WorldWideScience

Sample records for diblock copolymer micelles

  1. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    Science.gov (United States)

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  2. Shear induced structures of soft colloids: Rheo-SANS experiments on kinetically frozen PEP-PEO diblock copolymer micelles

    International Nuclear Information System (INIS)

    Stellbrink, J; Lonetti, B; Rother, G; Willner, L; Richter, D

    2008-01-01

    We investigated the effect of external steady shear on dilute to concentrated solutions of PEP-PEO diblock copolymer micelles (soft colloids). The degree of softness in terms of particle interactions (intermolecular softness) and deformability of the individual particle (intramolecular softness) was varied by changing the ratio between hydrophobic and hydrophilic blocks from symmetric (1:1, hard sphere-like) to very asymmetric (1:20, star-like). We performed in situ rheology and small angle neutron scattering experiments (Rheo-SANS) to relate macroscopic flow properties to microscopic structural changes. The rheology data qualitatively show the same behavior for both types of micelles: (i) a divergence of the zero shear viscosity η 0 at a critical concentration φ c approximately following a Vogel-Fulcher-Tammann law and (ii) close to this liquid-solid transition a shear rate dependent viscosity which can be described by the Carreau function with an asymptotic power law η(γ-dot) ∼ γ-dot -0.4 starting at a critical shear rate γ-dot c . Rheo-SANS experiments in the liquid phase close to φ c were extended into the strong shear thinning region for both types of micelles at φ/φ c ∼0.8 and γ-dot red =γ-dot/γ-dot c approx. 10. In our Rheo-SANS data we observe a rather controversial influence of external shear on the structural properties of the two different micellar systems. With increasing shear rate the symmetric, hard sphere-like micelles show a decreasing structure factor S(Q) but a shear rate independent interparticle distance. The asymmetric, star-like micelles show an increase in S(Q) and an increase of the interparticle distance, both in the flow and vorticity direction. This unexpected behavior can be rationalized by a shear induced elongation and tilt of the star-like micelles along the flow direction as predicted by recent MD simulations (Ripoll et al 2006 Phys. Rev. Lett. 96 188302)

  3. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers.

    Science.gov (United States)

    Fan, Haiyan; Li, Yixia; Yang, Jinxian; Ye, Xiaodong

    2017-10-19

    Reduction-responsive micelles hold enormous promise for application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, is not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to a slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.

  4. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    Science.gov (United States)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  5. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    International Nuclear Information System (INIS)

    Dammertz, K; Saier, A M; Marti, O; Amirkhani, M

    2014-01-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour. (paper)

  6. Pressure jump kinetics of disorder to BCC ordering in diblock copolymer micelles in a selective solvent

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Spring, J. D.; Steinhart, Miloš; Bansil, R.

    2012-01-01

    Roč. 45, č. 22 (2012), s. 9147-9154 ISSN 0024-9297 Institutional support: RVO:61389013 Keywords : X-ray-scattering * block-copolymer * triblock copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  7. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.

    Science.gov (United States)

    Liou, Jiun-You; Sun, Ya-Sen

    2015-09-28

    We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks.

  8. „Schizophrenic” micelles from doubly thermoresponsive polysulfobetaine-b-poly(N-isopropylmethacrylamide) diblock copolymers

    Czech Academy of Sciences Publication Activity Database

    Vishnevetskaya, N. S.; Hildebrand, V.; Niebuur, B.-J.; Grillo, I.; Filippov, Sergey K.; Laschewsky, A.; Müller-Buschbaum, P.; Papadakis, C. M.

    2017-01-01

    Roč. 50, č. 10 (2017), s. 3985-3999 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GC15-10527J Keywords : self-assembly * block copolymers * UCST Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.835, year: 2016

  9. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.

    Science.gov (United States)

    Xu, Peng; Ji, Xin; Qi, Junlei; Yang, Hongmin; Zheng, Weitao; Abetz, Volker; Jiang, Shimei; Shen, Jiacong

    2010-01-01

    A convenient approach to synthesize patterned carbon nanotubes (CNTs) of three morphologies on printed substrates by combination of microcontact printing (microCP) and a plasma-enhanced chemical vapor deposition (PECVD) process is presented. Micelles of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) in toluene were used as nanoreactors to fabricate FeCl3 in the core domains, and the complex solution was used as an ink to print films with polydimethylsiloxane (PDMS) stamps, different morphologies (porous, dots and stripes patterns) of the FeCl3-loaded micellar films were left onto silicon substrates after printed. After removing the polymer by thermal decomposition, the left iron oxide cluster arrays on the substrate were used as catalysts for the growth of CNTs by the process of PECVD, where the CNTs uniformly distributed on the substrates according to the morphologies of patterned catalysts arrays.

  10. Micelles and gels of oxyethylene-oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length

    DEFF Research Database (Denmark)

    Derici, L.; Ledger, S.; Mai, S.M.

    1999-01-01

    and in aqueous 0.2 mol dm(-3) K(2)SO(4)), yielding the micellar association numbers, the hydrodynamic and thermodynamic radii, and related expansion factors. Micellar parameters were also obtained by small-angle neutron scattering (SANS) for solutions of a similar copolymer, E(86)B(10), in water, i......Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water...... of water in the micelle core. Moderately concentrated solutions of copolymer E(90)B(10) were studied in the gel state by small-angle X-ray scattering (SAXS) in tandem with rheology (oscillatory shear). Values for the dynamic elastic modulus (G') of the gels significantly exceeded 10(4) Pa across the range...

  11. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding.

    Science.gov (United States)

    Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J

    2011-10-26

    We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.

  12. Adsorption kinetics of diblock copolymers from a micellar solution on silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The solution and adsorption behavior of a series of diblock copolymers of hydrophobic poly(dimethyl siloxane) and hydrophilic poly(2-ethyl-2-oxazoline) was studied. These block copolymers formed large polydisperse micelles in an aqueous solution. The critical micelle concentration was lower than 2

  13. A novel diblock copolymer of (monomethoxy poly [ethylene glycol]-oleate with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells

    Directory of Open Access Journals (Sweden)

    Erfani-Moghadam V

    2014-11-01

    effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 µM or 0.03 g/L. Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests revealed that this nanocarrier can be considered as an appropriate drug delivery system for delivering curcumin to cancer cells. Keywords: anticancer agent, nanocarrier, encapsulation, bioavailability, apoptosis, critical micelle concentration

  14. Dynamics of chain exchange between self-assembled diblock copolymer micelles of poly(ethylene oxide)-block-polylactide studied by direct nonradiative excitation energy transfer

    Czech Academy of Sciences Publication Activity Database

    Popelka, Štěpán; Machová, Luďka; Rypáček, František; Špírková, Milena; Štěpánek, M.; Matějíček, P.; Procházka, K.

