WorldWideScience

Sample records for dielectric based accelerators

  1. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  2. Experimental demonstration of dielectric structure based two beam acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  3. Coherent multimoded dielectric wakefield accelerators

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  4. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  5. A monolithic relativistic electron beam source based on a dielectric laser accelerator structure

    International Nuclear Information System (INIS)

    McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney

    2012-01-01

    Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

  6. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    International Nuclear Information System (INIS)

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-01

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  7. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  8. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  9. Virtual gap dielectric wall accelerator

    Science.gov (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  10. Development of a Laser-Powered Dielectric Structure-Based Accelerator as a Stand-Alone Particle Source

    International Nuclear Information System (INIS)

    Yoder, R. B.; Travish, G.; Arab, E. R.; Fong, D.; Hoyer, Z.; Lacroix, U. H.; Vartanian, N.; Rosenzweig, J. B.

    2010-01-01

    An experimental program to develop and build a dielectric-based slab-symmetric structure (the micro-accelerator platform, or MAP) for generating and accelerating low-energy electrons is underway at UCLA and Manhattanville College. This optical acceleration structure is effectively a resonant cavity powered by a side-coupled laser, and has applications as a radiation source for medicine or industry. We present recent experimental and computational results on the accelerator, and progress toward its incorporation into a self-contained particle source. Such a particle source would incorporate a micron-scale electron emitter and a non-relativistic capture region to enable self-injection into the synchronous field within the accelerator. A prototype of the accelerator itself has been constructed from candidate dielectric materials using micromanufacturing techniques; the current status of the testing program is described. A novel electron emitter incorporating pyroelectric crystals with field-enhancing tips has been demonstrated to produce steady currents; the results are dependent on tip geometry, and appear suitable for injection into a microstructure. Extension of the MAP concept to non-relativistic velocities, as in the stand-alone source, requires a tapered structure that gives rise to numerous complications including beam defocusing and manufacturing challenges; approaches for addressing these complications are mentioned.

  11. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  12. Two-Channel Dielectric Wake Field Accelerator

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  13. Enhanced dielectric-wall linear accelerator

    Science.gov (United States)

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  14. Operation regimes of a dielectric laser accelerator

    Science.gov (United States)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  15. A hybrid dielectric and iris loaded periodic accelerating structure

    International Nuclear Information System (INIS)

    Zou, P.; Xiao, L.; Sun, X.; Gai, W.

    2001-01-01

    One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E s /E a ≥ 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E s /E a to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably with conventional metallic structures. The analysis based on MAFIA simulations of such structures shows that we can lower the peak surface electric field close to the accelerating gradient while maintaining high acceleration efficiency as measured by r/Q. Numerical examples of X-band hybrid accelerating structures are given

  16. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  17. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John [CPAC, Livermore, CA (United States); Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hamm, Robert W. [R and M Technical Enterprises, Pleasanton, CA (United States); Becker, Reinard [Scientific Software Service, Gelnhausen (Germany)

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  18. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Northern Illinois Univ., DeKalb, IL (United States)

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  19. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    International Nuclear Information System (INIS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-01-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  20. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  1. Dielectric-Lined High-Gradient Accelerator Structure

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field (∼2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 (micro)s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10 5 RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30

  2. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  3. Accelerating Dielectrics Design Using Thinking Machines

    Science.gov (United States)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  4. Coaxial two-channel high-gradient dielectric wakefield accelerator

    Directory of Open Access Journals (Sweden)

    G. V. Sotnikov

    2009-06-01

    Full Text Available A new scheme for a dielectric wakefield accelerator is proposed that employs a cylindrical multizone dielectric structure configured as two concentric dielectric tubes with outer and inner vacuum channels for drive and accelerated bunches. Analytical and numerical studies have been carried out for such coaxial dielectric-loaded structures (CDS for high-gradient acceleration. An analytical theory of wakefield excitation by particle bunches in a multizone CDS has been formulated. Numerical calculations are presented for an example of a CDS using dielectric tubes with dielectric permittivity 5.7, having external diameters of 2.121 and 0.179 mm with inner diameters of 2.095 and 0.1 mm. An annular 5 GeV, 6 nC electron bunch with rms length of 0.035 mm energizes a wakefield on the structure axis having an accelerating gradient of ∼600  MeV/m with a transformer ratio ∼8∶1. The period of the accelerating field is ∼0.33  mm. If the width of the drive bunch channel is decreased, it is possible to obtain an accelerating gradient of >1  GeV/m while keeping the transformer ratio approximately the same. Full numerical simulations using a particle-in-cell code have confirmed results of the linear theory and furthermore have shown the important influence of the quenching wave that restricts the region of the wakefield to within several periods following the drive bunch. Numerical simulations for another example have shown nearly stable transport of drive and accelerated bunches through the CDS, using a short train of drive bunches.

  5. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  6. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  7. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  8. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  9. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  10. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  11. Femtosecond planar electron beam source for micron-scale dielectric wake field accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Marshall

    2001-12-01

    Full Text Available A new accelerator, LACARA (laser-driven cyclotron autoresonance accelerator, under construction at the Accelerator Test Facility at Brookhaven National Laboratory, is to be powered by a 1 TW CO_{2} laser beam and a 50 MeV injected electron pulse. LACARA will produce inside a 2 m, 6 T solenoid a 100 MeV gyrating electron bunch, with ∼3% energy spread, approximately 1 psec in length with particles advancing in phase at the laser frequency, executing one cycle each 35 fsec. A beamstop with a small off axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fsec long, 1–3 pC microbunches for each laser pulse. We describe here a novel accelerator, a micron-scale dielectric wake field accelerator driven by a 500 MeV LACARA-type injector that takes the output train of microbunches and transforms them into a near-rectangular cross section having a narrow dimension of ∼10 μm and height of ∼150 μm using a magnetic quadrupole; these bunches may be injected into a planar dielectric-lined waveguide (slightly larger than the bunch where cumulative buildup of wake fields can lead to an accelerating gradient >1 GV/m. This proposed vacuum-based wake field structure is physically rigid and capable of microfabrication accuracy, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed, including bunch spreading and transport, bunch shaping, coherent diffraction radiation from the aperture, dielectric breakdown, and bunch stability in the rectangular wake field structure.

  12. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    International Nuclear Information System (INIS)

    Soong, Ken; Peralta, E.A.; Byer, R.L.; Colby, E.

    2011-01-01

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry, as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  13. Numerical simulations of intense charged particle beam propagation in a dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Gai, W.; Kanareykin, A.D.; Kustov, A.L.; Simpson, J.

    1995-01-01

    The propagation of an intense electron beam through a long dielectric tube is a critical issue for the success of the dielectric wakefield acceleration scheme. Due to the head-tail instability, a high current charged particle beam cannot propagate long distance without external focusing. In this paper we examine the beam handling and control problem in the dielectric wakefield accelerator. We show that for the designed 15.6 GHz and 20 GHz dielectric structures a 150 MeV, 40 endash 100 nC beam can be controlled and propagate up to 5 meters without significant particle losses by using external applied focusing and defocusing channel (FODO) around the dielectric tube. Particle dynamics of the accelerated beam is also studied. Our results show that for typical dielectric acceleration structures, the head-tail instabilities can be conveniently controlled in the same way as the driver beam. copyright 1995 American Institute of Physics

  14. Optimized operation of dielectric laser accelerators: Single bunch

    Directory of Open Access Journals (Sweden)

    Adi Hanuka

    2018-05-01

    Full Text Available We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ∼10  GV/m, one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.

  15. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  16. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  17. Optical design for increased interaction length in a high gradient dielectric laser accelerator

    OpenAIRE

    Cesar, D.; Maxson, J.; Musumeci, P.; Shen, X.; England, R. J.; Wootton, K. P.

    2018-01-01

    We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.

  18. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    International Nuclear Information System (INIS)

    Fischer, Richard P.; Gold, Steven H.

    2016-01-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  19. Development of a dual-layered dielectric-loaded accelerating structure

    International Nuclear Information System (INIS)

    Jing Chunguang; Kanareykin, Alexei; Kazakov, Sergey; Liu Wanming; Nenasheva, Elizaveta; Schoessow, Paul; Gai Wei

    2008-01-01

    rf Power attenuation is a critical problem in the development of dielectric-loaded structures for particle acceleration. In a previous paper [C. Jing, W. Liu, W. Gai, J. Power, T. Wong, Nucl. Instr. Meth. A 539 (2005) 445] we suggested the use of a Multilayer Dielectric-Loaded Accelerating Structure (MDLA) as a possible approach for reducing the rf losses in a single layer device. The MDLA is based on the principle of Bragg reflection familiar from optics that is used to partially confine the fields inside the dielectric layers and reduce the wall current losses at the outer boundary. We report here on the design, construction and testing of a prototype X-band double-layer structure (2DLA). The measurements show an rf power attenuation for the 2DLA more than ten times smaller than that of a comparable single-layer structure, in good agreement with the analytic results. Testing and operation of MDLAs also requires efficient power coupling from test equipment or rf power systems to the device. We describe the design and construction of two novel structures: a TM 03 mode launcher for cold testing and a power coupler for planned high-gradient experiments

  20. High power testing oa ANL X-band dielectric-loaded accelerating structures

    International Nuclear Information System (INIS)

    Power, J. G.; Gai, W.; Jing, C.; Konecny, R.; Gold, S. H.; Kinkead, A. K.

    2002-01-01

    In the second phase of a program to develop a compact accelerator based on a dielectric-loaded accelerating structure, we have conducted high power tests on a traveling-wave and a standing-wave prototype. Indications are that the traveling-wave structure achieved an accelerating gradient of 3-5 MV/m before the input coupling window failed, while the standing wave structure was poorly matched at high power due to contamination of copper residue on its coupling window. To solve both of these problems, a new method for coupling RF into the structures has been developed. The new couplers and the rest of the modular structure are currently under construction and will be tested at the Naval Research Laboratory shortly

  1. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  2. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Science.gov (United States)

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  3. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  4. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  5. Beam dynamics analysis of dielectric laser acceleration using a fast 6D tracking scheme

    Directory of Open Access Journals (Sweden)

    Uwe Niedermayer

    2017-11-01

    Full Text Available A six-dimensional symplectic tracking approach exploiting the periodicity properties of dielectric laser acceleration (DLA gratings is presented. The longitudinal kick is obtained from the spatial Fourier harmonics of the laser field within the structure, and the transverse kicks are obtained using the Panofsky-Wenzel theorem. Additionally to the usual, strictly longitudinally periodic gratings, our approach is also applicable to periodicity chirped (subrelativistic and tilted (deflection gratings. In the limit of small kicks and short periods we obtain the 6D Hamiltonian, which allows, for example, to obtain matched beam distributions in DLAs. The scheme is applied to beam and grating parameters similar to recently performed experiments. The paper concludes with an outlook to laser based focusing schemes, which are promising to overcome fundamental interaction length limitations, in order to build an entire microchip-sized laser driven accelerator.

  6. Experimental study for the use of sulfur hexafluoride as dielectric gas in particle accelerators

    International Nuclear Information System (INIS)

    Candanedo y Bernabe, C.

    1993-01-01

    The sulfur hexafluoride is the better dielectric gas in the world. It is used in particle accelerator, power stations and high voltage transformators. This is a high stable gas, but when is used as dielectric is degraded in toxic and corrosive fluorides this degradation of sulfur hexafluoride is a function of the voltaic arc, crown effect, pressure, temperature and radiation. The purification of the sulfur fluoride permitted to work in safe form and without the risks as contaminant. The objective of the work is the development of a process for the separation of the wastes from the fabrication of sulphur fluoride and the products of degradation. This process used adsorbents when this gas is used as dielectric. The methodology employed was bibliography research, experimental design of the equipment, construction of the experimental equipment, selection and use of adsorbents, installation of the adsorption columns for the experimentation, flow of the sulfur hexafluoride through the adsorbents, searching of the fluoride hexafluoride before and after of the step through the adsorption columns and writing of the results. In base to the results we conclude that the process is good. The work could be advantage using chromatographic techniques with adequate standards. Is possible to extend the study using an additional number of adsorbents. (Author). 34 refs, 7 graphs, 3 tabs

  7. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2006-01-01

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  8. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-01-01

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator

  9. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  10. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-01-01

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ∼250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year

  11. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  12. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  13. Experimental and Theoretical Researches of a Resonator Concept of a Dielectric Wakefield Accelerator

    International Nuclear Information System (INIS)

    Onishchenko, I.N.; Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Sotnikov, G.V.; Uskov, V.V.

    2006-01-01

    Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches foe application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac 'ALMAZ-2' (4.5 MeV, 6.10 3 bunches of duration 60 ps and charge 0.32 nC each)

  14. An asymmetric emittance electron source for the GALAXIE dielectric-laser accelerator injector

    Energy Technology Data Exchange (ETDEWEB)

    Valloni, A.; Cahill, A.; Fukusawa, A.; Musumeci, P.; Spataro, B.; Yakub, A.; Rosenzweig, J. B. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Accelerator Division, Laboratori Nazionali di Frascati (INFN-LNF), Via E. Fermi 40, Frascati (RM) 00044 (Italy); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States)

    2012-12-21

    The GALAXIE project is a program to develop an all-optical, very high field accelerator and undulator integrated SASE FEL system based on dielectric laser-excited structures that support >GV/m fields. These structures are very wide in one direction to allow adequate charge given beam loading considerations, but also having small (subwavelength) apertures in the narrow direction. Such small vertical dimensions yield strict restrictions on the emittance in this direction, while no such constraint exists in the wide transverse direction. However, the overall beam brightness is restricted by the performance requirements on the FEL. To meet these demands, we are studying a very high field gun with a magnetized cathode, yielding a beam with angular momentum content. This beam is then subject to a skew-quad triplet that splits the emittances; this process is reversed to give a round beam after acceleration. This symmetric emittance beam avoids gain-degrading multiple-transverse-mode operation of the FEL, which also demands that the effects of the angular momentum in the beam be mitigated. In this paper we discuss the RF design of an X-band gun to be operated at {approx}200 MV/m peak field giving a 1 pC magnetized beam with unprecedented brightness. We examine the design of the focusing and skew-quad systems, investigating the associated beam dynamics and efficacy of emittance splitting.

  15. Experimental and Numerical Investigation of Compact Dielectric Wakefield Accelerators

    Science.gov (United States)

    2016-03-01

    macroparticles. Additionally the laser is chosen to have a transverse rms spot size of σc = 0.8 mm and rms duration of σt = 1 ps. A solenoidal lens is...photocathode laser . . . . . . . . . . 24 3.3 Experimental realization of a linearly-ramped bunch with a multifrequency linac... laser . Our approach toward the development of a compact beam-driven accelerator consists of four main components depicted in Fig. 1. The production of

  16. High current electron beam acceleration in dielectric-filled RF cavities

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.

    1996-01-01

    The acceleration of charged particles in radio frequency (RF) cavities is a widely used mode in high energy accelerators. Advantages include very high accelerating gradients and very stable phase control. A traditional limitation for such acceleration has been their use for intense, high current beam generation. This constraint arises from the inability to store a large amount of electromagnetic energy in the cavity and from loading effects of the beam on the cavity. The authors have studied a simple modification to transcend these limitations. Following Humphries and Huang, they have conducted analytic and numerical investigations of RF accelerator cavities in which a high dielectric constant material, such as water, replaces most of the cavity volume. This raises the stored energy in a cavity of given dimensions by a factor var-epsilon/var-epsilon 0 . For a water fill, var-epsilon/var-epsilon 0 ∼ 80, depending on the frequency. This introduction of high dielectric constant material into the cavity reduces the resonant frequencies by a factor of (var-epsilon/var-epsilon 0 ) 1/2 . This reduced operating frequency mans that existing high efficiency power supplies, at lower frequencies, can be used for an accelerator

  17. Experimental investigation of magnetoplasma acceleration of dielectric projectiles in a rail gun

    International Nuclear Information System (INIS)

    Kondratenko, M.M.; Lebedev, E.F.; Ostashev, V.E.; Safonov, V.I.; Fortov, V.E.; Ul'yanov, A.V.

    1988-01-01

    The authors present results of experimental investigations of the process of a nondestructive electrodynamic acceleration of dielectric projectiles in a magnetoplasma accelerator of rail gun type upon discharge of the electrical energy of the capacitor bank. They describe the phenomenon of decay of the plasma driving piston. They describe the causes of this phenomenon and the practical steps to avoid it. In a specific facility regimes have been achieved with electrodynamic acceleration of projectiles without plasma piston decay at working currents of up to 0.7 MA. In acceleration of projectiles of mass ∼ 1 g a speed of 6 km/sec has been attained and reproduced. The facility constructed can be used efficiently in experiments to investigate the thermophysical properties of substances using dynamic methods as a means of creating intense kinetic energy pulses

  18. SU-E-T-512: Electromagnetic Simulations of the Dielectric Wall Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Uselmann, A; Mackie, T [University of Wisconsin and Morgridge Institute for Research, Madison, WI (United States)

    2014-06-01

    Purpose: To characterize and parametrically study the key components of a dielectric wall accelerator through electromagnetic modeling and particle tracking. Methods: Electromagnetic and particle tracking simulations were performed using a commercial code (CST Microwave Studio, CST Inc.) utilizing the finite integration technique. A dielectric wall accelerator consists of a series of stacked transmission lines sequentially fired in synchrony with an ion pulse. Numerous properties of the stacked transmission lines, including geometric, material, and electronic properties, were analyzed and varied in order to assess their impact on the transverse and axial electric fields. Additionally, stacks of transmission lines were simulated in order to quantify the parasitic effect observed in closely packed lines. Particle tracking simulations using the particle-in-cell method were performed on the various stacks to determine the impact of the above properties on the resultant phase space of the ions. Results: Examination of the simulation results show that novel geometries can shape the accelerating pulse in order to reduce the energy spread and increase the average energy of accelerated ions. Parasitic effects were quantified for various geometries and found to vary with distance from the end of the transmission line and along the beam axis. An optimal arrival time of an ion pulse relative to the triggering of the transmission lines for a given geometry was determined through parametric study. Benchmark simulations of single transmission lines agree well with published experimental results. Conclusion: This work characterized the behavior of the transmission lines used in a dielectric wall accelerator and used this information to improve them in novel ways. Utilizing novel geometries, we were able to improve the accelerating gradient and phase space of the accelerated particle bunch. Through simulation, we were able to discover and optimize design issues with the device at

  19. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  20. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  1. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  2. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  3. Atomic layer deposition of dielectrics for carbon-based electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jiyoung.kim@utdallas.edu; Jandhyala, S.

    2013-11-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics.

  4. Atomic layer deposition of dielectrics for carbon-based electronics

    International Nuclear Information System (INIS)

    Kim, J.; Jandhyala, S.

    2013-01-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics

  5. Vegetable oil based liquid nanocomposite dielectric

    Directory of Open Access Journals (Sweden)

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  6. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    International Nuclear Information System (INIS)

    Jing, C.; Konecny, R.; Antipov, S.; Chang, C.; Gold, S. H.; Schoessow, P.; Kanareykin, A.; Gai, W.

    2013-01-01

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications

  7. Construction of electron accelerator for studying secondary emission in dielectric materials

    International Nuclear Information System (INIS)

    Hessel, R.

    1990-01-01

    An acelerator for the generation of low energy electrons (in the 0.4 to 20 keV range) was constructed. The accelerator is equipped with some devices especially designed for the investigation of the electrical properties of electron-irradiated dielectrics. In this work we have employed it for the study of the secondary electron emission of irradiated polymers. Reference is made to a method proposed by H. von Seggern (IEEE Trans. Nucl. Sci. NS-32, p.1503 (1985)] which was intended for the determination of the electron emission yield especially between the two cross-over points in a single run, here called the dynamical method. We have been able to prove that, contrary to expectation, this method does not give correct results over the entire emission curve. Rather it gives yield values which are too low by 25% in the region where the emission exhibits a maximum, due to the interaction between the electron emission process and the positive surface charge of the dielectric. However the method needs not to be dismissed entirely. As it is, it can be used advantageously for the precise determination of the energy of the second cross-over point. In addition, with the same set up, the method could be improved by replacing the continuous irradiation of the sample by a pulsed irradiation, leading to results essentially the same as those shown in the literature. Finally analysing the process of interaction between the positive charge of the dielectric and the mechanism of electron emission in several situations, we were able: I) to determine the maximum value and the average value of the escape depth of the emitted electrons; II) for a sample with a net positive charge, to show that the positive charge resides very near the surface of incidence; III) for a sample with a net negative charge, to show that the positive charge also resides near the surface while the (prevalent) negative charge resides in the bulk of the material. (author)

  8. Distributed grating-assisted coupler for optical all-dielectric electron accelerator

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    2005-07-01

    Full Text Available A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction becomes an excellent option to form electron accelerating structure powered by high power laser sources. It provides confinement of a synchronous speed-of-light mode with extremely low loss. However, laser field cannot be coupled into the structure collinearly with the electron beam. There are three requirements in designing input coupler for a Bragg electron accelerator: side coupling, selective mode excitation, and high coupling efficiency. We present a side-coupling scheme using a distributed grating-assisted coupler to inject the laser power into the waveguide. Side coupling is achieved by a grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. The coupling efficiency is limited by profile matching between the outgoing beam and the incoming beam, which has normally a Gaussian profile. We demonstrate a nonuniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.

  9. Degradation of based EPDM dielectric compounds

    International Nuclear Information System (INIS)

    Galembeck, F.

    1988-01-01

    The stability of an EPDM compound used as power cables insulation was studied under various conditions of thermal stress. Changes in the dielectric and tensile strenght of the samples were found after the aging. Samples of the EPDM compound were analysed by spectroscopic (photoacoustic, IR) methods showing alterations in its components: Pb 3 O 4 is reduced to PbO and exsuded paraffin is oxidized. Methane is prevalent in the gaseous mixture released by the heated compound and analysed by Gas Chromatography. (author) [pt

  10. Light programmable organic transistor memory device based on hybrid dielectric

    Science.gov (United States)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  11. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  12. Injector and beam transport simulation study of proton dielectric wall accelerator

    International Nuclear Information System (INIS)

    Zhao, Quantang; Yuan, P.; Zhang, Z.M.; Cao, S.C; Shen, X.K.; Jing, Y.; Ma, Y.Y.; Yu, C.S.; Li, Z.P.; Liu, M.; Xiao, R.Q.; Zhao, H.W.

    2012-01-01

    A simulation study of a short-pulsed proton injector for, and beam transport in, a dielectric wall accelerator (DWA) has been carried out using the particle-in-cell (PIC) code Warp. It was shown that applying “tilt pulse” voltage waveforms on three electrodes enables the production of a shorter bunch by the injector. The fields in the DWA beam tube were simulated using Computer Simulation Technology’s Microwave Studio (CST MWS) package, with various choices for the boundary conditions. For acceleration in the DWA, the beam transport was simulated with Warp, using applied fields obtained by running CST MWS. Our simulations showed that the electric field at the entrance to the DWA represents a challenging issue for the beam transport. We thus simulated a configuration with a mesh at the entrance of the DWA, intended to improve the entrance field. In these latter simulations, a proton bunch was successfully accelerated from 130 keV to about 36 MeV in a DWA with a length of 36.75 cm. As the beam bunch progresses, its transverse dimensions diminish from (roughly) 0.5×0.5 cm to 0.2×0.4 cm. The beam pulse lengthens from 1 cm to 2 cm due to lack of longitudinal compression fields. -- Highlights: ► A pulse proton injector with tilt voltages on the three electrodes was simulated. ► The fields in different part of the DWA were simulated with CST and analyzed. ► The proton beam transport in DWA was simulated with Warp successfully. ► The simulation can help for designing a real DWA.

  13. Plasma-based and novel accelerators

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Nishida, Yasushi

    1992-05-01

    This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), V p x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)

  14. Data base of radiation-resistant dielectric and insulating materials

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Sunazuka, Hideo; Nashiyama, Isamu; Kakuta, Tsunemi.

    1987-01-01

    In the data base of radiation-resistant dielectric and insulating materials, the data format contains such items as to give the summary; the data sheet contains the data in concrete form of respective properties from the references; the sheet of references contains the references in the former two. In the above three, there are attached code No., data sheet No., reference No. and key words. In the three areas as radiation-resistant dielectric and insulating materials, i.e., organic materials, inorganic materials and optical fibers, the following are explained: data format, data sheet and objectives. (Mori, K.)

