WorldWideScience

Sample records for die steel surface

  1. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  2. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    Science.gov (United States)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  3. Method of treating tool steel die materials

    International Nuclear Information System (INIS)

    Cook, C.S.; Damon, S.

    1981-01-01

    In a method of hardening pilger dies to provide a hard case containing residual compressive stresses and tough body, the tool steel die is heated to the austenitizing temperature range, followed by selectively removing heat from the die at a predetermined faster rate in the direction of the desired case than the rate of heat removal from the balance of the die, and thereafter tempering the die. The invention provides a fully hardened and tempered case on the working surface of the die and a tough body in the balance of the die, usually of lower hardness. (author)

  4. Economical surface treatment of die casting dies to prevent soldering in high pressure casting

    International Nuclear Information System (INIS)

    Fraser, D.T.; Jahedi, M.Z.

    2001-01-01

    This paper describes the use of a gas oxidation treatment of H13 tool steel to develop a compact iron oxide layer at the surface of core pins to prevent soldering in high pressure die casting. The performance of oxide layers in the protection of die steel against soldering during high pressure die casting was tested in a specially designed die using removable core pins and Al-11 Si-3 Cu casting alloy. The gas oxidation treatment can be applied at low temperatures and to large areas of the die surface. In addition this process is very cost effective compared to other coating processes such as physical vapour deposition (PVD), or thermo-reactive diffusion (TRD) coatings. This work demonstrated that surface treatment producing pure magnetite (Fe 3 O 4 ) layers are more protective than oxide layers containing a combination of Fe 3 O 4 (magnetite) and Fe 3 O 3 (haematite). The magnetite layer acts as a barrier between the die steel/casting alloy interface and prevents the formation of inter-metallic phases. Optical microscopy and scanning electron microscope were used to determine the thickness of the oxide layer, while X-ray diffraction was performed to determine the oxide phase structure

  5. Morphology and Performance of 5Cr5MoV Casting Die Steel in the Process of Surfacing

    Science.gov (United States)

    Song, Yulai; Kong, Xiangrui; Yang, Pengcong; Fu, Hongde; Wang, Xuezhu

    2017-12-01

    To investigate the microstructures and mechanical properties of the deposited metal on surface of die steel, two layer of weld-seam were prepared on the surface of 5Cr5MoV die steel by arc surfacing. The surface microstructures and microhardness were characterized by scanning electron microscopy, energy dispersive spectrometer and Vickers microhardness tester, respectively. The effect of load on the abrasion resistance and wear mechanism of the base metal and surfacing metal was studied by pin-on-disk tribometer. The results showed that martensite and retained austenite exist in weld-seam, both of them grow up in the form of dendrites and equiaxed grains and microhardness reach 774.2HV. The microstructures of the quenching zone mainly consist of martensite and retained austenite, while tempered martensite is the dominant phase in partial quenching zone. The abrasion resistance of the surfacing metal is superior to the base metal based on the results of wear test. The wear rates of surfacing metal and base metal raise with the increase of load. The wear rates of base metal raise extremely when the load reach 210N. Both of two kinds of materials have the similar wear mechanism, namely, abrasive wear at low load, oxidative wear and adhesive wear at high load.

  6. Wear of Shaped Surfaces of PVD Coated Dies for Clinching

    Directory of Open Access Journals (Sweden)

    Miroslav Džupon

    2017-11-01

    Full Text Available A clinching method that uses a simple toolset consisting of a punch and a die, is utilized for joining lightweight materials. This paper is aimed at investigating the wear of the die cavity of a clinching tool. A clinching tool with a specially shaped cavity was used for joining thin hot-dip galvanized steel sheets. Various types of physical vapour deposition (PVD coatings such as ZrN, CrN and TiCN were deposited on the shaped surface of the die using Lateral Rotating Arc-Cathodes technology. Hot-dip galvanized steel sheets were used for testing the clinching tool. The material properties of PVD coatings that were deposited on the shaped part of the clinching die were evaluated. Finite Element Analysis was used to localize the area of the shaped part of the die and the part of surface area of the cylindrical die cavity of ϕ 5.0 mm, in which high contact pressure values were predicted. The prediction of the start of the wear cycle was verified experimentally by the clinching of 300 samples of hot-dip galvanized steel sheets. Unlike the CrN and ZrN coatings, the TiCN coating remained intact on the entire surface of the die.

  7. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  8. An Experiment Study on Surface Roughness in High Speed Milling NAK80 Die Steel

    Directory of Open Access Journals (Sweden)

    Su Fa

    2016-01-01

    Full Text Available The paper introduces that the high speed milling experiments on NAK80 die steel was carried out on the DMU 60 mono BLOCK five axis linkage high speed CNC machining center tool by the TiAlN coated tools, in order to research the effect of milling parameters on surface roughness Ra. The results showed that the Ra value increased with the decrease of milling speed vc, increased with the axial depth of milling ap, and feed per tooth fz and radial depth of milling ae. On the basis of the single factor experiment results, the mathematics model for between surface roughness and milling parameters were established by linear regression analysis.

  9. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  10. Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition

    Science.gov (United States)

    Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling

    2016-12-01

    The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.

  11. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  12. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Nematzadeh, Fardin; Akbarpour, Mohammad Reza; Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam

    2009-01-01

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  13. Effect of Contact Time on Interface Reaction between Aluminum Silicon (7% and 11% Alloy and Steel Dies SKD 61

    Directory of Open Access Journals (Sweden)

    Bambang Suharno

    2010-10-01

    Full Text Available Die soldering (die sticking is a defect of metal casting in which molten metal “welds” to the metallic die mold surface during casting process. Die soldering is the result of an interface reaction between the molten aluminum and the die material. Aluminum alloy with 7 and 11% silicon and SKD 61 die steel are the most common melt and die material used in aluminum die casting. This research is done to study the morphology and the characteristics of the formed AlxFeySiz intermetallic layer during interface reaction at dipping test. The samples of as-anneal SKD 61 tool steel was dipped into the molten of Al-7%Si held at temperature 680oC and into molten Al-11%Si held at temperature 710oC with the different contact time of 10 minutes; 30 minutes; and 50 minutes. The research results showed that the interface reaction can form a compact intermetallic layer with AlxFey phase and a broken intermetallic layer with AlxFeySiz phase on the surface of SKD 61 tool steel. The increasing of the contact time by the immersion of material SKD 61 tool steel in both of molten Al-7%Si and Al-11%Si will increase the thickness of the AlxFeySiz intermetallic layer until an optimum point and then decreasing. The micro hardness of the AlxFeySiz intermetallic layer depends on the content of the iron. Increasing of the iron content in intermetallic layer will increase the micro hardness of the AlxFeySiz. This condition happened because the increasing of Fe content will cause forming of intermetallic AlxFeySiz phase becomes quicker.

  14. Surface quality analysis of die steels in powder-mixed electrical discharge machining using titan powder in fine machining

    Directory of Open Access Journals (Sweden)

    Banh Tien Long

    2016-06-01

    Full Text Available Improving the quality of surface molds after electrical discharge machining is still being considered by many researchers. Powder-mixed dielectric in electrical discharge machining showed that it is one of the processing methods with high efficiency. This article reports on the results of surface quality of mold steels after powder-mixed electrical discharge machining using titanium powder in fine machining. The process parameters such as electrode material, workpiece material, electrode polarity, pulse on-time, pulse off-time, current, and titanium powder concentration were considered in the research. These materials are most commonly used with die-sinking electrical discharge machining in the manufacture of molds and has been selected as the subject of research: workpiece materials were SKD61, SKT4, and SKD11 mold steels, and electrode materials were copper and graphite. Taguchi’s method is used to design experiments. The influence of the parameters on surface roughness was evaluated through the average value and ratio (S/N. Results showed that the parameters such as electrical current, electrode material, pulse on-time, electrode polarity, and interaction between the electrode materials with concentration powder mostly influence surface roughness and surface roughness at optimal parameters SRopt = 1.73 ± 0.39 µm. Analysis of the surface layer after powder-mixed electrical discharge machining using titanium powder in optimal conditions has shown that the white layer with more uniform thickness and increased hardness (≈861.0 HV, and amount and size of microscopic cracks, is reduced. This significantly leads to the increase in the quality of the surface layer.

  15. Kinetics of steel heavy ingot formation in dies of semicontinuous-casting machines

    International Nuclear Information System (INIS)

    Tsukerman, V.Ya.; Marchenko, I.K.

    1986-01-01

    Formation kinetics of round section ingot of up to 0.67 m in diameter was analyzed in dies of semicontinuous-casting machines on casting of the most usable assortment steels: medium-carbon low-alloyed and chromium-nickel stainless steels. It is established that solidification coefficient decreases in direct proportion to ingot diameter. Value of different-thickness ingot skin at die outlet is in direct proportion to a casted steel overheating temperature, ingot diameter and inversely proportional to the number and diameter of holes in a ladder nozzle and square root of ingot drawing rate

  16. Experimental studies on improving the performance of electrochemical machining of high carbon, high chromium die steel using jet patterns

    Directory of Open Access Journals (Sweden)

    V. Sathiyamoorthy

    2014-03-01

    Full Text Available Electrochemical machining (ECM is a non-traditional process used mainly to cut hard or difficult-to-cut metals, where the application of a more traditional process is not convenient. Stiff market competition and ever-growing demand for better, durable and reliable products has brought about a material revolution, which has greatly expanded the families of difficult-to-machine materials namely highcarbon,high-chromium die steel; stainless steel and superalloys. This investigation attempts to analyze the effect of electrolyte distribution on material removal rate (MRR and surface roughness (SR on electrochemical machining of high-carbon, high-chromium die steel using NaCl aqueous solution. Three electrolyte jet patterns namely straight jet in circular, inclined jet in circular and straight jet in spiral were used for this experimentation. The results reveal that electrolyte distribution significantly improves the performance of ECM and the straight jet in spiral pattern performs satisfactorily in obtaining better MRR and surface roughness.

  17. Study on the Surface Microstructure of a Modified STD61 Steel Mold Used for the Die Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ha-Young; Lee, Seung-Joon; Kang, Minwoo; Lee, Suk-Jin; Lee, Young-Kook [Yonsei University, Seoul (Korea, Republic of); Yang, Won Jon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Jeong, Jae Suk; Kim, Byung-Hoon [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2016-09-15

    The surface microstructure and crack formation of an aluminum die-casting mold were investigated. The mold was made of a modified STD61 steel, and was used for more than 165,000 cycles. The mold surface consisted of four layers; an oxidized layer, a decarburized layer, a network carbide layer and a tempered martensite matrix. The depth down to the hardest network carbide layer was ⁓200 μm. Inside the matrix, M{sub 3}C transition carbides were dissolved so that solute C joined pre-existing M{sub 2}3C{sub 6} and MC carbides to make them coarse. About 60% of thermal fatigue cracks had a depth less than 200 μm due to the hard network carbide layer, which obstructed the propagation of cracks. Cracks of over 200 μm were filled with oxide wedges of Al and Si which was which flown from the molten alloy as well as the Fe oxide.

  18. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime; FINAL

    International Nuclear Information System (INIS)

    David Schwam; John F, Wallace; Quanyou Zhou

    2002-01-01

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters

  19. Micro-Bulges Investigation on Laser Modified Tool Steel Surface

    Directory of Open Access Journals (Sweden)

    Fauzun Fazliana

    2017-01-01

    Full Text Available This paper presents micro-bulges investigation on laser modified tool steel. The aim of this study is to understand the effect of laser irradiance and interaction time on surface morphology configuration. An Nd:YAG laser system with TEM00 pulse processing mode was used to modify the samples. Metallographic study shows samples were analyzed for focal position effect on melted pool size, angle of peaks geometry and laser modified layer depth. Surface morphology were analyzed for surface roughness. Laser modified layer shows depth ranged between 42.22 and 420.12 μm. Angle of peak bulge was found to be increase with increasing peak power. The maximum roughness, Ra, achieved in modified H13 was 21.10 μm. These findings are significant to enhance surface properties of laser modified steel and cast iron for dies and high wear resistance applications.

  20. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  1. Study the effect of elevated dies temperature on aluminium and steel round deep drawing

    International Nuclear Information System (INIS)

    Lean, Yeong Wei; Azuddin, M.

    2016-01-01

    Round deep drawing operation can only be realized by expensive multi-step production processes. To reduce the cost of processes while expecting an acceptable result, round deep drawing can be done at elevated temperature. There are 3 common problems which are fracture, wrinkling and earing of deep drawing a round cup. The main objective is to investigate the effect of dies temperature on aluminium and steel round deep drawing; with a sub-objective of eliminate fracture and reducing wrinkling effect. Experimental method is conducted with 3 different techniques on heating the die. The techniques are heating both upper and lower dies, heating only the upper dies, and heating only the lower dies. 4 different temperatures has been chosen throughout the experiment. The experimental result then will be compared with finite element analysis software. There is a positive result from steel material on heating both upper and lower dies, where the simulation result shows comparable as experimental result. Heating both upper and lower dies will be the best among 3 types of heating techniques. (paper)

  2. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.F.; Schwam, D. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  3. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  4. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  5. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  6. Production of High Quality Die Steels from Large ESR Slab Ingots

    Science.gov (United States)

    Geng, Xin; Jiang, Zhou-hua; Li, Hua-bing; Liu, Fu-bin; Li, Xing

    With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.

  7. Mechanism of improvement on strength and toughness of H13 die steel by nitrogen

    International Nuclear Information System (INIS)

    Li, Jing-Yuan; Chen, Yu-Lai; Huo, Jian-Hua

    2015-01-01

    The mechanism of nitrogen addition to AISI H13 die steel is proposed and supported using thermodynamic calculations in addition to observed changes in precipitate, microstructure, crystal structure, and macroproperties. The results indicate that the average impact toughness ak of the novel nitrogen H13 steel is maximally 17.6 J cm −2 and minimally 13.4 J cm −2 . These values result in die steel that reaches premium grade and approximate the superior grade as specified in NADCA#207-2003, additionally the hardness is improved 3–5HRC. Experimental findings indicate that the residual V(C,N) particles undissolved during nitrogen H13 steel austenitizing by quenching helps to suppress growth of original austenitic crystal grains, this in turn results in finer martensitic structures after quenching. In the subsequent tempering process all N atoms are dissolved in the solid state matrix a result of C atoms displacing N atoms in V(C,N). Solid dissolution of N atoms produces a distorted lattice of Fe matrix which results in an increase in the hardness of the steel. Additionally this displacement reaction is important for slow growth of secondary particles in nitrogen H13 steel during the tempering process which helps to increase impact toughness compared to its nitrogen-free counterpart given the same condition of heat-treatment

  8. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    OpenAIRE

    Huu-That Nguyen; Quang-Cherng Hsu

    2016-01-01

    Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra) in the hard milling of JIS (Japanese Industrial Standard) SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM). The cutting parameters are selected based on the structural dynamic analysis of the machine ...

  9. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  10. Effect of Heat Treatment on the Structure and Properties of Die Steel 70Kh3G2FTR

    Science.gov (United States)

    Krylova, S. E.; Kletsova, O. A.; Gryzunov, V. I.; Fot, A. P.; Tavtilov, I. Sh.

    2018-01-01

    The effect of heat treatment parameters on the properties and structural and phase composition of a promising die steel 70Kh3G2FTR for hot deformation is studied. The temperature-and-stress state of a hammer die under a heat treatment is simulated.

  11. Characterization of surface defects in high strength galvannealed steels; Charakterisierung der Oberflaechendefekte in hochfesten, nach dem Verzinken waermebehandelten Staehlen

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.H. [Automotive Steels Research Center, Technical Research Labs., POSCO, Gwangyang (Korea)

    2004-03-01

    Hot-dip galvannealed steel sheets, in which Fe of the substrate steel diffused into upper coating layer so as to be alloyed with Zn through a galvannealing above 450 C followed by hot-dip galvanizing process, generally show superior corrosion resistance, weldability and paintability. They have been widely used in automobile, construction, appliance industries and others. In particular, many researches have been carrying out to produce defect-free coating for an exposed automotive body panel. In the present study, high strength interstitial-free steel sheets containing Mn and P were galvannealed in an industrial continuous galvanizing line and defects on the coating surface were investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. It is clear that the quality of the substrate strongly affects galvannealed coating and it is essential to keep clean surface just before immediately dipping into molten Zn pot. (orig.) [German] Feuerverzinkte und danach waermebehandelte Stahlbleche, wo Fe aus dem Substratstahl in die obere Beschichtungsschicht diffundiert wie bei Legieren mit Zn und einer Waermebehandlung von ueber 450 C, gefolgt von einem Feuerverzinkverfahren, zeigen im Allgemeinen hervorragende Korrosionsbestaendigkeit, Schweissbarkeit und Anstreichbarkeit. Sie finden ein breites Einsatzgebiet bei Automobilen, im Bauwesen, in Werkzeugindustrien und anderen. Insbesondere wurde von vielen Forschern versucht, eine fehlerfreie Beschichtung fuer ein ungeschuetztes Karosserieteil herzustellen. In der vorliegenden Arbeit wurden hochfeste porenfreie Stahlbleche mit Mn- und P-Gehalt nach dem Verzinken in einer industriellen Endlos-Verzinkungslinie (CGL) waermebehandelt, wobei die Defekte auf der Schichtoberflaeche lichtmikroskopisch, rasterund transmissionselektronenmikroskopisch untersucht wurden. Klar ist, dass die Qualitaet des Substrats die nach dem Verzinken waermebehandelten Schichten beeinflusst und es ist von grosser

  12. Tribological Behavior of Laser Textured Hot Stamping Dies

    Directory of Open Access Journals (Sweden)

    Andre Shihomatsu

    2016-01-01

    Full Text Available Hot stamping of high strength steels has been continuously developed in the automotive industry to improve mechanical properties and surface quality of stamped components. One of the main challenges faced by researchers and technicians is to improve stamping dies lifetime by reducing the wear caused by high pressures and temperatures present during the process. This paper analyzes the laser texturing of hot stamping dies and discusses how different surfaces textures influence the lubrication and wear mechanisms. To this purpose, experimental tests and numerical simulation were carried out to define the die region to be texturized and to characterize the textured surface topography before and after hot stamping tests with a 3D surface profilometer and scanning electron microscopy. Results showed that laser texturing influences the lubrication at the interface die-hot sheet and improves die lifetime. In this work, the best texture presented dimples with the highest diameter, depth, and spacing, with the surface topography and dimples morphology practically preserved after the hot stamping tests.

  13. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    Science.gov (United States)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  14. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    OpenAIRE

    Wang, Dan; Li, Heng; Yang, He; Ma, Jun; Li, Guangjun

    2014-01-01

    The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (c...

  15. Preliminary heat treatment of 4KhM2Fch die steel

    International Nuclear Information System (INIS)

    Leonidov, V.M.; Berezkin, Y.A.; Nikitenko, E.V.

    1986-01-01

    To improve the machinability and preparation of the structure for hardening, die steels are given a preliminary treatment which provides a reduction in hardness as a result of separation in the structure of the carbide and ferrite phases, coagulation of the carbides, and acquisition by them of a granular form and also the obtaining of fine grains and a uniform distribution of the structural constituents. The microstructure was evaluated after etching in 4% nital on an MIM-8M microscope. The 4KhM2Fch steel was given a preliminary heat treatment of normalize and anneal. It was concluded that for 4KhM2Fch steel a preliminary heat treatment of normalizing from 950 0 C with a hold of 1.5-2 h, annealing at 750-760 0 C with a hold of 2-3 h, cooling to the isothermal temperature of 670-680 0 C with a hold of 3-4 h, and further air cooling is recommended. The structure after such a heat is granular pearlite with a rating 1-2 and a hardness of 220-250 HB

  16. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  17. Thermal Fatigue of Die-Casting Dies: An Overview

    Directory of Open Access Journals (Sweden)

    Abdulhadi Hassan A.

    2016-01-01

    Full Text Available Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.

  18. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering

    Directory of Open Access Journals (Sweden)

    Angang Ning

    2017-02-01

    Full Text Available The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1 MC and M6C, generally smaller than 200 nm; and (2 M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases.

  19. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  20. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die

  1. Medium carbon vanadium steels for closed die forging; Acos de medio carbono microligados ao vanadio para forjaria em matriz fechada

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1994-12-31

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported 16 refs., 21 figs.

  2. Finite element modelling of chain-die forming for ultra-high strength steel

    Science.gov (United States)

    Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui

    2017-10-01

    There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.

  3. Electrolytic plasma processing of steel surfaces

    International Nuclear Information System (INIS)

    Bejar, M.A; Araya, R.N; Baeza, B

    2006-01-01

    The thermo-chemical treatments of steels with plasma is normally carried out in low-pressure ionized gaseous atmospheres. Among the treatments used most often are: nitruration, carburization and boronized. A plasma can also generate at atmospheric pressure. One way to produce it is with an electrochemical cell that works at a relatively high inter-electrode voltage and under conditions of heavy gas generation. This type of plasma is known as electrolytic plasma. This work studies the feasibility of using electrolytic plasma for the surface processing of steels. Two processes were selected: boronized and nitruration., for the hardening of two types of steel: one with low carbon (1020) and one with low alloy (4140). In the case of the nitruration, the 1020 steel was first aluminized. The electrolytes were aqueous solutions of borax for the boronizing and urea for the nitruration. The electrolytic plasmas were classified qualitatively, in relation with their luminosity by low, medium and high intensity. The boronizing was carried out with low intensity plasmas for a period of one hour. The nitruration was performed with plasmas of different intensities and for period of a few minutes to half an hour. The test pieces processed by electrolytic plasma were characterized by micro-hardness tests and X-ray diffraction. The maximum surface hardnesses obtained for the 1020 and 4140 steels were the following: 300 and 700 HV for the boronizing, and 1650 and 1200 HV for the nitruration, respectively. The utilization of an electrolytic plasma permits the surface processing of steels, noticeably increasing their hardness. With this type of plasma some thermo-chemical surface treatments can be done very rapidly as well (CW)

  4. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Dan

    2014-08-01

    Full Text Available The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (chromium plating, TiAlN coating, surface polishing and nitriding treatment were applied to the H13 surfaces. Taking the coefficient of friction (CoF and the wear degree as evaluation indicators, the high-temperature tribological behavior of the surface modified H13 steel was experimentally investigated under different tribological conditions. The results of this study indicate that the tribological properties of the TiAlN coating under dry friction condition are better than the others for a wide range of temperature (from room temperature to 500 °C, while there is little difference of tribological properties between different surface modifications under graphite lubricated condition, and the variation law of CoF with temperature under graphite lubricated is opposite to that under the dry friction.

  5. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  6. Reparation of damaged forging dies

    Directory of Open Access Journals (Sweden)

    Vukić Lazić

    2015-03-01

    Full Text Available The forging dies are in exploitation exposed to elevated temperatures and variable impact loads, both compressive and shear. Steels for manufacturing of these tools must endure those loads while maintaining mechanical properties and being resistant to wear and thermal fatigue. For those reasons, the alloyed steels are used for making the forging dies, though they have less weldability, because alloying increases proneness to hardening. Any reparatory hard facing (HF of the damaged dies would require the specially adjusted technology to the particular piece. In this paper reparatory hard facing of dies used for forging pieces in the automobile industry is considered. Prior to reparatory hard facing of the real tools, numerous experimental hard facings on models were performed. All the model hard facings were done on the same steels which were used for production of the real forging dies. To define the optimal hard facing technology one needs to derive the optimal combination of the adequate heat treatment(s, to select the proper filler metals and the welding procedure. The established optimal HF technology was applied to real forging dies whose service life was further monitored in conditions of exploitation

  7. Recent characterization of steel by surface analysis methods

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1996-01-01

    Surface analysis methods, such as Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, glow discharge optical emission spectrometry and so on, have become indispensable to characterize surface and interface of many kinds of steel. Although a number of studies on characterization of steel by these methods have been carried out, several problems still remain in quantification and depth profiling. Nevertheless, the methods have provided essential information on the concentration and chemical state of elements at the surface and interface. Recent results on characterization of oxide layers, coated films, etc. on the surface of steel are reviewed here. (author). 99 refs

  8. Multi-field coupling finite element analysis for determining the influence of temperature field on die service life during precision-forming process of steel synchronizer ring

    International Nuclear Information System (INIS)

    Zhao, Jun; Luo, Shan-Ming; Li, Feng-Qiang; Xu, Chen-Bing

    2017-01-01

    Failure analysis shows that increased die temperature caused by severe plastic deformation of material and heat conduction between hot billet and cavity significantly affects the distortion of gear cavity in steel synchronizer ring forging process. The forging process of steel synchronizer ring and die temperature distribution under different forging conditions are analyzed through finite element method. Simulation results show that severe plastic deformation occurs in the gear cavity. The improvement of lubrication condition results in decreased die temperature. When the initial billet temperature is high, the die temperature is also high. Increasing forging speed in a certain range facilitates the die temperature decrease. The distribution of die temperature in synthetic forming technology is more reasonable than that of one step forging. The synthetic forming technology is adopted in production to reduce the effects of severe plastic deformation caused by die temperature. The ejection mechanism and control system of the double disc friction press are improved to reduce the contact time between the hot billet and cavity. Experimental results show that synthetic forming technology is reasonable, and that the die service life is prolonged.

  9. Multi-field coupling finite element analysis for determining the influence of temperature field on die service life during precision-forming process of steel synchronizer ring

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun; Luo, Shan-Ming; Li, Feng-Qiang; Xu, Chen-Bing [Xiamen University of Technology, Xiamen (China)

    2017-07-15

    Failure analysis shows that increased die temperature caused by severe plastic deformation of material and heat conduction between hot billet and cavity significantly affects the distortion of gear cavity in steel synchronizer ring forging process. The forging process of steel synchronizer ring and die temperature distribution under different forging conditions are analyzed through finite element method. Simulation results show that severe plastic deformation occurs in the gear cavity. The improvement of lubrication condition results in decreased die temperature. When the initial billet temperature is high, the die temperature is also high. Increasing forging speed in a certain range facilitates the die temperature decrease. The distribution of die temperature in synthetic forming technology is more reasonable than that of one step forging. The synthetic forming technology is adopted in production to reduce the effects of severe plastic deformation caused by die temperature. The ejection mechanism and control system of the double disc friction press are improved to reduce the contact time between the hot billet and cavity. Experimental results show that synthetic forming technology is reasonable, and that the die service life is prolonged.

  10. Research on Oxidation Wear Behavior of a New Hot Forging Die Steel

    Science.gov (United States)

    Shi, Yuanji; Wu, Xiaochun

    2018-01-01

    Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.

  11. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  12. Problems in repair-welding of duplex-treated tool steels

    OpenAIRE

    T. Muhič; J. Tušek; M. Pleterski; D. Bombač

    2009-01-01

    The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repa...

  13. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    Science.gov (United States)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  14. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    Science.gov (United States)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  15. Influence of the Lubricant Type on the Surface Quality of Steel Parts Obtained by Ironing

    Directory of Open Access Journals (Sweden)

    D. Adamović

    2015-06-01

    Full Text Available If it is needed to achieve a higher strain rate during the ironing process, which is possible without inter-stage annealing, the ironing is performed in succession through multiple dies. During that process, changes of friction conditions occur due to the change of contact conditions (dislodging of lubricants, changes of surface roughness, formation of friction junctions, etc.. In the multistage ironing, after each stage, the completely new conditions on the contact surfaces occur, which will significantly affect the quality of the workpiece surface. Lubricant has a very important role during the steel sheet metal ironing process; to separate the sheet metal surface from the tool and to reduce the friction between the contact surfaces. The influence of tribological conditions in ironing process is extremely important and it was a subject of study among researches in recent years, both in the real processes and on the tribo-models. Investigation of tribological conditions in the real processes is much longer and more expensive, so testing on the tribo-models is more frequent. Experimental research on the original tribo-model presented in this paper was aimed to indicate the changes that occur during multistage ironing, as well as to consider the impact of some factors (tool material, lubricant on die and punch on increase or decrease of the sheet metal surface roughness in ironing stages.

  16. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  17. Flat friction tests applied to austenic stainless steels with several surface finish. Analysis of adhesion conditions in friction

    International Nuclear Information System (INIS)

    Coello, J.; Miguel, V.; Ferrer, C.; Calatatyd, A.; Martinez, A.

    2008-01-01

    The main purpose of this work is to evaluate the tribological behaviour of austenic stainless steels AISI 304 with bright surface finishing (B). The assays have been carried out in flat faced dies system with mineral oil of 200 cts viscosity, S 2 Mo grease and in dry conditions. The relationship between friction coefficient and pressure and velocity has been established for the mineral oil as lubricant. In these conditions, a strong adhesive tendency has been found in boundary lubrication regime. The results obtained here, show us that S 2 Mo grease leads to lowest values for the friction coefficient. A minor adhesive behaviour tendency for AISI 316 steel, harder than 304 grades, has been found. A relevant plowing phenomena has been observed for the more critical friction conditions tried out. A surface hardener is produced as a consequence of that. (Author) 19 refs

  18. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Huu-That Nguyen

    2016-06-01

    Full Text Available Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra in the hard milling of JIS (Japanese Industrial Standard SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM. The cutting parameters are selected based on the structural dynamic analysis of the machine tool. A set of experiments is designed according to the Taguchi technique. The average Ra is measured by a Mitutoyo Surftest SJ-400, and then analysis of variance (ANOVA is performed to determine the influences of cutting parameters on the given Ra. Quadratic mathematical modeling is introduced for prediction of the Ra during the hard milling process. The predicted values are in reasonable agreement with the observation of experiments. In an effort to obtain the minimizing Ra, a single objective optimization is employed based on the desirability function. The result shows that the percentage error between measured and predicted values of Ra is 3.2%, which is found to be insignificant. Eventually, the milled surface roughness under the optimized machining conditions is 0.122 µm. This finding shows that grinding may be replaced by finish hard milling in the mold and die manufacturing field.

  19. Surface nanocrystallization of stainless steel for reduced biofilm adherence

    International Nuclear Information System (INIS)

    Yu Bin; Li, D Y; Davis, Elisabeth M; Irvin, Randall T; Hodges, Robert S

    2008-01-01

    Stainless steel is one of the most common metallic biomedical materials. For medical applications, its resistance to the adherence of biofilms is of importance to the elimination or minimization of bacterial infections. In this study, we demonstrate the effectiveness of a process combining surface nanocrystallization and thermal oxidation (or a recovery heat treatment in air) for reducing the biofilm's adherence to stainless steel. During this treatment, a target surface was sandblasted and the resultant dislocation cells in the surface layer were turned into nanosized grains by a subsequent recovery treatment in air. This process generated a more protective oxide film that blocked the electron exchange or reduced the surface activity more effectively. As a result, the biofilm's adherence to the treated surface was markedly minimized. A synthetic peptide was utilized as a substitute of biofilms to evaluate the adhesion between a treated steel surface and biofilms using an atomic force microscope (AFM) through measuring the adhesive force between the target surface and a peptide-coated AFM tip. It was shown that the adhesive force decreased with a decrease in the grain size of the steel. The corresponding surface electron work function (EWF) of the steel was also measured, which showed a trend of variation in EWF with the grain size, consistent with corresponding changes in the adhesive force

  20. Numerical investigation of the effect of friction conditions to increase die life

    Science.gov (United States)

    Mutlu, M. O.; Guleryuz, C. G.; Parlar, Z.

    2017-02-01

    The standard die materials in aluminium extrusion offer good mechanical properties like high tempering resistance, high strength and ductility. On the other hand, they struggle with the problem of sliding wear. As a result, there is a growing interest in using surface treatment techniques to increase the wear resistance of extrusion dies. In this study, it is aimed to observe the effects of the different friction conditions on material flow and contact pressure in extrusion process. These friction conditions can be obtained with the application of a variety of surface treatment. In this way, it is expected to decrease the friction force on the die bearing area and to increase the homogeneity of the material flow which will result in the increase of the quality of the extrudate as well as the improvement of the process economically by extending die life. For this purpose, an extrusion process is simulated with a finite element software. A die made of 1.2344 hot work tool steel-commonly used die material for aluminium extrusion process- has been modelled and Al 1100 alloy used as billet material. Various friction factor values defined on the die surface under the same process parameters and effects of changing frictional conditions on the die and the extrusion process have been discussed.

  1. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  2. Wear mechanisms of Al2O3/TiC/Mo/Ni ceramic wire-drawing dies

    International Nuclear Information System (INIS)

    Deng Jianxin; Yang Xuefeng; Wang Jinghai

    2006-01-01

    Al 2 O 3 /TiC/Mo/Ni ceramic composites were produced by hot-pressing for the use of wire drawing dies. The fundamental properties of these ceramic die materials were examined. Wire drawing tests were carried out on the 65Mn steel wire with these ceramic dies. Finite element method (FEM) was used as a means of numerically evaluating stress and its distribution inside the ceramic drawing dies. Worn bore surfaces of the ceramic drawing dies were examined by scanning electron microscopy (SEM). The wear mechanisms of the ceramic drawing dies were investigated. Detailed observations and analyses of the die wear surface have revealed that the most common failure of the ceramic drawing die is the wear at its approach zone. FEM analysis showed that the compressive stresses on both sides of the corners at the approach zone are higher than those of other parts of the ceramic drawing die. Abrasive and adhesive wear were found to be the predominant wear mechanisms through the whole approach zone owing to the greater compressive stresses. Examination of the center bore surface at the die bearing zone of the ceramic drawing dies demonstrated that the wear occurred by light abrasive, no adhesion wear was observed

  3. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  4. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  5. Surface modification of steels by electrical discharge treatment in electrolyte

    International Nuclear Information System (INIS)

    Krastev, D.; Paunov, V.; Yordanov, B.; Lazarova, V.