    2005-01-01

    Roč. 70, č. 11 (2005), s. 1811-1828 ISSN 0010-0765 R&D Projects: GA AV ČR IAA4050202; GA AV ČR IAA400500505 Institutional research plan: CEZ:AV0Z40500505 Keywords : block copolymers * self-assembly * micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.949, year: 2005

  15. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G J L; Leermakers, Frans A M; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  16. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with

  17. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  18. 'Smart' Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis

    International Nuclear Information System (INIS)

    Nash, Michael A.; Lai, James J.; Hoffman, Allan S.; Yager, Paul; Stayton, Partick S.

    2010-01-01

    We report a new strategy for synthesizing temperature-responsive γ-Fe 2 O 3 -core/Au-shell nanoparticles (Au-mNPs) from diblock copolymer micelles. The amphiphilic diblock copolymer chains were synthesized using reversible addition-fragmentation chain-transfer (RAFT) with a thermally responsive 'smart' poly(N-isopropylacrylamide) (pNIPAAm) block and an amine-containing poly(N,N-dimethylaminoethylacrylamide) (DMAEAm) block that acted as a reducing agent during gold shell formation. The Au-mNPs reversibly aggregated upon heating the solution above the transition temperature of pNIPAAm, resulting in a red-shifted localized surface plasmon resonance.

  19. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  20. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  1. Surface dynamics of micellar diblock copolymer films

    Science.gov (United States)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  2. Adsorption of charged diblock copolymers : effect on colloidal stability

    NARCIS (Netherlands)

    Israels, R.

    1994-01-01

    In this thesis we present Scheutjens-Fleer (SF) calculations on the adsorption of diblock copolymers. More specifically, we restrict ourselves to adsorption at uncharged surfaces, while the specific type of block copolymers we consider have one uncharged adsorbing "anchor" block and one

  3. Self-oscillating AB diblock copolymer developed by post modification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota; Yoshida, Ryo, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shibayama, Mitsuhiro [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa, Chiba 277-8581 (Japan)

    2015-06-15

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle at reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.

  4. Structure of micelles formed by highly asymmetric polystyrene-b-polydimethylsiloxane and polystyrene-b-poly[5-(N,N-diethylamino)isoprene] diblock copolymers

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Riegel, I. C.; Štěpánek, Petr; Petzhold, C. L.; Ninago, M. D.; Satti, A. J.; Ciolino, A. E.; Villar, M. A.; Schmidt, V.; Giacomelli, C.

    2010-01-01

    Roč. 26, č. 18 (2010), s. 14494-14501 ISSN 0743-7463 R&D Projects: GA ČR GA202/09/2078 Grant - others:AV ČR(CZ) ASCR/CONICET 2012CZ006 Institutional research plan: CEZ:AV0Z40500505 Keywords : dynamic light-scattering * block-copolymers * selective solvent Subject RIV: BO - Biophysics Impact factor: 4.269, year: 2010

  5. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    Science.gov (United States)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  6. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.

    1997-01-01

    Thermal composition fluctuations in a homogeneous binary polymer blend and in a diblock copolymer were measured by small-angle neutron scattering as a function of temperature and pressure. The experimental data were analyzed with theoretical expressions, including the important effect of thermal...... fluctuations. Phase boundaries, the Flory-Huggins interaction parameter and the Ginzburg number were obtained. The packing of the molecules changes with pressure. Therefore, the degree of thermal fluctuation as a function of packing and temperature was studied. While in polymer blends packing leads, in some...... respects, to a universal behaviour, such behaviour is not found in diblock copolymers. It is shown that the Ginzburg number decreases with pressure sensitively in blends, while it is constant in diblock copolymers. The Ginzburg number is an estimation of the transition between the universality classes...

  7. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  8. Thin Films of Novel Linear-Dendritic Diblock Copolymers

    Science.gov (United States)

    Iyer, Jyotsna; Hammond, Paula

    1998-03-01

    A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.

  9. Relaxation processes in a lower disorder order transition diblock copolymer

    International Nuclear Information System (INIS)

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora; Hernández, Rebeca; Sprung, Michael

    2015-01-01

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T ODT , the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system

  10. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers

    DEFF Research Database (Denmark)

    Müller, C.; Goffri, S.; Breiby, Dag Werner

    2007-01-01

    Semiconducting diblock copolymers of polyethylene (PE) and regioregular poly(3-hexylthiophene) (P3HT) are demonstrated to exhibit a rich phase behaviour, judicious use of which permitted us to fabricate field-effect transistors that show saturated charge carrier mobilities, mu(FET), as high as 2 x...

  11. Lateral Order and Self-Organized Morphology of Diblock Copolymer Micellar Films

    Directory of Open Access Journals (Sweden)

    Jiun-You Liou

    2018-05-01

    Full Text Available We report the lateral order and self-organized morphology of diblock copolymer polystyrene-block-poly(2-vinylpyridine, P(S-b-2VP, and micelles on silicon substrates (SiOx/Si. These micellar films were prepared by spin coating from polymer solutions of varied concentration of polymer in toluene onto SiOx/Si, and were investigated with grazing-incidence small-angle X-ray scattering (GISAXS and an atomic force microscope (AFM. With progressively increased surface coverage with increasing concentration, loosely packed spherical micelles, ribbon-like nanostructures, and a second layer of spherical micelles were obtained sequentially. Quantitative analysis and simulations of the micellar packing demonstrates that the spatial ordering of the loosely packed spherical micelles altered from short-range order to hexagonal order when the micellar coverage increased from small to moderate densities of the covered surface. At large densities, anisotropic fusion between spherical micelles caused the ribbon-like nanostructures to have a short-range spatial order; the ordering quality of the second layer was governed by the rugged surface of the underlying layer because the valleys between the ribbon-like nanostructures allowed for further deposition of spherical micelles.