  15. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Directory of Open Access Journals (Sweden)

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  16. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...

  17. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric...

  18. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  19. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  20. On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2015-01-01

    Full Text Available This work deals with the assessment of gate dielectric for 4H-SiC MOSFETs using technology based two-dimensional numerical computer simulations. Results are studied for variety of gate dielectric candidates with varying thicknesses using well-known Fowler-Nordheim tunneling model. Compared to conventional SiO2 as a gate dielectric for 4H-SiC MOSFETs, high-k gate dielectric such as HfO2 reduces significantly the amount of electric field in the gate dielectric with equal gate dielectric thickness and hence the overall gate current density. High-k gate dielectric further reduces the shift in the threshold voltage with varying dielectric thicknesses, thus leading to better process margin and stable device operating behavior. For fixed dielectric thickness, a total shift in the threshold voltage of about 2.5 V has been observed with increasing dielectric constant from SiO2 (k=3.9 to HfO2 (k=25. This further results in higher transconductance of the device with the increase of the dielectric constant from SiO2 to HfO2. Furthermore, 4H-SiC MOSFETs are found to be more sensitive to the shift in the threshold voltage with conventional SiO2 as gate dielectric than high-k dielectric with the presence of interface state charge density that is typically observed at the interface of dielectric and 4H-SiC MOS surface.

  1. Wakefield accelerator with hybrid plasma-dielectric structure of rectangular cross-section

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2010-01-01

    Increase of wakefield intensity at its excitation by a long train of relativistic electron bunches in the rectangular dielectric structure when it is filled with plasma of resonant density was experimentally observed. The first portion of the bunches, produced by electron linac 'Almaz-2', ionizes gas at atmospheric pressure so that plasma frequency becomes equal to bunch repetition frequency and to the frequency of principal Eigen mode of the dielectric structure. Excitation enhancement at such resonant conditions is being studied taking into account the improvement of bunch train propagation in the transit channel caused by charge compensation with plasma and the electrodynamics change of the dielectric structure at filling with plasma.

  2. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  3. Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma

    Science.gov (United States)

    Abdoli-Arani, A.; Montazeri, M. M.

    2018-04-01

    Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.

  4. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  5. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  6. Norbornylene-based polymer systems for dielectric applications

    Science.gov (United States)

    Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  7. Actuated polymer based dielectric mirror for visual spectral range applications

    Science.gov (United States)

    Vergara, Pedro P.; Lunardi, Leda

    2017-08-01

    Miniature dielectric mirrors are useful components for lasers, thin film beam splitters and high quality mirrors in optics. These mirrors usually made from rigid inorganic materials can achieve a reflectance of almost one hundred percent. Being structural components, as soon as fabricated their reflectance and/or bandwidth remains constant. Here it is presented a novel fabrication process of a dielectric mirror based on free standing polymer layers. By applying an electrostatic force between the top and the bottom layers the reflectance can be changed. The large difference between the polymers refractive index and the air allows to achieve a reflectance of more than 85% using only six pairs of nanolayers. Preliminary simulations indicate an actuation speed of less than 1ms. Experimental optical characterization of fabricated structures agrees well with simulation results. Furthermore, structures can be designed to reflect a particular set of colors and/or isolated by using color filters, so a color pixel is fabricated, where the reflectance for each isolated color can be voltage controlled. Potential applications include an active component in a reflective screen display.

  8. Driver-witness electron beam acceleration in dielectric mm-scale capillaries

    Science.gov (United States)

    Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.

    2018-05-01

    We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.

  9. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  10. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  11. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju

    2017-04-15

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  12. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  13. LIGHT: Towards a laser-based accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Busold, Simon; Deppert, Oliver; Roth, Markus [Technical University of Darmstadt, Institute for Nuclear Physics, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Brabetz, Christian [Goethe University Frankfurt am Main, Institute for Applied Physics, Max von Laue Strasse 1, 60438 Frankfurt (Germany); Burris-Mog, Trevor; Joost, Martin; Cowan, Tom [Helmholtz Center Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Blazevic, Abel; Bagnoud, Vincent [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Zielbauer, Bernhard [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Helmholtz Institute Jena, Helmholtzweg 4, 07743 Jena (Germany); Kester, Oliver [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Goethe University Frankfurt am Main, Institute for Applied Physics, Max von Laue Strasse 1, 60438 Frankfurt (Germany)

    2012-07-01

    Proton acceleration by ultrashort, high intensity laser pulses has been a fast growing field of research during the last decade. The most intensely investigated acceleration mechanism is the TNSA mechanism (Target Normal Sheath Acceleration), providing protons in the multi-MeV-range. For many possible applications, however, the full energy spread and large beam divergence are major draw-backs. Therefore, a pulsed high-field solenoid was used for collimation and energy-selection and is now integrated in a full test stand for a laser-based accelerator at GSI Helmholtz Center, Darmstadt, namely the LIGHT project (Laser Ion Generation, Handling and Transport), which is a collaboration between TU Darmstadt, GSI, HZDR, JWGU Frankfurt and HI Jena. An overview of the new infrastructure, the goals of the LIGHT project, and first experimental results are presented.

  14. Qualitative safety analysis in accelerator based systems

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Chowdhury, Lekha M.

    2006-01-01

    In recent developments connected to high energy and high current accelerators, the accelerator driven systems (ADS) and the Radioactive Ion Beam (RIB) facilities come in the forefront of application. For medical and industrial applications high current accelerators often need to be located in populated areas. These facilities pose significant radiological hazard during their operation and accidental situations. We have done a qualitative evaluation of radiological safety analysis using the probabilistic safety analysis (PSA) methods for accelerator-based systems. The major contribution to hazard comes from a target rupture scenario in both ADS and RIB facilities. Other significant contributors to hazard in the facilities are also discussed using fault tree and event tree methodologies. (author)

  15. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  16. Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds

    Science.gov (United States)

    A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...

  17. Use of accelerator based neutron sources

    International Nuclear Information System (INIS)

    2000-05-01

    With the objective of discussing new requirements related to the use of accelerator based neutron generators an Advisory Group meeting was held in October 1998 in Vienna. This meeting was devoted to the specific field of the utilization of accelerator based neutron generators. This TECDOC reports on the technical discussions and presentations that took place at this meeting and reflects the current status of neutron generators. The 14 MeV neutron generators manufactured originally for neutron activation analysis are utilised also for nuclear structure and reaction studies, nuclear data acquisition, radiation effects and damage studies, fusion related studies, neutron radiography

  18. Accelerator based continuous neutron source.

    CERN Document Server

    Shapiro, S M; Ruggiero, A G

    2003-01-01

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...

  19. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  20. Diamond field emitter array cathodes and possibilities for employing additive manufacturing for dielectric laser accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andrews, Heather Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Herman, Matthew Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with field emission, demonstration of photoemission from DFEAs, and new structures to print and test.

  1. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Toor, Anju, E-mail: atoor@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); So, Hongyun, E-mail: hyso@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Pisano, Albert P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 (United States)

    2017-08-31

    Highlights: • Ligand-modified gold NP/SU-8 nanocomposites were synthesized and demonstrated. • Particle agglomeration and dispersion were characterized with different NPs concentration. • Nanocomposites showed higher average dielectric permittivity compared to SU-8 only. • Relatively lower dielectric loss (average 0.09 at 1 kHz) was achieved with 10 % w/w NPs. - Abstract: This article reports the enhanced dielectric properties of a photodefinable polymer nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of the dielectric permittivity and loss tangent on the particle concentration, and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  2. Development of a diplexer based on dielectric beam splitters

    International Nuclear Information System (INIS)

    D'Arcangelo, O.; Alessi, E.; Bin, W.; Bruschi, A.; Moro, A.; Muzzini, V.

    2011-01-01

    Controllable power combination and distribution of multiple sources into multiple transmission lines may increase efficiency and flexibility of ECRH systems. A new quasi-optical version of diplexer based on a resonating system, coupling two transmission lines, is under development at IFP-CNR. Two dielectric beam splitters work as input/output ports for the diplexer, which can be thought as a Fabry-Perot resonator. A third beam splitter can be inserted in the middle of the resonator. In this case the diplexer looks like a pair of mirrored resonators coupled by through the central splitter. Each beam splitter is made of a water-free silica layer, three quarter of wavelength thick at 140 GHz. The simulated performances were tested as a function of the frequency on the two splitters simpler model. Preliminary results confirm qualitatively theoretical predictions as well as the good channel separation obtainable with the three splitters version. Present work describes the system realization together with the low power tests performed.

  3. Present status of Accelerator-Based BNCT.

    Science.gov (United States)

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  4. Charge transport and dielectric relaxation processes in anilin-based oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Moučka, R.; Ilčíková, M.; Bober, Patrycja; Kazantseva, N.; Špitálský, Z.; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 192, June (2014), s. 37-42 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : aniline-based oligomers * conductivity * dielectric properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  5. Effect of dielectric layers on device stability of pentacene-based field-effect transistors.

    Science.gov (United States)

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben

    2009-09-07

    We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.

  6. Proposed Brookhaven accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.; Batchelor, K.; Chasman, R.; Rheaume, R.

    1976-01-01

    The d-Li Neutron Source concept, which includes a high-current dueteron linac, is an outgrowth of attempts made to use the BNL, 200-MeV proton linac BLIP facility to do radiation damage studies. It included a 100 mA, 30-MeV deuteron linear accelerator and a fast-flowing liquid lithium jet as the target. The latest design is not very different, except that the current is now 200 mA and the linac energy has been raised to 35 MeV. Both parameters, were changed to optimize the effectiveness of the facility with respect to flux, experimental volume and match to 14 MeV neutron-radiation-damage effects. The proposed Brookhaven Accelerator-based Neutron Generator is described with particular emphasis on the linear accelerator. The proposed facility is a practical and efficient way of producing the intense, high energy neutron beams needed for CTR material studies. The accelerator and liquid-metal technologies are well proven, state-of-the-art technologies. The fact that no new technology is required guarantees the possibility of meeting construction schedules, and more importantly, guarantees a high level of operational reliability

  7. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn; Wen, Shuangchun [Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-07-27

    We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.

  8. High-strain actuator materials based on dielectric elastomers

    DEFF Research Database (Denmark)

    Pelrine, R.; Kornbluh, R.; Kofod, G.

    2000-01-01

    Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black) and patt......Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black...

  9. Accelerator based atomic physics experiments: an overview

    International Nuclear Information System (INIS)

    Moak, C.D.

    1976-01-01

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  10. Near-field enhanced electron acceleration from dielectric nanospheres in intense few-cycle laser fields

    International Nuclear Information System (INIS)

    Zherebtsov, S.; Znakovskaya, I.; Wirth, A.; Herrwerth, O.; Suessmann, F.; Ahmad, I.; Trushin, S.; Fennel, Th.; Plenge, J.; Antonsson, E.

    2010-01-01

    Complete text of publication follows. The interaction of nanostructured materials with few-cycle laser light has attracted significant attention lately. This interest is driven by both the quest for fundamental insight into the real-time dynamics of many-electron systems and a wide range of far-reaching applications, such as, e.g. ultrafast computation and information storage on the nanoscale and the generation of XUV frequency combs. We investigated the above-threshold electron emission from isolated SiO 2 nanoparticles in waveform controlled few-cycle laser fields at intensities close to the tunneling regime. The enhancement of the electron acceleration from the silica nanoparticles was explored as a function of the particle size (ranging from 50 to 147 nm) and the laser peak intensity (1 - 4x10 13 W/cm 2 ). Obtained cut-off values in the kinetic energy spectra are displayed in Fig. 1. The cut-off values show a linear dependence with intensity within the studied intensity range, with the average cut-off energy being 53 U P , indicated by the black line. Quasi-classical simulations of the emission process reveal that electron rescattering in the locally enhanced near-field of the particle is responsible for the large energy gain. The observed near-field enhancement offers promising new routes for pushing the limits of strong-field phenomena relying on electron rescattering, such as, high-harmonic generation and molecular imaging.

  11. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  12. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays.

    Science.gov (United States)

    Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol

    2017-08-16

    In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al 2 O 3 , Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10 -6 g/m 2 /day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m 2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation

  13. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  14. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    Science.gov (United States)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  15. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    Science.gov (United States)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  16. X radiation sources based on accelerators

    International Nuclear Information System (INIS)

    Couprie, M.E.; Filhol, J.M.

    2008-01-01

    Light sources based on accelerators aim at producing very high brilliance coherent radiation, tunable from the infrared to X-ray range, with picosecond or femtosecond light pulses. The first synchrotron light sources were built around storage rings in which a large number of relativistic electrons produce 'synchrotron radiation' when their trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators), made of an alternating series of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced. These 'synchrotron radiation' storage rings are now used worldwide (there are more than thirty), and they simultaneously distribute their radiation to several tens of users around the storage ring. The most effective installations in term of brilliance are the so-called third generation synchrotron radiation light sources. The radiation produced presents pulse durations of the order of a few tens of ps, at a high rate (of the order of MHz); it is tunable over a large range, depending on the magnetic field and the electron beam energy and its polarisation is adjustable (in the V-UV-soft-X range). Generally, a very precise spectral selection is made by the users with a monochromator. The single pass linear accelerators can produce very short electron bunches (around 100 fs). The beam of very high electronic density is sent into successive undulator modules, reinforcing the radiation's longitudinal coherence, produced according to a Free Electron Laser (FEL) scheme by the interaction between the electron bunch and a light wave. The very high peak brilliance justifies their designation as fourth generation sources. The number of users is smaller because an electron pulse produces a radiation burst towards only one beamline. Energy Recovery Linacs (ERL) let the beam pass several times in the accelerator structures either to recover the energy or to accelerate the electrons during several turns

  17. Terahertz polarization converter based on all-dielectric high birefringence metamaterial with elliptical air holes

    KAUST Repository

    Zi, Jianchen

    2018-02-15

    Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.

  18. An omnidirectional retroreflector based on the transmutation of dielectric singularities.

    Science.gov (United States)

    Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf

    2009-08-01

    Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.

  19. Simulation of Cell Dielectric Properties Based on COMSOL

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2018-03-01

    Full Text Available The dielectric properties of cells can be observed by injecting a low amplitude current at different frequencies (1MHz~100MHz. The simulation research is taken on the software platform named COMSOL Multiphysics. The electric field and the cell model is created with prior information. By simulation, itrs verified that at low frequencies, the region of interest (ROI behaves the conductivity characteristic while the electrical signal cannot pass through the cell membrane due to its capacitor properties. With the excitation frequency increasing, the ROI behaves more permittivity characteristic that the current flowing through the cell membrane becomes more and the current density increases. The research of the cell dielectric properties provides an auxiliary method to diagnose the status of the cell.

  20. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  1. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  2. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms

    Science.gov (United States)

    Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.

    In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.

  3. Design and Development of Embedded Based System for the Measurement of Dielectric Constant Spectroscopy for Liquids

    Directory of Open Access Journals (Sweden)

    V. V. Ramana C. H.

    2010-09-01

    Full Text Available An embedded based system for the measurement of dielectric constant spectroscopy (for frequencies 1 kHz, 10 kHz, 100 kHz, 1 MHz and 10 MHz for liquids has been designed and developed. It is based on the principle that the change in frequency of an MAX 038 function generator, when the liquid forms the dielectric medium of the dielectric cell, is measured with a microcontroller. Atmel’s AT89LP6440 microcontroller is used in the present study. Further, an LCD module is interfaced with the microcontroller in 4-bit mode, which reduces the hardware complexity. Software is developed in C using Keil’s C-cross compiler. The instrument system covers a wide range of dielectric constants for various liquids at various frequencies and at different temperatures. The system is quite successful in the measurement of dielectric constant in liquids with an accuracy of ± 0.01 %. The dielectric constant is very dependent on the frequency of their measurement. No one-measurement technique is available, however, that will give the frequency range needed to characterize the liquid sample. The paper deals with the hardware and software details.

  4. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  5. Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

    Science.gov (United States)

    Haixin, HU; Feng, HE; Ping, ZHU; Jiting, OUYANG

    2018-05-01

    A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.

  6. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  7. First accelerator-based physics of 2014

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Experiments in the East Area received their first beams from the PS this week. Theirs is CERN's first accelerator-based physics since LS1 began last year.   For the East Area, the PS performs a so-called slow extraction, where beam is extracted during many revolution periods (the time it take for particles to go around the PS, ~2.1 μs). The yellow line shows the circulating beam current in the PS, decreasing slowly during the slow extraction, which lasts 350 ms. The green line is the measured proton intensity in the transfer line toward the East Area target. Although LHC physics is still far away, we can now confirm that the injectors are producing physics! In the East Area - the experimental area behind the PS - the T9 and T10 beam lines are providing beams for physics. These beam lines serve experiments such as AIDA - which looks at new detector solutions for future accelerators - and the ALICE Inner Tracking System - which tests components for the ALICE experiment. &qu...

  8. Insight into the dielectric response of transformer oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-02-01

    Full Text Available The oil-based nanofluids with greater dielectric strength have attracted much attention as a crucial insulating materials in high-voltage oil-immersed power equipment. In fact, the different microstructures of the transformer oil-based nanofluids (TNFs would result in different dielectric properties. In this work, the broadband dielectric spectroscopy measurement was used to establish the linkage between the electric double layer (EDL and dielectric response properties of TNFs which was performed at 298K temperature and with frequency range from 10-2Hz∼106Hz. The modified Havriliak-Negami (HN model function was used to analyze the measured results. The results demonstrate that both the real and imaginary parts of dielectric spectra of two kinds of oil are composed of the conductivity and polarization process. Compared with pure oil, two polarization process could be observed for the TNFs, explained by the EDL structure reasonably. The introduction of the EDL structure provides an idea to account for the insulating strength improvement of TNFs for the first time.

  9. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  10. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  11. Wave Energy Converters based on Dielectric Elastomer generators: Status and perspectives

    International Nuclear Information System (INIS)

    Fontana, Marco; Vertechy, Rocco

    2015-01-01

    Dielectric Elastomers (DEs) are a very promising technology for the development of energy harvesting devices based on the variable-capacitance electrostatic generator principle. This paper discusses the potentialities of DE technology for advancing the ocean wave energy sector. In particular, three innovative concepts of wave energy converters with DE-based power take-off system are introduced and described.

  12. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  13. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides

    Science.gov (United States)

    Fetouhi, Louiza; Petitgas, Benoit; Dantras, Eric; Martinez-Vega, Juan

    2017-10-01

    This work aims to characterize the dielectric and the mechanical properties of a resin based on an unsaturated polyesterimide diluted in methacrylate reactive diluents used in the impregnation of rotating machines. The broadband dielectric spectrometry and the dynamic mechanical analysis were used to quantify the changes in dielectric and mechanical properties of the network PEI resin, as a function of temperature and frequency. The network characterizations highlight the presence of two main relaxations, α and α', confirmed by the differential scanning calorimetry analysis, showing the complexity of the chemical composition of this resin. The dielectric spectroscopy shows a significant increase in the dielectric values due to an increase of the material conductivity, while the mechanical spectroscopy shows an important decrease of the polymer rigidity and viscosity expressed by an important decrease in the storage modulus. The PEI resin shows a high reactivity when it is submitted in successive heating ramps, which involves in a post-cross-linking reaction. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  14. Transport and dielectric studies on silver based molybdo-tungstate quaternary superionic conducting glasses

    International Nuclear Information System (INIS)

    Prasad, P.S.S.; Radhakrishna, S.

    1988-01-01

    The molybdo-tungstate (MoO 3 -WO 3 ) combination of glass formers with silver oxide (Ag 2 O) as glass modifier and silver iodide (AgI) as ionic conductor were prepared to study the transport and dielectric properties of 60% AgI-40% (x Ag 2 O-y(WO 3 -MoO 3 )) for x/y=0.33 to 3.0 and establish the feasibility of using these glasses as electrolytes in the fabrication and characterisation of solid state batteries and potential memory devices. The details of the preparation of glasses and methods of measurement of their capacitance, dielectric loss factor and ac conductivity in the frequency range 100 Hz - 100 kHz from 30-120 C have been reported. The electronic contribution to the total conductivity, the ionic and electronic transport numbers were determined using Wagners dc polarisation technique. The observed high ionic and low electronic conductivities were attributed to the formation of ionic clusters in the glass and the effect of mixing two glass formers. The observed total ionic conductivity and its temperature dependence was explained using Arrhenius relation σ=σ 0 /T exp(-E/RT) and the measured dielectric constant and dielectric loss were explained on the basis of Jonschers theory. The frequency dependence of dielectric constant obeys the theory based on the polarisation of ions. 25 refs.; 8 figs

  15. GPU based acceleration of first principles calculation

    International Nuclear Information System (INIS)

    Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T

    2010-01-01

    We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.

  16. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Min Sung; Yamamoto, Akio [Dept. of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo (Japan)

    2016-09-15

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively.

  17. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    International Nuclear Information System (INIS)

    Cho, Min Sung; Yamamoto, Akio

    2016-01-01

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively

  18. Radiation sensors based on the generation of mobile protons in organic dielectrics.

    Science.gov (United States)

    Kapetanakis, Eleftherios; Douvas, Antonios M; Argitis, Panagiotis; Normand, Pascal

    2013-06-26

    A sensing scheme based on mobile protons generated by radiation, including ionizing radiation (IonR), in organic gate dielectrics is investigated for the development of metal-insulator-semiconductor (MIS)-type dosimeters. Application of an electric field to the gate dielectric moves the protons and thereby alters the flat band voltage (VFB) of the MIS device. The shift in the VFB is proportional to the IonR-generated protons and, therefore, to the IonR total dose. Triphenylsulfonium nonaflate (TPSNF) photoacid generator (PAG)-containing poly(methyl methacrylate) (PMMA) polymeric films was selected as radiation-sensitive gate dielectrics. The effects of UV (249 nm) and gamma (Co-60) irradiations on the high-frequency capacitance versus the gate voltage (C-VG) curves of the MIS devices were investigated for different total dose values. Systematic improvements in sensitivity can be accomplished by increasing the concentration of the TPSNF molecules embedded in the polymeric matrix.

  19. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    Science.gov (United States)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  20. Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides

    International Nuclear Information System (INIS)

    Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M

    2009-01-01

    Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)

  1. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  2. Ion accelerator based on plasma vircator

    CERN Document Server

    Onishchenko, I N

    2001-01-01

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation.

  3. Summary report: working group 2 on 'Plasma Based Acceleration Concepts'

    International Nuclear Information System (INIS)

    Esarey, E.; Leemans, W.P.

    1998-01-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beat wave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module

  4. All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region

    DEFF Research Database (Denmark)

    Tian, Jingyi; Yang, Yuanqing; Qiu, Min

    2017-01-01

    We employ ferroelectrics to study the multipolar scattering in all-dielectric metasurfaces based on KTiOPO4 (KTP) micro-disks for efficient manipulation of electromagnetic waves in the THz spectral region (0.6-1.5 THz). By adjusting the aspect ratio of the disks near the multipolar resonances, we...

  5. Microwave Metamaterial-Based Sensor for Dielectric Characterization of Liquids.

    Science.gov (United States)

    Soffiatti, André; Max, Yuri; G Silva, Sandro; M de Mendonça, Laércio

    2018-05-11

    This article proposed to build a system founded on metamaterial sensor antennas, which can be used to evaluate impurities in aqueous substances according to the quality of transmission between the sensor antennas. In order to do this, a dedicated setup with tests in several frequencies was deployed so as to monitor the behavior of transmission variation between sensors. These sensors are microstrip antennas with a ground plane of resonant cleaved metallic rings; the substrate functions as a metamaterial for the irradiating element. In this study, an analysis was made of transmission between the sensors, looking for variation in angles of incidence of signal and of distance between the antennas. The sensor was tested at various operating frequencies, as such 1.8 GHz, 2.4 GHz, 3.4 GHz and 4.1 GHz, resulting in different values of sensitivity. The prototypes were constructed and tested so as to analyze the dielectric effects of the impurities on NaCl and C₂H₄O₂ substances. The research aims to use these control systems of impurities in industrial premises.