    2013-01-01

    Full text: In this work are discussed some experimental data about the influence of applied electrical discharge treatment in electrolyte on the surface structure of steels. The electrical discharge treatment of steel surface in electrolyte gives a modified structure with specific combination of characteristics in result of nonequilibrium transformations. The modification goes by a high energy thermal process in a very small volume on the metallic surface involving melting, vaporisation, activation and alloying in electrical discharges, and after that cooling of this surface with high rate in the electrolyte. The surface layers obtain a different structure in comparison with the metal matrix and are with higher hardness, wear resistance and corrosion resistance. key words: surface modification, electrical discharge treatment in electrolyte, steels

  6. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  7. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-01-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  8. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  9. Factors influencing the surface quality of polished tool steels

    International Nuclear Information System (INIS)

    Rebeggiani, S; Rosén, B-G

    2014-01-01

    Today’s demands on surface quality of moulds for injection moulding of plastic components involve no/low defect contents and roughness levels in the nm-range for high gloss applications. Material properties as well as operating conditions influence the mould finish, and thus the final surface of moulded products. This paper focuses on how particle content and different polishing strategies influence final surface qualities of moulds. Visual estimations of polished tool steel samples were combined with non-contact 3D-surface texture analysis in order to correlate traditional assessments to more quantitative methods, and to be able to analyse the surfaces at nanometre-level. It was found that steels with a lower proportion of particles, like carbides and oxides, gave rise to smoother polished surfaces. In a comparative study of polishers from different polishing shops, it was found that while different surface preparation strategies can lead to similar final roughness, similar preparation techniques can produce high-quality surfaces from different steel grades. However, the non-contact 3D-surface texture analysis showed that not all smooth polished surfaces have desirable functional topographies for injection moulding of glossy plastic components. (paper)

  10. Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies

    International Nuclear Information System (INIS)

    Arun, Ilangovan; Duraiselvam, Muthukannan; Senthilkumar, V.; Narayanasamy, R.; Anandakrishnan, V.

    2014-01-01

    Highlights: • Electrical discharge alloying/coating made on AISI D2 tool steel. • The hardness of EDA layer is three to four time higher than the base material. • The dry sliding wear tests performed on EDA layer at different temperatures. • The alloyed layer acts as a self-lubricant at higher temperature. - Abstract: The present study examines the method of depositing nickel and tungsten on die steel surface by means of dispersing these elements in dielectric fluid in an electrical discharge alloying (EDA) process. The modified surface was mechanically and metallurgically characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), microhardness tester and Pin-on-disc tribometer. The phase transformations that occurred during EDA process were evaluated by XRD. The deposition of Ni and W on die steel surfaces yielded minimal cracks with excellent metallurgical bonding. Higher hardness (∼1059 HV 0.3 ) with little brittleness resulted in superior wear resistance properties, a property which was retained even at elevated temperature

  11. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  12. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nitrogen-Alloyed High-Mn Austenitic Hot Work Die Steel

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-03-01

    Full Text Available In view of the requirements for mechanical properties and service life above 650 °C, a high-Mn austenitic hot work die steel, instead of traditional martensitic hot work die steel such as H13, was developed in the present study. The effect of heat treatment on the microstructure and mechanical properties of the newly developed work die steel was studied. The results show that the microstructure of the high-Mn as-cast electroslag remelting (ESR ingot is composed of γ-Fe, V(C,N, and Mo2C. V(C,N is an irregular multilateral strip or slice shape with severe angles. Most eutectic Mo2C carbides are lamellar fish-skeleton-like, except for a few that are rod-shaped. With increasing solid solution time and temperature, the increased hardness caused by solid solution strengthening exceeds the effect of decreased hardness caused by grain size growth, but this trend is reversed later. As a result, the hardness of specimens after various solid solution heat treatments increases first and then decreases. The optimal combination of hardness and austenitic grain size can be obtained by soaking for 2 h at 1170 °C. The maximum Rockwell hardness (HRC is 47.24 HRC, and the corresponding austenite average grain size is 58.4 μm. When the solid solution time is 3 h at 1230 °C, bimodality presented in the histogram of the austenite grain size as a result of further progress in secondary recrystallization. Compared with the single-stage aging, the maximum impact energy of the specimen after two-stage aging heat treatment was reached at 16.2 J and increased by 29.6%, while the hardness decreased by 1–2 HRC. After two-stage aging heat treatment, the hardness of steel reached the requirements of superior grade H13, and the maximum impact energy was 19.6% higher than that of superior grade H13, as specified in NADCA#207-2003.

  13. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  14. Innovative Approaches To Improving The Bond Between Concrete and Steel Surfaces

    National Research Council Canada - National Science Library

    Day, Donna C; Carrasquillo, Mariangelica; Weiss, Jr., Charles A; Sykes, Melvin C; Baugher, Jr., Earl H; Malone, Philip G

    2006-01-01

    A reactive silicate layer fused onto the surface of reinforcing steel provides a coupling layer that allows a very strong bond to develop between hydrating Portland cement paste and the surface of the steel...

  15. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  16. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    Strategic stainless steel surfaces have been developed for which the tribological properties are significantly improved for sheet-metal forming compared with the as-received surfaces. The improvements have been achieved by modification of the surface to promote Micro-Plasto Hydrodynamic Lubrication....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  17. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    : - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical......Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge...

  18. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  19. The Analysis of Force Parameters in Drawing Process of High Carbon Steel Wires in Conventional and Hydrodynamic Dies

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2017-12-01

    Full Text Available The paper analyzes force parameters in the process of multistage drawing of steel wires in conventional and hydrodynamic dies. The drawing process of the wire rod with a diameter of 5.5 mm for wires with a diameter of 1.70 mm was performed in 12 drafts with the usage of the multistage drawbench Koch KGT with the speed range of 5-25 m/s.

  20. Die Face Engineering based Springback Compensation Strategy and Implementation

    International Nuclear Information System (INIS)

    Tang, Arthur; Lee Wing; He, Jeanne; Xu Jinbo; Liu Kesu; Chen Chinchun

    2005-01-01

    Springback or shape change has been one of the major challenges in sheet metal fabrication, particularly with increase application of high strength steel (HSS) and aluminum alloys in automotive stamping. Springback, an elastic material recovery after the unloading of stamping tools, causes variations and inconsistencies of final part dimensions. Minor or mild springback usually can be corrected in the re-strike process. Excessive springback must be corrected so the part will be produced within the given design tolerance and dimension. The commonly used Spring Forward approaches and shape compensations such as over-crown and over-bending are proven effective to alleviate excessive springback. To enhance these approaches, a new strategy of Die Face Engineering (DFE) based processing is proposed to quickly and easily to achieve the maximum allowable compensation using the under cut (or die lock) as the primary criteria. The implementation of the die face compensation through iterative FEA calculation, automatic surface mapping, projection and manual morphing are crucial to meet production environment requirements in terms of generating NC quality CAD surfaces of the compensated or morphed die face. In this paper, the strategy of the die face compensation with the consideration of the under cut criteria is presented. The implementation of various processes to enable user to perform the die face compensation task in a production environment is also discussed. Finally, two examples are shown to demonstrate the implementation of the proposed springback compensation scheme based on the combined CAE/CAD methodology

  1. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    Science.gov (United States)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  2. Effects of heat treatment on mechanical properties of h13 steel

    Science.gov (United States)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  3. SURFACE ROUGHNESS AND CUTTING FORCES IN CRYOGENIC TURNING OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    T. C. YAP

    2015-07-01

    Full Text Available The effect of cryogenic liquid nitrogen on surface roughness, cutting forces, and friction coefficient of the machined surface when machining of carbon steel S45C in wet, dry and cryogenic condition was studied through experiments. The experimental results show that machining with liquid nitrogen increases the cutting forces, reduces the friction coefficient, and improves the chips produced. Beside this, conventional machining with cutting fluid is still the most suitable method to produce good surface in high speed machining of carbon steel S45C whereas dry machining produced best surface roughness in low speed machining. Cryogenic machining is not able to replace conventional cutting fluid in turning carbon steel.

  4. Problems in repair-welding of duplex-treated tool steels

    Directory of Open Access Journals (Sweden)

    T. Muhič

    2009-01-01

    Full Text Available The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repair welding process parameters and techniques are considered. A microstructural analysis is conducted to detect defect formation and reveal the best laser welding method for duplex-treated tools.

  5. Surface electrical properties of stainless steel fibres: An AFM-based study

    International Nuclear Information System (INIS)

    Yin, Jun; D’Haese, Cécile; Nysten, Bernard

    2015-01-01

    Highlights: • Surface electrical conductivity of stainless steel fibre is measured and mapped by CS-AFM. • Surface potential of stainless steel fibre is measured and mapped by KPFM. • Surface electronic properties are governed by the chromium oxide passivation layer. • Electron tunnelling through the passivation layer is the dominant mechanisms for conduction. - Abstract: Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I–V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I–V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport

  6. The inclusion of areas endangered by surface failure in development planning; Die Einbeziehung tagesbruchgefaehrdeter Flaechen in die Raumplanung

    Energy Technology Data Exchange (ETDEWEB)

    Loebel, K.H. [Inst. fuer Markscheidewesen und Geodaesie, TU Bergakademie Freiberg (Germany); Fenk, J. [Inst. fuer Markscheidewesen und Geodaesie, TU Bergakademie Freiberg (Germany)

    1995-01-01

    In the range of influence of former brown coal deep mining or open dewatering galleries of brown coal opencast mines a prognosis of the extent to which the site is endangered by surface failures is absolutely essential for a utilization of the ground surface. Data on the diameter and size of the surface failures to be expected are of particular value in order to be able to include such areas explicitly in development planning and to estimate the nature and extent of the necessary safety measures. A solution evolved in the late 1970s by means of which surface failures can be calculated was improved as regards many items and enlarged for the field of application. This new solution was converted into a program for PC-technique. In order to have the failure hazard available as a basis for the development planning according to the latest Geo-Information-Systems (GIS), the software in question must be integrated in a three-dimensional model. For an areal evaluation in a zone that is examined the data relevant to a surface failure can be selected from this model along the section axes and the failure parameters can be forecast. As a result of the computations a topology of the diameter and size of the failures to be expected, with colour coding of the depth at which the failure process may possibly come to a halt, is obtained along the track of the dewatering gallery, and this enables the danger to already existing objects to be assessed and makes further planning according to a Geo-Information-System possible. (orig.) [Deutsch] Im Einflussbereich ehemaligen Braunkohlentiefbaues oder offener Entwaesserungsstreckensysteme von Braunkohlentagebauen zwingt eine Nutzung der Tagesoberflaeche zur Prognose der Standortgefaehrdung durch Tagesbrueche. Von besonderem Interesse sind Angaben zu Durchmesser und Volumen zu erwartender Tagesbrueche, um solche Flaechen in die Raumplanung qualifiziert einbeziehen zu koennen und Art und Umfang erforderlicher Sicherungsmassnahmen

  7. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  8. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  9. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    Science.gov (United States)

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  10. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Bagge-Ravn, Dorthe; Kold, John

    2003-01-01

    Abstract The aim of this study was to evaluate if hygienic characteristics of stainless steel used in the food industry could be improved by smoothing surface roughness from an Ra of 0.9 to 0.01 ƒÝm. The adherence of Pseudomonas sp., Listeria monocytogenes and Candida lipolytica to stainless steel...... was not affected by surface roughness (Ra) ranging from grit 4000 polished stainless steel (Ra steel (Ra 0.9). Neither adhesion of Ps. aeruginosa nor its removal by an alkaline commercial cleaner in a flow system was affected by surface roughness. Pitting corrosion resistance...... was evaluated in a commercial disinfectant and in 1 M NaCl. Electropolished and grit 4000 polished steel proved more corrosion resistant as opposed to grit 80 and 120 polished surfaces. In conclusion, the surface finish did not influence bacterial attachment, colonisation, or removal, but is an important...

  11. Experimental Study on Tribological Properties of Laser Textured 45 Steel Surface

    Directory of Open Access Journals (Sweden)

    Li Zhi Peng

    2016-01-01

    Full Text Available In order to study the influence of pits’ size parameters on the tribological properties of textured friction pairs, using the Nd:YAG laser micro machining system and the “single pulse at the same point, interval more times” processing technics to process the pits on the surface of 45 steel. The dimension parameters of pits texture were obtained by orthogonal experimental design. The tribological experiment of GCr15 pin/45 steel disc was carried out by UMT-2 test machine. The surface morphology of the specimens was analyzed by using scanning electron microscopy. The experimental results show that the pits texture on the surface of 45 steel can effectively reduce the friction coefficient and the wear on the condition of oil-rich lubrication. The textured specimen with diameter 60μm, depth 6μm and surface density 10% has the lowest friction coefficient, and the friction coefficient is reduced by 21% compared with the smooth specimen. By analyzing the wear morphology on the surface of 45 steel, it is found that the surface of pits texture can obviously reduce the wear.

  12. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  13. X-ray fractography on fatigue fracture surface of high manganese austenitic steel

    International Nuclear Information System (INIS)

    Akita, Koichi; Misawa, Hiroshi; Kodama, Shotaro; Saito, Tetsuro.

    1997-01-01

    Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese Mn-Cr steel. X-ray fractography was applied on the fatigue fractured surface to investigate the relationship between stress intensity factor and residual stress or half-value breadth of the X-ray diffraction profile. The fatigue crack propagation rate of this non-magnetic Mn-Cr steel had the same tendency as in the ordinary structural ferritic steels. The relationship between stress intensity factor and the residual stress or half-value breadth of the steel was almost the same as that of the ferritic cyclic work hardening steels. No stress induced transformation was observed on the fracture surface, but the residual stress on the fractured surface was compressive in the high stress intensity factors range, which is typical in the cyclic work hardening steels. The half-value breadth on the fractured surface increased with increasing effective stress intensity factor range. The relationship between the half-value breadth and stress intensity factor range was represented by a linear line regardless of the stress ratio. Therefore, the acting stress intensity factor range at the time of fracture can be estimated from the half-value breadth. The depth of monotonic plastic zone was estimated from the distribution of half-value breadth beneath the fractured surface. The relationship between the maximum stress intensity factor and half-value breadth was expressed by the equation ω m α(K max /σ y ) 2 , where the value of α was 0.025. This is about one sixth of the value for ferritic steels, and the fact shows the severe work hardening occuring in the plastic zone in this manganese steel. (author)

  14. Evaluation of stabilization of steel surface corrosion by paints

    Directory of Open Access Journals (Sweden)

    Aleš Dvořák

    2005-01-01

    Full Text Available This article deals with laboratory experiments focused on protective and stabilizing effects of paints designed to protect rusted steel surfaces. Two well-known paints (the Hammerite No.1 Rustbeater synthetic paint and the Antirezin water-soluble paint have been evaluated. The standardized tests according to ČSN have been used for the evaluation. Stabilization of rusted steel surface hasn’t been demonstrated during the tests. The SEM test method that covers micro-analysis of elements has been used for the evaluation as well.

  15. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)

    2006-09-15

    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  16. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  17. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    Science.gov (United States)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  18. Effect of laser cutting parameters on surface roughness of stainless steel 307

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2016-12-01

    Full Text Available Optimal parameters of laser cutting are an important step to improve surface quality of cutting edge in the laser cutting of stainless steel 307. This paper presents a new approach for optimizing the cutting parameters on stainless steel. Based on 33 full factorial experimental design, cutting experiments were conducted for stainless steel 307 plates using a laser machine (AMADA FONT 3015. The cutting parameters such as, cutting speed, cutting power and gas pressure are optimized for maximizing surface quality. The results indicated that cutting power and cutting speed play an important role in surface quality.

  19. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  20. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  1. Formability of dual-phase steels in deep drawing of rectangular parts: Influence of blank thickness and die radius

    Science.gov (United States)

    López, Ana María Camacho; Regueras, José María Gutiérrez

    2017-10-01

    The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.

  2. Plastohydrodynamic drawing and coating of stainless steel wire using a tapered bore die of no metal to metal contact

    Science.gov (United States)

    Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.

    2018-05-01

    A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to

  3. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    OpenAIRE

    Oliveira,Maíra Maciel Mattos de; Brugnera,Danilo Florisvaldo; Alves,Eduardo; Piccoli,Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ?C and stirring of 50 rpm. The number of adhered cells was de...

  4. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  5. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  6. Microstructure and properties of high chrome steel roller after laser surface melting

    International Nuclear Information System (INIS)

    Li Meiyan; Wang Yong; Han Bin; Zhao Weimin; Han Tao

    2009-01-01

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO 2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M 23 C 6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  7. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  8. Investigation of Steel Surfaces Treated by a Hybrid Ion Implantation Technique

    International Nuclear Information System (INIS)

    Reuther, H.; Richter, E.; Prokert, F.; Ueda, M.; Beloto, A. F.; Gomes, G. F.

    2004-01-01

    Implantation of nitrogen ions into stainless steel in combination with oxidation often results in a decrease or even complete removal of the chromium in the nitrogen containing outermost surface layer. While iron nitrides can be formed easily by this method, due to the absence of chromium, the formation of chromium nitrides is impossible and the beneficial influence of chromium in the steel for corrosion resistance cannot be used. To overcome this problem we use the following hybrid technique. A thin chromium layer is deposited on steel and subsequently implanted with nitrogen ions. Chromium can be implanted by recoil into the steel surface and thus the formation of iron/chromium nitrides should be possible. Both beam line ion implantation and plasma immersion ion implantation are used. Due to the variation of the process parameters, different implantation profiles and different compounds are produced. The produced layers are characterized by Auger electron spectroscopy, conversion electron Moessbauer spectroscopy and X-ray diffraction. The obtained results show that due to the variation of the implantation parameters, the formation of iron/chromium nitrides can be achieved and that plasma immersion ion implantation is the most suitable technique for the enrichment of chromium in the outermost surface layer of the steel when compared to the beam line implantation.

  9. Microstructure and properties of high chrome steel roller after laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Li Meiyan, E-mail: lmy_102411@163.com [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China); Wang Yong; Han Bin; Zhao Weimin; Han Tao [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China)

    2009-06-15

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO{sub 2} laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M{sub 23}C{sub 6} carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  10. Methods of improvement in hardness of composite surface layer on cast steel

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-08-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in founding process a composite surface layer on the basis of Fe-Cr-C alloy and next its remelting with use of welding technology TIG – Tungsten Inert Gas. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying. However the results of studies show, that is possible to connection of both methods founding and welding of surface hardening of cast steel castings. In range of experimental plan was made test castings with composite surface layer, which next were remelted with energy 0,8 and 1,6 kJ/cm. Usability for industrial applications of test castings was estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  11. Low-waste electrochemical decontamination of stainless-steel surface

    International Nuclear Information System (INIS)

    Babain, V.A.; Smirnov, I.V.; Shadrin, A.Yu.; Firsin, N.G.; Zakharchuk, G.A.; Pavlov, A.B.; Shilov, V.V.

    2002-01-01

    An electrochemical decontamination method using a formic acid-based recycling electrolyte was proposed to remove firmly fixed contaminants from stainless-steel surfaces. The following provisions make for minimisation of the amounts of waste: (i) use of specially designed electrodes with vacuum removal of spent electrolyte; (ii) inter-cycle removal of radionuclides from the electrolyte by using an inorganic sorbent; (iii) periodic regeneration of the spent electrolyte. the dissolved metals (Fe, Cr, Ni) being transformed into acidic phosphates; (iv) solidification of residues arising from the regeneration of the electrolyte and spent sorbent into iron-phosphate ceramics. The technology and equipment developed were used for decontamination of a plutonium glove-box. The level of surface contamination was reduced 100-fold in two decontamination cycles. The depth of metal skimming was 1.5 μ for the ceiling and walls and 4.5 μ for the table top. Each square meter of stainless-steel surface provides about 100 g of solid radioactive waste in the form of iron-phosphate ceramic blocks

  12. Thermomechanical modelling of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  13. Premature thermal fatigue failure of aluminium injection dies with duplex surface treatment

    International Nuclear Information System (INIS)

    Corujeira Gallo, S.; Figueroa, Carlos A.; Baumvol, Israel J.R.

    2010-01-01

    Research highlights: → The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated. → The origin of failure was attributed to the sulfur inclusions introduced into the surface of the tool by a sulfur-impregnated grinding stone used in the final polishing operation. → The low adhesion of the CrN coating on the sulfur inclusions led to the spalling of the coating, the exposure of the substrate material and the nucleation of cracks. → New evidence is presented on the influence of surface preparation and manufacturing processes on aluminium injection tool performance. - Abstract: The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated, in an effort to identify the causes of such premature failure of the component. The manufacturing and the operating conditions were documented. Analytical tools were used, including scanning electron microscopy with energy dispersive X-ray capability, X-ray diffraction, and instrumented microhardness testing. Preliminary observations showed a microstructure of coarse tempered martensite, and a considerably rough surface with porosity and cracks. A detailed analysis of crack initiation sites identified sulfur inclusions in the subsurface, underneath the coating. A further revision of the processing conditions revealed that a sulfur-impregnated grinding stone had been used to polish the die. The chemical composition of such grinding stone matched that of the inclusions found in the subsurface of the failed component. Thus, searched causes of premature failure could be discussed on the lights of the present findings.

  14. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  15. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  16. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  17. On the surface topography of ultrashort laser pulse treated steel surfaces

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Skolski, J. Z. P.; Mitko, V. S.; Romer, G. R. B. E.; in't Veld, A. J. Huis; De Hosson, J. Th M.; Römer, G.R.B.E.; Huis in’t Veld, A.J.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  18. On the surface topography of ultrashort laser pulse treated steel surface

    NARCIS (Netherlands)

    Vincenc Obona, J.; Ocelik, V.; Skolski, J.Z.P.; Mitko, V.S.; Mitko, S.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; de Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  19. Brittle Fracture Behaviors of Large Die Holders Used in Hot Die Forging

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2017-05-01

    Full Text Available Brittle fracture of large forging equipment usually leads to catastrophic consequences. To avoid this kind of accident, the brittle fracture behaviors of a large die holder were studied by simulating the practical application. The die holder is used on the large die forging press, and it is made of 55NiCrMoV7 hot-work tool steel. Detailed investigations including mechanical properties analysis, metallographic observation, fractography, transmission electron microscope (TEM analysis and selected area electron diffraction (SAED were conducted. The results reveal that the material generated a large quantity of large size polyhedral M23C6 (M: Fe and Cr mainly and elongated M3C (M: Fe mainly carbides along the martensitic lath boundaries when the die holder was recurrently tempered and water-cooled at 250 °C during the service. The large size carbides lead to the material embrittlement and impact toughness degradation, and further resulted in the brittle fracture of the die holder. Therefore, the operation specification must be emphasized to avoid the die holder being cooled by using water, which is aimed at accelerating the cooling.

  20. Nanostructure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    Directory of Open Access Journals (Sweden)

    K. M. Zhang

    2013-01-01

    Full Text Available The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nanostructure formations of steels by using a low energy high pulsed electron beam (LEHCPEB treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels.

  1. Special Advanced Studies for Pollution Prevention. Delivery Order 0017: Sol-Gel Surface Preparation for Carbon Steel and Stainless Steel Bonding

    National Research Council Canada - National Science Library

    Zheng, Haixing

    1997-01-01

    The objective of this program is to study the feasibility of using sol-gel active alumina coatings for the surface preparation of carbon steel and stainless steel for adhesive bonding, and to optimize...

  2. Spreading of lithium on a stainless steel surface at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Roszell, J.P.; Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States)

    2016-01-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E{sub des} = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E{sub des} = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium–lithium bonding.

  3. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  4. Gaseous surface hardening of martensitic stainless steels

    DEFF Research Database (Denmark)

    Tibollo, Chiara; Villa, Matteo; Christiansen, Thomas L.

    The present work addresses heat and surface treatments of martensitic stainless steel EN 1.4028. Different combinations of heat treatments and surface treatments were performed: conventional austenitisation, cryogenic treatment and in particular high temperature solution nitriding (HTSN) and low...... that cubic lath martensite in conventionally austenitised EN 1.4028 dissolves nitrogen and develops expanded martensite (ferrite) during LTSH. HTSN leads to a microstructure of tetragonal plate martensite and retained austenite. The content of retained austenite can be reduced by a cryo...

  5. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  6. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  7. Surface characterization and wear behaviour of laser surface melted AISI 316L stainless steel

    CSIR Research Space (South Africa)

    Kumar, A

    2010-01-01

    Full Text Available The present study concerns an in depth investigation of the influence of laser surface melting of AISI 316L stainless steel using Ar and N2 as shrouding atmosphere. Laser surface melting has been carried out using a 5 kW continuous wave (CW) fibre...

  8. Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, Samuel; Zou Min, E-mail: mzou@uark.edu

    2011-12-30

    Creating micro-/nano-scale topography on material surfaces to change their wetting properties has been a subject of much interest in recent years. Wenzel in 1936 and Cassie and Baxter in 1944 proposed that by microscopically increasing the surface roughness of a substrate, it is possible to increase its hydrophobicity. This paper reports the fabrication of micro-textured surfaces and nano-textured surfaces, and the combination of both on stainless steel substrates by sandblasting, thermal evaporation of aluminum, and aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). Meanwhile, fluorinated carbon films were used to change the chemical composition of the surfaces to render the surfaces more hydrophobic. These surface modifications were investigated to create superhydrophobic surfaces on stainless steel substrates. The topography resulting from these surface modifications was analyzed by scanning electron microscopy and surface profilometry. The wetting properties of these surfaces were characterized by water contact angle measurement. The results of this study show that superhydrophobic surfaces can be produced by either micro-scale surface texturing or nano-scale surface texturing, or the combination of both, after fluorinated carbon film deposition.

  9. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  10. X-ray impact induced desorption of gases from stainless steel surfaces

    International Nuclear Information System (INIS)

    Brumbach, S.; Kaminsky, M.

    1975-01-01

    During the operation of plasma devices the interaction of energetic photons with surfaces can cause gas release by photodesorption, and thereby contribute to plasma contamination. Measurements of gases released from stainless steel surfaces were made in an ultrahigh vacuum environment using x-rays characteristic for a tungsten target bremsstrahlung spectrum for electron energies varying from 15 to 50 keV. The predominant gas species observed mass spectrometically are CO 2 (m/e = 44), CO (m/e = 28), and O 2 (m/e = 32). Mean quantum yields for the release of these species from stainless steel were determined. For example, for fresh stainless steel surfaces irradiated by x-rays produced by 50 keV electrons, a mean quantum yield for molecular CO 2 release of 3 x 10 -4 molecules per photons in a bremsstrahlung spectrum at 50 keV electron energy was observed. Based on such a quantum yield an outgassing rate was determined

  11. Automatic inspection of surface defects in die castings after machining

    Directory of Open Access Journals (Sweden)

    S. J. Świłło

    2011-07-01

    Full Text Available A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withstand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a threshold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.

  12. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  13. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  14. Analysis and modeling of hot extrusion die for its service life enhancement

    Science.gov (United States)

    Akhtar, Syed Sohail

    Aluminum extrusion finds extensive application in the construction, automobile and aerospace industries. High pressures, elevated temperatures, complex and intricate section geometries lead to repeated mechanical and thermal stresses in the die and affiliated tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die manufacture and heat treatment, process parameters, inprocess die maintenance/correction and, billet type and quality. Therefore, improved and efficient service life of die and related tooling used in the extrusion press is one the most important factors in maximizing productivity and minimizing cost for ensuring the economical efficiency of an aluminum extrusion plant. How often a die has to be scrapped and replaced with a new one directly contributes to the commercial viability of producing a certain profile. The focus of the current work is on three distinct yet inter-related studies pertaining to the improvement of aluminum extrusion die. Study-A (Die Failure Analysis) is an investigation of various modes and critical failure types based on industrial data (Chapter-2 ), examination of failed dies and finite element simulation for identification of critical process parameters and design features in die fatigue-life (Chapter-3). In Study-B (Die Surface Hardening Treatment), two-stage controlled gas nitriding process for H13 steel is evaluated, both experimentally and numerically, in terms of nitrided case morphology and properties (Chapter-4) followed by experimental and numerical investigation of the effects of repeated nitriding (Chapter-5), pre-nitriding surface preparation (Chapter-6) and die profile geometry (Chapter-7) on nitriding performance in regard to die service life. In Study-C (Effect of Billet Quality on Die Life), the effect of billet quality and related influencing extrusion parameters on the die service life is investigated based on industrial data and some regression

  15. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    Science.gov (United States)

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  16. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel....... characterisation of the cases developed included X-ray diffraction analysis, reflected light microscopy and micro-hardness testing. It was found that the incorporation of nitrogen or carbon resulted in a hardened case consisting of a combination of (tetragonal) martensite and expanded (cubic) austenite...

  17. Development of a surface topography instrument for automotive textured steel plate

    Science.gov (United States)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  18. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  19. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    Science.gov (United States)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  20. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, So Young; Kim, Jong Do [Korea Maritime and Ocean University, Busan (Korea, Republic of); Kim, Jong Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-01-15

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

  1. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    International Nuclear Information System (INIS)

    Choi, So Young; Kim, Jong Do; Kim, Jong Su

    2015-01-01

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained

  2. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    OpenAIRE

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The rev...

  3. COMPLEX SURFACE HARDENING OF STEEL ARTICLES

    Directory of Open Access Journals (Sweden)

    A. V. Kovalchuk

    2014-01-01

    Full Text Available The method of complex surface hardening of steel detailswas designed. The method is a compound of two processes of hardening: chemical heat treatment and physical vapor deposition (PVD of the coating. The result, achieved in this study is much higher, than in other work on this topic and is cumulative. The method designed can be used in mechanical engineering, medicine, energetics and is perspective for military and space technologies.

  4. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  5. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  6. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness

    Directory of Open Access Journals (Sweden)

    Junli Guo

    2018-04-01

    Full Text Available The contraction of peritectic steels in the initial solidification has an important influence on the formation of surface defects of continuously cast slabs. In order to understand the contraction behavior of the initial solidification of steels in the mold, the solidification process and surface roughness in a commercial hypo-peritectic and several non-peritectic steels were investigated using Confocal Scanning Laser Microscope (CSLM. The massive transformation of delta-Fe (δ to austenite (γ was documented in the hypo-peritectic steel, which caused surface wrinkles and greatly increases the surface roughness of samples in the experiments. Surface roughness (Ra(δ→γ was calculated to evaluate the contraction level of the hypo-peritectic steel due to δ–γ transformation. The result shows that the surface roughness method can facilitate the estimation of the contraction level of peritectic transformation over a wide range of cooling rates.

  7. Finite element simulation of photoacoustic fiber optic sensors for surface corrosion detection on a steel rod

    Science.gov (United States)

    Tang, Qixiang; Owusu Twumasi, Jones; Hu, Jie; Wang, Xingwei; Yu, Tzuyang

    2018-03-01

    Structural steel members have become integral components in the construction of civil engineering infrastructures such as bridges, stadiums, and shopping centers due to versatility of steel. Owing to the uniqueness in the design and construction of steel structures, rigorous non-destructive evaluation techniques are needed during construction and operation processes to prevent the loss of human lives and properties. This research aims at investigating the application of photoacoustic fiber optic transducers (FOT) for detecting surface rust of a steel rod. Surface ultrasonic waves propagation in intact and corroded steel rods was simulated using finite element method (FEM). Radial displacements were collected and short-time Fourier transform (STFT) was applied to obtain the spectrogram. It was found that the presence of surface rust between the FOT and the receiver can be detected in both time and frequency domain. In addition, spectrogram can be used to locate and quantify surface rust. Furthermore, a surface rust detection algorithm utilizing the FOT has been proposed for detection, location and quantification of the surface rust.

  8. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor

    Directory of Open Access Journals (Sweden)

    Huayu Zhang

    2017-07-01

    Full Text Available To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor, magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  9. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  10. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  11. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  12. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    Gusti, E.Ya.; Babej, Yu.I.

    1977-01-01

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  13. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin

    2015-12-01

    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  14. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    Energy Technology Data Exchange (ETDEWEB)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  15. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  16. Atomic diffusion in laser surface modified AISI H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  17. Detection and classification of orange peel on polished steel surfaces by interferometric microscopy

    International Nuclear Information System (INIS)

    2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" data-affiliation=" (AC2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" >Miranda-Medina, M L; 2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" data-affiliation=" (AC2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" >Somkuti, P; 2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" data-affiliation=" (AC2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" >Steiger, B

    2013-01-01

    In this work, we provide a general description of the so-called orange peel defect produced on polished steel surfaces. By characterizing a prototype set of samples with various degrees orange peel, we attempt to create a simple model that allows the classification of additional samples through the study of surface parameters. On those surfaces, the orange peel structure has roughness amplitudes in the nanometer range. Detecting surface features on that range requires the implementation of a high-precision technique, such as phase shifting interferometry (PSI). Therefore, we can contribute to the improvement of the manufacturing of polished steel surfaces as well as to the quality control by using optical techniques.