  12. Cylindrical-confinement-induced phase behaviours of diblock copolymer melts

    International Nuclear Information System (INIS)

    Mei-Jiao, Liu; Shi-Ben, Li; Lin-Xi, Zhang; Xiang-Hong, Wang

    2010-01-01

    The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement. (cross-disciplinary physics and related areas of science and technology)

  13. Investigating Block-Copolymer Micelle Dynamics for Tunable Cargo Delivery

    Science.gov (United States)

    Li, Xiuli; Kidd, Bryce; Cooksey, Tyler; Robertson, Megan; Madsen, Louis

    Block-copolymer micelles (BCPMs) can carry molecular cargo in a nanoscopic package that is tunable using polymer structure in combination with cargo properties, as well as with external stimuli such as temperature or pH. For example, BCPMs can be used in targeted anticancer drug delivery due to their biocompatibility, in vivo degradability and prolonged circulation time. We are using NMR spectroscopy and diffusometry as well as SANS to investigate BCPMs. Here we study a diblock poly(ethylene oxide)-b-(caprolactone) (PEO-PCL) that forms spherical micelles at 1% (w/v) in the mixed solvent D2O/THF-d8. We quantify the populations and diffusion coefficients of coexisting micelles and free unimers over a range of temperatures and solvent compositions. We use temperature as a stimulus to enhance unimer exchange and hence trigger cargo release, in some cases at a few degrees above body temperature. We present evidence for dominance of the insertion-expulsion mechanism of unimer exchange in these systems, and we map phase diagrams versus temperature and solvent composition. This study sheds light on how intermolecular interactions fundamentally affect cargo release, unimer exchange, and overall micelle tunability.

  14. Study of structural morphologies of thermoresponsive diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene)

    Science.gov (United States)

    Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-03-01

    Structural morphologies of diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene) in aqueous environment have been investigated by dissipative particle dynamics (DPD). In triblock copolymers insoluble PS blocks contract while soluble pNIPAM blocks stay at the periphery forming looped chains as corona. As the temperature is increased there is a continuous morphological transition and micelles form ellipsoidal structures with segregated polymer zones. The phase transition of looped pNIPAM chains occurs at lower temperature than for linear chains and within broader temperature range. It is discussed how the chain topology of pNIPAM affects the phase transition.

  15. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    Science.gov (United States)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  16. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  17. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    Science.gov (United States)

    Chen, Kuizhi; Pan, Sujuan; Zhuang, Xuemei; Lv, Hafei; Que, Shoulin; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-07-01

    1-2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G n -DSiPc(CN)4 n , (G n = n-generation dendrimer, n = 1-2)) were synthesized. Their structures were characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Polymeric nanoparticles (G n -DSiPc(CN)4 n /m) were formed through encapsulating G n -DSiPc(CN)4 n into three monomethoxyl poly(ethylene glycol)-poly(ɛ-caprolactone) diblock copolymers (MPEG-PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G n -DSiPc(CN)4 n and G n -DSiPc(CN)4 n /m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G n -DSiPc(CN)4 n /m were lower than the corresponding free dendrimer phthalocyanines. G n -DSiPc(CN)4 n encapsulated into MPEG-PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG2000-PCL2000 micelles was about 70 nm, which decreased when loaded with G n -DSiPc(CN)4 n .

  18. Spontaneous Evolution of Nanostructure in Composite Films Consisting of Mixtures of Two Different Block Copolymer Micelles

    Science.gov (United States)

    Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok

    2010-03-01

    Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.

  19. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  20. SANS study of coated block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Pleštil, Josef; Kříž, Jaroslav; Koňák, Čestmír; Pospíšil, Herman; Kadlec, Petr; Sedláková, Zdeňka; Grillo, I.; Cubitt, R.

    2005-01-01

    Roč. 206, č. 12 (2005), s. 1206-1215 ISSN 1022-1352 R&D Projects: GA ČR GA203/03/0600; GA AV ČR IAA1050201; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z40500505 Keywords : block copolymer micelles * core-shell polymers * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.111, year: 2005

  1. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  2. Investigation of a new thermosensitive block copolymer micelle: hydrolysis, disruption, and release.

    Science.gov (United States)

    Pelletier, Maxime; Babin, Jérôme; Tremblay, Luc; Zhao, Yue

    2008-11-04

    Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.

  3. Thermal processing of diblock copolymer melts mimics metallurgy

    Science.gov (United States)

    Kim, Kyungtae; Schulze, Morgan W.; Arora, Akash; Lewis, Ronald M.; Hillmyer, Marc A.; Dorfman, Kevin D.; Bates, Frank S.

    2017-05-01

    Small-angle x-ray scattering experiments conducted with compositionally asymmetric low molar mass poly(isoprene)-b-poly(lactide) diblock copolymers reveal an extraordinary thermal history dependence. The development of distinct periodic crystalline or aperiodic quasicrystalline states depends on how specimens are cooled from the disordered state to temperatures below the order-disorder transition temperature. Whereas direct cooling leads to the formation of documented morphologies, rapidly quenched samples that are then heated from low temperature form the hexagonal C14 and cubic C15 Laves phases commonly found in metal alloys. Self-consistent mean-field theory calculations show that these, and other associated Frank-Kasper phases, have nearly degenerate free energies, suggesting that processing history drives the material into long-lived metastable states defined by self-assembled particles with discrete populations of volumes and polyhedral shapes.