  6. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the

  7. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  8. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  9. Inverse grey-box model-based control of a dielectric elastomer actuator

    DEFF Research Database (Denmark)

    Jones, Richard William; Sarban, Rahimullah

    2012-01-01

    control performance across the operating range of the DE actuator, a gain scheduling term, which linearizes the operating characteristics of the tubular dielectric elastomer actuator, is developed and implemented in series with the IMC controller. The IMC-based approach is investigated for servo control......An accurate physical-based electromechanical model of a commercially available tubular dielectric elastomer (DE) actuator has been developed and validated. In this contribution, the use of the physical-based electromechanical model to formulate a model-based controller is examined. The choice...... of control scheme was dictated by the desire for transparency in both controller design and operation. The internal model control (IMC) approach was chosen. In this particular application, the inverse of the linearized form of the grey-box model is used to formulate the IMC controller. To ensure consistent...

  10. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    International Nuclear Information System (INIS)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly

    2011-01-01

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  11. Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films

    Science.gov (United States)

    Pramanick, Abhijit; Osti, Naresh C.; Jalarvo, Niina; Misture, Scott T.; Diallo, Souleymane Omar; Mamontov, Eugene; Luo, Y.; Keum, Jong-Kahk; Littrell, Ken

    2018-04-01

    Relaxor ferroelectrics exhibit frequency-dispersion of their dielectric permittivity peak as a function of temperature, the origin of which has been widely debated. Microscopic understanding of such behavior for polymeric ferroelectrics has presented new challenges since unlike traditional ceramic ferroelectrics, dielectric relaxation in polymers is a consequence of short-range molecular dynamics that are difficult to measure directly. Here, through careful analysis of atomic-level H-atom dynamics as determined by Quasi-elastic Neutron Scattering (QENS), we show that short-range molecular dynamics within crystalline domains cannot explain the macroscopic frequency-dispersion of dielectric properties observed in prototypical polyvinylidene-fluoride (PVDF)-based relaxor ferroelectrics. Instead, from multiscale quantitative microstructural characterization, a clear correlation between the amount of crystalline-amorphous interfaces and dielectric relaxation is observed, which indicates that such interfaces play a central role. These results provide critical insights into the role of atomic and microscopic structures towards relaxor behavior in ferroelectric polymers, which will be important for their future design.

  12. Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films

    Directory of Open Access Journals (Sweden)

    Abhijit Pramanick

    2018-04-01

    Full Text Available Relaxor ferroelectrics exhibit frequency-dispersion of their dielectric permittivity peak as a function of temperature, the origin of which has been widely debated. Microscopic understanding of such behavior for polymeric ferroelectrics has presented new challenges since unlike traditional ceramic ferroelectrics, dielectric relaxation in polymers is a consequence of short-range molecular dynamics that are difficult to measure directly. Here, through careful analysis of atomic-level H-atom dynamics as determined by Quasi-elastic Neutron Scattering (QENS, we show that short-range molecular dynamics within crystalline domains cannot explain the macroscopic frequency-dispersion of dielectric properties observed in prototypical polyvinylidene-fluoride (PVDF-based relaxor ferroelectrics. Instead, from multiscale quantitative microstructural characterization, a clear correlation between the amount of crystalline-amorphous interfaces and dielectric relaxation is observed, which indicates that such interfaces play a central role. These results provide critical insights into the role of atomic and microscopic structures towards relaxor behavior in ferroelectric polymers, which will be important for their future design.

  13. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Hafiz Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ahmad, Ishtiaq; Ali, Irshad [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ramay, Shahid M. [College of Science, Physics and Astronomy Department, King Saud University, P.O. Box 2455, 11451 Riyadh (Saudi Arabia); Mahmood, Asif [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh (Saudi Arabia); Murtaza, G. [Centre for Advanced Studies in Physics, GC University, Lahore 5400 (Pakistan)

    2017-07-15

    Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • Dielectric constant shows the normal spinel ferrites behavior. • The dc conductivity are found to decrease with increasing temperature. • The samples with low conductivity have high values of activation energy. • The Impedance decreases with increasing frequency of applied field. - Abstract: Spinel ferrites with nominal composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz–3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole–Cole plots were used to separate the grain and grain boundary’s effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary’s resistance as compared to the grain’s resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe{sub 2}O{sub 4} exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  14. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles

    Science.gov (United States)

    Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.

    2018-06-01

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  15. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles.

    Science.gov (United States)

    Petrini, Paula Andreia; Lopes da Silva, Ricardo Magno; de Oliveira, Rafael Furlan; Merces, Leandro; Bufon, Carlos César Bof

    2018-04-06

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscope (STM). The incorporation of molecular materials in devices is not a trivial task since the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (kCuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensemble have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (< 30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (kCuPc = 4.5 ± 0.5). These values suggest a mild contribution of molecular orientation in the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology. © 2018 IOP Publishing Ltd.

  16. A Qualitative Acceleration Model Based on Intervals

    Directory of Open Access Journals (Sweden)

    Ester MARTINEZ-MARTIN

    2013-08-01

    Full Text Available On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people's pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.

  17. A New Accelerator-Based Mass Spectrometry.

    Science.gov (United States)

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  18. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...... elastomeractuators. Conductivities of samples based on various PDMS compositions with different loadings of embedded glycerol were thoroughly investigated providing useful information about the dielectric behavior....

  19. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  20. Model-based accelerator controls: What, why and how

    International Nuclear Information System (INIS)

    Sidhu, S.S.

    1987-01-01

    Model-based control is defined as a gamut of techniques whose aim is to improve the reliability of an accelerator and enhance the capabilities of the operator, and therefore of the whole control system. The aim of model-based control is seen as gradually moving the function of model-reference from the operator to the computer. The role of the operator in accelerator control and the need for and application of model-based control are briefly summarized

  1. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    Science.gov (United States)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  2. Proposal for an accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.

    1975-07-01

    An Accelerator-based Neutron Generator is described that consists of a 30-MeV deuteron linear accelerator using a flowing liquid lithium target. With a continuous deuteron current of 100 milliamperes, a source intensity of more than 10 16 neutrons per second will be produced. The neutrons will be emitted in a roughly collimated beam. The proposed facility can be divided into two areas: the 30-MeV linear accelerator and the multiple-target experimental area. The 30-MeV accelerator will consist of eight rf accelerating cavities in a single vacuum tank, each cavity being powered by its own rf power amplifier operating at 50 MHz. To shield the beam bunches from the rf field when it is in the decelerating direction, 66 ''drift tubes'' will be included; the drift-tube structures will include quadrupole magnets which will keep the beam focused. The accelerator will produce a continuous beam of 100 milliamperes. Beam power will thus be 3.0 megawatts; total power including rf losses in the accelerating cavities will be 4.5 megawatts. The injectors for the linear accelerator will be two 500-kV dc accelerators, one for injection of D + ions and the other for D - ions. They can be used simultaneously or one can serve as a spare in case of breakdown or maintenance of the other. (U.S.)

  3. High-frequency dielectric response of polyaniline pellets as nanocomposites of metallic emeraldine salt and dielectric base

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Rychetský, Ivan; Trchová, Miroslava; Stejskal, Jaroslav

    2015-01-01

    Roč. 209, Nov (2015), s. 561-569 ISSN 0379-6779 R&D Projects: GA ČR GAP204/12/0232; GA ČR(CZ) GAP205/12/0911 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : polyaniline * infrared and THz spectroscopy * optical conductivity * dielectric permittivity * vibrational mode * effective medium approach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.299, year: 2015

  4. Microprocessor-based accelerating power level detector

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, M.; Zarecki, W.; Albrecht, J.C.

    1994-01-01

    An accelerating power level detector was built using state-of-the-art microprocessor technology at Powertech Labs Inc. The detector will monitor the real power flowing in two 300 kV transmission lines out of Kemano Hydroelectric Generating Station and will detect any sudden loss of load due to a fault on either line under certain pre-selected power flow conditions. This paper discusses the criteria of operation for the detector and its implementation details, including digital processing, hardware, and software.

  5. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  6. Quantum computer based on activated dielectric nanoparticles selectively interacting with short optical pulses

    International Nuclear Information System (INIS)

    Gadomskii, Oleg N; Kharitonov, Yu Ya

    2004-01-01

    The operation principle of a quantum computer is proposed based on a system of dielectric nanoparticles activated with two-level atoms - cubits, in which electric dipole transitions are excited by short intense optical pulses. It is proved that the logical operation (logical operator) CNOT (controlled NOT) is performed by means of time-dependent transfer of quantum information over 'long' (of the order of 10 4 nm) distances between spherical nanoparticles owing to the delayed interaction between them in the optical radiation field. It is shown that one-cubit and two-cubit logical operators required for quantum calculations can be realised by selectively exciting dielectric particles with short optical pulses. (quantum calculations)

  7. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  8. Atomic scale engineering of HfO2-based dielectrics for future DRAM applications

    International Nuclear Information System (INIS)

    Dudek, Piotr

    2011-01-01

    Modern dielectrics in combination with appropriate metal electrodes have a great potential to solve many difficulties associated with continuing miniaturization process in the microelectronic industry. One significant branch of microelectronics incorporates dynamic random access memory (DRAM) market. The DRAM devices scaled for over 35 years starting from 4 kb density to several Gb nowadays. The scaling process led to the dielectric material thickness reduction, resulting in higher leakage current density, and as a consequence higher power consumption. As a possible solution for this problem, alternative dielectric materials with improved electrical and material science parameters were intensively studied by many research groups. The higher dielectric constant allows the use of physically thicker layers with high capacitance but strongly reduced leakage current density. This work focused on deposition and characterization of thin insulating layers. The material engineering process was based on Si cleanroom compatible HfO 2 thin films deposited on TiN metal electrodes. A combined materials science and dielectric characterization study showed that Ba-added HfO 2 (BaHfO 3 ) films and Ti-added BaHfO 3 (BaHf 0.5 Ti 0.5 O 3 ) layers are promising candidates for future generation of state-of-the-art DRAMs. In especial a strong increase of the dielectric permittivity k was achieved for thin films of cubic BaHfO 3 (k∝38) and BaHf 0.5 Ti 0.5 O 3 (k∝90) with respect to monoclinic HfO 2 (k∝19). Meanwhile the CET values scaled down to 1 nm for BaHfO 3 and ∝0.8 nm for BaHf 0.5 Ti 0.5 O 3 with respect to HfO 2 (CET=1.5 nm). The Hf 4+ ions substitution in BaHfO 3 by Ti 4+ ions led to a significant decrease of thermal budget from 900 C for BaHfO 3 to 700 C for BaHf 0.5 Ti 0.5 O 3 . Future studies need to focus on the use of appropriate metal electrodes (high work function) and on film deposition process (homogeneity) for better current leakage control. (orig.)

  9. Atomic scale engineering of HfO{sub 2}-based dielectrics for future DRAM applications

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Piotr

    2011-02-14

    Modern dielectrics in combination with appropriate metal electrodes have a great potential to solve many difficulties associated with continuing miniaturization process in the microelectronic industry. One significant branch of microelectronics incorporates dynamic random access memory (DRAM) market. The DRAM devices scaled for over 35 years starting from 4 kb density to several Gb nowadays. The scaling process led to the dielectric material thickness reduction, resulting in higher leakage current density, and as a consequence higher power consumption. As a possible solution for this problem, alternative dielectric materials with improved electrical and material science parameters were intensively studied by many research groups. The higher dielectric constant allows the use of physically thicker layers with high capacitance but strongly reduced leakage current density. This work focused on deposition and characterization of thin insulating layers. The material engineering process was based on Si cleanroom compatible HfO{sub 2} thin films deposited on TiN metal electrodes. A combined materials science and dielectric characterization study showed that Ba-added HfO{sub 2} (BaHfO{sub 3}) films and Ti-added BaHfO{sub 3} (BaHf{sub 0.5}Ti{sub 0.5}O{sub 3}) layers are promising candidates for future generation of state-of-the-art DRAMs. In especial a strong increase of the dielectric permittivity k was achieved for thin films of cubic BaHfO{sub 3} (k{proportional_to}38) and BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} (k{proportional_to}90) with respect to monoclinic HfO{sub 2} (k{proportional_to}19). Meanwhile the CET values scaled down to 1 nm for BaHfO{sub 3} and {proportional_to}0.8 nm for BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} with respect to HfO{sub 2} (CET=1.5 nm). The Hf{sup 4+} ions substitution in BaHfO{sub 3} by Ti{sup 4+} ions led to a significant decrease of thermal budget from 900 C for BaHfO{sub 3} to 700 C for BaHf{sub 0.5}Ti{sub 0.5}O{sub 3}. Future studies need to focus

  10. Ternary rare-earth based alternative gate-dielectrics for future integration in MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Juergen; Lopes, Joao Marcelo; Durgun Oezben, Eylem; Luptak, Roman; Lenk, Steffi; Zander, Willi; Roeckerath, Martin [IBN 1-IT, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-07-01

    The dielectric SiO{sub 2} has been the key to the tremendous improvements in Si-based metal-oxide-semiconductor (MOS) device performance over the past four decades. It has, however, reached its limit in terms of scaling since it exhibits a leakage current density higher than 1 A/cm{sup 2} and does not retain its intrinsic physical properties at thicknesses below 1.5 nm. In order to overcome these problems and keep Moore's law ongoing, the use of higher dielectric constant (k) gate oxides has been suggested. These high-k materials must satisfy numerous requirements such as the high k, low leakage currents, suitable band gap und offsets to silicon. Rare-earth based dielectrics are promising materials which fulfill these needs. We will review the properties of REScO{sub 3} (RE = La, Dy, Gd, Sm, Tb) and LaLuO{sub 3} thin films, grown with pulsed laser deposition, e-gun evaporation or molecular beam deposition, integrated in capacitors and transistors. A k > 20 for the REScO{sub 3} (RE = Dy, Gd) and around 30 for (RE = La, Sm, Tb) and LaLuO{sub 3} are obtained. Transistors prepared on SOI and sSOI show mobility values up to 380 cm{sup 2}/Vs on sSOI, which are comparable to such prepared with HfO{sub 2}.

  11. Photon acceleration-based radiation sources

    International Nuclear Information System (INIS)

    Hoffman, J. R.; Muggli, P.; Katsouleas, T.; Mori, W. B.; Joshi, C.

    1999-01-01

    The acceleration and deceleration of photons in a plasma provides the means for a series of new radiation sources. Previous work on a DC to AC Radiation Converter (DARC source) has shown variable acceleration of photons having zero frequency (i.e., an electrostatic field) to between 6 and 100 GHz (1-3). These sources all had poor guiding characteristics resulting in poor power coupling from the source to the load. Continuing research has identified a novel way to integrate the DARC source into a waveguide. The so called ''pin structure'' uses stainless steel pins inserted through the narrow side of an X band waveguide to form the electrostatic field pattern (k≠0, ω=0). The pins are spaced such that the absorption band resulting from this additional periodic structure is outside of the X band range (8-12 GHz), in which the normal waveguide characteristics are left unchanged. The power of this X band source is predicted theoretically to scale quadratically with the pin bias voltage as -800 W/(kV) 2 and have a pulse width of -1 ns. Cold tests and experimental results are presented. Applications for a high power, short pulse radiation source extends to the areas of landmine detection, improved radar resolution, and experimental investigations of molecular systems

  12. Flexible Ultrahigh-Temperature Polymer-Based Dielectrics with High Permittivity for Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Zejun Pu

    2017-11-01

    Full Text Available In this report, flexible cross-linked polyarylene ether nitrile/functionalized barium titanate(CPEN/F-BaTiO3 dielectrics films with high permittivitywere prepared and characterized. The effects of both the F-BaTiO3 and matrix curing on the mechanical, thermal and dielectric properties of the CPEN/F-BaTiO3 dielectric films were investigated in detail. Compared to pristine BaTiO3, the surface modified BaTiO3 particles effectively improved their dispersibility and interfacial adhesion in the polymer matrix. Moreover, the introduction of F-BaTiO3 particles enhanced dielectric properties of the composites, with a relatively high permittivity of 15.2 and a quite low loss tangent of 0.022 (1 kHz when particle contents of 40 wt % were utilized. In addition, the cyano (–CN groups of functional layer also can serve as potential sites for cross-linking with polyarylene ether nitrile terminated phthalonitrile (PEN-Ph matrix and make it transform from thermoplastic to thermosetting. Comparing with the pure PEN-ph film, the latter results indicated that the formation of cross-linked network in the polymer-based system resulted in increased tensile strength by ~67%, improved glass transition temperature (Tg by ~190 °C. More importantly, the CPEN/F-BaTiO3 composite films filled with 30 wt % F-BaTiO3 particles showed greater energy density by nearly 190% when compared to pure CPEN film. These findings enable broader applications of PEN-based composites in high-performance electronics and energy storage devices materials used at high temperature.

  13. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    Science.gov (United States)

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.

  14. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  15. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  16. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  17. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  18. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  19. Trapping and dark current in plasma-based accelerators

    International Nuclear Information System (INIS)

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-01-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed

  20. Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids

    Directory of Open Access Journals (Sweden)

    Yuzhen Lv

    2017-07-01

    Full Text Available Research on the transformer oil-based nanofluids (NFs has been raised expeditiously over the past decade. Although, there is discrepancy in the stated results and inadequate understanding of the mechanisms of improvement of dielectric nanofluids, these nanofluids have emerged as a potential substitute of mineral oils as insulating and heat removal fluids for high voltage equipment. The transformer oil (TO based magnetic fluids (ferrofluids may be regarded as the posterity insulation fluids as they propose inspiring unique prospectus to improve dielectric breakdown strength, as well as heat transfer efficiency, as compared to pure transformer oils. In this work, transformer oil-based magnetic nanofluids (MNFs are prepared by dispersal of Fe3O4 nanoparticles (MNPs into mineral oil as base oil, with various NPs loading from 5 to 80% w/v. The lightning impulse breakdown voltages (BDV measurement was conducted in accordance with IEC 60897 by using needle to sphere electrodes geometry. The test results showed that dispersion of magnetic NPs may improve the insulation strength of MO. With the increment of NPs concentrations, the positive lightning impulse (LI breakdown strength of TO is first raised, up to the highest value at 40% loading, and then tends to decrease at higher concentrations. The outcomes of negative LI breakdown showed that BDV of MNFs, with numerous loadings, were inferior to the breakdown strength of pure MO. The 40% concentration of nanoparticles (optimum concentration was selected, and positive and negative LI breakdown strength was also further studied at different sizes (10 nm, 20 nm, 30 nm and 40 nm of NPs and different electrode gap distances. Augmentation in the BDV of the ferrofluids (FFs is primarily because of dielectric and magnetic features of Fe3O4 nanoaprticles, which act as electron scavengers and decrease the rate of free electrons produced in the ionization process. Research challenges and technical difficulties

  1. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  2. Qt based control system software for Low Energy Accelerator Facility

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.; Nagraju, S.B.V.; Gupta, S.; Singh, P.

    2012-01-01

    Qt based control system software for Low Energy Accelerating Facility (LEAF) is operational at Bhabha Atomic Research Centre (BARC), Trombay, Mumbai. LEAF is a 50 keV negative ion electrostatic accelerator based on SNICS ion source. Control system uses Nokia Trolltech's QT 4.x API for control system software. Ni 6008 USB based multifunction cards has been used for control and read back field equipments such as power supplies, pumps, valves etc. Control system architecture is designed to be client server. Qt is chosen for its excellent GUI capability and platform independent nature. Control system follows client server architecture. The paper will describe the control system. (author)

  3. Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface

    Science.gov (United States)

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-02-01

    Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.

  4. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  5. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    International Nuclear Information System (INIS)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon

    2011-01-01

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  6. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    International Nuclear Information System (INIS)

    Besleaga, C.; Stan, G.E.; Pintilie, I.; Barquinha, P.; Fortunato, E.; Martins, R.

    2016-01-01

    Highlights: • TFTs based on IGZO channel semiconductor and AlN gate dielectric were fabricated. • AlN films – a viable and cheap gate dielectric alternative for transparent TFTs. • Influence of gate dielectric layer thickness on TFTs electrical characteristics. • No degradation of AlN gate dielectric was observed during devices stress testing. - Abstract: The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  7. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Besleaga, C.; Stan, G.E.; Pintilie, I. [National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele-Ilfov (Romania); Barquinha, P.; Fortunato, E. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP-UNINOVA, 2829-516 Caparica (Portugal)

    2016-08-30

    Highlights: • TFTs based on IGZO channel semiconductor and AlN gate dielectric were fabricated. • AlN films – a viable and cheap gate dielectric alternative for transparent TFTs. • Influence of gate dielectric layer thickness on TFTs electrical characteristics. • No degradation of AlN gate dielectric was observed during devices stress testing. - Abstract: The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  8. Study on the microstructure and dielectric properties of X9R ceramics based on BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shunqi, E-mail: shunqigao@163.com [Institute of Electronics and Information Engineering, Tianjin University, Weijin Road, Tianjin 300072 (China); Wu Shunhua; Zhang Yonggang; Yang Hongxing; Wang Xinru [Institute of Electronics and Information Engineering, Tianjin University, Weijin Road, Tianjin 300072 (China)

    2011-01-15

    This paper investigated the microstructure and dielectric properties of BaTiO{sub 3}-Pb(Sn, Ti)O{sub 3} system ceramics. The Curie point of BaTiO{sub 3} is 130 deg. C. When the temperature is higher than 130 deg. C, the dielectric constant of BaTiO{sub 3} drops severely according to Curie-Weiss law. Pb(Ti, Sn)O{sub 3}(PTS) was selected to compensate the dielectric constant doping of BaTiO{sub 3} since it has high Curie temperature (Tc) point that is about 296 deg. C. The Curie temperature (Tc) point of BaTiO{sub 3} was broadened and shifted to higher temperature because of the doping of PTS, so the temperature coefficient of capacitance (TCC) curves of the ceramics based on BaTiO{sub 3} was flattened. When 2 wt% Pb(Ti{sub 0.55}Sn{sub 0.45})O{sub 3} was added, the sample showed super dielectric properties that the dielectric constant was >1750 at 25 deg. C, dielectric loss was lower than 2.0% and TCC was <{+-}10% from -55 deg. C to 200 deg. C. Therefore the materials satisfied EIA X9R specifications.

  9. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Dielectric properties of Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  10. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  11. LU factorization for accelerator-based systems

    KAUST Repository

    Agullo, Emmanuel; Augonnet, Cé dric; Dongarra, Jack; Faverge, Mathieu; Langou, Julien; Ltaief, Hatem; Tomov, Stanimire Z.

    2011-01-01

    , studying the impact on performance of the looking variants as well as the storage layout in presence of pivoting, tuning the kernels for two different machines composed of multiple recent NVIDIA Tesla S1070 (four GPUs total) and Fermi-based S2050 GPUs

  12. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  13. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  14. Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET

    Science.gov (United States)

    Wadhwa, Girish; Raj, Balwinder

    2018-05-01

    Nanoscale devices are emerging as a platform for detecting biomolecules. Various issues were observed during the fabrication process such as random dopant fluctuation and thermal budget. To reduce these issues charge-plasma-based concept is introduced. This paper proposes the implementation of charge-plasma-based gate underlap dielectric modulated junctionless tunnel field effect transistor (DM-JLTFET) for the revelation of biomolecule immobilized in the open cavity gate channel region. In this p+ source and n+ drain regions are introduced by employing different work function over the intrinsic silicon. Also dual material gate architecture is implemented to reduce short channel effect without abandoning any other device characteristic. The sensitivity of biosensor is studied for both the neutral and charge-neutral biomolecules. The effect of device parameters such as channel thickness, cavity length and cavity thickness on drain current have been analyzed through simulations. This paper investigates the performance of charge-plasma-based gate underlap DM-JLTFET for biomolecule sensing applications while varying dielectric constant, charge density at different biasing conditions.

