between outflows and class I methanol masers has long been postulated on the basis of detailed studies of a small number of sources, this result demonstrates the relationship for the first time on a statistical basis. Despite the publication of a number of searches for class I methanol masers, a close physical association with another astrophysical object which could be targeted for the search is still lacking. The close association between class I methanol masers and EGOs therefore provides a large catalogue of candidate sources, most of which have not previously been searched for class I methanol masers. Interstellar masers and outflows have both been proposed to trace an evolutionary sequenc...

  12. Gain of double-slab Cherenkov free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Institute for laser Technology, suita, Osaka 565-0871 (Japan)], E-mail: dazhi_li@hotmail.com; Huo, G. [Petroleum development center, Shengli Oilfield, SINOPEC, Dongying 257001 (China); Imasak, K. [Institute for laser Technology, suita, Osaka 565-0871 (Japan); Asakawa, M. [Department of pure and applied physics, Faculty of Engineering Science, Kansai University, Osaka 564-8680 (Japan)

    2009-07-21

    A formula is derived for the small-signal gain of a double-slab Cherenkov free-electron laser. The simplified model is composed of a rectangular wave-guide partially filled with two lined parallel dielectric slabs and a sheet electron beam. The theory describes the electron beam as a plasma dielectric moving between the two dielectric slabs. With the help of hydrodynamic approximation, we derived the dispersion equation and the formula of small-signal gain. Through numerical computing, we studied an ongoing experiment of double-slab Cherenkov free-electron laser, and worked out the synchronous frequency and single-pass gain.

  13. Masers and VSOP-2

    Science.gov (United States)

    Elitzur, M.

    2009-08-01

    Maser studies where VSOP-2 can make its strongest impact involve proper motion measurements. In this talk I review outstanding issues in topics ranging from star forming regions to active galactic nuclei in which VSOP-2 proper motion measurements offer the promise of seminal contributions.

  14. Characterization of coherent Cherenkov radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V.

    2015-01-21

    Engineering formulae for calculation of peak, and spectral brightness of resonant long-range wakefield extractor are given. It is shown that the brightness is dominated by beam density in the slow wave structure and antenna gain of the outcoupling. Far field radiation patterns and brightness of circular and high aspect ratio planar radiators are compared. A possibility to approach diffraction limited brightness is demonstrated. The role of group velocity in designing of the Cherenkov source is analyzed. The approach can be applied for design and characterization of various structure-dominated sources (e.g., wakefield extractors with gratings or dielectrics, or FEL-Cherenkov combined sources) radiating into a free space using an antenna (in microwave to sub-mm wave regions). The high group velocity structures can be also effective as energy dechirpers and for diagnostics of microbunched relativistic electron beams.

  15. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  16. Peculiarities of Cherenkov Radiation in Dispersive Media

    CERN Document Server

    Afanasiev, G N; Ruzicka, J

    2001-01-01

    Previously obtained space-time distributions of the radiation generated by a charge uniformly moving in medium with dispersion are applied to concrete substances with quite different physical properties (iodine and ZnSe) for which the parametrizations of dielectric permittivity are known from physical literature. For iodine, the resonance frequency lies in a far ultraviolet region, while for ZnSe it is in a far infrared. Both analytical and numerical spectral distributions corresponding to this radiation are obtained. It turns out that for iodine there is only one critical velocity below and above of which the moving charge radiates in a quite different way. There are two critical velocity for ZnSe. We discuss possible complications arising when the radiation of the point-like charge is measured below the Cherenkov threshold. Probably, these considerations are applicable to the recent experiment in which the radiation of electric dipoles below the Cherenkov threshold was observed. The alternative reasons for ...

  17. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  18. Cherenkov radiation in moving medium

    OpenAIRE

    2010-01-01

    Cherenkov radiation in uniformly moving homogenous isotropic medium without dispersion is studied. Formula for the spectrum of Cherenkov radiation of fermion was derived for the case when the speed of the medium is less than the speed of light in this medium at rest. The properties of Cherenkov spectrum are investigated.

  19. Wavelength-shifted Cherenkov radiators

    Science.gov (United States)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  20. FAST Maser Surveys

    Indian Academy of Sciences (India)

    J. S. Zhang

    2014-09-01

    FAST, the Five-hundred meter Aperture Spherical radio Telescope, will become the largest operating single-dish telescope in the coming years. It has many advantages: much better sensitivity for its largest collecting area; large sky coverage due to its innovative design of the active primary surface; extremely radio quiet from its unique location, etc. In this work, I will highlight the future capabilities of FAST to discover and observe both galactic and extragalactic masers.

  1. Recent Developments in Maser Theory

    CERN Document Server

    Elitzur, Moshe

    2007-01-01

    This review covers selected developments in maser theory since the previous meeting, "Cosmic Masers: From Proto-Stars to Black Holes" (Migenes & Reid 2002). Topics included are time variability of fundamental constants, pumping of OH megamasers and indicators for differentiating disks from bi-directional outflows.

  2. Studies of methanol maser rings

    CERN Document Server

    Bartkiewicz, A; van Langevelde, H J; De Buizer, J M; Pihlström, Y

    2011-01-01

    We present the results of studies of a new class of 6.7 GHz methanol maser sources with a ring-like emission structure discovered recently with the EVN. We have used the VLA to search for water masers at 22 GHz and radio continuum at 8.4 GHz towards a sample of high-mass star forming regions showing a ring-like distribution of methanol maser spots. Using the Gemini telescopes we found mid-infrared (MIR) counterparts of five methanol rings with a resolution of 0."15. The centres of methanol maser rings are located within, typically, only 0."2 of the MIR emission peak, implying their physical relation with a central star. These results strongly support a scenario wherein the ring-like structures appear at the very early stage of massive star formation before either water-maser outflows or H II regions are seen.

  3. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  4. Status of non-destructive bunch length measurement based on coherent Cherenkov radiation

    CERN Document Server

    Zhang, Jianbing; Yu, Tiemin; Deng, Haixiao; Shkitov, Dmitry; Shevelev, Mikhail; Naumenko, Gennady; Potylitsyn, Alexander

    2013-01-01

    As a novel non-destructive bunch length diagnostic of the electron beam, an experimental observation of the coherent Cherenkov radiation generated from a dielectric caesium iodide crystal with large spectral dispersion was proposed for the 30MeV femtosecond linear accelerator at Shanghai Institute of Applied Physics (SINAP). In this paper, the theoretical design, the experimental setup, the terahertz optics, the first angular distribution observations of the coherent Cherenkov radiation, and the future plans are presented.

  5. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  6. Corrugated capillary as THz Cherenkov Smith-Purcell radiator

    Science.gov (United States)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.

    2016-07-01

    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  7. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  8. Water masers in dusty environments

    CERN Document Server

    Babkovskaia, N; Babkovskaia, Natalia; Poutanen, Juri

    2004-01-01

    We study in details a pumping mechanism for the lambda=1.35 cm maser transition 6_16 -> 5_23 in ortho-water based on the difference between gas and dust temperatures. The upper maser level is populated radiatively through 4_14 -> 5_05 and 5_05 -> 6_16 transitions. The heat sink is realized by absorbing the 45 mum photons, corresponding to the 5_23 -> 4_14 transition, by cold dust. We compute the inversion of maser level populations in the optically thick medium as a function of the hydrogen concentration, the gas-to-dust mass ratio, and the difference between the gas and the dust temperatures. The main results of numerical simulations are interpreted in terms of a simplified four-level model. We show that the maser strength depends mostly on the product of hydrogen concentration and the dust-to-water mass ratio but not on the size distribution of the dust particles or their type. We also suggest approximate formulae that describe accurately the inversion and can be used for fast calculations of the maser lumi...

  9. An Analysis of NTSC's Timekeeping Hydrogen Masers

    Science.gov (United States)

    Hui-jie, Song; Shao-wu, Dong; Zheng-ming, Wang; Li-li, Qu; Yue-juan, Jing; Wei, Li

    2016-10-01

    In this article, the hydrogen masers in the NTSC (National Time Service Center) timekeeping laboratory are tested. In order to avoid the impact of larger noise of caesium atomic clocks, TA(k) or UTC(k) is not used as reference, instead, the four hydrogen masers are mutually referred and tested. The frequency stability of hydrogen masers is analyzed using the four-cornered hat method, and the Allan standard deviations of each single hydrogen maser in different sample times are estimated. Then, according to the characteristics of hydrogen masers, by removing the trend term, excluding outliers, and smoothing the data with a mathematical method to separate the Gaussian noises of hydrogen masers, and finally by through the Kolmogorov-Smirnov test, the Gaussian noise of each hydrogen maser is estimated.

  10. Analysis of NTSC's Timekeeping Hydrogen Masers

    Science.gov (United States)

    Song, H. J.; Dong, S. W.; Wang, Z. M.; Qu, L. L.; Jing, Y. J.; Li, W.

    2015-11-01

    In this article, the hydrogen masers were tested in NTSC (National Time Service Center) keeping time laboratory. In order to avoid the impact of larger noise of caesium atomic clocks, TA(k) or UTC(k) was not used as reference, and four hydrogen masers were mutually referred and tested. The frequency stabilities of hydrogen masers were analyzed by using four-cornered hat method, and the Allan standard deviation of single hydrogen maser was estimated in different sampling time. Then according to the characteristics of hydrogen masers, by removing the trend term, excluding outliers, and smoothing data with mathematical methods to separate the Gaussian noise of hydrogen masers, and finally through the normal Kolmogorov-Smirnov test, a single hydrogen maser's Gaussian noise has been estimated.

  11. Kinetic analysis of two dimensional metallic grating Cerenkov maser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.

  12. Simultaneous observation of water and class I methanol masers toward class II methanol maser sources

    CERN Document Server

    Kang, Hyunwoo; Byun, Do-Young; Lee, Seokho; Park, Yong-Sun

    2015-01-01

    We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) catalog.Water maser emission is detected in 39 (51%) sources, of which 15 are new detections. Methanol maser emission at 44 GHz and 95 GHz is found in 25 (32%) and 19 (25%) sources, of which 21 and 13 sources are newly detected, respectively. We find 4 high-velocity (> 30 km/s) water maser sources, including 3 dominant blue- or redshifted outflows.The 95 GHz masers always appear with the 44 GHz maser emission. They are strongly correlated with 44 GHz masers in velocity, flux density, and luminosity, while they are not correlated with either water or 6.7 GHz class II methanol masers. The average peak flux density ratio of 95 GHz to 44 GHz masers is close to unity, which is two times higher than previous estimates. The flux densities of class I methanol masers are more ...

  13. IAU (Maser) Symposium 285 Summary

    CERN Document Server

    Menten, Karl M

    2012-01-01

    I'm trying to summarize the science communicated via oral presentations and by posters at the IAU Symposium 285 "Cosmic Masers - from OH to H_0", which took place from January 29 to February 3, 2012 in Stellenbosch, South Africa.

  14. OH Masers and Supernova Remnants

    CERN Document Server

    Wardle, Mark

    2012-01-01

    OH(1720 MHz) masers are created by the interaction of supernova remnants with molecular clouds. These masers are pumped by collisions in warm, shocked molecular gas with OH column densities in the range 10^{16}--10^{17} cm^{-2}. Excitation calculations suggest that inversion of the 6049 MHz OH line may occur at the higher column densities that have been inferred from main-line absorption studies of supernova remnants with the Green Bank Telescope. OH(6049 MHz) masers have therefore been proposed as a complementary indicator of remnant-cloud interaction. This motivated searches for 6049 MHz maser emission from supernova remnants using the Parkes 63 m and Effelsberg 100 m telescopes, and the Australia Telescope Compact Array. A total of forty-one remnants have been examined by one or more of these surveys, but without success. To check the accuracy of the OH column densities inferred from the single-dish observations we modelled OH absorption at 1667 MHz observed with the Very Large Array towards three supernov...

  15. Cherenkov loss factor of short relativistic bunches:general approach

    CERN Document Server

    Baturin, S S

    2013-01-01

    The interaction of short relativistic charged particle bunches with waveguides and other accelerator system components is a critical issue for the development of X-ray FELs (free electron lasers) and linear collider projects. Wakefield Cherenkov losses of short bunches have been studied previously for resistive wall, disk-loaded, corrugated and dielectric loaded waveguides. It was noted in various publications [1] that if the slowdown layer is thin, the Cherenkov loss factor of a short bunch does not depend on the guiding system material and is a constant for any given transverse cross section dimensions of the waveguides. In this paper, we consider a new approach to the analysis of loss factors for relativistic short bunches and formulate a general integral relation that allows calculation of the loss factor for a short relativistic bunch passing an arbitrary waveguide system. The loss factors calculated by this new method for various types of waveguides with arbitrary thickness slowdown layers, including in...

  16. Room-temperature solid-state maser.

    Science.gov (United States)

    Oxborrow, Mark; Breeze, Jonathan D; Alford, Neil M

    2012-08-16

    The invention of the laser has resulted in many innovations, and the device has become ubiquitous. However, the maser, which amplifies microwave radiation rather than visible light, has not had as large an impact, despite being instrumental in the laser's birth. The maser's relative obscurity has mainly been due to the inconvenience of the operating conditions needed for its various realizations: atomic and free-electron masers require vacuum chambers and pumping; and solid-state masers, although they excel as low-noise amplifiers and are occasionally incorporated in ultrastable oscillators, typically require cryogenic refrigeration. Most realizations of masers also require strong magnets, magnetic shielding or both. Overcoming these various obstacles would pave the way for improvements such as more-sensitive chemical assays, more-precise determinations of biomolecular structure and function, and more-accurate medical diagnostics (including tomography) based on enhanced magnetic resonance spectrometers incorporating maser amplifiers and oscillators. Here we report the experimental demonstration of a solid-state maser operating at room temperature in pulsed mode. It works on a laboratory bench, in air, in the terrestrial magnetic field and amplifies at around 1.45 gigahertz. In contrast to the cryogenic ruby maser, in our maser the gain medium is an organic mixed molecular crystal, p-terphenyl doped with pentacene, the latter being photo-excited by yellow light. The maser's pumping mechanism exploits spin-selective molecular intersystem crossing into pentacene's triplet ground state. When configured as an oscillator, the solid-state maser's measured output power of around -10 decibel milliwatts is approximately 100 million times greater than that of an atomic hydrogen maser, which oscillates at a similar frequency (about 1.42 gigahertz). By exploiting the high levels of spin polarization readily generated by intersystem crossing in photo-excited pentacene and other

  17. A search for extragalactic methanol masers

    CERN Document Server

    Ellingsen, S P; Whiteoak, J B; Vaile, R A; McCulloch, P M; Price, M

    1994-01-01

    A sensitive search for 6.7--GHz methanol maser emission has been made towards 10 galaxies that have yielded detectable microwave molecular--line transitions. These include several which show OH megamaser or superluminous \\water\\/ maser emission. Within the Galaxy, \\methanol\\/ and OH masers often occur in the same star formation regions and, in most cases, the \\methanol\\/ masers have a greater peak flux density than their OH counterparts. Thus we might expect \\methanol\\/ masers to be associated with extragalactic OH maser sources. We failed to detect any emission or absorption above our 60--mJy detection limit. We conclude that if the physical conditions exist to produce \\methanol\\/ megamaser emission, they are incompatible with the conditions which produce OH megamaser emission.

  18. Cherenkov radiation; La radiation Cerenkov

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    When the radioactivity has been discovered, it was observed by researchers that different materials as mineral salts or solutions were emitting a weak light when submitted to radioactivity beams. At the beginning it has been thought that it was fluorescent light. In 1934, Cherenkov, a russian physicist, worked on the luminescence of uranyl salts solutions caused by gamma radiation and observed a very weak light was emitted by pure liquid. After further studies, he concluded that this phenomena was different from fluorescence. Since then, it has been called Cherenkov effect. This blue light emission is produced when charged particles are going through a transparent medium with an upper velocity than light velocity. This can happen only in medium with large refractive index as water or glass. It also presents its different properties discovered afterwards. The different applications of the Cherenkov radiation are discussed as counting techniques for radiation detectors or comic ray detectors. (M.P.)

  19. DELPHI Barrel Ring Imaging Cherenkov Detector

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. This is a piece of the Barrel Ring Imaging Cherenkov detector which was used to identify particles in DELPHI.It measured the Cherenkov light emitted when particles travelled faster than the speed of light through the material of the detector. The photo shows the complete Cherenkov detector.

  20. Cherenkov radiation oscillator without reflectors

    Science.gov (United States)

    Li, D.; Wang, Y.; Hangyo, M.; Wei, Y.; Yang, Z.; Miyamoto, S.

    2014-05-01

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  1. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  2. Accurate water maser positions from HOPS

    CERN Document Server

    Walsh, Andrew J; Longmore, Steven N; Breen, Shari L; Green, James A; Harvey-Smith, Lisa; Jordan, Christopher H; Macpherson, Christopher

    2014-01-01

    We report on high spatial resolution water maser observations, using the Australia Telescope Compact Array, towards water maser sites previously identified in the H2O southern Galactic Plane Survey (HOPS). Of the 540 masers identified in the single-dish observations of Walsh et al. (2011), we detect emission in all but 31 fields. We report on 2790 spectral features (maser spots), with brightnesses ranging from 0.06 Jy to 576Jy and with velocities ranging from -238.5 to +300.5km/s. These spectral features are grouped into 631 maser sites. We have compared the positions of these sites to the literature to associate the sites with astrophysical objects. We identify 433 (69 per cent) with star formation, 121 (19 per cent) with evolved stars and 77 (12 per cent) as unknown. We find that maser sites associated with evolved stars tend to have more maser spots and have smaller angular sizes than those associated with star formation. We present evidence that maser sites associated with evolved stars show an increased ...

  3. Testing maser-based evolutionary schemes: A new search for 37.7-GHz methanol masers

    CERN Document Server

    Ellingsen, S P; Voronkov, M A; Dawson, J R

    2012-01-01

    We have used the Australia Telescope National Facility Mopra 22-m antenna to search for 37.7-GHz (7(-2) - 8(-1}E) methanol masers towards a sample of thirty six class II methanol masers. The target sources are the most luminous class II methanol masers not previously searched for this transition, with isotropic peak 12.2-GHz maser luminosity greater than 250 Jy/kpc^2 and isotropic peak 6.7-GHz maser luminosity greater than 800 Jy/kpc^2. Seven new 37.7-GHz methanol masers were detected as a result of the search. The detection rate for 37.7-GHz methanol masers towards a complete sample of all such class II methanol maser sites south of declination -20 deg is at least 30 percent. The relatively high detection rate for this rare methanol transition is in line with previous predictions that the 37.7-GHz transition is associated with a late stage of the class II methanol maser phase of high-mass star formation. We find that there is a modest correlation between the ratio of the 6.7- and 37.7-GHz maser peak intensit...

  4. The interstellar methanol masers and their environments

    Institute of Scientific and Technical Information of China (English)

    MAO; Ruiqing(毛瑞青); PEI; Chunchuan(裴春传); ZENG; Qin(曾琴)

    2003-01-01

    To promote the understanding of massive star formation processes, we have studied the 6.6 GHz methanol (CH3OH) masers and their environments-- the dense cores and the outer regions of the molecular cloud. The physics of the CH3OH maser or the thermal emission formation region is studied by fitting the observational data of the 6.6 GHz 51-60 A+ and the 107 GHz 31-40 A+ CH3OH maser emission, using the radiative transfer calculations. The type II characteristics of the 6.6 GHz CH3OH maser are confirmed by the calculation results. A greater intensity of the radiation field leads to an increase in the peak intensity of the maser; however, high densities tend to turn off the maser. The calculation results show that to be a maser the 6.6 GHz CH3OH emission needs a radiation field of 150-300 K and a density not higher than 107cm-3, while the 107 GHz emission requires a radiation field of 210-300 K and a density not higher than 3×106 cm-3. The 6.6 GHz line is maser towards all six studied sources, while the 107 GHz line is maser towards Cep A only. Moreover, the former's intensity is much stronger than the latter. The radiative transfer calculations also indicate that the 6.6 GHz maser emission is so strong that the requirements of its formation (e.g. The radiation field, the density and the kinetic parameters) can only be satisfied at a certain stage of the processes of the massive star formation. Therefore it is often used as one of the most prominent tracers for the massive star formation regions. The calculation results of the simultaneous observations of (1,1) through (4,4) inversion lines of the ammonia (NH3) indicate that both the temperature and the density in the 6.6 GHz CH3OH maser formation regions are higher than that of the NH3 line formation regions. Furthermore, the common fact of |Vlsr(CO)| > |Vlsr(NH3)| > |Vlsr(CH3OH 6.6GHz maser)| in all six sources implies the ongoing developing trends of those gas flows driven by the masers.

  5. Cherenkov particle identification in FOCUS

    CERN Document Server

    Link, J M; Alimonti, G; Anjos, J C; Arena, V; Bediaga, I; Bianco, S; Boca, G; Bonomi, G; Boschini, M; Butler, J N; Carrillo, S; Casimiro, E; Cawlfield, C; Cheung, H W K; Cho, K; Chung, Y S; Cinquini, L; Cuautle, E; Cumalat, J P; D'Angelo, P; Di Corato, M; Dini, P; Engh, D; Fabbri, Franco Luigi; Gaines, I; Garbincius, P H; Gardner, R; Garren, L A; Giammarchi, M; Gianini, G; Gottschalk, E; Göbel, C; Handler, T; Hernández, H; Hosack, M; Inzani, P; Johns, W E; Kang, J S; Kasper, P H; Kim, D Y; Ko, B R; Kreymer, A E; Kryemadhi, A; Kutschke, R; Kwak, J W; Lee, K B; Leveraro, F; Liguori, G; Magnin, J; Malvezzi, S; Massafferri, A; Menasce, D; Merlo, M M; Mezzadri, M; Milazzo, L; Miranda, J M D; Mitchell, R; Montiel, E; Moroni, L; Méndez, H; Méndez, L; Nehring, M S; O'Reilly, B; Olaya, D; Pantea, D; Paris, A; Park, H; Park, K S; Pedrini, D; Pepe, I M; Pontoglio, C; Prelz, F; Quinones, J; Rahimi, A; Ramírez, J E; Ratti, S P; Reis, A C D; Reyes, M; Riccardi, C; Rivera, C; Rovere, M; Sala, S; Sarwar, S; Segoni, I; Sheaff, M; Sheldon, P D; Stenson, K; Sánchez-Hernández, A; Uribe, C; Vaandering, E W; Vitulo, P; Vázquez, F; Webster, M; Wilson, J R; Wiss, J; Xiong, W; Yager, P M; Zallo, A; Zhang, Y

    2002-01-01

    We describe the algorithm used to identify charged tracks in the fixed-target charm-photoproduction experiment FOCUS. We begin by describing the new algorithm and contrast this approach with that used in our preceding experiment - E687. We next illustrate the algorithm's performance using physics signals. Finally, we briefly describe some of the methods used to monitor the quantum efficiency and noise of the Cherenkov cells.

  6. Cherenkov particle identification in FOCUS

    Energy Technology Data Exchange (ETDEWEB)

    Link, J.M.; Reyes, M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Goebel, C.; Magnin, J.; Massafferri, A.; Miranda, J.M. de; Pepe, I.M.; Reis, A.C. dos; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Cinquini, L.; Cumalat, J.P.; O' Reilly, B.; Ramirez, J.E.; Vaandering, E.W.; Butler, J.N.; Cheung, H.W.K.; Gaines, I.; Garbincius, P.H.; Garren, L.A.; Gottschalk, E.; Kasper, P.H.; Kreymer, A.E.; Kutschke, R.; Bianco, S.; Fabbri, F.L.; Sarwar, S.; Zallo, A.; Cawlfield, C.; Kim, D.Y.; Park, K.S.; Rahimi, A.; Wiss, J. E-mail: jew@uiuc.edu; Gardner, R.; Kryemadhi, A.; Chung, Y.S.; Kang, J.S.; Ko, B.R.; Kwak, J.W.; Lee, K.B.; Park, H.; Alimonti, G.; Boschini, M.; D' Angelo, P.; DiCorato, M.; Dini, P.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Milazzo, L.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport III, T.F.; Agostino, L.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M.M.; Pantea, D.; Ratti, S.P.; Riccardi, C.; Segoni, I.; Vitulo, P.; Hernandez, H.; Lopez, A.M.; Mendez, H.; Mendez, L.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Wilson, J.R.; Cho, K.; Handler, T.; Mitchell, R.; Engh, D.; Johns, W.E.; Hosack, M.; Nehring, M.S.; Sheldon, P.D.; Stenson, K.; Webster, M.S.; Sheaff, M

    2002-05-21

    We describe the algorithm used to identify charged tracks in the fixed-target charm-photoproduction experiment FOCUS. We begin by describing the new algorithm and contrast this approach with that used in our preceding experiment - E687. We next illustrate the algorithm's performance using physics signals. Finally, we briefly describe some of the methods used to monitor the quantum efficiency and noise of the Cherenkov cells.

  7. Water Masers in the Andromeda Galaxy: II. Where Do Masers Arise?

    CERN Document Server

    Amiri, Nikta

    2016-01-01

    We present a comparative multi-wavelength analysis of water maser-emitting regions and non-maser-emitting luminous 24 micron star-forming regions in the Andromeda Galaxy (M31) to identify the sites most likely to produce luminous water masers useful for astrometry and proper motion studies. Included in the analysis are Spitzer 24 micron photometry, Herschel 70 and 160 micron photometry, H$\\alpha$ emission, dust temperature, and star formation rate. We find significant differences between the maser-emitting and non-maser-emitting regions: water maser-emitting regions tend to be more IR-luminous and show higher star formation rates. The five water masers in M31 are consistent with being analogs of water masers in Galactic star-forming regions and represent the high-luminosity tail of a larger (and as yet undetected) population. Most regions likely to produce water masers bright enough for proper motion measurements using current facilities have already been surveyed, but we suggest three ways to detect addition...

  8. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  9. Water masers in the Saturnian system

    Science.gov (United States)

    Pogrebenko, S. V.; Gurvits, L. I.; Elitzur, M.; Cosmovici, C. B.; Avruch, I. M.; Montebugnoli, S.; Salerno, E.; Pluchino, S.; Maccaferri, G.; Mujunen, A.; Ritakari, J.; Wagner, J.; Molera, G.; Uunila, M.

    2009-02-01

    Context: The presence of water has long been seen as a key condition for life in planetary environments. The Cassini spacecraft discovered water vapour in the Saturnian system by detecting absorption of UV emission from a background star. Investigating other possible manifestations of water is essential, one of which, provided physical conditions are suitable, is maser emission. Aims: We report detection of water maser emission at 22 GHz associated with several Kronian satellites using Earth-based radio telescopes. Methods: We searched for water maser emission in the Saturnian system in an observing campaign using the Metsähovi and Medicina radio telescopes. Spectral data were Doppler-corrected over orbital phase for the Saturnian satellites, yielding detections of water maser emission associated with the moons Hyperion, Titan, Enceladus, and Atlas. Results: The detection of Saturnian water molecules by remote astronomical observation can be combined with in situ spacecraft measurements to harmonise the physical model of the Saturnian system.

  10. Maser Astrometry with VLBI and the SKA

    CERN Document Server

    Green, James A; Brunthaler, Andreas; Ellingsen, Simon; Imai, Hiroshi; Vlemmings, Wouter; Reid, Mark; Richards, Anita

    2015-01-01

    We discuss the unique opportunities for maser astrometry with the inclusion of the Square Kilometre Array (SKA) in Very Long Baseline Interferometry (VLBI) networks. The first phase of the SKA will enable observations of hydroxyl and methanol masers, positioning the latter to an accuracy of 5 microarcseconds, and the second phase may allow water maser observations. These observations will provide trigonometric distances with errors as small as 1%. The unrivalled sensitivity of the SKA will enable large-scale surveys and, through joint operations, will turn any VLBI network into a fast astrometry device. Both evolved stars and high mass star formation regions will be accessible throughout the (Southern) Milky Way, completing our understanding of the content, dynamics and history of our Galaxy. Maser velocities and proper motions will be measurable in the Local Group of galaxies and beyond, providing new insights into their kinematics and evolution.

  11. Maser Radiation in an Astrophysical Context (Overview)

    CERN Document Server

    Gentry, Eric S

    2013-01-01

    In this paper we will look at the phenomenon of Microwave Amplification by Stimulated Emission of Radiation (a maser system). We begin by deriving amplification by stimulated emission using time-dependent perturbation theory, in which the perturbation provided by external radiation. When this perturbation is applied to an ensemble of particles exhibiting a population inversion, the result is stimulated microwave radiation. We will explore both unsaturated and saturated masers and compare their properties. By understanding their gain, as well as the effect of line broadening, astronomers are to identify astrophysical masers. By studying such masers, we gain new insight into poorly understood physical environments, particularly those around young and old stars, and compact stellar bodies.

  12. New OH Observations toward Northern Class I Methanol Masers

    Science.gov (United States)

    Val'tts, I. E.; Litovchenko, I. D.; Bayandina, O. S.; Alakoz, A. V.; Larionov, G. M.; Mukha, D. V.; Nabatov, A. S.; Konovalenko, A. A.; Zakharenko, V. V.; Alekseev, E. V.; Nikolaenko, V. S.; Kulishenko, V. F.; Odincov, S. A.

    2012-07-01

    Maser emission of OH(1720) is formed, according to modern concepts, under the influence of collisional pumping. Class I methanol masers (MMI) are also formed by a collisional mechanism of the inversion of the molecular levels. It is not excluded in this case that physical conditions in the condensations of the interstellar medium where masers are formed may be similar for MMI and OH(1720) masers, and they can associate with each other. To establish a possible association between these two kinds of masers, and obtain reliable statistical estimates, a survey of class I methanol masers at a frequency of 1720 MHz has been carried out.

  13. Stimulated excitation of resonant Cherenkov radiation at a large number of neighbouring waveguide modes

    CERN Document Server

    Grigoryan, L Sh; Khachatryan, H F; Grigoryan, M L

    2012-01-01

    The resonance Cherenkov radiation generated from a train of equally-spaced unidimensional electron bunches travelling along the axis of a hollow channel inside an infinite cylindrical waveguide filled with (weakly dispersing) transparent dielectric has been investigated. It was shown that its excitation might be stimulated at a large number of neighboring modes of the waveguide. A visual explanation of this effect is given and the possibility of its observation in the range of terahertz radiation is discussed.

  14. 37 GHz methanol masers : Horsemen of the Apocalypse for the class II methanol maser phase?

    CERN Document Server

    Ellingsen, S P; Sobolev, A M; Voronkov, M A; Caswell, J L; Lo, N

    2011-01-01

    We report the results of a search for class II methanol masers at 37.7, 38.3 and 38.5 GHz towards a sample of 70 high-mass star formation regions. We primarily searched towards regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesised to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  15. The upgraded MAGIC Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Tescaro, D., E-mail: dtescaro@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Universidad de La Laguna (ULL), Dept. Astrofísica, E-38206 La Laguna, Tenerife (Spain)

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux.

  16. A gravitationally lensed water maser in the early Universe

    NARCIS (Netherlands)

    Impellizzeri, C. M. Violette; McKean, John P.; Castangia, Paola; Roy, Alan L.; Henkel, Christian; Brunthaler, Andreas; Wucknitz, Olaf

    2008-01-01

    Water masers are found in dense molecular clouds closely associated with supermassive black holes at the centres of active galaxies. On the basis of the understanding of the local water-maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare.

  17. Outward Motions of SiO Masers around VX Sgr

    Indian Academy of Sciences (India)

    J. B. Su; Z.-Q. Shen; X. Chen; D. R. Jiang

    2014-09-01

    We report the proper motions of SiO maser features around VX Sgr from the two-epoch VLBA observations (2006 December 15 and 2007 August 19). The majority of maser feature activities show a trend of outward motions. It is consistent with our previous finding that the outflow may play an important role for SiO maser pumping.

  18. Bolometric Luminosity Correction of H2O Maser AGNs

    Indian Academy of Sciences (India)

    Q. Guo; J. S. Zhang; J. Wang

    2014-09-01

    For the H2O maser host AGN sample, we derived their bolometric luminosity corrections, based on their X-ray data and [O III] emission line luminosities. Our results for maser AGNs is comparable to that of non-maser AGNs.

  19. Cherenkov and Scintillation Properties of Cubic Zirconium

    Science.gov (United States)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  20. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  1. Physical characteristics of bright Class I methanol masers

    Science.gov (United States)

    Leurini, S.; Menten, K. M.; Walmsley, C. M.

    2016-07-01

    Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims: We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods: We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results: We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107-108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the

  2. Coherent Cherenkov radiation as an intense THz source

    Science.gov (United States)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  3. Cherenkov Telescope Array Data Management

    CERN Document Server

    Lamanna, G; Contreras, J L; Knödlseder, J; Kosack, K; Neyroud, N; Aboudan, A; Arrabito, L; Barbier, C; Bastieri, D; Boisson, C; Brau-Nogué, S; Bregeon, J; Bulgarelli, A; Carosi, A; Costa, A; De Cesare, G; Reyes, R de los; Fioretti, V; Gallozzi, S; Jacquemier, J; Khelifi, B; Kocot, J; Lombardi, S; Lucarelli, F; Lyard, E; Maier, G; Massimino, P; Osborne, J P; Perri, M; Rico, J; Sanchez, D A; Satalecka, K; Siejkowski, H; Stolarczyk, T; Szepieniec, T; Testa, V; Walter, R; Ward, J E; Zoli, A

    2015-01-01

    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.

  4. INTENSITY INTERFEROMETRY WITH CHERENKOV TELESCOPES

    Directory of Open Access Journals (Sweden)

    D. B. Kieda

    2010-01-01

    Full Text Available Se discuten las capacidades de arreglos de interferometría de intensidad estelar (SII que se pueden construir usando la siguiente generación de arreglos de telescopios de Cherenkov de imágenes de aire (IACTs. Estos arreglos de IACT tendrán un gran diámetro de - 100 m (> 8 m de re ectores ópticos, ofreciendo cerca de 5000 líneas de base interferométricas, extendiéndose a partir de 50 m a más que 1000 m. La implementación del SII en arreglos de IACT permitirán imágenes de alta resolución (< 0:1 mas en anchos de banda cortos (bandas B/V, que son óptimas para el estudio de estrellas calientes.

  5. NICHE: The Non-Imaging CHErenkov Array

    CERN Document Server

    Bergman, Douglas

    2012-01-01

    The accurate measurement of the Cosmic Ray (CR) nuclear composition around and above the Knee (~ 10^15.5 eV) has been difficult due to uncertainties inherent to the measurement techniques and/or dependence on hadronic Monte Carlo simulation models required to interpret the data. Measurement of the Cherenkov air shower signal, calibrated with air fluorescence measurements, offers a methodology to provide an accurate measurement of the nuclear composition evolution over a large energy range. NICHE will use an array of widely-spaced, non-imaging Cherenkov counters to measure the amplitude and time-spread of the air shower Cherenkov signal to extract CR nuclear composition measurements and to cross-calibrate the Cherenkov energy and composition measurements with TA/TALE fluorescence and surface detector measurements.

  6. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion med......An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave......-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  7. Polarisation of Class II Methanol Masers

    CERN Document Server

    Stack, P D

    2011-01-01

    We have used the University of Tasmania Mt Pleasant 26m radio telescope to investigate the polarisation characteristics of a sample of strong 6.7 GHz methanol masers, the first spectral line polarisation observations to be undertaken with this instrument. As part of this process we have developed a new technique for calibrating linear polarisation spectral line observations. This calibration method gives results consistent with more traditional techniques, but requires much less observing time on the telescope. We have made the first polarisation measurements of a number of 6.7 GHz methanol masers and find linear polarisation at levels of a few - 10% in most of the sources we observed, consistent with previous results. We also investigated the circular polarisation produced by Zeeman splitting in the 6.7 GHz methanol maser G9.62+0.20 to get an estimate of the line of sight magnetic field strength of 35+/-7 mG.

  8. Dielectric Coatings for IACT Mirrors

    CERN Document Server

    Förster, A; Chadwick, P; Held, M

    2013-01-01

    Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

  9. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  10. The Revised Version of Class I Methanol Maser Catalog

    CERN Document Server

    Val'tts, I E; Bayandina, O S

    2010-01-01

    The revised version of the class I methanol maser catalog is presented. It contains 182 sources - new class I methanol masers detected in the direction of EGOs were added to the previous number (~160 sources have been published in the first version of this catalog - see reference in the text). Electronic version has been generated in the form of html file - http://www.asc.rssi.ru/MMI. A statistical analysis was carried out within 2' around a maser position to find an identification of class I methanol masers with any objects typical for star-forming regions - UCHII regions, IRAS sources, bipolar outflows, CS lines as of dense gas tracer, masers (class II methanol masers, OH and H2O) and EGO. None of the bipolar outflow, already registered in the direction of class I methanol maser, did not coincide with EGO. The result is submitted in a form of a diagram.

  11. A search for water masers associated with class II methanol masers - II. Longitude range 341$^{\\circ}$ to 6$^{\\circ}$

    CERN Document Server

    Titmarsh, A M; Breen, S L; Caswell, J L; Voronkov, M A

    2016-01-01

    This is the second paper in a series of catalogues of 22-GHz water maser observations towards the 6.7-GHz methanol masers from the Methanol Multibeam (MMB) Survey. In this paper we present our water maser observations made with the Australia Telescope Compact Array towards the masers from the MMB survey between l = 341$^{\\circ}$ through the Galactic centre to l = 6$^{\\circ}$. Of the 204 6.7-GHz methanol masers in this longitude range we found 101 to have associated water maser emission (~ 50 per cent). We found no difference in the 6.7-GHz methanol maser luminosities of those with and without water masers. In sources where both maser species are observed, the luminosities of the methanol and water masers are weakly correlated. Studying the mid-infrared colours from GLIMPSE we found no differences between the colours of those sources associated with both methanol and water masers and those associated with just methanol. Comparing the column density and dust mass calculated from the 870-micron thermal dust emis...

  12. W43A: a Maverick Maser Source

    Science.gov (United States)

    Diamond, P. J.; Nyman, L. Å.

    The authors report on some preliminary results from a multi-epoch monitoring project of the OH and H2O masers in the source W43A. Their results suggest that W43A is a very young stellar object which has just entered a strong stellar wind stage.

  13. OH masers associated with IRAS point sources

    NARCIS (Netherlands)

    Masheder, MRW; Cohen, RJ; Martin-Hernandez, NL; Migenes,; Reid, MJ

    2002-01-01

    We report a search for masers from the Lambda-doublet of the ground-state of OH at 18cm, carried out with the Jodrell Bank Lovell Telescope and with the 25m Dwingeloo telescope. All objects north of delta = -20degrees which appear in the IRAS Point Source Catalog with fluxes > 1000 Jy at 60mum and

  14. An Ultra-High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.; Hoover, S.; Hogan, M.J.; Muggli, P.; Thompson, M.; Travish, G.; Yoder, R.; /UCLA /SLAC /Southern California U.

    2005-08-02

    The creation of ultra-high current, ultra-short pulse beams Q=3 nC, {sigma}{sub z} = 20{micro}m at the SLAC FFTB has opened the way for very high gradient plasma wakefield acceleration experiments. We study here the use of these beams in a proposed Cherenkov wakefield experiment, where one may excite electromagnetic wakes in a simple dielectric tube with inner diameter of few 100 microns that exceed the GV/m level. We discuss the scaling of the fields with design geometric design parameters, and choice of dielectric. We also examine measurable aspects of the experiment, such as the total coherent Cerenkov radiation energy one may collect, and the expected aspects of dielectric breakdown at high fields.

  15. A gravitationally lensed water maser in the early Universe.

    Science.gov (United States)

    Impellizzeri, C M Violette; McKean, John P; Castangia, Paola; Roy, Alan L; Henkel, Christian; Brunthaler, Andreas; Wucknitz, Olaf

    2008-12-18

    Water masers are found in dense molecular clouds closely associated with supermassive black holes at the centres of active galaxies. On the basis of the understanding of the local water-maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare. However, galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Here we use gravitational lensing to search for masers at higher redshifts than would otherwise be possible, and find a water maser at redshift 2.64 in the dust- and gas-rich, gravitationally lensed type-1 quasar MG J0414+0534 (refs 6-13). The isotropic luminosity is 10,000 (, solar luminosity), which is twice that of the most powerful local water maser and half that of the most distant maser previously known. Using the locally determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10(-6). The fact that we see such a maser in the first galaxy we observe must mean that the volume densities and luminosities of masers are higher at redshift 2.64.

  16. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  17. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  18. Particle identification by Cherenkov and transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.

    1980-09-01

    The Cherenkov counter has a role as a particle identifier for velocities which are too high for Time-of-Flight to be used, and too low for transition radiation detectors to give a useable signal. In beam lines the compensated differential counter is capable of giving the best resolution, but at high momenta the restriction on the spread of particle directions gives unacceptable limits on the beam acceptance. The transition radiation detectors being developed to identify hadrons at relatively low momentum do not have this restriction and might be used instead. For particles produced in an interaction, the ring imaging type of Cherenkov should give the best coverage for multiparticle events, but a threshold counter is much simpler, cheaper and faster where it can give adequate separation. Again at high values of ..gamma.. the resolution of Cherenkov counters will fail and some form of transition radiation detector will be necessary.