  4. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  5. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Science.gov (United States)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  6. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuizhi [Fujian Normal University, College of Materials Science & Engineering, Fujian Provincial Key Laboratory of Polymer Materials (China); Pan, Sujuan [Fujian Normal University, College of Chemistry & Engineering (China); Zhuang, Xuemei [Fuzhou No.2 Hospital (China); Lv, Hafei; Que, Shoulin [Fujian Normal University, College of Chemistry & Engineering (China); Xie, Shusen; Yang, Hongqin, E-mail: hqyang@fjnu.edu.cn [Fujian Normal University, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Engineering (China)

    2016-07-15

    1–2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G{sub n}-DSiPc(CN){sub 4n}, (G{sub n} = n-generation dendrimer, n = 1–2)) were synthesized. Their structures were characterized by elemental analysis, IR, {sup 1}H NMR, and ESI-MS. Polymeric nanoparticles (G{sub n}-DSiPc(CN){sub 4n}/m) were formed through encapsulating G{sub n}-DSiPc(CN){sub 4n} into three monomethoxyl poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers (MPEG–PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G{sub n}-DSiPc(CN){sub 4n} and G{sub n}-DSiPc(CN){sub 4n}/m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G{sub n}-DSiPc(CN){sub 4n}/m were lower than the corresponding free dendrimer phthalocyanines. G{sub n}-DSiPc(CN){sub 4n} encapsulated into MPEG–PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG{sub 2000}–PCL{sub 2000} micelles was about 70 nm, which decreased when loaded with G{sub n}-DSiPc(CN){sub 4n}.Graphical abstract .

  7. Dynamics of Disordered PI-PtBS Diblock Copolymer

    Science.gov (United States)

    Watanabe, Hiroshi

    2009-03-01

    Viscoelastic (G^*) and dielectric (ɛ'') data were examined for a LCST-type diblock copolymer composed of polyisoprene (PI; M = 53K) and poly(p-tert- butyl styrene) (PtBS; M = 42K) blocks disordered at T PtBS block at low T and the dynamic heterogeneity due to PtBS was effectively quenched to give a frictional nonuniformity for the PI block relaxation. The ɛ'' data were thermo-rheologically complex at low T, partly due to this nonuniformity. However, the block connectivity could have also led to the complexity. For testing this effect, the ɛ'' data were reduced at the iso- frictional state defined with respect to bulk PI. In this state, the ɛ'' data of the copolymer at low and high T, respectively, were close to the data for the star-branched and linear bulk PI. Thus, the PI block appeared to be effectively tethered in space at low T thereby behaving similarly to the star arm while the PI block tended to move cooperatively with the PtBS block at high T to behave similarly to the linear PI, which led to the complexity of the ɛ'' data. The PtBS block also exhibited the complexity (noted from the G^* data), which was well correlated with the complexity of the PI block.

  8. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mitra Alami-Milani

    2017-04-01

    Full Text Available Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems.

  9. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    Science.gov (United States)

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  10. Preparation of Water-soluble Polyion Complex (PIC Micelles Covered with Amphoteric Random Copolymer Shells with Pendant Sulfonate and Quaternary Amino Groups

    Directory of Open Access Journals (Sweden)

    Rina Nakahata

    2018-02-01

    Full Text Available An amphoteric random copolymer (P(SA91 composed of anionic sodium 2-acrylamido-2-methylpropanesulfonate (AMPS, S and cationic 3-acrylamidopropyl trimethylammonium chloride (APTAC, A was prepared via reversible addition-fragmentation chain transfer (RAFT radical polymerization. The subscripts in the abbreviations indicate the degree of polymerization (DP. Furthermore, AMPS and APTAC were polymerized using a P(SA91 macro-chain transfer agent to prepare an anionic diblock copolymer (P(SA91S67 and a cationic diblock copolymer (P(SA91A88, respectively. The DP was estimated from quantitative 13C NMR measurements. A stoichiometrically charge neutralized mixture of the aqueous P(SA91S67 and P(SA91A88 formed water-soluble polyion complex (PIC micelles comprising PIC cores and amphoteric random copolymer shells. The PIC micelles were in a dynamic equilibrium state between PIC micelles and charge neutralized small aggregates composed of a P(SA91S67/P(SA91A88 pair. Interactions between PIC micelles and fetal bovine serum (FBS in phosphate buffered saline (PBS were evaluated by changing the hydrodynamic radius (Rh and light scattering intensity (LSI. Increases in Rh and LSI were not observed for the mixture of PIC micelles and FBS in PBS for one day. This observation suggests that there is no interaction between PIC micelles and proteins, because the PIC micelle surfaces were covered with amphoteric random copolymer shells. However, with increasing time, the diblock copolymer chains that were dissociated from PIC micelles interacted with proteins.

  11. Solubilization of Phenol Derivatives in Polymer Micelles Formed by Cationic Block Copolymer

    Directory of Open Access Journals (Sweden)

    Irma Fuentes

    2017-01-01

    Full Text Available The aggregation of cationic block copolymers formed by polystyrene (PS and poly(ethyl-4-vinylpyridine (PS-b-PE4VP was studied in aqueous solution. Diblock copolymers of PS and poly(4-vinylpyridine were synthesized by sequential anionic polymerization using BuLi as initiator. Subsequently, the 4-vinylpyridine units were quaternized with ethyl bromide to obtain cationic PS-b-PE4VP block copolymers with different quaternization degree. The self-aggregation of cationic block copolymers was studied by fluorescence probing, whereas the morphology and size of polymer micelles were determined by transmission electronic microscopy. Results indicate that spherical micelles with sizes lower than 100 nm were formed, whereas their micropolarity decreases with increasing quaternization degree. The partition of phenols between the micellar and aqueous phase was studied by using the pseudo-phase model, and the results show that the partition coefficients increase with increasing length of the side alkyl chain and are larger for star micelles. These results are discussed in terms of three-region model.

  12. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    Science.gov (United States)

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  13. Supramolecular Assembly of Gold Nanoparticles in PS-b-P2VP Diblock Copolymers via Hydrogen Bonding

    Science.gov (United States)

    Jang, Se Gyu; Hawker, Craig J.; Kramer, Edward J.

    2011-03-01

    We report a simple route to control the spatial distribution of Au nanoparticles (Au-NPs) in PS- b -P2VP diblock copolymers using hydrogen bonding between P2VP and the hydroxyl-containing (PI-OH) units in PS- b -PIOH thiol-terminated ligands on Au-NP. End-functional thiol ligands of poly(styrene- b -1,2&3,4-isoprene-SH) are synthesized by anionic polymerization. After synthesis of Au-NPs, the inner PI block is hydroxylated by hydroboration and the resulting micelle-like Au-NPs consist of a hydrophobic PS outer brush and a hydrophilic inner PI-OH block. The influence of the hydroxyl groups is significant with strong segregation being observed to the PS/P2VP interface and then to the P2VP domain of lamellar-forming PS-b-P2VP diblock copolymers as the length of the PI-OH block is increased. The strong hydrogen bonding between nanoparticle block copolymer ligands and the P2VP block allows the Au-NPs to be incorporated within the P2VP domain to high Au--NP volume fractions ϕp without macrophase separation, driving transitions from lamellar to bicontinuous morphologies as ϕp increases.