  18. Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces

    DEFF Research Database (Denmark)

    Hjelm, Mette; Hilbert, Lisbeth Rischel; Møller, Per

    2002-01-01

    The aim of this study is to compare the number of attached bacteria, Shewanella putrefaciens, on stainless steel with different silver surfaces. Thus evaluating if silver surfaces could contribute to a higher hygienic status in the food industry. Bacterial adhesion to three types of silver surfaces...... (new silver, tarnished silver and sulphide treated silver) was compared to adhesion to stainless steel (AISI 316). Numbers of attached bacteria (cfu cm-2) were estimated using the Malthus indirect conductance method. A lower number of attached bacteria were measured on new silver surfaces compared...... to stainless steel for samples taken after 24 hours. However this was not significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared to stainless steel and some, but not all, experiments showed statistically significant. A difference of more...

  19. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  20. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  1. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  2. Investigation of using steel slag in hot mix asphalt for the surface course of flexible pavements

    Science.gov (United States)

    Nguyen, Hien Q.; Lu, Dai X.; Le, Son D.

    2018-04-01

    The rapid development of heavy industry in Vietnam leads to the establishments of steel industry. Steel slag, a by-product of steelwork industry, under Vietnamese’s law, was considered as a deleterious solid waste which needed to be processed and landfilled. However, this has changed recently, and steel slag is now seen as a normal or non-deleterious solid waste, and has been studied for reuse in the construction industry. In this study, steel slag was used, as a replacement for mineral aggregate, in hot mix asphalt. Two hot mix asphalt mixtures with an equivalent nominal aggregate size of 12.5 (C12.5) and 19 mm (C19) were produced using steel slag. In addition, one conventional hot mix asphalt mixture of C19 was produced using mineral aggregate for comparison purpose. Investigation in laboratory condition and trial sections was carried out on Marshall tests, surface roughness, skid resistance, and modulus of the pavement before and after applying a new surface course of hot mix asphalt. The study showed that all steel slag asphalt mixtures passed the Marshall stability and flow test requirements. The skid resistance of steel slag hot mix asphalt mixtures for the surface course satisfied the Vietnamese specification for asphalt. Moreover, the pavement sections with the surface course of steel slag hot mix asphalt showed a considerable higher modulus than that of the conventional one. Only the roughness of the surface course paved with C19 did not pass the requirement of the specification.

  3. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  4. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples

    International Nuclear Information System (INIS)

    Khun, N.W.; Frankel, G.S.

    2013-01-01

    Highlights: ► Cathodic delamination of epoxy coated steel samples was studied using SKP. ► Delamination of the coating decreased with increased substrate surface roughness. ► Delamination of the coating was faster on the substrate with parallel surface scratches. ► Delamination of the coating exposed to weathering conditions increased with prolonged exposure. - Abstract: The Scanning Kelvin Probe (SKP) technique was used to investigate the effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel. The cathodic delamination rate of the epoxy coatings dramatically decreased with increased surface roughness of the underlying steel substrate. The surface texture of the steel substrates also had a significant effect in that samples with parallel abrasion lines exhibiting faster cathodic delamination in the direction of the lines compared to the direction perpendicular to the lines. The cathodic delamination kinetics of epoxy coatings previously exposed to weathering conditions increased with prolonged exposure due to pronounced polymer degradation. SEM observation confirmed that the cyclic exposure to UV radiation and water condensation caused severe deterioration in the polymer structures with surface cracking and erosion. The SKP results clearly showed that the cathodic delamination of the epoxy coatings was significantly influenced by the surface features of the underlying steel substrates and the degradation of the coatings.

  5. Surface transformation hardening on steels treated with solar energy in central tower and heliostats field

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G.P.; Lopez, V.; de Damborenea, J.J.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas CENIM/CSIC, Madrid (Spain)

    1995-04-28

    The possibility of surface hardening on AISI 4140 steel treated with concentrated solar energy in solar installations for electricity production has been studied. The samples were slides from a 35 mm diameter steel bar and their height was 35 mm. The quenching was made in water but also was considered the possibility of self-quenching by cooling in air. The amount of the surface hardness and the different structures obtained in both cases are presented, and some discussion is made with reference to the surface hardness, the hardness profiles and the structures obtained. The heating of steel with concentrated solar energy may produce similar hardening to that obtained with more conventional techniques of surface hardening

  6. Laser surface texturing of tool steel: textured surfaces quality evaluation

    Science.gov (United States)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  7. Laser surface modification of stainless steels for cavitation erosion resistance

    Science.gov (United States)

    Kwok, Chi Tat

    1999-12-01

    Austenitic stainless steel UNS S31603 (Fe -17.6Cr -11.2Ni -2.5Mo -1.4Mn -0.4Si -0.03C) has higher pitting corrosion resistance but lower cavitation erosion resistance than that of UNS S30400. This is because of its lower tendency for strain induced martensitic transformation and higher stacking fault energy as compared with those of UNS S30400. In order to improve its cavitation erosion resistance, surface modification of S31603 was performed by laser surface melting and laser surface alloying using a 2-kW CW Nd-YAG laser and a 3-kW CW CO2 laser. For laser surface melting, austenitic stainless steel UNS S30400, super duplex stainless steel UNS S32760 and martensitic stainless steel UNS S42000 were also investigated for comparison purpose. For laser surface alloying, alloying materials including various elements (Co, Cr, Ni, Mo, Mn, Si & C), alloys (AlSiFe & NiCrSiB), ceramics (Si3N 4, SiC, Cr3C2, TiC, CrB & Cr2O 3) and alloys-ceramics (Co-WC, Ni-WC, Ni-Al2O3, Ni-Cr2C3) were used to modify the surface of S31603. The alloyed surface was achieved first by flame spraying or pre-placing of the alloy powder on the S31603 surface and then followed by laser surface remelting. The cavitation erosion characteristics of laser surface modified specimens in 3.5% NaCl solution at 23°C were studied by means of a 20-kHz ultrasonic vibrator at a peak-to-peak amplitude of 30 mum. In addition, their pitting corrosion behaviour was evaluated by electrochemical techniques. The microstructures, compositions, phase changes and damage mechanisms under cavitation erosion were investigated by optical microscopy, SEM, EDAX and X-ray diffractometry. Mechanical properties such as microhardness profile were also examined. The cavitation erosion resistance Re (reciprocal of the mean depth of penetration rate) of laser surface melted S31603 was found to be improved by 22% and was attributed to the existence of tensile residual stress. Improvement on the Re of S42000 was found to be 8.5 times

  8. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  9. X-ray spectrum microanalysis of copper and stainless steel surface layer after electroerosion machining

    International Nuclear Information System (INIS)

    Abdukarimov, Eh.T.; Saidinov, S.Ya.

    1989-01-01

    The results of experimental investigations of the surface layer of copper and steel 12Kh18N10T after electroerrosion treatment by a rotating tungsten electrode in natural and distilled water are presented. It is established that the quantity of electrode material transferred to the surface of the steel treated grows with the spark discharge energy increase. Tungsten concentration in the surface layer reaches 5-10% with the average depth of penetration 40-50 μm

  10. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  11. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  12. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  13. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    International Nuclear Information System (INIS)

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Vali, Hojatollah; Faghihi, Shahab

    2014-01-01

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  14. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  15. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  16. Modification of steel surface by plasma electrolytic saturation with nitrogen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kusmanov, S.A., E-mail: sakusmanov@yandex.ru; Kusmanova, Yu.V., E-mail: yulia.kusmanova@yandex.ru; Smirnov, A.A., E-mail: sciencealexsm@gmail.com; Belkin, P.N., E-mail: belkinp@yandex.ru

    2016-06-01

    The effect of the electrolyte composition with ammonia, acetone, and ammonium chloride on the structure and properties of low carbon steel was studied in anode plasma electrolytic nitrocarburising. An X-ray diffractometer, a scanning electron microscopy (SEM) and an optical microscope were used to characterize the phase composition of the modified layer and its surface morphology. Surface roughness was studied with a profilometer–profilograph. The hardness of the treated and untreated samples was measured using a microhardness tester. The sources of nitrogen and carbon are shown to be the products of evaporation and thermal decomposition of the electrolyte components. It is established that the influence of concentration of ammonia, acetone, and ammonium chloride on the size of the structural components of the hardened layer is explained by the competition of the anode dissolution, high-temperature oxidation and diffusion of the saturating component. The electrolyte composition (10–12.5% ammonium chloride, 5% acetone, 5% ammonia) and processing mode (800 °C, 5–10 min) of low carbon steels allowing to obtain the hardened surface layer up to 0.2 mm with microhardness 930 HV and with decrease in the roughness (R{sub a}) from 1.013 to 0.054 μm are proposed. The anode plasma electrolytic nitricarburising is able to decrease friction coefficient of the treated low carbon steel from 0.191 to 0.169 and wear rate from 13.5 mg to 1.0 mg. - Highlights: • Aqueous solution (12.5% NH{sub 4}Cl, 5% ammonia, 5% acetone) is proposed for PEN/C steels. • Microhardness of steel (0.2% C) is 930 HV due to PEN/C for 5–10 min at 800 °C. • Anode PEN/C of low carbon steel decreases its roughness (R{sub a}) from 1.013 to 0.054 μm. • Anode PEN/C decreases friction coefficient of low carbon steel from 0.191 to 0.169 • Anode PEN/C decreases wear loss of low carbon steel from 13.5 mg to 1.0 mg.

  17. Surface strengthening using a self-protective diffusion paste and its application for ballistic protection of steel plates

    International Nuclear Information System (INIS)

    Lou, D.C.; Solberg, J.K.; Borvik, T.

    2009-01-01

    This paper deals with surface strengthening of steel plates using a self-protective diffusion paste. During the surface strengthening process, a paste containing carbon, boron or similar is applied on the steel surface. In addition to serving as a source for the various diffusion ingredients, the paste protects the steel against contact with the environment, so no packing or gas protection is necessary. Thus, the handling is in general very simple, and the surface strengthening process can be performed in a conventional air furnace. The method provides the same type of surface strengthening that is obtained by more conventional methods. In this work, the main focus will be surface strengthening by carburizing, but also boronizing and boronizing followed by carburizing have been tested out. The methods have been applied to increase the ballistic resistance of the low-strength carbon steel NVE36 (with nominal yield stress of 355 MPa) against impacts from small-arms bullets. An empirical model combining diffusion depth, heat-treatment temperature and soaking time was established on the basis of a series of experimental data. By means of this equation, the various heat-treatment parameters can be predicted when others are chosen. Ballistic perforation tests using 7.62 mm APM2 bullets showed that the low-strength carbon steel after surface strengthening obtained a ballistic limit higher than that of Hardox 400, which is a wear steel with a yield stress of about 1200 MPa.

  18. About the effect of melted zinc mass additives on the formation on layers during hot galvanizing; Zur Wirkung von Zusaetzen zur Zinkschmelze auf die Schichtbildung beim Feuerverzinken

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, P.; Schulz, W.D. [Institut fuer Korrosionsschutz Dresden GmbH, Gostritzer Str. 61-63, D-01217 Dresden (Germany)

    2002-09-01

    The influence of various melted zinc mass additives on the galvanizing behaviour of steels is examined by way of comparison. The mechanisms influencing the formation of layers are very different. In case tin is added, a material barrier of enriched tin develops in the zinc coating, which inhibits the iron transport. The mechanisms of Ni, Ti and Al in the melted zinc mass are explained by means of a new theory on the formation of layers, which is based on the influence of the growth of layers via hydrogen escaping from the steel surface during hot galvanizing. This behaviour makes it clear why the single melted mass additives only have a layer-thickness reducing effect on steels with very definite Si contents. The different inhibitions of the growth of the layer during hot galvanizing are discussed. (Abstract Copyright[2002], Wiley Periodicals, Inc.) [German] Der Einfluss unterschiedlicher Zinkschmelzezusaetze auf das Verzinkungsverhalten der Staehle wird vergleichend untersucht. Die Mechanismen der Einflussnahme auf die Schichtbildung sind sehr unterschiedlich. Bei Zusatz von Zinn entsteht im Zinkueberzug eine Materialbarriere aus angereichertem Zinn, die den Eisentransport hemmt. Die Wirkungsweise von Ni, Ti und Al in der Zinkschmelze wird mit Hilfe einer neuen Theorie der Schichtbildung erklaert. Diese beruht auf der Beeinflussung des Schichtwachstums durch Wasserstoff, der waehrend des Feuerverzinkens aus der Stahloberflaeche austritt. Diese Erklaerung macht verstaendlich, warum die einzelnen Schmelzezusaetze nur bei Staehlen mit ganz bestimmten Si-Gehalten schichtdickenreduzierend wirken. Die unterschiedlichen Hemmungen des Schichtwachstums beim Feuerverzinken werden diskutiert. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  19. Nitrogen transport during plasma-enhanced case nitriding of stainless steels - the effects of the passivating oxide layer; Stickstofftransport waehrend der plasmagestuetzten Randaufstickung nichtrostender Staehle - der Einfluss der passivierenden Oxidschicht

    Energy Technology Data Exchange (ETDEWEB)

    Parascandola, S.; Kruse, O.; Richter, E. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Ionenstrahlphysik und Materialforschung; Moeller, W.

    1998-12-31

    Plasma-enhanced case nitriding at moderate temperatures is a promising technique for surface treatment of components made of stainless steels. In-situ ERD permits time-resolved and depth-dependent elemental analysis during the case nitriding process. This offers possibilities for process characterisation which are only briefly discussed in the paper. The oxide layer at the surface of the steel is a barrier to nitrogen input. In order to achieve fast nitrogen diffusion into the material, the oxide layer has to be largely removed in the low-energy ion implantation process. The observed equilibrium between diffusion and re-absorption is in good agreement with calculated as well as empirical results. (orig./CB) [Deutsch] Die plasmagestuetzte Randaufstickung bei moderaten Temperaturen ist eine erfolgversprechende Technologie zur Oberflaechenveredelung von Bauteilen aus nichtrostendem Stahl. Die Analytik mit in-situ ERD erlaubt zeit- und tiefenaufgeloeste Elementanalyse waehrend des Aufstickungsprozesses. Dadurch ergeben sich Moeglichkeiten der Prozesscharakterisierung, die hier nur angedeutet werden konnten. Die Oxidschicht an der Oberflaeche der nichtrostenden Staehle stellt eine Barriere fuer den Stickstoffeintrag dar. Fuer schnelle Stickstoffdiffusion muss die Oxidschicht bei der Niederenergie-Ionenimplantation weitgehend abgebaut werden. Das beobachtete Gleichgewicht zwischen Zerstaeubung und Wiederbelegung stimmt gut mit Simulationsrechnungen bzw. empirischen Werten ueberein. (orig.)

  20. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  1. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  2. X-ray analysis on the fatigue fracture surface of stainless steels

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Guimard, B.

    1986-01-01

    Several X-ray diffraction parameters were observed on the fatigue fracture surface and its vicinity of both of SUS420J1 martensitic and SUS304 austenitic stainless steels and we discussed the relation between the stress intensity factor and these parameters. Monotonic plastic zone depth determined by the measurement of residual stress distribution proportionals to the squre of the maximum stress intensity factor as well as the case of ferritic steel. However, it is very difficult to find the relation between the stress intensity factor and residual stress or half value breadth of X-ray diffraction profile in the fracture surface for both materials. On the other hand, the amount of martensite induced by the transformation during fatigue process in SUS304 is related to the maximum stress intensity factor in the fracture surface regardless the stress ratio R. (author)

  3. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  4. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters

    International Nuclear Information System (INIS)

    Zhang Zhihui; Zhou Hong; Ren Luquan; Tong Xin; Shan Hongyu; Li Xianzhou

    2008-01-01

    Aiming to form the high quality of non-smooth biomimetic unit, the influence of laser processing parameters (pulse energy, pulse duration, frequency and scanning speed in the present work) on the surface morphology of scanned tracks was studied based on the 3Cr2W8V die steel. The evolution of the surface morphology was explained according to the degree of melting and vaporization of surface material, and the trend of mean surface roughness and maximum peak-to-valley height. Cross-section morphology revealed the significant microstructural characteristic of the laser-treated zone used for forming the functional zone on the biomimetic surface. Results showed that the combination of pulse energy and pulse duration plays a major role in determining the local height difference on the irradiated surface and the occurrence of melting or vaporization. While frequency and scanning speed have a minor effect on the change of the surface morphology, acting mainly by the different overlapping amount and overlapping mode. The mechanisms behind these influences were discussed, and schematic drawings were introduced to describe the mechanisms

  5. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    International Nuclear Information System (INIS)

    Li Yang; Wang Liang; Zhang Dandan; Shen Lie

    2010-01-01

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 deg. C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 deg. C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 deg. C within the same time.

  6. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Science.gov (United States)

    Li, Yang; Wang, Liang; Zhang, Dandan; Shen, Lie

    2010-11-01

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 °C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 °C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 °C within the same time.

  7. Investigation of the influence of hybrid layers on the life time of hot forging dies

    Directory of Open Access Journals (Sweden)

    S. Legutko

    2013-04-01

    Full Text Available The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland.

  8. Wear behavior of contacting between thin film coating on SKD11 ball and 304 stainless steel disk

    Directory of Open Access Journals (Sweden)

    Sriprasird, J.

    2007-11-01

    Full Text Available Wear is a well known problem in metal stamping die, especially on the die working with stainless steel workpiece, in which wear rate is severe. This research considered various types of material coating on tool surface which were regularly practised in modern stamping industry due to the ability to increase wear resistance. The model study of friction "Ball-on-disk" technique was employed throughout this work. The disk was made from stainless steel austenitic grade (SUS304. The ball was made from cold work tool steel, SKD11 (JIS and was hardened to 60±2 HRC. Ball surface conditions selected for this work were non-coated, coated by TiC-CVD, TiCN (TiC/TiCN/TiN Multilayer-CVD and TiCN (TiN/TiCN Double layer-PVD, and treated by VC-TD. Tests were carried out without lubricant. The results show that the coating film and the surface treatment has no effect on the friction coefficient but it can reduce wear rate by 64.1-99.7% at contact pressure condition less than 1,100 MPa. At the higher level of contact pressure, only 2 types of coating, TiCN (Multilayer-CVD and TiC-CVD, can reduce wear rate. The other two, which are TiCN (Double layer-PVD coating film and a surface treatment by VC-TD process, on the contrary increase the rate of wear significantly. This is due to delamination of coating film at high contact pressure. The coating particles of high hardness accelerate wear phenomenon on the tool surface. Therefore, proper selection of tool surface condition depends on level of contact pressure generated in the process.

  9. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    Science.gov (United States)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  10. Study of Surface Wear and Damage Induced by Dry Sliding of Tempered AISI 4140 Steel against Hardened AISI 1055 Steel

    Directory of Open Access Journals (Sweden)

    A. Elhadi

    2016-12-01

    Full Text Available In industry, the sliding mechanical systems are subject to friction and wear phenomena. These phenomena can be the origin of a reduction of the efficiency of the mechanical system even to be responsible for its incapacity. Generally, the materials of the parts which are moving relative (tribological couple of these systems are low alloy steels and carbon steels, thanks to their good mechanical and tribological properties. The present work aimed to study, the surface wear and damage induced by dry sliding of hard carbon steel AISI 1055 (disc against tempered low alloy steel AISI 4140 (pin with different hardness and applied loads was investigated. The results revealed that the interaction between the applied load and pin hardness result in complex thermo-mechanical behaviour of the worn surfaces. When a lower hardness pin is used, the main wear mechanisms observed on the discs were abrasion, adhesion, and oxidation. When a higher hardness pin is used, the wear of the discs is governed by delamination, oxidation, and plastic deformation. In particular, third-body wear occurs at high applied load resulting in higher wear rate of high hardness pins compared to low hardness pins.

  11. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    Science.gov (United States)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  12. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described.

  13. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    International Nuclear Information System (INIS)

    McHugh, K.M.; Lin, Y.; Zhou, Y.; Lavernia, E.J.

    2008-01-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described

  14. Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ardigo-Besnard, M.R., E-mail: maria-rosa.ardigo-besnard@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Popa, I.; Heintz, O.; Chassagnon, R. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Vilasi, M. [Institut Jean Lamour, UMR 7198 CNRS—Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Herbst, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Girardon, P. [APERAM, Centre de Recherche, BP15, 62330 Isbergues (France); Chevalier, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France)

    2017-08-01

    Highlights: • Study of surface finishing effect on the corrosion behaviour of a stainless steel. • Mirror polished samples were compared to as-rolled material. • Two oxidation mechanisms were identified depending on the surface finishing. • Before oxidation, native chemical phases are identical for both samples. • Subsurface dislocations generated by the polishing process promote Cr{sub 2}O{sub 3} formation. - Abstract: The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn){sub 3}O{sub 4}/Cr{sub 2}O{sub 3} scale formed on the polished samples whereas external Fe{sub 3}O{sub 4} and (Cr,Fe){sub 2}O{sub 3} oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means of X-ray photoelectron spectroscopy (XPS) and residual stress analyses using XRD at the sample surfaces before ageing.

  15. A Study on the Fatigue-Fractured Surface of Normalized SS41 Steel and M.E.F. Dual Phase Steel by an X-ray Diffraction Technique

    International Nuclear Information System (INIS)

    Oh, Sae Wook; Park, Young Chul; Park, Soo Young; Kim, Deug Jin; Hue, Sun Chul

    1996-01-01

    This study verified the relationship between fracture mechanics parameters and X-ray parameters for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation test were carried out and X-ray diffraction technique was applied to fatigue fractured surface. The change in X-ray parameters(residual stress, half-value breadth) according to the depth of fatigue fractured surface were investigated. The depth of maximum plastic zone, W y , were determined on the basis of the distribution of the half-value breadth for normalized SS41 steel and that of the residual stress for M.E.F. dual phase steel. K max could be estimated by the measurement of W y

  16. Study of surface layer on 08Kh15N5D2T steel

    International Nuclear Information System (INIS)

    Tyurin, A.G.; Povolotskij, V.D.; Zhivotovskij, Eh.A.; Berg, B.N.

    1986-01-01

    08Kh15N5D2T steel phase composition is investigated. Its surface layer was determined by X-ray diffraction analysis method. It is shown, that a subscale appears to be the reason for corrosion of products, made of EhP410 steel. Under the existing smelling technology the carbon content in it is ≥ 0.05%. Therefore to avoid the metal surface depletion with chromium, one must provide for titanium relation to carbon of not less than 4.5 and carry out the rolled product thermal treatment in a protective atmosphere; otherwise, the technology must include not only the removal of scale from steel but the metal subscale layer as well

  17. Direct diamond turning of steel molds for optical replication

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Bulla, Benjamin; Heselhaus, Michael

    2009-05-01

    In this paper the most recent investigations in ultrasonic assisted diamond machining of hardened steel at the Fraunhofer IPT is presented. The goal of this technology is to unify the outrageous specifications of diamond machining process with steel material. The focus lies on the kinematic influence of the discrete frequencies 40 kHz and 60 kHz. Special interest is given to the reachable surface roughness depending on process parameters. The machined steel (1.2083, X40Cr14, STAVAX ESU) is a common mold die material for optical replication processes.Results of the accomplished investigations show the potential of the ultrasonic assisted process and recent developments. By increasing the frequency from 40 kHz to 60 kHz the overall process stability is increased. This makes the process less vulnerable towards feed rate variation or towards the variation of machined material hardness. Furthermore no tool wear is detected at high material removal rates or high cutting distances during component machining.

  18. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    International Nuclear Information System (INIS)

    Lin, Naiming; Guo, Junwen; Xie, Faqin; Zou, Jiaojuan; Tian, Wei; Yao, Xiaofei; Zhang, Hongyan; Tang, Bin

    2014-01-01

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance

  19. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  20. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    Science.gov (United States)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  1. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-01-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm 2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance

  2. Effect of operational conditions of electroerosion machining on the surface microgeometry parameters of steels and alloys

    International Nuclear Information System (INIS)

    Foteev, N.K.

    1976-01-01

    Studies the influence of pulse duration and a series of operating conditions of a ShGI-40-440 spark-machining generator on changes in the basic surface microgeometry characteristics of components of stainless steel 1Kh18N10T, steel St 45 and hard alloy T14K8. The microgeometry characteristics of spark-machined surfaces differ significantly from the corresponding characteristics of surfaces machined by cutting and vibro-rolling

  3. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth.

    Science.gov (United States)

    Nielsen, C K; Subbiahdoss, G; Zeng, G; Salmi, Z; Kjems, J; Mygind, T; Snabe, T; Meyer, R L

    2018-01-01

    Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces. Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol. The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface. Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces. © 2017 The Society for Applied Microbiology.

  4. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    Science.gov (United States)

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with

  5. X-ray fractographic study on fatigue fracture surface of structural steels

    International Nuclear Information System (INIS)

    Ogura, Keiji; Miyoshi, Yoshio; Kawaguchi, Masahiro; Kayama, Masahiro.

    1985-01-01

    An X-ray fractographic study was made on the fatigue fracture surface of the structural steels with various strength levels. An emphasis was put on examining the effect of strength level on the residual stress and half-value breadth on and under the fracture surface. It was found that the residual stress on the fracture surface was controlled by Ksub(max) in a low Ksub(max) or ΔK region (Region I), while it was controlled by ΔK rather than Ksub(max) in a high Ksub(max) or ΔK region (Region III). It was also found that another transitional region (Region II) was observed between these two regions in SNCM 815 steel. An explanation for all these behavior was discussed by a proposed model. The distribution of the residual stress and half-value breadth under the fracture surface was found to be usefull for estimating the value of Ksub(max), although the distribution itself was strongly influenced by strength level, particularly the work-softening behavior, of the materials. (author)

  6. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    Guu, Y.H.

    2005-01-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  7. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Science.gov (United States)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  8. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China); Wang Liang, E-mail: wlimt@yahoo.com [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China); Zhang Dandan; Shen Lie [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China)

    2010-11-15

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 deg. C for 8 h in an NH{sub 3} gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 deg. C for 8 h can produced a compound layer of 2.5 {mu}m thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 deg. C within the same time.

  9. On the surface topography of ultrashort laser pulse treated steel surfaces

    International Nuclear Information System (INIS)

    Vincenc Obona, J.; Ocelík, V.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in’t Veld, A.J.; De Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the fluence applied. It is shown that these features appear due to solid-liquid and liquid-gas transitions within surface layer irradiated by intense laser light. The observations are confronted to the theory of short-pulsed laser light-matter interactions, including interference, excitation of electrons, electron-phonon coupling as well as subsequent ablation. It is shown that the orientation of small ripples does not always depend on the direction of the polarization of laser light.

  10. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  11. Correlation between Surface Roughness Characteristics in CO2 Laser Cutting of Mild Steel

    Directory of Open Access Journals (Sweden)

    M. Radovanović

    2012-12-01

    Full Text Available CO2 laser oxygen cutting of mild steel is widely used industrial application. Cut surface quality is a very important characteristic of laser cutting that ensures an advantage over other contour cutting processes. In this paper mathematical models for estimating characteristics of surface quality such as average surface roughness and ten-point mean roughness in CO2 laser cutting of mild steel based on laser cutting parameters were developed. Empirical models were developed using artificial neural networks and experimental data collected. Taguchi’s orthogonal array was implemented for experimental plan. From the analysis of the developed mathematical models it was observed that functional dependence between laser cutting parameters, their interactions and surface roughness characteristics is complex and non-linear. It was also observed that there exist region of minimal average surface roughness to ten-point mean roughness ratio. The relationship between average surface roughness and ten-point mean roughness was found to be nonlinear and can be expressed with a second degree polynomial.

  12. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    OpenAIRE

    S.R. Al-Sayed; A.A. Hussein; A.A. Nofal; S.I. Hassab Elnaby; H. Elgazzar

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m?min?1) was adopted to reach the op...

  13. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  14. Two new techniques for the remote evaluation of reactor steel condition - microscopic removal and surface examination

    International Nuclear Information System (INIS)

    Clayton, R.

    Much reactor inspection work involves an assessment of the condition of structural steel. This paper reviews two different techniques which provide information for such an assessment. The first - micro-sample removal (for the measurement of surface oxide thickness and chemical composition) - requires contact with the steel surface, whereas the second - a 'teach and learn' photographic technique (in which a special photogrammatic camera is used to obtain high-quality close-up photographs, to assess surface condition and corrosion growth) can obtain surface information on inaccessible components. (author)

  15. The influence of surface roughness on the hydrogen permeation of type API 5L-X52 steel

    International Nuclear Information System (INIS)

    Requiz, R.; Vera, N.; Camero, S.

    2004-01-01

    The influence of surface roughness on the corrosion and hydrogen permeation behaviour was evaluated on a type API 5L-52 steel in dearated 0.1M NaSO 4 at pH=2. Potentiodynamic polarization curves were employed to determine the electrochemical behaviour of the steel, while the Devanathan-Stachurski technique was used to estimate the hydrogen permeation rate. Additionally, the surface roughness profiles were obtained in order to correlate the changes in the hydrogen perkeation rate with different metal surface finishings. The obtained results clearly demonstrate that when the roughness parameters have larger values, the cathodic current of hydrogen evolution increases while the hydrogen entry rate decreases. This effect can be attributed to the microstructural defects induced at the steel surface, such as dislocations, which increase the catalytic activity of the atomic hydrogen favouring its recombination. Also, these defects could allow the atomic hydrogen to remain adsorbed on the steel surface. Both effects could hinder the hydrogen diffusion into the metal since the possibility for this atom of becoming absorbed has been reduced. (Author) 16 refs

  16. Effect of surface decarburization on the mechanical properties of high strength low alloy steel

    International Nuclear Information System (INIS)

    Saqib, S.

    1993-01-01

    An attempt has been made to study the relationship of mechanical properties with the microstructure of a high strength low alloy steel. A thorough investigation was conducted on the steel sheet and variation in mechanical properties was observed across its thickness with a change in the microstructure. Change in hardness and tensile strength at the surface compare to the core of the material is attributed to decarburization. The current research indicates that the correlation between hardness and tensile strength is not valid for steels if the hardness is determined on the surface only. Great care should be taken at the time of determination of tensile strength by using conversion charts/tables on the basis of hardness values obtained by practical means. (author)

  17. Corrosion and surface conditions of EUROFER 97 steel in Pb-17Li at 500 deg C

    International Nuclear Information System (INIS)

    Zmitko, M.; Splichal, K.; Masarik, V.

    2004-01-01

    In this work the corrosion behaviour of EUROFER 97 was examined in flowing Pb-17Li at the temperature 500 deg C up to 2500 hours. Surface morphology and chemical composition profiles and weight changes were investigated. Interaction of EUROFER 97 specimens with Pb-17Li melt results in a material dissolution, which is demonstrated by surface morphology and specimen weight changes. The specimen surfaces investigated after 500 and 1000 hours of exposure in Pb-17Li show similar surface appearance in both as-received and polished conditions. The corrosive damage occurs locally and a major part of surface areas is not affected. The exposure after 2500 hours evidences some visible decrease in the surface roughness for both surface conditions. The surface overlapping was observed and industrial tube productions have to avoid such types of defects. A small weight changes after 500 and 1000 hours and a higher weight decrease after 2500 hours were observed. The absolute values of the weight change after 500 and 1000 hours are about one order of magnitude lower than ones of weight changes after 2500 hours exposure. There were no significant differences of weight changes between as-received and polished surface conditions. The weight decrease of about 1 mg/cm 2 after 2500 hours is in a sufficient correlation with the value of about 4 mg/cm 2 evaluated from data of Fe-12Cr-1MoVW steel. The experiments have shown that the surface corrosive attack revealed only after a certain incubation period. During this period the surface layers are relatively stable to a direct attack of the surface by the melt. In the course of exposure time those layers are not further resistant and can influence the dissolutions of steel components. Concentration profiles of steel components near the steel surface were examined by EDX line-scan and point analyses. Under the experimental conditions no considerable profile of Cr and Fe in surface layers, as higher soluble steel components in Pb-17Li, was

  18. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  19. Application of phosphating techniques to aluminium and carbon steel surfaces using nitro guanidine as oxidizing agent

    International Nuclear Information System (INIS)

    Briseno M, S.A.