  15. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  16. Cyclotron Development and Technical Aspects on Accelerator Based Laboratory Development

    International Nuclear Information System (INIS)

    Sunarhadijoso

    2000-01-01

    BATAN is planning to establish an accelerator-based laboratory at P3TM Yogyakarta as an effort in the development and use of accelerator technology for improving industrial performance and public welfare. This paper reviews several aspects of cyclotron technology and describes the combination of a linear accelerator - cyclotron system as an alternative to be considered in the planing of the laboratory. The progress of cyclotron technology is discussed covering three generations, i.e. conventional cyclotron, synchrocyclotron and AVF cyclotron generations. The planning should not consider the accelerator application for radioisotope production because it is established in Serpong with the existing negative ion cyclotron. The proposed facility at P3TM may comprise two linear accelerators coupled with a positive ion cyclotron of synchrocyclotron generation. In fact, the attachment of the synchrocyclotron unit is flexible and it can be installed subsequently if the higher energy particle beam, which can not be produced by the linear accelerators, is extremely needed. Some technical aspects related to ion beam application, building construction and infrastructure, human resources, and specification of function test are discussed for additional information in the implementation of the planning. (author)

  17. EPICS-QT based graphical user interface for accelerator control

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.K.; Rosily, Sherry; Bhagwat, P.V.

    2016-01-01

    Particle accelerators and many industrial complex systems, require a robust and efficient control for its proper operation to achieve required beam quality, safety of its sub component and all working personnel. This control is executed via a graphical user interface through which an operator interacts with the accelerator to achieve the desired state of the machine and its output. Experimental Physics and Industrial Control System (EPICS) is a widely used control system framework in the field of accelerator control. It acts as a middle layer between field devices and graphic user interface used by the operator. Field devices can also be made EPICS compliant by using EPICS based software in that. On the other hand Qt is a C++ framework which is widely used for creating very professional looking and user friendly graphical component. In Low Energy High Intensity Proton Accelerator (LEHIPA), which is the first stage of the three stage Accelerator Driven System (ADS) program taken by Bhabha Atomic Research Centre (BARC), it is decided that EPICS will be used for controlling the accelerator and Qt will be used for developing the various Graphic User Interface (GUI) for operation and diagnostics. This paper discuss the work carried out to achieve this goal in LEHIPA

  18. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    International Nuclear Information System (INIS)

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  19. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    Science.gov (United States)

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  20. LU factorization for accelerator-based systems

    KAUST Repository

    Agullo, Emmanuel

    2011-12-01

    Multicore architectures enhanced with multiple GPUs are likely to become mainstream High Performance Computing (HPC) platforms in a near future. In this paper, we present the design and implementation of an LU factorization using tile algorithm that can fully exploit the potential of such platforms in spite of their complexity. We use a methodology derived from previous work on Cholesky and QR factorizations. Our contributions essentially consist of providing new CPU/GPU hybrid LU kernels, studying the impact on performance of the looking variants as well as the storage layout in presence of pivoting, tuning the kernels for two different machines composed of multiple recent NVIDIA Tesla S1070 (four GPUs total) and Fermi-based S2050 GPUs (three GPUs total), respectively. The hybrid tile LU asymptotically achieves 1 Tflop/s in single precision on both hardwares. The performance in double precision arithmetic reaches 500 Gflop/s on the Fermi-based system, twice faster than the old GPU generation of Tesla S1070. We also discuss the impact of the number of tiles on the numerical stability. We show that the numerical results of the tile LU factorization will be accurate enough for most applications as long as the computations are performed in double precision arithmetic. © 2011 IEEE.

  1. FPGA based accelerators for financial applications

    CERN Document Server

    2015-01-01

    This book covers the latest approaches and results from reconfigurable computing architectures employed in the finance domain. So-called field-programmable gate arrays (FPGAs) have already shown to outperform standard CPU- and GPU-based computing architectures by far, saving up to 99% of energy depending on the compute tasks. Renowned authors from financial mathematics, computer architecture, and finance business introduce the readers into today’s challenges in finance IT, illustrate the most advanced approaches and use cases, and present currently known methodologies for integrating FPGAs in finance systems together with latest results. The complete algorithm-to-hardware flow is covered holistically, so this book serves as a hands-on guide for IT managers, researchers, and quants/programmers who think about integrating FPGAs into their current IT systems.

  2. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Science.gov (United States)

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  3. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  4. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    Science.gov (United States)

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  5. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  6. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  7. Feature-Based Analysis of Plasma-Based Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron G. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cormier-Michel, Estelle [Tech-X Corp., Boulder, CO (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  8. Microstructure and chemical analysis of Hf-based high-k dielectric layers in metal-insulator-metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Thangadurai, P. [Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Mikhelashvili, V.; Eisenstein, G. [Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Kaplan, W.D., E-mail: kaplan@tx.technion.ac.i [Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2010-05-31

    The microstructure and chemistry of the high-k gate dielectric significantly influences the performance of metal-insulator-metal (MIM) and metal-oxide-semiconductor devices. In particular, the local structure, chemistry, and inter-layer mixing are important phenomena to be understood. In the present study, high resolution and analytical transmission electron microscopy are combined to study the local structure, morphology, and chemistry in MIM capacitors containing a Hf-based high-k dielectric. The gate dielectric, bottom and gate electrodes were deposited on p-type Si(100) wafers by electron beam evaporation. Four chemically distinguishable sub-layers were identified within the dielectric stack. One is an unintentionally formed 4.0 nm thick interfacial layer of Ta{sub 2}O{sub 5} at the interface between the Ta electrode and the dielectric. The other three layers are based on HfN{sub x}O{sub y} and HfTiO{sub y}, and intermixing between the nearby sub-layers including deposited SiO{sub 2}. Hf-rich clusters were found in the HfN{sub x}O{sub y} layer adjacent to the Ta{sub 2}O{sub 5} layer.

  9. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    International Nuclear Information System (INIS)

    Rashidian, Atabak; Klymyshyn, David M; Aligodarz, Mohammadreza Tayfeh; Boerner, Martin; Mohr, Jürgen

    2012-01-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components. (paper)

  10. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    Science.gov (United States)

    Rashidian, Atabak; Klymyshyn, David M.; Tayfeh Aligodarz, Mohammadreza; Boerner, Martin; Mohr, Jürgen

    2012-10-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components.

  11. Bioimaging of cells and tissues using accelerator-based sources.

    Science.gov (United States)

    Petibois, Cyril; Cestelli Guidi, Mariangela

    2008-07-01

    A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

  12. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  13. Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection

    Science.gov (United States)

    Chanda, Manash; Dey, Prithu; De, Swapnadip; Sarkar, Chandan Kumar

    2015-10-01

    In this paper a charge plasma based dielectric modulated impact ionization MOSFET (CP-DIMOSFET) has been proposed for the first time to ease the label free detection of biomolecules. The concept of CP-DIMOSFET is proposed and analyzed on basis of simulated data using SILVACO ATLAS. Low thermal budgeting and thin silicon layer without any dopant implantations make the proposed structure advantageous compared to the existing MOSFET based biosensors. The results show that the proposed device is capable to detect the presence of biomolecules. Simple fabrication schemes, miniaturization, high sensitivity, dominance of dielectric modulation make the proposed biosensor a promising one that could one day revolutionize the healthcare industry.

  14. Gas-filled capillaries for plasma-based accelerators

    International Nuclear Information System (INIS)

    Filippi, F; Anania, M P; Brentegani, E; Biagioni, A; Chiadroni, E; Ferrario, M; Pompili, R; Romeo, S; Cianchi, A; Zigler, A

    2017-01-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented. (paper)

  15. Gas-filled capillaries for plasma-based accelerators

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  16. Architecture exploration of FPGA based accelerators for bioinformatics applications

    CERN Document Server

    Varma, B Sharat Chandra; Balakrishnan, M

    2016-01-01

    This book presents an evaluation methodology to design future FPGA fabrics incorporating hard embedded blocks (HEBs) to accelerate applications. This methodology will be useful for selection of blocks to be embedded into the fabric and for evaluating the performance gain that can be achieved by such an embedding. The authors illustrate the use of their methodology by studying the impact of HEBs on two important bioinformatics applications: protein docking and genome assembly. The book also explains how the respective HEBs are designed and how hardware implementation of the application is done using these HEBs. It shows that significant speedups can be achieved over pure software implementations by using such FPGA-based accelerators. The methodology presented in this book may also be used for designing HEBs for accelerating software implementations in other domains besides bioinformatics. This book will prove useful to students, researchers, and practicing engineers alike.

  17. A General Accelerated Degradation Model Based on the Wiener Process.

    Science.gov (United States)

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-12-06

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  18. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    Science.gov (United States)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers

  19. High-efficiency terahertz polarization devices based on the dielectric metasurface

    Science.gov (United States)

    Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi

    2018-02-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.

  20. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  1. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    Science.gov (United States)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  2. Proceedings of the specialists' meeting on accelerator-based transmutation

    International Nuclear Information System (INIS)

    Wenger, H.U.

    1992-09-01

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  3. A preliminary study on the dielectric constant of WPC based on some tropical woods

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Chua, P.H.; Hon, Y.S.; Lee, E.

    1986-01-01

    The use of WPC as an important insulating material is studied by determining its dielectric constant. The variation of dielectric constant with moisture content is also investigated. Preliminary results show that all untreated woods studied have a higher dielectric constant than their polymer composites with the exception of Kapur and Keruing. It is therefore postulated that the presence of polymers has led to a decrease in the number of polarizable units. Such a material may be useful commercially. (author)

  4. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  5. Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

    Science.gov (United States)

    Maharramov, A. A.; Ramazanov, M. A.; Di Palma, Luca; Shirinova, H. A.; Hajiyeva, F. V.

    2018-01-01

    Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102-106 Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity ɛ, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.

  6. Accelerator Based Neutron Beams for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2003-01-01

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  7. Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation

    Directory of Open Access Journals (Sweden)

    M. Z. H. Makmud

    2018-02-01

    Full Text Available Nowadays, studies of alternative liquid insulation in high voltage apparatus have become increasingly important due to higher concerns regarding safety, sustainable resources and environmentally friendly issues. To fulfil this demand, natural ester has been extensively studied and it can become a potential product to replace mineral oil in power transformers. In addition, the incorporation of nanoparticles has been remarkable in producing improved characteristics of insulating oil. Although much extensive research has been carried out, there is no general agreement on the influence on the dielectric response of base oil due to the addition of different amounts and conductivity types of nanoparticle concentrations. Therefore, in this work, a natural ester-based nanofluid was prepared by a two-step method using iron oxide (Fe2O3 and titanium dioxide (TiO2 as the conductive and semi-conductive nanoparticles, respectively. The concentration amount of each nanoparticle types was varied at 0.01, 0.1 and 1.0 g/L. The nanofluid samples were characterised by visual inspection, morphology and the dynamic light scattering (DLS method before the dielectric response measurement was carried out for frequency-dependent spectroscopy (FDS, current-voltage (I-V, and dielectric breakdown (BD strength. The results show that the dielectric spectra and I-V curves of nanofluid-based iron oxide increases with the increase of iron oxide nanoparticle loading, while for titanium dioxide, it exhibits a decreasing response. The dielectric BD strength is enhanced for both types of nanoparticles at 0.01 g/L concentration. However, the increasing amount of nanoparticles at 0.1 and 1.0 g/L led to a contrary dielectric BD response. Thus, the results indicate that the augmentation of conductive nanoparticles in the suspension can lead to overlapping mechanisms. Consequently, this reduces the BD strength compared to pristine materials during electron injection in high electric

  8. Design of a rotary dielectric elastomer actuator using a topology optimization method based on pairs of curves

    Science.gov (United States)

    Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin

    2018-05-01

    Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.

  9. Pentacene based thin film transistors with high-k dielectric Nd2O3 as a gate insulator

    International Nuclear Information System (INIS)

    Sarma, R.; Saikia, D.

    2010-01-01

    We have investigated the pentacene based Organic Thin Film Transistors (OTFTs) with high-k dielectric Nd 2 O 3 . Use of high dielectric constant (high-k) gate insulator Nd 2 O 3 reduces the threshold voltage and sub threshold swing of the OTFTs. The calculated threshold voltage -2.2V and sub-threshold swing 1V/decade, current ON-OFF ratio is 1.7 X 10 4 and mobility is 0.13cm 2 /V.s. Pentacene film is deposited on Nd 2 O 3 surface using two step deposition method. Deposited pentacene film is found poly crystalline in nature. (author)

  10. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    Science.gov (United States)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  11. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  12. The computer-based control system of the NAC accelerator

    International Nuclear Information System (INIS)

    Burdzik, G.F.; Bouckaert, R.F.A.; Cloete, I.; Du Toit, J.S.; Kohler, I.H.; Truter, J.N.J.; Visser, K.

    1982-01-01

    The National Accelerator Centre (NAC) of the CSIR is building a two-stage accelerator which will provide charged-particle beams for the use in medical and research applications. The control system for this accelerator is based on three mini-computers and a CAMAC interfacing network. Closed-loop control is being relegated to the various subsystems of the accelerators, and the computers and CAMAC network will be used in the first instance for data transfer, monitoring and servicing of the control consoles. The processing power of the computers will be utilized for automating start-up and beam-change procedures, for providing flexible and convenient information at the control consoles, for fault diagnosis and for beam-optimizing procedures. Tasks of a localized or dedicated nature are being off-loaded onto microcomputers, which are being used either in front-end devices or as slaves to the mini-computers. On the control consoles only a few instruments for setting and monitoring variables are being provided, but these instruments are universally-linkable to any appropriate machine variable

  13. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'

    International Nuclear Information System (INIS)

    Conde, M. E.; Katsouleas, T.

    2000-01-01

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner

  14. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    Directory of Open Access Journals (Sweden)

    Liyang Li

    2015-03-01

    Full Text Available In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  15. Calculations of accelerator-based neutron sources characteristics

    International Nuclear Information System (INIS)

    Tertytchnyi, R.G.; Shorin, V.S.

    2000-01-01

    Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)

  16. Research activities related to accelerator-based transmutation at PSI

    International Nuclear Information System (INIS)

    Wydler, P.

    1993-01-01

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  17. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  18. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  19. Tandem-ESQ for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Di Paolo, H.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Kwan, J.W.; Henestroza, E.

    2006-01-01

    A project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) is described. A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the '7Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. (author)

  20. Medium band gap polymer based solution-processed high-κ composite gate dielectrics for ambipolar OFET

    Science.gov (United States)

    Canımkurbey, Betül; Unay, Hande; Çakırlar, Çiğdem; Büyükköse, Serkan; Çırpan, Ali; Berber, Savas; Altürk Parlak, Elif

    2018-03-01

    The authors present a novel ambipolar organic filed-effect transistors (OFETs) composed of a hybrid dielectric thin film of Ta2O5:PMMA nanocomposite material, and solution processed poly(selenophene, benzotriazole and dialkoxy substituted [1,2-b:4, 5-b‧] dithiophene (P-SBTBDT)-based organic semiconducting material as the active layer of the device. We find that the Ta2O5:PMMA insulator shows n-type conduction character, and its combination with the p-type P-SBTBDT organic semiconductor leads to an ambipolar OFET device. Top-gated OFETs were fabricated on glass substrate consisting of interdigitated ITO electrodes. P-SBTBDT-based material was spin coated on the interdigitated ITO electrodes. Subsequently, a solution processed Ta2O5:PMMA nanocomposite material was spin coated, thereby creating the gate dielectric layer. Finally, as a gate metal, an aluminum layer was deposited by thermal evaporation. The fabricated OFETs exhibited an ambipolar performance with good air-stability, high field-induced current and relatively high electron and hole mobilities although Ta2O5:PMMA nanocomposite films have slightly higher leakage current compared to the pure Ta2O5 films. Dielectric properties of the devices with different ratios of Ta2O5:PMMA were also investigated. The dielectric constant varied between 3.6 and 5.3 at 100 Hz, depending on the Ta2O5:PMMA ratio.

  1. A new class of variable capacitance generators based on the dielectric fluid transducer

    Science.gov (United States)

    Duranti, Mattia; Righi, Michele; Vertechy, Rocco; Fontana, Marco

    2017-11-01

    This paper introduces the novel concept of dielectric fluid transducer (DFT), which is an electrostatic variable capacitance transducer made by compliant electrodes, solid dielectrics and a dielectric fluid with variable volume and/or shape. The DFT can be employed in actuator mode and generator mode. In this work, DFTs are studied as electromechanical generators able to convert oscillating mechanical energy into direct current electricity. Beside illustrating the working principle of dielectric fluid generators (DFGs), we introduce different architectural implementations and provide considerations on limitations and best practices for their design. Additionally, the proposed concept is demonstrated in a preliminary experimental test campaign conducted on a first DFG prototype. During experimental tests a maximum energy per cycle of 4.6 {mJ} and maximum power of 0.575 {mW} has been converted, with a conversion efficiency up to 30%. These figures correspond to converted energy densities of 63.8 {mJ} {{{g}}}-1 with respect to the displaced dielectric fluid and 179.0 {mJ} {{{g}}}-1 with respect to the mass of the solid dielectric. This promising performance can be largely improved through the optimization of device topology and dimensions, as well as by the adoption of more performing conductive and dielectric materials.

  2. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  3. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  4. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  5. Polymer chain dynamics in epoxy based composites as investigated by broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohammad K. Hassan

    2016-03-01

    Full Text Available Epoxy networks of the diglycidyl ether of bisphenol A (DGEBA were prepared using 3,3′- and 4,4′-diaminodiphenyl sulfone isomer crosslinkers. Secondary relaxations and the glass transitions of resultant networks were probed using broadband dielectric spectroscopy (BDS. A sub-Tg γ relaxation peak for both networks shifts to higher frequencies (f with increasing temperature in Arrhenius fashion, both processes having the same activation energy and being assigned to phenyl ring flipping in DGEBA chains. A β relaxation is assigned to local motions of dipoles that were created during crosslinking reactions. 4,4′-based networks exhibited higher Tg relative to 3,3′-based networks as per dynamic mechanical as well as BDS analyses. The Vogel–Fulcher–Tammann–Hesse equation fitted well to relaxation time vs. temperature data and comparison of Vogel temperatures suggests lower free volume per mass for the 3,3′-based network. The Kramers–Krönig transformation was used to directly calculate dc-free ɛ″ vs. f data from experimental ɛ′ vs. f data. Distribution of relaxation times (DRT curves are bi-modal for the 3,3′-crosslinked resin suggesting large-scale microstructural heterogeneity as opposed to homogeneity for the 4,4′-based network whose DRT consists of a single peak.

  6. Accelerators and Beams, multimedia computer-based training in accelerator physics

    International Nuclear Information System (INIS)

    Silbar, R.R.; Browman, A.A.; Mead, W.C.; Williams, R.A.

    1999-01-01

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user close-quote s rate of learning and length of retention of the material. They integrate interactive On-Screen Laboratories, hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer. copyright 1999 American Institute of Physics

  7. ''Accelerators and Beams,'' multimedia computer-based training in accelerator physics

    International Nuclear Information System (INIS)

    Silbar, R. R.; Browman, A. A.; Mead, W. C.; Williams, R. A.

    1999-01-01

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive ''On-Screen Laboratories,'' hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer

  8. SrFe12O19 based ceramics with ultra-low dielectric loss in the millimetre-wave band

    Science.gov (United States)

    Yu, Chuying; Zeng, Yang; Yang, Bin; Wylde, Richard; Donnan, Robert; Wu, Jiyue; Xu, Jie; Gao, Feng; Abrahams, Isaac; Reece, Mike; Yan, Haixue

    2018-04-01

    Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75-170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies are found at the surface on annealing, which are reflected in the bulk sample by a small change in the unit cell volume. The significant decrease in the dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through the annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.

  9. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    Science.gov (United States)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  10. A General Accelerated Degradation Model Based on the Wiener Process

    Directory of Open Access Journals (Sweden)

    Le Liu

    2016-12-01

    Full Text Available Accelerated degradation testing (ADT is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  11. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT

    International Nuclear Information System (INIS)

    Smith, D.L.; Johnson, D.L.; Boyes, J.D.

    1997-01-01

    As participants in the Technology Options Study for the second axis of the Dual Axis Radiographic HydroTest (DARHT) facility located at Los Alamos National Laboratories, the authors have considered several accelerator concepts based on the Inductive Voltage Adder (IVA) technology that is being used successfully at Sandia on the SABRE and HERMES-III facilities. The challenging accelerator design requirements for the IVA approach include: ≥12-MeV beam energy; ∼60-ns electrical pulse width; ≤40-kA electron beam current; ∼1-mm diameter e-beam; four pulses on the same axis or as close as possible to that axis; and an architecture that fits within the existing building envelope. To satisfy these requirements the IVA concepts take a modular approach. The basic idea is built upon a conservative design for eight ferromagnetically isolated 2-MV cavities that are driven by two 3 to 4-Ω water dielectric pulse forming lines (PFLs) synchronized with laser triggered gas switches. The 100-Ω vacuum magnetically insulated transmission line (MITL) would taper to a needle cathode that produces the electron beam(s). After considering many concepts the authors narrowed their study to the following options: (A) Four independent single pulse drivers powering four single pulse diodes; (B) Four series adders with interleaved cavities feeding a common MITL and diode; (C) Four stages of series PFLs, isolated from each other by triggered spark gap switches, with single-point feeds to a common adder, MITL, and diode; and (D) Isolated PFLs with multiple-feeds to a common adder using spark gap switches in combination with saturable magnetic cores to isolate the non-energized lines. The authors will discuss these options in greater detail identifying the challenges and risks associated with each

  12. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian; Kang, Joohoon; Kang, Junmo; Jariwala, Deep; Wood, Joshua D.; Seo, Jung-Woo T.; Chen, Kan-Sheng; Marks, Tobin J.; Hersam, Mark C.

    2015-10-14

    Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10–9 A/cm2 at 2 MV/cm and high capacitances of 245 nF/cm2. The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm2 V–1 s–1 at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics.

  13. Dielectric response of capacitor structures based on PZT annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchikov, Mikhail V., E-mail: Mikhailkamenshchikov@yandex.ru [Tver State University, 170002, Tver (Russian Federation); Solnyshkin, Alexander V. [Tver State University, 170002, Tver (Russian Federation); Pronin, Igor P. [Ioffe Institute, 194021, St. Petersburg (Russian Federation)

    2016-12-09

    Highlights: • Correlation of the microstructure of PZT films and dielectric response was found. • Difference of dielectric responses under low and high bias is caused by domains. • Internal fields is discussed on the basis of the space charges. • Dependences of PZT films characteristics on synthesis temperature are extremal. - Abstract: Dielectric response of thin-film capacitor structures of Pt/PZT/Pt deposited by the RF magnetron sputtering method and annealed at temperatures of 540–570 °C was investigated. It was found that dielectric properties of these structures depend on the synthesis temperature. Stability of a polarized state is considered on the basis of the analysis of hysteresis loops and capacitance–voltage (C–V) characteristics. The contribution of the domain mechanism in the dielectric response of the capacitor structure comprising a ferroelectric is discussed. Extreme dependences of electrophysical characteristics of PZT films on their synthesis temperature were observed. Correlation of dielectric properties with microstructure of these films is found out.

  14. Pentacene-Based Thin Film Transistor with Inkjet-Printed Nanocomposite High-K Dielectrics

    Directory of Open Access Journals (Sweden)

    Chao-Te Liu

    2012-01-01

    Full Text Available The nanocomposite gate insulating film of a pentacene-based thin film transistor was deposited by inkjet printing. In this study, utilizing the pearl miller to crumble the agglomerations and the dispersant to well stabilize the dispersion of nano-TiO2 particles in the polymer matrix of the ink increases the dose concentration for pico-jetting, which could be as the gate dielectric film made by inkjet printing without the photography process. Finally, we realized top contact pentacene-TFTs and successfully accomplished the purpose of directly patternability and increase the performance of the device based on the nanocomposite by inkjet printing. These devices exhibited p-channel TFT characteristics with a high field-effect mobility (a saturation mobility of ̃0.58 cm2 V−1 s−1, a large current ratio (>103 and a low operation voltage (<6 V. Furthermore, we accorded the deposited mechanisms which caused the interface difference between of inkjet printing and spin coating. And we used XRD, SEM, Raman spectroscopy to help us analyze the transfer characteristics of pentacene films and the performance of OTFTs.