  14. Poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers: synthesis, self-assembly and interaction

    NARCIS (Netherlands)

    Hofman, Anton H.; Alberda van Ekenstein, Gerhard; Woortman, Albert; ten Brinke, Gerrit; Loos, Katja

    2015-01-01

    Controlled radical polymerization of 4-vinylpyridine (4VP) and N-acryloylpiperidine (API) by the RAFT process allowed preparation of well-defined double hydrogen bond accepting P4VP-b-PAPI diblock copolymers. The miscibility of this new monomer pair was studied via a random copolymer blend approach

  15. Monte Carlo simulation of diblock copolymer microphases by means of a 'fast' off-lattice model

    DEFF Research Database (Denmark)

    Besold, Gerhard; Hassager, O.; Mouritsen, Ole G.

    1999-01-01

    We present a mesoscopic off-lattice model for the simulation of diblock copolymer melts by Monte Carlo techniques. A single copolymer molecule is modeled as a discrete Edwards chain consisting of two blocks with vertices of type A and B, respectively. The volume interaction is formulated in terms...

  16. Synthesis, characterization and photoinduction of optical anisotropy in liquid crystalline diblock azo-copolymers

    NARCIS (Netherlands)

    Forcen, P.; Oriol, L.; Sanchez, S.; Alcala, R.; Hvilsted, S.; Jankova, K.; Loos, J.

    2007-01-01

    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline (LC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobenzene content in these copolymers ranges from 52 to 7 wt %. For an azo content down to 20% they exhibit a LC

  17. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    Science.gov (United States)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  18. SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Huai-chao Wang; Ming-zu Zhang; Pei-hong Ni; Jin-lin He; Ying Hao; Yi-xian Wu

    2013-01-01

    Two pH-responsive amphiphilic diblock copolymers,namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA),were synthesized via oxyanion-initiated polymerization,and their multiple self-assembly behaviors have been studied.An exo-o1efin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end,and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+).PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer,resulting in a cationic diblock copolymer PIB-b-PDMAEMA.With the similar synthesis procedure,the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block.The functional PIB and block copolymers have been fully characterized by 1H-NMR,FT-IR spectroscopy,and gel permeation chromatography (GPC).These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent.Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles,vesicles with different particle sizes and cylindrical aggregates,depending on various factors including block copolymer composition,solvent polarity and pH value.

  19. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scat......The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X...

  20. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  1. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  2. Preparation of polystyrene-poly(ethylene glycol) diblock copolymer by "living" free radical polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Gao, Bo; Kops, Jørgen

    1998-01-01

    terminated with a TEMPO unit (MPEG-TEMPO), which was further used to prepare the diblock copolymer PS-b-PEG by 'living' free radical polymerisation of styrene. The product was purified and identified by H-1 n.m.r. and GPC. However, large amounts of homopolystyrene was also formed by simultaneous thermal...

  3. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD

  4. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and interme...

  5. Synthesis and solution properties of PCL-b-PHPMA diblock copolymers containing stable nitroxyl radicals

    Czech Academy of Sciences Publication Activity Database

    Petrova, Svetlana; Klepac, Damir; Konefal, Rafal; Kereiche, S.; Kováčik, L.; Filippov, Sergey K.

    2016-01-01

    Roč. 49, č. 15 (2016), s. 5407-5417 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LH15213 Institutional support: RVO:61389013 Keywords : PCL-b-PHPMA diblock copolymers * TEMPO * EPR spectroscodpy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.835, year: 2016

  6. Effect of shear on cubic phases in gels of a diblock copolymer

    DEFF Research Database (Denmark)

    Hamley, I.W.; Pople, J.A.; Fairclough, J.P.A.

    1998-01-01

    The effect of shear on the orientation of cubic micellar phases formed by a poly(oxyethylene)poly(oxybutylene) diblock copolymer in aqueous solution has been investigated using small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS was performed on samples oriented in...

  7. Pearl-necklace complexes of flexible polyanions with neutral-cationic diblock copolymers

    NARCIS (Netherlands)

    Golinska, M.D.; Wolf, de F.A.; Cohen Stuart, M.A.; Hernandez Garcia, A.; Vries, de R.J.

    2013-01-01

    We study the complexation of very asymmetric diblock copolymers (consisting of a cationic block of 12 lysines connected to a 400 amino acid long hydrophilic polypeptide block with a net charge that is nearly zero) with oppositely charged sodium poly(acrylic acid) (NaPAA) with a range of molar masses

  8. Dilute solutions and phase behavior of polydisperse A-b-(A-co-B) diblock copolymers

    Czech Academy of Sciences Publication Activity Database

    Gromadzki, Daniel; Lokaj, Jan; Šlouf, Miroslav; Štěpánek, Petr

    2009-01-01

    Roč. 50, č. 11 (2009), s. 2451-2459 ISSN 0032-3861 Institutional research plan: CEZ:AV0Z40500505 Keywords : diblock copolymer * dilute solution properties * microphase separation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.573, year: 2009

  9. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.

    1999-01-01

    The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction...

  10. Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films

    DEFF Research Database (Denmark)

    Potemkin, Igor I.; Busch, Peter; Smilgies, Detlef-M

    2007-01-01

    We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene-block-polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation...

  11. Microphase separation of a symmetric poly(styrene-B-paramethylstyrene) diblock copolymer

    DEFF Research Database (Denmark)

    Bartels, V.T.; Abetz, V.; Mortensen, K.

    1994-01-01

    The microphase separation in a symmetric diblock copolymer consisting of polystyrene and polyparamethylstyrene has been studied by small-angle neutron scattering. The observed peak changes with temperature in intensity, shape and position. The peak position shifts at the microphase separation tra...