    1995-01-01

    Phosphate coatings are inorganic crystalline deposits laid down uniformly on properly prepared surfaces by a chemical reaction with the treated base metal. The reaction consists in dissolving some surface metal by acid attack and then causing surface neutralization of the phosphate solution with consequent precipitation of the phosphate coating. Phosphate coatings do not provide appreciable corrosion protection in themselves. They are useful mainly as a base for paints, ensuring good adherence of paint to steel and decreasing the tendency for corrosion to under cut the paint film at scratches or other defects. In this work firstly were realized phosphate on standard carbon steel, employing technical of cold phosphate (at 40 Centigrade degrees and with a treatment time of 30 minutes) and hot phosphate (at 88 Centigrade degrees and with a treatment time of 15 minutes), where with this last were obtained the best results. Both methods used phosphate solutions of Zn/Mn and using as catalyst Nitro guanidine. Aluminium surfaces were phosphate used solutions of Cr and as catalyst Sodium bi fluoride. The phosphating on this surface were realized at temperature of 50 Centigrade degrees and with a treatment time of 10 minutes. In this work were obtained a new phosphate coatings on steel surfaces, these coatings were realized with a phosphate solution manufactured with the precipitates gathered during the hot phosphating on carbon steel. These coatings show excellent physical characteristics and of corrosion resistance. Were determined the physical testings of the coatings phosphate obtained on carbon steel and aluminium surfaces. These testing were: roughness, thickness, microhardness and adhesion. The best results were showed in carbon steel phosphate with precipitated solutions. The technical of analysis for activation with thermic neutrons was used to determine the phosphate coatings composition. Finally, corrosion testings were realized by means of two methods

  20. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lin Yimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China) and Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)]. E-mail: linyimin_2001@yahoo.com.cn; Lu Jian [LASMIS, University of Technology of Troyes, 10000 Troyes (France); Wang Liping [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Xu Tao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China); Xue Qunji [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Middle Tianshui Road, Lanzhou 730000 (China)]. E-mail: qjxue@ns.lzb.ac.cn

    2006-12-15

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 321 austenitic stainless steel by means of surface mechanical attrition treatment (SMAT). Low-temperature nitriding of SMAT and un-SMAT AISI 321 stainless steel was carried out in pulsed-DC glow discharge. The effect of SMAT pretreatment on the microstructure and properties of the stainless steel were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Vickers hardness tester and UMT-2MT tribometer. The results show that the plasma nitriding of AISI 321 steel can be enhanced considerably by means of SMAT process before nitriding, and a much thicker nitrogen diffusion layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples. In addition, the wear resistance and load capacity of the nitrided layers on the SMAT samples was much higher than that of the un-SMAT samples due to the thicker S phase case and the gradient nitrogen diffusion layer.

  1. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions

    International Nuclear Information System (INIS)

    Zheng, Haibing; Li, Weihua; Ma, Fubin; Kong, Qinglin

    2014-01-01

    In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH) 2 solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH) 2 solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface

  2. Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.

    Science.gov (United States)

    Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan

    2018-03-29

    Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.

  3. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II : Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  4. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    Science.gov (United States)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  5. New trends in cold-chamber die casting machine design

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2015-07-01

    Full Text Available Larger and larger proportions of aluminium castings, especially those produced by the die casting process, can be observed during recent years in the automotive industry, house-hold articles and others. In case of the automotive industry, apart from the traditional elements produced by the die pressure method such as engine blocks or crank shaft bedplates, aluminium is displacing steel from structural parts of cars (‘body in white’. The current state and development directions of the structural solutions of cold-chamber die castings are analysed in this paper. These solutions drive the prospective development of these machines and die casting technology. The focus is mainly on essential functional systems such as: hydraulic drives of closing and locking units, as well as pressing in die machines of known companies present on the European market.

  6. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  7. Thermally-Induced Crack Evaluation in H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Hassan Abdulrssoul Abdulhadi

    2017-11-01

    Full Text Available This study reported the effect of thermal wear on cylindrical tool steel (AISI H13 under aluminum die-casting conditions. The AISIH13 steels were immersed in the molten aluminum alloy at 700 °C before water-quenching at room temperature. The process involved an alternating heating and cooling of each sample for a period of 24 s. The design of the immersion test apparatus stylistically simulated aluminum alloy dies casting conditions. The testing phase was performed at 1850, 3000, and 5000 cycles. The samples were subjected to visual inspection after each phase of testing, before being examined for metallographic studies, surface crack measurement, and hardness characteristics. Furthermore, the samples were segmented and examined under optical and Scanning Electron Microscopy (SEM. The areas around the crack zones were additionally examined under Energy Dispersive X-ray Spectroscopy (EDXS. The crack’s maximum length and Vickers hardness profiles were obtained; and from the metallographic study, an increase in the number of cycles during the testing phase resulted in an increase in the surface crack formation; suggesting an increase in the thermal stress at higher cycle numbers. The crack length of Region I (spherically shaped was about 47 to 127 µm, with a high oxygen content that was analyzed within 140 µm from the surface of the sample. At 700 °C, there is a formation of aluminum oxides, which was in contact with the surface of the H13 sample. These stresses propagate the thermal wear crack length into the tool material of spherically shaped Region I and cylindrically shape Region II, while hardness parameters presented a different observation. The crack length of Region I was about 32% higher than the crack length of Region II.

  8. Die funksie van die belydenis in die struktuur van die kerk en die ...

    African Journals Online (AJOL)

    Ter wille van die argument wat in hierdie voordrag na vore gebring word, word vier sodanige konstituerende elemente van die kerklike struktuur onderskei, te wete die belydenis, die teologie, die verkondi- ging (meer bepaald die prediking) en die kerkorde (kerkwet volgens ons terminologie). Ons gaan nou elkeen hiervan ...

  9. die rol van die unieverdedigingsmag in die onderdrukking van die

    African Journals Online (AJOL)

    agv regeringsoptrede nie.39. Siotsom. In die geskiedenis van die Unieverdedigings- mag word die gebeure random die 1914-staking oorskadu deur die Rebellie en Suid-Afrika se deelname aan die Eerste Wereldoorlog. Tog was dit 'n belangrike mylpaal in die geskiedenis van die organisasie, omdat dit sy eerste optrede ...

  10. Effect of steel surface conditions on reinforcing steel corrosion in concrete exposed to marine environments

    Directory of Open Access Journals (Sweden)

    Anzola, E.

    2005-09-01

    Full Text Available Laboratory methods and experimental tests were deployed in the present study to evaluate corrosion in reinforced concrete exposed to marine environments. Reinforcing steel exhibiting two different surface conditions prior to embedment in concrete were studied, one the one hand to assess the electrochemical behaviour of the bars during exposure of the concrete specimens to a simulated marine environment, and on the other to determine the strength of the steel/concrete bond. The reinforced concrete specimens prepared were adapted as required for electrochemical potential and corrosion rate testing. A total of 56 7x15-cm cylindrical specimens containing 3/8" steel rods anchored at a depth of 11.5 cm were made to evaluate the steel / concrete bond and exposed to a natural marine environment for 28 or 190 days prior to testing. All the specimens were made with ready-mixed concrete. It may be concluded from the results of the corrosion tests on reinforcing steel with different surface conditions that the oxide initially covering the bars was dissolved and the steel passivated by the alkalinity in the concrete. The chief finding of the bonding study was that the layer of oxide formed in pre-embedment steel deterioration contributed to establishing a better bond.

    En el contexto de esta investigación, se tomaron en consideración métodos y ensayos experimentales de laboratorio, que permiten hacer una evaluación de la corrosión del hormigón armado expuesto en ambientes marinos. Por una parte se evaluó el comportamiento electroquímico de dos condiciones de estados superficiales del acero embebido en el hormigón, exponiéndolo en un ambiente marino simulado y, por otra parte, se estudió la adherencia entre el acero y el hormigón, con los mismos estados superficiales usados para la evaluación electroquímica. Las probetas se fabricaron de hormigón con acero de refuerzo en su interior, adecuándolas para realizar los ensayos de potenciales

  11. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure.

    Science.gov (United States)

    Alzubeidi, Yasmeen S; Udompijitkul, Pathima; Talukdar, Prabhat K; Sarker, Mahfuzur R

    2018-07-20

    Enterotoxigenic Clostridium perfringens, a leading foodborne pathogen can be cross-contaminated from food processing stainless steel (SS) surfaces to the finished food products. This is mostly due to the high resistance of C. perfringens spores adhered onto SS surfaces to various disinfectants commonly used in food industries. In this study, we aimed to investigate the survivability and adherence of C. perfringens spores onto SS surfaces and then validate the effectiveness of a simulated Clean-in-Place (CIP) regime on inactivation of spores adhered onto SS surfaces. Our results demonstrated that, 1) C. perfringens spores adhered firmly onto SS surfaces and survived for at-least 48 h, unlike their vegetative cells who died within 30 min, after aerobic incubation at refrigerated and ambient temperatures; 2) Spores exhibited higher levels of hydrophobicity than vegetative cells, suggesting a correlation between cell surface hydrophobicity and adhesion to solid surfaces; 3) Intact spores were more hydrophobic than the decoated spores, suggesting a positive role of spore coat components on spores' hydrophobicity and thus adhesion onto SS surfaces; and finally 4) The CIP regime (NaOH + HNO 3 ) successfully inactivated C. perfringens spores adhered onto SS surfaces, and most of the effect of CIP regime appeared to be due to the NaOH. Collectively, our current findings may well contribute towards developing a strategy to control cross-contamination of C. perfringens spores into food products, which should help reducing the risk of C. perfringens-associated food poisoning outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jon T. [General Motors LLC, Warren, MI (United States); Wang, Gerry [Meridian Lightweight Technologies, Plymouth MI (United States); Luo, Alan [General Motors LLC, Warren, MI (United States)

    2017-11-29

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improve the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some

  13. Recrystallization and modification of the stainless-steel surface relief under photonic heat load in powerful plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation); Khimchenko, L. N. [Project Center ITER (Russian Federation); Zhitlukhin, A. M.; Klimov, N. S. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Pitts, R. A. [ITER Organization (France); Linke, J. [EURATOM Association, Forschungszentrum Jülich GmbH (Germany); Bazylev, B. [IHM, Karlsruhe Institute of Technology (Germany); Belova, N. E.; Karpov, A. V. [National Research Centre Kurchatov Institute (Russian Federation); Kovalenko, D. V.; Podkovyrov, V. L.; Yaroshevskaya, A. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2013-11-15

    Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.

  14. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

    Science.gov (United States)

    Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.

    2017-12-01

    This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser ( λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

  15. Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel

    Science.gov (United States)

    Zdravecká, Eva; Slota, Ján; Solfronk, Pavel; Kolnerová, Michaela

    2017-07-01

    This work is concerned with the surface treatment (ion nitriding) of different plasma-nitriding parameters on the characteristics of DIN 1.8519 low-alloy steel. The samples were nitrided from 500 to 570 °C for 5-40 h using a constant 25% N2-75% H2 gaseous mixture. Lower temperature (500-520 °C) favors the formation of compound layers of γ' and ɛ iron nitrides in the surface layers, whereas a monophase γ'-Fe4 N layer can be obtained at a higher temperature. The hardness of this layer can be obtained when nitriding is performed at a higher temperature, and the hardness decreases when the temperature increases to 570 °C. These results indicate that pulsed plasma nitriding is highly efficient at 550 °C and can form thick and hard nitrided layers with satisfactory mechanical properties. The results show the optimized nitriding process at 540 °C for 20 h. This process can be an interesting means of enhancing the surface hardness of tool steels to forge dies compared to stamped steels with zinc coating with a reduced coefficient of friction and improving the anti-sticking properties of the tool surface.

  16. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  17. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  18. High pressure die casting of Fe-based metallic glass.

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  19. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  20. Effect of Spreading Time on Contact Angle of Nanofluid on the Surface of Stainless Steel AISI 316 and Zircalloy 4

    Science.gov (United States)

    Prajitno, D. H.; Trisnawan, V.; Syarif, D. G.

    2017-05-01

    The solid surface tension plays an important role in the heat and mass transfer system for heat exchanger equipment. In the nuclear power plant industry, the stainless steel AISI 316 and Zircalloy 4 have been used for long time as structure materials. The purpose of the experimental is to study solid state surface tension behavior by measure contact angle Nano fluid contain nano particle alumina on metal surface of stainless steel AISI 316 and Zircalloy 4 by sessile drop method. The experiment is to measure the static contact angle and drop nano fluid contains nano particle alumina on stainless steel 316 and zircalloy 4 with different spreading time from 1 to 30 minute. It was observed that stainless steel 316 and zircalloy 4 lose their hydrophobic properties with increasing elapsed time during drop of nano fluid on the surface of alloy. As a result the contact angle of nano fluid on surface of metal is decrease with increasing elapsed time. While the magnitude diameter of drop nano fluid and wetting surface is increase with increasing elapsed time on the surface of the stainless steel SS 316 and Zircalloy 4.

  1. Surface characterization of adsorbed asphaltene on a stainless steel surface

    International Nuclear Information System (INIS)

    Abdallah, W.A.; Taylor, S.D.

    2007-01-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p 3/2 , N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies

  2. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing, E-mail: chunjing.li@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Bo; Liu, Shaojun [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  3. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    of the die lifetime based on a quantitative analysis of die soldering in the framework of the numerical simulations of the die-casting process. Full 3D simulations of the process, including the filling. solidification, and the die cooling, are carried out using the casting simulation software MAGMAsoft....... The resulting transient temperature fields on the die surface and in the casting are then post-processed to estimate the die soldering. The present work deals only with the metallurgical/chemical kind of soldering which occurs at high temperatures and involves formation and growth of intermetallic layers...

  4. Properties of powder metallurgy steel forgings

    International Nuclear Information System (INIS)

    Crowson, A.; Anderson, F.E.

    1977-01-01

    The effects of processing variables on the mechanical properties of heat-treated powder metallurgy (P/M) steel forgings were determined. Prealloyed 4600 steel powder blended with graphite to yield 4640 was compacted into preforms and hot forged in a warm, closed die. Variables studied were preform density, method of lubrication, preform sintering (time, temperature and atmosphere), forging pressure (20 and 40 tsi) and temperature (1850 0 F, 2000 0 F and 2200 0 F), and forging ratio (0.75 and 0.95). Relationships between interconnected porosity and total porosity for the various preform densities were determined. High density compacts required higher sintering temperatures due to the restricted mobility of the reducing gases in the pores. Die wall lubrication was comparable to admixed lubrication, and it simplified powder mixing and preform sintering operations. Forgings with densities from 99 to 99.8 percent of theoretical density were attained with a forging pressure of 20 to 40 tsi and preform temperatures of 2000 0 F and above. At forging conditions which resulted in forgings with acceptable mechanical properties, complete die fill was accomplished at a forging ratio of 0.95, whereas incomplete die fill resulted at a forging ratio of 0.75. The response of P/M forgings to heat treatment was comparable to that for wrought materials, and the resultant tensile and yield strengths were equivalent to the strength values described for wrought 4640 steel in AMS specification 6317B. In addition, ductility and impact properties of P/M forgings with near theoretical density (99.5+ percent) were comparable to bar stock forgings

  5. Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ergün EKİCİ

    2014-12-01

    Full Text Available Hadfield steel (X120Mn12 is widely used in the engineering applications due to its excellent wear resistance. In this study, the effects of the cutting parameters on the surface roughness were investigated in relation to the lathe process carried out on Hadfield steel. The experiments were conducted at a cutting speed of 80, 110, 140 m/min, feed rate of 0.2, 0.3, 0.4 mm/rev and depth of cut 0.2, 0.4, 0.6 mm, using coated carbide tools. Regarding the evaluation of the machinability of Hadfield steel, a model was formed utilizing the response surface method (RSM. For the determination of the effects of the cutting parameters on the surface roughness, the central composite design (CCD and variance analysis (ANOVA were used. By means of the model formed as a result of the experimental study, it was demonstrated that among the cutting parameters, the feed rate is the most effective parameter on the surface roughness, with a contribution ratio of 90.28%. It was determined that the surface roughness increases with increasing feed rate. With respect to the effect on the surface roughness, the feed rate was followed by the cutting speed with a contribution ratio of 3.1% and the cutting depth with a contribution ratio of 1.7%.

  6. Influence of steel implant surface microtopography on soft and hard tissue integration.

    Science.gov (United States)

    Hayes, J S; Klöppel, H; Wieling, R; Sprecher, C M; Richards, R G

    2018-02-01

    After implantation of an internal fracture fixation device, blood contacts the surface, followed by protein adsorption, resulting in either soft-tissue adhesion or matrix adhesion and mineralization. Without protein adsorption and cell adhesion under the presence of micro-motion, fibrous capsule formation can occur, often surrounding a liquid filled void at the implant-tissue interface. Clinically, fibrous capsule formation is more prevalent with electropolished stainless steel (EPSS) plates than with current commercially pure titanium (cpTi) plates. We hypothesize that this is due to lack of micro-discontinuities on the standard EPSS plates. To test our hypothesis, four EPSS experimental surfaces with varying microtopographies were produced and characterized for morphology using the scanning electron microscope, quantitative roughness analysis using laser profilometry and chemical analysis using X-ray photoelectron spectroscopy. Clinically used EPSS (smooth) and cpTi (microrough) were included as controls. Six plates of each type were randomly implanted, one on both the left and right intact tibia of 18 white New Zealand rabbits for 12 weeks, to allow for a surface interface study. The results demonstrate that the micro-discontinuities on the upper surface of internal steel fixation plates reduced the presence of liquid filled voids within soft-tissue capsules. The micro-discontinuities on the plate under-surface increased bony integration without the presence of fibrous tissue interface. These results support the hypothesis that the fibrous capsule and the liquid filled void formation occurs mainly due to lack of micro-discontinuities on the polished smooth steel plates and that bony integration is increased to surfaces with higher amounts of micro-discontinuities. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 705-715, 2018. © 2017 Wiley Periodicals, Inc.

  7. Surface finishing and levelling of thermomechanically hardened rolled steel

    International Nuclear Information System (INIS)

    Grosval'd, V.G.; Bashchenko, A.P.; Grishkov, A.I.; Gutnik, M.V.; Kanevskij, B.L.; Nikozov, A.I.; Sedov, N.D.; Prosin, K.A.; Safonov, L.I.

    1975-01-01

    The finishing of high-strength merchant shapes from alloy steel was tried out under industrial conditions with the equipment of metallurgical plants. After thermomechanical hardening in the production line of the rolling mill, 30KhGSN2A and 40Kh1NVA steel rounds 32 and 31 mm in diameter were straightened on a two-roller straightening machine designed by the All-Union Scientific Research Institute for Metallurgical Machinery (VNII Metmash). This made possible subsequent turning and grinding of the rods. The conditions of straightening, turning and grinding have been worked so as to obtain thermomechanically strengthened and ground rolled products approximating the gauged and ground metal in shape geometry and surface finish. It is shown that the labour-consuming operation of turning can be eliminated by reducing the machining pass of the rolled product, and this lowers the labour required for the finishing operations by 75%. After grinding with 40- and 25-grain abrasive wheels, high strength rolled shapes were obtained with a diameter of 30-0.20 mm and a surface finish of class 6-5 satisfying the technical specifications. (author)

  8. Challenges in Special Steel Making

    Science.gov (United States)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  9. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  10. Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel

    Science.gov (United States)

    Hien, P. V.; Vu, N. S. H.; Thu, V. T. H.; Somers, A.; Nam, N. D.

    2017-08-01

    Yttrium 4-nitrocinnamate (Y(4-NO2Cin)3) was added to an aqueous chloride solution and studied as a possible corrosion inhibition system. Electrochemical techniques and surface analysis have been powerful tools to better understand the corrosion and inhibition processes of mild steel in 0.01 M NaCl solution. A combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Potentiodynamic polarization (PD), electrochemical impedance spectroscopy (EIS) and wire beam electrode (WBE) techniques was found to be useful in the characterization of this system. The result indicated that Y(4-NO2Cin)3 is able to effectively inhibit corrosion at a low concentration of 0.45 mM. Surface analysis clearly shows that the surface of steel coupons exposed to Y(4-NO2Cin)3 solution remained uniform and smooth, whereas the surface of steel coupons exposed to solution without inhibitor addition was severely corroded. The results suggest that Y(4-NO2Cin)3 behaves as a mixed inhibitor and mitigates corrosion by promoting random distribution of minor anodes. These are attributed to the formation of metal species bonding to the 4-nitrocinnamate component and hydrolysis of the Y(4-NO2Cin)3 to form oxide/hydroxides as a protective film layer.

  11. Impact of roughness, wettability and hydrodynamic conditions on the incrustation on stainless steel surfaces

    International Nuclear Information System (INIS)

    Bogacz, Wojciech; Lemanowicz, Marcin; Al-Rashed, Mohsen H.; Nakonieczny, Damian; Piotrowski, Tomasz; Wójcik, Janusz

    2017-01-01

    Highlights: • Steel plates (X5CrNi18-10) with different roughness and wettability were prepared. • Incrustation of MgSO 4 ·7H 2 O under laminar flow (Re = 59–178) was investigated. • Influence of surface properties and fluid velocity on incrustation was found. • Wettability and surface roughness cannot be considered separately. • Analysis of heat transfer and incrustation time-lapse videos are presented. - Abstract: The goal of this work was to investigate the influence of the stainless steel surface roughness and wettability on incrustation of MgSO 4 ·7H 2 O from aqueous solutions and resulting heat transfer resistance. The experiments were done for laminar flow (Re = 59–178) which is characteristic for regions of apparatus where fouling usually begin. A series of steel plates (X5CrNi18-10) were prepared and used as a heat transfer surfaces. Their properties, i.e. roughness, wettability and elementary composition of surfaces were determined. The experiments were done using specially designed flow cell equipped with Peltier element. Each incrustation measurement lasted for two hours, during which heat transfer resistance was measured as a function of time. After the experiments the mass of crystalline deposit was weighted. It was proved that wettability as well as surface roughness cannot be considered separately in the case of incrustation phenomenon. The knowledge of surface roughness is insufficient due to the fact, that it is possible to obtain surfaces with similar roughness but substantially different wettability for the same material.

  12. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  13. Research on the Effects of the Movable Die and its Counter Force on Sheet Hydroforming

    International Nuclear Information System (INIS)

    Zhou, Li X.; Zhang, Shi H.; Wang, Ben X.

    2007-01-01

    An improved Sheet Hydro-forming process was proposed, which was investigated in Institute of Metal Research, Chinese Academy of Sciences. ASAME system and FEM are used to analyze the forming process to explain some results that were found in the experiment. In the simulation, the effect of the movable die on the maximum principal stress is investigated in detail by using the FEM code LS-DYNA. For this case, the movable die changes the distribution of the maximum principal stress. For the sheet hydroforming without the movable die, the principal stress near the shoulder of the movable die arrives to the maximum value when t=0.0033s suddenly. But for the sheet hydroforming with the movable die, the maximum principal stress still lies in the die radius. The principal stress near the shoulder of the movable die is smaller. At the last stage contacting with the die, for the case without the movable die, the maximum principal stress near the shoulder of movable die is larger than that of the sheet hydroforming with the movable die. Moreover, the stress distribution near the shoulder of movable die for the case without the movable die is complicated. It is instable and very easy to occur wrinkling. The movable die delays the maximum thickness strain to the contacting die stage. So the formability of sheet metal can be remarkably improved by adopting the movable die. On a certain extent, the uniform distribution of thickness can be realized by increasing the counterforce of movable die. The minimum thickness reduction moves outside which is very helpful for the uniform thickness distribution. In this paper, two kinds of materials, soft steel and stainless steel, were investigated

  14. Microscopic work function anisotropy and surface chemistry of 316L stainless steel using photoelectron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr [CEA, IRAMIS, SPEC, LENSIS, F-91191 Gif-sur-Yvette (France); Renault, O. [CEA, LETI, Minatec Campus, F-38054 Grenoble Cedex 09 (France); Lemaître, H. [Université de Cergy-Pontoise, Rue d’Eragny, Neuville sur Oise, 95 031 Cergy-Pontoise (France); Surface Dynamics Laboratory, Institut for Fysik og Astronomi Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Bonnaillie, P. [CEA, DEN, DANS, DMN, SRMP, F-91191 Gif-sur-Yvette (France); Barcelo, F. [CEA, DEN, DANS, DMN, SRMA, LA2M, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DANS, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Wang, M.; Corbel, C. [Laboratoire des Solides Irradis, Ecole Polytechnique, route de Saclay, F-91128 Palaiseau (France)

    2014-08-15

    Highlights: • PEEM and EBSD study of spatial variations in local work function of 316L steel. • Correlation between work function and crystal grain orientation at the surface of 316L steel. • Spatially resolved chemistry of residual oxide layer. - Abstract: We have studied the variation in the work function of the surface of sputtered cleaned 316L stainless steel with only a very thin residual oxide surface layer as a function of grain orientation using X-ray photoelectron emission microscopy (XPEEM) and Electron Backscattering Diffraction. The grains are mainly oriented [1 1 1] and [1 0 1]. Four distinct work function values spanning a 150 meV energy window are measured. Grains oriented [1 1 1] have a higher work function than those oriented [1 0 1]. From core level XPEEM we deduce that all grain surfaces are Cr enriched and Ni depleted whereas the Cr/Fe ratio is similar for all grains. The [1 1 1] oriented grains show evidence for a Cr{sub 2}O{sub 3} surface oxide and a higher concentration of defective oxygen sites.

  15. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    Science.gov (United States)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  16. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    International Nuclear Information System (INIS)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent

  17. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    Energy Technology Data Exchange (ETDEWEB)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent.

  18. Corrosion resistance of hsla steel after various surface treatments in chloride environment

    Czech Academy of Sciences Publication Activity Database

    Borko, K.; Pastorek, F.; Fintová, Stanislava; Hadzima, B.

    2016-01-01

    Roč. 18, č. 4 (2016), s. 99-102 ISSN 1335-4205 Institutional support: RVO:68081723 Keywords : Corrosion properties * Iron phosphating * S355J steel Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  19. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  20. Cold-workability limits for carbon and alloy steels

    Science.gov (United States)

    El-Domiaty, A.

    1999-04-01

    In metalforming, the success in accomplishing the required deformation without failure of the forming tools or cracking of the work material represents the major concern for manufacture and design engineers. The degree of deformation that can be achieved in a particular metalworking process without creating an undesirable condition is defined as workability. In the present work, an experimental investigation was carried out to determine the cold-workability limits for five different types of steel: AISI 1018, 1045, 1078, 4140, and 4340. The upset (compression) test was used to determine the workability limit for each type. The upset dies and specimen geometries were designed to give different strain paths covering the range from homogeneous deformation (ɛz/ɛθ=-2.0) to close to plane-strain condition (ɛz/ɛθ=0.0). Grid pattern was printed on the specimen surface in order to measure the axial and hoop strain components during deformation. Specific elements were selected on the specimen surface, and their strain paths were determined. Each strain path was terminated once surface cracking had been observed. The ends of the strain paths, at which macrocracks were observed, were connected to obtain the workability limit on the forming-limit diagram. The workability limit of AISI 1018 is the highest among the other types of steel.

  1. Surface modification of superaustenitic and maraging stainless steels by low-temperature gas-phase carburization

    Science.gov (United States)

    Gentil, Johannes

    Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance

  2. Die rol van die blanke werker in die motivering van die swart werker

    Directory of Open Access Journals (Sweden)

    G. J. Oosthuizen

    1980-11-01

    Opsomming Die motivering van die Swart werker kan nie in die huidige situasie in isolasie bestudeer word nie, omdat die Blanke werker steeds in die bestuursposisie is en daarom die motivering van die Swart werker kan beïnvloed. Hierdie ondersoek was daarop gerig om die rol van die Blanke werker in die motivering van die Swart werker nader te ondersoek. Die houding en die leierskapsbenadering van die Blanke werker teenoor die Swart werker is gemeet, asook die behoeftes wat volgens die Blanke werker by die Swart werker bestaan, bevredig is, of nie bestaan nie. Die behoeftes van Swart werkers, soos deur hulleself gesien, is ook ondersoek. Ten opsigte van sekere aspekte is beduidende verskille gevind.

  3. Influence of Surface Roughness and Agitation on the Morphology of Magnetite Films Electrodeposited on Carbon Steel Substrates

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2016-11-01

    Full Text Available In this work, we investigated the effects of surface roughness and agitation on the morphology of magnetite films electrodeposited from alkaline Fe(III-triethanolamine (TEA solutions on carbon steel substrates. The surface roughness of the carbon steel substrates was maintained in the range of 1.64–0.06 μm by using mechanical grinding and polishing methods. The agitation speed was set at 0 and 900 rpm during the electrodeposition process. The particle size and surface roughness value of the magnetite films gradually decreased with decreasing substrate roughness. However, the influence of the substrate roughness on the thickness of the magnetite film was negligible. The morphology of the magnetite film fabricated at 900 rpm appeared to be highly faceted compared to that of the magnetite film produced at 0 rpm. The thickness and surface roughness of the magnetite film significantly increased with the agitation speed, which also significantly affected the electrodeposition efficiency. The effects of substrate surface roughness and agitation on the morphology of magnetite films electrodeposited on carbon steel substrates were also discussed. The obtained results provide critical information for the simulation of magnetite deposits on carbon steel pipes in the secondary systems of nuclear power plants.

  4. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  5. Mechanical properties and corrosion resistance of nitrided or oxinitrided, and powder painted regular and interstitial free (IF) drawing steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Rogalski, Z.; Latas, Z. [Instytut Mechaniki Precyzyjnej, ul. Duchnicka 3, 01-796 Warszawa (Poland)

    2004-06-01

    Specimens of 0.8 mm thick regular and interstitial free (IF) drawing steel sheet have been nitrided in fluidised bed for 2 hours at 620 C and 560 C with and without a post-oxidation, and slow and accelerated cooling. As a result, surface hardness, yield and tensile strength of the sheets increased considerably without a critical loss of ductility. Resistance welds between the sheets did not lose their original strength after nitriding-oxinitriding. Nitrided-oxinitrided at 620 C and then powder painted sheets, as compared with powder painted raw sheets, were more corrosion resistant in neutral salt spray and climatic tests. Some mechanical and anticorrosion properties of the IF steel sheet that had undergone the nitriding-oxinitriding processes were definitely better than those of equally processed regular steel sheet. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Proben aus 0,8 mm dickem Blech aus Ziehmassenstahl sowie aus Ziehstahl ohne interstitiel geloeste Legierungsanteile (IF), werden im Wirbelbett in 2 Stunden bei 620 und 560 {sup o}C nitriert mit nachfolgenden Oxidierung sowie alternativ ohne Oxidierung und mit langsamer und beschleunigter Abkuehlung. Infolge dessen nehmen die Haerte, die Dehngrenze und die Zugfestigkeit der Bleche zu, ohne kritischen Zaehigkeitsverlust. Die Widerstandsschweisswulste zwischen den Blechen nach dem Nitrieren-Oxinitrieren haben nicht an Festigkeit verloren. Die bei 620 {sup o}C nitrierten-oxinitrierten und nachfolgend mit Pulverlack beschichteten Bleche sind bei den Versuchen in Salznebel und bei klimatischen Versuchen korrosionbestaendiger im Vergleich mit den mit nur Pulverlack beschichteten Rohblechen. Manche der mechanischen und korrosionsverhalten betreffenden Eigenschaften der Bleche aus IF-Staehle sind entscheidend besser als fuer das ebenso behandelte Blech aus Ziehmassenstahl. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  6. Tailoring the gradient ultrafine-grained structure in low-carbon steel during drawing with shear

    Directory of Open Access Journals (Sweden)

    G. I. Raab

    2016-04-01

    Full Text Available Conventional drawing and drawing with shear were conducted on the rods of low-carbon steel. Deformation by simple drawing forms basically a homogenous structure and leads to a uniform change in microhardness along the billet volume. A comparative analysis of the models of these processes showed that shear drawing of steel at room temperature reduces energy characteristics in half, normal forces on the die – by 1,8, and enhances the strain intensity from 0,5 to 1,6. During drawing with shear, strain-induced cementite dissolution occurs and a gradient structure is formed, which increases the microhardness of the surface layer up to values close to 7 000 MPa.

  7. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  8. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  9. The kinetics and mechanism of bainite transformation in high strength steels

    International Nuclear Information System (INIS)

    Ali, A.; Bhadeshia, H.K.D.H.

    1993-01-01

    The kinetics and mechanism of bainite formation have been studied in high strength Fe-C-Si-Mn and Fe-C-Si-Ni steels using dilatometry, optical and transmission electron microscopy. In these silicon containing steels, carbide precipitation dies not accompany the growth of bainitic ferrite so that the mechanism of transformation can be readily interpreted. The work confirms that the volume fraction of bainite when the reaction stops, is far less that expected from equilibrium or para equilibrium considerations. In addition the bainite exhibits an invariant plane strain surface relief effect with a large shear component, and adopts a sheaf morphology. The results are demonstrated to be consistent with a displacive diffusion less transformation mechanism of bainite, in which the excess carbon is, subsequent to transformation, rejected into the residual austenite. (author)

  10. Ejection Performance of Coated Core Pins Intended for Application on High Pressure Die Casting Tools for Aluminium Alloys Processing

    Directory of Open Access Journals (Sweden)

    P. Terek

    2017-09-01

    Full Text Available In high pressure die casting (HPDC process of aluminium alloys cast alloy soldering severely damages tool surfaces. It hampers casting ejection, reduces the casting quality and decreases the overall production efficiency. Thin ceramic PVD (physical vapor deposition coatings applied on tool surfaces successfully reduce these effects. However, their performance is still not recognised for surfaces with various topographies. In this investigation, soldering tendency of Al-Si-Cu alloy toward EN X27CrMoV51 steel, plasma nitrided steel, CrN and TiAlN duplex PVD coatings is evaluated using ejection test. The coatings were prepared to a range of surface roughness and topographies. After the tests sample surfaces were analysed by different microscopy techniques and profilometry. It was found that the ejection performance is independent of the chemical composition of investigated materials. After the ejection, the cast alloy soldering layer was found on surfaces of all tested materials. This built-up layer formed by effects of mechanical soldering, without corrosion reactions. Coated samples displayed a pronounced dependence of ejection force on surface roughness and topography. By decreasing roughness, ejection force increased, which is a consequence of intensified adhesion effects. Presented findings are a novel information important for efficient application of PVD coatings intendent for protection of HPDC tools.