  19. Cherenkov TOF PET with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Dolenec, R., E-mail: rok.dolenec@ijs.si [Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor (Slovenia); Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Korpar, S. [Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor (Slovenia); Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Križan, P. [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Pestotnik, R. [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2015-12-21

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  20. Continuum emission associated with 6.7-GHz methanol masers

    CERN Document Server

    Ellingsen, S P; McCulloch, P M

    1995-01-01

    We have used the Australia Telescope Compact Array (ATCA) to search for continuum emission toward three strong 6.7-GHz methanol maser sources. For two of the sources, G339.88-1.26 and NGC 6334F (G351.42+0.64), we detect continuum emission closely associated with the methanol masers. A further three clusters of masers showed no radio continuum emission above our sensitivity limit of 1-5 mJy. We find the position of the 6.7-GHz methanol masers in G339.88-1.26 to be consistent with the hypothesis that the masers lie in the circumstellar disc surrounding a massive star. We also argue that one of the clusters of methanol masers in NGC 6334F provides indirect observational support for the circumstellar disc hypothesis.

  1. Investigating high-mass star formation through maser surveys

    CERN Document Server

    Ellingsen, S P; Cragg, D M; Sobolev, A M; Breen, S L; Godfrey, P D

    2007-01-01

    Interstellar masers are unique probes of the environments in which they arise. In studies of high-mass star formation their primary function has been as signposts of these regions and they have been used as probes of the kinematics and physical conditions in only a few sources. With a few notable exceptions, we know relatively little about the evolutionary phase the different maser species trace, nor their location with respect to other star formation tracers. While detailed studies of a small number of maser regions can reveal much about them, other information can only be obtained through large, systematic searches. In particular, such surveys are vital in efforts to determine an evolutionary sequence for the common maser species, and there is growing evidence that methanol masers may trace an earlier phase than the other common maser species of OH and water.

  2. Ground-state OH maser distributions in the Galactic Centre region

    CERN Document Server

    Qiao, Hai-Hua; Shen, Zhi-Qiang; Dawson, Joanne R

    2016-01-01

    Ground-state OH masers identified in the Southern Parkes Large-Area Survey in Hydroxyl were observed with the Australia Telescope Compact Array to obtain positions with high accuracy ($\\sim$1\\,arcsec). We classified these OH masers into evolved star OH maser sites, star formation OH maser sites, supernova remnant OH maser sites, planetary nebula OH maser sites and unknown maser sites using their accurate positions. Evolved star and star formation OH maser sites in the Galactic Centre region (between Galactic longitudes of $-5^{\\circ}$ to $+5^{\\circ}$ and Galactic latitudes of $-2^{\\circ}$ and $+2^{\\circ}$) were studied in detail to understand their distributions.

  3. Monitoring water masers in star-forming regions

    CERN Document Server

    Brand, J; Comoretto, G; Felli, M; Palagi, F; Palla, F; Valdettaro, R

    2004-01-01

    An overview is given of the analysis of more than a decade of H2O maser data from our monitoring program. We find the maser emission to generally depend on the luminosity of the YSO as well as on the geometry of the SFR. There appears to be a threshold luminosity of a few times 10**4 Lsol above and below which we find different maser characteristics.

  4. Flipping photons backward: reversed Cherenkov radiation

    Directory of Open Access Journals (Sweden)

    Hongsheng Chen

    2011-01-01

    Full Text Available Charged particles moving faster than light in a medium produce Cherenkov radiation. In traditional, positive index-of-refraction materials this radiation travels forward. Metamaterials, with negative indices of refraction, flip the radiation backward. This readily separates it from the particles, providing higher flexibility in photon manipulation and is useful for particle identification and counting. Here we review recent advances in reversed Cherenkov radiation research, including the first demonstration of backward emission. We also discuss the potential for developing new types of devices, such as ones that pierce invisibility cloaks.

  5. The BRAHMS ring imaging Cherenkov detector

    Science.gov (United States)

    Debbe, R.; Jørgensen, C. E.; Olness, J.; Yin, Z.

    2007-01-01

    A Ring Imaging Cherenkov detector built for the BRAHMS experiment at the Brookhaven RHIC is described. This detector has a high index of refraction gas radiator. Cherenkov light is focused on a photo-multiplier based photon detector with a large spherical mirror. The combination of momentum and ring radius measurement provides particle identification from 2.5 to 35 GeV/ c for pions and kaons and well above 40 GeV/ c for protons during runs that had the radiator index of refraction set at n-1=1700×10-6.

  6. Generation of THz-radiation in the Cherenkov decelerating structure with planar geometry at frequency ∼ 0.675 THz

    Science.gov (United States)

    Ashanin, I. A.; Polozov, S. M.

    2016-07-01

    One of the ways to generate THz-radiation is by the relativistic electron bunches travelling through Cherenkov decelerating dielectric filled capillary channel. Sapphire or other dielectric materials can be used for the internal surface coating of the capillary. Relativistic electron bunches of ∼100 µm in diameter and pulse durations of 1 ps or shorter are capable to produce substantial power of THz-radiation. The aperture of Cherenkov decelerating structure should be comparable with the sub-mm wavelength (0.05-3 mm). Such type of decelerating system allows providing of the wide range of operating parameters at the various geometrical sizes. But it is necessary to consider that such capillaries are difficult in production as there is a requirement to drill a small aperture in a long crystal of high hardness but brittle. In this regard it would be desirable to offer transition option from the axial to the planar geometry. Furthermore the ribbon beam has some advantages as focusing at low energies and possessing smaller expansion in the drift space. The authors present design and results of electrodynamics study of the decelerating planar dielectric filling Cherenkov channel at frequency 0.675 THz in this article. It is also delivered characteristic comparison with axial geometry channel. A horn antenna attached to such channel at 0.675 THz resonant frequency is considered.

  7. New Maser Emission from Nonmetastable Ammonia in NGC 7538

    CERN Document Server

    Hoffman, Ian M

    2011-01-01

    We present the first interferometric observations at 18.5 GHz of IRS 1 in NGC 7538. These observations include images of the nonmetastable ^{14}NH_3 (9,6) masers with a synthesized beam of 2 arcseconds and images of the continuum emission with a synthesized beam of 150 milliarcseconds. Of the maser emission, the previously known feature near v_LSR = -60 km/s is spectrally resolved into at least two components and we observe several new maser emission features near v_LSR = -57 km/s. The new maser emission near -57 km/s lies 250 +/- 90 milliarcseconds northwest of the maser emission near -60 km/s. All of the masers are angularly unresolved indicating brightness temperatures T_B > 2000 K. We are also able to conclusively associate the ammonia masers with the position of IRS 1. The excitation of these rare ammonia masers is discussed in the context of the rich maser environment of IRS 1.

  8. Survey of Outer Galaxy Molecular Lines Associated with Water Masers

    Science.gov (United States)

    Mochizuki, N.; Hachisuka, K.; Umemoto, T.

    2009-08-01

    H_2O masers in Young stellar objects (YSOs) in our Galaxy are one of the targets of the VSOP-2 science. The advantage of VSOP-2 observation is the highest angular resolution which can detect a proper motion of H_2O masers for distant objects over short time intervals. To find candidate sources, we observed H2O maser sources in the outer Galaxy using the VLA, and we surveyed the molecular lines toward these sources to understand the environment of YSOs. Higher H2 column densities of YSOs were found for objects with active H2O masers.

  9. Pumping Mechanisms for SiO Masers around VX Sgr

    Indian Academy of Sciences (India)

    J. B. Su; Z.-Q. Shen; X. Chen; Jiyune Yi; D. R. Jiang; Y. J. Yun

    2011-03-01

    VX Sgr, a semi-regular variable, is a red giant star with intense SiO maser emission at 43 GHz. The pumping mechanism of the circumstellar SiO masers has been controversial for decades since its discovery. In order to pursue this long-standing problem further, we have carried out simultaneous VLBA observations of two 7 mm SiO masers at five epochs in about two years. We present relatively aligned = 1 and = 2, = 1-0 SiO maser maps and discuss the dominant pumping mechanism, which may be epoch dependent or a combination of both mechanisms.

  10. Pumping Mechanisms for SiO Masers around VX Sgr

    Science.gov (United States)

    Su, J. B.; Shen, Z.-Q.; Chen, X.; Yi, Jiyune; Jiang, D. R.; Yun, Y. J.

    2011-06-01

    VX Sgr, a semi-regular variable, is a red giant star with intense SiO maser emission at 43 GHz. The pumping mechanism of the circumstellar SiO masers has been controversial for decades since its discovery. In order to pursue this long-standing problem further, we have carried out simultaneous VLBA observations of two 7 mm SiO masers at five epochs in about two years. We present relatively aligned υ = 1 and υ = 2, J = 1-0 SiO maser maps and discuss the dominant pumping mechanism, which may be epoch dependent or a combination of both mechanisms.

  11. Synchrotron masers and fast radio bursts

    CERN Document Server

    Ghisellini, Gabriele

    2016-01-01

    Fast Radio Bursts (FRBs), with a typical duration of 1 ms and 1 Jy flux density at GHz frequencies, have brightness temperatures exceeding 1e33 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Alternatively, we can have maser emission. Under certain conditions, the synchrotron stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light crossing time limits, since there is no simple relation between the actual size of the source and the observed variability timescale.

  12. Maser Astrometry with VERA and VSOP-2

    Science.gov (United States)

    Honma, M.; Bushimata, T.; Choi, Y. K.; Hirota, T.; Imai, H.; Iwadate, K.; Jike, T.; Kameno, S.; Kameya, O.; Kamohara, R.; Kawaguchi, N.; Kijima, M.; Kim, M.; Kobayashi, H.; Kuji, S.; Kurayama, T.; Manabe, S.; Matsui, M.; Matsumoto, N.; Miyaji, T.; Nagayama, T.; Nakagawa, A.; Nakamura, K.; Oh, C. S.; Omodaka, T.; Oyama, T.; Sakai, S.; Sato, K.; Sato, M.; Sasao, T.; Shibata, K. M.; Tamura, Y.; Yamashita, K.

    2009-08-01

    We present recent results of maser astrometry obtained with VERA (VLBI Exploration of Radio Astrometry), which is a Japanese VLBI array dedicated to phase-referencing astrometry to explore the 3-D structure of the Milky Way Galaxy. Since 2004 we have been conducting regular monitoring of maser sources with VERA, and we have already detected parallaxes for several sources, ranging from a few 100 pc to 5 kpc. These results include measurements for Galactic star-forming regions such as ORI-KL, S269, NGC 281 as well as those for late type stars such as VY CMa. We also discuss the VERA---VSOP-2 connection in the near future, and propose astrometric observations with VSOP-2.

  13. Synchrotron masers and fast radio bursts

    Science.gov (United States)

    Ghisellini, G.

    2017-02-01

    Fast radio bursts, with a typical duration of 1 ms and 1 Jy flux density at gigahertz frequencies, have brightness temperatures exceeding 1033 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Maser emission is a possibility. Under certain conditions, the synchrotron-stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light-crossing time limits, since there is no simple relation between the actual size of the source and the observed variability time-scale.

  14. LHCb ring imaging Cherenkov detector mirrors

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In a large dark room, men in white move around an immense structure some 7 m high, 10 m wide and nearly 2.5 m deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors.

  15. Searching for tau neutrinos with Cherenkov telescopes

    Science.gov (United States)

    Góra, D.; Bernardini, E.; Kappes, A.

    2015-02-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1-1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for the MAGIC site because of the presence of surrounding mountains.

  16. Progress on Cherenkov Reconstruction in MICE

    CERN Document Server

    Kaplan, Daniel M; Rajaram, Durga; Winter, Miles; Cremaldi, Lucien; Sanders, David; Summers, Don

    2016-01-01

    Two beamline Cherenkov detectors (Ckov-a,-b) support particle identification in the MICE beamline. Electrons and high-momentum muons and pions can be identified with good efficiency. We report on the Ckov-a,-b performance in detecting pions and muons with MICE Step I data and derive an upper limit on the pion contamination in the standard MICE muon beam.

  17. Tachyonic Cherenkov radiation in the absorptive aether

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.org

    2014-08-14

    Dissipative tachyonic Cherenkov densities are derived and tested by performing a spectral fit to the γ-ray flux of supernova remnant (SNR) RX J1713.7 − 3946, measured over five frequency decades up to 100 TeV. The manifestly covariant formalism of tachyonic Maxwell–Proca radiation fields is developed in the spacetime aether, starting with the complex Lagrangian coupled to dispersive and dissipative permeability tensors. The spectral energy and flux densities of the radiation field are extracted by time averaging, the energy conservation law is derived, and the energy dissipation caused by the complex frequency-dependent permeabilities of the aether is quantified. The tachyonic mass-square in the field equations gives rise to transversally/longitudinally propagating flux components, with differing attenuation lengths determined by the imaginary part of the transversal/longitudinal dispersion relation. The spectral fit is performed with the classical tachyonic Cherenkov flux radiated by the shell-shocked electron plasma of SNR RX J1713.7 − 3946, exhibiting subexponential spectral decay. - Highlights: • Tachyonic Maxwell–Proca radiation fields in a dispersive and dissipative spacetime. • Transversal/longitudinal Poynting flux vector and associated spectral energy density. • Energy dissipation quantified by absorption term in the energy conservation law. • Dissipative Cherenkov densities (classical) and tachyonic attenuation lengths. • Cherenkov energy flux from the shocked electron plasma of SNR RX J1713.7 − 3946.

  18. Improved VLBI astrometry of OH maser stars

    CERN Document Server

    Vlemmings, W H T

    2007-01-01

    Aims: Accurate distances to evolved stars with high mass loss rates are needed for studies of many of their fundamental properties. However, as these stars are heavily obscured and variable, optical and infrared astrometry is unable to provide enough accuracy. Methods: Astrometry using masers in the circumstellar envelopes can be used to overcome this problem. We have observed the OH masers of a number of Asymptotic Giant Branch (AGB) stars for approximately 1 year with the Very Long Baseline Array (VLBA). We have used the technique of phase referencing with in-beam calibrators to test the improvements this technique can provide to Very Long Baseline Interferometry (VLBI) OH maser astrometric observations. Results: We have significantly improved the parallax and proper motion measurements of the Mira variable stars U Her, S CrB and RR Aql. Conclusions: It is shown that both in-beam phase-referencing and a decrease in solar activity during the observations significantly improves the accuracy of the astrometric...

  19. Water Masers in AGN Accretion Disks

    Science.gov (United States)

    Braatz, J. A.; Reid, M. J.; Greenhill, L. J.; Kuo, C.-Y.; Condon, J. J.; Lo, K.-Y.; Henkel, C.

    2009-08-01

    Water vapor masers at 22 GHz have been detected in over 100 galaxies, most of them AGNs. High resolution VLBI observations of these masers provide the only opportunity for direct imaging of sub-parsec structure in AGN accretion disks. The key science goals associated with such observations are concentrated in two areas. First, observations of nearby, bright sources, exemplified by NGC 4258, enable unique investigations of accretion disk geometry, substructure, thickness, and rotation properties. Second, when combined with spectral line monitoring, VLBI imaging and subsequent disk modeling enables the estimation of a distance to the host galaxy independent of standard candle arguments. In this contribution we present VLBI observations of two maser disk systems in galaxies well into the Hubble flow, UGC 3789 and NGC 6323. A long term goal in these studies is to measure the Hubble constant with high precision and, as a complement to CMB observations, constrain several key cosmological parameters, including the equation of state for dark energy. Observations with VSOP-2 at 22 GHz will have the resolution critical for mapping substructure in these accretion disks and will contribute to reducing systematic errors in the measurement of distances to galaxies.

  20. Insights into high mass star formation from methanol maser observations

    Science.gov (United States)

    Farmer, Hontas Freeman

    2013-06-01

    We present high angular resolution data on Class I and Class II methanol masers, together with other tracers of star formation like H2O masers, ultracompact (UC) ionized hydrogen (H II) regions, and 4.5 um infrared sources, taken from the literature. The aim is to study what these data tell us about the process of high mass star formation; in particular, whether disk-outflow systems are compatible with the morphology exhibited by Class I and Class II methanol masers. Stars form in the dense cores inside molecular clouds, and while the process of the formation of stars like our Sun is reasonably well understood, details of the formation of stars with masses eight times that of our Sun or greater, the so-called high mass stars, remain a mystery. Being compact and bright sources, masers provide an excellent way to observe high mass star forming regions. In particular, Class II methanol masers are found exclusively in high mass star forming regions. Based on the positions of the Class I and II methanol and H2O masers, UCHII regions and 4.5 um infrared sources, and the center velocities (vLSR) of the Class I methanol and H2O masers, compared to the vLSR of the Class II methanol masers, we propose three disk-outflow models that may be traced by methanol masers. In all three models, we have located the Class II methanol maser near the protostar, and the Class I methanol maser in the outflow, as is known from observations during the last twenty years. In our first model, the H2O masers trace the linear extent of the outflow. In our second model, the H2O masers are located in a circumstellar disk. In our third model, the H2O masers are located in one or more outflows near the terminating shock where the outflow impacts the ambient interstellar medium. Together, these models reiterate the utility of coordinated high angular resolution observations of high mass star forming regions in maser lines and associated star formation tracers.

  1. Cherenkov radiation in a surface wave accelerator based on silicon carbide

    Science.gov (United States)

    Wang, Tianhong; Khudik, Vladimir; Shvets, Gennady

    2016-10-01

    We report on our theoretical investigations of Cherenkov-type emission of surface phonon polaritons (SPPs) by relativistic electron bunches. The polaritons are confined by a planar waveguide comprised of two SiC slabs separated by an air gap. The SPPs are generated in the spectral range known as the reststrahlen band, where the dielectric permittivity of SiC is negative. Two surface modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. However, both exhibits rapid spatial oscillations and beats behind the moving charge. Moreover, the longitudinal mode forms a reversed Cherenkov radiation cone due the negative group velocity for sufficiently small air gaps, but the transverse mode does not. The wakefield acceleration of electron beam inside the structure is also studied. Transverse instabilities and BBU effects can be suppressed by flat driver beam, meanwhile the longitudinal mode can support accelerating fields >1 GeV.

  2. The Eddington Ratio of H2O Maser Host AGN

    Indian Academy of Sciences (India)

    Q. Guo; J. S. Zhang; J. Wang

    2011-03-01

    The Eddington ratio was derived for the entire maser host AGN sample, based on the intrinsic X-ray luminosity, the X-ray bolometric correction X and the mass of central black hole. Further the [O III] bolometric correction [O III] was estimated for our sample. Possible relations were also investigated between the maser luminosity and the bolometric luminosity – the Eddington ratio.

  3. Statistical Properties of 6.7 GHz Methanol Maser Sources

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present a statistical analysis of 482 6.7 GHz methanol maser sourcesfrom the available literature, on their maser emission and the characteristics oftheir associated infrared sources. On the color-color diagram, more than 70% ofthe objects fall within a very small region (0.57 ≤ [25 - 12] ≤ 1.30 and 1.30 ≤[60 - 12] ≤ 2.50). This suggests that 6.7 GHz methanol maser emission occurs onlywithin a very short evolutionary phase during the earliest stage of star formation.The velocity ranges of the masers belong to two main groups: one from 1 to 10km s-1, and one from about 11 to 20 km s-1. These velocity ranges indicate thatthe masers are probably associated with both disks and outflows. The correlationsbetween the maser and infrared flux densities, and between the maser and infraredluminosities, suggest that far-infrared radiation is a possible pumping mechanismfor the masers which most probably originate from some outer molecular envelopesor disks.

  4. Physical characteristics of bright Class I methanol masers

    CERN Document Server

    Leurini, S; Walmsley, C M

    2016-01-01

    Class I CH$_3$OH masers trace interstellar shocks. They have received little attention mostly as a consequence of their low luminosities; this situation has changed recently and Class I masers are now routinely used as signposts of outflows. The recent detection of polarisation in Class I lines now makes it possible to obtain information on magnetic fields in shocks. We make use of newly calculated collisional rates to investigate the excitation of Class I masers and to reconcile their observed properties with model results. We performed LVG calculations with a plane-parallel slab geometry to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate, the loss rate, and the inversion efficiency of the pumping scheme of Class I masers on the physics of the gas. Bright Class I masers are mainly high-temperature high-density structures with maser emission measures corresponding to high CH$_3$OH abundances close...

  5. Cherenkov light imaging in astro-particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, Razmik, E-mail: Razmik.Mirzoyan@mpp.mpg.de

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments. - Highlights: • We explain why Cherenkov emission is so important and why it is so widely used. • A brief historical excursion is made to the very beginning of Cherenkov emission. • Imaging of the Cherenkov light emission is discussed in a great detail. • The principle of Cherenkov light imaging in diverse experiments is the same.

  6. Detection of water masers in a sample of 84 IRAS sources

    Institute of Scientific and Technical Information of China (English)

    WU YueFang; ESIMBEK Jarken; WANG JunZhi; LIU Xiang; QIN ShengLi; ZHANG Jin

    2007-01-01

    Using a newly installed system on the 25 m telescope of Urumqi Observatory, we searched for H2O maser emission towards 84 IRAS sources including young stellar objects (YSOs) and candidates for OH/IR stars. Water masers were detected in four star formation regions and one envelope of late type of stars for the first time. New water maser components were measured in two sources. In a maser source with no water maser emission detected six years ago, strong maser emission was found at different velocities, showing that there was a new explosion of water maser in this source.

  7. High-Velocity H2O Masers Associated Massive Star Formation Regions

    Institute of Scientific and Technical Information of China (English)

    徐烨; 蒋栋荣; 郑兴武; 顾敏峰; 俞志尧; 裴春传

    2001-01-01

    We report on the results of 12 CO (1-0) emission associated with H2O masers and massive star formation regions to identify high-velocity H2O masers. Several masers have a large blueshift, even up to 120 km.s-1, with respect to the CO peak, but no large redshifted maser appears. This result suggests that high-velocity H2O masers can most probably occur in high mass star-forming regions and quite a number of masers stem from the amplifications of a background source, which may enable those undetectable weak masers to come to an observable level.

  8. Water Masers in the Andromeda Galaxy: I. A Survey for Water Masers, Ammonia, and Hydrogen Recombination Lines

    CERN Document Server

    Darling, Jeremy; Amiri, Nikta; Lawrence, Kelsey

    2016-01-01

    We report the results of a Green Bank Telescope survey for water masers, ammonia (1,1) and (2,2), and the H66-alpha recombination line toward 506 luminous compact 24 micron-emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling (2011) water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ~10 microarcsecond/yr astrometry. No new water masers, ammonia lines, or H66-alpha recombination lines were detected individually or in spectral stacks reaching rms noise levels of ~3 mJy and ~0.2 mJy, respectively, in 3.1-3.3 km/s channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers since flar...

  9. Performance of the STACEE Atmospheric Cherenkov Telescope

    Science.gov (United States)

    Williams, D. A.; Bhattacharya, D.; Boone, L. M.; Chantell, M. C.; Conner, Z.; Covault, C. E.; Dragovan, M.; Fortin, P.; Gingrich, D.; Gregorich, D. T.; Hanna, D. S.; Mohanty, G.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Théoret, C. G.; Tümer, T. O.; Vincent, F.; Zweerink, J. A.

    2001-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64. .

  10. HAWC - The High Altitude Water Cherenkov Detector

    Science.gov (United States)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  11. Performance of the STACEE Atmospheric Cherenkov Telescope

    CERN Document Server

    Williams, D A; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gingrich, D M; Gregorich, D T; Hanna, D S; Mohanty, G B; Mukherjee, R; Ong, R A; Oser, S M; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Vincent, F; Zweerink, J A

    2000-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  12. Bokeh Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment ...

  13. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  14. Recent progress in silica aerogel Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Kawai, Hideyuki; Kubo, Masato; Sato, Takeshi

    2012-01-01

    In this paper, we present recent progress in the development of hydrophobic silica aerogel as a Cherenkov radiator. In addition to the conventional method, the recently developed pin-drying method for producing high-refractive-index aerogels with high transparency was studied in detail. Optical qualities and large tile handling for crack-free aerogels were investigated. Sufficient photons were detected from high-performance aerogels in a beam test.

  15. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  16. Traveling-Wave Maser for 32 GHz

    Science.gov (United States)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  17. Extragalactic Water Maser Observations with VSOP-2

    Science.gov (United States)

    Hagiwara, Y.; VSOP-2 Science Working Group

    2009-08-01

    Space-VLBI is known to achieve greatly increased angular resolution compared with ground-based VLBI observations. VSOP-2 will offer 75 μarcsec angular resolution at 22 GHz. With this improved angular resolution, VSOP-2 observations of H_2O megamaser will refine the measurements of proper motions, accelerations, distances to galaxies, and other physical parameters of galactic nuclei. In this presentation, the prospects of VSOP-2 observations of extragalactic H_2O maser with strong emphasis on H_2O megamaser are presented.

  18. Bokeh mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.

  19. QUEST: wide angle Cherenkov light measurements at EAS-TOP

    Science.gov (United States)

    EAS-Top Collaboration; Korosteleva, E. E.; Kuzmichev, L. A.; Prosin, V. V.; Lubsandorzhiev, B. K.

    Wide angle Cherenkov light detectors based upon the QUASAR-370 photo-multipliers have been installed on five Cherenkov telescopes of the EAS-TOP array to study the energy spectrum and composition of primary cosmic rays around the knee . The energy threshold of quasars array was close to that of EAS-TOP electromagnetic detectors array. The first results of joint analysis of Cherenkov and electromagnetic data together with the adequate CORSIKA simulation results are discussed.

  20. Research on the Steering Strategy for Hydrogen Maser

    Science.gov (United States)

    Yin, D. S.; Zhao, S. H.; Gao, Y. P.

    2016-07-01

    In the master clock system, the local standard time UTC(k) with a better short-term stability will be generated, if the hydrogen maser is set as a frequency source of the master clock. But the hydrogen maser always exhibits an apparent frequency drift, thus its long-term stability gets poor with time, therefore the stability and accuracy of UTC(k) become worse. To solve this problem, we compare the performance of hydrogen maser with cesium clocks, and modify the time scale algorithm when the hydrogen maser is involved, we also propose a new steering strategy when hydrogen maser is used as the frequency source of master clock. We set up an experiment system and write programs, and finally the new steering strategy is testified with the laboratory data. Results show that when the hydrogen maser is involved in the atomic time scale calculation, the short-term frequency stability of reference time scale will be improved. Meanwhile, the local time UTC(k) has a better short-term frequency stability when the frequency source of the master clock uses hydrogen maser instead of cesium clock.

  1. The environment of the strongest galactic methanol maser

    CERN Document Server

    Sanna, A; Carrasco-Gonzalez, C; Reid, M J; Ellingsen, S P; Brunthaler, A; Moscadelli, L; Cesaroni, R; Krishnan, V

    2015-01-01

    The high-mass star-forming site G009.62-00.20E hosts the 6.7 GHz methanol maser source with the greatest flux density in the Galaxy which has been flaring periodically over the last ten years. We performed high-resolution astrometric measurements of the CH3OH, H2O, and OH maser emission and 7 mm continuum in the region. The radio continuum emission was resolved in two sources separated by 1300 AU. The CH3OH maser cloudlets are distributed along two north-south ridges of emission to the east and west of the strongest radio continuum component. This component likely pinpoints a massive young stellar object which heats up its dusty envelope, providing a constant IR pumping for the Class II CH3OH maser transitions. We suggest that the periodic maser activity may be accounted for by an independent, pulsating, IR radiation field provided by a bloated protostar in the vicinity of the brightest masers. We also report about the discovery of an elliptical distribution of CH3OH maser emission in the region of periodic v...

  2. THE ENVIRONMENT OF THE STRONGEST GALACTIC METHANOL MASER

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, A.; Menten, K. M.; Carrasco-González, C.; Brunthaler, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellingsen, S. P.; Krishnan, V. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia); Moscadelli, L.; Cesaroni, R., E-mail: asanna@mpifr-bonn.mpg.de [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2015-05-01

    The high-mass star-forming site G009.62+00.20 E hosts the 6.7 GHz methanol maser source with the greatest flux density in the Galaxy which has been flaring periodically over the last 10 yr. We performed high-resolution astrometric measurements of the CH{sub 3}OH, H{sub 2}O, and OH maser emission and 7 mm continuum in the region. The radio continuum emission was resolved in two sources separated by 1300 AU. The CH{sub 3}OH maser cloudlets are distributed along two north–south ridges of emission to the east and west of the strongest radio continuum component. This component likely pinpoints a massive young stellar object which heats up its dusty envelope, providing a constant IR pumping for the Class II CH{sub 3}OH maser transitions. We suggest that the periodic maser activity may be accounted for by an independent, pulsating, IR radiation field provided by a bloated protostar in the vicinity of the brightest masers. We also report the discovery of an elliptical distribution of CH{sub 3}OH maser emission in the region of periodic variability.

  3. Discovery of two new methanol masers in NGC 7538

    CERN Document Server

    Pestalozzi, M; Minier, V; Motte, F

    2006-01-01

    Context: NGC7538 is known to host a 6.7 and 12.2GHz methanol maser cospatial with a Ultra Compact (UC) HII region, IRS1. Aims: We report on the serendipitous discovery of two additional 6.7GHz methanol masers in the same region, not associated with IRS1. Methods: Interferometry maser positions are compared with recent single-dish and interferometry continuum observations. Results: The positions of the masers agree to high accuracy with the 1.2mm continuum peak emission in NGC7538 IRS9 and NGC7538 S. This clear association is also confirmed by the positional agreement of the masers with existing high resolution continuum observations at cm and/or mm wavelengths. Conclusions: Making use of the established strong relation between methanol masers and high-mass star formation, we claim that we have accurately positioned the high-mass protostars within the regions where they are detected. The variety of objects hosting a 6.7GHz methanol maser in NGC7538 shows that this emission probably traces different evolutionar...

  4. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    CERN Document Server

    Ong, R A

    1996-01-01

    The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.

  5. NG7538 IRS1 N: modeling a circumstellar maser disk

    CERN Document Server

    Pestalozzi, M R; Conway, J; Booth, R

    2004-01-01

    We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1 N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position-velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30 solar masses, suggested by other observations, our model fixes the masing disk to have inner and outer radii of about 270 AU and 750 AU.

  6. First SIMBA observations toward CH3OH masers

    CERN Document Server

    Pestalozzi, M R; Booth, R S

    2002-01-01

    We report SIMBA 1.2 mm dust continuum observations of the environments of eight methanol maser sources, all discovered during spatially fully-sampled, untargeted surveys of the galactic plane. We summarise our search for possible associations of the masers with IR sources (IRAS and MSX) and find that it is not always possible to make definite associations. A preliminary characterisation of the IR sources found in the maser neighbourhood is given according their position in the [60-25] -- [25-12] colour-colour diagram.

  7. Detection of water masers toward young stellar objects in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, A. K.; Migenes, V. [Department of Physics and Astronomy, Brigham Young University, N283 ESC, Provo, UT 84602 (United States); Breen, S. L., E-mail: ajohanson@byu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping NSW 1710 (Australia)

    2014-02-01

    We present results from a search for water maser emission toward N4A, N190, and N206, three regions of massive star formation in the Large Magellanic Cloud (LMC). Four water masers were detected; two toward N4A, and two toward N190. In the latter region, no previously known maser emission has been reported. Future studies of maser proper motion to determine the galactic dynamics of the LMC will benefit from the independent data points the new masers in N190 provide. Two of these masers are associated with previously identified massive young stellar objects (YSOs), which strongly supports the authenticity of the classification. We argue that the other two masers identify previously unknown YSOs. No masers were detected toward N206, but it does host a newly discovered 22 GHz continuum source, also associated with a massive YSO. We suggest that future surveys for water maser emission in the LMC be targeted toward the more luminous, massive YSOs.

  8. ATCA survey of water masers in the Large Magellanic Cloud

    CERN Document Server

    Imai, H; Ellingsen, S P; Hagiwara, Y

    2013-01-01

    We have analysed archival data taken with the Australia Telescope Compact Array (ATCA) during 2001--2003 and detected nine new interstellar and circumstellar water masers in the LMC. This takes the total number of star formation water masers in the LMC to 23, spread over 14 different star forming regions and three evolved stars. Three water maser sources (N105a/MC23, N113/MC24, N157a/MC74) have been detected in all the previous observations that targeted these sites, although all show significant variability on timescales of decades. The total number of independent water maser sources now known in the LMC means that through very long baseline interferometry astrometric measurements it will be possible to construct a more precise model of the galactic rotation of the LMC and its orbital motion around the Milky Way Galaxy.

  9. Fast Cherenkov model of optical photons generation and transportation

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note describes the technical details of Fast Cherenkov model of optical photons generation and transportation: in particular, the mechanism of Cherenkov photons transportation through the straight bar geometry. As an example of usage, the implemetation of the method inside Quartic detector simulation in GEANT4 will be presented and compared to the nominal results.

  10. Recent results on aerogel development for use in Cherenkov counters

    Energy Technology Data Exchange (ETDEWEB)

    Danilyuk, A.F. E-mail: danilyuk@catalysis.nsk.su; Kirillov, V.L.; Savelieva, M.D.; Bobrovnikov, V.S.; Buzykaev, A.R.; Kravchenko, E.A.; Lavrov, A.V.; Onuchin, A.P

    2002-11-21

    Synthesis of silica aerogel for Cherenkov counters is being studied for more than 10 years at the Boreskov Institute of Catalysis in collaboration with the Budker Institute of Nuclear Physics. Index of refraction, light scattering length and light absorption length are optical characteristics which determine the quality of aerogel Cherenkov counter. These parameters were measured for the aerogel produced. The results are presented.

  11. Recent results on aerogel development for use in Cherenkov counters

    CERN Document Server

    Danilyuk, A F; Savelieva, M D; Bobrovnikov, V S; Buzykaev, A R; Kravchenko, E A; Lavrov, A V; Onuchin, A P

    2002-01-01

    Synthesis of silica aerogel for Cherenkov counters is being studied for more than 10 years at the Boreskov Institute of Catalysis in collaboration with the Budker Institute of Nuclear Physics. Index of refraction, light scattering length and light absorption length are optical characteristics which determine the quality of aerogel Cherenkov counter. These parameters were measured for the aerogel produced. The results are presented.

  12. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    Energy Technology Data Exchange (ETDEWEB)

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  13. Representations and image classification methods for Cherenkov telescopes

    CERN Document Server

    Malagón, C; Parcerisa, D S; Nieto, D

    2008-01-01

    The problem of identifying gamma ray events out of charged cosmic ray background (so called hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In this contribution, we present a novel approach to this problem by implementing different classifiers relying on the information of each pixel of the camera of a Cherenkov telescope.

  14. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  15. The AMS-01 Aerogel Threshold Cherenkov counter

    Energy Technology Data Exchange (ETDEWEB)

    Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Buenerd, M.; Castellini, G.; Choumilov, E.; Favier, J.; Fouque, N.; Gougas, A.; Hermel, V.; Kossakowski, R.; Laborie, G.; Laurenti, G.; Lee, S.-C.; Mayet, F. E-mail: frederic.mayet@isn.in2p3.fr; Meillon, B.; Oyang, Y.-T.; Plyaskin, V.; Pojidaev, V.; Rossin, C.; Santos, D.; Vezzu, F.; Vialle, J.P

    2001-06-11

    The Alpha Magnetic Spectrometer in a precursor version (AMS-01), was flown in June 1998 on a 51.6 deg. orbit and at altitudes ranging between 320 and 390 km, on board of the space shuttle Discovery (flight STS-91). AMS-01 included an Aerogel Threshold Cherenkov counter (ATC) to separate p-bar from e{sup -} and e{sup +} from p, for momenta below 3.5 GeV/c. This paper presents a description of the ATC counter and reports on its performances during the flight STS-91.

  16. The AMS-01 Aerogel Threshold Cherenkov counter

    CERN Document Server

    Barancourt, D; Barbier, G; Barreira, G; Buénerd, M; Castellini, G; Choumilov, E; Favier, Jean; Fouque, N; Gougas, Andreas; Hermel, V; Kossakowski, R; Laborie, G; Laurenti, G; Lee, S C; Mayet, F; Meillon, B; Oyang, J Y T; Plyaskin, V; Pozhidaev, V; Rossin, C; Santos, D; Vezzu, F; Vialle, J P

    2001-01-01

    The Alpha Magnetic Spectrometer in a precursor version (AMS-01), was flown in June 1998 on a 51.6 degrees orbit and at altitudes ranging between 320 and 390 km, on board of the space shuttle Discovery (flight STS-91). AMS-01 included an Aerogel Threshold Cherenkov counter (ATC) to separate antiprotons from electrons and positrons from protons, for momenta below 3.5 GeV/c. This paper presents a description of the ATC counter and reports on its performances during the flight STS-91.

  17. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  18. Gadolinium study for a water Cherenkov detector

    CERN Document Server

    Kibayashi, Atsuko

    2009-01-01

    Modification of large water Cherenkov detectors by addition of gadolinium has been proposed. The large cross section for neutron capture on Gd will greatly improve the sensitivity to antielectron neutrinos from supernovae and reactors. A five-year project to build and develop a prototype detector based on Super-Kamiokande (SK) has started. We are performing various studies, including a material soak test in Gd solution, light attenuation length measurements, purification system development, and neutron tagging efficiency measurements using SK data and a Geant4-based simulation. We present an overview of the project and the recent R&D results.

  19. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  20. An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation

    CERN Document Server

    Caravaca, J; Land, B J; Wallig, J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov / Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 +/- 12 ps FWHM is achieved. Monte Carlo based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 +/- 1% and 81 +/- 1...

  1. Wide-angle cherenkov telescope prototype preliminary data

    Science.gov (United States)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    This report presents an observation method of Cherenkov light from extensive air showers (EAS) generated by cosmic rays (CRs) above 10^16eV and preliminary observations. The interest in Cherenkov light differential detectors of EAS is caused by the possibility to measure the depth of cascade maximum, Xmax, and/or the shower age via angular and temporal distributions of the Cherenkov signal. In particular, it was shown using EAS model simulations that the pulse width measured at the periphery of the shower, r > 300 m, at sea level is pronouncedly connected with Xmax. Cherenkov detector is a wide-angle telescope working in coincidence with scintillation detectors, integral and differential Cherenkov detectors Yakutsk complex EAS.

  2. Accurate OH maser positions from the SPLASH pilot region

    CERN Document Server

    Qiao, Hai-Hua; Green, James A; Breen, Shari L; Dawson, J R; Ellingsen, Simon P; Gómez, José F; Jordan, Christopher H; Shen, Zhi-Qiang; Lowe, Vicki; Jones, Paul A

    2016-01-01

    We report on high spatial resolution observations, using the Australia Telescope Compact Array (ATCA), of ground-state OH masers. These observations were carried out toward 196 pointing centres previously identified in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) pilot region, between Galactic longitudes of $334^{\\circ}$ and $344^{\\circ}$ and Galactic latitudes of $-2^{\\circ}$ and $+2^{\\circ}$. Supplementing our data with data from the MAGMO (Mapping the Galactic Magnetic field through OH masers) survey, we find maser emission towards 175 of the 196 target fields. We conclude that about half of the 21 non-detections were due to intrinsic variability. Due to the superior sensitivity of the follow-up ATCA observations, and the ability to resolve nearby sources into separate sites, we have identified 215 OH maser sites towards the 175 fields with detections. Among these 215 OH maser sites, 111 are new detections. After comparing the positions of these 215 maser sites to the literature, we identify ...

  3. The Relationship between Class I and Class II Methanol Masers

    CERN Document Server

    Ellingsen, S P

    2005-01-01

    The Australia Telescope National Facility Mopra millimetre telescope has been used to search for 95.1-GHz class I methanol masers towards sixty-two 6.6-GHz class II methanol masers. A total of twenty-six 95.1-GHz masers were detected, eighteen of these being new discoveries. Combining the results of this search with observations reported in the literature, a near complete sample of sixty-six 6.6-GHz class II methanol masers has been searched in the 95.1-GHz transition, with detections towards 38 per cent (twenty-five detections ; not all of the sources studied in this paper qualify for the complete sample, and some of the sources in the sample were not observed in the present observations). There is no evidence of an anti-correlation between either the velocity range, or peak flux density of the class I and II transitions, contrary to suggestions from previous studies. The majority of class I methanol maser sources have a velocity range that partially overlaps with the class II maser transitions. The presence...

  4. CW SOLID-STATE OPTICAL MASER (LASER).

    Science.gov (United States)

    ruby rods, (3) Ruby oscillation linewidth, (4) Investigations of rare-earth spectra in yttrium aliminum garnets, (5) Nonlinear dielectric properties of KTaO3 near its Curie point, (6) The diffraction-limited oscillator. (Author)

  5. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  6. The High-Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  7. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  8. The High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  9. The High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  10. Roughness tolerances for Cherenkov telescope mirrors

    CERN Document Server

    Tayabaly, K; Canestrari, R; Bonnoli, G; Lavagna, M; Pareschi, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of ...