  15. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  16. Dielectric Properties of Polyether Sulfone/Bismaleimide Resin Composite Based on Nanolumina Modified by Super-Critical Ethanol

    Science.gov (United States)

    Chen, Yufei; Li, Zhichao; Teng, Chengjun; Li, Fangliang; Han, Yang

    2016-11-01

    Nano-alumina was chemically modified with super-critical ethanol enabling a surface active coating. Modified nano-alumina was incorporated in polymer blends based on thermoplastic polyether sulfone and thermosetting bismaleimide resin to produce novel nanocomposites designated as SCE-Al2O3/PES-MBAE. In the SCE-Al2O3/PES-MBAE nano-composites, the matrix was originally formed from 4,4'-diamino diphenyl methane bismaleimide (MBMI) using the diluents of 3,3'-diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE), while polyether sulfone (PES) was used as toughening agent along with super-critically modified nano-alumina (SCE-Al2O3) as filler material. The content of SCE-Al2O3 was varied from 0 wt.% to 6 wt.%. The nano-composites were characterized for their morphological, spectroscopic and dielectric properties. Fourier transform infrared spectroscopy (FT-IR) indicated that ethanol molecules had adhered to the surface of the nano-Al2O3 in super-critical state. A reaction between MBMI and allyl compound occurred and SCE-Al2O3 was doped into the polymer matrix. Volume resistivity of the composite initially increased and then decreased. The modification due to SCE-Al2O3 could overcome the undesirable impact of PES by using a bare minimum level of SCE-Al2O3. The dielectric constant ( ɛ) and dielectric loss (tan δ) as in the case of volume resistivity were initially increased and then decreased with the content of SCE-Al2O3 in the composite. The dielectric constant, dielectric loss and dielectric strength of SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE nano-composite were 3.53 (100 Hz), 1.52 × 10-3 (100 Hz) and 15.66 kV/mm, respectively, which indicated that the dielectric properties of the composite fulfilled the basic requirements of electrical and insulating material. It was evident from the morphological analysis that the SCE-Al2O3 was evenly dispersed at the nanoscale; for example, the size of SCE-Al2O3 in SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE measured less than 50 nm.

  17. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    International Nuclear Information System (INIS)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-01-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper

  18. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  19. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube

    Directory of Open Access Journals (Sweden)

    Hai Huy Nguyen Pham

    2017-05-01

    Full Text Available The terahertz (THz, 0.1–10 THz region has been attracting tremendous research interest owing to its potential in practical applications such as biomedical, material inspection, and nondestructive imaging. Those applications require enhancing the spatial resolution at a specific frequency of interest. A variety of resolution-enhancement techniques have been proposed, such as near-field scanning probes, surface plasmons, and aspheric lenses. Here, we demonstrate for the first time that a mesoscale dielectric cube can be exploited as a novel resolution enhancer by simply placing it at the focused imaging point of a continuous wave THz imaging system. The operating principle of this enhancer is based on the generation—by the dielectric cuboid—of the so-called terajet, a photonic jet in the THz region. A subwavelength hotspot is obtained by placing a Teflon cube, with a 1.46 refractive index, at the imaging point of the imaging system, regardless of the numerical aperture (NA. The generated terajet at 125 GHz is experimentally characterized, using our unique THz-wave visualization system. The full width at half maximum (FWHM of the hotspot obtained by placing the enhancer at the focal point of a mirror with a measured NA of 0.55 is approximately 0.55λ, which is even better than the FWHM obtained by a conventional focusing device with the ideal maximum numerical aperture (NA = 1 in air. Nondestructive subwavelength-resolution imaging demonstrations of a Suica integrated circuit card, which is used as a common fare card for trains in Japan, and an aluminum plate with 0.63λ trenches are presented. The amplitude and phase images obtained with the enhancer at 125 GHz can clearly resolve both the air-trenches on the aluminum plate and the card’s inner electronic circuitry, whereas the images obtained without the enhancer are blurred because of insufficient resolution. An increase of the image contrast by a factor of 4.4 was also obtained using

  20. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach

    Science.gov (United States)

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  1. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  2. Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Directory of Open Access Journals (Sweden)

    R. Vertechy

    2013-01-01

    Full Text Available Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the visco-hyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture.

  3. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2016-12-01

    Full Text Available The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C.

  4. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Duan, Xiaoxi [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  5. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    Science.gov (United States)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  6. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    International Nuclear Information System (INIS)

    Zeng, F. W.; Lane, M. W.; Gates, S. M.

    2014-01-01

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G TH , were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species

  7. A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials

    DEFF Research Database (Denmark)

    Otomori, Masaki; Yamada, Takayuki; Izui, Kazuhiro

    2012-01-01

    This paper presents a level set-based topology optimization method for the design of negative permeability dielectric metamaterials. Metamaterials are artificial materials that display extraordinary physical properties that are unavailable with natural materials. The aim of the formulated...... optimization problem is to find optimized layouts of a dielectric material that achieve negative permeability. The presence of grayscale areas in the optimized configurations critically affects the performance of metamaterials, positively as well as negatively, but configurations that contain grayscale areas...... are highly impractical from an engineering and manufacturing point of view. Therefore, a topology optimization method that can obtain clear optimized configurations is desirable. Here, a level set-based topology optimization method incorporating a fictitious interface energy is applied to a negative...

  8. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  9. Subpanel on accelerator-based neutrino oscillation experiments

    International Nuclear Information System (INIS)

    1995-09-01

    Neutrinos are among nature's fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called open-quotes mixing.close quotes The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary

  10. Automation tools for accelerator control a network based sequencer

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1991-01-01

    In conjunction with a major client, Vista Control Systems has developed a sequencer for control systems which works in conjunction with its realtime, distributed Vsystem database. Vsystem is a network-based data acquisition, monitoring and control system which has been applied successfully to both accelerator projects and projects outside this realm of research. The network-based sequencer allows a user to simply define a thread of execution in any supported computer on the network. The script defining a sequence has a simple syntax designed for non-programmers, with facilities for selectively abbreviating the channel names for easy reference. The semantics of the script contains most of the familiar capabilities of conventional programming languages, including standard stream I/O and the ability to start other processes with parameters passed. The script is compiled to threaded code for execution efficiency. The implementation is described in some detail and examples are given of applications for which the sequencer has been used

  11. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  12. Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array

    Science.gov (United States)

    Guo, Yinghui; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Gao, Ping; Wang, Yanqin; Luo, Xiangang

    2018-04-01

    Starting with the early works of extraordinary optical transmission and extraordinary Young’s interference, researchers have been fascinated by the unusual optical properties displayed by metallic holes/slits and subsequently found similar abnormities in dielectric counterparts. Benefiting from the shrinking wavelength of surface plasmon polaritons excited in metallic slits and high refractive index of dielectric stripes, one can realize local phase modulation and approach desired dispersion by engineering the geometries of a slits and stripes array. In this review, we review recent developments in functional metasurfaces composed of various metallic and dielectric subwavelength slits and stripes arrays, with special emphasis on achromatic, ultra-broadband, quasi-continuous, multifunctional and reconfigurable metasurfaces. Particular attention is paid to provide insight into the design strategies for these devices. Finally, we give an outlook of the development in this fascinating area.

  13. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    Science.gov (United States)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  14. Turbulence Hazard Metric Based on Peak Accelerations for Jetliner Passengers

    Science.gov (United States)

    Stewart, Eric C.

    2005-01-01

    Calculations are made of the approximate hazard due to peak normal accelerations of an airplane flying through a simulated vertical wind field associated with a convective frontal system. The calculations are based on a hazard metric developed from a systematic application of a generic math model to 1-cosine discrete gusts of various amplitudes and gust lengths. The math model simulates the three degree-of- freedom longitudinal rigid body motion to vertical gusts and includes (1) fuselage flexibility, (2) the lag in the downwash from the wing to the tail, (3) gradual lift effects, (4) a simplified autopilot, and (5) motion of an unrestrained passenger in the rear cabin. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths. The airplane response contours are used to develop an approximate hazard metric of peak normal accelerations as a function of gust amplitude and gust length. The hazard metric is then applied to a two-dimensional simulated vertical wind field of a convective frontal system. The variations of the hazard metric with gust length and airplane heading are demonstrated.

  15. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  16. Characterization of Anodized Titanium Based Novel Paradigm Supercapacitors: Impact of Salt Identity and Frequency on Dielectric Values, Power, and Energy Densities

    Science.gov (United States)

    2017-03-01

    solution, sufficient charge carriers to counteract the applied but not cause ion- lock , are energy densities at their maximum. For the salt identities and...OF ANODIZED TITANIUM- BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER, AND ENERGY DENSITIES...SUBTITLE CHARACTERIZATION OF ANODIZED TITANIUM-BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER

  17. Dielectric spectroscopy of PMMA-LiClO4 based polymer electrolyte plasticized with ethylene carbonate EC

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2018-04-01

    Dielectric spectroscopy covering the frequency range 0.01 Hz - 2 MHz for PMMA-LiClO4 based polymer electrolyte embedded with different concentration of ethylene carbonate (x = 0, 20 and 40 wt%) has been analyzed using Havrilliak-Negami formalism. The reciprocal temperature dependence of inverse relaxation time obtained from the analysis of dielectric spectra follows Vogel-Tammann-Fulcher behaviour. The shape parameters obtained from this analysis change with ethylene carbonate concentrations. From the fits of the experimental result using Kohlrausch-Williams-Watts function. We have obtained stretched exponent β which indicates that the relaxation is highly non-exponential. The decay function obtained from electric modulus data is highly asymmetric.

  18. Dielectric and piezoelectric properties of lead-free (Bi,Na)TiO3-based thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.; Bharadwaja, S. S. N.; Trolier-McKinstry, S.

    2010-02-01

    Dielectric and piezoelectric properties of morphotropic phase boundary (Bi,Na)TiO3-(Bi,K)TiO3-BaTiO3 epitaxial thin films deposited on SrRuO3 coated SrTiO3 substrates were reported. Thin films of 350 nm thickness exhibited small signal dielectric permittivity and loss tangent values of 750 and 0.15, respectively, at 1 kHz. Ferroelectric hysteresis measurements indicated a remanent polarization value of 30 μC/cm2 with a coercive field of 85-100 kV/cm. The thin film transverse piezoelectric coefficient (e31,f) of these films after poling at 600 kV/cm was found to be -2.2 C/m2. The results indicate that these BNT-based thin films are a potential candidate for lead-free piezoelectric devices.

  19. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  20. Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides

    International Nuclear Information System (INIS)

    Xiang, Yinxiao; Cai, Wei; Wang, Lei; Ying, Cuifeng; Zhang, Xinzheng; Xu, Jingjun

    2014-01-01

    We present a bistable device consisting of a Bragg grating resonator with a Kerr medium sandwiched between two dielectric slab waveguides. The resonator is situated in a nanometer-scaled metal–insulator–metal plasmonic waveguide. Due to the dimensional confinement from the dielectric waveguide to the nanoscaled plasmonic waveguide, electric fields are enhanced greatly, which will further reduce the threshold value. Moreover, a semi-analytic method, based on the impedance theory and the transfer matrix method, is developed to study the transmission and reflection spectra as well as the bistability loop of such a switch. Our method is fast and accurate, as confirmed by the finite-difference time-domain simulation. (invited paper)

  1. Origin of switching current transients in TIPS-pentacene based organic thin-film transistor with polymer dielectric

    Science.gov (United States)

    Singh, Subhash; Mohapatra, Y. N.

    2017-06-01

    We have investigated switch-on drain-source current transients in fully solution-processed thin film transistors based on 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) using cross-linked poly-4-vinylphenol as a dielectric. We show that the nature of the transient (increasing or decreasing) depends on both the temperature and the amplitude of the switching pulse at the gate. The isothermal transients are analyzed spectroscopically in a time domain to extract the degree of non-exponentiality and its possible origin in trap kinetics. We propose a phenomenological model in which the exchange of electrons between interfacial ions and traps controls the nature of the drain current transients dictated by the Fermi level position. The origin of interfacial ions is attributed to the essential fabrication step of UV-ozone treatment of the dielectric prior to semiconductor deposition.

  2. Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites

    Directory of Open Access Journals (Sweden)

    Muthukaruppan eAlagar

    2013-10-01

    Full Text Available The aim of the present work is to develop a new type of flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester (AECE based POSS nanocomposites for low k applications. The POSS-AECE nanocomposites were developed by incorporating varying weight percentages (0, 5 and 10 wt % of octakis (dimethylsiloxypropylglycidylether silsesquioxane (OG-POSS into cyanate esters. Data from thermal and dielectric studies imply that the POSS reinforced nanocomposite exhibits higher thermal stability and low dielectric value of k=2.4 (10 wt% POSS-AECE4 compared than those of neat AECE. From the contact angle measurement, it is inferred that, the increase in the percentage incorporation of POSS in to AECE, the values of water contact angle was enhanced. Further, the value of surface free energy was lower when compared to that of neat AECE. The molecular level dispersion of POSS into AECE was ascertained from SEM and TEM analyses.

  3. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  4. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  5. Relativistic plasma dielectric tensor evaluation based on the exact plasma dispersion functions concept

    International Nuclear Information System (INIS)

    Castejon, F.; Pavlov, S. S.

    2006-01-01

    The fully relativistic plasma dielectric tensor for any wave and plasma parameter is estimated on the basis of the exact plasma dispersion functions concept. The inclusion of this concept allows one to write the tensor in a closed and compact form and to reduce the tensor evaluation to the calculation of those functions. The main analytical properties of these functions are studied and two methods are given for their evaluation. The comparison between the exact dielectric tensor with the weakly relativistic approximation, widely used presently in plasma waves calculations, is given as well as the range of plasma temperature, harmonic number, and propagation angle in which the weakly relativistic approximation is valid

  6. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  7. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    Science.gov (United States)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  8. Effect of combined external uniaxial stress and dc bias on the dielectric property of BaTiO3-based dielectrics in multilayer ceramic capacitor: thermodynamics and experiments

    International Nuclear Information System (INIS)

    Yang Gang; Yue Zhenxing; Sun Tieyu; Gou Huanlin; Li Longtu

    2008-01-01

    The dielectric properties of (Nb, Y)-doped BaTiO 3 in a multilayer ceramic capacitor (MLCC) under combined external uniaxial compressive stress and dc bias field were investigated at room temperature by using a modified Ginsburg-Landau-Devonshire thermodynamic theory and the dielectric measurement. It is found that although dc bias decreases the dielectric properties dominantly, the influence of the external uniaixial compressive stress should not be neglected. When applied along a direction perpendicular to the internal electrode layer in the MLCC, the external uniaixal compressive stress will strengthen the negative effect of dc bias. In contrast, the external uniaxial compressive stress along a direction parallel to the internal electrode layer in the MLCC will increase the dielectric permittivity under dc bias field, i.e. improve the ε-V response of the MLCC. Furthermore, although there is a difference between the calculated permittivity and the measured permittivity, the effects of the combined external uniaxial compressive stress and dc bias field on the dielectric permittivity described through two approaches are in good agreement

  9. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  10. Kinematics and control of redundant robotic arm based on dielectric elastomer actuators

    Science.gov (United States)

    Branz, Francesco; Antonello, Andrea; Carron, Andrea; Carli, Ruggero; Francesconi, Alessandro

    2015-04-01

    Soft robotics is a promising field and its application to space mechanisms could represent a breakthrough in space technologies by enabling new operative scenarios (e.g. soft manipulators, capture systems). Dielectric Elastomers Actuators have been under deep study for a number of years and have shown several advantages that could be of key importance for space applications. Among such advantages the most notable are high conversion efficiency, distributed actuation, self-sensing capability, multi-degree-of-freedom design, light weight and low cost. The big potentialities of double cone actuators have been proven in terms of good performances (i.e. stroke and force/torque), ease of manufacturing and durability. In this work the kinematic, dynamic and control design of a two-joint redundant robotic arm is presented. Two double cone actuators are assembled in series to form a two-link design. Each joint has two degrees of freedom (one rotational and one translational) for a total of four. The arm is designed to move in a 2-D environment (i.e. the horizontal plane) with 4 DoF, consequently having two degrees of redundancy. The redundancy is exploited in order to minimize the joint loads. The kinematic design with redundant Jacobian inversion is presented. The selected control algorithm is described along with the results of a number of dynamic simulations that have been executed for performance verification. Finally, an experimental setup is presented based on a flexible structure that counteracts gravity during testing in order to better emulate future zero-gravity applications.

  11. Beam based alignment at the KEK accelerator test facility

    International Nuclear Information System (INIS)

    Ross, M.; Nelson, J.; Woodley, M.; Wolski, A.

    2002-01-01

    The KEK Accelerator Test Facility (ATF) damping ring is a prototype low emittance source for the NLC/JLC linear collider. To achieve the goal normalized vertical emittance gey = 20 nm-rad, magnet placement accuracy better than 30 mm must be achieved. Accurate beam-based alignment (BBA) is required. The ATF arc optics uses a FOBO cell with two horizontally focusing quadrupoles, two sextupoles and a horizontally defocusing gradient dipole, all of which must be aligned with BBA. BBA at ATF uses the quadrupole and sextupole trim windings to find the trajectory through the center of each magnet. The results can be interpreted to assess the accuracy of the mechanical alignment and the beam position monitor offsets

  12. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    Science.gov (United States)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  13. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  14. Propositions for a PDF model based on fluid particle acceleration

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    This paper describes theoretical propositions to model the acceleration of a fluid particle in a turbulent flow. Such a model is useful for the PDF approach to turbulent reactive flows as well as for the Lagrangian modelling of two-phase flows. The model developed here draws from ideas already put forward by Sawford but which are generalized to the case of non-homogeneous flows. The model is built so as to revert continuously to Pope's model, which uses a Langevin equation for particle velocities, when the Reynolds number becomes very high. The derivation is based on the technique of fast variable elimination. This technique allow a careful analysis of the relations between different levels of modelling. It also allows to address certain problems in a more rigorous way. In particular, application of this technique shows that models presently used can in principle simulate bubbly flows including the pressure-gradient and added-mass forces. (author)

  15. Compact dielectric cavities based on frozen bound states in the continuum

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Dielectric microcavities are used widely today for confining the light to its wavelength scale, which is important for fundamental physics studies of light-matter interactions such as cavity quantum electrodynamics (QED) and cavity polaritons, as well as various applications including ultrafast...

  16. Dielectric spectroscopy of polymer nanocomposites based on tetrazol and KNO3

    International Nuclear Information System (INIS)

    Castro, R A; Lushin, E N

    2014-01-01

    For tetrazole polymers by dielectric spectroscopy the existence of three relaxation processes in the temperature range T=273-423 K is revealed, the values of relaxation and structural parameters are determined: activation energy E A and glass transition temperature T g

  17. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    Science.gov (United States)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  18. Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alumina dielectric ink

    KAUST Repository

    McKerricher, Garret

    2017-05-03

    There has been significant interest in printing radio frequency passives, however the dissipation factor of printed dielectric materials has limited the quality factor achievable. Al2O3 is one of the best and widely implemented dielectrics for RF passive electronics. The ability to spatially pattern high quality Al2O3 thin films using, for example, inkjet printing would tremendously simplify the incumbent fabrication processes – significantly reducing cost and allowing for the development of large area electronics. To-date, particle based Al2O3 inks have been explored as dielectrics, although several drawbacks including nozzle clogging and grain boundary formation in the films hinder progress. In this work, a particle free Al2O3 ink is developed and demonstrated in RF capacitors. Fluid and jetting properties are explored, along with control of ink spreading and coffee ring suppression. The liquid ink is heated to 400 °C decomposing to smooth Al2O3 films ~120 nm thick, with roughness of <2 nm. Metal-insulator-metal capacitors, show high capacitance density >450 pF/mm2, and quality factors of ~200. The devices have high break down voltages, >25 V, with extremely low leakage currents, <2×10−9 A/cm2 at 1 MV/cm. The capacitors compare well with similar Al2O3 devices fabricated by atomic layer deposition.

  19. Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Directory of Open Access Journals (Sweden)

    O. Ahmed

    2013-01-01

    Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.

  20. Femtosecond pulse radiolysis based on photocathode electron accelerator

    International Nuclear Information System (INIS)

    Yoshida, Y.; Yang, Jinfeng; Kondoh, T.; Kozawa, T.; Tagawa, S.

    2006-01-01

    Pulse radiolysis is a powerful tool for studying chemical kinetics and primary processes or reactions of radiation chemistry. In the pulse radiolysis, a short electron beam, which is almost produced by radio-frequency (RF) electron linear accelerator with energy from a few MeV to a few tens MeV, is used as an irradiative source. The electron-induced reactions or phenomena in matter are analyzed by a short-pulse analyzing light (e.g. synchronized lasers) with the time-resolved stroboscopic technique. The time resolution of pulse radiolysis is not only dependent on the electron bunch length, the analyzing light pulse width, the time jitter between the electron bunch and the analyzing light, but also determined by degradation due to the velocity difference between light and the electron in the sample because of the refractive index. In order to improve the time resolution into femtosecond time region, we have develop a new pulse radiolysis based on a concept of 'Equivalent Velocity Spectroscopy (EVS)' to avoid the degradation of the time resolution caused by the velocity difference between the light and the electron beam in sample. In EVS as shown in Fig.1, a femtosecond electron beam produced by a photocathode electron linear accelerator was used, and a synchronized femtosecond laser was used as the analyzing light source. The electron beam and the laser light were injected into sample with an angle (θ), which is determined by the refractive index (n) of the sample. The electron bunch was also rotated with a same angle to make an overlap of the electron bunch with the laser pulse. The degradation of the time resolution caused by the velocity difference between the light and the electron beam can be calculated as g(L)=L[n/c-1/(vcos θ)], where L is the optical path length and v is the velocity of the electron in sample (we can assume v=c for a few tens MeV electron beam).We can thus obtained g(L)=0 by adjusting the incident angle to cos θ=1/n. However, the rotation

  1. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  2. Accelerated EM-based clustering of large data sets

    NARCIS (Netherlands)

    Verbeek, J.J.; Nunnink, J.R.J.; Vlassis, N.

    2006-01-01

    Motivated by the poor performance (linear complexity) of the EM algorithm in clustering large data sets, and inspired by the successful accelerated versions of related algorithms like k-means, we derive an accelerated variant of the EM algorithm for Gaussian mixtures that: (1) offers speedups that

  3. Future directions of accelerator-based NP and HEP facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  4. Accelerated hydrotherapy and land-based rehabilitation in soccer ...

    African Journals Online (AJOL)

    Objective. To investigate the effectiveness of accelerated rehabilitation and accelerated hydrotherapy after anterior cruciate ligament (ACL) reconstruction in male athletes participating in soccer. Design. A non-concurrent single subject, multiple baseline design (ABA design) was conducted over 10 weeks. A series of three ...

  5. Collective field accelerator

    International Nuclear Information System (INIS)

    Luce, J.S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a ν/γ of approx. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam

  6. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    Science.gov (United States)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  7. Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    International Nuclear Information System (INIS)

    Li Yongliang; Xu Qiuxia

    2010-01-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 0 C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N 2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case. (semiconductor technology)

  8. Feasibility studies of RFQ based 14C accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Guo Zhiyu; Liu Kexin; Yan Xueqing; Xie Yi; Fang Jiaxun; Chen Jiaer

    2007-01-01

    Electrostatic accelerators with terminal voltage less than 1 MeV have been successfully used for 14 C AMS. This contribution shows that a small RFQ accelerator may also be suitable for AMS 14 C measurements. A well-designed RFQ accelerator can realize a low energy spread and high isotopic selection with a length of less than 1 m and reasonable power consumption. Compared with small tandem accelerators, a RFQ does not need isolation gas and can accept much higher beam currents. Its stripper would be at ground potential and there would be no further acceleration after stripping, so the background from charge exchange processes should be lower. The RFQ design and system are described

  9. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  10. Radioecological studies at the National Accelerator Centre based on the determination of 129I by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, J. M.; Gomez-Guzman, J. M.; Chamizo, E.; Santos, F. J.; Garcia-Leon, M.; Garcia-Tenorio, R.

    2013-01-01

    Since 2006 a compact system of mass spectrometry with Accelerator (AMS) is installed at the National Center of Accelerators, Seville. After an initial set-up and study have been opening many lines of research in fields such as archeology, geology, paleontology, oceanography, oceanography, internal dosimetry and characterization of radioactive waste, among others. In particular, based on the measurement of 1 29I have made contributions to the field of radioecology and radiation protection. In this work they are summarized and presented some of these investigations. (Author)

  11. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  12. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  13. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    Science.gov (United States)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  14. Optimization Techniques for Improving the Performance of Silicone-Based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Yu, Liyun

    2017-01-01

    the electro-mechanical performance of dielectric elastomers are highlighted. Various optimization methods for improved energy transduction are investigated and discussed, with special emphasis placed on the promise each method holds. The compositing and blending of elastomers are shown to be simple, versatile...... methods that can solve a number of optimization issues. More complicated methods, involving chemical modification of the silicone backbone as well as controlling the network structure for improved mechanical properties, are shown to solve yet more issues. From the analysis, it is obvious...... that there is not a single optimization technique that will lead to the universal optimization of dielectric elastomer films, though each method may lead to elastomers with certain features, and thus certain potentials....