  11. The effect of machining parameters on surface roughness during turning of stainless steel

    International Nuclear Information System (INIS)

    El-Belazi, Khalid M.

    1991-03-01

    Surface roughness is a direct consequence of the cutting tool action, its assessment and control represent an effective way by which the machining process can be studied. The control of surface roughness has become increasingly important during the last thirty years, because the quality of surface is extremely important for machined components that have been designed to stand to static and cyclic loads. This work has two major goals. The first is to develop a new theoretical model based on the assumption that the shape of the cutting tool nose is elliptical to evaluate the surface roughness parameters. The second is to investigate the effect of cutting speed, feed rate, overhang length, tool nose radius (circular sharp), and depth of cut on surface roughness of turned surfaces of austenitic stainless steel grade 12X18H10T. It was found from the theoretical part that the surface roughness values obtained from the elliptical model are much better than those obtained from the other models. It was found from the experimental work that the surface roughness values increase by increasing cutting speed, feed rate, depth of cut, and overhang length, and fluctuates when using cutting tools with various nose radii, during turning of the above mentioned steel by using a brazed carbide cutting tool. (author)

  12. Study of the interaction of liquid with the surface of mass standards of high accuracy stainless steel

    International Nuclear Information System (INIS)

    Ramirez Varas, Lautaro; Castro, Claudio S.C.; Cacais, Fabio L.; Pires, Manoel J. M.; Loayza Mendoza, Victor M.

    2011-01-01

    The long term stability of mass standards depends on the interaction between the surface and environment molecules. From this point of view, a study was investigated of the effect on stainless steel surfaces by liquids frequently used in hydrostatic weighing (FC40) and in cleaning procedures of mass standards (isopropyl alcohol). Firstly, mass weighing difference was measured as function of time with a gravimetric method. Additionally, stainless steel samples were analyzed by X-ray Photoelectron Spectroscopy (XPS). The standard used for the gravimetric mass difference determination was immersed in FC40. The samples analyzed by XPS were previously immersed in both FC40 and isopropyl alcohol. Mass differences were obtained with an uncertainty of 1 μg when FC40 was used. Preliminary results have suggested that FC40 is not chemically bound to stainless steel surfaces and the mass gain was due to physisorbed molecules on the surface. (author) [es

  13. Modification and characterization of the AISI 410 martensitic stainless steels surface

    International Nuclear Information System (INIS)

    Bincoleto, A.V.L.; Nascente, P.A.P.

    2010-01-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  14. Laser surface pretreatment of 100Cr6 bearing steel – Hardening effects and white etching zones

    International Nuclear Information System (INIS)

    Buling, Anna; Sändker, Hendrik; Stollenwerk, Jochen; Krupp, Ulrich; Hamann-Steinmeier, Angela

    2016-01-01

    Highlights: • Laser surface pretreatment of the bearing steel 100Cr6 is performed. • Microstructural changes of the surface are examined by light microscopy and SEM. • Topographical changes are observed using white light interferometry. • Micro-hardness testing show the existence of very hard white etching zones (WEZ). • WEZ are attributed to near-surface reaustenitization and rapid quenching. • Dark etching zones (DEZ) are found at the laser path edges after laser pretreatment. - Abstract: In order to achieve a surface pretreatment of the bearing steel 100Cr6 (1–1.5 wt.% Cr) a laser-based process was used. The obtained modification may result in an optimization of the adhesive properties of the surface with respect to an anticorrosion polymer coating on the basis of PEEK (poly-ether-ether-ketone), which is applied on the steel surface by a laser melting technique. This work deals with the influence of the laser-based pretreatment regarding the surface microstructure and the micro-hardness of the steel, which has been examined by scanning electron microscopy (SEM), light microscopy and automated micro-hardness testing. The most suitable parameter set for the laser-based pretreatment leads to the formation of very hard white etching zones (WEZ) with a thickness of 23 μm, whereas this pretreatment also induces topographical changes. The occurrence of the white etching zones is attributed to near-surface re-austenitization and rapid quenching. Moreover, dark etching zones (DEZ) with a thickness of 32 μm are found at the laser path edges as well as underneath the white etching zones (WEZ). In these areas, the hardness is decreased due to the formation of oxides as a consequence of re-tempering.

  15. Laser surface pretreatment of 100Cr6 bearing steel – Hardening effects and white etching zones

    Energy Technology Data Exchange (ETDEWEB)

    Buling, Anna, E-mail: a.buling@hs-osnabrueck.de [Faculty of Engineering and Computer Science, University of Applied Sciences, 49009 Osnabrück (Germany); Sändker, Hendrik; Stollenwerk, Jochen [Fraunhofer Institute for Laser Technology ILT, Steinbachstrasse 15, 52074 Aachen (Germany); Krupp, Ulrich; Hamann-Steinmeier, Angela [Faculty of Engineering and Computer Science, University of Applied Sciences, 49009 Osnabrück (Germany)

    2016-08-15

    Highlights: • Laser surface pretreatment of the bearing steel 100Cr6 is performed. • Microstructural changes of the surface are examined by light microscopy and SEM. • Topographical changes are observed using white light interferometry. • Micro-hardness testing show the existence of very hard white etching zones (WEZ). • WEZ are attributed to near-surface reaustenitization and rapid quenching. • Dark etching zones (DEZ) are found at the laser path edges after laser pretreatment. - Abstract: In order to achieve a surface pretreatment of the bearing steel 100Cr6 (1–1.5 wt.% Cr) a laser-based process was used. The obtained modification may result in an optimization of the adhesive properties of the surface with respect to an anticorrosion polymer coating on the basis of PEEK (poly-ether-ether-ketone), which is applied on the steel surface by a laser melting technique. This work deals with the influence of the laser-based pretreatment regarding the surface microstructure and the micro-hardness of the steel, which has been examined by scanning electron microscopy (SEM), light microscopy and automated micro-hardness testing. The most suitable parameter set for the laser-based pretreatment leads to the formation of very hard white etching zones (WEZ) with a thickness of 23 μm, whereas this pretreatment also induces topographical changes. The occurrence of the white etching zones is attributed to near-surface re-austenitization and rapid quenching. Moreover, dark etching zones (DEZ) with a thickness of 32 μm are found at the laser path edges as well as underneath the white etching zones (WEZ). In these areas, the hardness is decreased due to the formation of oxides as a consequence of re-tempering.

  16. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    Science.gov (United States)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  17. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    Science.gov (United States)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  18. Laser surface alloying of 316L stainless steel with Ru and Ni mixtures

    CSIR Research Space (South Africa)

    Lekala, MB

    2012-05-01

    Full Text Available an economically sound approach of modifying corrosion properties of alloys. Furthermore, since corrosion is a surface phenomenon, an equally cost-effective approach is to add these only on the surface, where protection is most required. Laser surface... powders were preplaced on the steel surface using a chemical binder. The thickness of the preplaced powder coatings could be controlled to approxi- mately 1mm. The laser surface alloying was performed with a Rofin Sinar DY044 continuous wave Nd : YAG...

  19. Hardness and structure changes at surface in electrical discharge machined steel C 3840

    International Nuclear Information System (INIS)

    Karastojkovic, Z.; Janjusevic, Z.

    2003-01-01

    The electrical discharge machining (EDM) of both hard and soft materials became an important technique in industrial applications. This technique has an advantage in producing of structural/tool parts of complex geometry. The EDM is based on electrical phenomena, when the treated surface undergoes to erosion. The first step in EDM, the melting of thin surface layer, frequently is neglected. In this paper the changes of hardness and structure at surface layer, after EDM is applied on steel C 3840, will be discussed. The steel C- 3840 was quenched and tempered to hardness of 63 HRC, at surface, and than machined by electrical discharging. The changed, white, layer is just a product of melting and decarburization processes. The white layer is registered at surface by using a metallographic investigation. Hardness profile is measured from surface to the interior of material. The achievement of local high temperatures during EDM is resulting on melt and erosion of material. Besides of these effects, during EDM were happened some minor but not a neglectible effects, primary on structure changes on treated surface. It would be expected that melting, even an evaporation of melted metal, and further the phase transformation have an important influence on the starting structure. (Original)

  20. Die Region braucht die Kultur - die Kultur braucht die Region

    OpenAIRE

    Klemm, Ulrich

    1995-01-01

    Die Region braucht die Kultur - die Kultur braucht die Region. - In: Region in Aktion - oder: Region im Abseits? - Boxberg-Wölchingen : Eigenständige Regionalentwicklung Baden-Württemberg, 1995. - S. 25 f.

  1. DIE GESKIEDENIS VAN DIE PERSONEELFUNKSIE IN DIE SA ...

    African Journals Online (AJOL)

    stel (kortdiensstelsel). Met die uitbreek van die oorlog in 1939 het die. Unieverdedigingsmag uit 40% Staandemag en. 60% aktiewe Burgermag bestaan. Op 22 Sept. 1939 is magtiging aan die Aktiewe Burgermag- eenhede verleen om vrywilligers vir die duur van die oorlog te aanvaar. Agv beswaar dat die Verdedigingswet.

  2. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  3. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  4. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  5. Changes of surface layer of nitrogen-implanted AISI316L stainless steel

    International Nuclear Information System (INIS)

    Budzynski, P.; Polanski, K.; Kobzev, A.P.

    2007-01-01

    The effects of nitrogen ion implantation into AISI316L stainless steel on friction, wear, and microhardness have been investigated at an energy level of 125 keV at a fluence of 1·10 17 - 1·10 18 N/cm 2 . The composition of the surface layer was investigated by RBS, XRD (GXRD), SEM and EDX. The friction coefficient and abrasive wear rate of the stainless steel were measured in the atmospheres of air, oxygen, argon, and in vacuum. As follows from the investigations, there is an increase in resistance to frictional wear in the studied samples after implantation; however, these changes are of different characters in various atmospheres. The largest decrease in wear was observed during tests in the air, and the largest reduction in the value of the friction coefficient for all implanted samples was obtained during tests in the argon atmosphere. Tribological tests revealed larger contents of nitrogen, carbon, and oxygen in the products of surface layer wear than in the surface layer itself of the sample directly after implantation

  6. Corrosion of ferritic steels by molten lithium: Influence of competing thermal gradient mass transfer and surface product reactions

    International Nuclear Information System (INIS)

    Tortorelli, P.F.

    1987-10-01

    An Fe-12Cr-1MoVW steel was exposed to thermally convective lithium for 6962 h. Results showed that the weight change profile of Fe-12Cr-1MoVW steel changed substantially as the maximum loop temperature was raised from 500 to 600 0 C. Furthermore, for a particular loop experiment, changes in the structure and composition of the exposed surfaces did not reflect typical thermal gradient mass transfer effects for all elements: the surface concentration of chromium was often a maximum at intermediate temperatures, while nickel (present at low concentrations in the starting material) tended to be transported to the coldest part of the loop. Such data were interpreted in terms of a qualitative model in which there are different dominant reactions or the various constituents of the ferritic steels (surface product formation involving nitrogen and/or carbon and solubility-driven elemental transport). This competition among different reactions is important in evaluating overall corrosion behavior and the effects of temperature. The overall corrosion rate of the 12Cr-1MoVW steel was relatively low when compared to that for austenitic stainless steel exposed under similar conditions

  7. DEVELOPMENT OF THE DOPING MATRIX FOR CREATION OF THE BELORUSSIAN INSTRUMENTAL STEELS ON THE BASIS OF STEEL 70K(Y7A PRODUCED BY RUP “BMZ” (view and investigation

    Directory of Open Access Journals (Sweden)

    D. M. Kukuj

    2004-01-01

    Full Text Available Theoretical and practical aspects of production of the Belorussian instrumental steels on the base of the steel of type 70K are considered. The ways of working out of the alloy complex for receiving of the die steels in the conditions of RUP “BMZ” are shown.

  8. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    International Nuclear Information System (INIS)

    Jeon, Sun Ho; Chin, Kwang Geun; Kim, Dai Ryong

    2008-01-01

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer

  9. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sun Ho; Chin, Kwang Geun [Pohang Iron and Steel Co. Technical Research Laboratories, Gwangyang (Korea, Republic of); Kim, Dai Ryong [Kyungpook National University, Daegu (Korea, Republic of)

    2008-02-15

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

  10. Influence of the supporting die structures on the fracture strength of all-ceramic materials.

    Science.gov (United States)

    Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz

    2012-08-01

    This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.

  11. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  12. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  13. Surface design methodology - challenge the steel

    Science.gov (United States)

    Bergman, M.; Rosen, B.-G.; Eriksson, L.; Anderberg, C.

    2014-03-01

    The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or "feeling" for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA.

  14. An evaluation of the effect of surface chromium concentration on the oxidation of a stainless steel

    International Nuclear Information System (INIS)

    Lobb, R.C.; Evans, H.E.

    1983-01-01

    Short-term oxidation tests have been performed at 850 deg C in a CO 2 -based atmosphere on 20Cr-25Ni-Nb-stabilized steels previously exposed to dynamic vacuum at 1000 deg C. This pre-treatment preferentially removes chromium from the metal surface and is always detrimental to the oxidation properties. It is shown that porous, iron-rich oxides initially form on specimens with surface chromium concentrations 18.5 w/o chromium, a protective surface layer is produced. It is suggested that the transition between these extremes is determined by nucleation conditions and, in the present steels, it is shown how the metal grain size plays a significant role. (author)

  15. Chemical nanocavitation of surfaces to enhance the utility of stainless steel as a medical material.

    Science.gov (United States)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Flynn, Sam; Variola, Fabio; Wuest, James D; Nanci, Antonio

    2018-01-01

    While stainless steel is a broadly used alloy with interesting mechanical properties, its applications in medicine suffers from inherent biocompatibility limitations. An attractive opportunity to improve its performance is to alter its surface, but this has proven challenging. We now show how high range anodization conditions using H 2 SO 4 /H 2 O 2 as an atypical electrolyte can efficiently nanocavitate the surface of both stainless steel SS304 and SS316 and create a topography with advantageous biomedical characteristics. We describe the structural and chemical features of the resulting surfaces, and propose a nanocorrosion/transpassivation/repassivation mechanism for its creation. Our approach creates a thin mesoporous layer of crystalline oxide that selectively promotes mammalian cell activity and limits bacterial adhesion. The modified surfaces favor the formation and maturation of focal adhesion plaques and environment-sensing filopodia with abundant extra small lateral membrane protrusions, suggesting an increase in membrane fluidity. These protrusions represent a yet undescribed cellular response. Such surfaces promise to facilitate the integration of implantable SS devices, in general. In addition, our strategy simultaneously provides a simple, commercially attractive way to control the adhesion of microorganisms, making nanostructured stainless steel broadly useful in hospital environments, in manufacturing medical devices, as well as offering possibilities for non-medical applications. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Dagbert, Catherine; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle

    2008-01-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  17. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Dagbert, Catherine [ECP-LGPM, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)], E-mail: catherine.dagbert@ecp.fr; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle [INRA, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France); AGROPARISTECH, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France)

    2008-12-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  18. Analysis of the Mechanical Behavior and Surface Rugosity of Different Dental Die Materials.

    Science.gov (United States)

    Niekawa, Ciro T; Kreve, Simone; A'vila, Gisseli Bertozzi; Godoy, Gilmar Gil; Eduardo Vieira da Silva, J R; Dias, Sergio Candido

    2017-01-01

    This work evaluated the mechanical and surface behavior of different die materials. The studied materials are polyurethane resin Exakto-Form (Bredent), Gypsum type IV, Fuji Rock EP (Gc), and Durone (Dentsply). Two metallic matrices molded in polyvinyl siloxane provided 30 cylindrical test specimens for the diametral compression test and 30 hemispherical test specimens for the surface rugosity test. The cylindrical test specimens were submitted to tests of diametral compression strength using a DL2000 universal assay machine, with a load cell of 2000 Kgf and constant speed of 1 mm/min connected to the software. Kruskal-Wallis and Dunn's nonparametric tests were used to analyze the results. The hemispheres were submitted to the surface rugosity assay using a SJ201-P rugosimeter with a sensitivity of 300 μm, speed of 0.5 mm/s, and cut-off of 0.8 mm, and the readings were taken on the convex surface of the test specimens and metallic matrix. Results were analyzed using with Fisher's least significant differences test (LSD) and Dunnett's test. Kruskal-Wallis test showed significant difference between die materials for diametral compression strength ( P = 0.002). Dunn's test showed significantly higher values for modified polyurethane resin (Exakto-Form). The gypsum type IV, which did not significantly differ regarding diametral compression strength, showed 34.0% (Durone) and 42.7% (Fuji Rock) lower values in comparison to Exakto-Form. Within the parameters adopted in this study, it is possible to conclude that Exakto-Form polyurethane resin showed higher resistance to compression and was closer to the metallic matrix rugosity, and, along with the gypsum type IV Durone, showed better reproducibility of details relative to the Fuji Rock.

  19. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  20. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.

    Science.gov (United States)

    Bae, Young-Min; Baek, Seung-Youb; Lee, Sun-Young

    2012-02-15

    Various bacteria including food spoilage bacteria and pathogens can form biofilms on different food processing surfaces, leading to potential food contamination or spoilage. Therefore, the survival of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Cronobacter sakazakii) in different forms (adhered cells, biofilm producing in TSB, biofilm producing at RH 100%) on the surface of stainless steel and stored at various relative humidities (RH 23%, 43%, 68%, 85%, and 100%) at room temperature for 5 days was investigated in this study. Additionally, the efficacy of chemical sanitizers (chlorine-based and alcohol-based commercial sanitizers) on inhibiting various types of biofilms of E. coli O157:H7 and S. aureus on the surface of stainless steel was investigated. The number of pathogens on the surface of stainless steel in TSB stored at 25°C for 7 days or RH 100% at 25°C for 7 days was significantly increased and resulted in the increase of 3 log(10) CFU/coupon after 1 day, and these levels were maintained for 7 days. When stainless steel coupons were stored at 25°C for 5 days, the number of pathogens on the surface of stainless steel was significantly reduced after storage at RH 23%, 43%, 68%, and 85%, but not at 100%. When the bacteria formed biofilms on the surface of stainless steel in TSB after 6 days, the results were similar to those of the attached form. However, levels of S. aureus and C. sakazakii biofilms were more slowly reduced after storage at RH 23%, 43%, 68%, and 85% for 5 days than were those of the other pathogens. Formation of biofilms stored at RH 100% for 5 days displayed the highest levels of resistance to inactivation. Treatment with the alcohol sanitizer was very effective at inactivating attached pathogens or biofilms on the surface of stainless steel. Reduction levels of alcohol sanitizer treatment ranged from 1.91 to 4.77 log and from 4.35 to 5.35 log CFU/coupon in E. coli

  1. On the formation of protective sulphide coatings on carbon steel surfaces

    International Nuclear Information System (INIS)

    Das, C.; Venkateswaran, G.

    1987-01-01

    A chemical method for protecting carbon steel surfaces by forming pyrrhotite/pyrite coatings has been developed. The protective nature of the coatings has been studied by weight loss kinetics, scanning electron microscopy and electrochemical measurements. A comparison is drawn between the protective nature of pyrite coating with that of magnetite coating. (author)

  2. STM study on surface relief, ultra-fine structure and transformation mechanism of bainite in steels

    International Nuclear Information System (INIS)

    Fang, H.S.; Yang, Z.G.; Wang, J.J.; Zheng, Y.K.

    1995-01-01

    The surface reliefs accompanying lower bainite transformation in steels have been studied by scanning tunneling microscopy (STM). With the exclusive vertical resolution of STM, we observed that the surface relief associated with bainite is a group of surface reliefs related to subplates, subunits and sub-subunits. From the bainite plate to the sub-subunit in it, the reliefs are in a tent shape, not of invariant plane strain (IPS) type. The fine structure of bainite in a steel has also been shown by STM and TEM that bainite plate is composed of subplates, subunits and sub-subunits. On the basis of the fine structure inside a bainitic ferrite plate observed under STM, sympathetic-ledgewise mechanism of bainite formation is proposed. (orig.)

  3. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  4. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  5. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  6. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  7. Die posisie van die Helper in die sending

    Directory of Open Access Journals (Sweden)

    I. J. van der Walt

    1972-05-01

    Full Text Available Gedurende die aanvangsjare van die sending het die helper ’n onmisbare funksie vervul. Hulle het die onherbergsame binnelande geken, waardevolle kontakpunte vir die sendelinge geopen en hulle mense geestelik help voorlig en voorberei.

  8. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained

  9. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  10. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Kim, Yunkyum; Lee, Joonho; Shin, Kwang-Soo; Jeon, Sun-Ho; Chin, Kwang-Geun

    2014-01-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 °C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H 2 –N 2 gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of − 20 °C, a MnO layer with a thickness of ∼ 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl 2 O 4 layer with a thickness of ∼ 15 nm was formed with small Mn 2 SiO 4 particles that measured ∼ 70 nm in diameter. Approximately 500 nm below the MnAl 2 O 4 layer, Al 2 O 3 was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of − 40 °C, a MnAl 2 O 4 layer with a thickness of ∼ 5 nm was formed on most parts of the surface. On some parts of the surface, Mn 2 SiO 4 particles were formed irregularly up to a thickness of ∼ 50 nm. Approximately 200 nm below the MnAl 2 O 4 layer, Al 2 O 3 was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a O2 > ∼ 1.26 × 10 −28 , MnO, MnAl 2 O 4 , and Mn 2 SiO 4 can be formed together, and the major oxide is MnO. When a O2 is in the range of 1.26 × 10 −28 –2.51 × 10 −31 , MnO is not stable but MnAl 2 O 4 is the major oxide. When a O2 < ∼ 2.51 × 10 −31 , only Al 2 O 3 is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: • The surface oxides of TWIP steel annealed at 800 °C were investigated using TEM. • The surface oxides were determined by the dew point during the annealing process. • The activity of oxygen is the major factor determining the oxides of TWIP steel

  11. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  12. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  13. die ontstaan en die ontwikkeling van die skoolkadette-stelsel in die rsa

    African Journals Online (AJOL)

    toe algemene diensplig ingestel is. Die diens- plig het intussen sy volle beslag gekry en in. Weermagkringe het die gedagte posgevat dat skoolkadette. 'n deeglike ondersoek vereis ten einde die skoolgaande seun vir sy komende nasionale diensplig te orienteer. Tydens kadetopleldlng leer die seuns al die fynere kunsles ...

  14. Study to produce polymer gel for decontamination on the surface of steel, ceramic, plastic, glass

    International Nuclear Information System (INIS)

    Pham Quynh Luong; Nguyen Van Chinh; Nguyen Thu Trang; Nguyen An Thai; Nguyen Dinh Lam

    2015-01-01

    Strippable polymer coating is one of the methods for effective surface decontamination. A gel solution of a water soluble polymer, preferably polyvinyl alcohol (PVA) and chelating agent is applied to remove radioisotopes of Cs"1"3"7, Sr"8"5, I"1"3"1, P"3"2 and Tc"9"9"m on the surface of stainless steel, mild steel, ceramic, PVC plastic. After cleaning is completed, the gel solution is dried, formed a strong thin film, which is easily peeled off from a contaminated surface and can be disposed of as radioactive solid waste. Decontamination efficient of this gel polymer for radioisotopes have been studied on the surfaces and compared with Decongel 1101. The influence of decontamination agents, activity, film thickness to decontamination factor have been studied. The infrared spectrophotometer has been conducted to study mechanism of the decontamination for this radioisotope. (author)

  15. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  16. The surface cleanliness of 316 L + N stainless steel studied by SIMS and AES

    CERN Document Server

    Mathewson, A G

    1974-01-01

    Some cleaning methods for 316 L+N stainless steel including solvent cleaning, high temperature treatment in vacuo and gas discharge cleaning have been studied by SIMS and AES with a view to providing a clean vacuum chamber surface with low gas desorption under ion bombardment. After solvent cleaning the main surface contaminant was found to be C and its associated compounds. Laboratory investigations on small samples of stainless steel showed that clean surfaces could be obtained by heating in vacuo to 800 degrees C followed by exposure to air and by argon or argon/10% oxygen discharge cleaning. Due to a cross contamination within the vacuum system, the 800 degrees C treated chamber gave positive desorption coefficients under ion bombardment. The pure argon discharge cleaned chambers proved stable giving negative desorption coefficients up to 2200 eV ion energy even after several weeks storage discharge treatment and installation. (10 refs).

  17. Decoration technique on surface of porous stainless steel for hydrogen purification

    International Nuclear Information System (INIS)

    Han Jun; Wang Heyi; Gu Mei

    2006-01-01

    The nano-meter stainless steel powder was first deposited on porous stainless steel by paste coating process, and a micro-porous membrane with an average pore size of 200 nm was obtained, its permeability for dry air was about 200 cm 3 ·cm -2 ·min -1 at room temperature and a pressure difference of 0.1 MPa. The micro-porous steel membrane was further coated with TiO 2 membrane by Sol-Gel method, and a composite membrane with pore size of 100 nm was achieved, its permeability for dry air was about 100 cm 3 ·cm -2 ·min -1 at room temperature and 0.1 MPa. Then this membrane was electroless-plated to deposit Pd-Ag alloy, and a membrane with smooth surface and better alloy formation was obtained. The permeability of H 2 for the Pd-Ag alloy membrane was about 35 cm 3 ·cm -2 ·min -1 under a normal condition of 0.1 MPa and 300 degree C, and the separation factor between H 2 and He was about 500. (authors)

  18. Characterization of mild steel pre rusted and rust converted surfaces through advanced electrochemical analysis

    International Nuclear Information System (INIS)

    Riaz, F.; Rizvi, Z.H.; Arshad, K.

    2008-01-01

    The present work evaluates the anti corrosive properties of a tannin based rust converter applied on the pre rusted steel coupons as compared with the grit blasted bare metal and pre rusted steel coupons. The mechanism and the corrosion control behaviour of the rust converter are characterized and monitored using EIS technique. The result suggested that when the tannin based rust converter applied on the pre rusted/corroded coupon, the protection properties of the mild steel coupon clearly improved because of the more compact conversion layer being formed on the coupon. It is inferred that the rust converter can be applied on the pre rusted samples as an alternative technique to the surface preparation for protection purpose. (author)

  19. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    Science.gov (United States)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  20. Factors Affecting Optimal Surface Roughness of AISI 4140 Steel in Turning Operation Using Taguchi Experiment

    Science.gov (United States)

    Novareza, O.; Sulistiyarini, D. H.; Wiradmoko, R.

    2018-02-01

    This paper presents the result of using Taguchi method in turning process of medium carbon steel of AISI 4140. The primary concern is to find the optimal surface roughness after turning process. The taguchi method is used to get a combination of factors and factor levels in order to get the optimum surface roughness level. Four important factors with three levels were used in experiment based on Taguchi method. A number of 27 experiments were carried out during the research and analysed using analysis of variance (ANOVA) method. The result of surface finish was determined in Ra type surface roughness. The depth of cut was found to be the most important factors for reducing the surface roughness of AISI 4140 steel. On the contrary, the other important factors i.e. spindle speed and rake side angle of the tool were proven to be less factors that affecting the surface finish. It is interesting to see the effect of coolant composition that gained the second important factors to reduce the roughness. It may need further research to explain this result.

  1. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  2. Surface collisions of formic acid cations HCOOH+ and DCOOD+ with a hydrocarbon-covered stainless steel surface

    Science.gov (United States)

    Tepnual, Thawatchai; Feketeová, Linda; Grill, Verena; Scheier, Paul; Herman, Zdenek; Märk, Tilmann D.

    2005-07-01

    Interaction of the formic acid cation HCOOH+ with a stainless steel surface covered with hydrocarbons has been studied as a function of the collision energy from a few eV up to 40 eV. Mass spectra of the product ions showed ions produced by surface-induced dissociation of the projectile and formation of HCO2H2+ in interaction with the surface material. The fragmentation of the projectile led to product ions HCOO+ and CHO+. The product ion HCO2H2+ fragmented to give only CHO+, indicating that its structure was HC(OH)2+ as suggested earlier by others. The results were confirmed by studies using the deuterated formic acid cation DCOOD+.

  3. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  4. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    investigation, and the second stage is to design and manufacture a more practical tool system which can be used to forging some industrial components with larger capacity. The high performance and power piezoelectric actuator stack as the vibration source will be used for designing the vibration system in order...... to 50% with vibration being applied in forming process. Furthermore, by using finite element method, a series of the simulations of the cold forging process under die surface excitation have been implemented in order to further understand the influence of vibration on friction, especially the influence...

  5. Comparative tribological studies of duplex surface treated AISI 1045 steels fabricated by combinations of plasma nitriding and aluminizing

    International Nuclear Information System (INIS)

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2014-01-01

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Aluminizing of pre-nitrided specimen provides the highest surface hardness. • The lowest wear rate was obtained via aluminizing of pre-nitrided specimen. • Wear mechanism of the modified layer consists of oxidative and spallung wear. - Abstract: Duplex surface treatments via aluminizing and plasma nitriding were carried out on AISI 1045 steel. A number of work pieces were aluminized and subsequently plasma nitrided (Al–PN) and other work pieces were plasma nitrided and then aluminized (PN–Al). Aluminizing was carried out via pack process at 1123 K for 5 h and plasma nitriding was performed at 823 K for 5 h. The fabricated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and microhardness testing. Tribological behaviors of the duplex treated AISI 1045 steels were examined against tungsten carbide pin using a pin-on-disc apparatus at room temperature. The PN–Al specimen showed higher surface hardness, lower wear rate and coefficient of friction than the Al–PN one. It was noticed from the worn surfaces that tribo-oxidation plays an important role in wear behavior of both specimens

  6. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    Directory of Open Access Journals (Sweden)

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  7. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  8. Die casting copper motor rotors: mold materials and processing for cost-effective manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.T.; Cowie, J.G.; Brush, E.F. Jr.

    2000-07-01

    This project seeks to demonstrate mold materials for copper pressure die-casting that are cost-effective and practical for production use in die-casting copper motor rotors. The incorporation of die-cast copper for conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency through reductions in motor losses ranging from 15% to 20%. Die-cast motor rotors are produced in aluminum today because rotor fabrication by pressure die-casting is an established practice. Lack of a durable and cost-effective mold material has been the technical barrier preventing manufacture of the die-cast copper rotor. This project tested H-13 steel die inserts that establish the baseline. Nickel-, tungsten-, and molybdenum-based high temperature alloys were extensively tested. Results indicate that substantially extended die life is possible using high temperature die materials, pre-heated and operated at elevated temperatures. Pre-heating and high operating temperatures were shown to be critical in extending the die life by decreasing the cyclic stresses associated with thermal expansion. Extended die life provides the opportunity for economically viable copper motor rotor die-casting. (orig.)

  9. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  10. Optimal Machining Parameters for Achieving the Desired Surface Roughness in Turning of Steel

    Directory of Open Access Journals (Sweden)

    LB Abhang

    2012-06-01

    Full Text Available Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius and metal cutting conditions (cutting speed, feed rate and depth of cut on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions.

  11. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Mantilaka, M.M.M.G.P.G. [Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Hara, Masanori; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athula@ifs.ac.lk [National Institute of Fundamental Studies, Kandy (Sri Lanka); Yoshimura, Masamichi [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka)

    2017-07-15

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O{sub 2} penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g{sup −1}, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel

  12. Die funksie van die skeppingstradisie in die boek Jeremia

    African Journals Online (AJOL)

    gedeeites voor wat sterk ooreenkomste toon met die beskrywings van die skep pingsgebeure in die boek Jeremia. • Volgpns Von Rad (1957:144-146) het daar wel 'n groep bestaan wat belange ge- had liet by die oorlewering van die skeppingstradisies. Dit was waarskynlik die. Sadokitiese priesters wat om twee redes aan ...

  13. Die binding van die konfessie

    Directory of Open Access Journals (Sweden)

    P. J. Coetzee

    1970-05-01

    Full Text Available Ons moet waak teen twee uiterstes. Aan die een kant het die dogma as onversoenlike vyand die dogmatisme en aan die ander kant die antidogmatisme — dit hou enersyds die gevaar in van verabsolutering (oorskatting, en ander- syds die gevaar van relativisme (onderskatting.

  14. Nitrogen plasma immersion ion implantation for surface treatment and wear protection of austenitic stainless steel X6CrNiTi1810

    International Nuclear Information System (INIS)

    Blawert, C.; Mordike, B.L.

    1999-01-01

    Plasma immersion ion implantation is an effective surface treatment for stainless steels. The influence of treatment parameters (temperature, plasma density and pressure) on the sliding wear resistance are studied here. At moderate temperatures, nitrogen remains in solid solution without forming nitrides. This increases the surface hardness and the wear resistance without affecting the passivation of the steel. This may allow the use of such steels in applications where their poor wear resistance would normally prohibit their use. (orig.)