  12. Formation of polystyrene/poly(methyl methacrylate) heteroarm star-like nanogels from complementarily reactive well-defined diblock copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Amamoto, Y; Otsuka, H; Takahara, A, E-mail: otsuka@ms.ifoc.kyushu-u.ac.j [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0385 (Japan)

    2009-08-01

    Formation of star-like nanogels with two different arms via cross-linking reaction of complementarily reactive diblock copolymers was successfully accomplished. The two types of diblock copolymers, consisting of poly(methyl methacrylate) (PMMA) or polystyrene (PSt) block and alkoxyamine-based cross-linkable block, were prepared by atom transfer radical polymerization (ATRP) methods. The cross-linking reactions were carried out by merely heating their mixture, and traced by gel permeation chromatography (GPC) and multi-angle light scattering (MALS) measurements. The diblock copolymers were reacted in complementarily reactive systems, showing that all star-like nanogels have necessarily two types of arms as PMMA and PSt chains.

  13. Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm

    Science.gov (United States)

    Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas

    2012-02-01

    Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.

  14. Thermodynamic interactions of water-soluble homopolymers and double-hydrophilic diblock copolymer

    International Nuclear Information System (INIS)

    Yazici, D. Topaloglu; Askin, A.; Buetuen, V.

    2008-01-01

    Thermodynamic interaction parameters of water-soluble poly[2-(dimethylamino)ethyl methacrylate] (DMA) and poly[2-(N-morpholino)ethyl methacrylate] (MEMA) homopolymers and their diblock copolymer (DMA-MEMA) were investigated at the temperatures above their glass-transition temperatures (T g ) by inverse gas chromatography (IGC) method. Sorption thermodynamic parameters of some aliphatic, alicyclic and aromatic hydrocarbons, weight fraction activity coefficients, Flory-Huggins interaction parameters, and solubility parameters for hydrocarbons and polymers were calculated. It was observed that sorption thermodynamic parameters on (co)polymers depend on the molecular structures of hydrocarbons. Evaluating both the calculated values of the weight fraction activity coefficients and Flory-Huggins interaction parameters, the solving ability of the hydrocarbons for DMA, MEMA homopolymers, and DMA-MEMA diblock copolymer decreased in the following sequence: Aromatic > alicyclic > aliphatic hydrocarbons

  15. Transformations to and from the gyroid phase in a diblock copolymer

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Almdal, Kristoffer; Mortensen, K

    1998-01-01

    the ordered phases and the order-order transitions exhibited by a poly(ethylene-alt-propylene)-poly-(dimethylsiloxane) diblock copolymer. An intermediate structure-very similar to the hexagonal perforated layer (HPL) phase reported in other diblock systems-proves to be metastable, and we study the kinetics...... and epitaxy of its relaxation to the "gyroid" phase of Ia (3) over bar d symmetry. Likewise we study the relaxation of a supercooled hexagonal phase to the gyroid structure and also observe that the gyroid phase is bypassed in a slow cool from the hexagonal phase to the HPL-like structure. The origin...

  16. Mechanical properties of weakly segregated block copolymers : 1. Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers

    NARCIS (Netherlands)

    Weidisch, R.; Michler, G.H.; Fischer, H.; Arnold, M.; Hofmann, S.; Stamm, M.

    1999-01-01

    Mechanical properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers, PS-b-PBMA, with different lengths of the polystyrene block were investigated. The copolymers display a composition range where the tensile strength of the block copolymers exceeds the values of the corresponding

  17. Metallo-supramolecular block copolymer micelles

    NARCIS (Netherlands)

    Gohy, J.M.W.

    2009-01-01

    Supramolecular copolymers have become of increasing interest in recent years in the search for new materials with tunable properties. In particular, metallo-supramolecular block copolymers in which metal-ligand complexes are introduced in block copolymer architectures, have known important progress,

  18. Synthesis and immobilization of polystyreneb-polyvinyltriethoxysilane micelles

    KAUST Repository

    Zhu, Saisai; Zhu, Hui; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Cao, Ming; Yang, Bin; Miao, Jibin; Su, Lifen; Song, Changjiang

    2018-01-01

    Diblock copolymers polystyrene-block-polyvinyltriethoxysilane (PS-b-PVTES) were synthesized via atom transfer radical polymerization (ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self

  19. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    Science.gov (United States)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  20. Effect of sequence dispersity on morphology of tapered diblock copolymers from molecular dynamics simulations.

    Science.gov (United States)

    Levine, William G; Seo, Youngmi; Brown, Jonathan R; Hall, Lisa M

    2016-12-21

    Tapered diblock copolymers are similar to typical AB diblock copolymers but have an added transition region between the two blocks which changes gradually in composition from pure A to pure B. This tapered region can be varied from 0% (true diblock) to 100% (gradient copolymer) of the polymer length, and this allows some control over the microphase separated domain spacing and other material properties. We perform molecular dynamics simulations of linearly tapered block copolymers with tapers of various lengths, initialized from fluids density functional theory predictions. To investigate the effect of sequence dispersity, we compare systems composed of identical polymers, whose taper has a fixed sequence that most closely approximates a linear gradient, with sequentially disperse polymers, whose sequences are created statistically to yield the appropriate ensemble average linear gradient. Especially at high segregation strength, we find clear differences in polymer conformations and microstructures between these systems. Importantly, the statistical polymers are able to find more favorable conformations given their sequence, for instance, a statistical polymer with a larger fraction of A than the median will tend towards the A lamellae. The conformations of the statistically different polymers can thus be less stretched, and these systems have higher overall density. Consequently, the lamellae formed by statistical polymers have smaller domain spacing with sharper interfaces.

  1. Self-Assembling Diblock Copolymers of Poly[N-(2-hydroxypropyl)methacrylamide] and a β-Sheet Peptide

    Science.gov (United States)

    Radu, Larisa Cristina; Yang, Jiyuan

    2015-01-01

    The self-assembly of hybrid diblock copolymers composed of poly(HPMA) and β-sheet peptide P11 (CH3CO-QQRFQWQFEQQ-NH2) blocks was investigated. Copolymers were synthesized via thiol-maleimide coupling reaction, by conjugation of semitelechelic poly(HPMA)-SH with maleimide-modified β-sheet peptide. As expected, CD and CR binding studies showed that the peptide block imposed its β-sheet structural arrangement on the structure of diblock copolymers. TEM and AFM proved that peptide and these copolymers had the ability to self-assemble into fibrils. PMID:18855948

  2. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C

    2007-01-01

    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline WC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobeazene content in these copolymers ranges from 52 to 7 wt %. For an azo conteat dowri to 20% they exhibit a LC...... anisotropy induced in these films by illumination with linearly polarized 488 nm light was studied and the resuits compared with those of the azo homopolymer and of a random copolymer with a similar composition. The formation of azo aggregates inside the azo blocks is strongly reduced in going from...... the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in aH the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random...