  15. Life estimation I and C cable insulation materials based on accelerated life testing accelerated life testing

    International Nuclear Information System (INIS)

    Santhosh, T.V.; Ramteke, P.K.; Shrestha, N.B.; Ahirwar, A.K.; Gopika, V.

    2016-01-01

    Accelerated Iife tests are becoming increasingly popular in today's industry due to the need for obtaining life data quickly and reliably. Life testing of products under higher stress levels without introducing additional failure modes can provide significant savings of both time and money. Correct analysis of data gathered via such accelerated life testing will yield parameters and other information for the product's life under use stress conditions. To be of practical use in assessing the operational behaviour of cables in NPPs, laboratory ageing aims to mimic the type of degradation observed under operational conditions. Conditions of testing therefore need to be carefully chosen to ensure that the degradation mechanism occurring in the accelerated tests are similar to those which occur in service. This paper presents the results of an investigation in which the elongation-at-break (EAB) measurements were carried on a typical control cable to predict the mean life at service conditions. A low voltage polyvinyl chloride (PVC) insulated and PVC sheathed control cable, used in NPP instrumentation and control (I and C) applications, was subjected thermal ageing at three elevated temperatures

  16. Structure and dielectric properties in the radio frequency range of polymer composites based on vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Kolbunov V.R.

    2015-06-01

    Full Text Available Polymer composites with active fillers are recently considered to be promising materials for the design of new functional devices with controllable properties and are intensively investigated. Dielectric studies are one of the most effective methods for studying structural features and mechanisms of conductivity formation for this type of two-component systems. The paper presents research results of the dielectric characteristics in the range of radio frequency of 50 kHz — 10 MHz and temperature range of 30—60°C of polyethylene composites of vanadium dioxide with different volume fractions of filler. Two dispersion areas were found: a high-frequency area caused by the Maxwell charge separation on the boundaries of the polyethylene matrix — conductive filler of VI2 crystallites, and a low frequency area associated with the presence of the transition layer at this boundary. The relative permittivity of the composite has a tendency to a decrease in absolute value with increasing temperature. The analysis of the low-frequency dependence of the dielectric constant of the value of the filler’s volume fraction revealed that the investigated composite belongs to two-component statistical mixtures with a transition layer between the components.

  17. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  18. Earthquake acceleration amplification based on single microtremor test

    Science.gov (United States)

    Jaya Syahbana, Arifan; Kurniawan, Rahmat; Soebowo, Eko

    2018-02-01

    Understanding soil dynamics is needed to understand soil behaviour, including the parameters of earthquake acceleration amplification. Many researchers now conduct single microtremor tests to obtain amplification of velocity and natural periods of soil at test sites. However, these amplification parameters are rarely used, so a method is needed to convert the velocity amplification to acceleration amplification. This paper will discuss the proposed process of changing the value of amplification. The proposed method is to integrate the time histories of the synthetic earthquake acceleration of the soil surface under the deaggregation at that location so the time histories of the velocity earthquake will be obtained. Next is to conduct a “fitting curve” between amplification by a single microtremor test with amplification of the synthetic earthquake velocity time histories. After obtaining the fitting curve time histories of velocity, differentiation will be conducted to obtain fitting curve acceleration time histories. The final step after obtaining the fitting curve is to compare the acceleration of the “fitting curve” against the histories time of the acceleration of synthetic earthquake at bedrocks to obtain single microtremor acceleration amplification factor.

  19. Roadmap for the international, accelerator-based neutrino programme

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Beijing, Inst. High Energy Phys. (China); de Gouvêa, A. [Northwestern Univ., Evanston, IL (United States); Duchesneau, D. [CNRS/IN2P3. Univ. Paris (France). Observatoire de Paris. AstroParticule et Cosmologie (APC); Geer, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gomes, R. [Federal University of Goias (Brazil); Kim, S. B. [Seoul National Univ. (Korea, Republic of); Kobayashi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Long, K. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL); Maltoni, M. [Autonomous Univ. of Madrid (Spain); Mezzetto, M. [Univ. of Padua (Italy); Mondal, N. [Tata Inst. of Fundamental Research, Bombay (India); Shiozawa, M. [Univ. of Tokyo (Japan); Sobczyk, J. [Univ. of Wroclaw (Poland); Tanaka, H. A. [TRIUMF, Vancouver, BC (Canada); Wascko, M. [Imperial College, London (United Kingdom); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-26

    In line with its terms of reference the ICFA Neutrino Panel has developed a roadmap for the international, accelerator-based neutrino programme. A "roadmap discussion document" was presented in May 2016 taking into account the peer-group-consultation described in the Panel's initial report. The "roadmap discussion document" was used to solicit feedback from the neutrino community---and more broadly, the particle- and astroparticle-physics communities---and the various stakeholders in the programme. The roadmap, the conclusions and recommendations presented in this document take into account the comments received following the publication of the roadmap discussion document. With its roadmap the Panel documents the approved objectives and milestones of the experiments that are presently in operation or under construction. Approval, construction and exploitation milestones are presented for experiments that are being considered for approval. The timetable proposed by the proponents is presented for experiments that are not yet being considered formally for approval. Based on this information, the evolution of the precision with which the critical parameters governinger the neutrino are known has been evaluated. Branch or decision points have been identified based on the anticipated evolution in precision. The branch or decision points have in turn been used to identify desirable timelines for the neutrino-nucleus cross section and hadro-production measurements that are required to maximise the integrated scientific output of the programme. The branch points have also been used to identify the timeline for the R&D required to take the programme beyond the horizon of the next generation of experiments. The theory and phenomenology programme, including nuclear theory, required to ensure that maximum benefit is derived from the experimental programme is also discussed.

  20. Using machine learning to accelerate sampling-based inversion

    Science.gov (United States)

    Valentine, A. P.; Sambridge, M.

    2017-12-01

    In most cases, a complete solution to a geophysical inverse problem (including robust understanding of the uncertainties associated with the result) requires a sampling-based approach. However, the computational burden is high, and proves intractable for many problems of interest. There is therefore considerable value in developing techniques that can accelerate sampling procedures.The main computational cost lies in evaluation of the forward operator (e.g. calculation of synthetic seismograms) for each candidate model. Modern machine learning techniques-such as Gaussian Processes-offer a route for constructing a computationally-cheap approximation to this calculation, which can replace the accurate solution during sampling. Importantly, the accuracy of the approximation can be refined as inversion proceeds, to ensure high-quality results.In this presentation, we describe and demonstrate this approach-which can be seen as an extension of popular current methods, such as the Neighbourhood Algorithm, and bridges the gap between prior- and posterior-sampling frameworks.

  1. Accelerator-based neutron source and its future

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2008-01-01

    Neutrons are useful tool for the material science and also for the industrial applications. Now, high intensity neutron sources based on MW class big accelerators are under commissioning in Japan, Japan Spallation Neutron Source (JSNS) at J-PARC and in the US, SNS. Such high power neutron sources required the moderators that can be used under high radiation field and also give high neutronic performance. We have been performing experimental and Monte Carlo simulation studies to develop the cold neutron moderator systems for the high power sources since it is becoming important for materials and life science. Hydrogen is the unique candidate at the present stage due to its high resistibility to the radiation. It was indicated the para hydrogen moderator gave a good neutronic performance by experimental results. On the other hand, in the future, low power neutron sources are recognized to be useful to perform sprouting experiments and to promote the neutron science. The moderator systems need a concept different from the high power source. Therefore, we studied neutronic performances of the mesitylene and the methane moderators to get high intensity in a definite area on the moderator surface. Single groove moderators were studied and optimal geometry and the intensity gain were obtained. The mesitylene moderator gave a rather good performance compared to the methane moderator. (author)

  2. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  3. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  4. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  5. Producing the radioelectric effect in solid dielectrics by bombardment with accelerated electrons. Obrazovaniye radioelektretnogo effekta v tverdykh dielektrikakh v rezul'tate oblucheniya ikh uskorennymi elektronami

    Energy Technology Data Exchange (ETDEWEB)

    Zavadovskaya, E K; Annenkov, Yu M; Boev, S G; Sigaev, G I

    1976-01-01

    A theoretical and experimental study was made concerning the kinetics of formation of electric moments in solid dielectrics bombarded with fast electrons in the atmosphere. The energy of bombarding electrons in the experiment ranged from 0.6 to 2.0 MeV, at an incident flux density ranging 1.10/sup -9/ to 5.10/sup -7/ A/cm/sup 2/. The specimens were actually grounded during bonbardment, owing to the high electrical conductivity of the ionized ambient gas, and the electric moments were equal to zero. The formation of electric moments occurred after cessation of the bombardment, because the density of the accumulated space charge had become redistributed. An examination was made of the redistribution of space-charge density due to the electrical conductivity of the dielectric, due to intrinsic charge carriers, and due to the release of charges stored in traps. Analytical relations derived for the kinetics of the electric moments give a qualitative description of the experimental results. 5 references.

  6. Computer-based training for particle accelerator personnel

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1999-01-01

    A continuing problem at many laboratories is the training of new operators in the arcane technology of particle accelerators. Presently most of this training occurs on the job, under a mentor. Such training is expensive, and while it provides operational experience, it is frequently lax in providing the physics background needed to truly understand accelerator systems. Using computers in a self-paced, interactive environment can be more effective in meeting this training need. copyright 1999 American Institute of Physics

  7. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior

    Energy Technology Data Exchange (ETDEWEB)

    Soreto Teixeira, S.; Graça, M. P. F.; Costa, L. C. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Dionisio, M. [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Ilcíkova, M.; Mosnacek, J.; Spitalsky, Z. [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Krupa, I. [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar)

    2014-12-14

    Lithium ferrite (LiFe{sub 5}O{sub 8}) is an attractive material for technological applications due to its physical properties, which are significantly dependent on the preparation method and raw materials. In this work, LiFe{sub 5}O{sub 8} crystallites were obtained by controlled heat-treatment process at 1100 °C, of a homogeneous mixture of Li{sub 2}O-Fe{sub 2}O{sub 3} powders, prepared by wet ball-milling and using lithium and iron nitrates as raw materials. The main goal was the preparation of a flexible and self-standing tick composite film by embedding lithium ferrite particles in a polymeric matrix, taking advantage of the good mechanical properties of the polymer and of the electrical and dielectric properties of the ferrite. The selected polymer matrix was styrene-b-isoprene-b-styrene copolymer. To prepare the composites, the lithium ferrite particles were chemically modified in order to functionalize their surface. To analyse the influence of the particles surface modification, different composites were made, with modified and unmodified particles. The structure of the obtained composites was studied by FTIR, XRD, TGA, and DSC techniques. The dielectric properties were analysed, in the frequency range between 10 Hz and 1 MHz and in function of temperature in the range between −73 °C and 127 °C. These properties were related with the structure and concentration of the particles in the matrix network. The composites with the modified particles present higher dielectric constant, maintaining values of loss tangent sufficiently low (<10{sup −2}) that can be considered interesting for technological applications.

  9. Optimisation of Silicone-based Dielectric Elastomer Transducers by Means of Block Copolymers - Synthesis and Compounding

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam

    through the use of a multi-walled carbon nanotube (MWCNT) in a PDMS-PEG matrix as a compliant electrode of dielectric elastomers. The conductive PDMS-PEG copolymer was incorporated with surface-treated MWCNT, in order to obtain highly conductive elastomer. The prepared sample with 4 parts per hundred...... enhancing the electrical breakdown strength of silicone by using an aromatic voltage stabiliser. Here, polyphenylmethylsiloxane (PPMS), which contained aromatic voltage stabilisers, was bonded covalently to PDMS through a hydrosilylation reaction obtaining PDMS-PPMS copolymers. The synthesised copolymers...

  10. Degradation of anionic surfactants using the reactor based on dielectric barrier discharge

    Directory of Open Access Journals (Sweden)

    Aonyas Munera Mustafa

    2016-01-01

    Full Text Available Two anionic surfactants (sodium lauryl sulfate - SDS and sodium dodecylbenzenesulfonate - SDBS were treated with dielectric barrier discharge. Loss of surfactant activity, decrease of chemical oxygen demand and total organic carbon as well as lower toxicity of degradation products were determined. Effects of catalysts - hydrogen peroxide and iron (II, on parameters mentioned above, were determined. Catalysts affect the degradation of SDBS and in the case of SDS catalysts have no effect on degradation. Both catalysts induce the decrease of COD and TOC values. Toxicity of solutions after the plasma treatment is lower in all the systems tested. [Projekat Ministarstva nauke Republike Srbije, br. OI 172030

  11. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  12. Degradation patterns of silicone-based dielectric elastomers in electrical fields

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2017-01-01

    . This shortcoming has been attempted optimized through different approaches during recent years. Material optimization with the sole purpose of increasing the dielectric permittivity may lead to the introduction of problematic phenomena such as premature electrical breakdown due to high leakage currents of the thin...... elastomer film. Within this work, electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers are investigated. Results showed that different types of polymer backbone chemistries lead to differences in electrical breakdown patterns, which were revealed through SEM imaging...

  13. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.

    Science.gov (United States)

    Kurian, Roby; Bruce, Mitchell R M; Bruce, Alice E; Amar, François G

    2015-08-01

    QM/MM studies were performed to explore the energetics of exchange reactions of glutathione disulfide (GSSG) and the active site of thioredoxin [Cys32-Gly33-Pro34-Cys35] with and without zinc(II), in vacuum and solvated models. The activation energy for exchange, in the absence of zinc, is 29.7 kcal mol(-1) for the solvated model. This is 3.3 kcal mol(-1) higher than the activation energy for exchange in the gas phase, due to ground state stabilization of the active site Cys-32 thiolate in a polar environment. In the presence of zinc, the activation energy for exchange is 4.9 kcal mol(-1) lower than in the absence of zinc (solvated models). The decrease in activation energy is attributed to stabilization of the charge-separated transition state, which has a 4-centered, cyclic arrangement of Zn-S-S-S with an estimated dipole moment of 4.2 D. A difference of 4.9 kcal mol(-1) in activation energy would translate to an increase in rate by a factor of about 4000 for zinc-assisted thiol-disulfide exchange. The calculations are consistent with previously reported experimental results, which indicate that metal-thiolate, disulfide exchange rates increase as a function of solvent dielectric. This trend is opposite to that observed for the influence of the dielectric environment on the rate of thiol-disulfide exchange in the absence of metal. The results suggest a dynamic role for zinc in thiol-disulfide exchange reactions, involving accessible cysteine sites on proteins, which may contribute to redox regulation and mechanistic pathways during oxidative stress.

  14. Development of ADS virtual accelerator based on XAL

    International Nuclear Information System (INIS)

    Wang Pengfei; Cao Jianshe; Ye Qiang

    2014-01-01

    XAL is a high level accelerator application framework that was originally developed by the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. It has an advanced design concept and has been adopted by many international accelerator laboratories. Adopting XAL for ADS is a key subject in the long term. This paper will present the modifications to the original XAL applications for ADS. The work includes a proper relational database schema modification in order to better suit the requirements of ADS configuration data, redesigning and re-implementing db2xal application, and modifying the virtual accelerator application. In addition, the new device types and new device attributes for ADS online modeling purpose are also described here. (authors)

  15. Computer Based Dose Control System on Linear Accelerator

    International Nuclear Information System (INIS)

    Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna

    2000-01-01

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  16. Investigation of dielectric properties of heterostructures based on ZnO structures

    Directory of Open Access Journals (Sweden)

    Selçuk A.H.

    2018-03-01

    Full Text Available The voltage and frequency dependence of dielectric constant є′, dielectric loss є″, electrical modulus M″, M′, loss tangent tanδ and AC electrical conductivity σAC of p-Si/ZnO/PMMA/Al, p-Si/ZnO/Al and p-Si/PMMA/Al structures have been investigated by means of experimental G-V and C-V measurements at 30 kHz, 100kHz, 500 kHz and 1 MHz in this work. While the values of є′, є″, tanδ and σAC decreased, the values of M′ and M″ increased for these structures when frequency was increased and those of p-Si/ZnO/Al and p-Si/PMMA/Al were comparable with those of p-Si/ZnO/PMMA/Al. The obtained results showed that the values of p-Si/ZnO/PMMA/Al structure were lower than the values of p-Si/ZnO/Al and p-Si/PMMA/Al.

  17. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  18. Prospects of development of accelerators for applied purposes on the base of patent information analysis

    International Nuclear Information System (INIS)

    Dmitriev, S.P.; Prudnikov, I.A.; Fedotov, M.T.; Petrov, I.I.

    1979-01-01

    A technique for investigations of tends of commercial accelerator development is described. The technique is intended determining the nature of change of the dynamics criterium of trends of development (type of accelerator) and obtaining its mean value from the equation of curvibinear one-parametric regression. The technique developed was tested in the process of analysis of 2000 inventions related to charged particle accelerators. The first stage of calculations is based on the analysis of retrospective data fund and analysis of the data on introduced engineering solutions. The second stage is based on the analysis of physical-technical characteristics of compared objects and requirements to this objects. Mean period of invention introduction in accelerating technique (12-15 years) has been determined and correctness of estimation from the retrospective fund of inventions and modern data on introduced accelerators has been cheeked. The checking revealed the correspondence of accelerator distribution in a value of dynamics criterium [ru

  19. Present status of accelerator-based BNCT: Focus on developments in Argentina

    International Nuclear Information System (INIS)

    Cartelli, D.; Capoulat, M.E.; Bergueiro, J.; Gagetti, L.; Suárez Anzorena, M.; Grosso, M.F. del; Baldo, M.; Castell, W.; Padulo, J.; Suárez Sandín, J.C.; Igarzabal, M.; Erhardt, J.; Mercuri, D.

    2015-01-01

    In this work we provide some information on the present status of accelerator-based BNCT (AB-BNCT) worldwide and subsequently concentrate on the recent accelerator technology developments in Argentina. - Highlights: • The current status of projects and associated facilities for AB-BNCT worldwide is shown. • Only low (few MeV) energy accelerators are included. • The recent progress of the Argentine AB-BNCT program is described.

  20. Dielectric material in lead-based perovskite and fabrication process for multilayer ceramic capacitor with copper internal electrode

    International Nuclear Information System (INIS)

    Kato, J.; Yokotani, Y.; Kagata, H.; Nakatani, S.; Kugimiya, K.

    1990-01-01

    This paper reports on the development of a multilayer ceramic capacitor with copper internal electrodes. Dielectric materials of the capacitor is lead- based perovskite (Pb a Ca b ) (Mg 1/3 Nb 2/3 ) x Ti y (Ni 1/2 W 1/2 ) z O 2 + a + b where a + b gt 1 and x + y + z = 1. The materials can be fired below 1000 degrees C and have high resistivity even when fired in the atmosphere below the equilibrium oxygen partial pressure of copper and CuO. The fabrication process of the capacitor has following features. The electrode paste is composed of copper oxide to prevent breaking of the laminated body in a burn out process. Then the copper oxide is first metalized and fired in a controlled atmosphere. The obtained capacitor of 20 dielectric layers of 17 micron meter meets to Z5U specification and has low loss tangent of 0.6% and stability under d.c. bias voltage and high a.c. field

  1. A bio-inspired hair- based acceleration sensor

    NARCIS (Netherlands)

    Droogendijk, H.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU- 8 lithography. Measu- rements show

  2. JMS-based SOA monitors CERN particle accelerators

    CERN Multimedia

    Seeley, Rich

    2007-01-01

    "Service-oriented architecture (SOA) may not exactly be nuclear physics, but at the CERN (European Organization for Nuclear Research) physics laboratory on the border of France and Switzerland, an SOA system is watching over giant particle accelerators." (1,5 page)

  3. An experimental accelerator driven system based on plutonium subcritical assembly and 660 MeV protons accelerator

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Puzynin, I.V.; Sisakyan, A.N.; Polanski, A.

    1999-01-01

    We present a Plutonium Based Energy Amplifier Testing Concept, which employs a plutonium subcritical assembly and a 660 MeV proton accelerator operating in the JINR Laboratory of Nuclear Problems. Fuel designed for the pulsed neutron source IREN (Laboratory of Neutron Physics, JINR) will be adopted for the core of the assembly. To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient K eff ranging between 0.94 and 0.95 and the energetic gain about 20. Accelerated current is in the range of 1-1.6μA

  4. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Iraj, E-mail: i_jabbari@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Poursaleh, Ali Mohammad [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of); Khalafi, Hossein [Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of)

    2016-08-21

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  5. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    Science.gov (United States)

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  6. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    Science.gov (United States)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  8. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, P., E-mail: pgulati1512@gmail.com [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India); Prakash, R.; Pal, U. N.; Kumar, M. [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Vyas, V. [Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India)

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  9. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    Science.gov (United States)

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-01

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  10. Dielectric and ferroelectric properties of solid solutions based on lead meta niobate

    International Nuclear Information System (INIS)

    Umakantham, K.; Murty, S.N.; Bhanumathi, A.

    1986-01-01

    Pb/sub 2/KNb/sub 5/O/sub 15/ single crystals belong to tungsten bronze structure. Previous work on single crystals of this material has shown that they possess temperature compensated elastic properties and an electromechanical coupling coefficient which is seventeen times as high as quartz and hence are ideally suited for SAW device applications. Experimental work on SAW properties has not been reported so far due to nonavailability of large single crystals. The authors have prepared ceramics of Pb/sub 2/KNb/sub 5/O/sub 15/ modified with lanthanum by conventional sintering. The object of the work is to explore the possibility of using the ceramics for SAW devices. As a first step they have measured the dielectric and ferroelectric properties for different mole fractions of lanthanum

  11. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  12. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  13. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    International Nuclear Information System (INIS)

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-01-01

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  14. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  15. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  16. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  17. Muscle activation patterns in acceleration-based phases during reach-to-grasp movement.

    Science.gov (United States)

    Tokuda, Keisuke; Lee, Bumsuk; Shiihara, Yasufumi; Takahashi, Kazuhiro; Wada, Naoki; Shirakura, Kenji; Watanabe, Hideomi

    2016-11-01

    [Purpose] An earlier study divided reaching activity into characteristic phases based on hand velocity profiles. By synchronizing muscle activities and the acceleration profile, a phasing approach for reaching movement, based on hand acceleration profiles, was attempted in order to elucidate the roles of individual muscle activities in the different phases of the acceleration profile in reaching movements. [Subjects and Methods] Ten healthy volunteer subjects participated in this study. The aim was to electromyographically evaluate muscles around the shoulder, the upper trapezius, the anterior deltoid, the biceps brachii, and the triceps brachii, most of which have been used to evaluate arm motion, as well as the acceleration of the upper limb during simple reaching movement in the reach-to-grasp task. [Results] Analysis showed the kinematic trajectories of the acceleration during a simple biphasic profile of the reaching movement could be divided into four phases: increasing acceleration (IA), decreasing acceleration (DA), increasing deceleration (ID), and decreasing deceleration (DD). Muscles around the shoulder showed different activity patterns, which were closely associated with these acceleration phases. [Conclusion] These results suggest the important role of the four phases, derived from the acceleration trajectory, in the elucidation of the muscular mechanisms which regulate and coordinate the muscles around the shoulder in reaching movements.

  18. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  19. Design and fabrication of a eccentric wheels based motorised alignment mechanism for cylindrical accelerator components

    International Nuclear Information System (INIS)

    Mundra, G.; Jain, V.; Karmarkar, Mangesh; Kotaiah, S.