  15. Joining of cemented carbides to steel by laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Barbatti, C.; Garcia, J.; Pyzalla, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40237 Duesseldorf (Germany); Liedl, G. [TU Wien, Institut fuer Umform- und Hochleistungslasertechnik (IFLT), 1040 Vienna (Austria)

    2007-11-15

    Welding of dissimilar materials such as steel and cemented carbides (hardmetals, cermets) is particularly challenging e.g. because mismatches in their thermal expansion coefficients and thermal conductivities result in residual stress formation and because of the formation of brittle intermetallic phases. Laser beam welding of cemented carbides to steel appears as an attractive complementary technique to conventional brazing processes due to its high precision, high process speed, low heat input and the option of welding without filler. Here a laser welding process including pre-heat treatment and post-heat treatment was applied successfully to joining as-sintered and nitrided hardmetals and cermets to low alloyed steel. The microstructure and mechanical properties of the welds are investigated by microscopy, X-ray diffraction, microhardness measurements, and bending tests. The results reveal that the three-step laser beam welding process produced crack-free and non-porous joints. Nitridation of the cemented carbides results in a significant reduction of the amount of brittle intermetallic phases. The mechanical properties of the joints are competitive to those of the conventional brazed steel-cemented carbide joints. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Das Schweissen von ungleichartigen Werkstoffen wie z. B. Staehlen mit Hartmetallen und Cermets stellt eine erhebliche Herausforderung dar, u. a. infolge der unterschiedlichen thermischen Ausdehnungskoeffizienten und Waermeleitfaehigkeiten, welche die Bildung von Eigenspannungen zur Folge haben, sowie aufgrund der Bildung sproeder intermetallischer Phasen. Das Laserstrahlschweissen von Hartmetallen/Cermets mit Stahl erscheint als attraktives komplementaeres Verfahren zum ueblicherweise verwendeten Loeten, da es die Herstellung von Verbindungen mit hoeherer Praezision, hoeherer Geschwindigkeit sowie geringerem Waermeeintrag erlaubt und die Verwendung eines Zusatzwerkstoffs nicht notwendig ist

  16. Influence of the chemical composition, heat and surface treatment in the biofouling of austenitic stainless steels

    International Nuclear Information System (INIS)

    Sarro, M. I.; Aleman, O.; Moreno, D. A.; Roso, M.; Ranninger, C.

    2004-01-01

    The main objective of this study was to analyse the biofouling processes in the kinds of stainless steels used normally in industry (UNS S30400, UNS S30403 and UNS S31600), with different surface treatments after grinding and polishing. The study was developed using two microscopy techniques. Scanning Electron Microscopy (SEM was used to evaluate the microorganisms distribution in the materials, and Epi fluorescence Microscopy was used to evaluate the viability of cells in the biofilm. The results revealed the influence of the material, heat treatment, surface treatment and roughness in the biofouling processes in the stainless steel assays. (Author) 33 refs

  17. The influence of surface roughness on the hydrogen permeation of type API 5L-X52 steel; Influencia del acabado superficial en la permeacion de hidrogeno del acero API 5L-X52 steel

    Energy Technology Data Exchange (ETDEWEB)

    Requiz, R; Vera, N; Camero, S

    2004-07-01

    The influence of surface reoughness on the corrosion and hydrogen permeation behaviour was evaluated on a type API 5L-52 steel in dearated 0.1M NaSO{sub 4} at pH=2. Potentiodynamic polarization curves were emplyed to determine the electrochemical behaviour of the steel, while the Devanathan-Stachurski technique was used to estimate the hydrogen permeation rate. Additionally, the surface roughness profiles were obtained in order to correlate the changes in the hydrogen perkeation rate with different metal surface finishings. The obtained results clearly demonstrate that when the roughness parameters have larger values, the cathodic current of hydrogen evolution increases while the hydrogen entry rate decreases. This effect can be attributed to the microstructural defects induced at the steel surface, such as dislocations, which increase the catalytic activity of the atomic hydrogen favouring its recombination. Also, these defects could allow the atomic hydrogen to remain adsorbed on the steel surface. Both effects could hinder the hydrogen diffusion into the metal since the possibility for this atom of becoming absorbed has been reduced. (Author) 16 refs.

  18. Die nabyheid van die Koninkryk

    Directory of Open Access Journals (Sweden)

    W.J. Snyman

    1963-03-01

    Full Text Available Vanweë die belangrikheid daarvan volg hier ’n breër bespreking van die proefskrif van dr. Tjaart van der Walt oor die nabyheid van die Koninkryk as wat in ’n gewone resensie kan geskied. Die vraagstuk wat onder oë gesien word is so oud as die kerk en die teologie, soms minder en soms meer op die voorgrond. Tans kan gesê word, staan dit in die middelpunt. Daarby is dit nie maar ’n akademiese vraagstuk nie, maar ’n vraagstuk waarvoor elke nadenkende leser van die Skrif te staan kom.

  19. Surface decontamination of Type 304L stainless steel with electrolytically generated hydrogen: Design and operation of the electrolyzer

    International Nuclear Information System (INIS)

    Bellanger, G.

    1993-01-01

    The surface of tritiated Type 304L stainless steel is decontaminated by isotopic exchange with the hydrogen generated in an electrolyzer. This steel had previously been exposed to tritium in a tritium gas facility for several years. The electrolyzer for the decontamination uses a conducting solid polymer electrolyte made of a Nafion membrane. The cathode where the hydrogen is formed is nickel deposited on one of the polymer surfaces. This cathode is placed next to the region of the steel to be decontaminated. The decontamination involves, essentially, the tritiated oxide layers of which the initial radioactivity is ∼ 5 kBq/cm 2 . After treatment for 1 h, the decontamination factor is 8. 9 refs., 16 figs., 2 tabs

  20. Duplex stainless steel surface bay laser cladding

    International Nuclear Information System (INIS)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-01-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs

  1. Electrochemical and surface studies of some Porphines as corrosion inhibitor for J55 steel in sweet corrosion environment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ambrish, E-mail: ambrish.16752@ipu.co.in [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Department of Chemistry, LFTS, Lovely Professional University, Phagwara, Punjab 144402 (India); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Ansari, K.R.; Quraishi, M.A. [Department of Applied Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, U.P. (India); Ebenso, Eno. E. [Department of Chemistry, School of Mathematical & Physical Sciences, North-West University(Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Chen, Songsong; Liu, Wanying [CNPC Key Lab for Tubular Goods Engineering (Southwest Petroleum University), Chengdu, Sichuan 610500 (China)

    2015-12-30

    Graphical abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO2 by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO2 by Porphines. • Weight loss and impedance results are in good agreement. • The adsorption of Porphines obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. • Examination of surface morphology by AFM. - Abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO{sub 2} by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), Contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). Adsorption of such Porphines on the J55 steel surface obeyed to the Langmuir adsorption isotherm. Atomic force microscopy (AFM), SECM, and Contact angle results confirm the formation of inhibitor film on J55 steel surface thereby mitigating corrosion.

  2. Electrochemical and surface studies of some Porphines as corrosion inhibitor for J55 steel in sweet corrosion environment

    International Nuclear Information System (INIS)

    Singh, Ambrish; Lin, Yuanhua; Ansari, K.R.; Quraishi, M.A.; Ebenso, Eno. E.; Chen, Songsong; Liu, Wanying

    2015-01-01

    Graphical abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO2 by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO2 by Porphines. • Weight loss and impedance results are in good agreement. • The adsorption of Porphines obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. • Examination of surface morphology by AFM. - Abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO_2 by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), Contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). Adsorption of such Porphines on the J55 steel surface obeyed to the Langmuir adsorption isotherm. Atomic force microscopy (AFM), SECM, and Contact angle results confirm the formation of inhibitor film on J55 steel surface thereby mitigating corrosion.

  3. Laser grooving of surface cracks on hot work tool steel

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2011-10-01

    Full Text Available The paper presents the analysis of laser grooving of 1.2343 tool steel hardened to 46 HRC. The effect of laser power and grooving speed on groove shape (i.e. depth and width, the material removal rate and the purity of produced groove as a measure of groove quality was investigated and analyzed using response surface methodology. Optimal parameters of laser grooving were found, which enables pure grooves suitable for laser welding.

  4. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    Science.gov (United States)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  5. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  6. Inhibitory activity of Paenibacillus polymyxa on the biofilm formation of Cronobacter spp. on stainless steel surfaces.

    Science.gov (United States)

    Yang, Soonwook; Kim, Seonhwa; Ryu, Jee-Hoon; Kim, Hoikyung

    2013-07-01

    The objective of this study was to control the survival or biofilm formation of Cronobacter spp. on stainless steel surfaces using Paenibacillus polymyxa. The antibacterial activity of a cell-free culture supernatant (CFCS) of P. polymyxa against Cronobacter spp. was found to vary with P. polymyxa incubation time. Maximum activity occurred when P. polymyxa was incubated at 25 or 30 °C for 96 h. When the CFCS was introduced to Cronobacter spp. adhered to stainless steel strips at 25 °C for up to 72 h, the CFCS successfully inhibited Cronobacter biofilm formation. Additionally, stainless steel surfaces with a preformed P. polymyxa biofilm were exposed to Cronobacter spp. suspensions in PBS or 0.1% peptone water at 3, 5, or 7 log CFU/mL to facilitate its attachment. The Cronobacter population significantly decreased on this surface, regardless of inoculum level or carrier, when the P. polymyxa biofilm was present. However, the microbial population decreased within 6 h and remained unchanged thereafter when the surface was immersed in an inoculum suspended in 0.1% peptone water at 5 or 7 log CFU/mL. These results indicate that P. polymyxa is able to use a promising candidate competitive-exclusion microorganism to control Cronobacter spp. © 2013 Institute of Food Technologists®

  7. The effect of ammonium partial pressure on residual stresses in surface layer of SW7M HSS steel after vacuum nitriding 'NITROVAC'79'

    International Nuclear Information System (INIS)

    Gawronski, Z.

    1997-01-01

    The effect of the nitriding atmosphere on the residual stresses in the surface layer of the SW7M HSS steel has been investigated in the work. It has been proved that the pressure influences the distribution of those stresses to a great extent. At lower pressures (20 hPa and 40 hPa) at which only one zone is being created - the one of internal nitriding, without that of ε type nitrides on the surface - the highest residual stresses are operating on the HSS steel surface itself or eventually in the subsurface region very close to the surface. In the difference, in case of higher pressure (120 hPa and 240 hPa), the highest stresses are operating at great depth 8-12 μm from the steel surface - depending on the thickness of the ε type nitride layer created on the steel surface at those pressure. All the relevant stresses are compressive one. (author). 6 refs, 4 figs, 1 tab

  8. Short communication: Evaluation of a sol-gel-based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk.

    Science.gov (United States)

    Liu, Dylan Zhe; Jindal, Shivali; Amamcharla, Jayendra; Anand, Sanjeev; Metzger, Lloyd

    2017-04-01

    Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm 2 and 0.37 mg/cm 2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    Science.gov (United States)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  10. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shubina, V., E-mail: varvara.shubina2014@gmail.com [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Gaillet, L. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Ababou-Girard, S. [Institut de Physique de Rennes, Département Matériaux et Nanosciences, UMR 6251 CNRS, Université Rennes 1, 35000 Rennes-Cedex (France); Gaudefroy, V. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Chaussadent, T.; Farças, F. [Université Paris-Est, IFSTTAR, MAST, CPDM, F-77447 Marne-la-Vallée (France); Meylheuc, T. [INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas (France); AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas (France); Dagbert, C. [2 Chemin de la Grand’côte, 36270 Éguzon-Chantôme (France); Creus, J. [LaSIE, UMR7356, Université de La Rochelle, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2015-10-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L{sup −1}, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe{sup 2+} and Fe{sup 3+} mixed-oxide layer and the outer layer, mostly composed of Fe{sup 3+} associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties.

  11. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shubina, V.; Gaillet, L.; Ababou-Girard, S.; Gaudefroy, V.; Chaussadent, T.; Farças, F.; Meylheuc, T.; Dagbert, C.; Creus, J.

    2015-01-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L −1 , the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe 2+ and Fe 3+ mixed-oxide layer and the outer layer, mostly composed of Fe 3+ associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties

  12. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    Science.gov (United States)

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.

  13. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yunkyum [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136–713 (Korea, Republic of); Lee, Joonho, E-mail: joonholee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136–713 (Korea, Republic of); Shin, Kwang-Soo [Research Institute of Industrial Science and Technology, Pohang 790–600 (Korea, Republic of); Jeon, Sun-Ho; Chin, Kwang-Geun [POSCO Technical Research Laboratories, Gwangyang 545–090 (Korea, Republic of)

    2014-03-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 °C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H{sub 2}–N{sub 2} gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of − 20 °C, a MnO layer with a thickness of ∼ 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl{sub 2}O{sub 4} layer with a thickness of ∼ 15 nm was formed with small Mn{sub 2}SiO{sub 4} particles that measured ∼ 70 nm in diameter. Approximately 500 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of − 40 °C, a MnAl{sub 2}O{sub 4} layer with a thickness of ∼ 5 nm was formed on most parts of the surface. On some parts of the surface, Mn{sub 2}SiO{sub 4} particles were formed irregularly up to a thickness of ∼ 50 nm. Approximately 200 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a{sub O2} > ∼ 1.26 × 10{sup −28}, MnO, MnAl{sub 2}O{sub 4}, and Mn{sub 2}SiO{sub 4} can be formed together, and the major oxide is MnO. When a{sub O2} is in the range of 1.26 × 10{sup −28}–2.51 × 10{sup −31}, MnO is not stable but MnAl{sub 2}O{sub 4} is the major oxide. When a{sub O2} < ∼ 2.51 × 10{sup −31}, only Al{sub 2}O{sub 3} is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: • The surface oxides of TWIP steel annealed at 800 °C were investigated using TEM. • The surface oxides were determined by the dew point

  14. Corrosion characteristics of DMR-1700 steel and comparison with different steels in marine environment

    International Nuclear Information System (INIS)

    Gurrappa, I.; Malakondaiah, G.

    2005-01-01

    In the present paper, a systematic corrosion study has been carried out on DMR-1700 steel to understand the protective nature of oxide scale that forms on its surface under marine environmental conditions. Further, the studies related to oxide scales as well as pitting and crevice corrosion resistance of both stainless steels and widely used low alloy steel EN24 in marine environment have been studied for comparison purpose. The surface morphologies of corroded steels have been observed under scanning electron microscope (SEM) in order to understand the nature of corrosion. A high performance protective coating that has been developed for protection of low alloy steels DMR-1700 and EN24 against corrosion is presented after stressing the importance of surface engineering in enhancing the life of steels. Based on the studies with different techniques, DMR-1700 steel has been recommended for manufacture of components used in aerospace systems in association with appropriate protective coating for improving their efficiency

  15. Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels

    International Nuclear Information System (INIS)

    Sengupta, J.; Shin, H.-J.; Thomas, B.G.; Kim, S.-H.

    2006-01-01

    Hooks and other sub-surface features in continuous-cast ultralow-carbon steel samples were examined using optical microscopy, electron backscattering diffraction, energy dispersive X-ray spectroscopy, and electron probe microanalysis techniques. Special etching reagents revealed dendrites growing from both sides of the line of hook origin. This line was found to represent the frozen meniscus and persisted into the final microstructure, as revealed by grain orientation measurements. A broken hook tip was observed in one micrograph, which explains the characteristic truncated shape of most hooks. Mold powder was found entrapped along the frozen meniscus. These results provide evidence of both solidification and subsequent overflow of the liquid steel meniscus. Thus, the instantaneous meniscus shape governs the shape and microstructure of the final hook, and the extent of the liquid steel overflow determines the shape of oscillation marks. This mechanism has important implications for the entrapment of inclusions and other surface defects

  16. The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Deen, K.M. [Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Department of Metallurgy and Materials Engineering, CEET, University of the Punjab, Lahore, 54590 (Pakistan); Cano, Lawrence [Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mt. Pleasant, MI 48859 (United States)

    2017-07-15

    Highlights: • 316L stainless steel was electropolished at the oxygen evolution (EPO) and below the oxygen evolution (EPBO) potentials. • EPBO samples displayed low fractional polarity and surface roughness when compared to EPO. • Both electropolished samples (EPO and EPBO) showed higher resistance to corrosion when compared to mechanically polished samples. • EPO and EPBO samples showed enhanced cell proliferation and stellar morphology after 24 h. - Abstract: Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m{sup 2}). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm{sup 2}) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (R{sub ct}) and passive film resistance (R{sub f}) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.

  17. Linear dimensional changes in plaster die models using different elastomeric materials

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo Pereira

    2010-09-01

    Full Text Available Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05 and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm, mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm, polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm. All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.

  18. The effect of surface preparation on the behaviour of double strap adhesive joints with thick steel adherents

    DEFF Research Database (Denmark)

    Anyfantis, K.N.; Tsouvalis, N.G.

    2009-01-01

    for preparing the bonding surfaces are investigated, namely grit blasting (GB) and simple sandpaper (SP). The behaviour of the joints, in terms of the force-displacement and strains-displacement responses was monitored and compared for both cases. The joints with SP surface preparation exhibited slightly lower...... stiffness and lower strength than the joints with GB surface preparation, while the latter failed at a lower displacement. In both cases, failure initiated at the free edges of the joints and the dominating failure mode was interfacial. In addition to the above experimental measurements, results are also......One of the major factors determining the integrity of an adhesive bond is the preparation of the bonding surfaces. The present study is an experimental investigation of the effect of the surface preparation procedure on the response of a steel-to-steel double strap adhesive joint. Two procedures...

  19. Plasma-induced surface degradation in 304 stainless steel used for TRIAM-1M limiter

    International Nuclear Information System (INIS)

    Tsukuda, N.; Kuramoto, E.; Tokunaga, K.; Muroga, T.; Yoshida, N.; Itoh, S.

    1994-01-01

    Surface degradation in a 304 stainless steel limiter of TRIAM-1M by long-pulse discharge during long period operation has been examined by means of X-ray diffraction, scanning electron microscopy and dynamical microindentation tests. Particular exfoliation and hardening of the surface of the electron drift side were observed. These result from the formation of α prime martensite induced by hydrogen in the plasma. The stability of the martensitic phase has been studied by annealing experiments on the cathodically hydrogen charged 316 stainless steel by X-ray diffraction. Both ε and α prime martensites were formed by 22 h cathodic charging. The former reverts to γ-phase and/or converts to α prime martensite below 723 K and the latter reverts to γ-phase below 923 K, repectively. ((orig.))

  20. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  1. A study on die wear model of warm and hot forgings

    Science.gov (United States)

    Kang, J. H.; Park, I. W.; Jae, J. S.; Kang, S. S.

    1998-05-01

    Factors influencing service lives of tools in warm and hot forging processes are wear, mechanical fatigue, plastic deformation and thermal fatigue, etc. Wear is the predominant factor for tool failure among these. To predict tool life by wear, Archard's model where hardness is considered as constant or function of temperature is generally applied. Usually hardness of die is a function of not only temperature but operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of temperature and time. In this study wear coefficients were measured for various temperatures and heat treatment for H13 tool steel. Also by experiment of reheating of die, die softening curves were obtained. From experimental results, relationships between tempering parameters and hardness were established to investigate effects of hardness decrease by the effect of temperatures and time. Finally modified Archard's wear model in which hardness is considered to be a function of main tempering curve was proposed. And finite element analyses were conducted by adopting suggested wear model. By comparisons of simulations and real profiles of worn die, proposed wear model was verified.

  2. Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.V. [Department of Chemical Engineering, Bach Khoa University, VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Vu, N.S.H.; Thu, V.T.H. [Faculty of Physics and Engineering Physics, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City (Viet Nam); Somers, A. [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220 (Australia); Nam, N.D., E-mail: namnd@pvu.edu.vn [PetroVietnam University, 762 Cach Mang Thang Tam Street, Long Toan Ward, Ba Ria City, Ba Ria—Vung Tau Province (Viet Nam)

    2017-08-01

    Highlights: • Yttrium 4-nitrocinnamate is a new corrosion inhibitor alternative to chromate technologies. • The inhibition performance is increased with increase of the inhibitor concentration. • Yttrium 4-nitrocinnamate mitigates corrosion by promoting random distribution of minor anodes. • Yttrium 4-nitrocinnamate is a good candidate for substitution of chromate inhibitors. - Abstract: Yttrium 4-nitrocinnamate (Y(4-NO{sub 2}Cin){sub 3}) was added to an aqueous chloride solution and studied as a possible corrosion inhibition system. Electrochemical techniques and surface analysis have been powerful tools to better understand the corrosion and inhibition processes of mild steel in 0.01 M NaCl solution. A combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Potentiodynamic polarization (PD), electrochemical impedance spectroscopy (EIS) and wire beam electrode (WBE) techniques was found to be useful in the characterization of this system. The result indicated that Y(4-NO{sub 2}Cin){sub 3} is able to effectively inhibit corrosion at a low concentration of 0.45 mM. Surface analysis clearly shows that the surface of steel coupons exposed to Y(4-NO{sub 2}Cin){sub 3} solution remained uniform and smooth, whereas the surface of steel coupons exposed to solution without inhibitor addition was severely corroded. The results suggest that Y(4-NO{sub 2}Cin){sub 3} behaves as a mixed inhibitor and mitigates corrosion by promoting random distribution of minor anodes. These are attributed to the formation of metal species bonding to the 4-nitrocinnamate component and hydrolysis of the Y(4-NO{sub 2}Cin){sub 3} to form oxide/hydroxides as a protective film layer.

  3. Deducing material quality in cast and hot-forged steels by new bending test

    Science.gov (United States)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  4. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling; Sinterizacao a plasma de aco ferritico reforcado com carbeto de niobio preparado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Materiais Ceramicos e Metais Especiais; Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Processamento de Materiais por Plasma

    2010-07-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  5. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    International Nuclear Information System (INIS)

    Pacquentin, Wilfried; Caron, Nadège; Oltra, Roland

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  6. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  7. Multifrequency eddy current examination for surface defects detection of hot steel products

    International Nuclear Information System (INIS)

    Hiroshima, Tatsuo; Sakamoto, Takahide; Takahashi, Akio; Miyata, Kenichi.

    1985-01-01

    Multifrequency eddy current testing method using probe coils has been studied for surface defects detection in hot steel products at high temperature over the magnetic Curie point. The conventional signal processing method is not available for suppression of an undesirable signal caused by lift-off variation or unevenness in inspected surfaces, because the undesirable signal pattern is similar to a defect signal pattern. In order to suppress the undesirable signal a new dual frequency signal processing method using three phase rotators has been developed, and was applied to several hot steel inspections. The results are as follows. 1. In the rotating eddy current machine for hot steel rods, the lift-off variation signal caused by a wobble of rods or the difference between rotating center and pass center of rods can be suppressed. A long seam or crack whose depth is more than 0.5mm can be detected. 2. In the hot inspection for continuously cast slabs, the signal caused by oscillation mark whose depth is under 1 mm can be suppressed. A fine transversal crack whose depth is 2 mm can be detected. 3. In the hot inspection for round billets, the lift-off variation signal caused by oval shape can be eliminated, and a crack which is deeper than 1.5 mm can be clearly detected. The detectability of defects can be improved by the analysis of dual frequency signal pattern. (author)

  8. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  9. Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting

    International Nuclear Information System (INIS)

    Choi, Bong-Jae; Kim, Young-Jig; Sung, Si-Young

    2012-01-01

    The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and B4C leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

  10. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  11. Die histologie en ultrastruktuur van die hepatopankreas van die bloukurper Oreochromis mossambicus

    Directory of Open Access Journals (Sweden)

    M. M. Nel

    1990-07-01

    Full Text Available Die histologie en ultrastruktuur van die hepatopankreas van die bloukurper Oreochromis mossambicus word beskryf. ’n Dun bindweefselkapsel omring die lewer. Die hepatosietrangskikking vertoon as lobules, met die koorde van hepatosiete wat vanaf ’n sentrale vene uitradieer en met mekaar anastomaseer. Indiwiduele lewerlohules vertoon nie duidelike grense nie, maar enkele duidelike triades word wel in die lewer van O. mossambicus aangetref. Die hepatosiete bevat ’n enkele ronde kern met ’n duidelike nukleolus en die growwe endoplasmiese retikula kom in twee of meer rye om die kerne en teen die selgrense van die hepatosiete voor. Die ander sitoplasmiese organelle kom verspreid in die hepatosietsitoplasma voor. Die eksokriene pankreasselle is om die portale venes gesetel. Die kerne van hierdie selle is rond en is hasaal in die kubies- tot silindervormige selle gelee. ’n Goedontwikkelde growwe endoplasmiese retikulum — vesikulêr, tubulêr en sirkulêr in vorm — en sektretoriese granules wat apikaal in die sel gelee is, kom voor.

  12. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  13. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  14. Surface Alloying of SUS 321 Chromium-Nickel Steel by an Electron-Plasma Process

    Science.gov (United States)

    Ivanov, Yu. F.; Teresov, A. D.; Petrikova, E. A.; Krysina, O. V.; Ivanova, O. V.; Shugurov, V. V.; Moskvin, P. V.

    2017-07-01

    The mechanisms of forming nanostructured, nanophase layers are revealed and analyzed in austenitic steel subjected to surface alloying using an electron-plasma process. Nanostructured, nanophase layers up to 30 μm in thickness were formed by melting of the film/substrate system with an electron beam generated by a SOLO facility (Institute of High Current Electronics, SB RAS), Tomsk), which ensured crystallization and subsequent quenching at the cooling rates within the range 105-108 K/s. The surface was modified with structural stainless steel specimens (SUS 321 steel). The film/substrate system (film thickness 0.5 μm) was formed by a plasma-assisted vacuum-arc process by evaporating a cathode made from a sintered pseudoalloy of the following composition: Zr - 6 at.% Ti - 6 at.% Cu. The film deposition was performed in a QUINTA facility equipped with a PINK hot-cathode plasma source and DI-100 arc evaporators with accelerated cooling of the process cathode, which allowed reducing the size and fraction of the droplet phase in the deposited film. It is found that melting of the film/substrate system (Zr-Ti-Cu)/(SUS 321 steel) using a high-intensity pulsed electron beam followed by the high-rate crystallization is accompanied by the formation of α-iron cellular crystallization structure and precipitation of Cr2Zr, Cr3C2 and TiC particles on the cell boundaries, which as a whole allowed increasing microhardness by a factor of 1.3, Young's modulus - by a factor of 1.2, wear resistance - by a factor of 2.7, while achieving a three-fold reduction in the friction coefficient.

  15. Influence of growth conditions on adhesion of yeast Candida spp. and Pichia spp. to stainless steel surfaces.

    Science.gov (United States)

    Tomičić, Ružica; Raspor, Peter

    2017-08-01

    An understanding of adhesion behavior of Candida and Pichia yeast under different environmental conditions is key to the development of effective preventive measures against biofilm-associated infection. Hence in this study we investigated the impact of growth medium and temperature on Candida and Pichia adherence using stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20-961.9 nm), material typical for the food processing industry as well as medical devices. The adhesion of the yeast strains to stainless steel surfaces grown in Malt Extract broth (MEB) or YPD broth at three temperatures (7 °C, 37 °C, 43 °C for Candida strains and 7 °C, 27 °C, 32 °C for Pichia strains) was assessed by crystal violet staining. The results showed that the nutrient content of medium significantly influenced the quantity of adhered cells by the tested yeasts. Adhesion of C. albicans and C. glabrata on stainless steel surfaces were significantly higher in MEB, whereas for C. parapsilosis and C. krusei it was YPD broth. In the case with P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. On the other hand, our data indicated that temperature is a very important factor which considerably affects the adhesion of these yeast. There was also significant difference in cell adhesion on all types of stainless steel surfaces for all tested yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image

    Science.gov (United States)

    Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.

    2017-12-01

    Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.

  17. die impak van metodologie op die verstaan van die nuwe testament

    African Journals Online (AJOL)

    voorbeeld eers een maal deur die bril van die vorm- en redaksiekritiek na die Evangelies gekyk het, dink jy vir altyd anders oor hulle tot- standkoming. Inderdaad, nuwe metodes lei tot nuwe perspektiewe! Dit is dan ook waar die fokus van hierdie artikel val: die impak van metodologie op die verstaan van die Nuwe ...

  18. Die vrede van Münster / Westfale en die betekenis daarvan vir die ...

    African Journals Online (AJOL)

    In die Suid-Afrikaanse kerkgeskiedenis egter is die Vrede van Münster as epogmakende gebeure tot dusver nie net in die algemeen verwaarloos nie, maar boonop is die direkte verband tussen hierdie sentrale historiese baken aan die een kant en aan die ander kant die vestiging van die VOC se verversingspos aan die ...

  19. Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel

    Science.gov (United States)

    Jo, Kyoung Rae; Cho, Lawrence; Oh, Jong Han; Kim, Myoung Soo; Kang, Ki Cheol; De Cooman, Bruno C.

    2017-08-01

    Third generation advanced high-strength steels achieve an excellent strength-ductility balance using a cost-effective alloy composition. During the continuous annealing of medium Mn steel, the formation of an external selective oxide layer of MnO has a negative impact on the coating quality after galvanizing. A procedure to reduce the selective oxide was therefore developed. It involves annealing in the temperature range of 1073 K to 1323 K (800 °C to 1050 °C) in a HNx gas atmosphere. Annealing at higher temperatures and the use of larger H2 volume fractions are shown to make the gas atmosphere reducing with respect to MnO. The reduction of the surface MnO layer was observed by SEM, GDOES, and cross-sectional TEM analysis.

  20. Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly

    International Nuclear Information System (INIS)

    Mastrangeli, M; Ruythooren, W; Van Hoof, C; Celis, J-P

    2009-01-01

    Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design

  1. Laser surface modification of boronickelized medium carbon steel

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Kulka, Michał; Klimek, Leszek

    2015-11-01

    A two-step process was applied to produce the multicomponent boride layers. Boronickelizing consisted of nickel plating and diffusion boriding. Two different methods of heat treatment of boronickelized C45 steel were used: a typical through-hardening, and a laser surface modification with remelting. Microstructure and some mechanical properties of these layers were examined. Microstructural characterization was studied using optical microscope, Scanning Electron Microscope, energy-dispersive X-ray microanalysis, Electron Back-Scatter Diffraction and X-ray diffraction. The laser modification improved wear resistance, cohesion as well as low-cycle fatigue of the boronickelized layer. Compressive stresses, occurring after laser remelting, could be the reason for the advantageous mechanical behavior of the layer.

  2. Investigation of selected surface integrity features of duplex stainless steel (DSS after turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2015-01-01

    Full Text Available The article presents surface roughness profiles and Abbott - Firestone curves with vertical and amplitude parameters of surface roughness after turning by means of a coated sintered carbide wedge with a coating with ceramic intermediate layer. The investigation comprised the influence of cutting speed on the selected features of surface integrity in dry machining. The material under investigation was duplex stainless steel with two-phase ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps. The obtained results allow to draw conclusions about the characteristics of surface properties of the machined parts.

  3. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.

    Science.gov (United States)

    Al-Sayed, S R; Hussein, A A; Nofal, A A; Hassab Elnaby, S I; Elgazzar, H

    2017-05-29

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  4. die pers as bron oor die geskiedenis van die eerste vrydeidsoorlog

    African Journals Online (AJOL)

    dood agv wonde wat hy tydens die slag opgedoen het. Dit was vir die Britse volk onaanvaarbaar dat slegs twee Boere gedood is nadat daar tussen. 20 000 en 30 000 rondtes op die Boere afgevuur is. Die pers kon net nie die ware syfers publiseer nie, want dit sou na 'n onwaarheid Iyk. Het die. Britse volk egter die Boere ...

  5. Characterization of transfer layers on steel surfaces sliding against diamondlike carbon in dry nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Bindal, C.; Pagan, J. [Argonne National Lab., IL (United States); Wilbur, P. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering

    1995-03-01

    Transfer layers on sliding steel surfaces play important roles in tribological performance of diamondlike carbon films. This study investigated the nature of transfer layers formed on M50 balls during sliding against diamondlike carbon (DLC) films (1.5 {mu}m thick) prepared by ion-beam deposition. Long-duration sliding tests were performed with steel balls sliding against the DLC coatings in dry nitrogen at room temperature and zero humidity. Test results indicated that the friction coefficients of test pairs were initially 0.12 but decreased steadily with sliding distance to 0.02-0.03 and remained constant throughout the tests, which lasted for more than 250,000 sliding cycles (30 km). This low-friction regime appeared to coincide with the formation of a carbon-rich transfer layer on the sliding surfaces of M50 balls. Micro-laser-Raman spectroscopy and electron microscopy were used to elucidate the structure and chemistry of these transfer layers and to reveal their possible role in the wear and friction behavior of DLC-coated surfaces.

  6. OPTIMIZATION OF SURFACE ROUGHNESS OF AISI 304 AUSTENITIC STAINLESS STEEL IN DRY TURNING OPERATION USING TAGUCHI DESIGN METHOD

    Directory of Open Access Journals (Sweden)

    D. PHILIP SELVARAJ

    2010-09-01

    Full Text Available The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS. This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal to noise (S/N ratio and the analysis of variance (ANOVA are employed to investigate the cutting characteristics of AISI 304 austenitic stainless steel bars using TiC and TiCN coated tungsten carbide cutting tool. Finally the confirmation tests that have been carried out to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness.

  7. Sliding wear characteristics of carburized steels and thermally refined steels implanted with nitrogen ions

    International Nuclear Information System (INIS)

    Terashima, Keiichi; Koda, Hiroyuki; Takeuchi, Eiichi.