  11. The Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Papanestis, Antonis

    2005-01-01

    The success of the LHCb experiment depends heavily on particle identification over the momentum 2-100 GeV/c. To meet this challenge, LHCb uses a Ring Imaging Cherenkov (RICH) system composed of two detectors with three radiators. RICH1 has both aerogel and gas (C$_4$F$_{10}$) radiators, while RICH2 has only a gas (CF$_4$) radiator. The design of RICH1 is almost complete, whereas RICH2 has been constructed and installed (Nov 2005). Novel Hybrid Photon Detectors (HPDs) have been developed in collaboration with industry to detect the Cherenkov photons. A silicon pixel detector bump-bonded to a readout chip is encapsulated in a vacuum tube. A bi-alkali photocathode is deposited on the inside of the quartz entrance window to convert photons in the range 200-600 nm. The pixel chip is manufactured in 0.25 $\\mu$m deep-submicron radiation-tolerant technology and consists of 1024 logical pixels, each pixel having an area of 0.5 mm x 05. Mm. Photo-electrons are accelerated by a 20kV potential, resulting in a signal of ...

  12. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  13. Multibeam Maser Survey of methanol and excited OH in the Magellanic Clouds: new detections and maser abundance estimates

    CERN Document Server

    Green, J A; Fuller, G A; Breen, S L; Brooks, K; Burton, M G; Chrysostomou, A; Cox, J; Diamond, P J; Ellingsen, S P; Gray, M D; Hoare, M G; Masheder, M R W; McClure-Griffiths, N; Pestalozzi, M; Phillips, C; Quinn, L; Thompson, M A; Voronkov, M; Walsh, A; Ward-Thompson, D; Wong-McSweeney, D; Yates, J A; Cohen, R J

    2008-01-01

    We present the results of the first complete survey of the Large and Small Magellanic Clouds for 6668-MHz methanol and 6035-MHz excited-state hydroxyl masers. In addition to the survey, higher-sensitivity targeted searches towards known star-formation regions were conducted. The observations yielded the discovery of a fourth 6668-MHz methanol maser in the Large Magellanic Cloud (LMC), found towards the star-forming region N160a, and a second 6035-MHz excited-state hydroxyl maser, found towards N157a. We have also re-observed the three previously known 6668-MHz methanol masers and the single 6035-MHz hydroxyl maser. We failed to detect emission from either transition in the Small Magellanic Cloud. All observations were initially made using the Methanol Multibeam (MMB) survey receiver on the 64-m Parkes telescope as part of the MMB project and accurate positions have been measured with the Australia Telescope Compact Array (ATCA). We compare the maser populations in the Magellanic Clouds with those of our Galax...

  14. Dielectric Metamaterials

    Science.gov (United States)

    2015-05-29

    Final Report  29 May 2015 Dielectric Metamaterials SRI Project P21340 ONR Contract N00014-12-1-0722 Prepared by: Srini Krishnamurthy...2 2. Theory of Metamaterials ....................................................................................................... 2 2.1...accurately assess the impact of various forms of disorder on metamaterials (MMs) (both dielectric and metal inclusions); and (5) identify designs

  15. Optical and radiographical characterization of silica aerogel for Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Kawai, Hideyuki; Morita, Takeshi; Nishikawa, Keiko

    2012-01-01

    We present optical and X-ray radiographical characterization of silica aerogels with refractive index from 1.05 to 1.07 for a Cherenkov radiator. A novel pin-drying method enables us to produce highly transparent hydrophobic aerogels with high refractive index by shrinking wet-gels. In order to investigate the uniformity in the density (i.e., refractive index) of an individual aerogel monolith, we use the laser Fraunhofer method, an X-ray absorption technique, and Cherenkov imaging by a ring imaging Cherenkov detector in a beam test. We observed an increase in density at the edge of the aerogel tiles, produced by pin-drying.

  16. Tachyonic Cherenkov emission from Jupiter's radio electrons

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.org

    2013-12-17

    Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied. The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component. A spectral fit to Jupiter's radio spectrum, inferred from ground-based observations and the Cassini 2001 fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.

  17. Geiger-mode avalanche photodiodes for Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Renker, D [Paul Scherrer Institue, 5232 Villigen PSI (Switzerland)], E-mail: dieter.renker@psi.ch

    2010-01-15

    Semiconductor photo sensors have in comparison with other detectors used in the ring image Cherenkov (RICH) and in the internally reflected Cherenkov light (DIRC) technique, photomultipier tubes and their derivates, a number of advantages: they have high photon detection efficiency ( {approx} 50%), are insensitive to magnetic fields, operate at low voltages and allow a compact, light and robust design. Specially the relatively new Geiger-mode avalanche photodiode (also called silicon photomultiplier) is a promising candidate for a detector of Cherenkov photons. The state of the development and the problems of this device will be described.

  18. Cherenkov light-based beam profiling for ultrarelativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Gessner, S.J.; Corde, S.; Hogan, M.J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bjerke, H.H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2015-05-21

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. The profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. We report on the measured performance of this profile monitor.

  19. Dense Molecular Gas and H2O Maser Emission in Galaxies

    Indian Academy of Sciences (India)

    F. Huang; J. S. Zhang; R. M. Li; H. K. Li

    2014-09-01

    Extragalactic H2O masers have been found in dense gas circumstance in off-nuclear star formation regions or within parsecs of Active Galactic Nuclei (AGNs). HCN molecular (one of the best dense gas tracers) Emission has been detected in more than 60 galaxies. For HCN-detected galaxy sample, the relation of maser and gas emission was investigated here to identify physical observable properties that differentiate maser and non-maser galaxies. Our analysis results show that there is no significant difference on the infrared and gas emission between maser galaxies and galaxies without maser detection. For maser host HCN-galaxies, maser luminosity is found to be correlated to CO luminosity (a proxy of the total molecular gas) and HCN luminosity, i.e., kilomasers (H2O < 10⊙) with low maser luminosity having low gas emission luminosity, with respect to megamasers (H2O > 10⊙). For normalized maser and HCN luminosity (for removing distance effect), the correlation is still apparent. However, for normalized maser and CO luminosity, the correlation disappeared completely. Thus one proposition that the amount of dense molecular gas should be a good tracer of H2O maser emission can be made.

  20. How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)

    Science.gov (United States)

    Darling, Jeremy

    2017-03-01

    We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocity that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07-0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120-039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.

  1. The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jankowsky, D; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $\\gtrsim 8^\\circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cher...

  2. INTERSTELLAR H{sub 2}O MASERS FROM J SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, David [SETI Institute, Mountain View, CA 94043 (United States); Elitzur, Moshe [University of Kentucky, Lexington, KY 40506 (United States); McKee, Christopher F. [University of California, Berkeley, CA 94720 (United States)

    2013-08-10

    We present a model in which the 22 GHz H{sub 2}O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3}). We focus on high-velocity (v{sub s} {approx}> 30 km s{sup -1}) dissociative J shocks in which the heat of H{sub 2} re-formation maintains a large column of {approx}300-400 K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H{sub 2}O. The H{sub 2}O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally {approx} 10{sup 11}-10{sup 14} K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10-100 times the shock thickness of {approx}10{sup 13} cm. The masers are therefore beamed toward the observer, who typically views the shock ''edge-on'', or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line-of-sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size and shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H{sub 2}O 22 GHz masers, these observed parameters can be produced in J shocks with n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3} and v{sub s} {approx} 30-200 km s{sup -1}. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, j = n{sub 0} v{sub s} , rather than on n{sub 0} and v{sub s} separately.

  3. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  4. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  5. Background radiation measurement with water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bertou, X., E-mail: bertou@cab.cnea.gov.a [CONICET/CNEA, Centro Atomico Bariloche (Argentina); Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malarguee (Argentina)

    2011-05-21

    Water Cherenkov Detectors have the nice property of being mostly calorimeters for cosmic ray induced electrons and photons, while providing a clear signal for muons. At large energy deposited in the detector, they observe small extended air showers. This makes them interesting detectors to study the background of cosmic ray secondaries. Using low threshold scaler counters, one can follow the flux of cosmic rays on top of the atmosphere, and/or study atmospheric effects on the cosmic ray shower development. In this paper, background data from the Pierre Auger Observatory are presented. These data are searched for short time-scale variation (one second scale, as expected from Gamma Ray Bursts), and larger time-scale variations, showing modulation effects due to Solar activity (Forbush decreases). Rapid changes in the background flux are also observed during the crossing of storms over the 3000 km{sup 2} of the ground array.

  6. Observations of the Zeeman effect in Class I methanol masers

    Science.gov (United States)

    Pratim Sarma, Anuj; Momjian, Emmanuel

    2017-01-01

    We present observations of the Zeeman effect in Class I methanol maser sources toward high mass star forming regions. Toward DR21(OH), we have detected the Zeeman effect at 44 GHz in a 219 Jy/beam maser centered at an LSR velocity of 0.83 km/s, and we find $zB_\\text{los} = 53.5 \\pm 2.7$ Hz. If 44 GHz methanol masers are excited at $10^{7-8}$ cm$^{-3}$, then magnetic fields in DR21(OH) should be ~10 mG. Our detected $zB_\\text{los}$ would then imply that the Zeeman splitting factor for the 44 GHz methanol maser line should be ~5 Hz/mG. Such small values for z would not be surprising, since the methanol molecule is non-paramagnetic, like H2O. Since there are no direct measurements or calculations of the 44 GHz methanol maser Zeeman splitting factor to date, such empirical attempts could prove valuable in building a repository of measurements from which to gain an understanding of the magnitude of z.

  7. Non--local radiative transfer in strongly inverted masers

    CERN Document Server

    Daniel, F

    2013-01-01

    Maser transitions are commonly observed in media exhibiting a large range of densities and temperatures. They can be used to obtain information on the dynamics and physical conditions of the observed regions. In order to obtain reliable constraints on the physical conditions prevailing in the masing regions, it is necessary to model the excitation mechanisms of the energy levels of the observed molecules. We present a numerical method that enables us to obtain self-consistent solutions for both the statistical equilibrium and radiative transfer equations. Using the standard maser theory, the method of Short Characteristics is extended to obtain the solution of the integro-differential radiative transfer equation, appropriate to the case of intense masing lines. We have applied our method to the maser lines of the H2O molecule and we compare with the results obtained with a less accurate approach. In the regime of large maser opacities we find large differences in the intensity of the maser lines that could be...

  8. Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications

    CERN Document Server

    Afanasiev, G. N

    2005-01-01

    The theory of the Vavilov-Cherenkov radiation observed by Cherenkov in 1934 was created by Tamm, Frank and Ginsburg who associated the observed blue light with the uniform charge motion of a charge at a velocity greater than the velocity of light in the medium. On the other hand, Vavilov, Cherenkov's teacher, attributed the observed blue light to the deceleration of electrons. This has given rise to the appearance of papers in which the radiation of a charge uniformly moving in a finite space interval was related to the Bremsstrahlung arising at the end points of the motion interval. This monograph is intended for students of the third year and higher, for postgraduates, for professional scientists (both experimentalists and theoreticians) dealing with Vavilov-Cherenkov and synchrotron radiation. An acquaintance with the three volumes of the Landau and Lifshitz course (Quantum Mechanics, Classical Field Theory and Macroscopic Electrodynamics) is sufficient for understanding the text.

  9. X-ray diffraction radiation in conditions of Cherenkov effect

    NARCIS (Netherlands)

    Tishchenko, A. A.; Potylitsyn, A. P.; Strikhanov, M. N.

    2006-01-01

    X-ray diffraction radiation from ultra-relativistic electrons moving near an absorbing target is considered. The emission yield is found to increase significantly in conditions of Cherenkov effect. (c) 2006 Elsevier B.V. All rights reserved.

  10. Extension of Cherenkov Light LDF Approximation for Yakutsk EAS Array

    Directory of Open Access Journals (Sweden)

    A. A. Al-Rubaiee

    2014-01-01

    Full Text Available The simulation of the Cherenkov light lateral distribution function (LDF in extensive air showers (EAS was performed using CORSIKA code for configuration of Yakutsk EAS array at high energy range for different primary particles (p, Fe, and O2 and different zenith angles. Depending on Breit-Wigner function a parameterization of Cherenkov light LDF was reconstructed on the basis of this simulation as a function of primary energy. A comparison of the calculated Cherenkov light LDF with that measured on the Yakutsk EAS array gives the possibility of identification of the particle initiating the shower and determination of its energy in the knee region of the cosmic ray spectrum. The extrapolation of approximated Cherenkov light LDF for high energies was obtained for primary proton and iron nuclei.

  11. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    Science.gov (United States)

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-09-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than 100 eV, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  12. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    CERN Document Server

    Kimura, Rampei; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-01-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than $100\\,{\\rm eV}$, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  13. Water masers in the Kronian system

    Science.gov (United States)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we started an observational campaign for search of another manifestation of the water vapour in the Kronian system, its maser emission at the frequency of 22 GHz (1.35 cm wavelength). Observations with the 32 m Medicina radio telescope (INAF-IRA, Italy) started in 2006 using Mk5A data recording and the JIVE-Huygens software correlator. Later on, an on-line spectrometer was used at Medicina. The 14 m Metsähovi radio telescope (TKK-MRO, Finland) joined the observational campaign in 2008 using a locally developed data capture unit and software spectrometer. More than 300 hours of observations were collected in 2006-2008 campaign with the two radio telescopes. The data were analysed at JIVE using the Doppler tracking technique to compensate the observed spectra for the radial Doppler shift for various bodies in the Kronian system (Pogrebenko et al. 2009). Here we report the observational results for Hyperion, Titan, Enceladus and Atlas, and their physical interpretation. Encouraged by these results we started a campaign of follow up observations including other radio telescopes.

  14. Amplification of OAM radiation by astrophysical masers

    Science.gov (United States)

    Gray, M. D.; Pisano, G.; Maccalli, S.; Schemmel, P.

    2014-12-01

    We extend the theory of astrophysical maser propagation through a medium with a Zeeman-split molecular response to the case of a non-uniform magnetic field, and allow a component of the electric field of the radiation in the direction of propagation: a characteristic of radiation with orbital angular momentum. A classical reduction of the governing equations leads to a set of nine differential equations for the evolution of intensity-like parameters for each Fourier component of the radiation. Four of these parameters correspond to the standard Stokes parameters, whilst the other five represent the z-component of the electric field, and its coupling to the conventional components in the x-y-plane. A restricted analytical solution of the governing equations demonstrates a non-trivial coupling of the Stokes parameters to those representing orbital angular momentum: the z-component of the electric field can grow from a background in which only Stokes-I is non-zero. A numerical solution of the governing equations reveals radiation patterns with a radial and angular structure for the case of an ideal quadrupole magnetic field perpendicular to the propagation direction. In this ideal case, generation of radiation orbital angular momentum, like polarization, can approach 100 per cent.

  15. Amplification of OAM Radiation by Astrophysical Masers

    CERN Document Server

    Gray, Malcolm; Maccalli, Stefania; Schemmel, Peter

    2014-01-01

    We extend the theory of astrophysical maser propagation through a medium with a Zeeman-split molecular response to the case of a non-uniform magnetic field, and allow a component of the electric field of the radiation in the direction of propagation: a characteristic of radiation with orbital angular momentum. A classical reduction of the governing equations leads to a set of nine differential equations for the evolution of intensity-like parameters for each Fourier component of the radiation. Four of these parameters correspond to the standard Stokes parameters, whilst the other five represent the $z$-component of the electric field, and its coupling to the conventional components in the $x-y$-plane. A restricted analytical solution of the governing equations demonstrates a non-trivial coupling of the Stokes parameters to those representing orbital angular momentum: the $z$-component of the electric field can grow from a background in which only Stokes-$I$ is non-zero. A numerical solution of the governing e...

  16. New Maser Emission from Nonmetastable Ammonia in NGC 7538. IV. Coincident Masers in Adjacent States of Para-ammonia

    CERN Document Server

    Hoffman, Ian M

    2014-01-01

    We present the first detection of para-ammonia masers in NGC 7538: multiple epochs of observation of the 14NH3 (J,K) = (10,8) and (9,8) lines. We detect both thermal absorption and nonthermal emission in the (10,8) and (9,8) transitions and the absence of a maser in the (11,8) transition. The (9,8) maser is observed to increase in intensity by 40% over six months. Using interferometric observations with a synthesized beam of 0.25", we find that the (10,8) and (9,8) masers originate at the same sky position near IRS1. With strong evidence that the (10,8) and (9,8) masers arise in the same volume, we discuss the application of pumping models for the simultaneous excitation of nonmetastable (J > K) para-ammonia states having the same value of K and consecutive values of J. We also present detections of thermal absorption in rotational states ranging in energy from E/k_B ~ 200 K to 2000 K, and several non-detections in higher-energy states. In particular, we describe the populations in eight adjacent rotational s...

  17. Proper Motions of Water Masers in Circumstellar Shells

    Science.gov (United States)

    Marvel, K. B.; Diamond, P. J.; Kemball, A. J.

    We present proper motion measurements of circumstellar water masers obtained with the VLBA. The objects observed include S Persei, VX Sagittarii, U Herculis, VY Canis Majoris, NML Cygni, IK Tauri and RX Bootis. Results of the observations and modeling indicate that the water masers exist in a kinematically complex region of the circumstellar envelope, which is not well fit by the standard model of a uniformly expanding spherical wind. Attempts at fitting an ellipsoidal geometric distribution with a variety of kinematic models are presented. Estimates for the distances of the stars are also discussed. A change in position of the maser spots as a function of velocity has been measured. This effect may be used to place limits on accelerations in the masing gas.

  18. The distribution of maser emission in OH/IR stars

    Science.gov (United States)

    Welty, Alan D.; Fix, John D.; Mutel, Robert L.

    1987-01-01

    The 1612 MHz OH emission from five OH/IR stars has been mapped at three epochs over a 2.5 yr period of time. Although the stars were observed at very different phases in the radio light curve of each, there were no remarkable changes in the appearance of the maps. This probably implies that the properties of the masers do not range widely throughout a maser shell. The maps have been used to produce star-centered surface maps of the distribution of maser emission from each star. The surface maps generally are sparsely filled with OH emission and are dominated by relatively few (about 10) major clumps of emission. The presence of large regions of low intensity in the surface maps suggests that the number of individual emitting elements is relatively small or that there are a larger number of elements which are distributed in the shell in a distinctly nonrandom manner.

  19. Cherenkov light imaging in astro-particle physics

    Science.gov (United States)

    Mirzoyan, Razmik

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments.

  20. Multi-Wavelength Studies on H2O Maser Host Galaxies

    Indian Academy of Sciences (India)

    J. S. Zhang; J. Wang

    2011-03-01

    H2O maser emissions have been found in external galaxies for more than 30 years. Main sciences associated with extragalactic H2O masers can be summarized roughly into three parts: maser emission itself, AGN sciences and cosmology exploration. Our work in this field focusses on two projects: X-ray data analysis of individual maser source using X-ray penetrability to explore maser host obscured AGN; multi-wavelength statistical properties of the whole published H2O maser sample. Here their nuclear radio properties were investigated in detail, based on their 6-cm and 20-cm radio observation data. Comparing the radio properties between maser-detected sources and non-detected sources at similar distance scale, we find that: (1) maser host galaxies tend to have higher nuclear radio luminosity; (2) the spectral index of both samples is comparable (∼ 0.6), within the error ranges. In addition, for AGN-maser sources, the isotropic maser luminosity tends to increase with rising radio luminosity. Thus we propose the nuclear radio luminosity as one good indicator for searching AGN-masers in the future.

  1. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study.

    Science.gov (United States)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R; Lehnert, Adrienne; Hunter, William C J; McDougald, Wendy; Miyaoka, Robert S; Kinahan, Paul E

    2015-12-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be

  2. Sensivity studies for the Cherenkov Telescope Array

    Science.gov (United States)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  3. Methanol Maser Associated Outflows: Detection statistics and properties

    CERN Document Server

    de Villiers, H M; Thompson, M A; Ellingsen, S P; Urquhart, J S; Breen, S L; Burton, M G; Csengeri, T; Ward-Thompson, D

    2014-01-01

    We have selected the positions of 54 6.7GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between $20^{\\circ}$ and $34^{\\circ}$ of the Galactic Plane. These positions were mapped in the J=3-2 transition of both the $\\rm{^{13}CO}$ and $\\rm{C^{18}O}$ lines. A total of 58 $\\rm{^{13}CO}$ emission peaks are found in the vicinity of these maser positions. We search for outflows around all $\\rm{^{13}CO}$ peaks, and find evidence for high-velocity gas in all cases, spatially resolving the red and blue outflow lobes in 55 cases. Of these sources, 44 have resolved kinematic distances, and are closely associated with the 6.7GHz masers, a sub-set referred to as Methanol Maser Associated Outflows (MMAOs). We calculate the masses of the clumps associated with each peak using 870 $\\rm{\\mu m}$ continuum emission from the ATLASGAL survey. A strong correlation is seen between the clump mass and both outflow mass and mechanical force, lending support to models in which accretion is...

  4. Radio and IR interferometry of SiO maser stars

    CERN Document Server

    Wittkowski, M; Gray, M D; Humphreys, E M L; Karovicova, I; Scholz, M

    2012-01-01

    Radio and infrared interferometry of SiO maser stars provide complementary information on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid-infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a precursor of ALMA images of the SiO emitting region. We speculate that large-scale long-period chaotic motion in the extended molecular atmosphere may be the physical reason for observed deviations from poin...

  5. First microwave generation in the FOM free-electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Pluygers, J.; Shmelyov, M. Y.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1998-01-01

    A free-electron maser (FEM) has been built as a pilot experiment for a millimetre-wave source for applications on future fusion research devices such as ITER, the International Tokamak Experimental Reactor. A unique feature of the Dutch fusion FEM is the possibility to tune the frequency over the en

  6. First high power experiments with the Dutch free electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van Dijk, G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Pluygers, J.; Shmelyov, M. Y.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1998-01-01

    A free electron maser (FEM) has been built as a mm-wave source for applications on future fusion research devices such as ITER, the international tokamak experimental reactor [M. A. Makowski, F. Elio, and D. Loeser, April 97, Proc. 10th Workshop on ECE and ECRH, EC10, 549-559. World Scientific (1998

  7. OH maser outburst in the W3 nebula

    Science.gov (United States)

    Gosachinskij, I. V.; Grenkov, S. A.; Ipatov, A. V.; Rakhimov, I. A.

    2016-07-01

    We report the results of three-year long observations of OH masers at 1665 MHz in the W3(OH) source carried out with the 32-m antenna of Svetloe Radio Astronomical Observatory.We found that the strongest activity during the period from December 2011 through March 2012 was exhibited by the region at radial velocity -46.2km s-1. The region showed no activity in the ensuing time. The most striking outburst was the event that occurred on January 23, 2013 at UT 03:27. At that time the flux of the region increased by a factor of seven in 90 s, and then decreased down to the initial level. Such a time scale yields the upper estimate of 0.18 AU (2.7 × 1012 cm) for the linear size of the maser dot. In 2013-2014 intensity variations were found the -47.6 and -45.1km s-1 components with time scales on the order of 10 hours and anticorrelated behavior of the left- and right-hand polarization fluxes. This is the first time that such phenomena have been found in the behavior of OH maser emission, and they cannot be explained by any existing models of maser variability.

  8. Single-dish monitoring of circumstellar water masers

    CERN Document Server

    Brand, J; Engels, D

    2002-01-01

    We present an overview of the long-term water maser monitoring program of a sample of late-type stars, carried out with the Medicina 32-m and Effelsberg 100-m telescopes, and describe the results in some detail. The role the SRT (Sardinia Radio Telescope) could play in this program is outlined.

  9. Star-forming protoclusters associated with methanol masers

    CERN Document Server

    Minier, V; Hill, T; Pestalozzi, M R; Purcell, C R; Garay, G; Walsh, A; Longmore, S N

    2004-01-01

    We present a multiwavelength study of five methanol maser sites which are not directly associated with a strong ($>100$ mJy) radio continuum source: G 31.28+0.06, G 59.78+0.06, G 173.49+2.42 (S231, S233IR), G 188.95+0.89 (S252, AFGL5180) and G 192.60-0.05 (S255IR). These radio-quiet methanol maser sites are often interpreted as precursors of ultra-compact \\ion{H}{ii} regions or massive protostar sites. In this work, the environment of methanol masers is probed from mid-IR to millimetre wavelengths at angular resolutions of $8''-34''$. Spectral energy distribution (SED) diagrams for each site are presented, together with mass and luminosity estimates. Each radio-quiet maser site is always associated with a massive ($>50$ M$_{\\odot}$), deeply embedded ($A_v>40$ mag) and very luminous ($>10^4$ S L$_{\\odot}$) molecular clump, with $L_{total}{\\propto}M_{gas}^{0.75}$. These physical properties characterise massive star-forming clumps in earlier evolutionary phases than \\ion{H}{ii} regions. In addition, colder gas c...

  10. RAPID FLUCTUATIONS OF WATER MASER EMISSION IN VY CMa

    Institute of Scientific and Technical Information of China (English)

    ZhengXingwu; EugenioScaliseJr; HanFu

    1999-01-01

    The monitoring observations of the short- time variation of the water maser to-ward the supergiant star of VY CMa were carried out from August 26 through September 24 1993, using the 13.7 m telescope at the Qinghai station of the Purple

  11. The diversity of methanol maser morphologies from VLBI observations

    CERN Document Server

    Bartkiewicz, A; Van Langevelde, H J; Richards, A M S; Pihlström, Y M

    2009-01-01

    We investigate which structures the 6.7 GHz methanol masers trace in the environment of high-mass protostar candidates by observing a homogenous sample of methanol masers selected from Torun surveys. We also probed their origins by looking for associated H II regions and IR emission. We selected 30 methanol sources with improved position accuracies achieved using MERLIN and another 3 from the literature. We imaged 31 of these using the European VLBI Network's expanded array of telescopes with 5-cm (6-GHz) receivers. We used the VLA to search for 8.4 GHz radio continuum counterparts and inspected Spitzer GLIMPSE data at 3.6-8 um from the archive. High angular resolution images allowed us to analyze the morphology and kinematics of the methanol masers in great detail and verify their association with radio continuum and mid-infrared emission. A new class of "ring-like" methanol masers in star--forming regions appeared to be suprisingly common, 29 % of the sample. The new morphology strongly suggests that methan...

  12. Interstellar H$_2$O Masers from J Shocks

    CERN Document Server

    Hollenbach, David; McKee, Christopher F

    2013-01-01

    We present a model in which the 22 GHz H$_2$O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density $n_0 \\sim 10^6 - 10^8$ cm$^{-3}$). We focus on high-velocity ($v_s > 30$ km s$^{-1}$) dissociative J shocks in which the heat of H$_2$ re-formation maintains a large column of $\\sim 300-400$ K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H$_2$O. The H$_2$O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally $\\sim 10^{11} - 10^{14}$ K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10 to 100 times the shock thickness of $\\sim 10^{13}$ cm. The masers are therefore beamed towards the observer, who typically views the shock "edge-on", or perpendicular to the shock velocity; the brightest masers are then observed with t...

  13. SiO and CH3OH mega-masers in NGC 1068

    Science.gov (United States)

    Wang, Junzhi; Zhang, Jiangshui; Gao, Yu; Zhang, Zhi-Yu; Li, Di; Fang, Min; Shi, Yong

    2014-11-01

    Maser is an acronym for microwave amplification by stimulated emission of radiation; in astronomy mega-masers are masers in galaxies that are ≥106 times more luminous than typical galactic maser sources. Observational studies of mega-masers can help us to understand their origins and characteristics. More importantly, mega-masers can be used as diagnostic tracers to probe the physical properties of their parent galaxies. Since the late 1970s, only three types of molecules have been found to form mega-masers: H2O, OH and H2CO. Here we report the detection of both SiO and CH3OH mega-masers near the centre of Seyfert 2 galaxy NGC 1068 at millimetre wavelengths, obtained using the IRAM 30-m telescope. We argue that the SiO mega-maser originated from the nuclear disk and the CH3OH mega-maser originated from shock fronts. High-resolution observations in the future will enable us to investigate AGN feedback and determine the masses of central supermassive black holes in such galaxies.

  14. Search for class II methanol masers at 23.1 GHz

    CERN Document Server

    Cragg, D M; Caswell, J L; Ellingsen, S P; Godfrey, P D

    2004-01-01

    In the early days of methanol maser discoveries the 9(2)-10(1) A+ transition at 23.1 GHz was found to exhibit maser characteristics in the northern star-forming region W3(OH), and probable maser emission in two other sources. Attention subsequently turned to the 6.6-GHz 5(1)-6(0) A+ methanol maser transition, which has proved a valuable tracer of early high-mass star formation. We have undertaken a new search for 23.1-GHz methanol masers in 50 southern star formation regions using the Parkes radiotelescope. The target sources all exhibit class II methanol maser emission at 6.6 GHz, with 20 sources also displaying maser features in the 107.0-GHz 3(1)-4(0) A+ methanol line. Strong emission at 23.1 GHz in NGC 6334F was confirmed, but no emission was detected in the remaining sources. Thus the 23.1-GHz methanol masers are rare. A maser model in which methanol molecules are pumped to the second torsionally excited state by radiation from warm dust can account for class II maser activity in all the transitions in w...

  15. UNUSUAL SHOCK-EXCITED OH MASER EMISSION IN A YOUNG PLANETARY NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Hai-Hua; Shen, Zhi-Qiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Rd, Shanghai, 200030 (China); Walsh, Andrew J. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth WA 6845 (Australia); Gómez, José F. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Imai, Hiroshi [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Green, James A. [SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Dawson, Joanne R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Ellingsen, Simon P. [School of Physical Sciences, Private Bag 37, University of Tasmania, Hobart 7001, TAS (Australia); Breen, Shari L. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Jones, Paul A.; Cunningham, Maria R. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Gibson, Steven J., E-mail: haihua.qiao@curtin.edu.au [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101 (United States)

    2016-01-20

    We report on OH maser emission toward G336.644−0.695 (IRAS 16333−4807), which is a H{sub 2}O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667, and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array, hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3−35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H{sub 2}O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km s{sup −1}). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ∼2 to ∼10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation of the PN.

  16. Unusual shock-excited OH maser emission in a young Planetary Nebula

    CERN Document Server

    Qiao, Hai-Hua; Gomez, Jose F; Imai, Hiroshi; Green, James A; Dawson, Joanne R; Shen, Zhi-Qiang; Ellingsen, Simon P; Breen, Shari L; Jones, Paul A; Gibson, Steven J; Cunningham, Maria R

    2015-01-01

    We report on OH maser emission toward G336.644-0.695 (IRAS 16333-4807), which is a H2O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667 and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array (ATCA), hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3-35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H2O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km/s). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ~2 to ~10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation ...

  17. Infrared characteristics of sources associated with OH, H2O, SiO and CH3OH masers

    CERN Document Server

    Esimbek, Jarken; Wu, Gang; Di Tang, Xin

    2013-01-01

    We collect all published OH, H2O, SiO and CH3OH masers in literature. The as-sociated infrared sources of these four masers were identi?ed with MSX PSC catalogues. We look for common infrared properties among the sources associated with four masers and make a statistical study. The MSX sources associated with stellar OH, stellar H2O and SiO masers concentrated in a small regions and the MSX sources associated with interstellar OH, interstellar H2O and CH3OH masers also concentrated in a small regions in an [A]-[D].vs.[A][-[E] diagram. These results give us new criterion to search for coexisting stellar maser samples for OH, H2O and SiO masers and interstellar maser samples for OH, H2O and CH3OH masers.

  18. Extended CH3OH maser flare excited by a bursting massive YSO

    Science.gov (United States)

    Moscadelli, L.; Sanna, A.; Goddi, C.; Walmsley, M. C.; Cesaroni, R.; Caratti o Garatti, A.; Stecklum, B.; Menten, K. M.; Kraus, A.

    2017-04-01

    Aims: Recently, substantial flaring in the 6.7 GHz methanol maser line has been observed toward the high-mass young stellar object (YSO) S255 NIRS 3, where an accretion burst was also detected in the IR. Our goal is to study the change in the properties of the 6.7 GHz masers between the pre- and outburst phases, and investigate the connection between the maser and the accretion burst. Methods: With the Karl G. Jansky Very Large Array (JVLA) and the European VLBI Network (EVN), we performed observations of the 6.7 GHz masers (covering a range in angular resolution from a few milliarcseconds to ≈1'') during the burst phase and compared these observations with pre-burst measurements at similar spatial scales. Results: The accretion burst and the subsequent increase in IR luminosity are very likely the origin of the 6.7 GHz maser flare. Since most maser centers operate in the unsaturated regime, a change by a relatively small factor (≈5) in the flux of pumping photons has produced an exponential growth in the maser intensity. The main pre-burst maser cluster is no longer detected during the burst. Compared to the pre-burst phase, flaring 6.7 GHz masers emit across a different VLSR range that is more strongly redshifted, and the emission extends over a larger area at larger separation from the high-mass YSO. In particular, the outburst peak emission originates from a remarkably extended (0.̋2-0.̋3) maser plateau at a radial distance of 500-1000 AU from the source. Conclusions: Both the maser flare and the extraordinarily large extent of the maser structure can be a natural consequence of the burst in the accretion luminosity of the high-mass YSO. Our results strongly support models that predict IR radiative pumping for the 6.7 GHz CH3OH masers.

  19. Simulated Galactic methanol maser distribution to constrain Milky Way parameters

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Reid, M. J.; Green, J. A.

    2017-08-01

    Context. Using trigonometric parallaxes and proper motions of masers associated with massive young stars, the Bar and Spiral Structure Legacy (BeSSeL) survey has reported the most accurate values of the Galactic parameters so far. The determination of these parameters with high accuracy has a widespread impact on Galactic and extragalactic measurements. Aims: This research is aimed at establishing the confidence with which such parameters can be determined. This is relevant for the data published in the context of the BeSSeL survey collaboration, but also for future observations, in particular from the southern hemisphere. In addition, some astrophysical properties of the masers can be constrained, notably the luminosity function. Methods: We have simulated the population of maser-bearing young stars associated with Galactic spiral structure, generating several samples and comparing them with the observed samples used in the BeSSeL survey. Consequently, we checked the determination of Galactic parameters for observational biases introduced by the sample selection. Results: Galactic parameters obtained by the BeSSeL survey do not seem to be biased by the sample selection used. In fact, the published error estimates appear to be conservative for most of the parameters. We show that future BeSSeL data and future observations with southern arrays will improve the Galactic parameters estimates and smoothly reduce their mutual correlation. Moreover, by modeling future parallax data with larger distance values and, thus, greater relative uncertainties for a larger numbers of sources, we found that parallax-distance biasing is an important issue. Hence, using fractional parallax uncertainty in the weighting of the motion data is imperative. Finally, the luminosity function for 6.7 GHz methanol masers was determined, allowing us to estimate the number of Galactic methanol masers.

  20. Characteristics of Cherenkov Radiation in Naturally Occuring Ice

    CERN Document Server

    Mikkelsen, R E; Uggerhøj, U I; Klein, S R

    2016-01-01

    We revisit the theory of Cherenkov radiation in uniaxial crystals. Historically, a number of flawed attempts have been made at explaining this radiation phenomenon and a consistent error-free description is nowhere available. We apply our calculation to a large modern day telescope - IceCube. Being located at the Antarctica, this detector makes use of the naturally occuring ice as a medium to generate Cherenkov radiation. However, due to the high pressure at the depth of the detector site, large volumes of hexagonal ice crystals are formed. We calculate how this affects the Cherenkov radiation yield and angular dependence. We conclude that the effect is small, at most about a percent, and would only be relevant in future high precision instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to determine the arrival direction, any variation in emission angle will directly and linearly translate into a change in ap...

  1. CLASSiC: Cherenkov light detection with silicon carbide

    Science.gov (United States)

    Adriani, Oscar; Albergo, Sebastiano; D'Alessandro, Raffaello; Lenzi, Piergiulio; Sciuto, Antonella; Starodubtsev, Oleksandr; Tricomi, Alessia

    2017-02-01

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  2. Characteristics of Cherenkov radiation in naturally occurring ice

    Science.gov (United States)

    Mikkelsen, R. E.; Poulsen, T.; Uggerhøj, U. I.; Klein, S. R.

    2016-03-01

    We revisit the theory of Cherenkov radiation in uniaxial crystals. Historically, a number of flawed attempts have been made at explaining this radiation phenomenon, and a consistent error-free description is nowhere available. We apply our calculation to a large modern day telescope—IceCube. Located in Antarctica, this detector makes use of the naturally occurring ice as a medium to generate Cherenkov radiation. However, due to the high pressure at the depth of the detector site, large volumes of hexagonal ice crystals are formed. We calculate how this affects the Cherenkov radiation yield and angular dependence. We conclude that the effect is small, at most about a percent, and would only be relevant in future high-precision instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to determine the arrival direction, any variation in emission angle will directly and linearly translate into a change in apparent neutrino direction. In closing, we also describe a simple experiment to test this formalism and calculate the impact of anisotropy on light yields from lead tungstate crystals as used, for example, in the CMS calorimeter at the CERN LHC.

  3. Search for sub-millimeter H2O masers in active galaxies - the detection of a 321 GHz H2O maser in NGC4945

    CERN Document Server

    Hagiwara, Yoshiaki; Doi, Akihiro; Miyoshi, Makoto; Edwards, Philip G

    2016-01-01

    We present further results of a search for extragalactic submillimeter H2O masers using the Atacama Large Millimeter/Submillimeter Array (ALMA). The detection of a 321 GHz H2O maser in the nearby Type 2 Seyfert galaxy, the Circinus galaxy, has previously been reported, and here the spectral analysis of four other galaxies is described. A 321 GHz H2O maser is newly detected toward the center of NGC 4945, a nearby Type 2 Seyfert. The maser shows Doppler-shifted velocity features with velocity ranges similar to those of the 22 GHz H2O maser, however the non-contemporaneous observations also show differences in velocity offsets. The sub-parsec-scale distribution of the 22 GHz H2O masers revealed by earlier VLBI (Very Long Baseline Interferometry) observations suggests that the submillimeter masers could arise in an edge-on rotating disk. The maser features remain unresolved at the synthesized beam of ~0.54 (~30 pc) and are located toward the 321 GHz continuum peak within errors. There is some evidence for a high-...

  4. GAW (Gamma Air Watch) a novel imaging Cherenkov telescope

    CERN Document Server

    Cusumano, G; Biondo, B; Catalano, O; Giarrusso, S; Gugliotta, G; La Fata, L; Maccarone, M C; Mangano, A; Mineo, T; Russo, F; Sacco, B

    2001-01-01

    GAW (Gamma Air Watch) is a new imaging Cherenkov telescope designed for observation of very high-energy gamma-ray sources. GAW will be equipped with a 3 meter diameter Fresnel lens as light collector and with an array of 300 multi-anode photomultipliers at the focal plane. The pixel size will be 4 arcmin wide for a total field of view of 10.5 degrees. Whith respect to the planned imaging Cherenkov telescopes (CANGAROO III, HESS, MAGIC, VERITAS) GAW follows a different approach for what concerns both the optical system and the detection working mode: the Cherenkov light collector is a single acrylic flat Fresnel lens (instead of mirrors) that allows to achieve wide field of view; the photomultipliers operate in single photoelectron counting mode (instead of charge integration). The single photoelectron counting mode allows to reach a low energy threshold of ~200 GeV, in spite of the relatively small dimension of the GAW optic system.

  5. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  6. Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators

    CERN Document Server

    Caravaca, J; Land, B J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The CHErenkov / Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the first such demonstration for the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63 +/- 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a rise time of 0.75 +/- 0.25 ns.

  7. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  8. Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique

    CERN Document Server

    McFadden, Rebecca; Mevius, Maaijke

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses via Faraday rotation measurements of the Moon's polarised emission combined with geomagnetic field models. We also extend this work to include radio imaging of the Lunar surface, which provides information on the physical and chemical properties of the lunar surface that may affect experimental strategies for the lunar Cherenkov technique.

  9. Research and Development for a Gadolinium Doped Water Cherenkov Detector

    CERN Document Server

    Renshaw, Andrew

    2012-01-01

    The proposed introduction of a soluble gadolinium (Gd) compound into water Cherenkov detectors can result in a high efficiency for the detection of free neutrons capturing on the Gd. The delayed 8 MeV gamma cascades produced by these captures, in coincidence with a prompt positron signal, serve to uniquely identify electron antineutrinos interacting via inverse beta decay. Such coincidence detection can reduce backgrounds, allowing a large Gd-enhanced water Cherenkov detector to make the first observation of supernova relic neutrinos and high precision measurements of Japan's reactor antineutrino flux, while still allowing for all current physics studies to be continued. Now, a dedicated Gd test facility is operating in the Kamioka Mine. This new facility houses everything needed to successfully operate a Gd doped water Cherenkov detector. Successful running of this facility will demonstrate that adding Gd salt to SK is both safe for the detector and is capable of delivering the expected physics benefits.