    2006-01-01

    Precision alignment mechanisms with long term stability are required for accelerator components. For some of the components motorised and remotely operable alignment mechanism are required. An eccentric wheel mechanism based alignment system is very much suitable for such application. One such alignment system is designed, a prototype is machined/fabricated for SFDTL type accelerating structure and preliminary trial experiments have been done. (author)

  20. Energy-aware SQL query acceleration through FPGA-based dynamic partial reconfiguration

    NARCIS (Netherlands)

    Becher, Andreas; Bauer, Florian; Ziener, Daniel; Teich, Jürgen

    2014-01-01

    In this paper, we propose an approach for energy-aware FPGA-based query acceleration for databases on embedded devices. After the analysis of an incoming query, a query-specific hardware accelerator is generated on-the-fly and loaded on the FPGA for subsequent query execution using partial dynamic

  1. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  2. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  3. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    Science.gov (United States)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  4. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    Science.gov (United States)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  5. Dielectric properties of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene and ferroelectric ceramics of barium lead zirconate titanate

    Directory of Open Access Journals (Sweden)

    A. V. Solnyshkin

    2017-10-01

    Full Text Available A study of dielectric properties of composite films on the base of poly(vinylidene fluoride-trifluoroethylene copolymer P(VDF-TrFE and ferroelectric ceramics of barium lead zirconate titanate (BPZT solid solution is presented in this work. The composite films containing up to 50 vol.% of BPZT grains with size ∼1μm were prepared by the solvent cast method. Frequency dependences of real and imaginary components of the complex permittivity were determined. The concentration dependence of the dielectric constant was discussed.

  6. En Route: next-generation laser-plasma-based electron accelerators

    International Nuclear Information System (INIS)

    Hidding, Bernhard

    2008-05-01

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to ∼50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the ∼80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10 19 W=cm 2 into gas jets. The experimental observations could be explained via ''bubble acceleration'', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations < or similar 5 fs can thus be created, which is at least an order of magnitude shorter than with conventional accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table-top accelerators, while at the

  7. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  8. Interpenetrated polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

    DEFF Research Database (Denmark)

    Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

    the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...... from amino- and carboxylic acid- functional silicones have been designed[2] (Figure 1). This novel system provides both the mechanical stability and the high breakdown strength given by the silicone part of the IPNs and the high permittivity and the softening effect of the ionic network. Thus......,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging...

  9. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    Science.gov (United States)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  10. An intense neutron generator based on a proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G A; Milton, J C.D.; Vogt, E W

    1964-07-01

    A study has been made of the demand for a neutron facility with a thermal flux of {>=} 10{sup 16} n cm{sup -2} sec{sup -1} and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of {pi} and {mu} mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics

  11. Acceleration of cell factories engineering using CRISPR-based technologies

    DEFF Research Database (Denmark)

    Ronda, Carlotta

    potentially be standardized in an automatable platform and, in the future be integrated with metabolic modeling tools. In particularly it describes the technologies developed in the three widely used organisms: E. coli, S. cerevisiae and CHO mammalian cells using the recent breakthrough CRISPR/ Cas9 system....... These include CRMAGE, a MAGE improved recombineering platform using CRISPR negative selection, CrEdit, a system for multi-loci marker-free simultaneous gene and pathway integrations and CRISPy a platform to accelerate genome editing in CHO cells....

  12. An intense neutron generator based on a proton accelerator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Milton, J.C.D.; Vogt, E.W.

    1964-01-01

    A study has been made of the demand for a neutron facility with a thermal flux of ≥ 10 16 n cm -2 sec -1 and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of π and μ mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics, and perhaps also in

  13. A PLL based automated magnetron tuning mechanism for electron accelerators

    International Nuclear Information System (INIS)

    Khan, A M; Mahfooz, Mohammed; Sanjeev, Ganesh

    2008-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  14. A PLL based automated magnetron tuning mechanism for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Mahfooz, Mohammed [Dept. of Electronics, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India); Sanjeev, Ganesh [Microtron Centre, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India)], E-mail: mahfooz_81@yahoo.com

    2008-09-15

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  15. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  16. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  17. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Timothy [Research Engineer; Motupally, Sathya [Research Engineer

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  18. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  19. The VINEYARD project: Versatile Integrated Accelerator-based Heterogeneous Data Centers

    OpenAIRE

    Kachris, Christoforos; Soudris, Dimitrios; Gaydadjiev, Georgi; Nguyen, Huy-Nam

    2016-01-01

    Emerging applications like cloud computing and big data analytics have created the need for powerful centers hosting hundreds of thousands of servers. Currently, the data centers are based on general purpose processors that provide high flexibility but lacks the energy efficiency of customized accelerators. VINEYARD1 aims to develop novel servers based on programmable hardware accelerators. Furthermore, VINEYARD will develop an integrated framework for allowing end-users to seamlessly utilize...

  20. European Strategy for Accelerator-Based Neutrino Physics

    CERN Document Server

    Bertolucci, Sergio; Cervera, Anselmo; Donini, Andrea; Dracos, Marcos; Duchesneau, Dominique; Dufour, Fanny; Edgecock, Rob; Efthymiopoulos, Ilias; Gschwendtner, Edda; Kudenko, Yury; Long, Ken; Maalampi, Jukka; Mezzetto, Mauro; Pascoli, Silvia; Palladino, Vittorio; Rondio, Ewa; Rubbia, Andre; Rubbia, Carlo; Stahl, Achim; Stanco, Luca; Thomas, Jenny; Wark, David; Wildner, Elena; Zito, Marco

    2012-01-01

    Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. The discovery and study of leptonic CP violation and precision studies of the transitions between neutrino flavours require high intensity, high precision, long baseline accelerator neutrino experiments. The community of European neutrino physicists involved in oscillation experiments is strong enough to support a major neutrino long baseline project in Europe, and has an ambitious, competitive and coherent vision to propose. Following the 2006 European Strategy for Particle Physics (ESPP) recommendations, two complementary design studies have been carried out: LAGUNA/LBNO, focused on deep underground detector sites, and EUROnu, focused on high intensity neutrino facilities. LAGUNA LBNO recommends, as first step, a conventional neutrino beam CN2PY from a CERN SPS North Area Neutrino Fac...

  1. Repair mortars based on lime. Accelerated aging tests

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1995-06-01

    Full Text Available The behaviour under different accelerated aging tests (freeze/thaw and crystallization cycles of a new lime mortar with biocide properties destinated to monumental repair has been studied. New mortars (which have the biocide impregnated in a clay called sepiolite have a similar behaviour to lime mortars used as a reference. After the aging tests, the biocide properties of the mortars have been tried.

    Se ha estudiado el comportamiento frente a distintos ensayos de envejecimiento acelerado (ciclos de hielo/deshielo y cristalización de sales de un nuevo mortero de cal con propiedades biocidas, destinado a la reparación monumental. Se ha comprobado que los nuevos morteros (que llevan incorporado el biocida impregnado en una arcilla denominada sepiolita tienen un comportamiento muy similar a los morteros de cal utilizados como referencia. Tras los ensayos de envejecimiento se ha visto que las propiedades biocidas de los morteros se mantienen.

  2. Operational experience from a large EPICS-based accelerator facility

    International Nuclear Information System (INIS)

    Ciarlette, D.J.; Gerig, R.

    1995-01-01

    The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation x-ray light source which uses the Experimental Physics and Industrial Control System (EPICS) to operate its linear accelerator, positron accumulator ring, booster synchrotron, and storage ring equipment. EPICS has been used at the APS since the beginning of installation and commissioning. Currently, EPICS controls approximately 100 VME crates containing over 100,000 process variables. With this complexity, the APS has had to review some of the methods originally employed and make changes as necessary. In addition, due to commissioning and operational needs, higher-level operator software needed to be created. EPICS has been flexible enough to allow this

  3. Knowledge based instrumentation environment for future accelerator experiments

    International Nuclear Information System (INIS)

    Satyanarayana, B.

    1992-01-01

    Modern particle physics experiments are growing in complexity in terms of design and operation. Large scale accelerators producing very high energy particles are being employed, equipped with a variety of fine grain detectors to record the events. Main challenges in these experiments include: 1) Real-time supervision and fault diagnosis, 2)Trigger generation and monitoring, 3) Management of large volumes of event data, and 4) Track fitting and particle identification. The object of this paper is to propose artificial intelligence (AI) techniques to meet these challenges in an efficient way. Concepts are exemplified with the help of existing systems in this domain and new application areas in particle physics experiments are suggested for systems which are designed to work in different domains. (author). 11 refs

  4. A DSP based data acquisition module for colliding beam accelerators

    International Nuclear Information System (INIS)

    Mead, J.A.; Shea, T.J.

    1995-10-01

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented

  5. An active target for the accelerator-based transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Grebyonkin, K.F. [Institute of Technical Physics, Chelyabinsk (Russian Federation)

    1995-10-01

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the proton beam and, hence considerably improve economic characteristics of the electronuclear reactor.

  6. Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators

    Directory of Open Access Journals (Sweden)

    A. Rucigaj

    2015-07-01

    Full Text Available The curing of bisphenol A-aniline based benzoxazine was studied applying different accelerators (4,4'-thiodiphenol, o-dianisidine, 2-mercaptobenzimidazole and 4-mercaptophenol to initiate the catalytic ring-opening of benzoxazine. Possible pathways of benzoxazine ring-opening, polymerization and cross-linking without and with the addition of different accelerators are presented. The curing kinetics was investigated by model-free kinetic analysis of experimental data obtained by differential scanning calorimetry (DSC. The addition of different accelerators significantly reduced the onset temperature of curing in dynamic experiments. The effects of accelerators on the results of isothermal conversion prediction were studied and discussed in detail. Among the used accelerators, thiodiphenol showed the best accelerating efficiency and was consequently used in further studies, where its amount was varied. By low heating rate DSC analysis the catalytic ring-opening, thermally accelerated ring-opening and the diffusion-controlled steps were identified. The amount of added accelerator affected particularly the ring-opening and diffusion-controlled steps.

  7. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  8. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Science.gov (United States)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  9. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Directory of Open Access Journals (Sweden)

    Calcagnile L.

    2012-04-01

    Full Text Available Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD, University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try radiocarbon dating and IB A (Ion Beam Analysis. An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel burned in WTE (Waste to Energy plants.

  10. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  11. Accelerator-based atomic and molecular collision physics

    International Nuclear Information System (INIS)

    Datz, S.

    1993-01-01

    Accelerators have been shown to have great utility in addressing a broad range of problems in experimental atomic physics. There are, of course, phenomena such as inner-shell MO promotion which can occur only at high collision energies. At much higher energies, large transient Coulomb fields can be generated which lead to copious production electron-positron pairs and to capture of electrons from the negative continuum. But in addition, many advantages can be gained by carrying out low-energy (center-of-mass) collisions at high laboratory energies, specifically in a single pass mode or in multi-pass modes in ion storage rings in which, e.g., collision in the milli-electron volt region can be achieved for electron-molecule reactions. Certain advantages also accrue using open-quotes reverse kinematicsclose quotes in which high velocity ions collide with almost open-quotes stationaryclose quotes electrons as in resonant transfer and excitation (RTE) and collisions of energetic ions in the dense open-quotes electron gasclose quotes found in crystal channels

  12. Report of the consultant's meeting on applications of accelerator based analysis

    International Nuclear Information System (INIS)

    1998-07-01

    At the present meeting, applications of accelerator based analytical methods, often referred as ion beam analysis (IBA) methods, to the following areas have been discussed: materials (including thin films), Earth sciences (including environmental studies), biology and medicine, art and archaeology (cultural heritage), and other applications (including forensic applications). This report gives brief overview of IBA applications in these areas, with short background about accelerators needed and corresponding analytical techniques

  13. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Herrera, M.S.; González, S.J.; Burlon, A.A.; Minsky, D.M.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  15. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    Mehrling, Timon Johannes

    2014-11-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma-acceleration

  16. Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid-Dielectric Interface.

    Science.gov (United States)

    Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2016-12-27

    Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.

  17. Oligo- and polymeric FET devices: Thiophene-based active materials and their interaction with different gate dielectrics

    International Nuclear Information System (INIS)

    Porzio, W.; Destri, S.; Pasini, M.; Bolognesi, A.; Angiulli, A.; Di Gianvincenzo, P.; Natali, D.; Sampietro, M.; Caironi, M.; Fumagalli, L.; Ferrari, S.; Peron, E.; Perissinotti, F.

    2006-01-01

    Derivatives of both oligo- and polythiophene-based FET were recently considered for low cost electronic applications. In the device optimization, factors like redox reversibility of the molecule/polymer, electronic level compatibility with source/drain electrodes, packing closeness, and orientation versus the electrodes, can determine the overall performance. In addition, a gate insulator with a high dielectric constant, a low leakage current, and capability to promote ordering in the semiconductor is required to increase device performances and to lower the FET operating voltage. In this view, Al 2 O 3 appears a good candidate, although its widespread adoption is limited by the disorder that such oxide induces on the semiconductor with detrimental consequences on semiconductor electrical properties. In this contribution, an overview of recent results obtained on thiophene-derivative-based FET devices, fabricated by different growth techniques, and using both thermally grown SiO 2 and Al 2 O 3 from atomic layer deposition gate insulators will be reported and discussed with particular reference to organic solid state aggregation, morphology, and organic-inorganic interface

  18. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cartelli, D.; Thatar Vento, V.; Castell, W.; Di Paolo, H.; Kesque, J.M.; Bergueiro, J.; Valda, A.A.

    2011-01-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  19. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Microprocessor based beam intensity and efficiency display system for the Fermilab accelerator

    International Nuclear Information System (INIS)

    Biwer, R.

    1979-01-01

    The Main Accelerator display system for the Fermilab accelerator gathers charge data and displays it including processed transfer efficiencies of each of the accelerators. To accomplish this, strategically located charge converters monitor the circulating internal beam of each of the Fermilab accelerators. Their outputs are processed via an asynchronously triggered, multiplexed analog-to-digital converter. The data is converted into a digital byte containing address code and data, then stores it into two 16-bit memories. One memory outputs the interleaved data as a data pulse train while the other interfaces directly to a local host computer for further analysis. The microprocessor based display unit synchronizes displayed data during normal operation as well as special storage modes. The display unit outputs data to the fron panel in the form of a numeric value and also makes digital-to-analog conversions of displayed data for external peripheral devices. 5 refs

  1. Production and applications of quasi-monoenergetic electron bunches in laser-plasma based accelerators

    International Nuclear Information System (INIS)

    Glinec, Y.; Faure, J.; Ewald, F.; Lifschitz, A.; Malka, V.

    2006-01-01

    Plasmas are attractive media for the next generation of compact particle accelerators because they can sustain electric fields larger than those in conventional accelerators by three orders of magnitude. However, until now, plasma-based accelerators have produced relatively poor quality electron beams even though for most practical applications, high quality beams are required. In particular, beams from laser plasma-based accelerators tend to have a large divergence and very large energy spreads, meaning that different particles travel at different speeds. The combination of these two problems makes it difficult to utilize these beams. Here, we demonstrate the production of high quality and high energy electron beams from laser-plasma interaction: in a distance of 3 mm, a very collimated and quasi-monoenergetic electron beam is emitted with a 0.5 nanocoulomb charge at 170 ± 20 MeV. In this regime, we have observed very nonlinear phenomena, such as self-focusing and temporal self-shortenning down to 10 fs durations. Both phenomena increase the excitation of the wakefield. The laser pulse drives a highly nonlinear wakefield, able to trap and accelerate plasma background electrons to a single energy. We will review the different regimes of electron acceleration and we will show how enhanced performances can be reached with state-of-the-art ultrashort laser systems. Applications such as gamma radiography of such electron beams will also be discussed

  2. JAERI R & D on accelerator-based transmutation under OMEGA program

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T.; Nishida, T.; Mizumoto, M. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts also as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.

  3. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  4. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  5. Accelerated load testing of geosynthetic base reinforced pavement test sections.

    Science.gov (United States)

    2011-02-01

    The main objective of this research is to evaluate the benefits of geosynthetic stabilization and reinforcement of subgrade/base aggregate layers in flexible pavements built on weak subgrades and the effect of pre-rut pavement sections, prior to the ...

  6. Analyses of ionic conductivity and dielectric behavior of solid polymer electrolyte based 2-hydroxyethyl cellulose doped ammonium nitrate plasticized with ethylene carbonate

    Science.gov (United States)

    Hafiza, M. N.; Isa, M. I. N.

    2017-09-01

    A solid polymer electrolyte (SPE) based 2-hydroxyethyl cellulose (2-HEC) doped ammonium nitrate (NH4NO3) plasticized with ethylene carbonate (EC) has been investigated using electrical impedance spectroscopy (EIS). The highest ionic conductivity of (1.17±0.01) × 10-3 Scm-1 was obtained for 2-HEC-NH4NO3 plasticized with 16 wt.% EC. Dielectric and modulus study showed non-Debye type of 2-HEC-NH4NO3-EC SPE.

  7. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  8. Evolutionary search for new high-k dielectric materials: methodology and applications to hafnia-based oxides.

    Science.gov (United States)

    Zeng, Qingfeng; Oganov, Artem R; Lyakhov, Andriy O; Xie, Congwei; Zhang, Xiaodong; Zhang, Jin; Zhu, Qiang; Wei, Bingqing; Grigorenko, Ilya; Zhang, Litong; Cheng, Laifei

    2014-02-01

    High-k dielectric materials are important as gate oxides in microelectronics and as potential dielectrics for capacitors. In order to enable computational discovery of novel high-k dielectric materials, we propose a fitness model (energy storage density) that includes the dielectric constant, bandgap, and intrinsic breakdown field. This model, used as a fitness function in conjunction with first-principles calculations and the global optimization evolutionary algorithm USPEX, efficiently leads to practically important results. We found a number of high-fitness structures of SiO2 and HfO2, some of which correspond to known phases and some of which are new. The results allow us to propose characteristics (genes) common to high-fitness structures--these are the coordination polyhedra and their degree of distortion. Our variable-composition searches in the HfO2-SiO2 system uncovered several high-fitness states. This hybrid algorithm opens up a new avenue for discovering novel high-k dielectrics with both fixed and variable compositions, and will speed up the process of materials discovery.

  9. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates

    Science.gov (United States)

    Lv, Qun-Chen; Li, Ying; Zhong, Zhi-Kui; Wu, Hui-Jun; He, Fu-An; Lam, Kwok-Ho

    2018-05-01

    To improve the dielectric performance of high-dielectric-constant conductive filler/polymer composites, polyaniline was deposited on exfoliated graphite nanoplates (xGNPs) by in-situ polymerization method to form polyaniline (PANI) coated xGNPs (xGNPs@PANI) as the conductive filler for the oxidized styrene-butadienestyrene copolymer (SBS-FH) containing both hydroxyl and formyloxy groups. The results of TEM, SEM, FTIR, TGA, Raman spectrum, XPS, and WAXD showed that PANI had been coated onto the surface of xGNPs successfully. The xGNPs@PANI/SBS-FH composites were prepared by a simple solution-blending method and the homogenous distribution of xGNPs@PANI in the SBS-FH matrix was confirmed by SEM. The presence of xGNPs@PANI was found to significantly improve the dielectric properties of resultant composite compared to the unmodified xGNPs. For example, the xGNPs@PANI/SBS-FH composite near percolation threshold filled with 9.38 vol.% xGNPs@PANI showed a dielectric constant of 56.8 and a dielectric loss factor of 0.51 at 1000 Hz, while the corresponding values of xGNPs (1.19 vol.%)/SBS composite were 15.96 and 2.91 at 1000 Hz, respectively. In addition, the incorporation of xGNPs@PANI into SBS-FH could effectively enhance the thermal conductivity of resultant xGNPs@PANI/SBS-FH composite.

  10. The impact of porosity on the formation of manganese based copper diffusion barrier layers on low-κ dielectric materials

    International Nuclear Information System (INIS)

    McCoy, A P; Bogan, J; Walsh, L; Byrne, C; O’Connor, R; Hughes, G; Woicik, J C

    2015-01-01

    This work investigates the impact of porosity in low-κ dielectric materials on the chemical and structural properties of deposited Mn thin films for copper diffusion barrier layer applications. X-ray photoelectron spectrscopy (XPS) results highlight the difficulty in distinguishing between the various Mn oxidation states which form at the interlayer dielectric (ILD)/Mn interface. The presence of MnSiO 3 and MnO were identified using x-ray absorption spectroscopy (XAS) measurements on both porous and non-porous dielectric materials with evidence of Mn 2 O 3 and Mn 3 O 4 in the deposited film on the latter surface. It is shown that a higher proportion of deposited Mn converts to Mn silicate on an ILD film which has 50% porosity compared with the same dielectric material with no porosity, which is attributed to an enhanced chemical interaction with the effective larger surface area of porous dielectric materials. Transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDX) data shows that the Mn overlayer remains predominately surface localised on both porous and non-porous materials. (paper)

  11. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  12. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  13. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Castell, W.; Di Paolo, H.; Baldo, M.; Bergueiro, J.

    2011-01-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  14. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  16. Fractional-calculus-based FDTD algorithm for ultrawideband electromagnetic characterization of arbitrary dispersive dielectric materials

    NARCIS (Netherlands)

    Caratelli, Diego; Mescia, Luciano; Bia, Pietro; Stukach, Oleg V.

    2016-01-01

    A novel finite-difference time-domain algorithm for modeling ultrawideband electromagnetic pulse propagation in arbitrary multirelaxed dispersive media is presented. The proposed scheme is based on a general, yet computationally efficient, series representation of the fractional derivative operators

  17. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  18. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  19. ACCELERATORS: Beam based alignment of the SSRF storage ring

    Science.gov (United States)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  20. Influence of temperature on the dielectric nonlinearity of BaTiO{sub 3}-based multi-layer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok-Hyun, E-mail: seokhyun72.yoon@samsung.com; Kim, Mi-Yang [LCR Materials Group, Corporate R& D Institute, Samsung Electro-Mechanics Co., Ltd., Suwon, Gyunggi-Do 443-743 (Korea, Republic of)

    2016-06-13

    Temperature dependence of the dielectric nonlinearity was investigated for the BaTiO{sub 3} multilayer ceramic capacitor. The decrease in temperature caused a significant increase in the degree of dielectric nonlinearity. The Preisach analysis shows that such effect corresponds to a decrease in reversible and a significant increase in irreversible domain wall contribution to polarization. The magnitude of spontaneous polarization (P{sub S}) was increased with decreasing temperature. It can be associated with phase transition from pseudo-cubic to monoclinic and its resultant change in the polar direction, which was observed through transmission electron microscopy. These results demonstrate that the increase in P{sub S} with the decrease in temperature inhibits domain wall motion in low driving field as it is anticipated to increase the degree of intergranular constraints during domain wall motion. But it results in a more steep increase in the dielectric constants beyond the threshold field where domain wall motion can occur.

  1. Algorithms and procedures in the model based control of accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.

    1987-10-01

    The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig

  2. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-06-01

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  3. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  4. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  5. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates

    Directory of Open Access Journals (Sweden)

    Kornelius Tetzner

    2014-10-01

    Full Text Available In this work, the insulating properties of poly(4-vinylphenol (PVP and SU-8 (MicroChem, Westborough, MA, USA dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  6. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  7. An XML-based communication protocol for accelerator distributed controls

    International Nuclear Information System (INIS)

    Catani, L.

    2008-01-01

    This paper presents the development of XMLvRPC, an RPC-like communication protocol based, for this particular application, on the TCP/IP and XML (eXtensible Markup Language) tools built-in in LabVIEW. XML is used to format commands and data passed between client and server while socket interface for communication uses either TCP or UDP transmission protocols. This implementation extends the features of these general purpose libraries and incorporates solutions that might provide, with limited modifications, full compatibility with well established and more general communication protocol, i.e. XML-RPC, while preserving portability to different platforms supported by LabVIEW. The XMLvRPC suite of software has been equipped with specific tools for its deployment in distributed control systems as, for instance, a quasi-automatic configuration and registration of the distributed components and a simple plug-and-play approach to the installation of new services. Key feature is the management of large binary arrays that allow coding of large binary data set, e.g. raw images, more efficiently with respect to the standard XML coding

  8. An XML-based communication protocol for accelerator distributed controls

    Energy Technology Data Exchange (ETDEWEB)

    Catani, L. [INFN-Roma Tor Vergata, Rome (Italy)], E-mail: luciano.catani@roma2.infn.it

    2008-03-01

    This paper presents the development of XMLvRPC, an RPC-like communication protocol based, for this particular application, on the TCP/IP and XML (eXtensible Markup Language) tools built-in in LabVIEW. XML is used to format commands and data passed between client and server while socket interface for communication uses either TCP or UDP transmission protocols. This implementation extends the features of these general purpose libraries and incorporates solutions that might provide, with limited modifications, full compatibility with well established and more general communication protocol, i.e. XML-RPC, while preserving portability to different platforms supported by LabVIEW. The XMLvRPC suite of software has been equipped with specific tools for its deployment in distributed control systems as, for instance, a quasi-automatic configuration and registration of the distributed components and a simple plug-and-play approach to the installation of new services. Key feature is the management of large binary arrays that allow coding of large binary data set, e.g. raw images, more efficiently with respect to the standard XML coding.