    1995-01-01

    In order to concretely examine the application of surface reforming by ion implantation, nitrogen ion implantation was applied to the thermally refined steels S45C and SCM440 and the carburized steel SCM415, which are high versatile steels for mechanical structures, and their friction and wear characteristics were examined. The results are summarized as follows. In the surface-reformed material, in which nitrogen was implanted for the purpose of improving the seizure durability of the carburized steel, the load-frictional coefficient curve in lubricated sliding friction was similar to that of the material without implantation, but it was recognized that the load at which seizure occurred reached 2000 kgf or more, and as the amount of implantation was more, the material withstood higher load. In the lubricated sliding friction using a pin-ring type wear testing machine of the thermally refined steels and those to which implantation was applied, it was recognized that the specific wear amount was less in the implanted steels than in those without implantation. The results of the analysis of the implanted surface layers and the friction surfaces are reported. (K.I.)

  8. Influence of surface mechanical activation of the X40Cr13 steel on roughness after ion and gas nitriding

    International Nuclear Information System (INIS)

    Jasinski, J.; Wojtal, A.; Jeziorski, L.; Radecki, A.; Ucieklak, S.

    2003-01-01

    The article describes the problem of the thermal and mechanical activation of the surface of the X40Cr13 steel on the state of the ion and gas nitriding. in order to determine the nitriding influence and make the analysis of results, the steel was subjected to: soft annealing, hardening with subsequent tempering at T = 550 o C and also mechanical activation of the surface consisting in peripheral grinding with abrasive papers of the grain size 60, 360, 1000 and mechanical polishing. The main aim of this work was to establish the influence of different surface geometrical structure, depending on X40Cr13 steel structure, on the roughness profile after ion and gas nitriding. With regard to the above, the examinations of basic roughness parameters prior to and after thermochemical processes and the analysis of utilitarian usefulness of activations applied were carried out. (author)

  9. Die partypolitiek en die toekoms van die Afrikaanse volkskultuur

    Directory of Open Access Journals (Sweden)

    A.P. Treurnicht

    1970-03-01

    Full Text Available Reeds in 1853 het die Zuid Afrikaan hom soos volg uitgelaat: „Dis ’n dwaling wat ons reeds meermale bestry het dat ons as Britse onderdane verplig sou wees, om die Britse nasionaliteit ons s’n te maak. Die Kolonis van Hollandse oorsprong kan geen Engelsman word nie, en moet ook geen Nederlander wil wees nie. Wanneer hy weet om sy standpunt te waardeer, dan sal hy as verligte kolonis die grondtrekke van die Engelse volkskarakter met dié van die Nederlandse harmonies leer verenig en daardeur word wat hy as Kapenaar moet word.”

  10. Case Study to Illustrate the Potential of Conformal Cooling Channels for Hot Stamping Dies Manufactured Using Hybrid Process of Laser Metal Deposition (LMD and Milling

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hot stamping dies include cooling channels to treat the formed sheet. The optimum cooling channels of dies and molds should adapt to the shape and surface of the dies, so that a homogeneous temperature distribution and cooling are guaranteed. Nevertheless, cooling ducts are conventionally manufactured by deep drilling, attaining straight channels unable to follow the geometry of the tool. Laser Metal Deposition (LMD is an additive manufacturing technique capable of fabricating nearly free-form integrated cooling channels and therefore shape the so-called conformal cooling. The present work investigates the design and manufacturing of conformal cooling ducts, which are additively built up on hot work steel and then milled in order to attain the final part. Their mechanical performance and heat transfer capability has been evaluated, both experimentally and by means of thermal simulation. Finally, conformal cooling conduits are evaluated and compared to traditional straight channels. The results show that LMD is a proper technology for the generation of cooling ducts, opening the possibility to produce new geometries on dies and molds and, therefore, new products.

  11. die heidelbergse kategismus en die kategesemateriaal van die ned

    African Journals Online (AJOL)

    subjek, objek, leerstof en die metodiek van die senior kategese. Bloemfontein: Algemene Jeugkommissie Sondagskoolboekhandel. de rAAd oer ned ger kerken in Zuid AfrikA. 1921. De zevende vergadering: handelinge. 1925. De negende vergadering: handelinge. de villierS, d. W. 1957. Die Kategese in die Ned. Geref.

  12. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  13. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching

    Science.gov (United States)

    Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub

    2018-05-01

    Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.

  14. Vacuum die attach for integrated circuits

    Science.gov (United States)

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  15. Die invloed van die neo-marxistiese kultuuranalise op die Wêreldraad van Kerke en die Gereformeerde Kerke van Nederland

    Directory of Open Access Journals (Sweden)

    J. M. Vorster

    1979-05-01

    Full Text Available Toe die studente dwarsoor die VSA en Europa in die laat sestigerjare ’n plotselinge en radikale verset openbaar het teen die bestaande orde, het hulle die deur geopen vir ’n nuwe mededinger om die hart van die Westerse kultuur. Dit is die nou reeds bekende neo-Marxisme. Sedertdien het hierdie jongeling sy voetspore op vele vlakke van die Westerse kultuur gelaat.

  16. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  17. Surface design methodology – challenge the steel

    International Nuclear Information System (INIS)

    Bergman, M; Rosen, B-G; Eriksson, L; Anderberg, C

    2014-01-01

    The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or ''feeling'' for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA

  18. Die regsposisie van die gemolesteerde kind 1

    Directory of Open Access Journals (Sweden)

    P.J. Schabort

    1991-03-01

    Full Text Available Hoe reik die reg uit na die seksueel gemolesteerde kind? As na die reg in wye verband gekyk word, sou dit alie wetgewing en alle gemeneregsbeginsels en alle regsprosedures insluit waardeur die Staat poog om molestering te voorkom en die gemolesteerde kind in beskerming te neem. Dit le baie wyd en sou byvoorbeeld die maatreels insluit van die Kindenvet 33 van 1960; die Wet op Egskeiding 70 van 1979; die Wet op Kindersorg 74 van 1983; die Wet op die Status van Kinders 82 van 1987 en die Wet op Bemiddeling in Sekere Egskeidingsaangeleenthede 24 van 1987. Eersdaags sal dit moontlik ook ’n Manifes vir die Regte van Kinders insluit wat vermoedelik geskoei sal wees op die W O se Konvensie vir die Regte van die Kind (1989 w a arv an die RSA tan s nog nie ’n ondertekenaar is nie.

  19. The precipitation behavior of titanium carbide on the surface of SUS 321 stainless steel

    International Nuclear Information System (INIS)

    Yoshihara, Kazuhiro; Nii, Kazuyoshi

    1982-01-01

    The surface composition of SUS 321 stainless steel at high temperatures was observed in vacuum with Auger electron spectroscopy. The precipitation of titanium carbide was found on the surface of SUS 321. The thickness of precipitated titanium carbide layer increased in proportion to the square root of annealing time and became about 0.05 μm after heated at 1100 K for 432 ks. The precipitated titanium carbide was not replaced by the most surface active element sulfur, and remained stable on the surface. The precipitated layer, however, was not even and had many holes about 1 μm in diameter. The bottom of a hole was SUS 321, on which phosphorus, oxygen and sulfur segregated. As the annealing time was prolonged, these segregants were replaced one by one in the order of the surface activity, and finally the most surface active element, sulfur, remained on the bottom of the hole. Moreover, sulfur diffused over the outside of the hole. The precipitation of titanium carbide on the surface occurred according to the following processes: (1) The titanium and carbon which had been dissolved in the bulk diffused onto the surface of the stainless steel. (2) The titanium carbide which had been precipitated in the bulk dissolved because the concentration of titanum and carbon fell under their solubility limits in the bulk. (3) The titanium and carbon diffused onto the surface which was exposed to vacuum. (4) The titanium and carbon recombined into titanium carbide and precipitated on the surface. The growth rate of the thickness of the precipitated layer was controlled by the diffusion of titanium and carbon in the precipitated titanium carbide. (J.P.N.)

  20. Improvement of pitting corrosion resistance of AISI 304L stainless steel by nano-pulsed laser surface melting

    International Nuclear Information System (INIS)

    Pacquentin, W.; Blanc, C.; Caron, N.; Thro, P.Y.; Cheniere, A.; Tabarant, M.; Moutiers, G.; Miserque, F.; Plouzennec, H.; Oltra, R.

    2013-01-01

    The stainless steel 304L is widely used, however, in particular conditions, it may be sensitive to pitting corrosion. Nano-pulsed laser surface melting is a surface treatment which allows improving the corrosion resistance of this steel. This treatment consists in focusing a laser beam on the surface of the material, involving its quite immediately melting through a few microns depth, then an ultra-fast solidification occurs with cooling rate about 1011 K/s. The laser parameters control the modifications of the physico-chemical properties. In particular, we studied the influence of the impacts overlap of an ytterbium laser-fiber on the corrosion resistance of a 304L stainless steel in conditions of an aerated and agitated solution of NaCl (concentration of 30 g/L). We obtained an increase of the pitting potential of 220 mV, highlighting an improvement of the corrosion resistance. The study of the chemical and structural modifications is not enough to explain the improvement of the corrosion resistance. Other phenomena must be taken into account, as the quality of the oxide layer, in terms of physico-chemical and mechanical properties. (authors)

  1. The formation of biofilms on superduplex UNS S32750 steel subjected to different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Pagnin, Sergio [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barreiro Junior, Walter Cravo; Bott, Ivani de S. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2009-07-01

    Biocorrosion is a phenomenon involving metallic surface deterioration accelerated, or induced, by microorganisms. Such microbiological mechanisms occur when microorganisms are deposited on the surfaces exposed to the carrier fluids. Various factors influence the deposition mechanisms, such as the physical characteristics and chemical composition of the metallic surfaces, both of which can cause significant alterations in the processes that lead to the formation of biofilms. The current study evaluates the formation of biofilms, of a sulphate-reducing strain of bacteria (SRB), on superduplex UNS S32750 stainless steels exposed to synthetic seawater containing this bacterial strain. The experiments were carried out in a dynamic system using a controlled-flow test loop, and the steel surfaces were prepared using different techniques, such as polishing and shot peening, in order to present different physical surface conditions and, consequently, different deposition rates. The levels of organic acids, and of the sulphates consumed and produced, were measured. The morphologies of the biofilms produced were also analysed, by scanning electron microscopy, and surface roughness was measured by atom force microscopy. The level of biocorrosion was determined by counting the pits formed. The results obtained revealed that, despite high bacterial adhesion levels for the various treated surfaces examined, no relevant pitting had occurred, indicating that a corrosive process had not taken place for the testing conditions considered. (author)

  2. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  3. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  4. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  5. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  6. Die hervertolking van die paradigma in verband met die ...

    African Journals Online (AJOL)

    Kerkorde van De Mist en die Algemene Reglement van 1816, wat onderskeidelik vir die Kaapse Kerk en die .... Een van die eerstes was Sam Freiherr von Pufendorf (1632-1694) wat in sy werk De habitu religionis ..... Koning was weer aan bewind (vgl Diepenhorst sj:74w; De Visser 1926/1927 lll:202w). 43.1 JD Janssen ...

  7. Effect of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces.

    Science.gov (United States)

    Xiao, Meng; Li, Wen-Hong; Lu, Mang; Zhang, Zhong-Zhi; Luo, Yi-Jing; Qiao, Wei; Sun, Shan-Shan; Zhong, Wei-Zhang; Zhang, Min

    2012-11-01

    In this study, biosurfactant-producing strain N2 and non-biosurfactant producing stain KB18 were used to investigate the effects of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces. Strain N2, with a biosurfactant production capacity, reduced the contact angle of stainless steel to 40.04°, and the corresponding adhesion work of aqueous phase was decreased by 26.5 mJ/m(2). By contrast, KB18 could only reduce the contact angle to 50.83°, with a corresponding 7.6 mJ/m(2) decrease in the aqueous phase work adhesion. The paraffin removal test showed that the paraffin removal efficiencies of strain N2 and KB18 were 79.0% and 61.2%, respectively. Interestingly, the N2 cells could attach on the surface of the oil droplets to inhibit droplets coalescence. These results indicate that biosurfactant-producing strains can alter the wettability of stainless steel and thus eliminate paraffin deposition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Die teologiese skool in die P.U.K vir C.H.O.: met die betekenis van die teologiese skool vir die Christelike wetenskap

    Directory of Open Access Journals (Sweden)

    F. Postma

    1944-03-01

    Full Text Available Die Teologiese Skool van die Gereformeerde Kerk gedink op 29 November 1944 sy vyf-en-sewentigjarige bestaan.Die Raad en Senaat van die P.U.K. vir C.H.O. wil ook langs hierdie weg die Teologiese Skool van harte gelukwens en die versekering gee dat daar by die outoriteite van die P.U.K. ’n diepgevoelde dankbaarheid heers dat hierdie inrigting sovele jare deur onse God en Vader gedra en gespaar is.

  9. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    Science.gov (United States)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  10. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  11. Study of the temperature effect on the surface of stainless steel using fission track technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, M M; Nagpaul, K K [Kurukshetra Univ. (India). Dept. of Physics

    1977-01-01

    Solid state track technique has been used to determine trace amounts of uranium in steel. Steel samples of the size 1 cm x 1 cm x 0.6 cm were ground, polished, heated to various temperatures ranging from room temperature to 900 deg C and then packed alternately with lexan detectors in an aluminium capsule for thermal neutron irradiation. After irradiation, lexan discs were removed and etched. Their surfaces were scanned under an optical microscope for measurement of track density. Uranium contents of the samples was found to vary from 6 ppm to 9 ppm.

  12. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  13. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  14. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    S.R. Al-Sayed

    2017-05-01

    Full Text Available Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min−1 was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  15. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  16. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  17. Effect of surface roughness and stainless steel finish on Listeria monocytogenes attachment and biofilm formation.

    Science.gov (United States)

    Rodriguez, Andres; Autio, Wesley R; McLandsborough, Lynne A

    2008-01-01

    The purpose of this study was to evaluate the effect of surface roughness (Ra) and finish of mechanically polished stainless steel (Ra = 0.26 +/- 0.05, 0.49 +/- 0.10, and 0.69 +/- 0.05 microm) and electropolished stainless steel (Ra = 0.16 +/- 0.06, 0.40 +/- 0.003, and 0.67 +/- 0.02 microm) on Listeria adhesion and biofilm formation. A four-strain cocktail of Listeria monocytogenes was used. Each strain (0.1%) was added to 200 ml of tryptic soy broth (TSB), and coupons were inserted to the mixture for 5 min. For biofilm formation, coupons with adhesive cells were incubated in 1:20 diluted TSB at 32 degrees C for 48 h. The experiment was performed by a randomized block design. Our results show that the level of Listeria present after 48 h of incubation (mean = 7 log CFU/cm2) was significantly higher than after 5 min (mean = 6.0 log CFU/cm2) (P stainless steel (mean = 6.7 log CFU/cm2) (P > 0.05). Listeria initial adhesion (values ranged from 5.9 to 6.1 log CFU/cm2) or biofilm formation (values ranged from 6.9 to 7.2 log CFU/cm2) was not significantly correlated with Ra values (P > 0.05). Image analysis with an atomic force microscope showed that bacteria did not colonize the complete surface after 48 h but were individual cells or grouped in microcolonies that ranged from 5 to 10 microm in diameter and one to three cell layers in thickness. Exopolymeric substances were observed to be associated with the colonies. According to our results, electropolishing stainless steel does not pose a significant advantage for food sanitation over mechanically finished stainless steel.

  18. Surface modification of hydroturbine steel using friction stir processing

    Science.gov (United States)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  19. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  20. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves

    2013-01-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  1. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  2. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  3. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  4. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    International Nuclear Information System (INIS)

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  5. die sinodale verband van die nederduitse gereformeerde kerk in die

    African Journals Online (AJOL)

    Liezel

    Strauss. Die sinodale verband van die Nederduitse Gereformeerde Kerk. 122 die Vrystaatse Sinode anti-veranderingsgesind of eerder gesond-behoudend of gereformeerd-gematig? Veral as dit .... howe) in moeilike omstandighede gebring is (NG Kerk in die OVS 1865-1912:5). In 'n brief op 8 Augustus 1864 ontken Ds.

  6. Die kerkregtelike posisie van die ouderling en diaken in die ...

    African Journals Online (AJOL)

    ... drie dekades die Kerkreg gevestig as 'n selfstandige vak in die teologiese curriculum, maar ook 'n baie groot rol gespeel daarin dat die beginsels van die kerk like reg beter begryp word. Naas sy wetenskaplike bydrae word met eweveel genoegdoening gedink aan sy bcsondere persoonlikheid, sy werkvermoe, sy humor-.

  7. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  8. The Results Of The Investigation Of Thermomechanical Processing Of PM Steel

    International Nuclear Information System (INIS)

    Szczepanik, Stefan; Wisniewski, Bartosz; Krawiarz, Jerzy

    2007-01-01

    Hot die forging of PM steel is used to obtain products with high densities. The combination of this process with heat treatment of forgings directly after their forming is researched in order to reduce energy consumption in the manufacture of PM steel products. This work determined the influence of the cooling ratio directly after hot forging of PM steel samples on their structure and mechanical properties. The properties of the PM preforms were examined after sintering and after sintering, quenching into water and tempering for 1 h at 250, 350 and 550 deg. C, respectively, as well as after forging at given temperatures and cooling in water and air, respectively. Forged steel after quenching was tempered at the same temperature as the sintered samples. Good mechanical properties were obtained by hot forging at 1100 deg. C. Sintered steel with 0.6 % Cgraphite is characterized by good hardenability and is susceptible to plastic forming at 1100 - 940 deg. C. During its cooling in air a bainitic-martensitic structure is obtained, whereas after cooling in water the structure is martensitic. The properties of the forged steel are strongly dependent on deformation temperature and cooling conditions. The tensile strength of the forged PM steel with 0.6 Cgraphite after forming at 1100 deg. C is much higher than that of the same heat-treated as-sintered steel. Traditional heat treatment applied to materials after deformation at 1100 deg. C slightly increases properties in comparison to the material directly quenched into water. The best strength was 1585 ± 193 MPa, bending strength 3364 ± 142 MPa and hardness 588 ± 43 HB. Application of controlled cooling of sintered PM steel directly after close-die forging diminishes the energy consumption during product manufacture

  9. Investigations of Surface Topography of Hot Working Tool Steel Manufactured with the Use of 3D Print

    Directory of Open Access Journals (Sweden)

    Grobelny Pawel

    2017-01-01

    Full Text Available The paper presents the possibilities of 3D printing of chosen hot working tool steel for manufacturing ready made parts. Results of examination of the surface topography of material manufactured by the technology Laser CUSING®B (Laser melting with metals on the machine, Concept Laser M1 3D printing of metal parts has the potential to revolutionize the market of manufacturing and supplying parts. It makes it possible to dissipate manufacturing and to produce parts on request at lower cost and less energy consumption. The parameters of the surface topography of the hot working tool steel directly after printing can differ depending on the distance from the base plate. The differences of surface roughness values can amount from 32% to 85% for Ra and from 59% to 85% for Rz in comparison of the sample bottom to its top.

  10. Investigations of phosphate coatings of galvanized steel sheets by a surface-analytical multi-method approach

    International Nuclear Information System (INIS)

    Bubert, H.; Garten, R.; Klockenkaemper, R.; Puderbach, H.

    1983-01-01

    Corrosion protective coatings on galvanized steel sheets have been studied by a combination of SEM, EDX, AES, ISS and SIMS. Analytical statements concerning such rough, poly-crystalline and contaminated surfaces of technical samples are quite difficult to obtain. The use of a surface-analytical multi-method approach overcomes, the intrinsic limitations of the individual method applied, thus resulting in a consistent picture of those technical surfaces. Such results can be used to examine technical faults and to optimize the technical process. (Author)

  11. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    Science.gov (United States)

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical

  12. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    Science.gov (United States)

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  13. Die gebruik van parallelplaatreologie vir die bepaling van die intrinsieke viskositeit van poli-etileentereftalaat

    Directory of Open Access Journals (Sweden)

    O. C. Vorster

    2005-09-01

    Full Text Available Die bepaling van die intrinsieke viskositeit van poli-etileentereftalaat word bemoeilik deur die feit dat daar tans slegs twee metodes in gebruik is. In die eerste metode word die bepaling deur middel van oplossingsviskometrie gedoen, maar die toksisiteit van die oplosmiddel, asook die tydperk wat dit neem om die bepaling te doen, is ’n probleem. Die tweede metode word beperk deur die kompleksiteit en beskikbaarheid van die apparatuur in Suid-Afrika. In hierdie studie word ’n alternatiewe metode, gebaseer op parallelplaatreologie, voorgestel wat albei hierdie probleme oorkom en die resultate sodoende verkry, word vergelyk met dié wat met bestaande metodes verkry is.

  14. Metallurgical aspects of welding. Ferrous and nonferrous materials. 4. new rev. ed.; Die Metallurgie des Schweissens. Eisenwerkstoffe - nichteisenmetallische Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Guenter

    2010-07-01

    This is the fourth edition of the standard work on welding metallurgy. The various problems of ferrous and nonferrous materials in the welding process are presented in great detail. In order to prevent corrosion of welded constructions, metallurgical properties and problems of all important technical materials are discussed, i.e. alloyed and unalloyed steels, cast iron materials, and the most relevant nonferrous materials. At the end of each chapter, the interested reader will find exercises for self-studies. Some of these can be solved using the material presented in the book while others are intended for deepening and further training. Easy examples (with solutions) are found all over the book; they are helpful because they provide information on underlying mechanisms and interdependences that are not obvious at first glance. The information was adapted to new EURO standards and international standards (up to March 2009) as far as these are relevant to Germany. New information is provided, e.g., on new steel standards (constructional steels according to DIN EN 10025), heat-treatable steels according to DIN EN 10025-6 and DIN EN 10083, high-alloy steels according to DIN EN 10088, and filler materials for steel welding according to DIN EN ISO 2560. The systematics of the ''law of cohabitation'' was applied to welding engineering for the first time here. (orig.) [German] Das in vierter Auflage erscheinende Buch widmet sich der Schweissmetallurgie mit ihren Besonderheiten. Die vielfaeltigen Probleme der Eisenwerkstoffe und der nichteisenmetallischen Werkstoffe bei ihrer schweisstechnischen Verarbeitung werden ausfuehrlich dargestellt. Um Korrosionsschaeden an geschweissten Konstruktionen vorzubeugen, wird die Metallurgie aller technisch bedeutsamen Werkstoffe, wie unlegierte und legierte Staehle, Eisen-Gusswerkstoffe, die wichtigsten NE-Metalle, ausfuehrlich besprochen. An den Kapitelenden findet der interessierte Leser Aufgaben, von denen ein

  15. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Höhm, S.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Large LIPSS covered areas were manufactured by fs-laser irradiation on steel (X30CrMoN15-1) and titanium (Ti). • LIPSS with spatial periods around 500 nm were formed homogeneously on both materials. • Tribological performance of LIPSS covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • LIPSS on titanium significantly reduced the friction coefficient and wear when a fully formulated engine oil was used. - Abstract: Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.

  16. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    International Nuclear Information System (INIS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2015-01-01

    Graphical abstract: - Highlights: • Large LIPSS covered areas were manufactured by fs-laser irradiation on steel (X30CrMoN15-1) and titanium (Ti). • LIPSS with spatial periods around 500 nm were formed homogeneously on both materials. • Tribological performance of LIPSS covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • LIPSS on titanium significantly reduced the friction coefficient and wear when a fully formulated engine oil was used. - Abstract: Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications

  17. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  18. Die ontwikkeling van die bestuursmotiveringsvraelys (BMV

    Directory of Open Access Journals (Sweden)

    A. S. Engelbrecht

    1991-06-01

    Full Text Available The development of the Managerial Motivation Questionnaire (MMQ: Several criticisms of the psychometric suitability of existing measures of managerial motivation are reported in the literature. This study aimed at developing a new psychometrically sound instrument, the Managerial Motivation Questionnaire (MMQ. This was done on the basis of a comprehensive study of the literature on managerial motivation and the role-motivation theory. The preliminary MMQ was systematically shortened and refined until the final MMQ of 98 items was composed. This was based on social desirability and semantic appraisal, item analysis and factor analysis of the questionnaire. The results indicate that it was possible to develop a final MMQ that was relatively free of social desirability. It further demonstrated satsifactory internal consistencies on two samples (a = 0/90, N = 360; a = 0/91, N = 535, where all subscale items were found to be relatively pure measures of the isolated factors. Although some evidence was found providing support for the reliability of the MMQ, a need for further research on the construct validity of managerial motivation still exists. Opsomming In die literatuur word verskeie punte van kritiek teen die psigometriese geskiktheid van bestaande meetinstrumente van bestuursmotivering gerapporteer. Die doelstelling van hierdie studie was dus om aan die hand van die konseptuele omiyning van bestuursmotivering, en die rolmotiveringsteorie as algemene verwysingsraamwerk, 'n nuwe psigometries aanvaarbare meetinstrument, die Bestuursmotiveringsvraelys (BMV, te ontwikkel. Op grond van sosiale wenslikheids- en semantiese beoordeling, itemontleding en faktorontleding van die voorlopige BMV is die vraelys stelselmatig verkort en verfyn totdat die finale BMV van 98 items saamgestel is. Die resultate dui daarop dat hierdie studie wel daarin geslaag het om 'n finale BMV te ontwikkel wat relatief vry van sosiale wenslikheid is, bevredigende interne

  19. Nature in corrosion-erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: jcaicedoangulo@gmail.com [Thin Films Group Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360, Cali (Colombia); Advanced Materials for Micro and NanoTechnology Research Group Universidad Autonoma de Occidente (Colombia); Cabrera, G. [Thin Films Group Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360, Cali (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Amaya, C. [Thin Films Group Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360, Cali (Colombia); Hard Coating Laboratory CDT-ASTIN SENA, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia)

    2012-04-30

    The aim of this work is to characterize the electrochemical behavior of [TiN/TiAlN]n multilayer coatings under corrosion-erosion condition. The multilayers with bilayer numbers (n) of 2, 6, 12, and 24 and/or bilayer period ({Lambda}) of 1500 nm, 500 nm, 250 nm, 150 nm and 125 nm were deposited by magnetron sputtering technique on Si (100) and AISI 1045 steel substrates. Both, the TiN and the TiAlN structures for multilayer coatings were evaluated via X-ray diffraction analysis. Mechanical and tribological properties were evaluated via nanoindentation measurements and scratch test respectively. Silica particles were used as abrasive material on corrosion-erosion test in 0.5 M of H{sub 2}SO{sub 4} solution at impact angles of 30 Degree-Sign and 90 Degree-Sign over surface. The electrochemical characterization was carried out using polarization resistance technique (Tafel), in order to observe changes in corrosion rate as a function of the bilayer number (n) or the bilayer period ({Lambda}) and the impact angle. Corrosion rate values of 9115 {mu}m y for uncoated steel substrate and 2615 {mu}m y for substrate coated with n = 24 ({Lambda} = 125 nm) under an impact angle of 30 Degree-Sign were found. On the other hand, for an impact angle of 90 Degree-Sign the corrosion rate exhibited 16401 {mu}m y for uncoated steel substrate and 5331 {mu}m y for substrate coated with n = 24 ({Lambda} = 125 nm). This behavior was correlated with the curves of mass loss for both coated samples and the surface damage was analyzed via scanning electron microscopy images for the two different impact angles. These results indicate that TiN/TiAlN multilayer coatings deposited on AISI 1045 steel represent a practical solution for applications in corrosive-erosive environments. - Highlights: Black-Right-Pointing-Pointer Determination of superficial phenomenon that occurs in surface of multilayer films. Black-Right-Pointing-Pointer Innovative multilayer system [TiN/TiAlN]n electrochemical

  20. Nature in corrosion–erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Cabrera, G.; Caicedo, H.H.; Amaya, C.; Aperador, W.

    2012-01-01

    The aim of this work is to characterize the electrochemical behavior of [TiN/TiAlN]n multilayer coatings under corrosion–erosion condition. The multilayers with bilayer numbers (n) of 2, 6, 12, and 24 and/or bilayer period (Λ) of 1500 nm, 500 nm, 250 nm, 150 nm and 125 nm were deposited by magnetron sputtering technique on Si (100) and AISI 1045 steel substrates. Both, the TiN and the TiAlN structures for multilayer coatings were evaluated via X-ray diffraction analysis. Mechanical and tribological properties were evaluated via nanoindentation measurements and scratch test respectively. Silica particles were used as abrasive material on corrosion–erosion test in 0.5 M of H 2 SO 4 solution at impact angles of 30° and 90° over surface. The electrochemical characterization was carried out using polarization resistance technique (Tafel), in order to observe changes in corrosion rate as a function of the bilayer number (n) or the bilayer period (Λ) and the impact angle. Corrosion rate values of 9115 μm y for uncoated steel substrate and 2615 μm y for substrate coated with n = 24 (Λ = 125 nm) under an impact angle of 30° were found. On the other hand, for an impact angle of 90° the corrosion rate exhibited 16401 μm y for uncoated steel substrate and 5331 μm y for substrate coated with n = 24 (Λ = 125 nm). This behavior was correlated with the curves of mass loss for both coated samples and the surface damage was analyzed via scanning electron microscopy images for the two different impact angles. These results indicate that TiN/TiAlN multilayer coatings deposited on AISI 1045 steel represent a practical solution for applications in corrosive–erosive environments. - Highlights: ► Determination of superficial phenomenon that occurs in surface of multilayer films. ► Innovative multilayer system [TiN/TiAlN]n electrochemical response. ► Improvement of surface mechanical properties and response to surface corrosion attack. ► Nature of [Ti

  1. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    Science.gov (United States)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  2. X-ray diffraction analysis of rust layer on a weathering steel bridge with surface treatment using synchrotron radiation

    International Nuclear Information System (INIS)

    Yamashita, Masato; Hara, Shuichi; Kamimura, Takayuki; Miyuki, Hideaki; Sato, Masugu

    2007-01-01

    We have examined the structure of rust layer formed on a weathering steel bridge, to which the surface treatment, employing the effect of Cr 2 (SO 4 ) 3 sophisticatedly designed to form the protective goethite (α-FeOOH) rust layer which contains a certain amount of Cr, Cr-goethite, was applied in 1996, using X-ray diffraction at SPring-8 synchrotron radiation facility. It was shown that the formation of α-FeOOH was promoted and/or crystal growth of γ-FeOOH was suppressed by the surface treatment. The increase in the protective ability index (PAI) of the rust layer indicates that the protective goethite was predominantly formed under the effect of the surface treatment. In conclusion, it can be said that the surface treatment worked well to promote the formation of the protective goethite rust layer on the weathering steel bridge during the 10-year exposure. (author)

  3. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Hadzima, B.; Fintová, Stanislava

    2015-01-01

    Roč. 22, č. 2 (2015), s. 77-84 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * EIS * Corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/167/278

  4. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    Science.gov (United States)

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  5. Stainless steel electrochemical behaviour - application to the decontamination of steel parts contaminated by tritium

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-01-01

    This purpose of this work is the study of an electrochemical decontamination process of stainless steel in which tritium is present on the surface of the metal, in the oxide layer and in the metal. We have first investigated the behaviour of the oxide layer. Then we have studied the hydrogen evolution, its diffusion and retrodiffusion in the metal. The results are applied to the decontamination of steel parts contamined by tritium. Part of the tritium can be eliminated by reducing the oxyde layer, which contains large amounts of tritium. However, it is more beneficial to electrolyse at the potential at which the H + ions are reduced. The hydrogen on the steel surface enters in the metal and displaces most of tritium located in the metallic layers near the surface. The tritium surface elimination rate is about 95%. The tritium eliminated through electrolysis is only a small fraction of all the tritium contained in the metal. However, according to conservation experiments of parts after electrolysis, it can be concluded that hydrogen, probably more strongly bound than tritium to steel, forms near the surface a barrier that prevents tritium retrodiffusion. Electrolysis appears as a satisfactory process for the surface decontamination of slightly tritiated steel parts. A decontamination automaton based on the preceding results is described using a pad electrolyser. This type of decontamination is little polluting, and the parts can be recycled after the in situ treatment [fr

  6. Surface damage of 316 stainless steel irradiated with 4He+ to high doses

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1978-01-01

    Surface blistering of niobium by implantation with helium ions in the 9 to 15 keV range was investigated. The apparent disappearance of blisters at sufficiently high doses was believed to be an equilibrium effect. To determine whether high temperature annealing causes the equilibrium condition, stainless steel-316 samples were irradiated at a constant 450 0 C. Results are presented

  7. Nano- and Macro-wear of Bio-carbo-nitrided AISI 8620 Steel Surfaces

    Science.gov (United States)

    Arthur, Emmanuel Kwesi; Ampaw, Edward; Zebaze Kana, M. G.; Adetunji, A. R.; Olusunle, S. O. O.; Adewoye, O. O.; Soboyejo, W. O.