  10. Constraints on Lorentz violation from gravitational Cherenkov radiation

    CERN Document Server

    Kostelecky, Alan

    2015-01-01

    Limits on gravitational Cherenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cherenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cherenkov radiation by gravitons.

  11. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  12. The High-Altitude Water Cherenkov Observatory: First Light

    Science.gov (United States)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  13. A Search for Submillimeter H2O Masers in Active Galaxies: The Detection of 321 GHZ H2O Maser Emission in NGC 4945

    Science.gov (United States)

    Hagiwara, Yoshiaki; Horiuchi, Shinji; Doi, Akihiro; Miyoshi, Makoto; Edwards, Philip G.

    2016-08-01

    We present further results of a search for extragalactic submillimeter H2O masers using the Atacama Large Millimeter/submillimeter Array (ALMA). The detection of a 321 GHz H2O maser in the nearby type 2 Seyfert galaxy, the Circinus galaxy, has previously been reported, and here the spectral analysis of four other galaxies is described. We have discovered H2O maser emission at 321 GHz toward the center of NGC 4945, a nearby type 2 Seyfert. The maser emission shows Doppler-shifted velocity features with velocity ranges similar to those of the previously reported 22 GHz H2O masers however, the non-contemporaneous observations also show differences in velocity offsets. The subparsec-scale distribution of the 22 GHz H2O masers revealed by earlier very long baseline interferometry observations suggests that the submillimeter masers could arise in an edge-on rotating disk. The maser features remain unresolved by the synthesized beam of ˜0.″54 (˜30 pc) and are located toward the 321 GHz continuum peak within errors. A marginally detected (3σ) high-velocity feature is redshifted by 579 km {{{s}}}-1 with respect to the systemic velocity of the galaxy. Assuming that this feature is real and arises from a Keplerian rotating disk in this galaxy, it is located at a radius of ˜0.020 pc (˜1.5 × 105 Schwarzschild radii), which would enable molecular material closer to the central engine to be probed than the 22 GHz H2O masers. This detection confirms that submillimeter H2O masers are a potential tracer of the circumnuclear regions of active galaxies, which will benefit from higher angular resolution studies with ALMA.

  14. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  15. Luminosity Measurement Using Cherenkov Integrating Detector (LUCID) in ATLAS

    CERN Document Server

    Caforio, D

    2008-01-01

    LUCID (LUminosity measurement using Cherenkov Integrating Detector) is a Cherenkov counter designed to monitor the luminosity in the ATLAS experiment. Since the final accuracy of the measurement of some crucial physical quantities in the LHC program will depend on the precision of the luminosity measurement, it is mandatory to push the latter to its best. This in turn implies the need to monitor the beam conditions. In this paper an overview of LUCID is given. After a description of the detector, an insight into the luminosity measurement strategy in ATLAS is given, as well as a description of the calibration strategy of LUCID.

  16. A new air-Cherenkov array at the South Pole

    CERN Document Server

    Dickinson, J E; Hart, S P; Hill, G C; Hinton, J A; Lloyd-Evans, J; Potter, D; Pryke, C L; Rochester, K; Schwarz, R; Watson, A A

    2000-01-01

    VULCAN comprises a 9 element array of air-Cherenkov radiation detectors established at the South Pole. VULCAN operates in coincidence with the air-shower array SPASE-2 and the two Antarctic Muon And Neutrino Detector Arrays, AMANDA A and B, supplementing the data gathered by these instruments with a measurement of the lateral distribution of air-Cherenkov light from extensive air-showers. An overview of the aims and methods of the whole coincidence experiment (SPASE-2, VULCAN and AMANDA) can be found in an accompanying paper (Dickinson et al., Nucl. Instr. and Meth. A (1999), to be published).

  17. Light Sensor Candidates for the Cherenkov Telescope Array

    CERN Document Server

    Knoetig, M L; Kurz, M; Hose, J; Lorenz, E; Schweizer, T; Teshima, M; Buzhan, P; Popova, E; Bolmont, J; Tavernet, J -P; Vincent, P; Shayduk, M

    2011-01-01

    We report on the characterization of candidate light sensors for use in the next-generation Imaging Atmospheric Cherenkov Telescope project called Cherenkov Telescope Array, a major astro-particle physics project of about 100 telescopes that is currently in the prototyping phase. Our goal is to develop with the manufacturers the best possible light sensors (highest photon detection efficiency, lowest crosstalk and afterpulsing). The cameras of those telescopes will be based on classical super-bi-alkali Photomultiplier tubes but also Silicon Photomultipliers are candidate light sensors. A full characterisation of selected sensors was done. We are working in close contact with several manufacturers, giving them feedback and suggesting improvements.

  18. Lorentz-invariant formulation of Cherenkov radiation by tachyons

    Science.gov (United States)

    Jones, F. C.

    1972-01-01

    Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.

  19. Counting Extra Dimensions Magnetic Cherenkov Radiation from High Energy Neutrinos

    CERN Document Server

    Domokos, Gabor K; Kövesi-Domokos, S; Erdas, Andrea

    2003-01-01

    In theories which require a space of dimension d > 4, there is a natural mechanism of suppressing neutrino masses: while Standard Model fields are confined to a 3-brane, right handed neutrinos live in the bulk. Due to Kaluza-Klein excitations, the effective magnetic moments of neutrinos are enhanced. The effective magnetic moment is a monotonically growing function of the energy of the neutrino: consequently, high energy neutrinos can emit observable amounts of magnetic Cherenkov radiation. By observing the energy dependence of the magnetic Cherenkov radiation, one may be able to determine the number of compactified dimensions.

  20. A Cherenkov Radiation Detector with High Density Aerogels

    CERN Document Server

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  1. The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation

    Science.gov (United States)

    Wu, C. S.

    1985-01-01

    The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.

  2. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Araya, E. D.; Brown, J. E. [Western Illinois University, Physics Department, 1 University Circle, Macomb, IL 61455 (United States); Olmi, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Ortiz, J. Morales [University of Puerto Rico, Río Piedras Campus, Physical Sciences Department, P.O. Box 23323, San Juan, PR 00931 (United States); Hofner, P.; Creech-Eakman, M. J. [New Mexico Institute of Mining and Technology, Physics Department, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58089 Morelia, Michoacán (Mexico); Linz, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  3. High Resolution Surveys of the Water and Methanol Star Formation Masers in the Central Molecular Zone

    Science.gov (United States)

    Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; Krieger, Nico; SWAG

    2017-01-01

    We present some of the first high resolution fully interferometric surveys of 6.7 GHz methanol and 22 GHz water masers towards the Central Molecular Zone (CMZ). These masers are good signposts for early (methanol masers with resolutions of 0.9” (0.04 pc) and 0.4 km/s (8 kHz) and an average channel sensitivity of ~0.01 Jy/beam. With this high resolution and sensitivity, we have detected ~100 methanol masers, which is over a factor of two more than has previously been detected. We have also conducted two surveys of water masers in this region. As part of the Survey of Water and Ammonia in the Galactic Center (SWAG), the Australia Telescope Compact Array (ATCA) was used to survey a variety of molecular lines, including the 22 GHz water line. With the ATCA, we have detected over 200 water masers using resolutions of 26” (1 pc) and 2 km/s (60 kHz) and an average channel sensitivity of ~0.01 Jy/beam. Afterward, we conducted the first on-the-fly (OTF) VLA survey of water masers with improved resolutions of 0.7” (0.03 pc) and 0.4 km/s (26 kHz) and an average channel sensitivity of ~0.05 Jy/beam. Although the analysis of this OTF survey is not yet complete, we have already identified water masers that were not visible in the SWAG data.The improvement in the number of detected masers allows us to better analyze the distribution of these masers. We show that the SWAG water masers appear uniformly distributed along the Galactic plane, despite the asymmetry of the molecular gas distribution, where ~2/3 of the gas mass is located at positive Galactic longitudes. The methanol masers follow the molecular gas distribution, with a majority of the masers being found at positive longitudes. This could indicate a difference in the star forming history of these two parts of the CMZ and/or that the 22 GHz water masers are contaminated by water masers produced from evolved stars as well as star forming regions, indicating that a larger percentage of 22 GHz water masers are produced

  4. Masers associated with high-mass star formation regions in the Large Magellanic Cloud

    CERN Document Server

    Ellingsen, S P; Caswell, J L; Quinn, L J; Fuller, G A

    2010-01-01

    We report the results of a sensitive search for 12.2 GHz methanol maser emission towards a sample of eight high-mass star formation regions in the Large Magellanic Clouds which have been detected in other maser transitions. We detected one source towards the star formation region N105a. This is the first detection of a 12.2 GHz methanol maser outside our Galaxy. We also made near-contemporaneous observations of the 6.7 GHz methanol and 22 GHz water masers towards these sources, resulting in the detection of water maser emission in six new sources, including one associated with the strongest 6.7 GHz maser in the Magellanic Clouds IRAS 05011-6815. The majority of the maser sources are closely associated with objects identified as likely Young Stellar Objects (YSO) on the basis of Spitzer Space Telescope observations. We find that the YSOs associated with masers tend to be more luminous and have redder infrared colours than the sample as a whole. SED modeling of the YSOs shows that the masers are associated with...

  5. Class II 6.7 GHz Methanol Maser Association with Young Massive Cores Revealed by ALMA

    Science.gov (United States)

    Chibueze, James O.; Csengeri, Timea; Tatematsu, Ken’ichi; Hasegawa, Tetsuo; Iguchi, Satoru; Alhassan, Jibrin A.; Higuchi, Aya E.; Bontemps, Sylvain; Menten, Karl M.

    2017-02-01

    We explored the implication of the association (or lack of it) of 6.7 GHz class II methanol (CH3OH) masers with massive dense cores (MDCs) detected (within a sample of ATLASGAL selected infrared quiet massive clumps) at 0.9 mm with Atacama Large Millimeter/submillimeter array. We found 42 out of the 112 cores (37.5%) detected with the Atacama Compact Array (ACA) to be associated with 6.7 GHz CH3OH masers. The lowest mass core with CH3OH maser association is ∼ 12 {M}ȯ . The angular offsets of the ACA cores from the 6.7 GHz CH3OH maser peak positions range from 0.″17 to 4.″79, with a median value of 2.″19. We found a weak correlation between the 0.9 mm continuum (MDCs) peak fluxes and the peak fluxes of their associated methanol multibeam (MMB) 6.7 GHz CH3OH masers. About 90% of the cores associated with 6.7 GHz CH3OH masers have masses of >40 M ⊙. The CH3OH maser containing cores are candidates for embedded high-mass protostellar objects in their earliest evolutionary stages. With our ACA 0.9 continuum data compared with the MMB 6.7 GHz CH3OH maser survey, we have constrained the cores already housing massive protostars based on their association with the radiatively pumped 6.7 GHz CH3OH masers.

  6. Distribution of SiO and OH Maser Stars inthe Galactic Plane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The observational results of the Nobeyama 45-m SiO maser survey and the Arecibo 305-m OH maser survey are assembled for an analysis of the distribution and kinematics of late-type stars in the Galactic plane.It is found that neither SiO maser stars nor OH maser stars show any concentration to the spiral arms,which imply that they do not belong to the arm population and quite possibly they are low-mass stars in late stage of evolution.A rotational curve is also derived for these objects and a few features which may be real are discussed and compared with those

  7. Supernova Remnant Shock - Molecular Cloud Interactions: Masers as tracers of hadronic particle acceleration

    CERN Document Server

    Frail, Dale A

    2011-01-01

    We review the class of galactic supernova remnants which show strong interactions with molecular clouds, revealed through shock-excited hydroxyl masers. These remnants are preferentially found among the known GeV and TeV detections of supernova remnants. It has been argued that the masers trace out the sites of hadronic particle acceleration. We discuss what is known about the physical conditions of these shocked regions and we introduce a potential new maser tracer for identifying the sites of cosmic ray acceleration. This review includes a reasonably complete bibliography for researchers new to the topic of shock-excited masers and supernova remnants.

  8. Comparison of three Statistical Classification Techniques for Maser Identification

    CERN Document Server

    Manning, Ellen M; Ellingsen, Simon P; Breen, Shari L; Chen, Xi; Humphries, Melissa

    2016-01-01

    We applied three statistical classification techniques - linear discriminant analysis (LDA), logistic regression and random forests - to three astronomical datasets associated with searches for interstellar masers. We compared the performance of these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated interstellar masers. We also discuss the ease, or otherwise, with which the results of each classification technique can be interpreted. Non-parametric methods have the potential to make accurate predictions when there are complex relationships between critical parameters. We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques, rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of the predictions obtained ...

  9. Positron-Cyclotron Maser for the Core Emissions from Pulsars

    CERN Document Server

    Ma, C; Wang, D; Wu, X; Ma, Chun-yu; Mao, Ding-yi; Wang, De-yu; Wu, Xin-ji

    1997-01-01

    We use the cyclotron-maser theory to explain the core emission from the magnetosphere of pulsars. As a kind of direct and efficient maser type of emission, it can give rise to escaping radiation with extremely high brightness temperature and narrow angle with respect to the magnetic axis. We find that the growth rates and real frequencies of the O-mode electromagnetic wave propagating parallel to the magnetic fields depend on the ratio of the plasma frequency $\\omega_p$ and the gyrofrequency $\\omega_b$ rather than the plasma frequency alone, as described by other models. The emission takes place in the region where the magnitude of $\\omega_p/\\omega_b$ is $10^{-2}$. The corresponding altitude is about a few decades of neutron star radius, where the magnetic field strength is about $10^6-10^8 G$. The qualitative spectrum and the lower frequency cut-off of the radio emission is obtained by this model.

  10. Asymptotic inference in system identification for the atom maser.

    Science.gov (United States)

    Catana, Catalin; van Horssen, Merlijn; Guta, Madalin

    2012-11-28

    System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

  11. Asymptotic inference in system identification for the atom maser

    CERN Document Server

    Catana, Catalin; Guta, Madalin

    2011-01-01

    System identification is an integrant part of control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However for quantum dynamical systems like quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input which may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators and the connection to large deviations is briefly discussed.

  12. WARPING AND PRECESSION IN EXTRAGALACTIC MASER ACCRETION DISCS

    Directory of Open Access Journals (Sweden)

    A. Caproni

    2009-01-01

    Full Text Available Interferometric maser observations have been used to probe the physical conditions of extragalactic accretion discs at sub-parsec scales. The inferred kinematic of the water maser spots presents small deviations from Keplerian motions, which have been attributed to the warping and twisting of the parsec-scale disc. However, their physical origin is still a matter of debate in the literature. Motivated by this, we analyzed the general relativistic Bardeen-Petterson e ect, driven by a Kerr black hole, as the potential physical mechanism responsible for the disc warping and precession in the nearby Seyfert 2 galaxies NGC 1068 and NGC 4258. Assuming a power-law accretion disc, whose parameters were constrained by the observational data, we derived the basic quantities concerning the Bardeen-Petterson e ect for both sources. Some consequences from this peculiar relativistic mechanism are also presented in this work.

  13. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Samantha L.; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  14. Cepheid Variables in the Maser-Host Galaxy NGC 4258

    CERN Document Server

    Hoffmann, Samantha L

    2015-01-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via VLBI observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and GMOS, obtaining 16 epochs of data in the SDSS gri bands over 4 years. We carried out PSF photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope (LSST) should enable Cepheid searches out to at least 10 Mpc.

  15. Cherenkov light production from the α-emitting decay chains of (223)Ra, (212)Pb, and (149)Tb for Cherenkov Luminescence Imaging.

    Science.gov (United States)

    Wood, V; Ackerman, N L

    2016-12-01

    Cherenkov Luminescence Imaging (CLI) is a new method to image radioactive therapeutic and diagnostic agents, primarily in preclinical studies. This study used Geant4 and Python to generate the predicted Cherenkov light production as a function of time for a set of isotopic chains of interest for targeted alpha therapy: (223)Ra, (212)Pb, and (149)Tb. All are shown to produce substantial Cherenkov light, though time delays between initial decays and the production of Cherenkov light requires caution in interpreting CLI. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The Water Maser in II Zw 96: Scientific Justification

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Brandon Kerry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-06

    We propose a VLBI search to image and locate the water emission in II Zw 96. We propose 3 sites within II Zw 96 for VLBI followup (see the proposed target listing below). We request 2.5 hours of on-source integration time with the VLBA per source. The array will achieve ~ 65µJy sensitivity in K band in this time which will be sufficient to detect luminous water maser features.

  17. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    CERN Document Server

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  18. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the iono

  19. Suppressing the Numerical Cherenkov Instability in FDTD PIC Codes

    CERN Document Server

    Godfrey, Brendan B

    2014-01-01

    A procedure for largely suppressing the numerical Cherenkov instability in finite difference time-domain (FDTD) particle-in-cell (PIC) simulations of cold, relativistic beams is derived, and residual growth rates computed and compared with WARP code simulation results. Sample laser-plasma acceleration simulation output is provided to further validate the new procedure.

  20. Coherent Cherenkov radiation and laser oscillation in a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; van Dijk, M.W.; Lee, J.H.H.; van der Meer, R.; Strooisma, A.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.

    2016-01-01

    We demonstrate that photonic crystals can be used to generate powerful and highly coherent Cherenkov radiation that is excited by the injection of a beam of free electrons. Using theoretical and numerical investigations we present the startup dynamics and coherence properties of such a laser, in

  1. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  2. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    Science.gov (United States)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  3. Long term biological developments in water Cherenkov detector media

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Filevich, A., E-mail: filevich@tandar.cnea.gov.ar [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Pizarro, R.; Ibanez, J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Bauleo, P. [Fort Collins, CO (United States); Rodriguez Martino, J. [Pierre Auger Observatory, Malarguee, Mendoza (Argentina)

    2011-12-11

    Fourteen years ago, studies on bacteria growing in clean water were made in order to assess the hazard imposed by a possible expansion of bacteria population in the water tanks of the Pierre Auger Observatory Cherenkov detectors. In 1999 TANGO Array, a reduced-size unitary cell, composed of four water Cherenkov detectors, was constructed at the TANDAR campus of the Atomic Energy Commission, in Buenos Aires, to be used as a working model of the proposed surface array. TANGO Array ran for one year observing energy, intensity, and arrival directions of cosmic rays at sea level. Nine years after it was decommissioned, the water tanks configuring the Cherenkov detectors are still kept closed. In May 2009 water and liner samples from these tanks were collected to determine eventual long term bacteria growth in the internal detector environment, which is very similar to those of the detectors installed in the Malarguee Site. In the present note we report the results of the bacteriological study performed on the samples obtained from the TANGO Array detector tanks. Cultivable, long time surviving, bacterial species were identified, both in the water mass and on the liner surface, and the light transmission in water at the relevant Cherenkov wavelength was studied. An upper limit of possible interferences caused by bacteria is estimated.

  4. A CO observation of the galactic methanol masers

    CERN Document Server

    Ren, Zhiyuan; Liu, Tie; Li, Lixin; Li, Di; Ju, Binggang

    2014-01-01

    Context: We investigated the molecular gas associated with 6.7 GHz methanol masers throughout the Galaxy using a J=1-0 transition of the CO isotopologues. Methods:Using the 13.7-meter telescope at the Purple Mountain Observatory (PMO), we have obtained ^{12}CO and ^{13}CO (1-0) lines for 160 methanol masers sources from the first to the third Galactic quadrants. We made efforts to resolve the distance ambiguity by careful comparison with the radio continuum and HI 21 cm observations. Results: First, the maser sources show increased ^{13}CO line widths toward the Galactic center, suggesting that the molecular gas are more turbulent toward the Galactic center. This trend can be noticeably traced by the ^{13}CO line width. Second, the ^{12}CO excitation temperature shows a noticeable correlation with the H_2 column density. A possible explanation consistent with the collapse model is that the higher surface-density gas is more efficient to the stellar heating and/or has a higher formation rate of high-mass stars...

  5. Evolved star water maser cloud size determined by star size

    CERN Document Server

    Richards, A M S; Gray, M D; Lekht, E E; Mendoza-Torres, J E; Murakawa, K; Rudnitskij, G; Yates, J A

    2012-01-01

    Cool, evolved stars undergo copious mass loss but the details of how the matter is returned to the ISM are still under debate. We investigated the structure and evolution of the wind at 5 to 50 stellar radii from Asymptotic Giant Branch and Red Supergiant stars. 22-GHz water masers around seven evolved stars were imaged using MERLIN, at sub-AU resolution. Each source was observed at between 2 and 7 epochs (several stellar periods). We compared our results with long-term Pushchino single dish monitoring. The 22-GHz emission is located in ~spherical, thick, unevenly filled shells. The outflow velocity doubles between the inner and outer shell limits. Water maser clumps could be matched at successive epochs separated by <2 years for AGB stars, or at least 5 years for RSG. This is much shorter than the decades taken for the wind to cross the maser shell, and comparison with spectral monitoring shows that some features fade and reappear. In 5 sources, most of the matched features brighten or dim in concert from...

  6. The 6-GHz Multibeam Maser Survey I. Techniques

    CERN Document Server

    Green, J A; Fuller, G A; Avison, A; Breen, S L; Brooks, K; Burton, M G; Chrysostomou, A; Cox, J; Diamond, P J; Ellingsen, S P; Gray, M D; Hoare, M G; Masheder, M R W; McClure-Griffiths, N M; Pestalozzi, M; Phillips, C; Quinn, L; Thompson, M A; Voronkov, M; Walsh, A; Ward-Thompson, D; Wong-McSweeney, D; Yates, J A; Cohen, R J

    2008-01-01

    A new 7-beam 6-7 GHz receiver has been built to survey the Galaxy and the Magellanic Clouds for newly forming high-mass stars that are pinpointed by strong methanol maser emission at 6668 MHz. The receiver was jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF) and allows simultaneous coverage at 6668 and 6035 MHz. It was successfully commissioned at Parkes in January 2006 and is now being used to conduct the Parkes-Jodrell multibeam maser survey of the Milky Way. This will be the first systematic survey of the entire Galactic plane for masers of not only 6668-MHz methanol, but also 6035-MHz excited-state hydroxyl. The survey is two orders of magnitude faster than most previous systematic surveys and has an rms noise level of ~0.17 Jy.This paper describes the observational strategy, techniques and reduction procedures of the Galactic and Magellanic Cloud surveys, together with deeper, pointed, follow-up observations and complementary observations with oth...

  7. ALMA reveals VYCMa's sub-mm maser and dust distribution

    CERN Document Server

    Richards, A M S; Humphreys, E M; Vlahakis, C; Vlemmings, W; Baudry, A; De Beck, E; Decin, L; Etoka, S; Gray, M D; Harper, G M; Hunter, T R; Kervella, P; Kerschbaum, F; McDonald, I; Melnick, G; Muller, S; Neufeld, D; O'Gorman, E; Parfenov, S Yu; Peck, A B; Shinnaga, H; Sobolev, A M; Testi, L; Uscanga, L; Wootten, A; Yates, J A; Zijlstra, A

    2014-01-01

    Cool, evolved stars have copious, enriched winds. The structure of these winds and the way they are accelerated is not well known. We need to improve our understanding by studying the dynamics from the pulsating stellar surface to about 10 stellar radii, where radiation pressure on dust is fully effective. Some red supergiants have highly asymmetric nebulae, implicating additional forces. We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec precision and resolve the dusty continuum. The 658-, 321- and 325-GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells (and dust formation zone) overlap but avoid each other on tens-au scales. Their distribution is broadly consistent with excitation models...

  8. Identification of Bursting Water Maser Features in Orion KL

    CERN Document Server

    Hirota, Tomoya; Fujisawa, Kenta; Honma, Mareki; Kawaguchi, Noriyuki; Kim, Mi Kyoung; Kobayashi, Hideyuki; Imai, Hiroshi; Omodaka, Toshihiro; Katsunori,; Shibata, M; Shimoikura, Tomomi; Yonekura, Yoshinori

    2011-01-01

    In February 2011, a burst event of the H$_{2}$O maser in Orion KL (Kleinmann-Low object) has started after 13-year silence. This is the third time to detect such phenomena in Orion KL, followed by those in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H$_{2}$O maser features in Orion KL with VERA (VLBI Exploration of Radio Astrometry), a Japanese VLBI network dedicated for astrometry. The total flux of the bursting feature at the LSR velocity of 7.58 km s$^{-1}$ reaches 4.4$\\times10^{4}$ Jy in March 2011. The intensity of the bursting feature is three orders of magnitudes larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s$^{-1}$ in May 2011, separated by 12 mas north of the 7.58 km s$^{-1}$ feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burs...

  9. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  10. Very Large Array Monitoring of 1720 MHz OH Masers toward the Galactic Center

    Science.gov (United States)

    Pihlström, Y. M.; Sjouwerman, L. O.; Mesler, R. A.

    2011-10-01

    We present the first variability study of the 1720 MHz OH masers located in the Galactic center. Most of these masers are associated with the interaction between the supernova remnant Sgr A East and the interstellar medium, but a few masers are associated with the circumnuclear disk (CND). The monitoring program covered five epochs and a timescale of 20-195 days, during which no masers disappeared and no new masers appeared. All masers have previously been detected in a single-epoch observation about one year prior to the start of the monitoring experiment, implying relatively stable conditions for the 1720 MHz OH masers. No extreme variability was detected. The masers associated with the northeastern interaction region between the supernova remnant and the +50 km s-1 molecular cloud show the highest level of variability. This can be explained with the +50 km s-1 molecular cloud being located behind the supernova remnant and with a region of high OH absorbing column density along the line of sight. Possibly, the supernova remnant provides additional turbulence to the gas in this region, through which the maser emission must travel. The masers in the southern interaction region are located on the outermost edge of Sgr A East, the line of sight of which is not covered by either absorbing OH gas or a supernova remnant, in agreement with the much lower variability level observed. Similarly, the masers associated with the CND show little variability, consistent with those arising through collisions between relatively large clumps of gas in the CND and no significant amount of turbulent gas along the line of sight.

  11. Physico-Chemical Research on the Sounding Rocket Maser 13

    Science.gov (United States)

    Lockowandt, Christian; Kemi, Stig; Abrahamsson, Mattias; Florin, Gunnar

    MASER is a sounding rocket platform for short-duration microgravity experiments, providing the scientific community with an excellent microgravity tool. The MASER programme has been running by SSC from 1987 and has up to 2012 provided twelve successful flights for microgravity missions with 6-7 minutes of microgravity, the g-level is normally below 1x10-5 g. The MASER 13 is planned to be launched in spring 2015 from Esrange Space Center in Northern Sweden. The rocket will carry four ESA financed experiment modules. The MASER 13 vehicle will be propelled by the 2-stage solid fuel VSB-30 rocket motor, which provided the 390 kg payload with an apogee of 260 km and 6 and a half minutes of microgravity. Swedish Space Corporation carries out the MASER missions for ESA and the program is also available for other customers. The payload comprise four different experiment modules of which three could be defined as physic-chemical research; XRMON-SOL, CDIC-3, MEDI. It also comprises the Maser Service Module and the recovery system. The Service Module provided real-time 5 Mbps down-link of compressed experiment digital video data from the on-board cameras, as well as high-speed housekeeping telemetry data. XRMON-SOL In this experiment the influence of gravity on the formation of an equiaxed microstructure will be investigated. Special attention will be put on the aspect of nucleation, segregation and impingement. The experiment scope is to melt and solidify an AlCu-alloy sample in microgravity. The solidification will be performed in an isothermal environment. The solidification process will be monitored and recorded with X-ray image during the whole flight, images will also be down-linked to ground for real-time monitoring and possible interaction. CDIC-3 The goal is to study in migrogravity the spatio-temporal dynamics of a chemical front travelling in a thin solution layer open to the air and specifically the respective role of Marangoni and density-related hydrodynamic

  12. SiO Maser Survey toward the Inner Galactic Disk 40 < l < 70 and |b| < 10

    CERN Document Server

    Nakashima, J; Nakashima, Jun-ichi; Deguchi, Shuji

    2003-01-01

    We present the results of an SiO maser survey for color-selected IRAS sources in the area 40 < l < 70 and |b| < 10 in the SiO J=1-0, v=1 and 2 transitions. We detected 134 out of 272 observed sources in SiO masers; 127 were new detections. A systematic difference in the detection rates between SiO and OH maser searches was found. Especially, in the color ranges with log(F_{25}/F_{12}) smaller than -0.1, the detection rate of the SiO masers is significantly higher than that of OH masers. We found a possible kinematic influence of the galactic arm on the distribution of SiO maser sources. It was found that the velocity dispersion of SiO maser sources tends to decrease with the galactocentric distance. Using the present and previous data of SiO maser surveys, we found that the local velocity gradient of the rotational velocity of the Galaxy is consistent with the values obtained from other kinds of disk population stars within a statistical uncertainty. The Oort's constants, "A" and "B", were computed f...

  13. Detectability of Circumstellar SiO Maser Emission on VSOP-2 Baselines

    Science.gov (United States)

    Colomer, F.; Bujarrabal, V.; Ruiz, R. S.; Dodson, R.; Alcolea, J.; Desmurs, J.-F.

    2009-08-01

    We have studied compact circumstellar SiO maser emission at 86 GHz with the Global Millimeter VLBI Array (GMVA), which provides the same spatial resolution as the VSOP-2 to ground baselines at 43 GHz. We present preliminary maps of the emission, estimate the flux and size of the maser spots, and discuss their detectability on baselines from VSOP-2 to ground telescopes.

  14. Methanol masers and millimetre lines : a common origin in protostellar envelopes

    NARCIS (Netherlands)

    Torstensson, Karl Johan Erik

    2011-01-01

    In this thesis we study the earliest stages of high-mass star formation. Class II methanol masers are only associated with massive star formation and are a unique probe of these environments. Through observations we have studied where and when the methanol maser emission occur in relation to the pro

  15. Discovery of Two New Class II Methanol Maser Transitions in G345.01+1.79

    CERN Document Server

    Ellingsen, S P; Cragg, D M; Godfrey, P D

    2012-01-01

    We have used the Swedish ESO Submillimetre Telescope (SEST) to search for new class II methanol maser transitions towards the southern source G345.01+1.79. Over a period of 5 days we observed 11 known or predicted class II methanol maser transitions. Emission with the narrow line width and characteristic velocity of class II methanol masers (in this source) was detected in 8 of these transitions, two of which have not previously been reported as masers. The new class II methanol maser transitions are the 13(-3)-12(-4)E transition at 104.1 GHz and the 5(1)-4(2)E transition at 216.9 GHz. Both of these are from transition series for which there are no previous known class II methanol maser transitions. This takes the total number of known class II methanol maser series to 10, and the total number of transitions (or transition groups) to 18. The observed 104.1 GHz maser suggests the presence of two or more regions of masing gas with similar line of sight velocities, but quite different physical conditions. Althou...

  16. Recent results on the peformance of EFOS, NP and NX hydrogen masers

    Science.gov (United States)

    Reinhardt, V.; Ingold, J. S.; Stalder, T.; Saifi, M.; Dachel, P.; Wardrip, S. C.

    1984-01-01

    In response to a NASA Goddard Space Flight Center Work Assignment, Bendix Field Engineering Corporation evaluated the performance of the Oscilloquartz EPOS-2 hydrogen maser along with that of NASA NX-3 and NP-2 hydrogen masers in early 1983. This paper presents the results of that evaluation.

  17. Very Large Array monitoring of 1720 MHz OH masers toward the Galactic Center

    CERN Document Server

    Pihlström, Y M; Mesler, R A

    2011-01-01

    We present the first variability study of the 1720 MHz OH masers located in the Galactic Center. Most of these masers are associated with the interaction between the supernova remnant SgrAEast and the interstellar medium, but a few masers are associated with the Circumnuclear Disk. The monitoring program covered five epochs and a timescale of 20-195 days, during which no masers disappeared and no new masers appeared. All masers have previously been detected in a single epoch observation about one year prior to the start of the monitoring experiment, implying relatively stable conditions for the 1720 MHz OH masers. No extreme variability was detected. The masers associated with the northeastern interaction region between the supernova remnant and the +50km/s molecular cloud show the highest level of variability. This can be explained with the +50km/s molecular cloud being located behind the supernova remnant and with a region of high OH absorbing column density along the line of sight. Possibly the supernova r...

  18. Magnetic fields around evolved stars: further observations of H$_2$O maser polarization

    CERN Document Server

    Leal-Ferreira, M L; Kemball, A; Amiri, N

    2013-01-01

    We aim to detect the magnetic field and infer its properties around four AGB stars using H$_2$O maser observations. The sample we observed consists of the following sources: the semi-regular variable RT Vir and the Mira variables AP Lyn, IK Tau, and IRC+60370. We observed the 6$_{1,6}-5_{2,3}$ H$_2$O maser rotational transition, in full-polarization mode, to determine its linear and circular polarization. Based on the Zeeman effect, one can infer the properties of the magnetic field from the maser polarization analysis. We detected a total of 238 maser features, in three of the four observed sources. No masers were found toward AP Lyn. The observed masers are all located between 2.4 and 53.0 AU from the stars. Linear and circular polarization was found in 18 and 11 maser features, respectively. We more than doubled the number of AGB stars in which magnetic field has been detected from H$_2$O maser polarization, as our results confirm the presence of fields around IK Tau, RT Vir and IRC+60370. The strength of ...

  19. Excited-state hydroxyl maser catalogue from the methanol multibeam survey -- I. Positions and Variability

    CERN Document Server

    Avison, A; Fuller, G A; Caswell, J L; Green, J A; Breen, S L; Ellingsen, S P; Gray, M D; Pestalozzi, M; Thompson, M A; Voronkov, M A

    2016-01-01

    We present the results of the first complete unbaised survey of the Galactic Plane for 6035-MHz excited-state hydroxyl masers undertaken as part of the Methanol Multibeam Survey. These observations cover the Galactic longitude ranges $186^{\\circ}< l < 60^{\\circ}$ including the Galactic Centre. We report the detection of 127 excited-state hydroxyl masers within the survey region, 47 being new sources. The positions of new detections were determined from interferometric observations with the Australia Telescope Compact Array. We discuss the association of 6035-MHz masers in our survey with the 6668-MHz masers from the MMB Survey, finding 37 likely methanol-excited-state hydroxyl masers maser pairs with physical separations of <=0.03pc and 55 pairings separated by <=0.1pc. Using these we calculate for the first time an excited-state hydroxyl maser life time of between 3.3x10^3 and 8.3x10^3 years. We also discuss the variability of the 6035-MHz masers and detection rates of counterpart 6030-MHz excite...

  20. A general catalogue of 6.7GHz methanol masers II: statistical analysis

    CERN Document Server

    Pestalozzi, M R; Collett, J; Minier, V; Conway, J; Booth, R; Pestalozzi, Michele R.

    2006-01-01

    Context: Methanol masers at 6.7GHz are recognised markers of high-mass star formation regions. The study of their distribution in the Galaxy gives important insights into the star formation activity of the Milky Way. We present a statistical analysis on the General Catalogue of 6.7GHz methanol masers in the Galaxy with the aim of extracting global properties of the masers. Aims: We provide constraints on the luminosity function of 6.7GHz methanol masers and on their total number in the Galaxy. Methods: We model the spatial distribution of the masers in the Milky Way by using their distribution in galactocentric distance which is unambiguous once a rotation curve for the Galaxy is assumed. This is the starting point for determining the luminosity function of the masers. Results: The luminosity function of 6.7GHz methanol masers is modelled as a power-law with sharp cutoffs and having an index lying between -1.5 and -2. We also predict the number of detections of methanol masers assuming different sensitivity l...

  1. Spectral Dynamics of a Free-Electron Maser with a Step-Tapered Undulator

    NARCIS (Netherlands)

    Eecen, P. J.; Schep, T. J.; Tulupov, A. V.

    1995-01-01

    The spectral behavior of a high-power, high-gain free-electron maser (FEM) is investigated. The maser has a step-tapered undulator consisting of two sections with different strengths and lengths and equal periodicities. The sections are separated by a field-free gap. The configuration is enclosed

  2. Inward Motions of the Compact SiO Masers Around VX Sagittarii

    CERN Document Server

    Chen, X; Imai, H; Kamohara, R; Chen, Xi; Shen, Zhi-Qiang; Imai, Hiroshi; Kamohara, Ryuichi

    2006-01-01

    We report Very Long Baseline Array (VLBA) observations of 43 GHz v=1, J=1-0 SiO masers in the circumstellar envelope of the M-type semi-regular variable star VX Sgr at 3 epochs during 1999 April-May. These high-resolution VLBA images reveal a persistent ringlike distribution of SiO masers with a projected radius of ~3 stellar radii. The typical angular size of 0.5 mas for individual maser feature was estimated from two-point correlation function analysis for maser spots. We found that the apparent size scale of maser features was distinctly smaller than that observed in the previous observations by comparing their fractions of total power imaged. This change in the size scale of maser emission may be related to stellar activity that caused a large SiO flare during our observations. Our observations confirmed the asymmetric distribution of maser emission, but the overall morphology has changed significantly with the majority of masers clustering to the north-east of the star compared to that lying to the south...

  3. The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches

    Science.gov (United States)

    Altmark, A. M.; Kanareykin, A. D.

    2016-07-01

    We present a new method for excitation of THz Cherenkov radiation in a dielectric waveguide by relativistic electron bunches. A sequence of bunches generates monochromatic radiation. The frequency of radiation is defined by the distance between the bunches. The studies were carried by using the newly updated BBU-3000 code which permits taking into account a number of additional options: an external quadrupole focusing system, group velocity of the wakefield, and the dielectric material loss factor. In this paper, we present our algorithm for optimizing the number and sequential positions of bunches for generation of narrow band high power THz radiation.

  4. Characterizing supernova remnant and molecular cloud interaction environments using Class I methanol (CH3OH) masers

    Science.gov (United States)

    McEwen, Bridget C.

    Astronomical masers are useful probes of the physical conditions of the gas in which they are formed. Masers form under specific physical conditions and therefore, can be used to trace distinct environments, for example, star forming regions (SFRs), supernova remnants (SNRs), evolved stars, and outflows. In particular, collisionally excited 36 and 44 GHz methanol (CH3OH) and 1720 MHz hydroxl (OH) masers are found associated with gas shocked by the interaction between SNRs and neighboring molecular clouds (MCs). The overall goal of my thesis research is to combine modeling and observations to characterize the properties and formation of Class I CH3OH masers in these SNR/MC interaction regions. Developing a general model of the distribution of maser emission in these regions in all SNRs interacting with MCs will aid in the understanding of different processes that may be triggered through these interactions, namely induced star formation (SF) and cosmic ray (CR) acceleration. More accurate information on the density (and density gradients) in these turbulent regions could, for example, be used as inputs or constraints for models of galactic SNR CR acceleration and help explain if conditions are conducive for SF. In this thesis, I present results from calculations of the physical conditions necessary for the occurrence of collisionally pumped Class I 36, 44, 84, and 95 GHz CH3OH maser lines near SNRs, using an escape probability and level population code. The modeling shows that given a sufficient CH3OH abundance, CH3OH maser emission arises over a wide range of densities and temperatures, with optimal conditions at 10 4 sample of SNRs with previous and recent CH 3OH maser detections (G1.4-0.1, W28, Sgr A East, G5.7-0.0, W44, and W51C). I also discuss how detections of CH3OH masers can be used along with other maser tracers, i.e. H2O masers, to pinpoint sights of SF near SNRs. Furthermore, I will discuss the close spatial and kinematic correlation of CH3OH masers in

  5. Time Variation of SiO Masers in VX Sagittarii over an Optically Quiescent Phase

    Science.gov (United States)

    Kamohara, Ryuichi; Deguchi, Shuji; Miyoshi, Makoto; Shen, Zhi-Qiang

    2005-04-01

    The time variation of SiO masers in a semi-regular variable, VX Sgr, was investigated in the period between 1994 and 2004 when the optical light curve exhibited an ˜6-yr quiescent phase intercepting a regularly pulsating era. The quiescent period occurred with a delay of several years after a decrease in the SiO maser flux. VLBA observations of SiO masers made during this period showed no drastic spatial variation except for emission features being shifted from south-west to north-east. The SiO maser flux decrease, and a succeeding optical quiescent phase, may indicate that the stellar mass-loss rate diminished over a few years around 1994. A SiO maser flare occurring in 1999 may be a reminiscence of a final gas blow, which resulted in the optically quiescent period.

  6. A Survey and Statistics of Interstellar OH and H2O Masers

    Institute of Scientific and Technical Information of China (English)

    Han-Ping Liu; J. R. Forster; Jin Sun

    2005-01-01

    We present a statistical analysis of a sky survey of interstellar H2O and OH masers. These masers can be classified into three categories: isolated H2O masers, isolated OH masers, and simple OH/H2O maser associations. The total number of sources in each category is of the same order of magnitude, and as an evolutionary phase they can maintain ~ 105 yr. An improved radiative pumping mechanism is proposed. This model avoids some of the deficiencies of previous radiative models, such as shortage of exciting photons. The statistical results obtained from the survey can be interpreted by the new mechanism together with the evolutionary model in which the gravitational force of the central stellar objects is responsible for the HII region.