  9. Potential of cyclotron based accelerators for energy production and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Stammbach, T.; Adam, S.; Fitze, H.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  10. Accelerator-based intense neutron source for materials R ampersand D

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Accelerator-based neutron sources for R ampersand D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and to be a satisfactory approximation to that of the fusion process. The technology of high-intensity linear accelerators can readily be applied to provide the deuteron beam for the neutron source. Earlier applications included the Los Alamos Meson Physics Facility and the Fusion Materials Irradiation Test facility prototype. The key features of today's advanced accelerator technology are presented to illustrate the present state-of-the-art in terms of improved understanding of basic physical principles and engineering technique, and to show how these advances can be applied to present demands in a timely manner. These features include how to produce an intense beam current with the high quality required to minimize beam losses along the accelerator and transport system that could cause maintenance difficulties, by controlling the beam emittance through proper choice of the operating frequency, balancing of the forces acting on the beam, and realization in practical hardware. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. 8 refs., 5 figs

  11. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  12. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem.

    Science.gov (United States)

    Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2017-09-01

    Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    Science.gov (United States)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  14. RF power generation and coupling measurements for the dielectric wakefield step-up transformer

    International Nuclear Information System (INIS)

    Conde, M. E.

    1998-01-01

    The dielectric wakefield transformer (DWT) is one route to practical high energy wakefield-based accelerators. Progress has been made in a number of areas relevant to the demonstration of this device. In this article we describe recent bench measurements and beam experiments using 7.8 and 15.6 GHz structures and discuss some remaining technical challenges in the development of the DWT

  15. Low voltage driven dielectric electro active polymer actuator with integrated piezoelectric transformer based driver

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Thomsen, Ole Cornelius

    2011-01-01

    actuators, a low voltage solution is developed by integrating the driver electronic into a 110 mm tall cylindrical coreless Push InLastor actuator. To decrease the size of the driver, a piezoelectric transformer (PT) based solution is utilized. The PT is essentially an improved Rosen type PT...

  16. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  17. Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge

    International Nuclear Information System (INIS)

    Baig, Hasan; Sarmah, Nabin; Chemisana, Daniel; Rosell, Joan; Mallick, Tapas K.

    2014-01-01

    In the present study, we model and analyse the performance of a dielectric based linear concentrating photovoltaic system using ray tracing and finite element methods. The results obtained are compared with the experiments. The system under study is a linear asymmetric CPC (Compound Parabolic Concentrator) designed to operate under extreme incident angles of 0° and 55° and have a geometrical concentration ratio of 2.8×. Initial experiments showed a maximum PR (power ratio) of 2.2 compared to a non concentrating counterpart. An improvement to this has been proposed and verified by adding a reflective film along the edges of the concentrator to capture the escaping rays and minimise optical losses. The addition of the reflective film changes the incoming distribution on the solar cell. Results show an increase of 16% in the average power output while using this reflective film. On including the thermal effects it was found that the overall benefit changes to about 6% while using a reflective film. Additionally, the effects of the non-uniformity of the incoming radiation are also analysed and reported for both the cases. It is found that adding the reflective film drops the maximum power at the output by only 0.5% due to the effect of non-uniformity. - Highlights: • Optical, thermal and electrical analysis of a concentrating photovoltaic system. • Improvement in performance by use of reflective film along the edge. • Experimental validation of results. • Effects of non-uniform illumination on the performance of the CPV system. • Impact of temperature profile on the overall performance

  18. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt.

    Science.gov (United States)

    Jung, Byung Jun; Martinez Hardigree, Josue F; Dhar, Bal Mukund; Dawidczyk, Thomas J; Sun, Jia; See, Kevin Cua; Katz, Howard E

    2011-04-26

    We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 μA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 μm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.

  19. Implementing Expertise-Based Training Methods to Accelerate the Development of Peer Academic Coaches

    Science.gov (United States)

    Blair, Lisa

    2016-01-01

    The field of expertise studies offers several models from which to develop training programs that accelerate the development of novice performers in a variety of domains. This research study implemented two methods of expertise-based training in a course to develop undergraduate peer academic coaches through a ten-week program. An existing…

  20. Design of Power Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Hegner, Jonas Stenbæk; Sindholt, Joakim; Nannarelli, Alberto

    2012-01-01

    Using Field Programmable Gate Arrays (FPGAs) to accelerate financial derivative calculations is becoming very common. In this work, we implement an FPGA-based specific processor for European option pricing using Monte Carlo simulations, and we compare its performance and power dissipation...

  1. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  2. Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.

    Science.gov (United States)

    Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang

    2016-06-01

    With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition.

  3. OPTICAL AND DIELECTRIC SENSORS BASED ON ANTIMICROBIAL PEPTIDES FOR MICROORGANISMS DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Rafael Ramos Silva

    2014-08-01

    Full Text Available Antimicrobial peptides (AMPs are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.

  4. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Directory of Open Access Journals (Sweden)

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  5. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  6. Accelerator-based atomic physics experiments with photon and ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1984-01-01

    Accelerator-based atomic physics experiments at Brookhaven presently use heavy-ion beams from the Dual MP Tandem Van de Graaff Accelerator Facility for atomic physics experiments of several types. Work is presently in progress to develop experiments which will use the intense photon beams which will be available in the near future from the ultraviolet (uv) and x-ray rings of the National Synchrotron Light Source (NSLS). Plans are described for experiments at the NSLS and an exciting development in instrumentation for heavy-ion experiments is summarized

  7. Towards the petascale in electromagnetic modeling of plasma-based accelerators for high-energy physics

    International Nuclear Information System (INIS)

    Bruhwiler, D L; Antonsen, T; Cary, J R; Cooley, J; Decyk, V K; Esarey, E; Geddes, C G R; Huang, C; Hakim, A; Katsouleas, T; Messmer, P; Mori, W B; Tsung, F S; Vieira, J; Zhou, M

    2006-01-01

    Plasma-based lepton acceleration concepts are a key element of the long-term R and D portfolio for the U.S. Office of High Energy Physics. There are many such concepts, but we consider only the laser (LWFA) and plasma (PWFA) wakefield accelerators. We present a summary of electromagnetic particle-in-cell (PIC) simulations for recent LWFA and PWFA experiments. These simulations, including both time explicit algorithms and reduced models, have effectively used terascale computing resources to support and guide experiments in this rapidly developing field. We briefly discuss the challenges and opportunities posed by the near-term availability of petascale computing hardware

  8. Program for Plasma-Based Concepts for Future High Energy Accelerators

    International Nuclear Information System (INIS)

    Katsouleas, Thomas C.; Muggli, Patric

    2003-01-01

    OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period

  9. Dielectric relaxation in SrTiO.sub.3./sub.-based solid solutions with heterovalent substitutions

    Czech Academy of Sciences Publication Activity Database

    Markovin, P.A.; Lemanov, V. V.; Guzhva, M.E.; Trepakov, Vladimír

    2014-01-01

    Roč. 469, č. 1 (2014), s. 43-49 ISSN 0015-0193 Institutional support: RVO:68378271 Keywords : quantum paraelectric * dielectric relaxation * local charge compensation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2014

  10. Optical anisotropy of layered metal-dielectric nanostructures based on dense 2D-arrays of silver nanoparticles

    International Nuclear Information System (INIS)

    Jeshchenko, O.A.

    2013-01-01

    The spatial and polarization anisotropy of extinction spectra of parallel dense 2D-monolayers of Ag nanoparticles separated by dielectric films is theoretically studied. The dependences are interpreted as a result of collectivization of surface plasmon modes occurring due to strong dipole-dipole coupling silver nanoparticles

  11. Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors - comparison with lead-based relaxors

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Nuzhnyy, Dmitry; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Kamba, Stanislav; Hlinka, Jiří

    2015-01-01

    Roč. 88, č. 3 (2015), 320-332 ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : relaxor ferroelectrics * polar phonons * polar nanoregions * dielectric spectroscopy * off-centred ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.858, year: 2015

  12. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    Science.gov (United States)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  13. Investigation of 6T SRAM memory circuit using high-k dielectrics based nano scale junctionless transistor

    Science.gov (United States)

    Charles Pravin, J.; Nirmal, D.; Prajoon, P.; Mohan Kumar, N.; Ajayan, J.

    2017-04-01

    In this paper the Dual Metal Surround Gate Junctionless Transistor (DMSGJLT) has been implemented with various high-k dielectric. The leakage current in the device is analysed in detail by obtaining the band structure for different high-k dielectric material. It is noticed that with increasing dielectric constant the device provides more resistance for the direct tunnelling of electron in off state. The gate oxide capacitance also shows 0.1 μF improvement with Hafnium Oxide (HfO2) than Silicon Oxide (SiO2). This paved the way for a better memory application when high-k dielectric is used. The Six Transistor (6T) Static Random Access Memory (SRAM) circuit implemented shows 41.4% improvement in read noise margin for HfO2 than SiO2. It also shows 37.49% improvement in write noise margin and 30.16% improvement in hold noise margin for HfO2 than SiO2.

  14. Impact of structural changes on dielectric and thermal properties of vinylidene fluoride–trifluoroethylene-based terpolymer/copolymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Casar, G. [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Li, X. [Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Malič, B. [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Zhang, Q.M. [Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Bobnar, V., E-mail: vid.bobnar@ijs.si [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-03-15

    We report dielectric and thermal properties of the poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer [P(VDF–TrFE–CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] blended with the ferroelectric poly(vinylidene fluoride–trifluoroethylene) copolymer, P(VDF–TrFE). Although the differential scanning calorimetry (DSC) clearly reveals that both components form separate crystalline phases, at low copolymer content blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, dielectric experiments evidence that in blends with 20–50 wt% of P(VDF–TrFE) the ferroelectric and relaxor states coexist. This coexistence is confirmed by DSC results, which further reveal the influence of blending on the terpolymer crystallinity and melting point. At last, the crystallinity data appropriately explain the variation of the dielectric constant in P(VDF–TrFE–CFE)/P(VDF–TrFE) blends.

  15. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    International Nuclear Information System (INIS)

    Rahman, Taibur; Panat, Rahul; Renaud, Luke; Heo, Deuk; Renn, Michael

    2015-01-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10–100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10–100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives. (technical note)

  16. Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

    Science.gov (United States)

    Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.

    2018-03-01

    Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.

  17. Solar-blind ultraviolet band-pass filter based on metal—dielectric multilayer structures

    International Nuclear Information System (INIS)

    Wang Tian-Jiao; Xu Wei-Zong; Lu Hai; Ren Fang-Fang; Chen Dun-Jun; Zhang Rong; Zheng You-Dou

    2014-01-01

    Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military applications, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of “transparent metal”. The filter consisting of Al/SiO 2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    Science.gov (United States)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  19. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    International Nuclear Information System (INIS)

    Timko, M; Marton, K; Tomco, L; Kopcansky, P; Koneracka, M

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 10 6 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  20. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    International Nuclear Information System (INIS)

    Williams, J.R.; Clark, J.C.; Isaacs-Smith, T.

    2001-01-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed

  1. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  2. Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2012-03-01

    In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.

  3. Heavy ion beam factory for material science based on the KEK digital accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Ken, E-mail: takayama@post.kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Adachi, Toshikazu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Arai, Teruo; Arakawa, Dai [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Asao, Hiroyuki [NEC Network-Sensor, Fuchu, Tokyo 183-8501 (Japan); Barata, Yuji; Harada, Shinya [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Tokyo City University, Todoroki, Tokyo 158-8586 (Japan); Horioka, Kazuhiko [Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Iwata, Taiki; Kadokura, Eiichi; Kwakubo, Tadamichi; Kubo, Tomio [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Leo, Kwee Wah [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Liu, Xingguaung [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Mochiki, Koichi [Tokyo City University, Todoroki, Tokyo 158-8586 (Japan); Munemoto, Naoya [Tokyo Institute of Technology, Nagatusda, Yokohama, Knagawa 226-8502 (Japan); Nakanishi, Hiroshi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Okada, Yoshihito [NEC Network-Sensor, Fuchu, Tokyo 183-8501 (Japan); Okamura, Katsuya [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); and others

    2013-11-01

    The KEK digital accelerator (DA) is an alternative to high-voltage electrostatic accelerators and conventional cyclotrons and synchrotrons, which are commonly used as swift heavy ion beam drivers. Compared with conventional accelerators, KEK-DA is capable of delivering a wider variety of ion species with various energies, as a result of its intrinsic properties. It is expected to serve as a heavy ion beam factory for research in materials science. Plans for its utilization include unique application programs, such as laboratory-based space science using virtual cosmic rays, heavy-ion mutagenesis in microorganisms, deep ion implantation, and modification of materials, which may be categorized into systematic studies of the spatial and temporal evolution of the locally and highly excited states of materials.

  4. Accelerated H-LBP-based edge extraction method for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shuang; Zhao, Chen-yi; Huang, Ji-peng [School of Physics, Northeast Normal University, Changchun 130024 (China); Sun, Jia-ning, E-mail: sunjn118@nenu.edu.cn [School of Mathematics and Statistics, Northeast Normal University, Changchun 130024 (China)

    2015-01-11

    With the goal of achieving real time and efficient edge extraction for digital radiography, an accelerated H-LBP-based edge extraction method (AH-LBP) is presented in this paper by improving the existing framework of local binary pattern with the H function (H-LBP). Since the proposed method avoids computationally expensive operations with no loss of quality, it possesses much lower computational complexity than H-LBP. Experimental results on real radiographies show desirable performance of our method. - Highlights: • An accelerated H-LBP method for edge extraction on digital radiography is proposed. • The novel AH-LBP relies on numerical analysis of the existing H-LBP method. • Aiming at accelerating, H-LBP is reformulated as a direct binary processing. • AH-LBP provides the same edge extraction result as H-LBP does. • AH-LBP has low computational complexity satisfying real time requirements.

  5. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  6. Properties of dielectric barrier discharges in different arrangements

    International Nuclear Information System (INIS)

    Pietsch, G.J.

    2001-01-01

    Dielectric barrier discharges (DBDs) occur in arrangements where at least one dielectric is positioned in a gas space in between conducting electrodes. When breakdown field strength is reached in such a device, charge carriers are created in the gas region, accelerated, multiplied and finally collected on the surface(s) of the dielectric(s). The charge accumulation on the dielectric creates a counter field to that resulting from the power supply and as all of these processes are rather fast, the discharge quenches rapidly. The dielectric has two tasks, it limits the transferred charge and by this the energy conversion and distributes the discharge over the electrode area. That is why DBDs are non-thermal discharges which exist even at atmospheric pressure

  7. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  8. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  9. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  10. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  11. Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J. F.; Williams, J.

    2005-01-01

    Accelerator-based γ-ray-induced positron annihilation spectroscopy performs positron annihilation spectroscopy by utilizing MeV bremsstrahlung radiation generated from an accelerator (We have named the technique 'accelerator-based γ-ray-induced PAS', even though 'bremsstrahlung' is more correct here than 'γ rays'. The reason for that is to make the name of the technique more general, since PAS may be performed by utilizing MeV γ rays emitted from nuclei through the use of accelerators as described later in this article and as in the case of positron lifetime spectroscopy [F.A. Selim, D.P. Wells, and J.F. Harmon, Rev. Sci. Instrum. 76, 033905 (2005)].) instead of using positrons from radioactive sources or positron beams. MeV γ rays create positrons inside the materials by pair production. The induced positrons annihilate with the material electrons emitting a 511-keV annihilation radiation. Doppler broadening spectroscopy of the 511-keV radiation provides information about open-volume defects and plastic deformation in solids. The high penetration of MeV γ rays allows probing of defects at high depths in thick materials up to several centimeters, which is not possible with most of the current nondestructive techniques. In this article, a detailed description of the technique will be presented, including its benefits and limitations relative to the other nondestructive methods. Its application on the investigation of plastic deformation in thick steel alloys will be shown

  12. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    Science.gov (United States)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  13. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    Science.gov (United States)

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  14. Neural network based expert system for fault diagnosis of particle accelerators

    International Nuclear Information System (INIS)

    Dewidar, M.M.

    1997-01-01

    Particle accelerators are generators that produce beams of charged particles, acquiring different energies, depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Its applications include isotope production, nuclear reaction, and mass spectroscopy studies. It is a complicated machine, it consists of five main parts, the ion source, the deflector, the beam transport system, the concentric and harmonic coils, and the radio frequency system. The diagnosis of this device is a very complex task. it depends on the conditions of 27 indicators of the control panel of the device. The accurate diagnosis can lead to a high system reliability and save maintenance costs. so an expert system for the cyclotron fault diagnosis is necessary to be built. In this thesis , a hybrid expert system was developed for the fault diagnosis of the MGC-20 cyclotron. Two intelligent techniques, multilayer feed forward back propagation neural network and the rule based expert system, are integrated as a pre-processor loosely coupled model to build the proposed hybrid expert system. The architecture of the developed hybrid expert system consists of two levels. The first level is two feed forward back propagation neural networks, used for isolating the faulty part of the cyclotron. The second level is the rule based expert system, used for troubleshooting the faults inside the isolated faulty part. 4-6 tabs., 4-5 figs., 36 refs

  15. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Science.gov (United States)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  16. New initiatives for producing high current electron accelerators

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1996-01-01

    New classes of compact electron accelerators able to deliver multi-kiloamperes of pulsed 10-50 MeV electron beams are being studied. One class is based upon rf linac technology with dielectric-filled cavities. For materials with ε/ε o >>1, the greatly increased energy storage permits high current operation. The second type is a high energy injected betatron. Circulating current limits scale as Β 2 γ 3

  17. High-gradient compact linear accelerator

    Science.gov (United States)

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  18. Bio Organic-Semiconductor Field-Effect Transistor (BioFET) Based on Deoxyribonucleic Acid (DNA) Gate Dielectric

    Science.gov (United States)

    2010-03-31

    floating gate devices and metal-insulator-oxide-semiconductor (MIOS) devices. First attempts to use polarizable gate insulators in combination with...bulk of the semiconductor (ii) Due to the polarizable gate dielectric (iii) dipole polarization and (iv)electret effect due to mobile ions in the...characterization was carried out under an argon environment inside the glove box. An Agilent model E5273A with a two source-measurement unit instrument was

  19. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  20. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  1. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-01-01

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7 Li(p,n) 7 Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  2. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  3. Particle-in-Cell Codes for plasma-based particle acceleration

    CERN Document Server

    Pukhov, Alexander

    2016-01-01

    Basic principles of particle-in-cell (PIC ) codes with the main application for plasma-based acceleration are discussed. The ab initio full electromagnetic relativistic PIC codes provide the most reliable description of plasmas. Their properties are considered in detail. Representing the most fundamental model, the full PIC codes are computationally expensive. The plasma-based acceler- ation is a multi-scale problem with very disparate scales. The smallest scale is the laser or plasma wavelength (from one to hundred microns) and the largest scale is the acceleration distance (from a few centimeters to meters or even kilometers). The Lorentz-boost technique allows to reduce the scale disparity at the costs of complicating the simulations and causing unphysical numerical instabilities in the code. Another possibility is to use the quasi-static approxi- mation where the disparate scales are separated analytically.

  4. Specific contributions of the Dutch progamme ''RAS'' towards accelerator-based transmutation

    International Nuclear Information System (INIS)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H.; Heil, J.A.; Koning, A.J.

    1994-09-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management. (orig.)

  5. Accelerated Internationalization in Emerging Markets: Empirical Evidence from Brazilian Technology-Based Firms

    Directory of Open Access Journals (Sweden)

    Fernanda Ferreira Ribeiro

    2014-04-01

    Full Text Available This paper offers an analysis into the external factors influencing the accelerated internationalization of technology-based firms (TBFs in the context of an emerging country, Brazil. This type of firm is typically called born global and has been reported mainly in high technology sectors and from developed countries. A survey was applied to small and medium Brazilian TBFs. Logistic regression was used to test the research hypotheses. The results suggest that new and small Brazilian technology-based firms, which followed an accelerated internationalization process, are most likely to be integrated into a global production chain. Results also show that TBFs which take more than five years to enter the international market, benefit more from the location in an innovation habitat, the partnerships in the home country, and the pro-internationalization government policies. Therefore, this research contributes to a better understanding of the phenomenon and points to new perspectives of studies.

  6. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  7. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Directory of Open Access Journals (Sweden)

    Wei He

    Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.

  8. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source

    International Nuclear Information System (INIS)

    Yoshida, F.; Yamamoto, T.; Nakai, K.; Zaboronok, A.; Matsumura, A.

    2015-01-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. - Highlights: • Gd-DTPA is widely clinically used as a contrast medium for MRI. • Shift to an accelerator-based neutron source is advantageous for gadolinium NCT. • Boron–gadolinium NCT effects on tumor cell lines were significant. • Additional administration of Gd-DTPA might enhance the effect of BPA–BNCT.

  9. Generalized dielectric permittivity tensor

    International Nuclear Information System (INIS)

    Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.

    1986-01-01

    The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form

  10. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  11. Craniospinal treatment with IMRT multi-isocentric and image-guided linear accelerator based on Gantry

    International Nuclear Information System (INIS)

    Sanz Beltran, M.; Caballero Perea, B.; Rodriguez Rodriguez, C.; Arminio Diaz, E.; Lopez Fernandez, A.; Gomez Fervienza, J. R.; Crespo Diez, P.; Cantarero Valenzuela, N.; Alvarez Sanchez, M.; Martin Martin, G.; Gomez Fervienza, J. r.; Crespo Diez, P.; Cantarero Valenzuela, N.; Alvarez Sanchez, M.; Martin Martin, G.

    2011-01-01

    The objective is the realization of craniospinal treatment with a linear accelerator equipped with gantry based on MLC, carbon fiber table and Image Guided capability. The great length of treatment (patient l,80m in height) was a great difficulty for want of full length of the longitudinal movement of the table to adequately cover the PTV, plus free metallic screws fastening the head of the table extender preventing further incidents.

  12. Accelerator-based systems for plutonium destruction and nuclear waste transmutation

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1994-01-01

    Accelerator-base systems are described that can eliminate long-lived nuclear materials. The impact of these systems on global issues relating to plutonium minimization and nuclear waste disposal can be significant. An overview of the components that comprise these systems is given, along with discussion of technology development status and needs. A technology development plan is presented with emphasis on first steps that would demonstrate technical performance

  13. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation.

    Science.gov (United States)

    Perks, Julian R; Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-03-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.

  14. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-01-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R ampersand D plan for ABC are described on the bases of the ''strawman'' or ''point-of-departure'' plant layout that resulted from this study

  15. About the realization of laser acceleration schemes based on plasmoids in R.F. wells

    International Nuclear Information System (INIS)

    Sessler, A.M.; Wurtele, J.S.; Dzergach, A.I.; Kabanov, V.S.

    1998-06-01

    The laser acceleration of plasmoids is investigated theoretically. Preliminary studies suggest that this configuration, which is based on the forced oscillations of finite pieces of plasma contained in moving or vibrating r.f. wells, has very much simplified plasma physics compared to that of other plasma-based ion acceleration schemes. It is necessary to consider the case when the applied electric field, E, of frequency ω, is large, E ≤ e/4π var-epsilon o rλ, where r is the Classical electron radius and when the plasma density, n, is high n 2 . Realization of this proposal requires the development, among other things, of biresonant accelerating systems including oversized single-mode tue-like resonators and the connection of this resonator to a terawatt FELs. If these problems, which will be delineated, are overcome--and progress in optics gives one reason to believe they can be--then gradients of ∼ 10 GeV/m can be attained. Preliminary design of a linac, based upon this proposal and of a proof-of-principle experiment are presented

  16. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets

    Science.gov (United States)

    Dionne, J. P.; Levine, J.; Makris, A.

    2018-01-01

    To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.

  17. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  18. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma.

    Science.gov (United States)

    Selch, Michael T; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A F

    2012-01-01

    To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple-Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). Kaplan-Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas.

  19. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  20. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in