    2015-12-01

    This paper presents the results of an experimental study of nano- and macro-scale wear in a carbo-nitrided AISI 8620 steel. Carbo-nitriding is carried out using a novel method that involves the use of dried, cyanide-containing cassava leaves, as sources of carbon and nitrogen. These are used in a pack cementation that is used to diffuse carbon and nitrogen into case layers at intermediate temperatures [673.15 K, 723.15 K, 773.15 K, and 823.15 K (400 °C, 450 °C, 500 °C, and 550 °C)]. Nano- and macro-scale wear properties are studied in the case-hardened surfaces, using a combination of nano-scratch and pin-on-disk experiments. The measured wear volumes (at both nano- and macro-length scales) are shown to increase with decreasing pack cyaniding temperature. The nano- and macro-wear resistances are also shown to be enhanced by the in situ diffusion of carbon and nitrogen from cyanide-containing bio-processed waste. The underlying wear mechanisms are also elucidated via atomic force microscopy and scanning electron microscopy observations of the wear tracks. The implications of the results are discussed for the design of hardened carbo-nitrided steel surfaces with improved wear resistance.

  8. Interpretation and significance of reverse chevron-shaped markings on fracture surfaces of API X100 pipeline steels

    International Nuclear Information System (INIS)

    Sowards, Jeffrey W.; McCowan, Chris N.; Drexler, Elizabeth S.

    2012-01-01

    Highlights: ► We investigated fractures of X100 steel linepine produced during fracture mechanics testing. ► Fractures exhibited a unique chevron pattern that points in the direction of crack propagation. ► A qualitative model is proposed to explain the fracture pattern formation. ► Findings indicate that careful interpretation of ductile material fractures is necessary. - Abstract: Fracture surfaces of X100 pipeline steels were examined with optical and electron microscopy after crack tip opening angle fracture testing. Some fracture surfaces exhibited chevron-shaped fracture patterns that are markedly different from classic chevron fracture. The chevron-shaped markings on the X100 fracture surfaces point in the direction of crack growth, rather than towards the location of fracture initiation, as observed in classic cases of chevron fracture. Existing models, predicting formation of chevron fracture patterns, do not explain the fracture behavior observed for X100 steel. A mechanism is proposed where reverse chevron-shaped patterns are developed due to the shape of the crack front itself. The chevron shape forms as a result of crack tunneling, and the overall pattern is developed on the fracture surface due to intermittent crack growth, resulting in alternating regions (bands) of fast fracture and slower, more ductile fracture. The contrast between these bands of alternating fracture defines the chevron. Care should be taken during interpretation of intermittent chevron markings on fractures of ductile materials, as they may point away from rather than towards the origin of fracture.

  9. Forward impact extrusion of surface textured steel blanks using coated tooling

    Science.gov (United States)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  10. Selective surface oxidation and segregation upon short term annealing of model alloys and industrial steel grades

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.

    2007-07-01

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot-dip galvanizing. This thesis highlights the influence of annealing conditions and the effect of alloying elements on the selective oxidation in model alloys and some industrial steel grades. Model alloys of binary (Fe-2Si, Fe-2Mn, Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr, Fe-1Mn-0.8Cr, Fe-1Si-0.8Cr, Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were studied. In the case of steels, standard grade interstitial free (IF) steels and experimental grade tensile strength 1000 MPa steel were investigated. All specimens were annealed at 820 C in N{sub 2}-5%H{sub 2} gas atmospheres with the wide range of dew points (i.e. -80 to 0 C). The surface chemistry after annealing and its wettability with liquid Zn have been correlated as a function of dew points by simulating the hot-dip galvanizing process at laboratory scale. (orig.)

  11. STUDIES ON THE SELECTED PROPERTIES OF C45 STEEL ELEMENTS SURFACE LAYER AFTER LASER CUTTING, FINISHING MILLING AND BURNISHING

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2016-12-01

    microhardness of C45 steel elements after laser cutting, and then finishing milling or burnishing. The aim of milling was to get rid of the characteristic “striae” after laser cutting and to improve geometric accuracy. Burnishing caused hardening of C45 steel elements’ surface layer after laser cutting and improvement in surface roughness. In order to measure surface roughness, the Hommel – Etamic device T8000 RC120 – 400 with software was used. The roughness parameters that were analyzed in the article were: amplitude parameters, height parameters and Abbott - Firestone curve. The microhardness measurements were made with the use of Vicker’s hardness test with a weight of 50 g. As a result of the finishing of the surface after cutting, a decrease in surface roughness and improvements in functional qualities were noticed. In addition, hardening of the edgeside area also occurred, which is an advantageous phenomenon.

  12. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  13. Microhardness changes gradient of the duplex stainless steel (DSS surface layer after dry turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2014-10-01

    Full Text Available The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps.

  14. Surface conditioning of a cold-rolled dual-phase steel by annealing in nitriding atmospheres prior to hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Luther, F.; Beste, D.; Bleck, W. [Institute for Ferrous Metallurgy (IEHK), RWTH Aachen (Germany); Dimyati, A.; Mayer, J. [Central Facility for Electron Microscopy (GFE), RWTH Aachen (Germany)

    2007-04-15

    The development of steel grades for automotive applications in the recent years has been driven on by two trends: lightweight and improved crash safety. By using steels like DP (dual phase) the goals of passenger safety, fuel efficiency and environmental friendliness can be met at reasonable price. The favorite corrosion protection method for sheet steels in the car industry is the hot-dip galvanizing process. Here, an approach was made to reduce the surface enrichment of critical alloying elements of a dual phase steel grade by reactive annealing in ammonia containing atmospheres. The effects of this treatment on mechanical properties and hot-dip coating behavior are reported. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Die uitbouing van die Bybelse kanon in antieke Judaïsme en die ...

    African Journals Online (AJOL)

    31 Jul 2015 ... die oer-Christelike boodskap tot by sy Ou Testamentiese wortels, die geskrifte van Israel wat cum grano salis die 'Bybel' van die oer-Christendom geword het en die blywende verwysingspunt van die Christelike boodskap is. Erkenning. Hierdie artikel is vertaal na Afrikaans deur Prof. Jan G. van der Watt.

  16. Carbon steel protection in G.S. (Girlder sulfide) plants. Influence of the material surface state. Pt. 2

    International Nuclear Information System (INIS)

    Burkart, A.L.; Garavaglia, R.N.

    1983-05-01

    The passivation on carbon steels, in particular ASTM A 516 Degree 60 and ASTM A 333 steels is made, submitting it to the action of H 2 S/H 2 O 1,2 corrosive medium. The steel is rapidly corroded by H 2 S in aqueous solution, forming iron sulfides on the metallic surface in a crystalline layer of various μm of thickness. During this process, various types of iron sulfides at different phases, with different sulfur and iron contents are formed. The influence of temperature, the pH, the exposure time and the corrosive medium composition on formation and quality of the iron sulfides protective layer was also studied. (Author) [es

  17. Effect on stress-strain relations brought by surface carburization of 316 stainless steel

    International Nuclear Information System (INIS)

    Matsumoto, K.

    1977-01-01

    The effect of sodium. environment on austenitic stainless steels used as structural materials in Liquid Metal Cooled Fast Breeder Reactors (LMFBRs) has long been the subject of extensive studies in many countries. Recent developments tending toward stricter control of the oxygen content permitted to be present in the circulating sodium have come to allay the apprehensions formerly held on the possibility of general corrosion affecting the mechanical properties of structural materials expected to be used In LMFBR plants. Grain boundary corrosion and depletion of elements from the structure surface also have come to be considered to provide little cause of fear in this regard, though some uncertainty is still left concerning the influence that these phenomena might exert toward the end of plant life. What still remains essentially to be clarified relates to carbon mass transfer. Decarburization and/or carburization are phenomena that cannot be disregarded even in the primary heat transfer system of LMFBRs, on account of the temperature dependence of carbon activity in steels, which could cause the carbon to leak out from structural material into the circulating sodium in the higher temperature zones of a circuit, to deposit itself on the channel walls in the lower temperature parts. Recent reports on loop experiments point toward the possibility of carboneous matter leaching into flowing sodium and into the cover gas to produce significant carburization phenomena. Carburization, in particular, can bring about loss of ductility and deterioration of fatigue properties, and hence serious consideration of this aspect is called for in the design of components incorporating thin stainless steel plates. To represent the stress-strain behavior at 550 deg. C of 316 stainless steel affected by surface carburization, an empirical formula was adopted. It was proposed by Voce for relating true stress to true plastic strain: σ = Aexp(C ε p ) + B, where σ is the true stress, and

  18. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeonghwa [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Sakuragi, Makoto; Shibata, Aya; Abe, Hiroshi; Kitajima, Takashi; Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Mizutani, Masayoshi; Ohmori, Hitoshi [Material Fabrication Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ayame, Hirohito [Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Son, Tae Il [Bioscience and Biotechnology, Chung-Ang University, 40-1 San, Nae-Ri, Daeduck-myun, Ansung-si, Kyungki-do, 456-756 (Korea, Republic of); Aigaki, Toshiro [Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)

    2012-12-01

    Titanium and stainless steel were modified with dopamine for the immobilization of biomolecules, epidermal growth factor (EGF). First, the treatment of metal surfaces with a dopamine solution under different pH conditions was investigated. At higher pH, the dopamine solution turned brown and formed precipitates. Treatment of the metals with dopamine at pH 8.5 also resulted in the development of brown color at the surface of the metals. The hydrophobicity of the surfaces increased after treatment with dopamine, independently of pH. X-ray photoelectron spectroscopy revealed the formation of a significant amount of an organic layer on both surfaces at pH 8.5. According to ellipsometry measurements, the organic layer formed at pH 8.5 was about 1000 times as thick as that formed at pH 4.5. The amount of amino groups in the layer formed at pH 8.5 was also higher than that observed in the layer formed at pH 4.5. EGF molecules were immobilized onto the dopamine-treated surfaces via a coupling reaction using carbodiimide. A greater amount of EGF was immobilized on surfaces treated at pH 8.5 compared with pH 4.5. Significantly higher growth of rat fibroblast cells was observed on the two EGF-immobilized surfaces compared with non-immobilized surfaces in the presence of EGF. The present study demonstrated that metals can become bioactive via the surface immobilization of a growth factor and that the effect of the immobilized growth factor on metals was greater than that of soluble growth factor. - Highlights: Black-Right-Pointing-Pointer Epidermal growth factor was covalently immobilized on titan or stainless steel surfaces. Black-Right-Pointing-Pointer Amino groups were formed on the surfaces by the treatment and the growth factor was immobilized through amide bonds. Black-Right-Pointing-Pointer The immobilized epidermal growth factor accelerated cell proliferation more than soluble ones on the surfaces.

  19. A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    Both TiO 2 and SiO 2 coated steel surfaces containing micro- and nanoscale binary structures with different surface roughness were successfully fabricated by means of a facile layer by layer deposition process followed by heat treatment. The resulting surfaces were modified by the low free energy chemical PTES (1H,1H,2H,2H-Perfluorodecyltriethoxysilane). The experimental results of wettability exhibit that such modified surfaces have a strong repulsive force to water droplets, their static contact angles exceed 165°, receding angle>160°, advanced angles>170° and slide angle<1°. The resulting surfaces not only exhibit superhydrophobic properties but also show strong UV resistance (after coating SiO 2 on top of TiO 2) and strong stability to various solvents including 0.01% HCl solution. © 2012 Elsevier B.V.

  20. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  1. Prevention of burn-on defect on surface of hydroturbine blade casting of ultra-low-carbon refining stainless steel

    Directory of Open Access Journals (Sweden)

    Li Ling

    2008-08-01

    Full Text Available The burn-on sand is common surface defect encountered in CO2-cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel, its feature, causes and prevention measures are presented in this paper. Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating.

  2. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    Science.gov (United States)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  3. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  4. Detection of surface breaking cracks in centrifugally cast stainless steel with ultrasonic - Inspection from the cracked side

    International Nuclear Information System (INIS)

    Hoegberg, K.; Zetterwall, T.

    1986-01-01

    The ability of detecting surface breaking or near-surface cracks with ultrasonic techniques from the inside of centrifugally cast stainless steel pipes have been investigated by the Swedish Plant Inspectorate (SA) and AaF-Tekniska Roentgencentralen AB (AaF-TRC) on behalf of the Swedish Nuclear Power Inspectorate (SKI) and the Swedish State Power Board (SV). Fifteen specimens from the international Stainless Steel Round Robin Test (SSRRT) were used in this study. All specimens were examined from the cracked side with different ultrasonic probes. The data reported here indicate that a probe with dual elements, low frequency, longitudinal waves and short focus distance can detect almost all of the intended defects with a rather good signal-to-noise ratio. (author)

  5. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    Directory of Open Access Journals (Sweden)

    Yanan Meng

    2018-02-01

    Full Text Available In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM, respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS. The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  6. Die verband tussen die sielkundige kontrak en organisasieverbondenheid

    Directory of Open Access Journals (Sweden)

    K. J. Stanz

    1999-06-01

    Full Text Available The relationship between the psychological contract and organisational commitment. The aim of this study is to design a measuring instrument with acceptable metric characteristics for the strength of the psychological contract within the South African context, and to determine empirically the relation between the strength of the psychological contract and organisational commitment. The Dhammanungune Model served as foundation for the design of the Strength of the Psychological Contract Questionnaire which consists of two scales namely, a needs expectation scale and a needs fulfilment expectation scale. The items of each scale have been formulated in the manner that ensures that the respondent reacts consecutively to two instructions namely, (a the level of the expectation and (b the importance of the expectation. This questionnaire was administered together with the Organisational Commitment Questionnaire to two population groups within the military environment. The Pearson Product Moment Correlation was calculated between the strength of the psychological contract and organisational commitment and the significance of the correlations was evaluated. Opsomming Die doel van die studie is om 'n meetinstrument met aanvaarbare metriese eienskappe vir die sterkte van die sielkundige kontrak vir Suid-Afrikaanse omstandighede te ontwerp en om empirics die verband tussen die sterkte van die sielkundige kontrak en organisasieverbondenheid te bepaal. Die sterkte van die sielkundige kontrak vraelys is op grond van die Dhammanungune-model ontwerp en het uit twee skale naamlik, die behoefteverwagting- en vervullingsverwagtingskale bestaan. Items vir eike skaal is sodanig geformuleer dat die respondent agteropeenvolgens op twee instruksies naamlik (a die vlak van die verwagting en (b die belangrikheid van die verwagting moet reageer. Die vraelys is saam met die organisasieverbondenheidsvraelys op twee populasies uit 'n militere omgewing toegepas. Die Pearson

  7. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  8. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  9. DIE ROL VAN DIE TAALWETENSKAP IN DIE ONTWIKKELING VAN ...

    African Journals Online (AJOL)

    aanslag op die sogenaamde "Intentional Fallacy", heelwat verder. n. Mens sou hier eintlik ook op die invloed van Lacan se toepassing van. De Sacs sure op Freud moet wys, en op Macherey se Theory of Literary. Production. Barthes is naamlik besig om repressie teen te werk, en die teks as produksieproses in stede van ...

  10. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  11. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Trudeau, J. [Metaldyne, Inc., Twinsburg, OH (United States); Cleary, B. [Metaldyne, Inc., Twinsburg, OH (United States); Hackett, M. [Metaldyne, Inc., Twinsburg, OH (United States); Greene, W. A. [SpinTek FIltrations, LLC, Los Alamitos, CA (United States)

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  12. Hydrogen induced surface effects on the mechanical properties of type 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V. da; Pascual, R.; Miranda, P.E.V. de.

    1983-01-01

    The possibilities of modifying the mechanical properties of type 304 stainless steel by cathodic hydrogen charging were studied. The situations analysed included hydrogen embrittlement itself in tensile tests of hydrogen containing samples and the effects of delayed cracks in fatigue tests of hydrogenated and outgassed samples. SEM and TEM observations were also performed. It was found that hydrogen induced surface delayed cracks appear in great quantity during outgassing (of the order of several millions in a square centimeter). Hydrogen embrittlement was responsible for drastic losses in ductility in tension, while surface cracks severely reduced fatigue life. (author) [pt

  13. Homogenous photocatalytic decontamination of prion infected stainless steel and titanium surfaces.

    Science.gov (United States)

    Berberidou, Chrysanthi; Xanthopoulos, Konstantinos; Paspaltsis, Ioannis; Lourbopoulos, Athanasios; Polyzoidou, Eleni; Sklaviadis, Theodoros; Poulios, Ioannis

    2013-01-01

    Prions are notorious for their extraordinary resistance to traditional methods of decontamination, rendering their transmission a public health risk. Iatrogenic Creutzfeldt-Jakob disease (iCJD) via contaminated surgical instruments and medical devices has been verified both experimentally and clinically. Standard methods for prion inactivation by sodium hydroxide or sodium hypochlorite have failed, in some cases, to fully remove prion infectivity, while they are often impractical for routine applications. Prion accumulation in peripheral tissues and indications of human-to-human bloodborne prion transmission, highlight the need for novel, efficient, yet user-friendly methods of prion inactivation. Here we show both in vitro and in vivo that homogenous photocatalytic oxidation, mediated by the photo-Fenton reagent, has the potential to inactivate the pathological prion isoform adsorbed on metal substrates. Photocatalytic oxidation with 224 μg mL(-1) Fe (3+), 500 μg mL(-1) h(-1) H 2O 2, UV-A for 480 min lead to 100% survival in golden Syrian hamsters after intracranial implantation of stainless steel wires infected with the 263K prion strain. Interestingly, photocatalytic treatment of 263K infected titanium wires, under the same experimental conditions, prolonged the survival interval significantly, but failed to eliminate infectivity, a result that we correlate with the increased adsorption of PrP(Sc) on titanium, in comparison to stainless steel. Our findings strongly indicate that our, user--and environmentally--friendly protocol can be safely applied to the decontamination of prion infected stainless steel surfaces.

  14. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  15. Die belangrikste kenmerk van die diereproduksie- bedrywe oor die ...

    African Journals Online (AJOL)

    digdhede teen 1980 uit 'n kudde van 30 rnilj.skape ge- produseer moet word. Tweedens sal die faktore ... die Republiek van Suid-Mrika teen 1980 in totaal 28 milj. sal wees. Indien die produsente dit as 'n ..... Appendix Table 4 in Digestive Physiology and nutrition of ruminants Vol. 3 Ed. and Publ. D.C. Church, Oregon State ...

  16. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  17. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    International Nuclear Information System (INIS)

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1996-01-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 degrees C, under loading conditions (ΔK, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC

  18. Structural changes in surface layer of steel 08Kh18N10T during machining

    International Nuclear Information System (INIS)

    Palenik, J.; Vodarek, V.

    1989-01-01

    The results are reported of a study of the surface layer of steel 08Kh18N10T affected by machining. Structural changes were studied caused by finish turning and by additional roller burnishing. Multiple deformation bands were observed to occur under the given cutting conditions; they mainly consisted of deformation doublets and only in isolated cases of ε-martensite. The presence of α'-martensite was not shown in the specimen surface layer following finish turning. The deformation shear bands in the roller-burnished specimen consisted of both ε-martensite and of deformation doublets. The amount of ε-martensite in the structure was significantly higher than in the specimen worked by turning. Local presence of α'-martensite formations was observed inside the deformation bands. It thus follows that roller burnishing is unsuitable as part of the manufacture of components from steel 08Kh18N10T. (J.B.). 5 figs., 1 tab., 9 refs

  19. Investigation of corrosion and wear mechanisms in hard material-reinforced duplex steel coatings; Untersuchungen zum Korrosions- und Verschleissverhalten von hartstoffverstaerkten `Duplex`-Schutzschichten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Schweisstechnik und Trennende Fertigungsverfahren; Goellner, J. [Technische Univ. Magdeburg (Germany). Inst. fuer Werkstofftechnik und Werkstoffpruefung

    1998-09-30

    The hard-material reinforced duplex steel coatings were deposited by plasma arc two-powder surfacing. By varying the angle of the hard materials feeding process, the deposition of the carbides was optimized so that they are deposited into the matrix in the trailing zone of the welding torch under conditions of very low thermal effects near the freezing point of the weld pool. Microstructural studies revealed that the deposition of the hard materials prevents devlopment of the typical, ferritic-austenitic microstructure of duplex steels. Due to a dissolution and diffusion process, the microstructure of the matrix takes up carbon and chromium or tungsten, depending on the carbide, thus enhancing the austenitic material in the microstructure. The wear behaviour of the surface deposits was found to be very good, wear being reduced by a factor of 6, irrespective of the type of carbide. The friction-affected surfaces showed no dissolving effects or cracking. The corrosion behaviour in sulfuric acid is also good. The welded deposits exhibited the typical behaviour of a passive material. Wear mechanisms slightly reduce the resistance. The behaviour of various specimens in artificial seawater could be distinctly assessed. Small grain fractions and pre-heating temperatures of 100 C have a beneficial effect on the corrosion resistance. The technique recommends itself for applications such as coatings for baffle plates used in flue gas desulfurisation, pipes, pump components, flanges or nozzles, or for recurrent coating of system components affected by abrasive corrosion. (orig./CB) [Deutsch] Zur Herstellung hartstoffverstaerkter Duplex-Beschichtungen wurde das Plasma-Zwei-Pulver-Auftragschweissverfahren verwendet. Hierbei wurde durch Variation des Zufuhrwinkels der Hartstoffe der Einbringungsort der Karbide optimiert, so dass diese im Nachlauf des Schweissbrenners mit sehr geringer thermischer Beeinflussung im erstarrungsnahen Schmelzbadbereich in die Matrix eingelagert

  20. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  1. Die brein soos beskou deur die Grieke en Romeine

    Directory of Open Access Journals (Sweden)

    Francois P. Retief

    2015-02-01

    Full Text Available In Ou Egipte is mummifikasie met uitgebreide reseksie of uitsnyding van organe geassosieer, maar geen kennis is geneem van die morfologie van die brein nie. Griekse skrywers van die sesde en vyfde eeue v.C. het die brein aanvanklik gesien as die setel van intelligensie, die orgaan van sensoriese waarneming en gedeeltelik die oorsprong van sperma. Pneuma het ’n belangrike rol in breinfunksie gespeel. Hippokrates was die eerste om die brein te beskryf as ’n dubbele orgaan, wat met harsingvlies (meninges bedek, funksioneel van pneuma afhanklik en vertolker van begrip is. Tydgenote soos Plato, Aristoteles en Diokles het tot die beskrywing bygedra, maar laasgenoemde twee het beweer dat die hart die middelpunt van intelligensie is en nie die brein nie. Gedurende die laaste helfte van die vierde eeu v.C. is disseksie van die menslike liggaam tydelik aan die mediese skool van Alexandrië toegelaat en het dit tot merkwaardige vooruitgang in die begrip van die menslike anatomie en fisiologie gelei. Herofilus en Erasistratus het uitstekende beskrywings van die struktuur en funksie van die brein gegee wat eers in die tweede eeu n.C. deur Galenus geëwenaar is.

  2. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  3. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  4. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  5. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  6. Die Britse owerheid en die onderwys op Heidelberg gedurende die ...

    African Journals Online (AJOL)

    The establishment of Christian National Education (CNE) Schools stimulated the concept of mother tongue education. Oor die klaskamerpraktyk en die werklike gehalte van onderrig tydens die kampskooltydperk is daar min bekend. Heidelberg wat na 1902 in 'n belangrike onderwyssentrum in Transvaal ontwikkel het, het ...

  7. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  8. Relationship between surface structure of silicon containing steel and adhesion of hot dip galvanized coating; Si gan'yu koban no hyomen kozo to yoyu aen mekki micchakuseino kankei

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Y.; Hashimoto, S.; Ishibashi, Y. [Kokan Keisoku K.K., Kawasaki (Japan); Inagaki, J. [NKK Corp., Tokyo (Japan); Fukuda, Y. [Shuibuoka University, Shizuoka (Japan)

    2000-06-01

    The surface of the annealed steel and the exfoliated interface of the coating for the hot dip galvanized Si containing steel sheets was characterized by using SEM (Scanning Electron Microscope), AES (Auger Electron Spectroscopy) and TEM (Transmission Electron Microscopy). The adhesion of the coatings have depended on the Si content of the steel. It have been found that MnSiO{sub 3} particles are formed at the surface of the annealed steels having high Si content and that two types of grain having different distribution of the oxide exist in the steels. Large oxide particles have been formed in one type of grain and small particles are formed in the other type of grain. The different type of Fe-Zn alloy are formed on two types of grains. It have been observed that the oxide particles exist at the interface of exfoliated coatings after the adhesion test for the steels with high Si content. The distribution of the oxide particles observed at the bottom of the exfoliated coating is quite similar to that of the surface oxide of the annealed steel. From these results, the exfoliation of the coating has initiated at the oxide particles of the steel surface that has been not reduced during the hot dip galvanizing. (author)

  9. Sedimentêre omgewings van die Inhaca-eilandstelsel met spesiale verwysing na die petrografiese en geochemiese eienskappe van die sedimente spesiale verwysing na die petrografiese en geochemiese eienskappe van die sedimente

    Directory of Open Access Journals (Sweden)

    Marieke Peché

    2011-09-01

    Full Text Available Die Inhaca-eilandstelsel is geleë langs die suidooskus van Mosambiek. Die oostekant van die stelsel grens aan die Indiese Oseaan en die westekant aan die Baai van Maputo. Hierdie eilandstelsel bestaan uit Inhaca- en Portugese eiland, asook ’n groep sandbanke wat van die noordlike punt van Inhaca na Portugese eiland strek. Die doel van hierdie studie is om die verskillende moderne en oer-sedimentêre omgewings op die eilandstelsel te identifiseer en te beskryf, die invloed van getye en golfaksie op die moderne sedimentêre omgewing vas te stel en die geochemiese en petrografiese samestelling van die geologiese eenhede te bepaal.

  10. Surface melting technique of small diameter stainless steel pipe by means of yttrium aluminium garnet laser

    International Nuclear Information System (INIS)

    Katahira, Fujito; Hirano, Kenji; Tanaka, Yasuhiro; Yoshida, Kazuo; Kuribayashi, Munetaka; Umemoto, Tadahiro

    1994-01-01

    A new method of surface melting by using a high power yttrium aluminium garnet laser was developed. This method is applicable to a long distance and narrow space, because of the good accessibility of the laser beam through optical fibre.A desensitization of sensitized type 304 stainless steel pipe was demonstrated by using this technique. A melted layer of thickness approximately 200μm had a very finite solidification structure, which contained approximately 1.5% δ-ferrite. The average chemical composition of this layer was almost the same as that of type 304 stainless steel, and a band of 300μm thickness under the melted layer underwent solution heat treatment (SHT).As a result of such surface melting, the melted layer exhibited superior resistance to intergranular stress corrosion cracking (IGSCC). Since the SHT layer is highly resistant to IGSCC generally, it may be possible to improve the IGSCC resistance of base metal to a comparatively deep extent (500μm from the surface) by this technique. ((orig.))

  11. Surface melting technique of small diameter stainless steel pipe by means of yttrium aluminium garnet laser

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Fujito (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Hirano, Kenji (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Tanaka, Yasuhiro (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Yoshida, Kazuo (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Kuribayashi, Munetaka (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan)); Umemoto, Tadahiro (Ishikawajima-Harima Heavy Industries Co. Ltd., 1 Shin-Nakahara-Cho, Isogo-Ku, Yokohama 235 (Japan))

    1994-12-01

    A new method of surface melting by using a high power yttrium aluminium garnet laser was developed. This method is applicable to a long distance and narrow space, because of the good accessibility of the laser beam through optical fibre.A desensitization of sensitized type 304 stainless steel pipe was demonstrated by using this technique. A melted layer of thickness approximately 200[mu]m had a very finite solidification structure, which contained approximately 1.5% [delta]-ferrite. The average chemical composition of this layer was almost the same as that of type 304 stainless steel, and a band of 300[mu]m thickness under the melted layer underwent solution heat treatment (SHT).As a result of such surface melting, the melted layer exhibited superior resistance to intergranular stress corrosion cracking (IGSCC). Since the SHT layer is highly resistant to IGSCC generally, it may be possible to improve the IGSCC resistance of base metal to a comparatively deep extent (500[mu]m from the surface) by this technique. ((orig.))

  12. Die Ware Buch und die Philologie

    Directory of Open Access Journals (Sweden)

    Bernhard Hurch

    2017-10-01

    Full Text Available Die im 19. Jahrhundert sich verändernden Produktionsbedingungen für Druckwerke (Buchdruck, Satz, Papier, Bindung wirkten katalysierend auf die Fachkonstitution und Institutionalisierung der Philologien. Hier steht der tatsächliche Buchmarkt im Vordergrund der Darstellung, das Käuferpublikum und die Voraussetzungen des Vertriebs. Dazu gehören auch die Rezension als entstehende Textsorte und die rasch arbeitenden Rezensionsorgane. F.-R. Hausmann wurde in den letzten Jahren unentbehrlicher Mitarbeiter dieses im Rahmen des Grazer Schuchardt-Projekts "Netzwerk des Wissens" angesiedelten Ansatzes.

  13. Plasma decontamination of uranium oxide from stainless steel surfaces

    International Nuclear Information System (INIS)

    Veilleux, J.M.; El-Genk, M.S.; Chamberlin, E.P.

    1997-01-01

    The U.S. Department of Energy (DOE) is expected to have 845000 m 3 of transuranic (TRU) waste by the year 2000 that has accumulated during the development and assembly of the nation's nuclear stockpile. The TRU disposal costs alone range up to $28000/m 3 , which could be reduced to $1800/m 3 or less by treating and converting the material to low-level waste. Plasma-based processes have been shown to remove plutonium and uranium surface contaminants from metallic components and could be used to treat TRU with significant cost avoidance, estimated at over $1.0 billion. Martz and Hess conducted the initial work of plutonium etching in low-power radio-frequency (rf) plasma with etch rates ranging from 0.007 to 0.025 kg/m 2 ·h. Veilleux et al. reported that plasma decontamination of uranium from the interior of aluminum objects results in etch rates an order of magnitude greater. The current work reports on removal rates of uranium from stainless steel surfaces and includes estimates of the etch rates and characteristic times for removal

  14. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    OpenAIRE

    Katoh Takahisa; Aizawa Tatsuhiko; Yamaguchi Tetsuya

    2015-01-01

    Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of t...

  15. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  16. Self-healing phenomena on corroding steel in simulated pore water and mortar, substantiated via cyclic voltammetry and surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, D. A.; Breugel, K. van [Delft University of Technology, The Netherlands Faculty of CiTG, Department Materials and Environment, Delf (Netherlands); Hu, J. [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); Kolev, H. [Bulgarian Academy of Sciences, Institute of Catalysis, Sofia (Bulgaria)

    2013-07-01

    The application of polymeric nano-particles was investigated as an approach to control corrosion and/or self-heal corrosion damage on steel in simulated alkaline medium and reinforced mortar. The “self-healing agent”, present in the closed inner volume of PEO-b-PS vesicles was Ca-based and chosen as such due to the natural predominance of Ca in the investigated system. The vesicles’ concentration was 0.0024 wt.% in the model medium and 0.025 wt.% per cement weight for the case of mortar. Therefore, a “self-repair” or “self-healing” of the steel product layer solely due to the Ca- component is not realistic in view of these minimal concentrations. The most plausible mechanism is the nature of incorporation of the Ca-containing vesicles in the product layer, enhanced chloride binding effects and adsorption on active sites on the steel surface. A more uniform and stable surface layer, initial pitting formation and propagation, but consecutive “healing”, are evidenced by surface analysis and electrochemical response i.e. largely reduced anodic and corrosion currents and no further pit propagation are observed when Ca-containing vesicles are present in the model medium. Corrosion products-free steel/cement paste interface is relevant for the reinforced mortar, containing Ca-rich vesicles in contrast to vesicles-free and empty vesicles-containing matrix. Key words: corrosion; concrete; polymeric nano-particles; CVA; SEM; XRD; XPS.

  17. Die Starter: A New System to Manage Early Feasibility in Sheet Metal Forming

    Science.gov (United States)

    Narainen, Rodrigue; Porzner, Harald

    2016-08-01

    Die Starter, a new system developed by ESI Group, allows the user to drastically reduce the number of iterations during the early tool process feasibility. This innovative system automatically designs the first quick die face, generating binder and addendum surfaces (NURBS surfaces) by taking account the full die process. Die Starter also improves the initial die face based on feasibility criteria (avoiding splits, wrinkles) by automatically generating the geometrical modifications of the binder and addendum and the bead restraining forces with minimal material usage. This paper presents a description of the new system and the methodology of Die Starter. Some industrial examples are presented from the part geometry to final die face including automatic developed flanges, part on binder and inner binder.

  18. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  19. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    International Nuclear Information System (INIS)

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  20. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel

    Science.gov (United States)

    Sun, Ke; Yang, Huan; Xue, Wei; He, An; Zhu, Dehua; Liu, Wenwen; Adeyemi, Kenneth; Cao, Yu

    2018-04-01

    Anti-biofouling technology is based on specifically designed materials and coatings. This is an enduring goal in the maritime industries, such as shipping, offshore oil exploration, and aquaculture. Recently, research of the relationship between wettability and antifouling effectiveness has attracted considerable attention, due to the anti-biofouling properties of the lotus leaf and shark skin. In this study, super-hydrophobic surfaces (SHSs) with controllable periodic structures were fabricated on AISI304 stainless steel by a picosecond laser, and their anti-biofouling performance were investigated by seawater immersion for five weeks in summertime. The results showed that the specimens with SHS demonstrate significant anti-biofouling effect as compared with the bare stainless steel plate. We observed that nearly 50% decrease of the average microbe attachment area ratio (Avg. MAAR) could be obtained. The micro-groove SHS with more abundant hierarchical micro-nano structures showed better anti-biofouling performance than the micro-pit SHS.