  7. Excited-state hydroxyl maser polarimetry: Who ate all the {\\pi}s?

    CERN Document Server

    Green, James A; McClure-Griffiths, Naomi M

    2015-01-01

    We present polarimetric maser observations with the Australia Telescope Compact Array (ATCA) of excited-state hydroxyl (OH) masers. We observed 30 fields of OH masers in full Stokes polarization with the Compact Array Broadband Backend (CABB) at both the 6030 and 6035 MHz excited-state OH transitions, and the 6668-MHz methanol maser transition, detecting 70 sites of maser emission. Amongst the OH we found 112 Zeeman pairs, of which 18 exhibited candidate {\\pi} components. This is the largest single full polarimetric study of multiple sites of star formation for these frequencies, and the rate of 16% {\\pi} components clearly indicates the {\\pi} component exists, and is comparable to the percentage recently found for ground-state transitions. This significant percentage of {\\pi} components, with consistent proportions at both ground- and excited-state transitions, argues against Faraday rotation suppressing the {\\pi} component emission. Our simultaneous observations of methanol found the expected low level of p...

  8. A note on the periodic methanol masers in G9.62+0.20E

    CERN Document Server

    van der Walt, DJ; Etoka, S; Goedhart, S; Heever, SP van den

    2016-01-01

    A number of mechanisms to understand the periodic class II methanol masers associated with some high-mass star forming regions have been proposed in the past. Two recent proposals, ie. by Parfenov &Sobolev (2014) and Sanna et al. (2015) were presented to explicitly explain the periodic masers in sources with light curves similar to the methanol masers in G9.62+0.20E. We evaluate to what extent the proposals and models presented by these authors can explain the light curve of the methanol masers in G9.62+0.20E. It is argued that neither of the proposed mechanisms can reproduce the light curves of the methanol masers in G9.62+0.20E.

  9. Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center

    Science.gov (United States)

    Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj

    2017-01-01

    We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.

  10. The 6-GHz methanol multibeam maser catalogue II: Galactic longitudes 6 to 20

    CERN Document Server

    Green, J A; Fuller, G A; Avison, A; Breen, S L; Ellingsen, S P; Gray, M D; Pestalozzi, M R; Quinn, L; Thompson, M A; Voronkov, M A

    2010-01-01

    We present the second portion of an unbiased survey of the Galactic plane for 6668-MHz methanol masers. This section of the survey spans the longitude range 6 degrees to 20 degrees. We report the detection of 119 maser sources, of which 42 are new discoveries. The masers are tightly constrained to the Galactic plane, with only four outside a latitude range of +/- 1 degree. This longitude region includes the brightest known 6668-MHz methanol maser, 9.621+0.196, as well as the two brightest newly discovered sources in the southern survey as a whole. We list all the sources associated with the 3-kpc arms within +/- 15 degrees longitude and consider further candidates beyond 15 degrees longitude. We identify three new sources associated with the Galactic bar and comment on the density of masers in relation to the bar orientation.

  11. Methanol masers as tools to study high-mass star formation

    CERN Document Server

    Pestalozzi, Michele

    2007-01-01

    In this contribution I will attempt to show that the study of galactic 6.7 and 12.2GHz methanol masers themselves, as opposed to the use of methanol masers as signposts, can yield important conclusions contributing to the understanding of high-mass star formation. Due to their exclusive association with star formation, methanol masers are the best tools to do this, and their large number allows to probe the entire Galaxy. In particular I will focus on the determination of the luminosity function of methanol masers and on the determination of an unambiguous signature for a circumstellar masing disc seen edge-on. Finally I will try to point out some future fields of research in the study of methanol masers.

  12. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228

    Energy Technology Data Exchange (ETDEWEB)

    Aleissa, Khalid A.; Almasoud, Fahad I.; Islam, Mohammed S. [Atomic Energy Research Institute, King Abdul Aziz City for Science and Technology, P.O. Box 6086, Riyadh 11442 (Saudi Arabia); L' Annunziata, Michael F. [IAEA Expert, Montague Group, P.O. Box 5033, Oceanside, CA 92052-5033 (United States)], E-mail: mlannunziata@cox.net

    2008-12-15

    The activities of {sup 228}Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide {sup 228}Ac. The radium was pre-concentrated on MnO{sub 2} and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter {sup 228}Ra({sup 228}Ac), the daughter nuclide {sup 228}Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by {sup 228}Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9{+-}0.1% was measured for {sup 228}Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317{+-}0.013 cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1 g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of {sup 228}Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for {sup 228}Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure {sup 228}Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume

  13. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228.

    Science.gov (United States)

    Aleissa, Khalid A; Almasoud, Fahad I; Islam, Mohammed S; L'Annunziata, Michael F

    2008-12-01

    The activities of (228)Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide (228)Ac. The radium was pre-concentrated on MnO(2) and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter (228)Ra((228)Ac), the daughter nuclide (228)Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by (228)Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9+/-0.1% was measured for (228)Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317+/-0.013cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of (228)Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for (228)Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure (228)Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume, which are not at all required when liquid

  14. Dielectric metasurfaces

    Science.gov (United States)

    Valentine, Jason

    While plasmonics metasurfaces have seen much development over the past several years, they still face throughput limitations due to ohmic losses. On the other hand, dielectric resonators and associated metasurfaces can eliminate the issue of ohmic loss while still providing the freedom to engineer the optical properties of the composite. In this talk, I will present our recent efforts to harness this freedom using metasurfaces formed from silicon and fabricated using CMOS-compatible techniques. Operating in the telecommunications band, I will discuss how we have used this platform to realize a number of novel functionalities including wavefront control, near-perfect reflection, and high quality factor resonances. In many cases the optical performance of these silicon-based metasurfaces can surpass their plasmonic counterparts. Furthermore, for some cases the surfaces are more amenable to large-area fabrication techniques.

  15. New SIO Masers in Star Forming Regions W:51 IRS:2 and SAGITTARIUS-B2 MD:5

    Science.gov (United States)

    Hasegawa, T.; Morita, K.; Okumura, S.; Kaifu, N.; Suzuki, H.; Ohishi, M.; Hayashi, M.; Ukita, N.

    The maser emission of the 43 GHz SiO J = 1-0 transitions in two regions of active star formation, W51 IRS2 and Sgr B2 MD5, have been detected using the 45 m telescope at Nobeyama. The SiO masers coincide in position with strong H2O masers in each region within a positional uncertainty of 5arcsec. If the masers radiate isotropically, the power radiated from W51 IRS2 and Sgr B2 MD5 in the masing 43 GHz SiO lines are comparable to that from the maser in Orion-KL.

  16. Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Meagher, Kevin J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide field of view of eight degrees, a finely pixelated camera with silicon photomultipliers as photon detectors, and a compact and power efficient 1 GS/s readout. The progress in both the optical system and camera development are discussed in this paper.

  17. Measuring Cherenkov Backgrounds from Proportional Counters in SNO

    Science.gov (United States)

    Seibert, Stanley

    2006-04-01

    In the current phase of operation of the Sudbury Neutrino Observatory, He-3 proportional counters have been deployed in the center of the detector to measure neutron production from neutral-current interactions between neutrinos and deuterons in the heavy water. Radioactive decays of Bi-214 and Tl-208 in the counters produce gammas of sufficient energy to photodisintegrate deuterons, which become a background to the neutral current measurement. We have measured the background rate in-situ using Cherenkov light detected with SNO's 9456 inward-looking photomultiplier tubes. A maximum likelihood method is used to separate backgrounds in the heavy water from backgrounds in the proportional counters based upon the spatial distribution of low energy Cherenkov event vertices. Uncertainties on the backgrounds have been estimated using calibration data taken with both a distributed Na-24 source, and a contained Th source deployed at various points in the detector.

  18. G-APDs in Cherenkov astronomy: The FACT camera

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenbuehl, T., E-mail: thomas.kraehenbuehl@phys.ethz.ch [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Anderhub, H. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Backes, M. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Commichau, V.; Djambazov, L. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Dorner, D.; Farnier, C. [ISDC Data Center for Astrophysics, CH-1290 Versoix (Switzerland); Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Koehne, J.-H.; Krumm, B. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); and others

    2012-12-11

    Geiger-mode avalanche photodiodes (G-APD, SiPM) are a much discussed alternative to photomultiplier tubes in Cherenkov astronomy. The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera based on a hexagonal array of 1440 G-APDs and has now finalized its construction phase. A light-collecting solid PMMA cone is glued to each G-APD to eliminate dead space between the G-APDs by increasing the active area, and to restrict the light collection angle of the sensor to the reflector area in order to reduce the amount of background light. The processing of the signals is integrated in the camera and includes the digitization using the domino ring sampling chip DRS4.

  19. The Ring Imaging CHerenkov Detectors of the LHCb Experiment

    CERN Document Server

    Perego, Davide Luigi

    2012-01-01

    Particle identification is a fundamental requirement of the LHCb experiment to fulfill its physics programme. Positive hadron identification is performed by two Ring Imaging CHerenkov (RICH) detectors. This system covers the full angular acceptance of the experiment and is equipped with three Cherenkov radiators to identify particles in a wide momentum range from1 GeV/ c up to 100 GeV/ c . The Hybrid Photon Detectors (HPDs) located outside the detector acceptance provide the photon detection with 500,000 channels. Specific read–out electronics has been developed to readout and process data from the HPDs including data transmission and power distribution. The operation and performanceoftheRICHsystemare ensuredbythe constant controland monitoringoflowandhighvoltage systems,of thegas qualityandenvironmental parameters,ofthe mirror alignment,and finallyofthe detector safety. The description of the LHCb RICH is given. The experience in operating the detector at the Large Hadron Collider is presented and discusse...

  20. The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    CERN Document Server

    Barão, F; Alcaraz, J; Arruda, L; Barrau, A; Barreira, G; Belmont, E; Berdugo, J; Brinet, M; Buénerd, M; Casadei, D; Casaus, J; Cortina, E; Delgado, C; Díaz, C; Derome, L; Eraud, L; Garcia-Lopez, R J; Gallin-Martel, L; Giovacchini, F; Gonçalves, P; Lanciotti, E; Laurenti, G; Malinine, A; Maña, C; Marin, J; Martínez, G; Menchaca-Rocha, A; Molla, M; Palomares, C; Panniello, M; Pereira, R; Pimenta, M; Protasov, K; Sánchez, E; Seo, E S; Sevilla, N; Torrento, A; Vargas-Trevino, M; Veziant, O

    2006-01-01

    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.

  1. G-APDs in Cherenkov astronomy: The FACT camera

    Science.gov (United States)

    Krähenbühl, T.; Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, V.; Djambazov, L.; Dorner, D.; Farnier, C.; Gendotti, A.; Grimm, O.; von Gunten, H.; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Köhne, J.-H.; Krumm, B.; Lee, M.; Lenain, J.-P.; Lorenz, E.; Lustermann, W.; Lyard, E.; Mannheim, K.; Meharga, M.; Neise, D.; Nessi-Tedaldi, F.; Overkemping, A.-K.; Pauss, F.; Renker, D.; Rhode, W.; Ribordy, M.; Rohlfs, R.; Röser, U.; Stucki, J.-P.; Schneider, J.; Thaele, J.; Tibolla, O.; Viertel, G.; Vogler, P.; Walter, R.; Warda, K.; Weitzel, Q.

    2012-12-01

    Geiger-mode avalanche photodiodes (G-APD, SiPM) are a much discussed alternative to photomultiplier tubes in Cherenkov astronomy. The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera based on a hexagonal array of 1440 G-APDs and has now finalized its construction phase. A light-collecting solid PMMA cone is glued to each G-APD to eliminate dead space between the G-APDs by increasing the active area, and to restrict the light collection angle of the sensor to the reflector area in order to reduce the amount of background light. The processing of the signals is integrated in the camera and includes the digitization using the domino ring sampling chip DRS4.

  2. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  3. An Analog Trigger System for Atmospheric Cherenkov Telescopes

    CERN Document Server

    Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

    2013-01-01

    Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

  4. Detection of Cherenkov light emission in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bernardini, E.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bueno, A.; Calligarich, E.; Campanelli, M.; Carpanese, C.; Cavalli, D.; Cavanna, F. E-mail: flavio.cavanna@aquila.infn.it; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, C.; Cline, D.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Dolfini, R.; Felcini, M.; Ferrari, A.; Ferri, F.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Markiewicz, M.; Matthey, C.; Mauri, F.; Mazza, D.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Nurzia, G.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polchlopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Stepaniak, J.; Szarska, M.; Szeptycka, M.; Terrani, M.; Ventura, S.; Vignoli, C.; Wang, H.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zalipska, J.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W

    2004-01-11

    Detection of Cherenkov light emission in liquid argon has been obtained with an ICARUS prototype, during a dedicated test run at the Gran Sasso Laboratory external facility. Ionizing tracks from cosmic ray muons crossing the detector active volume have been collected in coincidence with visible light signals from a photo-multiplier (PMT) immersed in liquid argon. A 3D reconstruction of the tracks has been performed exploiting the ICARUS imaging capability. The angular distributions of the tracks triggered by the PMT signals show an evident directionality. By means of a detailed Monte Carlo simulation we show that the geometrical characteristics of the events are compatible with the hypothesis of Cherenkov light emission as the main source of the PMT signals.

  5. Normalized and Asynchronous Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it ca...

  6. Performance test of wavelength-shifting acrylic plastic Cherenkov detector

    CERN Document Server

    Beckford, B; de la Puente, A; Fuji, Y; Futatsukawa, K; Hashimoto, O; Kaneta, M; Kanda, H; Koike, T; Maeda, K; Matsumura, A; Nakamura, S N; Okayasu, Y; Perez, N; Reinhold, J; Shirotori, K; Tamura, H; Tang, L; Tsukada, K

    2010-01-01

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin2{\\theta}c, where {\\theta}c is the opening angle of the Cherenkov light created. Based on estimations and results from similarly conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in...

  7. Silicon Photomultiplier Camera for Schwarzschild-Couder Cherenkov Telescopes

    CERN Document Server

    Vandenbroucke, J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is an atmospheric Cherenkov observatory that will image the cosmos in very-high-energy gamma rays. CTA will study the highest-energy particle accelerators in the Universe and potentially confirm the particle nature of dark matter. We have designed an innovative Schwarzschild-Couder telescope which uses two mirrors to achieve excellent optical performance across a wide field of view. The small plate scale of the dual-mirror optics enables a compact camera which uses modern technology including silicon photomultipliers and the TARGET application-specific integrated circuit to read out a finely pixelated focal plane of 11,328 channels with modest weight, volume, cost, and power consumption. The camera design is hierarchical and modular at each level, enabling robust construction, operation, and maintenance. A prototype telescope is under construction and will be commissioned at the VERITAS site in Arizona. An array of such telescopes will provide excellent angular resolution a...

  8. Spectrum of energy depositions in the Auger Water Cherenkov Detector

    Science.gov (United States)

    Salazar, Humberto

    1999-08-01

    The measured spectrum of energy depositions in a Water Cherenkov Detector (WCD) prototype for the Pierre Auger Observatory is presented. A WCD (area 10 m2 )is located in the Puebla University campus at a depth of 800 g/cm2 (2200 m above sea level). Differential and integral spectra in a wide energy deposition range (0.5 - 150 of vertical equivalent muons) are presented. The problem of the WCD "self calibration" procedure (by rate of the muon events) is discussed. The characteristic change of the slopes of the differential spectrum at the transition from single muon signals to EAS signals is also discussed. The measured energy deposition spectrum at extreme signals is used to estimate the linearity of the response of the WCD PMTs. Key words: Auger array, water Cherenkov detector, extensive air showers

  9. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2010-01-01

    the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near...

  10. G10.472+0.027: An Extreme water maser outflow associated with a Massive Protostellar Cluster

    CERN Document Server

    Titmarsh, A M; Breen, S L; Caswell, J L; Voronkov, M A

    2013-01-01

    An Australia Telescope Compact Array search for 22 GHz water masers towards 6.7 GHz class II methanol masers detected in the Methanol Multibeam (MMB) survey has resulted in the detection of extremely high velocity emission from one of the sources. The water maser emission associated with this young stellar object covers a velocity span of nearly 300 km/s. The highest velocity water maser emission is red-shifted from the systemic velocity by 250 km/s, which is a new record for high-mass star formation regions. The maser is associated with a very young late O, or early B star, which may still be actively accreting matter (and driving the extreme outflow). If that is the case future observations of the kinematics of this water maser will provide a unique probe of accretion processes in the highest mass young stellar objects and test models of water maser formation.

  11. G 10.472+0.027: AN EXTREME WATER MASER OUTFLOW ASSOCIATED WITH A MASSIVE PROTOSTELLAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Titmarsh, A. M.; Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); Breen, S. L.; Caswell, J. L.; Voronkov, M. A. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76 Epping, NSW 1710 (Australia)

    2013-09-20

    An Australia Telescope Compact Array search for 22 GHz water masers toward 6.7 GHz class II methanol masers detected in the Methanol Multibeam survey has resulted in the detection of extremely high-velocity emission from one of the sources. The water maser emission associated with this young stellar object covers a velocity span of nearly 300 km s{sup –1}. The highest velocity water maser emission is redshifted from the systemic velocity by 250 km s{sup –1}, which is a new record for high-mass star formation regions. The maser is associated with a very young late O, or early B star, which may still be actively accreting matter (and driving the extreme outflow). If that is the case, future observations of the kinematics of this water maser will provide a unique probe of accretion processes in the highest mass young stellar objects and test models of water maser formation.

  12. A quartz Cherenkov detector for polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vauth, Annika

    2014-09-15

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of {sup δP}/{sub P}=0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  13. A WATER MASER AND NH{sub 3} SURVEY OF GLIMPSE EXTENDED GREEN OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Cyganowski, C. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Koda, J.; Towers, S.; Meyer, J. Donovan [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Rosolowsky, E. [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada); Egusa, F. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Momose, R. [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Robitaille, T. P., E-mail: ccyganowski@cfa.harvard.edu [Max Planck Institute for Astronomy, Heidelberg (Germany)

    2013-02-10

    We present the results of a Nobeyama 45 m H{sub 2}O maser and NH{sub 3} survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 {mu}m emission. We observed the NH{sub 3}(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms {approx} 50 mK). The H{sub 2}O maser detection rate is 68% (median rms {approx} 0.11 Jy). The derived H{sub 2}O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H{sub 2}O masers and warm dense gas, as indicated by emission in the higher-excitation NH{sub 3} transitions, are most frequently detected toward EGOs also associated with both Class I and II CH{sub 3}OH masers. Ninety-five percent (81%) of such EGOs are detected in H{sub 2}O (NH{sub 3}(3,3)), compared to only 33% (7%) of EGOs without either CH{sub 3}OH maser type. As populations, EGOs associated with Class I and/or II CH{sub 3}OH masers have significantly higher NH{sub 3} line widths, column densities, and kinetic temperatures than EGOs undetected in CH{sub 3}OH maser surveys. However, we find no evidence for statistically significant differences in H{sub 2}O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H{sub 2}O maser luminosity and clump number density. H{sub 2}O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.

  14. The Tunka-133 EAS Cherenkov light array: Status of 2011

    Energy Technology Data Exchange (ETDEWEB)

    Berezhnev, S.F. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Besson, D. [Department of Physics and Astronomy, University of Kansas (United States); Budnev, N.M. [Institute of Applied Physics ISU, Irkutsk (Russian Federation); Chiavassa, A. [Dipartimento di Fisica Generale, Universiteta di Torino, Torino (Italy); INFN, Torino (Italy); Chvalaev, O.A.; Gress, O.A.; Dyachok, A.N. [Institute of Applied Physics ISU, Irkutsk (Russian Federation); Epimakhov, S.N. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Haungs, A. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Karpov, N.I.; Kalmykov, N.N. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Konstantinov, E.N.; Korobchenko, A.V. [Institute of Applied Physics ISU, Irkutsk (Russian Federation); Korosteleva, E.E.; Kozhin, V.A. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Kuzmichev, L.A., E-mail: kuz@dec1.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Lubsandorzhiev, B.K.; Lubsandorzhiev, N.B. [Institute for Nuclear Research of RAS, Moscow (Russian Federation); Mirgazov, R.R. [Institute of Applied Physics ISU, Irkutsk (Russian Federation); Panasyuk, M.I. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); and others

    2012-11-11

    A new EAS Cherenkov light array, Tunka-133, with {approx}1km{sup 2} geometrical area has been installed at the Tunka Valley (50 km from Lake Baikal) in 2009. The array permits a detailed study of cosmic ray energy spectrum and mass composition in the energy range 10{sup 16}-10{sup 18} eV with a uniform method. We describe the array construction, DAQ and methods of the array calibration. The method of energy reconstruction and absolute calibration of measurements are discussed. The analysis of spatial and time structure of EAS Cherenkov light allows to estimate the depth of the EAS maximum X{sub max}. The results on the all particles energy spectrum and the mean depth of the EAS maximum X{sub max} vs. primary energy derived from the data of two winter seasons (2009-2011) are presented. Preliminary results of joint operation of the Cherenkov array with antennas for the detection of EAS radio signals are shown. Plans for future upgrades - deployment of remote clusters, radioantennas and a scintillator detector network and a prototype of the HiSCORE gamma-telescope - are discussed.

  15. FACT -- Operation of the First G-APD Cherenkov Telescope

    CERN Document Server

    Bretz, T; Buß, J; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Freiwald, J; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Hughes, G; Horisberger, U; Knoetig, M L; Krähenbühl, T; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Röser, U; Stucki, J -P; Steinbring, T; Temme, F; Thaele, J; Vogler, P; Walter, R; Weitzel, Q

    2014-01-01

    Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background...

  16. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  17. Cherenkov Telescopes Results on Pulsar Wind Nebulae and Pulsars

    Science.gov (United States)

    Wilhelmi, Emma De Oña

    The last few years have seen a revolution in very high γ-ray astronomy (VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes. These new facilities, namely H.E.S.S. (High Energy Stereoscopic System), MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope) and its upgrade MAGIC 2, VERITAS (Very Energetic Radiation Imaging Telescope Array System) and CANGAROO (Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback) were designed to increase the flux sensitivity in the energy regime of hundreds of GeV, expanding the observed energy range from 50 to multi-TeV, and fostered as a result a period of rapid growth in our understanding of the Non-ThermalUniverse. As a result of this fast development the number of pulsar wind nebulae (PWNe) detected has increased from a few in the early 90's to more than two dozen of firm candidates nowadays. Also, the low energy threshold achieved allows to investigate the pulsed spectra of the high energy pulsars powering PWNe. A review of the most relevant VHE results concerning pulsars and their relativistic winds is discussed here in the context of Cherenkov telescopes.

  18. FACT. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a star tracking alignment method which is not restricted to clear nights. It normalizes the mirror facet reflections to be independent of the reference star or the cloud coverage. It records asynchronously of the telescope drive which makes the method easy to integrate in existing telescopes. It can be combined with remote facet actuation, but it does not need one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions. We present the method and alignment results on the First Geiger-mode Photo Diode Avalanche Cherenkov Telescope (FACT) on the Canary Island of La Palma, Spain.

  19. PyFACT: Python and FITS analysis for Cherenkov telescopes

    Science.gov (United States)

    Raue, Martin; Deil, Christoph

    2012-12-01

    Ground-based very-high energy (VHE; E>100 GeV) gamma-ray astronomy is growing from being conducted by small teams in closed collaborations into a full-fledged branch of astronomy with open observatories. This is best illustrated by the number of known sources: it increased by one order of magnitude in the past ten years, from 10 in the year 2000 to more than 100 in 2010. It is expected that this trend will continue with the next-generation instrument Cherenkov Telescope Array (CTA). This transformation has a profound impact on the data format and analysis of Imaging Atmospheric Cherenkov Telescopes (IACTs). Up to now, IACT data analysis was an internal task performed by specialists with no public access to the data or software. In the future, a large community of VHE astronomers from different scientific topics should be enabled to work with the data. Ease of use, compatibility, and integration with existing astronomy standards and tools will be key. In this contribution, a collection of Python tools for the analysis of data in FITS format (PyFACT; Python and FITS Analysis for Cherenkov Telescopes) is presented, which connects with existing tools like xspec, sherpa, and ds9. The package is available as open source (https://github.com/mraue/pyfact, comments and contributions welcome). Advantages of the chosen ansatz are discussed and implications for future observatories and data archival are presented.

  20. Water Masers in W49 North and Sagittarius B2

    OpenAIRE

    McGrath, E. J.; Goss, W. M.; De Pree, C. G.

    2004-01-01

    Using the Very Large Array (VLA) of the National Radio Astronomy Observatory in the A and B configurations, we have obtained simultaneous high resolution observations of both the 22 GHz water maser lines as well as the 22 GHz continuum for the H II regions W49N and Sagittarius B2. The angular resolution of both observations is ~0.1", which at the distance of W49N (11.4 kpc; Gwinn, Moran, & Reid 1992) and Sgr B2 (8.5 kpc) corresponds to a physical size of

  1. Results from the 1997 run of the LHCb ring imaging Cherenkov test-beam

    CERN Document Server

    Halley, A; Teixeira-Dias, P; Wilkinson, G; Wilkinson, Guy

    1998-01-01

    Analysis results of data from the ring imaging Cherenkov test-beam using hybrid photo diodes are presented. Details are given of the geometrical arrangement of the prototype and data-taking conditions, together with results of simulation and studies of the detector performance, photon yield and Cherenkov angle resolution using different radiators. Good agreement with simulation is found for both gas and aerogel photon yield calculations and the observed Cherenkov angle resolution.1

  2. Water and Methanol Maser Survey of Protostars in the Orion Molecular Cloud Complex

    CERN Document Server

    Kang, Miju; Choi, Minho; Choi, Yunhee; Kim, Kee-Tae; Di Francesco, James; Park, Yong-Sun

    2013-01-01

    The results of a maser survey toward ninety-nine protostars in the Orion molecular cloud complex are presented. The target sources are low-mass protostars identified from infrared observations. Single-dish observations were carried out in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz. Most of the detected sources were mapped to determine the source positions. Five water maser sources were detected, and they are excited by HH 1-2 VLA 3, HH 1-2 VLA 1, L1641N MM1/3, NGC 2071 IRS 1/3, and an object in the OMC 3 region. The water masers showed significant variability in intensity and velocity with time scales of a month or shorter. Four methanol emission sources were detected, and those in the OMC 2 FIR 3/4 and L1641N MM1/3 regions are probably masers. The methanol emission from the other two sources in the NGC 2071 IRS 1-3 and V380 Ori NE regions are probably thermal. For the water masers, the number of detections per protostar in the survey region is about 2%, which s...

  3. Formation and evolution of the water maser outflow event in AFGL 2591 VLA 3-N

    CERN Document Server

    Trinidad, M A; Estalella, R; Cantó, J; Raga, A; Torrelles, J M; Patel, N A; Gómez, J F; Anglada, G; Carrasco-González, C; Rodríguez, L F

    2012-01-01

    In this paper we analyze multi-epoch Very Long Baseline Interferometry (VLBI) water maser observations carried out with the Very Long Baseline Array (VLBA) toward the high-mass star-forming region AFGL 2591. We detected maser emission associated with the radio continuum sources VLA 2 and VLA 3. In addition, a water maser cluster, VLA 3-N, was detected ~ 0.5" north of VLA 3. We concentrate the discussion of this paper on the spatio-kinematical distribution of the water masers towards VLA 3-N. The water maser emission toward the region VLA 3-N shows two bow shock-like structures, Northern and Southern, separated from each other by ~ 100 mas (~ 330 AU). The spatial distribution and kinematics of the water masers in this cluster have persisted over a time span of seven years. The Northern bow shock has a somewhat irregular morphology, while the Southern one has a remarkably smooth morphology. We measured the proper motions of 33 water maser features, which have an average proper motion velocity of ~ 1.3 mas/yr (~...

  4. A CATALOG OF METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS. III. THE MOLECULAR OUTFLOW SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Ruiz, A. I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Kurtz, S. E.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, Morelia 58089, México (Mexico); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Hofner, P. [New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)

    2016-02-15

    We present an interferometric survey of the 44 GHz class I methanol maser transition toward a sample of 69 sources consisting of high-mass protostellar object (HMPO) candidates and ultracompact (UC) H ii regions. We found a 38% detection rate (16 of 42) in the HMPO candidates and a 54% detection rate (13 of 24) for the regions with ionized gas. This result indicates that class I methanol maser emission is more common toward the more evolved young stellar objects of our sample. Comparing with similar interferometric data sets, our observations show narrower linewidths, likely due to our higher spatial resolution. Based on a comparison between molecular outflow tracers and the maser positions, we find several cases where the masers appear to be located at the outflow interface with the surrounding core. Unlike previous surveys, we also find several cases where the masers appear to be located close to the base of the molecular outflow, although we cannot discard projection effects. This and other surveys of class I methanol masers not only suggest that these masers may trace shocks at different stages, but also that they may even trace shocks arising from a number of different phenomena occurring in star-forming regions: young/old outflows, cloud–cloud collisions, expanding H ii regions, among others.

  5. First detection of 22 GHz H2O masers in TX Camelopardalis

    CERN Document Server

    Cho, Se-Hyung; Yun, Youngjoo

    2014-01-01

    Simultaneous time monitoring observations of H$_{2}$O $6_{16}-5_{23}$, SiO $J$ = 1--0, 2--1, 3--2, and $^{29}$SiO $v$ = 0, $J$ = 1--0 lines were carried out in the direction of the Mira variable star TX Cam with the Korean VLBI Network single dish radio telescopes. For the first time, the H$_{2}$O maser emission from TX Cam was detected near the stellar velocity at five epochs from April 10, 2013 ($\\phi$ = 3.13) to June 4, 2014 ($\\phi$ = 3.89) including minimum optical phases. The intensities of H$_{2}$O masers are very weak compared to SiO masers. The variation of peak antenna temperature ratios among SiO $v$ = 1, $J$ = 1--0, $J$ = 2--1, and $J$ = 3--2 masers is investigated according to their phases. The shift of peak velocities of H$_{2}$O and SiO masers with respect to the stellar velocity is also investigated according to observed optical phases. The H$_{2}$O maser emission occurs around the stellar velocity during our monitoring interval. On the other hand, the peak velocities of SiO masers show a sprea...

  6. 44 GHz Class I Methanol (CH$_{3}$OH) Maser Survey in the Galactic Center

    CERN Document Server

    McEwen, Bridget; Sjouwerman, Loránt

    2016-01-01

    We report on a large 44 GHz ($7_0-6_1$ A$^+$) methanol (CH$_3$OH) maser survey of the Galactic Center (GC). The Karl G. Jansky Very Large Array was used to search for CH$_3$OH maser emission covering a large fraction of the region around Sgr A. In 25 pointings, over 300 CH$_3$OH maser sources ($>10\\sigma$) were detected. The majority of the maser sources have a single peak emission spectrum with line of sight velocities that range from about $-$13 km\\,s$^{-1}$ to 72 km\\,s$^{-1}$. Most maser sources were found to have velocities around 35$-$55 km\\,s$^{-1}$, closely following velocities of neighboring interacting molecular clouds. The full width half maximum of each individual spectral feature is very narrow ($\\sim$0.85 km\\,s$^{-1}$ on average). In the north, where Sgr A East is known to be interacting with the 50 km\\,s$^{-1}$ molecular cloud, more than 100 44 GHz CH$_3$OH masers were detected. In addition, three other distinct concentrations of masers were found, which appear to be located closer to the interi...

  7. On the Relationship of UC H II Regions and Class II Methanol Masers: I. Source Catalogs

    CERN Document Server

    Hu, Bo; Wu, Yuanwei; Bartkiewicz, Anna; Rygl, Kazi; Reid, Mark J; Urquhart, James S; Zheng, Xingwu

    2016-01-01

    We conducted VLA C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H II regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 \\uJypb. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature, 367 of them were detected. Absolute positions have nominal uncertainties of 0.3 arcsec. In this first paper on the data analysis, we present three catalogs, the first gives information on the strongest feature of 367 methanol maser sources, and the second on all detected maser spots. The third catalog present derived data of the 279 radio continuum sources found in the vicinity of maser sources. Among them, 140 show evidence of physical association with maser sources. Our catalogs list properties including distance, flux density, radial velocity and the distribution of masers on the Galactic plane is then provided as well. We found no significant...

  8. Methanol masers Reliable tracers of the early stages of high-mass star formation

    CERN Document Server

    Ellingsen, S P

    2006-01-01

    The GLIMPSE and MSX surveys have been used to examine the mid-infrared properties of a statistically complete sample of 6.7 GHz methanol masers. The GLIMPSE point sources associated with methanol masers are clearly distinguished from the majority, typically having extremely red mid-infrared colors, similar to those expected of low-mass class 0 young stellar objects. The intensity of the GLIMPSE sources associated with methanol masers is typically 4 magnitudes brighter at 8.0 micron than at 3.6 micron. Targeted searches towards GLIMPSE point sources with [3.6]-[4.5] > 1.3 and an 8.0 micron magnitude less than 10 will detect more than 80% of class II methanol masers. Many of the methanol masers are associated with sources within infrared dark clouds (IRDC) which are believed to mark regions where high-mass star formation is in its very early stages. The presence of class II methanol masers in a significant fraction of IRDC suggests that high-mass star formation is common in these regions. Different maser specie...

  9. Accelerating a water maser face-on jet from a high mass young stellar object

    Science.gov (United States)

    Motogi, Kazuhito; Sorai, Kazuo; Honma, Mareki; Hirota, Tomoya; Hachisuka, Kazuya; Niinuma, Kotaro; Sugiyama, Koichiro; Yonekura, Yoshinori; Fujisawa, Kenta

    2016-10-01

    We report on long-term single-dish and VLBI monitoring for intermittent flare activities of a dominant blue-shifted H2O maser associated with a southern high mass young stellar object, G353.273+0.641. Bi-weekly single-dish monitoring using the Hokkaido University Tomakomai 11 m radio telescope has shown that a systematic acceleration continues over four years beyond the lifetime of individual maser features. This fact suggests that the H2O maser traces a region where molecular gas is steadily accelerated. There were five maser flares during the five years of monitoring, and maser distributions in four of them were densely monitored by VLBI Exploration of Radio Astrometry (VERA). The overall distribution of the maser features suggests the presence of a bipolar jet, with the 3D kinematics indicating that it is almost face-on (inclination angle of ˜ 8°-17° from the line of sight). Most maser features were recurrently excited within a region of 100×100 au2 around the radio continuum peak, while their spatial distributions significantly varied between each flare. This confirms that episodic propagations of outflow shocks recurrently invoke intermittent flare activities. We also measured annual parallax, deriving a source distance of 1.70^{+0.19}_{-0.16} kpc that is consistent with the commonly used photometric distance.

  10. Accelerating an Water Maser Face-on Jet from a High Mass Young Stellar Object

    CERN Document Server

    Motogi, Kazuhito; Honma, Mareki; Hirota, Tomoya; Hachisuka, Kazuya; Niinuma, Kotaro; Sugiyama, Koichiro; Yonekura, Yosinori; Fujisawa, Kenta

    2015-01-01

    We report on a long-term single-dish and VLBI monitoring for intermittent flare activities of a Dominant Blue-Shifted H$_{2}$O Maser (DBSM) associated with a southern high mass young stellar object, G353.273+0.641. Bi-weekly single-dish monitoring using Hokkaido University Tomakomai 11-m radio telescope has shown that a systematic acceleration continues over four years beyond a lifetime of individual maser features. This fact suggests that the H$_{2}$O maser traces a region where molecular gas is steadily accelerated. There were five maser flares during five-years monitoring, and maser distributions in four of them were densely monitored by the VLBI Exploration of Radio Astrometry (VERA). The overall distribution of the maser features suggests the presence of a bipolar jet, with the 3D kinematics indicating that it is almost face-on (inclination angle of $\\sim$ 8$^{\\fdg}$--17$^{\\fdg}$ from the line-of-sight). Most of maser features were recurrently excited within a region of 100$\\times$100 AU$^{2}$ around the...

  11. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  12. H2CO Observations Towards CH3OH Maser Sources

    Science.gov (United States)

    Okoh, Daniel; Esimbek, Jarken; Zhou, JianJun; Tang, Xindi; Chukwude, Augustine; Urama, Johnson; Okeke, Pius

    2013-03-01

    Formaldehyde (H2CO) is an accurate probe of physical conditions in dense and low-temperature molecular clouds towards massive star formation regions, while 6.7 GHz methanol (CH3OH) masers provide ideal sites to probe the earliest stages of massive stellar formation. We present preliminary results of our investigation into the possible relationship between formaldehyde and methanol astrophysical masers with the view to expanding knowledge on massive star formation processes. Observations are done using the Nanshan 25m radio telescope of the Xinjiang Astronomical Observatories, Urumqi, China. 127 Methanol sources (from the work of Green et al. 2010, Xu et al. 2003, Pestalozzi et al. 2005, and Xu et al. 2009) have been observed so far for 4.8 GHz formaldehyde absorption lines, and H2CO signals have been detected in 86 of them, 31 of which are newly discovered. We obtained good correlation (0.85 correlation coefficient) between the velocities of the sources, and a poor correlation (-0.03 correlation coefficient) between their intensities, an indication that signals from the two lines originate from about the same region, but that the excitation mechanisms that drive them are likely different.

  13. Comparison of Three Statistical Classification Techniques for Maser Identification

    Science.gov (United States)

    Manning, Ellen M.; Holland, Barbara R.; Ellingsen, Simon P.; Breen, Shari L.; Chen, Xi; Humphries, Melissa

    2016-04-01

    We applied three statistical classification techniques-linear discriminant analysis (LDA), logistic regression, and random forests-to three astronomical datasets associated with searches for interstellar masers. We compared the performance of these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated interstellar masers. We also discuss the interpretability of the results of each classification technique. Non-parametric methods have the potential to make accurate predictions when there are complex relationships between critical parameters. We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques, rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of the predictions obtained is not being limited by the use of parametric models. We also found that for LDA, transformation of the data to match a normal distribution led to a significant improvement in accuracy. The different classification techniques had significant overlap in their predictions; further astronomical observations will enable the accuracy of these predictions to be tested.

  14. The brightest OH maser in the sky: a flare of emission in W75 N

    OpenAIRE

    Alakoz, A. V.; Slysh, V. I.; Popov, M. V.; Val'tts, I. E.

    2005-01-01

    A flare of maser radio emission in the OH-line 1665 MHz has been discovered in the star forming region W75 N in 2003, with the flux density of about 1000 Jy. At the time it was the strongest OH maser detected during the whole history of observations since the discovery of cosmic masers in 1965. The flare emission is linearly polarized with a degree of polarization near 100%. A weaker flare with a flux of 145 Jy was observed in this source in 2000 - 2001, which was probably a precursor of the ...

  15. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  16. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards

    Science.gov (United States)

    Remer, D. S.; Moore, R. C.

    1985-01-01

    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  17. Modelling CH$_3$OH masers: Sobolev approximation and accelerated lambda iteration method

    CERN Document Server

    Nesterenok, Aleksandr

    2015-01-01

    A simple one-dimensional model of CH$_3$OH maser is considered. Two techniques are used for the calculation of molecule level populations: the accelerated lambda iteration (ALI) method and the large velocity gradient (LVG), or Sobolev, approximation. The LVG approximation gives accurate results provided that the characteristic dimensions of the medium are larger than 5-10 lengths of the resonance region. We presume that this condition can be satisfied only for the largest observed maser spot distributions. Factors controlling the pumping of class I and class II methanol masers are considered.

  18. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  19. MAGNETIC FIELDS AND THE POLARIZATION OF ASTROPHYSICAL MASER RADIATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    W. D. Watson

    2009-01-01

    Full Text Available Basic aspects of the relationship between the magnetic eld and polarized maser radiation are described with the emphasis on interpreting the observed spectra. Special attention is given to three issues { the limitations on the applicability of the classic solutions of Goldreich, Keeley, & Kwan (1973, inferring the strength of the magnetic eld from the circular polarization when the Zeeman splitting is much less than the spectral linebreadth (especially for SiO masers, and the signi cance of the absence of components of the Zeeman triplet in the spectra of OH masers in regions of star formation.

  20. Disk-outflow models as applied to high mass star forming regions through methanol and water maser observations

    CERN Document Server

    Farmer, Hontas

    2013-01-01

    As the recent publication by Breen et al (2013) found Class II methanol masers are exclusively associated with high mass star forming regions. Based on the positions of the Class I and II methanol and H$_{2}$O masers, UC H II regions and 4.5 $\\mu$m infrared sources, and the center velocities ($v_{\\text{LSR}}$) of the Class I methanol and H$_{2}$O masers, compared to the $v_{\\text{LSR}}$ of the Class II methanol masers, we propose three disk-outflow models that may be traced by methanol masers. In all three models, we have located the Class II methanol maser near the protostar, and the Class I methanol maser in the outflow, as is known from observations during the last twenty years. In our first model, the H$_{2}$O masers trace the linear extent of the outflow. In our second model, the H$_{2}$O masers are located in a circumstellar disk. In our third model, the H$_{2}$O masers are located in one or more outflows near the terminating shock where the outflow impacts the ambient interstellar medium. Together, the...