  3. Investigation of Universal Behavior in Symmetric Diblock Copolymer Melts

    Science.gov (United States)

    Medapuram, Pavani

    Coarse-grained theories of dense polymer liquids such as block copolymer melts predict a universal dependence of equilibrium properties on a few dimensionless parameters. For symmetric diblock copolymer melts, such theories predict a universal dependence on only chieN and N¯, where chie is an effective interaction parameter, N is the degree of polymerization, and N¯ is a measure of overlap. This thesis focuses on testing the universal behavior hypothesis by comparing results for various properties obtained from different coarse-grained simulation models to each other. Specifically, results from pairs of simulations of different models that have been designed to have matched values of N¯ are compared over a range of values of chiN. The use of vastly different simulation models allows us to cover a vast range of chi eN ≃ 200 - 8000 that includes most of the experimentally relevant range. Properties studied here include collective and single-chain correlations in the disordered phase, block and chain radii of gyration in the disordered phase, the value of chieN at the order-disorder transition (ODT), the free energy per chain, the latent heat of transition, the layer spacing, the composition profile, and compression modulus in the ordered phase. All results strongly support the universal scaling hypothesis, even for rather short chains, confirming that it is indeed possible to give an accurate universal description of simulation models that differ in many details. The underlying universality becomes apparent, however, only if data are analyzed using an adequate estimate of chie, which we obtained by fitting the structure factor S( q) in the disordered state to predictions of the recently developed renormalized one-loop (ROL) theory. The ROL theory is shown to provide an excellent description of the dependence of S(q on chain length and thermodynamic conditions for all models, even for very short chains, if we allow for the existence of a nonlinear dependence of

  4. Supramolecular Assemblies from Poly(styrene-block-poly(4-vinylpyridine Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid

    Directory of Open Access Journals (Sweden)

    Jean-François Gohy

    2013-06-01

    Full Text Available Supramolecular assemblies involving interaction of a small organic molecule, 2-hydroxy-6-Naphthoic acid (HNA, with poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP diblock copolymers are utilized to obtain micellar structures in solution, nanostructured thin films on flat substrates and, finally, nanoporous thin films. The formation of hydrogen bonds between HNA and the poly(4-vinylpyridine (P4VP blocks is confirmed by spectroscopic measurements. The accordingly P4VP/HNA hydrogen-bonded complexes are poorly soluble in 1,4-dioxane, resulting in the formation of micellar structures with a P4VP/HNA core and a polystyrene (PS corona. Those micelles have been spin-coated onto silicon wafers, resulting in nanostructured thin films consisting of P4VP/HNA dot-like features embedded in a PS matrix. The morphology of those films has been tuned by solvent annealing. Selective dissolution of HNA by methanol results in the formation of a nanoporous thin film. The P4VP/HNA nanodomains have been also cross-linked by borax, and the thin films have been further dissolved in a good solvent for PS, leading to micelles with a structure reminiscent of the thin films.

  5. Self-assembling of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers in aqueous solution and at the silica-water interface

    International Nuclear Information System (INIS)

    Leyh, B.; Vangeyte, P.; Heinrich, M.; Auvray, L.; De Clercq, C.; Jerome, R.

    2004-01-01

    Small-angle neutron scattering is used to investigate the self-assembling behaviour of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers with various block lengths (i) in aqueous solution, (ii) in aqueous solution with the addition of sodium dodecyl sulphate (SDS) and (iii) at the silica-water interface. Micelles are observed under our experimental conditions due to the very small critical micellar concentration of these copolymers (0.01 g/l). The poly(ε-caprolactone) core is surrounded by a poly(ethylene oxide) corona. The micellar form factors have been measured at low copolymer concentrations (0.2 wt%) under selected contrast matching conditions. The data have been fitted to various analytical models to extract the micellar core and corona sizes. SDS is shown to induce partial micelle disruption together with an increase of the poly(ethylene oxide) corona extension from 25% (without SDS) to 70% (with SDS) of a completely extended PEO 114 chain. Our data at the silica-water interface are compatible with the adsorption of micelles

  6. Encapsulation of Curcumin in Diblock Copolymer Micelles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Alizadeh

    2015-01-01

    Full Text Available Application of nanoparticles has recently promising results for water insoluble agents like curcumin. In this study, we synthesized polymeric nanoparticle-curcumin (PNPC and then showed its efficiency, drug loading, stability, and safety. Therapeutic effects of PNPC were also assessed on two cell lines and in an animal model of breast cancer. PNPC remarkably suppressed mammary and hepatocellular carcinoma cells proliferation (P<0.05. Under the dosing procedure, PNPC was safe at 31.25 mg/kg and lower doses. Higher doses demonstrated minimal hepatocellular and renal toxicity in paraclinical and histopathological examinations. Tumor take rate in PNPC-treated group was 37.5% compared with 87.5% in control (P<0.05. Average tumor size and weight were significantly lower in PNPC group than control (P<0.05. PNPC increased proapoptotic Bax protein expression (P<0.05. Antiapoptotic Bcl-2 protein expression, however, was lower in PNPC-treated animals than the control ones (P<0.05. In addition, proliferative and angiogenic parameters were statistically decreased in PNPC-treated animals (P<0.05. These results highlight the suppressing role for PNPC in in vitro and in vivo tumor growth models. Our findings provide credible evidence for superior biocompatibility of the polymeric nanocarrier in pharmacological arena together with an excellent tumor-suppressing response.

  7. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    Science.gov (United States)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  8. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.

    Science.gov (United States)

    Jung, Adina; Filiz, Volkan; Rangou, Sofia; Buhr, Kristian; Merten, Petra; Hahn, Janina; Clodt, Juliana; Abetz, Clarissa; Abetz, Volker

    2013-04-12

    The formation of integral asymmetric membranes from ABC triblock terpolymers by non-solvent-induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post-functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.