  1. Extremely Rapid Variations of Water Maser Emission from the Circinus Galaxy

    CERN Document Server

    Greenhill, L J; Norris, R P; Gough, R G; Sinclair, M W; Moran, J M; Mushotzky, R F

    1996-01-01

    The water maser lines in the nucleus of the Circinus galaxy vary on time scales as short as a few minutes, at least two orders of magnitude less than for other Galactic or extragalactic water masers. The amplitude of one line more than doubled in about 10 minutes. The intensity changes cannot be attributed easily to a mechanism of intrinsic fluctuations. The variability may be the result of strong interstellar diffractive scintillation along the line of sight within our Galaxy, which would be the first example of diffractive scintillation for any source at 22 GHz and for any source other than a pulsar. However, only the very shortest timescales for interstellar scintillation, obtained from pulsar observations and scaled to 22 GHz, correspond to the observed maser variability. Alternatively, the intensity changes may be a reaction to fluctuations in compact background or radiative pump sources and thereby may be related to variability of the central engine. The maser spectral features symmetrically bracket the...

  2. Water maser emission from X-ray-heated circumnuclear gas in active galaxies

    Science.gov (United States)

    Neufeld, David A.; Maloney, Philip R.; Conger, Sarah

    1994-01-01

    We have modeled the physical and chemical conditions present within dense circumnuclear gas that is irradiated by X-rays from an active galactic nucleus. Over a wide range of X-ray fluxes and gas pressures, the effects of X-ray heating give rise to a molecular layer at temperatures of 400-1000 K within which the water abundance is large. The physical conditions within this molecular layer naturally give rise to collisionally pumped maser emission in the 6(sub 16) - 5(sub 23) 22 GHz transition of ortho-water, with predicted maser luminosities of 10(exp 2 +/- 0.5) solar luminosity per sq. pc of illuminated area. Given plausible assumptions about the geometry of the source and about the degree to which the maser emission is anisotropic, such surface luminosities are sufficient to explain the large apparent luminosities observed in water maser sources that are associated with active galactic nuclei.

  3. Water maser emission from X-ray-heated circumnuclear gas in active galaxies

    Science.gov (United States)

    Neufeld, David A.; Maloney, Philip R.; Conger, Sarah

    1994-12-01

    We have modeled the physical and chemical conditions present within dense circumnuclear gas that is irradiated by X-rays from an active galactic nucleus. Over a wide range of X-ray fluxes and gas pressures, the effects of X-ray heating give rise to a molecular layer at temperatures of 400-1000 K within which the water abundance is large. The physical conditions within this molecular layer naturally give rise to collisionally pumped maser emission in the 616 - 523 22 GHz transition of ortho-water, with predicted maser luminosities of 102 +/- 0.5 solar luminosity per sq. pc of illuminated area. Given plausible assumptions about the geometry of the source and about the degree to which the maser emission is anisotropic, such surface luminosities are sufficient to explain the large apparent luminosities observed in water maser sources that are associated with active galactic nuclei.

  4. An Infrared Photometric Study of Galaxies with Extragalactic H2O Maser Sources

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    All galaxies with extragalactic H2O maser sources observed so far are collected. With the 2MASS and the IRAS photometric data an infrared study is performed on those galaxies. By a comparison between the H2O maser detected sources and non-detected sources in the infrared it is indicated that infrared properties in the IRAS 12-25/μm and 60-100/μm are important for producing H2O masers in galaxies. It is also found that the H2O maser galaxies with different nuclear activity types have rather different infrared properties mainly in the IRAS 12-60/μm region.

  5. Distances to Dark Clouds: Comparing Extinction Distances to Maser Parallax Distances

    CERN Document Server

    Foster, Jonathan B; Benjamin, Robert A; Hoare, Melvin G; Jackson, James M

    2012-01-01

    We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near infrared (2MASS and UKIDSS) surveys. VLBI parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validatio...

  6. Cherenkov counting efficiencies for {beta}{sup -}-emitters in dry state in glass vials

    Energy Technology Data Exchange (ETDEWEB)

    Morita-Murase, Yuko; Murakami, Isao; Homma, Yoshio [Laboratory for Radiopharmaceutical Chemistry, Kyoritsu College of Pharmacy, Tokyo (Japan)

    2000-10-01

    Cherenkov counting efficiencies for standardized {beta}{sup -} -emitters in the dry state at the centre of air-filled glass vials were measured with a liquid scintillation spectrometer. Cherenkov counting efficiencies, which are plotted as a function of the average energy of {beta}{sup -}-particles and the internal conversion electrons, give a straight line on log-log scale. (author)

  7. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  8. ITEL Experiment Module and its Flight on MASER9

    Science.gov (United States)

    Löth, K.; Schneider, H.; Larsson, B.; Jansson, O.; Houltz, Y.

    2002-01-01

    The ITEL (Interfacial Turbulence in Evaporating Liquid) module is built under contract from the European Space Agency (ESA) and is scheduled to fly onboard a Sounding Rocket (MASER 9) in March 2002. The project is conducted by Swedish Space Corporation (SSC) with Lambda-X as a subcontractor responsible for the optical system. The Principle Investigator is Pierre Colinet from Université Libre de Bruxelles (ULB). The experiment in ITEL on Maser 9 is part of a research program, which will make use of the International Space Station. The purpose of the flight on Maser 9 is to observe the cellular convection (Marangoni-Bénard instability) which arise when the surface tension varies with temperature yielding thermocapillary instabilities. During the 6 minutes of microgravity of the ITEL experiment, a highly volatile liquid layer (ethyl alcohol) will be evaporated, and the convection phenomena generated by the evaporation process will be visualized. Due to the cooling by latent heat consumption at the level of the evaporating free surface, a temperature gradient is induced perpendicularly to it. The flight experiment module contains one experiment cell, including a gas system for regulation of nitrogen flow over the evaporating surface and an injection unit that is used for injection of liquid into the cell both initially and during surface regulation. The experiment cell is equipped with pressure and flow sensors as well as thermocouples both inside the liquid and at different positions in the cell. Two optical diagnostic systems have been developed around the experiment cell. An interferometric optical tomograph measures the 3-dimensional distribution of temperature in the evaporating liquid and a Schlieren system visualizes the temperature gradients inside the liquid together with the liquid surface deformation. A PC/104 based electronic system is used for management and control of the experiment. The electronic system handles measurements, housekeeping, image

  9. Control Software for the VERITAS Cherenkov Telescope System

    CERN Document Server

    Krawczynski, H; Sembroski, G; Gibbs, K

    2003-01-01

    The VERITAS collaboration is developing a system of initially 4 and eventually 7 Cherenkov Telescopes of the 12 m diameter class for high sensitivity gamma-ray astronomy in the >50 GeV energy range. In this contribution we describe the software that controls and monitors the various VERITAS sub-systems. The software uses an object-oriented approach to cope with the complexities that arise from using sub-groups of the 7 VERITAS telescopes to observe several sources at the same time. Inter-process communication is based on the CORBA Object Request Broker protocol and watch-dog processes monitor the sub-system performance.

  10. MEMPHYS: A large scale water Cherenkov detector at Frejus

    Energy Technology Data Exchange (ETDEWEB)

    Bellefon, A. de; Dolbeau, J.; Gorodetzky, P.; Katsanevas, S.; Patzak, T.; Salin, P.; Tonazzo, A. [APC Paris, Paris (France); Bouchez, J. [APC Paris, Paris (France)]|[DAPNIA-CEA Saclay (France); Busto, J. [CPP Marseille (France); Campagne, J.E. [LAL Orsay (France); Cavata, C.; Mosca, L. [DAPNIA-CEA Saclay (France); Dumarchez, J. [LPNHE Paris (France); Mezzetto, M. [INFN Padova (Italy); Volpe, C. [IPN Orsay (France)

    2006-07-15

    A water Cherenkov detector project, of megaton scale, to be installed in the Frejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle {theta}{sub 13} and the CP-violating phase {delta}. (authors)

  11. Towards a network of atmospheric Cherenkov detectors 7

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M. [Ecole Polytechnique, 91 - Palaiseau (France); Weekes, T.C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Mori, M. [Tokyo Univ., Institute for Cosmic Ray Research (Japan); Mariotti, M. [Padova Univ., INFN (Italy); Hofmann, W.; Aharonian, F. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Sinitsyna, V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Smith, D. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33 - Gradignan (France); Marleau, P. [California Univ., Davis, CA (United States); Sinnis, G. [Los Alamos National Lab., NM (United States); Volk, H. [Max-Planck-Institut fur Kernphysik (Germany); Jager, O. de [South Africa Univ., North-West (South Africa); Harding, A. [NASA Goddard Space Flight Center (United States); Coppi, P. [Yale Univ., New Haven, CT (United States); Dermer, C. [Naval Research Laboratory (United States); Goldwurm, A.; Paul, J. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Puhlhofer, G. [Landessternwarte Heidelberg (Germany); Bernardini, E. [DESy-Zeuthen (Germany); Swordy, S. [Chicago Univ., IL (United States); Yoshikoshi, T. [Tokyo Univ., Tanashi (Japan). Inst. for Cosmic Ray Research; Teshima, M. [Max-Planck-Institute for Physics, Munich (Germany); Punch, M. [Astrophysique et Cosmologie (APC), College de France, 75 - Paris (France)

    2005-07-01

    This document gathers the papers and transparencies presented at the conference. The main part of the conference was organized into 6 sessions: 1) the review of present experiments (Veritas, Cangaroo-3, Magic, Hess-1, Shalon, Cactus, Cygnus-X-3...), 2) calibration and analysis techniques in VHE (very high energy) astrophysics, 3) multi-wavelength observations and phenomenology of sources, 4) the future of ground-based VHE astronomy, 5) developments in instrumentation for Cherenkov telescopes, and 6) the evolution of the field and its link with mainstream astrophysics.

  12. FACT - The first G-APD Cherenkov telescope (first results)

    Science.gov (United States)

    Bretz, T.; Dorner, D.; Backes, M.; Biland, A.; Buß, J.; Commichau, V.; Djambazov, L.; Eisenacher, D.; Grimm, O.; von Gunten, H.; Hildebrand, D.; Krähenbühl, T.; Lustermann, W.; Lyard, E.; Mannheim, K.; Neise, D.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Ribordy, M.; Röser, U.; Stucki, J.-P.; Temme, F.; Thaele, J.; Tobler, S.; Vogler, P.; Walter, R.; Weitzel, Q.; Zänglein, M.

    2012-12-01

    In October 2011, the first air-Cherenkov telescope utilizing Geiger-mode avalanche photodiodes commenced operations. The silicon-based devices display several advantages compared to classical photomultiplier tubes allowing for a more compact camera design of higher reliability, lower power consumption and bias voltage, and better prospects for improving the photon detection efficiency. Here, the first physics results are presented from a few months of data taking. Although still preliminary, the results already show a superb fidelity of the data, demonstrating the potential of avalanche photodiodes for ground-based gamma ray astronomy. The stability and high sensitivity are ideal for remote monitoring observations of variable gamma-ray sources.

  13. Development of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE)

    CERN Document Server

    Ong, R A

    1998-01-01

    STACEE is a proposed atmospheric Cherenkov telescope for ground-based gamma-ray astrophysics between 25 and 500 GeV. The telescope will make use of the large solar mirrors (heliostats) available at a solar research facility to achieve an energy threshold lower than any existing ground-based instrument. This paper describes the development of STACEE, including an overview of the complete instrument design and a discussion of results from recent prototype tests at the large solar heliostat field of Sandia National Laboratories.

  14. CELESTE an atmospheric Cherenkov telescope for high energy gamma astrophysics

    CERN Document Server

    Paré, E; Bazer-Bachi, R; Bergeret, H; Berny, F; Briand, N; Bruel, P; Cerutti, M; Collon, J; Cordier, A; Cornebise, P; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Gilly, J; Gouillaud, J C; Gregory, C; Herault, N; Holder, J; Hrabovsky, M; Incerti, S; Jouenne, A; Kalt, L; Legallou, R; Lott, B; Lodygensky, O; Manigot, P; Manseri, H; Manitaz, H; Martin, M; Morano, R; Morineaud, G; Muenz, F; Musquere, A; Naurois, M D; Neveu, J; Noppe, J M; Olive, J F; Palatka, M; Pérez, A; Quebert, J; Rebii, A; Reposeur, T; Rob, L; Roy, P; Sans, J L; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Villard, G

    2002-01-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m sup 2) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic gamma-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  15. Modified energy-momentum conservation laws and vacuum Cherenkov radiation

    CERN Document Server

    Carmona, J M; Romeo, B

    2014-01-01

    We present a general parametrization for the leading order terms in a momentum power expansion of a non-universal Lorentz-violating, but rotational invariant, kinematics and its implications for two-body decay thresholds. The considered framework includes not only modified dispersion relations for particles, but also modified energy-momentum conservation laws, something which goes beyond effective field theory. As a particular and relevant example, bounds on the departures from special relativistic kinematics from the non-observation of vacuum Cherenkov radiation are discussed and compared with those obtained within the effective field theory scenario.

  16. First scientific contributions from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  17. Operational performance of the Hall A mirror aerogel Cherenkov counter

    CERN Document Server

    Brash, E J; Lolos, G J; Huber, G M; Meer, R V D; Papandreou, Z

    2002-01-01

    We report the results of an operational test of the efficiency and position sensitivity of a silica-aerogel Cherenkov detector installed in the HRS-E spectrometer in Hall A at Jefferson Lab. The calibration was performed with data from elastic electron scattering from polarized sup 3 He. The response of the photo-multiplier tubes was linearized with a quadratic correction, allowing a unique number of photo-electrons (PEs) to be extracted. The result obtained (approx 7.3 PEs) is consistent with the performance of the prototype detector tested earlier under ideal conditions.

  18. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    Science.gov (United States)

    Gómez, José F.; Palau, Aina; Uscanga, Lucero; Manjarrez, Guillermo; Barrado, David

    2017-05-01

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L ⊙. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L bol ≳ 1 L ⊙. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L bol ≃ 3.6-5.3 L ⊙) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L bol ≤ 1 L ⊙ or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.

  19. St\\"ackel-type dynamic model of the Galaxy based on maser kinematic data

    CERN Document Server

    Gromov, A O; Ossipkov, L P

    2016-01-01

    A dynamic model of the Galaxy is constructed based on kinematic data for masers with trigonometric parallaxes. Maser data is used to compute the model potential in the Galactic plane. The potential is then generalized to three dimensions assuming the existence of a third quadratic integral of motion. The resulting Galactic model potential is of St\\"ackel's type. The corresponding space density function is determined from Poisson's equation.

  20. Distribution of H/sub 2/O masers in the sagittarius B2 core

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hideyuki; Ishiguro, Masato; Chikada, Yoshihiro; Ukita, Nobuharu; Morita, Koh-ichiro; Okumura, S.K.; Kasuga, Takashi; Kawabe, Ryohei

    1989-01-01

    The first results of H/sub 2/O maser observations with the Nobeyama Millimeter array are presented. The distribution of H/sub 2/O masers in the Sgr B2 core was observed with a 2'.5 x 2'.5 wide field and with 540 kms/sup -1/ total velocity coverage. Thirty-nine resolved maser spots were detected with a relative positional accuracy of 0''.3, which are clustered into four separate regions. Three of them are previously known and lie close to compact H2 regions. The fourth, newly discovered, is not associated with a continuum source, but is close to the site of H/sub 2/CO and OH masers in the middle of Sgr B2(N) and Sgr B2(M). In Sgr B2 North, the cluster lies at the edge of the continuum ridge. One of the maser spots shows strong and wide velocity-spread emission, suggesting it may correspond to a center of star-forming activity. In Sgr B2 Middle, the strong maser spots are projected just on the face of a compact H2 region, and are redshifted relative to the central velocity of the H2 region. There are two possibilities to interpret our results in Sgr B2(M). One is the H/sub 2/O maser spots distribute around the H2 region and are infalling to the H2 region. The other is the H/sub 2/O maser sources are associated with the cloud in the foreground of the H2 region. (author).

  1. Study of Cherenkov light lateral distribution function around the knee region in extensive air showers

    Directory of Open Access Journals (Sweden)

    Al-Rubaiee A.

    2015-01-01

    Full Text Available The Cherenkov light lateral distribution function (LDF was simulated with the CORSIKAcode in the energy range (1013 - 1016 eV. This simulation was performed for conditions and configurations of the Tunka EAS Cherenkov array for the two primary particles (p and Fe. Basing on the simulated results, many approximated functions are structured for two primary particles and different zenith angles. This allowed us to reconstruct the EAS events, which is, to determine the type and energy of the primary particles that produced showers from signal amplitudes of Cherenkov radiation measured by the Tunka Cherenkov array experiment. Comparison of the calculated LDF of Cherenkov radiation with that measured at the Tunka EAS array shows the ability to identify the primary particle that initiated the EAS cascades by determining its primary energy around the knee region of the cosmic ray spectrum.

  2. Study of Cherenkov Light Lateral Distribution Function around the Knee Region in Extensive Air Showers

    CERN Document Server

    Al-Rubaiee, A A; M., Marwah; Al-Douri, Y

    2015-01-01

    The Cherenkov light lateral distribution function (LDF) was simulated with the CORSIKA code, in the energy range (10^13-10^16) eV. This simulation was performed for conditions and configurations of the Tunka EAS Cherenkov array for two primary particles (p and Fe). Basing on the simulated results, many approximated functions are structured for two primary particles and different zenith angles. This allowed us to reconstruct the EAS events, which is, to determine the type and energy of the primary particles that produced showers from signal amplitudes of Cherenkov radiation which measured with Tunka Cherenkov array experiment. Comparison of the calculated LDF of Cherenkov radiation with that measured at the Tunka EAS array shows the ability for identifying of the primary particle that initiated the EAS cascades determining of its primary energy around the knee region of the cosmic ray spectrum.

  3. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    Science.gov (United States)

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil Mcn.; Kay, Christopher W. M.

    2017-02-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule.

  4. Proper Motions of H2O Masers in the Water Fountain Source IRAS 19190+1102

    CERN Document Server

    Day, F M; Claussen, M J; Sahai, R

    2010-01-01

    We report on the results of two epochs of Very Long Baseline Array (VLBA) observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser emission from this object shows two main arc-shaped formations perpendicular to their NE-SW separation axis. The arcs are separated by ~280 mas in position, and are expanding outwards at an angular rate of 2.35 mas/yr. We detect maser emission at velocities between -53.3 km/s to +78.0 km/s and there is a distinct velocity pattern where the NE masers are blueshifted and the SW masers are redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km/s and a dynamical age of about 59 yr. A group of blueshifted masers not located along the arcs shows a change in velocity of more than 35 km/s between epochs, and may be indicative of the formation of a new lobe. These observations show that IRAS 19190+1102 is a member of the class of "water fountain"' pre-planetary nebulae displaying bipolar structure

  5. Methanol and excited OH masers towards W51: I - Main and South

    CERN Document Server

    Etoka, Sandra; Fuller, Gary A

    2012-01-01

    MERLIN phase-referenced polarimetric observations towards the W51 complex were carried out in March 2006 in the Class II methanol maser transition at 6.668 GHz and three of the four excited OH maser hyperfine transitions at 6 GHz. Methanol maser emission is found towards both W51 Main and South. We did not detect any emission in the excited OH maser lines at 6.030 and 6.049 GHz down to a 3 sigma limit of ~20 mJy per beam. Excited OH maser emission at 6.035 GHz is only found towards W51 Main. This emission is highly circularly polarised (typically 45% and up to 87%). Seven Zeeman pairs were identified in this transition, one of which contains detectable linear polarisation. The magnetic field strength derived from these Zeeman pairs ranges from +1.6 to +6.8 mG, consistent with the previously published magnetic field strengths inferred from the OH ground-state lines. The bulk of the methanol maser emission is associated with W51 Main, sampling a total area of ~3"x2.2" (i.e., ~16200x11900 AU), while only two mas...

  6. H$_2$O maser emission from bright rimmed clouds in the northern hemisphere

    CERN Document Server

    Valdettaro, R; Brand, J; Cesaroni, R

    2005-01-01

    We report the results of a multi-epoch survey of water maser observations at 22.2 GHz with the Medicina radiotelescope from 44 bright rimmed clouds (BRCs) of the northern hemisphere identified by Sugitani et al. (1989) as potential sites of star formation. The data span 16 years of observations and allow to draw conclusions about the maser detection rate in this class of objects. In spite of the relatively high far-infrared luminosities of the embedded sources ($L_{\\rm FIR}\\ga 10^2$ L$_\\odot$), H$_2$O maser emission was detected towards three globules only. Since the occurrence of water masers is higher towards bright IRAS sources, the lack of frequent H$_2$O maser emission is somewhat surprising if the suggestion of induced intermediate- and high-mass star formation within these globules is correct. The maser properties of two BRCs are characteristic of exciting sources of low-mass, while the last one (BRC~38) is consistent with an intermediate-mass object. We argue that most BRCs host young stellar objects ...

  7. A search for 85.5- and 86.6-GHz methanol maser emission

    CERN Document Server

    Ellingsen, S P; Minier, V; Müller, E; Godfrey, P D

    2003-01-01

    We have used the Australia Telescope National Facility Mopra 22m millimetre telescope to search for emission from the 85.5-GHz and 86.6-GHz transitions of methanol. The search was targeted towards 22 star formation regions which exhibit maser emission in the 107.0-GHz methanol transition, as well as in the 6.6-GHz transition characteristic of class II methanol maser sources. A total of 22 regions were searched at 85.5 GHz resulting in 5 detections, of which 1 appears to be a newly discovered maser. For the 86.6-GHz transition observations were made of 18 regions which yielded 2 detections, but no new maser sources. This search demonstrates that emission from the 85.5- and 86.6-GHz transitions is rare. Detection of maser emission from either of these transitions therefore indicates the presence of special conditions, different from those in the majority of methanol maser sources. We have observed temporal variability in the 86.6-GHz emission towards 345.010+1.792, which along with the very narrow line width, c...

  8. A `Water Spout' Maser Jet in S235AB-MIR

    CERN Document Server

    Burns, Ross A; Handa, Toshihiro; Omodaka, Toshihiro; Nakagawa, Akiharu; Nagayama, Takumi; Ueno, Yuji

    2015-01-01

    We report on annual parallax and proper motion observations of H2O masers in S235AB-MIR, which is a massive young stellar object in the Perseus Arm. Using multi-epoch VLBI astrometry we measured a parallax of pi = 0.63 +- 0.03 mas, corresponding to a trigonometric distance of D = 1.56+-0.09 kpc, and source proper motion of ( u alpha cos d , u d) = (0.79 +- 0.12, -2.41 +- 0.14) mas/yr. Water masers trace a jet of diameter 15 au which exhibits a definite radial velocity gradient perpendicular to its axis. 3D maser kinematics were well modelled by a rotating cylinder with physical parameters: v_out = 45+-2 km/s, v_rot = 22+-3 km/s, i = 12+-2 degrees, which are the outflow velocity, tangential rotation velocity and line-of-sight inclination, respectively. One maser feature exhibited steady acceleration which may be related to the jet rotation. During our 15 month VLBI programme there were three `maser burst' events caught `in the act' which were caused by the overlapping of masers along the line of sight.

  9. A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)

    CERN Document Server

    Cyganowski, C J; Rosolowsky, E; Towers, S; Meyer, J Donovan; Egusa, F; Momose, R; Robitaille, T P

    2012-01-01

    We present the results of a Nobeyama 45-m water maser and ammonia survey of all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 micron emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and detect emission towards 97%, 63%, and 46% of our sample, respectively (median rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The derived water maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on MIR properties or maser associations. Water masers and warm dense gas, as indicated by emission in the higher-excitation ammonia transitions, are most frequently detected towards EGOs also associated with both Class I and II methanol masers. 95% (81%) of such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of EGOs without either methanol m...

  10. EVN observations of 6.7 GHz methanol masers in clusters of massive young stellar objects

    CERN Document Server

    Bartkiewicz, Anna; van Langevelde, Huib

    2014-01-01

    Methanol masers at 6.7 GHz are associated with high-mass star-forming regions (HMSFRs) and often have mid-infrared (MIR) counterparts characterized by extended emission at 4.5 $\\mu$m, which likely traces outflows from massive young stellar objects (MYSOs). Our objectives are to determine the milliarcsecond (mas) morphology of the maser emission and to examine if it comes from one or several candidate MIR counterparts in the clusters of MYSOs. The European VLBI Network (EVN) was used to image the 6.7 GHz maser line with ~2.'1 field of view toward 14 maser sites from the Torun catalog. Quasi-simultaneous observations were carried out with the Torun 32 m telescope. We obtained maps with mas angular resolution that showed diversity of methanol emission morphology: a linear distribution (e.g., G37.753-00.189), a ring-like (G40.425+00.700), and a complex one (e.g., G45.467+00.053). The maser emission is usually associated with the strongest MIR counterpart in the clusters; no maser emission was detected from other ...

  11. The 6-GHz methanol multibeam maser catalogue I: Galactic Centre region, longitudes 345 to 6

    CERN Document Server

    Caswell, J L; Green, J A; Avison, A; Breen, S L; Brooks, K J; Burton, M G; Chrysostomou, A; Cox, J; Diamond, P J; Ellingsen, S P; Gray, M D; Hoare, M G; Masheder, M R W; McClure-Griffiths, N M; Pestalozzi, M R; Phillips, C J; Quinn, L; Thompson, M A; Voronkov, M A; Walsh, A J; Ward-Thompson, D; Wong-McSweeney, D; Yates, J A; Cohen, R J

    2010-01-01

    We have conducted a Galactic plane survey of methanol masers at 6668 MHz using a 7-beam receiver on the Parkes telescope. Here we present results from the first part, which provides sensitive unbiased coverage of a large region around the Galactic Centre. Details are given for 183 methanol maser sites in the longitude range 345$^{\\circ}$ through the Galactic Centre to 6$^{\\circ}$. Within 6$^{\\circ}$ of the Centre, we found 88 maser sites, of which more than half (48) are new discoveries. The masers are confined to a narrow Galactic latitude range, indicative of many sources at the Galactic Centre distance and beyond, and confined to a thin disk population; there is no high latitude population that might be ascribed to the Galactic Bulge. Within 2$^{\\circ}$ of the Galactic Centre the maser velocities all lie between -60 and +77 \\kms, a range much smaller than the 540 \\kms range observed in CO. Elsewhere, the maser with highest positive velocity (+107 \\kms) occurs, surprisingly, near longitude 355$^{\\circ}$ and...

  12. A 95 GHz Class I Methanol Maser Survey Toward GLIMPSE Extended Green Objects (EGOs)

    CERN Document Server

    Chen, Xi; Shen, Zhi-Qiang; Titmarsh, Anita; Gan, Cong-Gui

    2011-01-01

    We report the results of a systematic survey for 95 GHz class I methanol masers towards a new sample of 192 massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer GLIMPSE survey. The observations were made with the Australia Telescope National Facility (ATNF) Mopra 22-m radio telescope and resulted in the detection of 105 new 95 GHz class I methanol masers. For 92 of the sources our observations provide the first identification of a class I maser transition associated with these objects (i.e. they are new class I methanol maser sources). Our survey proves that there is indeed a high detection rate (55%) of class I methanol masers towards EGOs. Comparison of the GLIMPSE point sources associated with EGOs with and without class I methanol maser detections shows they have similar mid-IR colors, with the majority meeting the color selection criteria -0.6<[5.8]-[8.0]<1.4 and 0.5<[3.6]-[4.5]<4.0. Investigation...

  13. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  14. Cyclotron resonance maser experiments in a bifilar helical waveguide

    Science.gov (United States)

    Aharony; Drori; Jerby

    2000-11-01

    Oscillator and amplifier cyclotron-resonance-maser (CRM) experiments in a spiral bifilar waveguide are presented in this paper. The slow-wave CRM device employs a low-energy low-current electron beam (2-12 keV, approximately 0.5 A). The pitch angle of the helical waveguide is relatively small; hence, the phase velocity in this waveguide, V(ph) congruent with0.8c (where c is the speed of light), is much faster than the axial velocity of the electrons, V(ez)traveling-wave-tube-type interactions are eliminated in this device. According to the CRM theory, the dominant effect in this operating regime, V(ez)2%). The wide tunable range of this CRM device due to the nondispersive bifilar helix is discussed.

  15. Entropy production and thermalization in the one-atom maser

    Science.gov (United States)

    Solano-Carrillo, E.

    2016-12-01

    In the configuration in which two-level atoms with an initial thermal distribution of their states are sent in succession to a cavity sustaining a single mode of electromagnetic radiation, one atom leaving the cavity as the next one enters it (as in the one-atom maser), Jaynes and Cummings showed that the steady state of the field, when many atoms have traversed the cavity, is thermal with a temperature different than that of the atoms in the off-resonant situation. Having an interaction between two subsystems which maintains them at different temperatures was then understood as leading to an apparent violation of energy conservation. Here we show, by calculating the quantum entropy production in the system, that this difference of temperatures is consistent with having the subsystems adiabatically insulated from each other as the steady state is approached. At resonance the insulation is removed and equilibration of the temperatures is achieved.

  16. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    CERN Document Server

    Tang, J F; Chen, L; Zhao, G Q; Tan, C M

    2016-01-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool in the understanding of FEBs as well as the solar plasma environment in which they are propagating along solar magnetic fields. In particular, the evolutions of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field when propagating can significantly influence the efficiency and property of their emissions. In this paper, we discuss some possible evolutions of the energy spectrum and velocity distribution of FEBs due to the energy loss processes and the pitch-angle effect caused by the magnetic field inhomogeneity, and analyze the effects of these evolutions on electron cyclotron maser (ECM) emission, which is one of the most important mechanisms of producing solar radio bursts by FEBs. The results show that the growth rates all decrease with the energy loss factor $Q$, but increase with the magnetic mirror ratio $\\sigma$ as well ...

  17. Active nuclear spin maser oscillation with double cell

    Directory of Open Access Journals (Sweden)

    Hikota E.

    2014-03-01

    Full Text Available Uncertainty in the frequency precision of the planned experiment to search for a 129Xe atomic electric dipole moment is dominated by drifts in the frequency shift due to contact interaction of 129Xe with polarized Rb valence electrons. In order to suppress the frequency shift, a double-cell geometry has been adopted for the confinement of 129Xe gas. A new process has been identified to take part in the optical detection of spin precession. The parameters controlling the oscillation of the maser in this new double-cell arrangement were optimized. As a result, the frequency shift has been reduced by a factor of 10 or more from the former single-cell geometry.

  18. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  19. Transverse operator method for wakefields in a rectangular dielectric loaded accelerating structure

    Directory of Open Access Journals (Sweden)

    S. S. Baturin

    2013-05-01

    Full Text Available Cherenkov radiation generated by a relativistic electron bunch in a rectangular dielectric-loaded waveguide is analyzed under the assumption that the dielectric layers are inhomogeneous normal to the beam path. We propose a method that uses eigenfunctions of the transverse operator applied to develop a rigorous full solution for the wakefields that are generated. The dispersion equation for the structure is derived and the wakefield analysis is carried out. The formalism developed here allows the direct solution of the inhomogeneous system of Maxwell equations, an alternative analytic approach to the analysis of wakefields in contrast to the previously used impedance method for rectangular structure analysis. The formalism described here was successfully applied to the analysis of rectangular dielectric-lined structures that have been recently beam tested at the Argonne (ANL/AWA and Brookhaven (BNL/ATF accelerator facilities.

  20. High-resolution VLBA Observations of Three 7 mm SiO Masers toward VX Sgr at Five Epochs

    Science.gov (United States)

    Su, J. B.; Shen, Z.-Q.; Chen, X.; Yi, Jiyune; Jiang, D. R.; Yun, Y. J.

    2012-07-01

    VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1→0 (v = 1, 2) 28SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring. In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1→0 (v = 0) 29SiO line emission is also detected, but is too weak to produce any VLBI map.

  1. The HERA-B ring imaging Cherenkov counter

    Energy Technology Data Exchange (ETDEWEB)

    Arino, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmic, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorisek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Krizan, P. E-mail: peter.krizan@ijs.si; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R.F.; Siero, X.; Staric, M.; Stanovnik, A.; Skrk, D.; Zivko, T

    2004-01-11

    The HERA-B RICH uses a radiation path length of 2.8 m in C{sub 4}F{sub 10} gas and a large 24 m{sup 2} spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a {beta}=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  2. The HERA-B ring imaging Cherenkov counter

    Science.gov (United States)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  3. Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors

    CERN Document Server

    Li, Shirley Weishi

    2015-01-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6--18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit ...

  4. The next generation Cherenkov Telescope Array observatory: CTA

    CERN Document Server

    Vercellone, Stefano

    2014-01-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To a...

  5. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  6. Characterization study of silica aerogel for Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sallaz-Damaz, Y. [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Derome, L., E-mail: derome@lpsc.in2p3.f [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Mangin-Brinet, M.; Loth, M.; Protasov, K.; Putze, A.; Vargas-Trevino, M.; Veziant, O.; Buenerd, M. [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Menchaca-Rocha, A.; Belmont, E.; Vargas-Magana, M.; Leon-Vargas, H.; Ortiz-Velasquez, A. [Instituto de Fisica, UNAM, AP 20-364, Mexico DF (Mexico); Malinine, A. [University of Maryland, College Park, MD 20742 (United States); Barao, F.; Pereira, R. [LIP, Avenida Elias Garcia 14-1, P - 1000 Lisboa (Portugal); Bellunato, T.; Matteuzzi, C.; Perego, D.L. [Universita degli Studi di Milano-Bicocca and INFN, Milano (Italy)

    2010-03-01

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely DELTAnapprox1.5x10{sup -4} and DELTAnapprox5x10{sup -4} for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R and D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10{sup -3}), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  7. Open-structure composite mirrors for the Cherenkov Telescope Array

    CERN Document Server

    Dyrda, Michal; Niemiec, Jacek; Stodulski, Marek

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory for high-energy gamma-ray astronomy will comprise several tens of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a new technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. An open-structure composite mirror consists of a rigid flat sandwich support structure and cast-in-mould spherical epoxy resin layer. To this layer a thin glass sheet complete with optical coating is cold-slumped to provide the spherical reflective layer of the mirror. The main components of the sandwich support structure are two flat float glass panels inter spaced with V-shape aluminum spacers of equal length. The sandwich support structure is open, thus enabling good cooling and ventilation of the mirror. A special arrangement of the aluminum spacers also prohibits water being trapped inside. The open-structure technology thus re...

  8. Scientific verification of High Altitude Water Cherenkov observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Antonio, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); Sparks, Kathryne [Department of Physics, Pennsylvania State University, University Park, PA (United States); Alfaro, Ruben [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); González, María Magdalena; Patricelli, Barbara; Fraija, Nissim [Instituto de Astronomia, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico)

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m{sup 2}, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  9. Sites in Argentina for the Cherenkov Telescope Array Project

    CERN Document Server

    Allekotte, Ingo; Etchegoyen, Alberto; García, Beatriz; Mancilla, Alexis; Maya, Javier; Ravignani, Diego; Rovero, Adrián

    2013-01-01

    The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.

  10. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  11. FACT -- The G-APD revolution in Cherenkov astronomy

    CERN Document Server

    Bretz, T; Backes, M; Biland, A; Boccone, V; Braun, I; Buß, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K S; Knoetig, M L; Köhne, J H; Krähenbühl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Müuller, S; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; Röser, U; Stucki, J P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Zänglein, M

    2014-01-01

    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the e...

  12. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  13. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2011-05-21

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  14. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  15. The small size telescope projects for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The small size telescopes (SSTs), spread over an area of several square km, dominate the CTA sensitivity in the photon energy range from a few TeV to over 100 TeV, enabling for the detailed exploration of the very high energy gamma-ray sky. The proposed telescopes are innovative designs providing a wide field of view. Two of them, the ASTRI (Astrophysics con Specchi a Tecnologia Replicante Italiana) and the GCT (Gamma-ray Cherenkov Telescope) telescopes, are based on dual mirror Schwarzschild-Couder optics, with primary mirror diameters of 4 m. The third, SST-1M, is a Davies-Cotton design with a 4 m diameter mirror. Progress with the construction and testing of prototypes of these telescopes is presented. The SST cameras use silicon photomultipliers, with preamplifier and readout/trigger electronics designed to optimize the performance of these sensors for (atmospheric) Cherenkov light. The status of the camera developments is discussed. The SST sub-array will consist of about 70 telescopes at the CTA souther...

  16. The readout system of the MAGIC-II Cherenkov Telescope

    CERN Document Server

    Tescaro, D; Barcelo, M; Bitossi, M; Cortina, J; Fras, M; Hadasch, D; Illa, J M; Martínez, M; Mazin, D; Paoletti, R; Pegna, R

    2009-01-01

    In this contribution we describe the hardware, firmware and software components of the readout system of the MAGIC-II Cherenkov telescope on the Canary island La Palma. The PMT analog signals are transmitted by means of optical fibers from the MAGIC-II camera to the 80 m away counting house where they are routed to the new high bandwidth and fully programmable receiver boards (MONSTER), which convert back the signals from optical to electrical ones. Then the signals are split, one half provide the input signals for the level ONE trigger system while the other half is sent to the digitizing units. The fast Cherenkov pulses are sampled by low-power Domino Ring Sampler chips (DRS2) and temporarily stored in an array of 1024 capacitors. Signals are sampled at the ultra-fast speed of 2 GSample/s, which allows a very precise measurement of the signal arrival times in all pixels. They are then digitized with 12-bit resolution by an external ADC readout at 40 MHz speed. The Domino samplers are integrated in the newly...

  17. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    Science.gov (United States)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  18. Highlights from the High Altitude Water Cherenkov Observatory

    CERN Document Server

    Pretz, John

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a numb...

  19. Scientific verification of High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  20. Cherenkov and parametric (quasi-Cherenkov) radiation from relativistic charged particles moving in crystals formed by metallic wires

    CERN Document Server

    Baryshevsky, Vladimir

    2016-01-01

    Until recently, the interaction of electromagnetic waves with crystals built from parallel metallic wires (wire media) was analyzed in the approximation of isotropic scattering of the electromagnetic wave by a single wire. However, if the wires are thick (kR~1), electromagnetic wave scattering by a wire is anisotropic, i.e., the scattering amplitude depends on the scattering angle. In this work, we derive the equations that describe diffraction of electromagnetic waves and spontaneous emission of charged particles in wire media, and take into account the angular dependence of scattering amplitude. Numerical solutions of these equations show that the radiation intensity increases as the wire radius is increased and achieves its maximal value in the range kR~1. The case when the condition kR~1 is fulfilled in the THz frequency range is considered in detail. The calculations show that the instantaneous power of Cherenkov and parametric (quasi-Cherenkov) radiations from electron bunches in the crystal can be tens...

  1. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu [Radiotracer Imaging Group, Japan Atomic Energy Agency (Japan)

    2015-03-21

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since {sup 137}Cs and {sup 134}Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from {sup 137}Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm {sup 137}Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq {sup 137}Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a {sup 137}Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  2. Properties of Maser-generated Alfvén wave in a Large Laboratory Device

    Science.gov (United States)

    Zhu, Ziyan; Dorfman, Seth; Carter, Troy; Morales, George; Clark, Mary; Rossi, Giovanni

    2016-10-01

    This research is motivated by the investigations of the natural Alfvén wave maser, which refers to the resonant amplification of Alfvén wave in the earth-surrounding plasmas. A resonant cavity that results from applying a locally non-uniform magnetic field to a plasma source region between the anode and cathode of the Large Plasma Device creates the maser. In this research, a lanthanum hexaboride (LaB6)) cathode is used as the plasma source. Above an excitation threshold, selective amplification produces a highly coherent, large amplitude Alfvén wave that propagates out of the resonator through a semitransparent mesh anode into the plasma column where the magnetic field is uniform. The excitation threshold depends on the discharge voltage, and it increases as background magnetic field strength increases; this threshold influences the maser behaviors, including amplitude modulations. The maser with LaB6 source has m = 1 mode and exhibits a right-handed rotation, which is consistent with the electron diamagnetic drift rotation, supporting the possibility of a drift Alfvén wave maser. To distinguish between drift and shear Alfvén waves, a new experiment with the maser cavity excited by a driving circuit was performed. This allows us to access low frequencies (compared to ω*) that cannot be spontaneously driven. The dispersion relation of this driven maser is under investigation. The experimental results will motivate future Alfvén wave study in laboratory devices and thus help better understand space plasma physics such as testing the theory of Alfvén-wave-induced heating of stellar atmosphere. Work supported by the U.S. Department of Energy Office of Science.

  3. SiO Masers around WX Psc Mapped with the KVN and VERA Array (KaVA)

    Science.gov (United States)

    Yun, Youngjoo; Cho, Se-Hyung; Imai, Hiroshi; Kim, Jaeheon; Asaki, Yoshiharu; Chibueze, James O.; Choi, Yoon Kyung; Dodson, Richard; Kim, Dong-Jin; Kusuno, Kozue; Matsumoto, Naoko; Min, Cheulhong; Oyadomari, Miyako; Rioja, María J.; Yoon, Dong-Hwan; Byun, Do-Young; Chung, Hyunsoo; Chung, Moon-Hee; Hagiwara, Yoshiaki; Han, Myoung-Hee; Han, Seog-Tae; Hirota, Tomoya; Honma, Mareki; Hwang, Jung-Wook; Je, Do-Heung; Jike, Takaaki; Jung, Dong-Kyu; Jung, Taehyun; Kang, Ji-Hyun; Kang, Jiman; Kang, Yong-Woo; Kan-ya, Yukitoshi; Kanaguchi, Masahiro; Kawaguchi, Noriyuki; Kim, Bong Gyu; Ryoung Kim, Hyo; Kim, Hyun-Goo; Kim, Jongsoo; Kim, Kee-Tae; Kim, Mikyoung; Kobayashi, Hideyuki; Kono, Yusuke; Kurayama, Tomoharu; Lee, Changhoon; Lee, Jeewon; Lee, Jeong Ae; Lee, Jung-Won; Lee, Sang Hyun; Lee, Sang-Sung; Lyo, A.-Ran; Minh, Young Chol; Oh, Chungsik; Oh, Se-Jin; Oyama, Tomoaki; Roh, Duk-Gyoo; Sawada-Satoh, Satoko; Shibata, Katsunori M.; Sohn, Bong Won; Song, Min-Gyu; Tamura, Yoshiaki; Wi, Seog-Oh; Yeom, Jae-Hwan

    2016-05-01

    We present the first images of the v = 1 and v = 2 J = 1 → 0 SiO maser lines taken with KaVA, i.e., the combined array of the Korean Very Long Baseline Interferometry (VLBI) Network and the VLBI Exploration of Radio Astrometry (VERA), toward the OH/IR star WX Psc. The combination of long and short antenna baselines enabled us to detect a large number of maser spots, which exhibit a typical ring-like structure in both the v = 1 and v = 2 J = 1 → 0 SiO masers as those that have been found in previous VLBI observational results of WX Psc. The relative alignment of the v = 1 and v = 2 SiO maser spots are precisely derived from astrometric analysis, due to the absolute coordinates of the reference maser spot that were well determined in an independent astrometric observation with VERA. The superposition of the v = 1 and v = 2 maser spot maps shows a good spatial correlation between the v = 1 and v = 2 SiO maser features. Nevertheless, it is also shown that the v = 2 SiO maser spot is distributed in an inner region compared to the v = 1 SiO maser by about 0.5 mas on average. These results provide good support for the recent theoretical studies of the SiO maser pumping, in which both the collisional and the radiative pumping predict the strong spatial correlation and the small spatial discrepancy between the v = 1 and v = 2 SiO maser.

  4. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  5. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO₃.

    Science.gov (United States)

    Wang, Zhenyou; Su, FuHai; Hegmann, Frank A

    2015-03-23

    We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO₃) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed. The effect of optical pump pulse polarization on the generation of THz Cherenkov waves and transition-like radiation in LiNbO₃ is also investigated.

  6. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  7. Cherenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    CERN Document Server

    Barão, F; Borges, J; Gonçalves, P; Pimenta, M; Pérez, I

    2003-01-01

    The Alpha Magnetic Spectrometer experiment to be installed on the International Space Station will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH are discussed. A Likelihood method for the Cherenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.

  8. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array

    CERN Document Server

    Tiziani, D; Oakes, L; Schwanke, U

    2016-01-01

    An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.

  9. Resonant dielectric metamaterials

    Science.gov (United States)

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  10. Method of making dielectric capacitors with increased dielectric breakdown strength

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  11. The SST-1M camera for the Cherenkov Telescope Array

    CERN Document Server

    Schioppa, E J; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Montaruli, T.; Porcelli, A.; Rameez, M.; Pujadas, I. Troyano; Bilnik, W.; Blocki, J.; Bogacz, L.; Bulik, T.; Curylo, M.; Dyrda, M.; Frankowski, A.; Grudniki, L.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszalek, A.; Michaowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, M.; Prandini, E.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowinski, M.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiecek, M.; Zagdanski, A.; Zietara, K.; Zychowski, P.

    2015-01-01

    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.

  12. Data compression for the First G-APD Cherenkov Telescope

    CERN Document Server

    Ahnen, M L; Bergmann, M; Biland, A; Bretz, T; Buß, J; Dorner, D; Einecke, S; Freiwald, J; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Neronov, A; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Steinbring, T; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2015-01-01

    The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT) has been operating on the Canary island of La Palma since October 2011. Operations were automated so that the system can be operated remotely. Manual interaction is required only when the observation schedule is modified due to weather conditions or in case of unexpected events such as a mechanical failure. Automatic operations enabled high data taking efficiency, which resulted in up to two terabytes of FITS files being recorded nightly and transferred from La Palma to the FACT archive at ISDC in Switzerland. Since long term storage of hundreds of terabytes of observations data is costly, data compression is mandatory. This paper discusses the design choices that were made to increase the compression ratio and speed of writing of the data with respect to existing compression algorithms. Following a more detailed motivation, the FACT compression algorithm along with the associated I/O layer is discussed. Eventually, the performances...

  13. First year results of the High Altitude Water Cherenkov observatory

    CERN Document Server

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (>95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volc\\'an Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC gamma-ray observatory.

  14. Building Medium Size Telescope Structures for the Cherenkov Telescope Array

    CERN Document Server

    Schulz, A; Oakes, L; Schlenstedt, S; Schwanke, U

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future instrument in ground-based gamma-ray astronomy in the energy range from 20 GeV to 300 TeV. Its sensitivity will surpass that of current generation experiments by a factor $\\sim$10, facilitated by telescopes of three sizes. The performance in the core energy regime will be dominated by Medium Size Telescopes (MST) with a reflector of 12 m diameter. A full-size mechanical prototype of the telescope structure has been constructed in Berlin. The performance of the prototype is being evaluated and optimisations, among others, facilitating the assembly procedure and mass production possibilities are being implemented. We present the current status of the developments from prototyping towards pre-production telescopes, which will be deployed at the final site.

  15. A New Light Boson from Cherenkov Telescopes Observations?

    CERN Document Server

    Roncadelli, Marco; Mansutti, Oriana

    2010-01-01

    Early indications by H.E.S.S. and the subsequent detection of blazar 3C279 by MAGIC show that the Universe is more transparent to very-high-energy gamma rays than previously thought. We demonstrate that this circumstance can be reconciled with standard blazar emission models provided that photon oscillations into a very light Axion-Like Particle occur in extragalactic magnetic fields. A quantitative estimate of this effect indeed explains the observed spectrum of 3C279. Our prediction can be tested by the satellite-borne Fermi/LAT detector as well as by the ground-based Imaging Atmospheric Cherenkov Telescopes H.E.S.S., MAGIC, CANGAROO III, VERITAS and by the Extensive Air Shower arrays ARGO-YBJ and MILAGRO.

  16. Early attempts at atmospheric simulations for the Cherenkov Telescope Array

    CERN Document Server

    Rulten, Cameron B

    2014-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first observatory for detecting gamma-rays from astrophysical phenomena and is now in its prototyping phase with construction expected to begin in 2015/16. In this work we present the results from early attempts at detailed simulation studies performed to assess the need for atmospheric monitoring. This will include discussion of some lidar analysis methods with a view to determining a range resolved atmospheric transmission profile. We find that under increased aerosol density levels, simulated gamma-ray astronomy data is systematically shifted leading to softer spectra. With lidar data we show that it is possible to fit atmospheric transmission models needed for generating lookup tables, which are used to infer the energy of a gamma-ray event, thus making it possible to correct affected data that would otherwise be considered unusable.

  17. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    CERN Document Server

    Bradbury, S M

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope.

  18. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    CERN Document Server

    van de Bruck, Carsten; Morrice, Jack

    2016-01-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  19. FACT: Towards Robotic Operation of an Imaging Air Cherenkov Telescope

    CERN Document Server

    Biland, A; Backes, M; Boccone, V; Braun, I; Bretz, T; Buss, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; Koehne, J -H; Kraehenbuehl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; Roeser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Zaenglein, M

    2013-01-01

    The First G-APD Cherenkov Telescope (FACT) became operational at La Palma in October 2011. Since summer 2012, due to very smooth and stable operation, it is the first telescope of its kind that is routinely operated from remote, without the need for a data-taking crew on site. In addition, many standard tasks of operation are executed automatically without the need for manual interaction. Based on the experience gained so far, some alterations to improve the safety of the system are under development to allow robotic operation in the future. We present the setup and precautions used to implement remote operations and the experience gained so far, as well as the work towards robotic operation.

  20. Charged kaon mass measurement using the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N., E-mail: ngraf@umail.iu.ed [Indiana University, Bloomington, IN 47403 (United States); Lebedev, A. [Harvard University, Cambridge, MA 02138 (United States); Abrams, R.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Akgun, U.; Aydin, G. [University of Iowa, Iowa City, IA 52242 (United States); Baker, W. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Barnes, P.D. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bergfeld, T. [University of South Carolina, Columbia, SC 29201 (United States); Beverly, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bujak, A. [Purdue University, West Lafayette, IN 47907 (United States); Carey, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Dukes, C. [University of Virginia, Charlottesville, VA 22904 (United States); Duru, F. [University of Iowa, Iowa City, IA 52242 (United States); Feldman, G.J. [Harvard University, Cambridge, MA 02138 (United States); Godley, A. [University of South Carolina, Columbia, SC 29201 (United States); Guelmez, E.; Guenaydin, Y.O. [University of Iowa, Iowa City, IA 52242 (United States); Gustafson, H.R. [University of Michigan, Ann Arbor, MI 48109 (United States); Gutay, L. [Purdue University, West Lafayette, IN 47907 (United States); Hartouni, E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-03-21

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 to +63GeV/c. The measured value is 491.3+-1.7MeV/c{sup 2}, which is within 1.4sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  1. Evidence for Observation of Virtual Radio Cherenkov Fields

    CERN Document Server

    Bean, Alice; Snow, James

    2010-01-01

    We present evidence for observation of virtual electromagnetic fields in the radio domain from experiment T926 at the Fermilab Meson Test Beam Facility. Relativistic protons with 120 GeV energy traversed a sealed electromagnetic cavity and were observed in the radio regime of 200MHz-GHz. Closely related to ordinary Cherenkov radiation, which we also measured, the virtual fields require no acceleration for their existence. The experiment is also the first observation of fields from hadronic showers, an independent and new confirmation of coherent radio emission from ultra-relativistic particles. Conditions of very low signal to noise were overcome by a novel and unbiased filtering strategy that exploits exhaustive studies of correlations in the noise backgrounds. Linear scaling of the signal region with the number of beam particles provides evidence of coherence. Extrapolation to measurement of the field of a single relativistic proton charge is consistent within errors. Our study also illustrates new data pro...

  2. Signal Temporal Profile of a Water Cherenkov Detector

    Science.gov (United States)

    Salazar, H.; Martinez, O.; Cotzomi, J.; Moreno, E.; Villaseñor, L.

    2003-07-01

    The suggested existence of temporal structure in the signals of extensive air showers (EAS) for energies greater than 1017 eV at core distances of about 500 m, and its correlation with important parameters of EASs has stimulated us to study this structure for showers with lower energies in an Auger water Cherenkov detector(WCD). Preliminary analysis of experimental data on the widths of signals in a WCD and their correlation with other parameters of the signal are presented. The detector was triggered by the EAS-BUAP array which operates in the region of 1014 - 1016 eV. The distance of the WCD to the EAS core is larger than 30 m.

  3. Charged Kaon Mass Measurement using the Cherenkov Effect

    CERN Document Server

    Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K

    2009-01-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  4. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Burrage, Clare; Morrice, Jack

    2016-08-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  5. Application of Geiger-mode photosensors in Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gamal, Ahmed, E-mail: gamal.ahmed@assoc.oeaw.ac.a [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Al-Azhar University, Faculty of Science, Physics Department, Cairo (Egypt); Paul, Buehler; Michael, Cargnelli [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Roland, Hohler [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann, Marton [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Herbert, Orth [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ken, Suzuki [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria)

    2011-05-21

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  6. Application of Geiger-mode photo sensors in Cherenkov detectors

    CERN Document Server

    Ahmed, Gamal; Cargnelli, Michael; Hohler, Roland; Marton, Johann; Orth, Herbert; Suzuki, Ken

    2010-01-01

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. In our institute we are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  7. Data model issues in the Cherenkov Telescope Array project

    CERN Document Server

    Contreras, J L; Bernlöhr, K; Boisson, C; Bregeon, J; Bulgarelli, A; de Cesare, G; Reyes, R de los; Fioretti, V; Kosack, K; Lavalley, C; Lyard, E; Marx, R; Rico, J; Sanguillot, M; Servillat, M; Walter, R; Ward, J E

    2015-01-01

    The planned Cherenkov Telescope Array (CTA), a future ground-based Very-High-Energy (VHE) gamma-ray observatory, will be the largest project of its kind. It aims to provide an order of magnitude increase in sensitivity compared to currently operating VHE experiments and open access to guest observers. These features, together with the thirty years lifetime planned for the installation, impose severe constraints on the data model currently being developed for the project. In this contribution we analyze the challenges faced by the CTA data model development and present the requirements imposed to face them. While the full data model is still not completed we show the organization of the work, status of the design, and an overview of the prototyping efforts carried out so far. We also show examples of specific aspects of the data model currently under development.

  8. An Innovative Workspace for The Cherenkov Telescope Array

    CERN Document Server

    Costa, Alessandro; Becchini, Ugo; Massimino, Piero; Riggi, Simone; Sanchez, David; Vitello, Fabio

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user i...

  9. The major atmospheric gamma-ray imaging Cherenkov telescope

    Science.gov (United States)

    Garczarczyk, Markus; MAGIC Collaboration

    2011-05-01

    MAGIC is a system of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) for ground-based γ-ray astronomy. During many years, starting with the design phase of the first telescope in 2003, the upgrade of the second telescope in 2008 up to now, novel technologies have been developed, commissioned and continuously improved. Most components and subsystems represent nowadays state of the art techniques and are under consideration to be used in future detectors. The large reflector area, together with small diameter, high quantum efficiency (QE) photomultipliers (PMTs) in combination with an improved trigger and readout system permits an analysis threshold of 25 GeV, the lowest among current IACTs. MAGIC overlaps in energy with the upper end of current satellite experiments and gives the unique opportunity, for the first time, to cross-calibrate ground based versus satellite born detectors. Some selected techniques used in MAGIC, which are in context with this conference, are presented.

  10. First year results of the High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  11. The HERMES dual-radiator ring imaging Cherenkov detector

    Science.gov (United States)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  12. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  13. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension using Cherenkov radiation to measure Cosmic Ray Composition to sub-PeV energies

    Science.gov (United States)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2017-01-01

    Co-sited with the Telescope Array (TA) Low Energy (TALE) extension, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV in its eventual full deployment. NICHE will co-measure CR air showers with TA/TALE and will initially be deployed to observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode, providing the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in early 2017 at the TA/TALE site. In this talk, the NICHE design, array performance, jNICHE development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  14. Methanol masers probing the ordered magnetic field of W75N

    Science.gov (United States)

    Surcis, G.; Vlemmings, W. H. T.; Dodson, R.; van Langevelde, H. J.

    2009-11-01

    Context: The role of magnetic fields during the protostellar phase of high-mass star-formation is a debated topic. In particular, it is still unclear how magnetic fields influence the formation and dynamic of disks and outflows. Most current information on magnetic fields close to high-mass protostars comes from H2O and OH maser observations. Recently, the first 6.7 GHz methanol maser polarization observations were made, and they reveal strong and ordered magnetic fields. Aims: The morphology of the magnetic field during high-mass star-formation needs to be investigated on small scales, which can only be done using very long baseline interferometry observations. The massive star-forming region W75N contains three radio sources and associated masers, while a large-scale molecular bipolar outflow is also present. Polarization observations of the 6.7 GHz methanol masers at high angular resolution probe the strength and structure of the magnetic field and determine its relation to the outflow. Methods: Eight of the European VLBI network antennas were used to measure the linear polarization and Zeeman-splitting of the 6.7 GHz methanol masers in the star-forming region W75N. Results: We detected 10 methanol maser features, 4 of which were undetected in previous work. All arise near the source VLA 1 of W75N. The linear polarization of the masers reveals a tightly ordered magnetic field over more than 2000 AU around VLA 1 that is exactly aligned with the large-scale molecular outflow. This is consistent with the twisted magnetic field model proposed for explaining dust polarization observations. The Zeeman-splitting measured on 3 of the maser features indicates a dynamically important magnetic field in the maser region of the order of 50 mG. We suggest VLA 1 is the powering sources of the bipolar outflow. Member of the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne.

  15. Optical properties of water for the Yangbajing water cherenkov detector

    Science.gov (United States)

    Gao, Shang-qi; Sun, Zhi-bin; Jiang, Yuan-da; Wang, Chao; Du, Ke-ming

    2011-08-01

    Cherenkov radiation is used to study the production of particles during collisions, cosmic rays detections and distinguishing between different types of neutrinos and electrons. The optical properties of water are very important to the research of Cherenkov Effect. Lambert-beer law is a method to study the attenuation of light through medium. In this paper, optical properties of water are investigated by use of a water attenuation performance test system. The system is composed of the light-emitting diode (LED) light source and the photon receiver models. The LED light source model provides a pulse light signal which frequency is 1 kHz and width is 100ns. In photon receiver model, a high sensitivity photomultiplier tube (PMT) is used to detect the photons across the water. Because the output voltage amplitude of PMT is weak which is from 80mv to 120mV, a low noise pre-amplifier is used to improve the detector precise. An effective detector maximum time window of PMT is 100ns for a long lifetime, so a peak holder circuit is used to hold the maximum peak amplitude of PMT for the induced photons signal before the digitalization. In order to reduce the noise of peak holder, a multi-pulse integration is used before the sampling of analog to digital converter. At last, the detector of photons from the light source to the PMT across the water is synchronized to the pulse width of the LED. In order to calculate the attenuation coefficient and attenuation length of water precisely, the attenuation properties of air-to-water boundary is considered in the calculation.

  16. Discovery of the Zeeman Effect in the 44 GHz Class I methanol maser line

    CERN Document Server

    Sarma, A P

    2011-01-01

    We report the discovery of the Zeeman effect in the 44 GHz Class I methanol maser line. The observations were carried out with 22 antennas of the EVLA toward a star forming region in OMC-2. Based on our adopted Zeeman splitting factor of z = 1.0 Hz/mG, we detect a line of sight magnetic field of 18.4 +/- 1.1 mG toward this source. Since such 44 GHz methanol masers arise from shocks in the outflows of star forming regions, we can relate our measurement of the post-shock magnetic field to field strengths indicated by species tracing pre-shock regions, and thus characterize the large scale magnetic field. Moreover, since Class I masers trace regions more remote from the star forming core than Class II masers, and possibly earlier phases, magnetic fields detected in 6.7 GHz Class II and 36 GHz and 44 GHz Class I methanol maser lines together offer the potential of providing a more complete picture of the magnetic field. This motivates further observations at high angular resolution to find the positional relation...

  17. Generation of the jovian radio emission by the maser cyclotron instability: first lessons from JUNO

    Science.gov (United States)

    Louarn, Philippe; Allegrini, Frederic; Kurth, WilliamS.; Valek, Philips. W.; McComas, Dave; Bagenal, Fran; Bolton, Scott; Connerney, John; Ebert, Robert W.; Levin, Steven; Szalay, Jamey; Wilson, Robert; Zink, Jenna; André, Nicolas; Imai, Masafumi

    2017-04-01

    Using JUNO plasma and wave observations (JADE and Waves instruments), the scenario for the generation of jovian auroral radio emissions are analyzed. The sources of radiation are identified by localized intensifications of the radio flux at frequencies close to the electron gyrofrequency. Not surprisingly, it is shown that the cyclotron maser instability is perfectly adapted to the plasma conditions prevailing in the radio sources. However, it appears that different forms of activation of the cyclotron maser are observed. For radiation at hectometric wavelengths (one of the main emissions), pronounced loss-cones in the electron distribution functions are likely the source of free energy. The sources would be extended over several thousand km in directions traverse to the magnetic field. The applications of the theory reveals that sufficient growth rates are obtained from the distributions functions that are actually measured by JADE. This differs from the Earth scenario for which 'trapped' distribution functions drive the maser. More localized sources are also observed, possibly linked to local acceleration process. These examples may present analogies with the 'Earth' scenario, with other forms of free energy than the loss-cone. A first lesson of these direct in-situ JADE and RPWS observations is thus to confirm the maser cyclotron scenario with, however, conditions for the wave amplification and detailed maser processes that appear to be different than at Earth.

  18. A Catalog of Methanol Masers in Massive Star-forming Regions. III. The Molecular Outflow Sample

    CERN Document Server

    Gómez-Ruiz, A I; Araya, E D; Hofner, P; Loinard, L

    2016-01-01

    We present an interferometric survey of the 44 GHz class I methanol maser transition toward a sample of 69 sources consisting of High Mass Protostellar Object candidates and Ultracompact (UC) H II regions. We found a 38% detection rate (16 of 42) in the HMPO candidates and a 54% detection rate (13 of 24) for the regions with ionized gas. This result indicates that class I methanol maser emission is more common toward more evolved young stellar objects of our sample. Comparing with similar interferometric data sets, our observations show narrower linewidths, likely due to our higher spatial resolution. Based on a comparison between molecular outflow tracers and the maser positions, we find several cases where the masers appear to be located at the outflow interface with the surrounding core. Unlike previous surveys, we also find several cases where the masers appear to be located close to the base of the molecular outflow, although we can not discard projection effects. This and other surveys of class I methan...

  19. Distance and proper motion measurement of water masers in Shapless 269 IRS 2w

    CERN Document Server

    Asaki, Yoshiharu; Sobolev, Andrej Mikhailovich; Parfenov, Sergey Yurievich

    2014-01-01

    We present astrometric analysis of archival data of water masers in the star-forming region Sharpless 269 (S269) IRS 2w, observed with the VLBI Exploration of Radio Astrometry. An annual parallax of one of the bright maser features in this region was previously reported to be 0.189+/-0.008 milliarcsecond (mas) using part of the same archival data as we used. However, we found that this maser feature is not the best to represent the annual parallax to S269 IRS 2w because the morphology is remarkably elongated in the east-west direction. For this study we have selected another maser feature showing simpler morphology. This makes the new annual parallax estimate more credible. Our newly obtained annual parallax is 0.247+/-0.034 mas, corresponding to 4.05+0.65-0.49 kpc. This value is well consistent with the 3.7-3.8 kpc obtained using the kinematic distance estimates and photometric distance modulus. We considered two hypotheses for the water maser spatial distribution, a bipolar outflow and an expanding ring, in...

  20. Models of class II methanol masers based on improved molecular data

    CERN Document Server

    Cragg, D M; Godfrey, P D

    2005-01-01

    The class II masers of methanol are associated with the early stages of formation of high-mass stars. Modelling of these dense, dusty environments has demonstrated that pumping by infrared radiation can account for the observed masers. Collisions with other molecules in the ambient gas also play a significant role, but have not been well modelled in the past. Here we examine the effects on the maser models of newly available collision rate coefficients for methanol. The new collision data does not alter which transitions become masers in the models, but does influence their brightness and the conditions under which they switch on and off. At gas temperatures above 100 K the effects are broadly consistent with a reduction in the overall collision cross-section. This means, for example, that a slightly higher gas density than identified previously can account for most of the observed masers in W3(OH). We have also examined the effects of including more excited state energy levels in the models, and find that th...

  1. The Megamaser Cosmology Project.IX. Black hole masses for three maser galaxies

    CERN Document Server

    Gao, F; Reid, M J; Condon, J J; Greene, J E; Henkel, C; Impellizzeri, C M V; Lo, K Y; Kuo, C Y; Pesce, D W; Wagner, J; Zhao, W

    2016-01-01

    As part of the Megamaser Cosmology Project (MCP), we present VLBI maps of nuclear water masers toward five galaxies. The masers originate in sub-parsec circumnuclear disks. For three of the galaxies, we fit Keplerian rotation curves to estimate their supermassive black hole (SMBH) masses, and determine (2.9 $\\pm$ 0.3) $\\times~10^{6}M_\\odot$ for J0437+2456, (1.7 $\\pm$ 0.1) $\\times~10^{7}M_\\odot$ for ESO 558$-$G009, and (1.1 $\\pm$ 0.2) $\\times~10^{7}M_\\odot$ for NGC 5495. In the other two galaxies, Mrk 1029 and NGC 1320, the geometry and dynamics are more complicated and preclude robust black hole mass estimates. Including our new results, we compiled a list of 15 VLBI-confirmed disk maser galaxies with robust SMBH mass measurements. With this sample, we confirm the empirical relation of $R_{out} \\propto 0.3 M_{SMBH}$ reported in Wardle & Yusef-Zadeh (2012). We also find a tentative correlation between maser disk outer radii and WISE luminosity. We find no correlations of maser disk size with X-ray 2-10 keV...

  2. Response of circumnuclear water masers to luminosity changes in an active galactic nucleus

    CERN Document Server

    Neufeld, D A

    2000-01-01

    Circumnuclear water masers can respond in two ways to changes in the luminosity of an active galactic nucleus. First, an increase in the X-ray luminosity can lead to an increase in the maser emissivity; and second, an increase in the intrinsic bolometric luminosity may result in a temporary decrease in the difference between the gas and dust temperature and a consequent decrease in the maser output. Whilst the latter effect can occur over a period shorter than the thermal timescale, the former effect cannot. Quantitative estimates of the response of the water maser emissivity to changes in either the X-ray or bolometric luminosity are presented, together with estimates of the relevant timescales. Either mechanism could account for recent observations by Gallimore et al. which suggest that the water maser variability in two widely separated regions of the circumnuclear gas in NGC 1068 have been coordinated by a signal from the active nucleus. For either mechanism, a minimum H2 density ~ 1.E+8 cm-3 is needed to...

  3. The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts

    Science.gov (United States)

    Winglee, R. M.; Dulk, G. A.

    1986-01-01

    The generation of continuum bursts from the sun at dm and m wavelengths (in particular, type IV bursts) via the electron-cyclotron-maser instability is examined. The maser instability can be driven by an electron distribution with either a loss-cone anisotropy or a peak at large pitch angles. For omega(p)/Omega(e) much greater than 1, the maser emission is produced by electrons interacting through a harmonic (cyclotron) resonance and is electrostatic, being in the upper hybrid mode at frequencies approximately equal to omega(p). Coalescence processes are required to convert the electrostatic waves into transverse radiation which can escape from the source region. Whether the resultant spectrum is nearly a smooth continuum or has a zebra-stripe pattern (both of which occur in type IV bursts) depends on the form of the electron distribution, inhomogeneities in the density and magnetic field, and whether the maser reaches saturation. For at least the case of some type IV dm bursts with fine structure, comparison with observations seems to indicate that the electrons producing the emission are more likely to have a loss-cone distribution, and that the maser instability is not at saturation.

  4. The magnetic field around late-type stars revealed by the circumstellar H2O masers

    CERN Document Server

    Vlemmings, W H T; Diamond, P J

    2005-01-01

    Through polarization observations, circumstellar masers are excellent probes of the magnetic field in the envelopes of late-type stars. Whereas observations of the polarization of the SiO masers close to the star and on the OH masers much further out were fairly commonplace, observations of the magnetic field strength in the intermediate density and temperature region where the 22 GHz water masers occur have only recently become possible. Here we present the analysis of the circular polarization, due to Zeeman splitting, of the water masers around the Mira variable stars U Her and U Ori and the supergiant VX Sgr. We present an upper limit of the field around U Her that is lower but consistent with previous measurements, reflecting possible changes in the circumstellar envelope. The field strengths around U Ori and VX Sgr are shown to be of the order of several Gauss. Moreover, we show for the first time that large scale magnetic fields permeate the circumstellar envelopes of an evolved star; the polarization ...

  5. Probing the circumstellar environments of very young low-mass stars using water masers

    Science.gov (United States)

    Terebey, S.; Vogel, S. N.; Myers, P. C.

    1992-01-01

    The VLA is used to search nearby very young low-mass stars for water maser emission. The sample consists of 26 low-luminosity IRAS sources embedded in dense molecular cores, a class of sources suspected to be newly forming low-mass stars on the order of a few hundred thousand years old. Three sources were detected. High spatial resolution maps show the region of maser emission is generally confined to an area smaller than about 0.5 arcsec near the star, and the velocities of individual components span intervals ranging from 20 to 40 km/s. It is inferred from the fact that the maser velocities are too large to be due to gravitational motions in at least two of the sources that the masers are associated with the winds from the young low-mass stars. A comparison of the high spatial resolution maser data to lower-resolution CO data shows no evidence for higher collimation close to the star; the stellar wind cavity appears to have similar collimation at 10 exp 15 cm as at 10 exp 7 to 10 exp 18 cm.

  6. HIGH-RESOLUTION IMAGING OF WATER MASER EMISSION IN THE ACTIVE GALAXIES NGC 6240 AND M51

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoshiaki [Natural Science Laboratory, Toyo University, 5-28-20, Hakusan, Bunkyo-ku, Tokyo 112-8606 (Japan); Edwards, Philip G., E-mail: yhagiwara@toyo.jp, E-mail: Philip.Edwards@csiro.au [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia)

    2015-12-20

    We present the results of observations of 22 GHz H{sub 2}O maser emission in NGC 6240 and M51 made with the Karl G. Jansky Very Large Array. Two major H{sub 2}O maser features and several minor features are detected toward the southern nucleus of NGC 6240. These features are redshifted by about 300 km s{sup −1} from the galaxy’s systemic velocity and remain unresolved at the synthesized beam size. A combination of our two-epoch observations and published data reveals an apparent correlation between the strength of the maser and the 22 GHz radio continuum emission, implying that the maser excitation relates to the activity of an active galactic nucleus in the southern nucleus rather than star-forming activity. The star-forming galaxy M51 hosts H{sub 2}O maser emission in the center of the galaxy; however, the origin of the maser has been an open question. We report the first detection of 22 GHz nuclear radio continuum emission in M51. The continuum emission is co-located with the maser position, which indicates that the maser arises from nuclear active galactic nucleus-activity and not from star-forming activity in the galaxy.

  7. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    CERN Document Server

    Lagamba, L; Colilli, S; Crateri, R; De Leo, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Leone, A; Lucentini, M; Mostarda, A; Nappi, E; Perrino, R; Pierangeli, L; Santavenere, F; Urciuoli, G M

    2001-01-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5 GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performan...

  8. Extension of Cherenkov Light LDF Parametrization for Tunka and Yakutsk EAS Arrays

    Indian Academy of Sciences (India)

    A. A. Al-Rubaiee

    2014-12-01

    The Cherenkov light Lateral Distribution Function (LDF) from particles initiated Extensive Air Showers (EAS) with ultrahigh energies ( > 1016 eV) was simulated using CORSIKA program for configuration of Tunka and Yakutsk EAS arrays for different primary particles (p, Fe and O2) and different zenith angles. By depending on the Breit–Wigner function, a parametrization of the Cherenkov light LDF was reconstructed on the basis of this simulation as a function of the primary energy. The comparison of the approximated Cherenkov light LDF with that measured on Tunka and Yakutsk EAS arrays gives the possibility of identification of energy spectrum and mass composition of particles initiating EAS about the knee region of the cosmic ray spectrum. The extrapolation of approximated Cherenkov light LDF for energies 20, 30 and 50 PeV was obtained for different primary particles and different zenith angles.

  9. Large acceptance forward Cherenkov detector for the BRAHMS experiment at RHIC

    Science.gov (United States)

    Budick, B.; Beavis, D.; Chasman, C.

    2010-09-01

    A multi-element detector based on Cherenkov radiation in plastic and on photomultiplier tubes has been constructed that is particularly useful in collider experiments. The detector covers the pseudorapidity interval 3.23BRAHMS.

  10. Ionospheric propagation effects for UHE neutrino detection with the lunar Cherenkov technique

    CERN Document Server

    McFadden, Rebecca; Bray, Justin

    2013-01-01

    Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during propagation through the Earth's ionosphere. Pulse dispersion must therefore be corrected to maximise the received signal to noise ratio and subsequent chances of detection. The pulse dispersion characteristic may also provide a powerful signature to determine the lunar origin of a pulse and discriminate against pulses of terrestrial radio frequency interference (RFI). This characteristic is parameterised by the instantaneous Total Electron Content (TEC) of the ionosphere and therefore an accurate knowledge of the ionospheric TEC provides an experimental advantage for the detection and identification of lunar Cherenkov pulses. We present a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses using lunar Faraday rotation measurem...

  11. Research on mutual influence of Cherenkov-type probes within the ISTTOK tokamak chamber

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.jakubowski@ncbj.gov.pl [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Zebrowski, J.; Rabinski, M. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Fernandes, H.; Silva, C.; Figueiredo, H. [Association Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland)

    2014-12-11

    The paper describes an influence of a Cherenkov-type probe, which is used for measurements of fast electron streams inside the ISTTOK chamber, on other probes and behaviour of a plasma ring. The reported study shows that such a probe situated near the plasma column has a strong influence on signals from another Cherenkov probe, and can cause a considerable reduction of electron-induced signals. This effect does not depend on positions of the probes in relation to the limiter. Measurements of hard X-ray (HXR) emission show that the deeply immersed Cherenkov probe can also influence on the limiter . Under specific experimental conditions such a Cherenkov probe can play the role of a new limiter and change the plasma configuration.

  12. Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET

    CERN Document Server

    Brunner, S E; Marton, J; Suzuki, K; Hirtl, A

    2013-01-01

    With the newly gained interest in the time of flight method for positron emission tomography (TOF-PET), many options for pushing the time resolution to its borders have been investigated. As one of these options the exploitation of the Cherenkov effect has been proposed, since it allows to bypass the scintillation process and therefore provides almost instantaneous response to incident 511keV annihilation photons. Our simulation studies on the yield of Cherenkov photons, their arrival rate at the photon detector and their angular distribution reveal a significant influence by Cherenkov photons on the rise time of inorganic scintillators - a key-parameter for TOF in PET. A measurement shows the feasibility to detect Cherenkov photons in this low energy range.

  13. Time and charge calibration of Cherenkov telescope data acquired by Domino Ring Sampler 4 chips

    Energy Technology Data Exchange (ETDEWEB)

    Hoerbe, Mario; Doert, Marlene [Ruhr-Universitaet Bochum (Germany); Bruegge, Kai; Buss, Jens; Bockermann, Christian; Egorov, Alexej [TU Dortmund (Germany)

    2016-07-01

    Very-high-energy gamma-ray astronomy aims to give an insight into the most energetic phenomena in our Universe. Earthbound Cherenkov telescopes can measure Cherenkov light emitted by atmospheric particle showers which are produced by incoming cosmic particles at high energies. Current Cherenkov telescopes, e.g. operated in the FACT and the MAGIC experiments, utilize Domino Ring Sampler 4 (DRS4) chips for recording signals at high speed coming from the telescopes' cameras. DRS4 chips will also be used in the cameras of the Large-Size telescopes of the projected Cherenkov Telescope Array (CTA). We aim at developing a software solution for the calibration of DRS4 data based on the streams-framework, a software tool for streaming analysis which has been developed within the Collaborative Research Center SFB 876. The objectives and the current status of the project are presented.

  14. Very high energy emission of Crab-like pulsars driven by the Cherenkov drift radiation

    CERN Document Server

    Osmanov, Z

    2015-01-01

    In this paper we study the generation of very high energy (VHE) emission in Crab-like pulsars driven by means of the feedback of Cherenkov drift waves on distribution of magnetospheric electrons. We have found that the unstable Cherenkov drift modes lead to the quasi-linear diffusion (QLD), keeping the pitch angles from vanishing, which in turn, maintains the synchrotron mechanism. Considering the Crab-like pulsars it has been shown that the growth rate of the Cherenkov drift instability (ChDI) is quite high, indicating high efficiency of the process. Analyzing the mechanism for the typical parameters we have found that the Cherenkov drift emission from the extreme UV to hard $X$-rays is strongly correlated with the VHE synchrotron emission in the GeV band.

  15. Extragalactic H2O Megamaser Sources:Central Black Holes,Nuclear X-ray and Maser Emissions

    Institute of Scientific and Technical Information of China (English)

    Jiang-Bo Su; Jiang-Shui Zhang; Jun-Hui Fan

    2008-01-01

    Extragalactic H2O megamasers are typically found within the innermost few parsecs of active galaxy nuclei (AGN) and the maser emission is considered to be excited most likely by the X-ray irradiation of the AGN.We investigate a comprehensive sample of extragalactic H2O masers in a sample of 38 maser host AGN to check potential correlations of the megamaser emission with parameters of the AGN,such as X-ray luminosity and black hole (BH) masses.We find a relation between the maser luminosities and BH masses,LH2O∝ M3.64-0.4 BH,which supports basically the theoretical prediction.The relation between the maser emission and X-ray emission is also confirmed.

  16. Generation of Interstellar Class Ⅱ 72-81A+ and 72-81A-Methanol Masers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    New methanol maser lines at 72→63A-(86.6 GHz) and 72→63A+(86.9GHz) together with two candidate methanol maser lines at 72→81A-(80.99 GHz) and 72→81A+(111.29GHz) have been detected in W3(OH). We use a pumping mechanism, i.e., methanol masers without population inversion, to explain the formation of weak methanol masers of 72→81A+and 72→81A-. We explain well why the line-shape of the transition 72→81A+is not typical. A similar argument can be applied to the A-type level system 72A→, 63A-and 81A-, as well as to the 72→81A- 80.99 GHz masers.

  17. Galactic masers: kinematics, spiral structure and the disk dynamic state

    CERN Document Server

    Rastorguev, A S; Dambis, A K; Utkin, N D; Bajkova, A T; Bobylev, V V

    2016-01-01

    We investigate the kinematics of 131 Milky-Way masers associated with star-forming regions and with trigonometric parallaxes measured by Very Large Baseline Radio Interferometry. We developed a new algorithm for computing the structural and kinematic parameters of the Galactic disk, which implements the currently most comprehensive version of the statistical-parallax technique. To take into account the variation of the form and size of the ellipsoid of residual velocities as a function of Galactocentric distance, we assume that radial velocity dispersion is related to disk surface density and apply the Jeans hydrodynamic equations. We compute the Galactic rotation curve over the Galactocentric distance interval from 3 to 14 kpc and find the local circular rotation velocity to be 243 +/- 10 km/s, and we also determine a full set of kinematical parameters, including the parameters of the four-armed spiral pattern with the pitch angle i ~ -10.45 +/- 0.30 deg. The galactocentric distance is found to be R0 = 8.40 ...

  18. Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    CERN Document Server

    Zhang, S S; Cao, Z; Chen, S Z; Chen, M J; Chen, Y; Chen, L H; Ding, K Q; He, H H; Liu, J L; Li, X X; Liu, J; Ma, L L; Ma, X H; Sheng, X D; Zhou, B; Zhang, Y; Zhao, J; Zha, M; Xiao, G

    2011-01-01

    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented.

  19. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Ebert, Joachim; Hartin, Anthony; Helebrant, Christian; Kaefer, Daniela; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  20. Cherenkov Radiation from $e^+e^-$ Pairs and Its Effect on $\

    CERN Document Server

    Mandal, S K; Jackson, David J; Mandal, Sourav K.; Klein, Spencer R.

    2005-01-01

    We calculate the Cherenkov radiation from an $e^+e^-$ pair at small separations, as occurs shortly after a pair conversion. The radiation is reduced (compared to that from two independent particles) when the pair separation is smaller than the wavelength of the emitted light. We estimate the reduction in light in large electromagnetic showers, and discuss the implications for detectors that observe Cherenkov radiation from showers in the Earth's atmosphere, as well as in oceans and Antarctic ice.

  1. Design and Construction of a Cherenkov Detector for Compton Polarimetry at the ILC

    CERN Document Server

    Bartels, Christoph; Hartin, Anthony; Helebrant, Christian; Käfer, Daniela; List, Jenny

    2010-01-01

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed.

  2. Intense Cherenkov-type terahertz electromagnetic radiation from ultrafast laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing; Li Wei

    2008-01-01

    A Cherenkov-type terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser-plasma interaction.The emitted pulse waveform and spectrum, and the dependence of laser pulse parameters on the structure of the radiation field are investigated numerically. The condition of THz radiation generation in this regime and Cherenkov geometry of the radiation field are studied analytically.

  3. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  4. Dielectric material for dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Moran, P.R.; Podgorsak, E.; Fullerton, G.D.; Fuller, G.E.

    1976-01-27

    A RITAD dosimeter is described having a dielectric material such as sapphire wherein the efficiency as measured by mean drift distance and trapping efficiency is increased by making use of a dielectric material in which the total active impurity does not exceed 50 ppm and in which any one active impurity does not exceed 10 ppm.

  5. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable refra

  6. Intermittent maser flare around the high-mass young stellar object G353.273+0.641

    Science.gov (United States)

    Motogi, Kazuhito; Sorai, Kazuo; Fujisawa, Kenta; Sugiyama, Koichiro; Honma, Mareki

    2012-07-01

    The water maser site associated with G353.273+0.641 is classified as a dominant blueshifted H2O maser, which shows an extremely wide velocity range (+/- 100 km s-1) with almost all flux concentrated in the highly blueshifted emission. The previous study has proposed that this peculiar H2O maser site is excited by a pole-on jet from high mass protostellar object. We report on the monitoring of 22-GHz H2O maser emission from G353.273+0.641 with the VLBI Exploration of Radio Astrometry (VERA) and the Tomakamai 11-m radio telescope. Our VLBI imaging has shown that all maser features are distributed within a very small area of 200 × 200 au2, in spite of the wide velocity range (> 100 km s-1). The light curve obtained by weekly single-dish monitoring shows notably intermittent variation. We have detected three maser flares during three years. Frequent VLBI monitoring has revealed that these flare activities have been accompanied by a significant change of the maser alignments. We have also detected synchronized linear acceleration (-5 km s-1yr-1) of two isolated velocity components, suggesting a lower-limit momentum rate of 10-3 M⊙ km s-1yr-1 for the maser acceleration. All our results support the previously proposed pole-on jet scenario, and finally, a radio jet itself has been detected in our follow-up ATCA observation. If highly intermittent maser flares directly reflect episodic jet-launchings, G353.273+0.641 and similar dominant blueshifted water maser sources can be suitable targets for a time-resolved study of high mass protostellar jet.

  7. The Motion of Water Masers in the Pre-Planetary Nebula IRAS 16342-3814

    CERN Document Server

    Claussen, M J; Morris, M R

    2008-01-01

    We present high angular resolution observations, using the Very Long Baseline Array (VLBA) of the NRAO, of the high-velocity water masers toward the "water-fountain" pre-planetary nebula, IRAS 16342-3814. The detailed structure of the water masers appears to be that of bow shocks on either side of a highly collimated jet. The proper motions of the water masers are approximately equal to the radial velocities; the three-dimensional velocities are approximately +/-180 km/s, which leads to a very short dynamical time-scale of ~100 years. Although we do not find direct evidence for precession of the fast collimated jet, there may be indirect evidence for such precession.

  8. EVN observations of 6.7 GHz methanol masers from Medicina survey

    CERN Document Server

    Voronkov, M A; Palagi, F; Tofani, G

    2002-01-01

    We report VLBI observations of methanol masers in the brightest 5(1)-6(0) A+ transition at 6.7 GHz in NGC 281W, 18151-1208 and 19388+2357. Using the fringe rate method absolute positions were obtained for all observed sources. A linear ordered structure with a velocity gradient was revealed in NGC 281W. Under assumption that such structure is an edge-on Keplerian disk around the central object with a mass of 30Msun located at a distance of 3.5 kpc from the Sun, we estimated that methanol masers are situated at the distance about 400 a.u. from the center of the disk. A second epoch of observations was reported for L1206, GL2789 and 20062+3550. The upper limits on the relative motions of maser spots are estimated to be 4.7 km/s and 28 km/s for L1206 and GL2789 respectively.

  9. Circular Polarization of Water Masers in the Circumstellar Envelopes of Late Type Stars

    CERN Document Server

    Vlemmings, W H T; Van Langevelde, H J

    2002-01-01

    We present circular polarization measurements of circumstellar H_2O masers. The circular polarization detected in the (6_{16}-5_{23}) rotational transition of the H_{2}O maser can be attributed to Zeeman splitting in the intermediate temperature and density regime. The magnetic fields are derived using a general, LTE Zeeman analysis as well as a full radiative transfer method (non-LTE), which includes a treatment of all hyperfine components simultaneously as well as the effects of saturation and unequal populations of the magnetic substates. The differences and relevances of these interpretations are discussed extensively. The field strengths are compared with previous detections of the magnetic field on the SiO and OH masers. We show that the magnetic pressure dominates the thermal pressure by a factor of 20 or more.

  10. Low-cost electron-gun pulser for table-top maser experiments

    Science.gov (United States)

    Grinberg, V.; Jerby, E.; Shahadi, A.

    1995-04-01

    A simple 10 kV electron-gun pulser for small-scale maser experiments is presented. This low-cost pulser has operated successfully in various table-top cyclotron-resonance maser (CRM) and free-electron maser (FEM) experiments. It consists of a low-voltage capacitor bank, an SCR control circuit and a transformer bank (car ignition coils) connected directly to the e-gun. The pulser produces a current of 3 A at 10 kV voltage in a Gaussian like shape of 1 ms pulse width. The voltage sweep during the pulse provides a useful tool to locate resonances of CRM and FEM interactions. Analytical expressions for the pulser design and experimental measurements are presented.

  11. Measuring the Distance of VX Sagittarii with SiO Maser Proper Motions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report on 43 GHz v=1, J=1-0 SiO maser proper motions in the circumstellar envelope of the M-type semi-regular variable star VX Sgr, observed by Very Long Baseline Array (VLBA) at 3 epochs during 1999 April-May. Applying the statistical parallax analysis to these proper motions, we estimated a distance of VX Sgr of 1.57±0.27 kpc, which is consistent with that based on the proper motions of H2O masers, or on the assumption that VX Sgr belongs to the Sgr OB1 association. At this distance, VX Sgr can be classified as a red supergiant. Comparing the statistical parallax method with those of model fitting and annual parallax, we think that the statistical parallax method may be a good way of estimating SiO maser distances at present.

  12. Magnetic fields around late-type stars using water maser observations

    CERN Document Server

    Vlemmings, W H T; Diamond, P J

    2005-01-01

    We present the analysis of the circular polarization, due to Zeeman splitting, of the water masers around a sample of late-type stars to determine the magnetic fields in their circumstellar envelopes. The magnetic field strengths in the water maser regions around the Mira variable stars U Ori and U Her are shown to be several Gauss while those of the supergiants S Per, NML Cyg and VY CMa are several hundred mG. We also show that large scale magnetic fields permeate the CSE of an evolved star; the polarization of the water masers around VX Sgr reveals a dipole field structure. We shortly discuss the coupling of the magnetic field with the stellar outflow, as such fields could possibly be the cause of distinctly aspherical mass-loss and the resulting aspherical planetary nebulae.

  13. Measuring the Distance of VX Sagittarii with SiO Maser Proper Motions

    Science.gov (United States)

    Chen, Xi; Shen, Zhi-Qiang; Xu, Ye

    2007-08-01

    We report on 43 GHz v=1, J=1--0 SiO maser proper motions in the circumstellar envelope of the M-type semi-regular variable star VX Sgr, observed by Very Long Baseline Array (VLBA) at 3 epochs during 1999 April--May. Applying the statistical parallax analysis to these proper motions, we estimated a distance of VX Sgr of 1.57±0.27 kpc, which is consistent with that based on the proper motions of H2O masers, or on the assumption that VX Sgr belongs to the Sgr OB1 association. At this distance, VX Sgr can be classified as a red supergiant. Comparing the statistical parallax method with those of model fitting and annual parallax, we think that the statistical parallax method may be a good way of estimating SiO maser distances at present.

  14. Development of cross-correlation spectrometry and the coherent structures of maser sources

    CERN Document Server

    Takefuji, Kazuhiro; Sekido, Mamoru

    2016-01-01

    We have developed a new method of data processing for radio telescope observation data to measure time-dependent temporal coherence, and we named it cross-correlation spectrometry (XCS). XCS is an autocorrelation procedure that expands time lags over the integration time and is applied to data obtained from a single-dish observation. The temporal coherence property of received signals is enhanced by XCS. We tested the XCS technique using the data of strong H2O masers in W3 (H2O), W49N and W75N. We obtained the temporal coherent lengths of the maser emission to be 17.95 $\\pm$ 0.33 {\\mu}s, 26.89 $\\pm$ 0.49 {\\mu}s and 15.95 $\\pm$ 0.46 {\\mu}s for W3 (H2O), W49N and W75N, respectively. These results may indicate the existence of a coherent astrophysical maser.

  15. Development of cross-correlation spectrometry and the coherent structures of maser sources

    Science.gov (United States)

    Takefuji, Kazuhiro; Imai, Hiroshi; Sekido, Mamoru

    2016-10-01

    We have developed a new method of data processing for radio telescope observation data to measure time-dependent temporal coherence, and we have named it "cross-correlation spectrometry" (XCS). XCS is an autocorrelation procedure that expands time lags over the integration time and is applied to data obtained from a single-dish observation. The temporal coherence property of received signals is enhanced by XCS. We tested the XCS technique using the data of strong H2O masers in W 3 (H2O), W 49 N, and W 75 N. We obtained the temporal coherent lengths of the maser emission to be 17.95 ± 0.33 μs, 26.89 ± 0.49 μs, and 15.95 ± 0.46 μs for W 3 (H2O), W 49 N, and W 75 N, respectively. These results may indicate the existence of a coherent astrophysical maser.

  16. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  17. The Circumstellar Environment of Evolved Stars as Revealed by Studies of Circumstellar Water Masers

    Science.gov (United States)

    Marvel, K.

    1997-11-01

    This dissertation presents the results of a multi-epoch very long baseline interferometric (VLBI) study of water masers located in the extended atmospheres of seven evolved stars. The research was performed using the Very Long Baseline Array and Very Large Array of the National Radio Astronomy Observatory. Water masers are found to exist in the atmospheres of evolved, oxygen-rich stars where a population inversion of the rotational transition at 22 GHz can be maintained by collisional pumping. The masers are identified as individual pockets or filaments of gas, which have good velocity coherence and may be imaged using radio interferometry. Stellar winds are initiated in these sources by dust formation and acceleration of the gas through momentum coupling. The typical wind speeds in the region of the water masers are 10 to 20 \\kms. The water masers in several evolved stars (VY CMa, VX Sgr, S Per, U Her, IK Tau, RX Boo and NML Cyg) have been observed at three epochs and exhibit proper motions consistent with the assumed source distances and the measured outflow velocity in the water maser region. Estimates of the distance to the sources using statistical approximation are in agreement with the currently accepted distances to the stars. The following stars had reliable distances determined using proper motion data: S Per (2.3 +/- 0.5 kpc), VY CMa (1.4 +/- 0.2 kpc), VX Sgr (1.4 +/- 0.3 kpc). An upper limit for the distance of NML Cyg was obtained ( 3.5 kpc). The remaining stars had too few maser detections (RX BOO, IK Tau) or were not strong enough at all epochs (U Her) to self-calibrate using the VLBA. A detailed kinematic model was used to describe the flow motions of the gas in the maser region. The regions are found to be complex and not well modeled by uniform radial outflow, radial outflow with rotation, or radial outflow with acceleration. The reasons for this are explored and include the probable presence of anisotropic velocity fields induced through non

  18. The OH Maser Line Receiving System for the Urumqi 25m Radio Telescope

    Institute of Scientific and Technical Information of China (English)

    Hong-Bo Zhang; Jarken Esimbek; Jian-Jun Zhou; Xing-Wu Zhen; Xi-Zhen Zhang; Wen-Jie Yang

    2005-01-01

    A maser spectral line system is newly implemented on the Urumqi 25m Radio Telescope. The system consists mainly of a cooling receiver and a 4096channels digital correlation spectrometer. The frequency resolution of the spectrometer at the maximum signal bandwidth of 80 MHz is 19.5 kHz. After careful calibrations observation at the 1665MHz OH maser emission was made towards a number of sources, including W49N and W75N. The observed results demonstrate that the digital correlation spectrometer is suitable for astronomical spectral line observations.

  19. Resonant electron diffusion as a saturation process of the synchrotron maser instability. [of auroral kilometric radiation

    Science.gov (United States)

    Lee, M. C.; Kuo, S. P.

    1986-01-01

    The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.

  20. The next generation Cherenkov Telescope Array observatory: CTA

    Energy Technology Data Exchange (ETDEWEB)

    Vercellone, S., E-mail: stefano@ifc.inaf.it

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV–100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild–Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50–70 telescopes with a mirror area of about 5–10 m{sup 2} and about 300 m spacing, distributed across an area of about 10 km{sup 2}. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  1. The next generation Cherenkov Telescope Array observatory: CTA

    Science.gov (United States)

    Vercellone, S.

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 m2 and about 300 m spacing, distributed across an area of about 10 km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  2. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  3. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  4. The software architecture to control the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and

  5. Probing AGN with Masers and X-Rays-SAX Proposals

    Science.gov (United States)

    Wilkes, Belinda J.; White, Nicholas (Technical Monitor)

    2001-01-01

    We have made BeppoSAX observations of the Seyfert 2/1.9 galaxy ESO103-G35, which contains a nuclear maser source and is known to be heavily absorbed in the X-rays. Analysis of the X-ray spectra observed by SAX in October 1996 and 1997 yields an energy index = 0.74 +/- 0.07, typical of Seyfert galaxies and consistent with earlier observations of this source. The strong, soft X-ray absorption has a column density, N_H of (1.79 +/- 0.09)E23 cmE-02, again consistent with earlier results. The best fitting spectrum is that of a power law with a high energy cutoff at 29 +/- 10 keV, a cold (E=6.3 +/- 0.1 keV, rest frame), marginally resolved (sigma = 0.35 +/- 0.14 keV, FWHM approximately (31 +/- 12)E03 km/s) FeKalpha line with EW 290 +100 -80 eV (1996) and a mildly ionized Fe K-edge at 7.37 +0.15 -0.21 keV, tau 0.24 +0.06 -0.09. The Fe Kalpha line and cold absorption are consistent with origin in a accretion disk/torus through which our line-of-sight passes at a radial distance of approximately 0.01 pc. The Fe K-edge is mildly ionized suggesting the presence of ionized gas probably in the inner accretion disk, close to the central source or in a separate warm absorber. The data quality is too low to distinguish between these possibilities but the edge-on geometry implied by the water maser emission favors the former. Comparison with earlier observations of ESO103-G35 shows little/no change in spectral parameters while the flux changes by factors of a few on timescales of a few months. The 2-10 keV flux decreased by a factor of approximately 2.7 between Oct 1996 and Oct 1997 with no detectable change in the count rate greater than 20 keV (i.e. the PDS data). Spectral fits to the combined datasets indicate either a significant hardening of the spectrum (energy index approximately 0.5) or an approximate constant or delayed response reflection component. The high energy cutoff (29 +/- 10 keV) is lower than the typical approximately 300 keV values seen in Seyfert galaxies. A

  6. Hybrid planar free-electron maser in the magnetoresonance regime

    Directory of Open Access Journals (Sweden)

    Vitaliy A. Goryashko

    2009-10-01

    Full Text Available We study the operation regime of a hybrid planar free-electron maser (FEM amplifier near the magnetoresonant value of the uniform longitudinal (guide magnetic field. Using analytical expressions for individual test electron trajectories and normal frequencies of their three-dimensional oscillations in the magnetostatic field of the hybrid planar FEM, an analytical condition of chaotization of motion is established and shown to be given by the Chirikov resonance-overlap criterion applied to the normal undulator and cyclotron frequencies with respect to the coupling induced by the undulator magnetic field. It is also shown analytically that, in spite of the well-known drop for the exact magnetoresonance, the gain attains its maximal value in the zone of regular dynamics slightly above the magnetoresonant value of the guide magnetic field. Under the condition of undulator resonance, it is practically independent of the amplitude of the undulator magnetic field and the wavelength of amplified signal. To account for space-charge effects, we propose a theoretical model of a weakly relativistic FEM, which accommodates not only potential but also rotational parts of the nonradiated electromagnetic field of a moving charged particle. It turns out that the rotational part of nonradiated field diminishes the defocusing influence of the potential part on the beam bunching. Numeric simulation of the nonlinear stage of amplification is fulfilled, taking into consideration adiabatic entrance of the electron beam to the interaction region and initial electron velocity spread. We find that nonradiated field and initial electron velocity spread do not influence essentially the efficiency of hybrid planar FEM amplification if parameters of the beam-microwave interaction correspond to the operational regime in the zone of regular dynamics near the magnetoresonance.

  7. VLBI observations of the 6.7 and 12.2 GHz methanol masers associated with NGC 6334F

    CERN Document Server

    Ellingsen, S P; Diamond, P J; McCulloch, P M; Amy, S W; Beasley, A J; Ferris, R H; Gough, R G; King, E A; Lovell, J E J; Reynolds, J E; Tzioumis, A K; Troup, E R; Wark, R M; Wieringa, M H

    1996-01-01

    We present milliarcsecond resolution images of the 6.7 and 12.2 GHz methanol maser emission associated with the well-known star formation region NGC 6334F. The images agree well with previous lower resolution observations, but detect approximately double the number of spots seen in the earlier work. Comparison of the relative positions of the 6.7 and 12.2 GHz maser spots shows that five of them are coincident to within the positional accuracy of these observations (approximately 4 milli-arcsec). Menten et al. (1992) observed similar positional coincidence for W3(OH) and in each case the flux density of the 6.7 GHz maser spot was greater than that of the 12.2 GHz methanol maser spot. However, for NGC 6334F several of the coincident maser spots have a larger flux density at 12.2 GHz than at 6.7 GHz. We also detected several 12.2 GHz methanol maser spots with no coincident 6.7 GHz emission. This implies that, although the 6.7 GHz methanol masers usually have a greater flux density than their 12.2 GHz counterpart...

  8. Discovery of periodic and alternating flares of the methanol and water masers in G107.298+5.639

    CERN Document Server

    Szymczak, M; Wolak, P; Bartkiewicz, A; Gawronski, M

    2016-01-01

    Methanol and water vapour masers are signposts of early stages of high-mass star formation but it is generally thought that due to different excitation processes they probe distinct parts of stellar environments. Here we present observations of the intermediate-mass young stellar object G107.298+5.639, revealing for the first time that 34.4 d flares of the 6.7 GHz methanol maser emission alternate with flares of individual features of the 22 GHz water maser. High angular resolution data reveal that a few components of both maser species showing periodic behaviour coincide in position and velocity and all the periodic water maser components appear in the methanol maser region of size of 360 au. The maser flares could be caused by variations in the infrared radiation field induced by cyclic accretion instabilities in a circumstellar or protobinary disc. The observations do not support either the stellar pulsations or the seed photon flux variations as the underlying mechanisms of the periodicity in the source.

  9. The mid-infrared environments of 6.7 GHz Methanol Masers from the Methanol Multi-Beam Survey

    CERN Document Server

    Gallaway, M; Lucas, P W; Fuller, G A; Caswell, J L; Green, J A; Voronkov, M A; Breen, S L; Quinn, L; Ellingsen, S P; Avison, A; Ward-Thompson, D; Cox, J

    2012-01-01

    We present a study of the mid-infrared environments and association with star formation tracers of 6.7 GHz methanol masers taken from the Methanol Multi-Beam (MMB) Survey. Our ultimate goal is to establish the mass of the host star and its evolutionary stage for each maser site. As a first step, the GLIMPSE survey of the Galactic Plane is utilised to investigate the environment of 776 methanol masers and we find that while the majority of the masers are associated with mid-infrared counterparts, a significant fraction (17%) are not associated with any detectable mid-infrared emission. A number of the maser counterparts are clearly extended with respect to the GLIMPSE point spread function and we implement an adaptive non-circular aperture photometry (ANCAP) technique to determine the fluxes of the maser counterparts. The ANCAP technique doubles the number of masers with flux information at all four wavelengths compared to the number of the corresponding counterparts obtained from the GLIMPSE Point Source Cata...

  10. TORCH - a Cherenkov-based time-of-flight detector

    CERN Document Server

    van Dijk, M W U; Cowie, E N; Cussans, D; D' Ambrosio, C; Forty, R; Frei, C; Gys, T; Piedigrossi, D; Castillo Garcia, L; Fopma, J; Gao, R; Harnew, N; Keri, T

    2014-01-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate, where they are focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved for a three sigma kaon–pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼ 30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  11. Latest news from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  12. A Topological Trigger System for Imaging Atmospheric-Cherenkov Telescopes

    CERN Document Server

    Schroedter, M; Byrum, K; Drake, G; Duke, C; Holder, J; Imran, A; Madhavan, A; Krennrich, F; Kreps, A; Smith, A

    2009-01-01

    A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over the current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the ...

  13. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    CERN Document Server

    Bretz, Thomas

    2013-01-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators in front of the photo sensor, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase sp...

  14. Cherenkov Radiation with Massive, CPT-violating Photons

    CERN Document Server

    Colladay, Don; Potting, Robertus

    2016-01-01

    The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^\\mu$. These Lorentz- and CPT-violating photons have well-known theoretical issues that arise from missing states at low momenta when $k_{AF}^\\mu$ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the CPT-preserving case by using the St\\"uckelberg mechanism. We explicitly construct a covariant basis of properly-normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike $k_{AF}^\\mu$, and find a radiation rate at high energies that has a contribution that does n...

  15. Particle Identification Using a Ring Imaging Cherenkov Counter

    Science.gov (United States)

    Goodwill, Justin; Benmokthar, Fatiha

    2016-09-01

    The installation of a Ring Imaging Cherenkov counter (RICH) on the CLAS12 spectrometer in Hall B of Jefferson Lab will aid in particle identification, specifically with regard to the separation between protons, pions, kaons. The RICH functions by detecting a ring of radiation that is given off by particles moving faster than the speed of light in a medium through the use of multi-anode photomultiplier tubes (MAPMTs). Because the size of the ring is dependent on the velocity of the particles, one can separate the incoming charged particles. With 391 MAPMTs being used in the specific design at Jefferson Lab, sophisticated electronic systems are needed to achieve complete data acquisition and ensure the safe operation of RICH. To monitor these electronic systems, the slow control system uses a compilation of graphical user interfaces (GUIs) that communicates and, if necessary, changes certain process variables such as the high voltage going to the MAPMTs and the temperature of the system. My actual project focuses on the development of an efficient and reliable slow control system for this detector as well as a java based analyzer for offline data analysis.

  16. Gravitational Cherenkov losses in theories based on modified Newtonian dynamics.

    Science.gov (United States)

    Milgrom, Mordehai

    2011-03-18

    Survival of high-energy cosmic rays (HECRs) against gravitational Cherenkov losses is shown not to cast strong constraints on modified Newtonian dynamics (MOND) theories that are compatible with general relativity (GR): theories that coincide with GR for accelerations ≫a(0) (a(0) is the MOND constant). The energy-loss rate, E, is many orders smaller than those derived in the literature for theories with no extra scale. Modification to GR, which underlies E, enters only beyond the MOND radius of the particle: r(M)=(Gp/ca(0))(1/2). The spectral cutoff, entering E quadratically, is thus r(M)(-1), not k(dB)=p/ℏ. Thus, E is smaller than published rates, which use k(dB), by a factor ∼(r(M)k(dB))(2)≈10(39)(cp/3×10(11)  Gev)(3). Losses are important only beyond D(loss)≈qℓ(M), where q is a dimensionless factor, and ℓ(M)=c(2)/a(0) is the MOND length, which is ≈2π times the Hubble distance.

  17. Development of ring imaging Cherenkov detectors for the LHCb experiment

    CERN Document Server

    John, M J J

    2001-01-01

    This thesis reports on work done as part of the development of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. The context of this work is set out in Chapter 1, which includes an overview of the physics of CP violation, followed by a discussion of other experiments that study B physics. LHCb itself is then described, with particular emphasis on its RICH detectors, and the photon detectors to be used therein. The work done by the author to ensure an adequate shielding of the photon detectors in the two RICH detectors from the magnetic fields produced by the LHCb dipole is then presented. A candidate photodetector for the RICH is the Pixel HPD. The author's contribution to the upgrade of the HPD test system to operate at the LHC bunch-crossing rate of 40MHz is the subject of the following section. This system was used to investigate and optimise a method of minimising the threshold distribution of the Pixel HPD's encapsulated readout chip. The final chapter of the thesis concerns the aerogel...

  18. An outdoor test facility for the Cherenkov Telescope Array mirrors

    CERN Document Server

    Medina, M C; Maya, J; Mancilla, A; Larrarte, J J; Rasztocky, E; Benitez, M; Dipold, J; Platino, M

    2013-01-01

    The Cherenkov Telescopes Array (CTA) is planned to be an Observatory for very high energy gamma ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m$^2$. The mirrors of these telescopes will be formed by a set of facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. In this work we present the preliminary results of the first Middle Size Telescope (MST) mirror-monitoring campaign, started in 2013.

  19. Status of the Cherenkov Telescope Array's Large Size Telescopes

    CERN Document Server

    Cortina, J

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory, will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 PMTs and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is well underway. In 2016 the first LST will be installed at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain). In this talk we will outline the technical solutions adopted to fulfill the design requirem...

  20. Redshift measurement of Fermi Blazars for the Cherenkov Telescope Array

    CERN Document Server

    Goldoni, P; Boisson, C; Cotter, G; Williams, D A

    2015-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) gamma-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This renders the determination of their redshift extremely difficult. Indeed, as of today only about 50 % of gamma-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new BL Lacs. Using the first Fermi catalogue of sources above 10 GeV (1FHL), we performed simulations which demonstrate that at least half of the 1FHL BL Lacs detectable by CTA will not have a measured redshift. Indeed the organization of observing campaigns to measure the redshift of these blazars has been ...

  1. Evaluation of polarized terahertz waves generated by Cherenkov phase matching.

    Science.gov (United States)

    Akiba, Takuya; Akimoto, Yasuhiro; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-03-10

    We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.

  2. Charged Kaon Mass Measurement using the Cherenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N.; /Indiana U.; Lebedev, A.; /Harvard U., Phys. Dept.; Abrams, R.J.; /Michigan U.; Akgun, U.; Aydin, G.; /Iowa U.; Baker, W.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore; Bergfeld, T.; /South Carolina U.; Beverly, L.; /Fermilab; Bujak, A.; /Purdue U.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  3. Cherenkov radiation with massive, C P T -violating photons

    Science.gov (United States)

    Colladay, Don; McDonald, Patrick; Potting, Robertus

    2016-06-01

    The source of C P T violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field kAF μ . These Lorentz- and C P T -violating photons have well-known theoretical issues that arise from missing states at low momenta when kAF μ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the C P T -preserving case by using the Stückelberg mechanism. We explicitly construct a covariant basis of properly normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike kAF μ and find a radiation rate at high energies that has a contribution that does not depend on the mass used to regulate the photons.

  4. Monte Carlo design studies for the Cherenkov Telescope Array

    CERN Document Server

    Bernlöhr, K; Becherini, Y; Bigas, O Blanch; Carmona, E; Colin, P; Decerprit, G; Di Pierro, F; Dubois, F; Farnier, C; Funk, S; Hermann, G; Hinton, J A; Humensky, T B; Khélifi, B; Kihm, T; Komin, N; Lenain, J -P; Maier, G; Mazin, D; Medina, M C; Moralejo, A; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Parsons, R D; Arribas, M Paz; Pedaletti, G; Pita, S; Prokoph, H; Rulten, C B; Schwanke, U; Shayduk, M; Stamatescu, V; Vallania, P; Vorobiov, S; Wischnewski, R; Yoshikoshi, T; Zech, A

    2012-01-01

    The Cherenkov Telescopes Array (CTA) is planned as the future instrument for very-high-energy (VHE) gamma-ray astronomy with a wide energy range of four orders of magnitude and an improvement in sensitivity compared to current instruments of about an order of magnitude. Monte Carlo simulations are a crucial tool in the design of CTA. The ultimate goal of these simulations is to find the most cost-effective solution for given physics goals and thus sensitivity goals or to find, for a given cost, the solution best suited for different types of targets with CTA. Apart from uncertain component cost estimates, the main problem in this procedure is the dependence on a huge number of configuration parameters, both in specifications of individual telescope types and in the array layout. This is addressed by simulation of a huge array intended as a superset of many different realistic array layouts, and also by simulation of array subsets for different telescope parameters. Different analysis methods -- in use with cu...

  5. A Smart Pixel Camera for future Cherenkov Telescopes

    CERN Document Server

    Hermann, G; Glück, B; Hauser, D; Hermann, German; Carrigan, Svenja; Gl\\"uck, Bernhard; Hauser, Dominik

    2005-01-01

    The Smart Pixel Camera is a new camera for imaging atmospheric Cherenkov telescopes, suited for a next generation of large multi-telescope ground based gamma-ray observatories. The design of the camera foresees all electronics needed to process the images to be located inside the camera body at the focal plane. The camera has a modular design and is scalable in the number of pixels. The camera electronics provides the performance needed for the next generation instruments, like short signal integration time, topological trigger and short trigger gate, and at the same time the design is optimized to minimize the cost per channel. In addition new features are implemented, like the measurement of the arrival time of light pulses in the pixels on the few hundred psec timescale. The buffered readout system of the camera allows to take images at sustained rates of O(10 kHz) with a dead-time of only about 0.8 % per kHz.

  6. The current progress of the ALICE Ring Imaging Cherenkov Detector

    CERN Document Server

    Braem, André; Davenport, M; Mauro, A D; Franco, A; Gallas, A; Hoedlmoser, H; Martinengo, P; Nappi, E; Paic, G; Piuz, François; Peskov, Vladimir

    2007-01-01

    Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.

  7. Development of Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Bellunato, T; Matteuzzi, C

    2003-01-01

    The work described in this thesis has been carried out in the framework of the development program of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. LHCb will operate at the Large Hadron Collider at CERN, and it will perform a wide range of measurements in the b-hadrons realm. The extensive study of CP violation and rare decays in the b-hadron system are the main goals of the experiment. An introduction to CP violation in hadronic interactions is given in chapter 1. The high b-b bar production cross section at the LHC energy will provide an unprecedented amount of data which will give LHCb a unique opportunity for precision tests on a large set of physics channels as well as a promising discovery potential for sources of CP violation arising from physics beyond the Standard Model. The experiment is designed in such a way to optimally match the kinematic structure of events where a pair of b quarks is produced in the collision between to 7 GeV protons. Chapter 2 is devoted to an overview o...

  8. The Medium Size Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, covering a photon energy range of ~20 GeV to above 100 TeV. CTA will consist of the order of 100 telescopes of three sizes, installed at two sites in the Northern and Southern Hemisphere. This contribution deals with the 12 meter Medium Size Telescopes (MST) having a single mirror (modified Davies-Cotton, DC) design. In the baseline design of the CTA arrays, 25 MSTs in the South and 15 MSTs in the North provide the necessary sensitivity for CTA in the core energy range of 100 GeV to 10 TeV. DC-MSTs will be equipped with photomultiplier (PMT)-based cameras. Two options are available for these focal plane instruments, that will be provided by the FlashCam and the NectarCAM sub-consortia. In this contribution, a short introduction to the projects and their status is given.

  9. Development of a gaseous photon detector for Cherenkov imaging applications

    CERN Document Server

    Rocco, Elena; Dalla Torre, Silvia

    2010-01-01

    This thesis is dedicated to the R&D activity aiming at a novel micro pattern gaseous photon detector based on the THick Gas Electron Multiplier (THGEM). The goal application of the novel photon detector is the detection of single photon in Ring Imaging CHerenkov (RICH) counters. The THGEM principle is derived from the Gas Electron Multiplier (GEM) one, even if the material, the production technology and the size scale are different: a THGEM is a Circuit Printed Board (PCB) coated with thin copper layers on both faces, with holes obtained by drilling. Part of the THGEM features are similar to those of the GEMs, but a number of characteristics aspects result substantially different: in fact, if the geometrical parameters can be scaled from the GEM ones, the parameters related to the electrons multiplication, which is a microscopic physical phenomenon, do not. This is why, before starting the photon detector development, we have performed a systematic study of the THGEM multiplier. A photon detector is forme...

  10. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  11. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  12. A 20-year H2O maser monitoring program with the Medicina 32-m telescope

    Science.gov (United States)

    Brand, J.; Felli, M.; Cesaroni, R.; Codella, C.; Comoretto, G.; Di Franco, S.; Massi, F.; Moscadelli, L.; Nesti, R.; Olmi, L.; Palagi, F.; Palla, F.; Panella, D.; Valdettaro, R.

    2007-03-01

    The Arcetri/Bologna H2O maser group has been monitoring the 1.3-cm water maser emission from a sample of 43 star-forming regions (SFRs) and 22 late-type stars for about 20 years at a sampling rate of 4-5 observations each year, using the 32-m Medicina Radio Telescope (HPBW 1.‧9 at 22 GHz). For the late-type stars we observe representative samples of OH/IR-stars, Mira's, semi-regular variables, and supergiants. The SFR-sample spans a large interval in FIR luminosity of the associated Young Stellar Object (YSO), from 20 L to 1.5 × 106 L, and offers a unique data base for the study of the long-term (years) variability of the maser emission in regions of star formation. This presentation concerns only the masers in SFRs. The information obtained from single-dish monitoring is complementary to what is extracted from higher-resolution (VLA and VLBI) observations, and can better explore the velocity domain and the long-term variability therein. We characterize the variability of the sources in various ways and we study how it depends on the luminosity and other properties of the associated YSO and its environment.

  13. First mm-wave generation in the FOM free electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Plomp, J.; Savilov, A. V.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1999-01-01

    A free electron maser (FEM) has been built as a pilot mm-wave source for applications on future fusion research devices such as international tokamak experimental reactor (ITER), A unique feature of the Dutch FEM is the possibility to tune the frequency over the entire range from 130 to 260 GHz at a

  14. Water in Massive protostellar objects: first detection of THz water maser and water inner abundance.

    Science.gov (United States)

    Herpin, Fabrice

    2014-10-01

    The formation massive stars is still not well understood. Despite numerous water line observations with Herschel telescope, over a broad range of energies, in most of the observed sources the WISH-KP (Water In Star-forming regions with Herschel, Co-PI: F. Herpin) observations were not able to trace the emission from the hot core. Moreover, water maser model predict that several THz water maser should be detectable in these objects. We aim to detect for the first time the THz maser lines o-H2O 8(2,7)- 7(3,4) at 1296.41106 GHz and p-H2O 7(2,6)- 6(3,3) at 1440.78167 GHz as predicted by the model. We propose two sources for a northern flight as first priority and two other sources for a possible southern flight. This will 1) constrain the maser theory, 2) constrain the physical conditions and water abundance in the inner layers of the prostellar environnement. In addition, we will use the p-H2O 3(3,1)- 4(0,4) thermal line at 1893.68651 GHz (L2 channel) in order to probe the physical conditions and water abundance in the inner layers of the prostellar objects where HIFI-Herschel has partially failed.

  15. A survey for water maser emission towards planetary nebulae. New detection in IRAS 17347-3139

    CERN Document Server

    De Gregorio-Monsalvo, I; Anglada, G; Cesaroni, R; Miranda, L F; Gómez, J F; Torrelles, J M; Gregorio-Monsalvo, Itziar de; Gomez, Yolanda; Anglada, Guillem; Cesaroni, Riccardo; Miranda, Luis F.; Gomez, Jose F.; Torrelles, Jose M.

    2004-01-01

    We report on a water maser survey towards a sample of 27 planetary nebulae (PNe) using the Robledo de Chavela and Medicina single-dish antennas, as well as the Very Large Array (VLA). Two detections have been obtained: the already known water maser emission in K 3-35, and a new cluster of masers in IRAS 17347-3139. This low rate of detections is compatible with the short life-time of water molecules in PNe (~100 yr). The water maser cluster at IRAS 17347-3139 are distributed on a ellipse of size ~ 0.2" x 0.1", spatially associated with compact 1.3 cm continuum emission (simultaneously observed with the VLA). From archive VLA continuum data at 4.9, 8.4, and 14.9 GHz, a spectral index alpha = 0.76 +- 0.03 is derived for this radio source, which is consistent with either a partially optically thick ionized region or with an ionized wind. However, the latter scenario can be ruled out on mass-loss considerations, thus indicating that this source is probably a young PN. The spatial distribution and the radial veloc...

  16. Low-loss electron beam transport in a high-power, electrostatic free-electron maser

    NARCIS (Netherlands)

    Valentini, M.; van der Geer, C. A. J.; Verhoeven, A. G. A.; van der Wiel, M. J.; Urbanus, W. H.

    1997-01-01

    At the FOM Institute for Plasma Physics ''Rijnhuizen'', The Netherlands, the commissioning of a high-power, electrostatic free-electron maser is in progress. The design target is the generation of 1 MW microwave power in the frequency range 130-260 GHz. The foreseen application o

  17. Formaldehyde and H110a observations towards 6.7 GHz methanol maser sources

    CERN Document Server

    Okoh, Daniel; Zhou, Jian Jun; Tang, Xin Di; Chukwude, Augustine; Urama, Johnson; Okeke, Pius

    2014-01-01

    Intriguing work on observations of 4.83 GHz formaldehyde (H2CO) absorptions and 4.87 GHz H110a radio recombination lines (RRLs) towards 6.7 GHz methanol (CH3OH) maser sources is presented. Methanol masers provide ideal sites to probe the earliest stages of massive star formation, while 4.8 GHz formaldehyde absorptions are accurate probes of physical conditions in dense $(10^{3} - 10^{5} cm^{-3})$ and low temperature molecular clouds towards massive star forming regions. The work is aimed at studying feature similarities between the formaldehyde absorptions and the methanol masers so as to expand knowledge of events and physical conditions in massive star forming regions. A total of 176 methanol maser sources were observed for formaldehyde absorptions, and formaldehyde absorptions were detected 138 of them. 53 of the formaldehyde absorptions were newly detected. We noted a poor correlation between the methanol and formaldehyde intensities, an indication that the signals (though arise from about the same region...

  18. Evolution of the Water Maser Expanding Shell in W75N VLA 2

    CERN Document Server

    Kim, Jeong-Sook; Kurayama, Tomoharu; Honma, Mareki; Sasao, Tesuo; Surcis, Gabriele; Canto, Jorge; Torrelles, Jose M; Kim, Sang Joon

    2013-01-01

    We present Very Long Baseline Interferometry (VLBI) observations of 22 GHz H$_2$O masers in the high-mass star-forming region of \\objectname{W75N}, carried out with VLBI Exploration of Radio Astrometry (VERA) for three-epochs in 2007 with an angular resolution of $\\sim$ 1 mas. We detected H$_2$O maser emission toward the radio jet in VLA 1 and the expanding shell-like structure in VLA 2. .......... We have made elliptical fits to the VLA 2 H$_2$O maser shell-like structure observed in the different epochs (1999, 2005, and 2007), and found that the shell is still expanding eight years after its discovery. From the difference in the size of the semi-major axes of the fitted ellipses in the epochs 1999 ($\\simeq$ 71$\\pm$1 mas), 2005 ($\\simeq$ 97$\\pm$3 mas), and 2007 ($\\simeq$ 111$\\pm$1 mas), we estimate an average expanding velocity of $\\sim$ 5 mas yr$^{-1}$, similar to the proper motions measured in the individual H$_2$O maser features. A kinematic age of $\\sim$ 20 yr is derived for this structure. In addition, ...

  19. Discovery of periodic class II methanol masers associated with G339.986-0.425 region

    CERN Document Server

    Maswanganye, J P; Goedhart, S; Gaylard, M J

    2015-01-01

    Ten new class II methanol masers from the 6.7-GHz Methanol Multibeam survey catalogues III and IV were selected for a monitoring programme at both 6.7 and 12.2 GHz with the 26m Hartebeesthoek Radio Astronomy Observatory (HartRAO) radio telescope for two years and nine months, from August 2012 to May 2015. In the sample, only masers associated with G339.986-0.425 were found to show periodic variability at both 6.7 and 12.2 GHz. The existence of periodic variation was tested with four independent methods. The analytical method gave the best estimation of the period, which was 246 $\\pm$ 1 days. The time series of G339.986-0.425 show strong correlations across velocity channels and between the 6.7 and 12.2 GHz masers. The time delay was also measured across channels and shows structure across the spectrum which is continuous between different maser components.

  20. The z Distribution of Hydrogen Clouds and Masers with Kinematic Distances

    CERN Document Server

    Bobylev, V V

    2016-01-01

    Data on HII regions, molecular clouds, and methanol masers have been used to estimate the Sun's distance from the symmetry plane zo and the vertical disk scale height h. Kinematic distance estimates are available for all objects in these samples. The Local-arm (Orion-arm) objects are shown to affect noticeably the pattern of the z distribution. The deviations from the distribution symmetry are particularly pronounced for the sample of masers with measured trigonometric parallaxes, where the fraction of Local-arm masers is large. The situation with the sample of HII regions in the solar neighborhood is similar. We have concluded that it is better to exclude the Local arm from consideration. Based on the model of a self-gravitating isothermal disk, we have obtained the following estimates from objects located in the inner region of the Galaxy (R<= Ro): zo= -5.7+/-0.5 pc and h2=24.1+/-0.9 pc from the sample of 639 methanol masers, zo=-7.6+/-0.4 pc and h2=28.6+/-0.5 pc from 878 HII regions, zo=-10.1+/-0.5 pc a...