    2001-01-01

    The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...... of G(t, gamma) is analysed using the model-independent CONTIN inverse Laplace transform algorithm to obtain a series of relaxation times, which reveals multiple relaxation processes. The timescale for the fastest relaxation processes is compared to those previously observed for diblock copolymer melts...... via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain...

  10. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings

    Directory of Open Access Journals (Sweden)

    Sakshi Uppal

    2014-09-01

    Full Text Available PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point.

  11. Dynamics and order-disorder transitions in bidisperse diblock copolymer blends

    International Nuclear Information System (INIS)

    Wang Yueqiang; Li Xuan; Tang Ping; Yang Yuliang

    2011-01-01

    We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G' corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, (χN) ODT , whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in (χN) ODT . To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in (χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT. -- Research highlights: → Order-disorder transition in AB diblock copolymer mixtures is investigated using DSCFT. → Microphase separation strength at the ODT increases with PDI in the majority block. → Microphase separation strength at the ODT decreases with PDI in the minority block. → Introduction of polydispersity is efficient to control microphase separation strength at the ODT.

  12. Synthesis and self-assembly behavior of amphiphilic diblock copolymer dextran-block-poly(ε-caprolactone (DEX-b-PCL in aqueous media

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available An amphiphilic diblock copolymer, dextran-block-poly(ε-caprolactone (DEX-b-PCL, with a series of welldefined chain lengths of each block was prepared by conjugating a dextran chain with a PCL block via aza-Michael addition reaction under mild conditions. For the dextran block, samples with relatively uniform molecular weight, 3.5 and 6.0 kDa, were used, and the PCL blocks were prepared via ring-opening polymerization at defined ratios of ε-caprolactone to initiator in order to give copolymers with mass fraction of dextran (fDEX ranging from 0.16 to 0.45. When these copolymers were allowed to self-assemble in aqueous solution, the morphology of assembled aggregates varied as a function of fDEX when characterized by transmission electron microscope (TEM, fluorescence microscope (FM and dynamic laser scattering (DLS. As fDEX decreases gradually from 0.45 to 0.16, the morphology of the copolymer assembly changes from spherical micelles to worm-like micelles and eventually to polymersomes, together with an increase in particle sizes.

  13. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    International Nuclear Information System (INIS)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au)

  14. A neutron scattering study of triblock copolymer micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  15. A neutron scattering study of triblock copolymer micelles

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  16. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  17. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces

    International Nuclear Information System (INIS)

    Song Sheng; Milchak, Marissa; Zhou Hebing; Lee, Thomas; Hanscom, Mark; Hahm, Jong-in

    2013-01-01

    Well-controlled assembly of proteins on supramolecular templates of block copolymers can be extremely useful for high-throughput biodetection. We report the adsorption and assembly characteristics of a model antibody protein to various polystyrene-block-poly(4-vinylpyridine) templates whose distinctive nanoscale structures are obtained through time-regulated exposure to chloroform vapor. The strong adsorption preference of the protein to the polystyrene segment in the diblock copolymer templates leads to an easily predictable, controllable, rich set of nanoscale protein morphologies through self-assembly. We also demonstrate that the chemical identities of various subareas within individual nanostructures can be readily elucidated by investigating the corresponding protein adsorption behavior on each chemically distinct area of the template. In our approach, a rich set of intricate nanoscale morphologies of protein arrays that cannot be easily attained through other means can be generated straightforwardly via self-assembly of proteins on chemically treated diblock copolymer surfaces, without the use of clean-room-based fabrication tools. Our approach provides much-needed flexibility and versatility for the use of block copolymer-based protein arrays in biodetection. The ease of fabrication in producing well-defined and self-assembled templates can contribute to a high degree of versatility and simplicity in acquiring an intricate nanoscale geometry and spatial distribution of proteins in arrays. These advantages can be extremely beneficial both for fundamental research and biomedical detection, especially in the areas of solid-state-based, high-throughput protein sensing. (paper)

  18. Block copolymer micelles as switchable templates for nanofabrication

    OpenAIRE

    Krishnamoorthy, S; Pugin, R; Brugger, J; Heinzelmann, H; Hoogerwerf, A C; Hinderling, C

    2006-01-01

    Block copolymer inverse micelles from polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) deposited as monolayer films onto surfaces show responsive behavior and are reversibly switchable between two states of different topography and surface chemistry. The as-coated films are in the form of arrays of nanoscale bumps, which can be transformed into arrays of nanoscale holes by switching through exposure to methanol. The use of these micellar films to act as switchable etch masks for the structu...

  19. Charged triblock copolymer self-assembly into charged micelles

    Science.gov (United States)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  20. Adsorption and Aqueous Lubricating Properties of Charged and Neutral Amphiphilic Diblock Copolymers at a Compliant, Hydrophobic Interface

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Jankova Atanasova, Katja

    2013-01-01

    We have investigated the adsorption and lubricating properties of neutral and charged amphiphilic diblock copolymers at a hydrophobic polydimethylsiloxane (PDMS) interface in an aqueous environment. The diblock copolymers consist of a hydrophilic block of either neutral poly(ethylene glycol) (PEG......) or negatively charged poly(acrylic acid) (PAA) and of a hydrophobic block of polystyrene (PS) or poly(2-methoxyethyl acrylate) (PMEA), thus generating PEG-b-X or PAA-b-X, where X block is either PS or PMEA. The molecular weight ratios were roughly 1:1 with each block ca. 5 kDa. Comparing the neutral PEG...... effective adsorption only when PMEA was employed as the anchoring block. For PAA-b-PS, the poor adsorption properties are chiefly attributed to micellization due to the high interfacial tension between the PS core and water. The poor lubricating properties of PAA-b-PS diblock copolymer for a PDMS...

  1. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  2. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    Science.gov (United States)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  3. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au). 9 tabs., 40 ills., 81 refs.

  4. Synthesis and immobilization of polystyreneb-polyvinyltriethoxysilane micelles

    KAUST Repository

    Zhu, Saisai

    2018-01-31

    Diblock copolymers polystyrene-block-polyvinyltriethoxysilane (PS-b-PVTES) were synthesized via atom transfer radical polymerization (ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self-assembled micelles were immobilized by cross-linking reaction of VTES in a shell layer of micelles. The chemical structures of block copolymers and morphology of micelles were characterized in detail. It was found that the size of immobilized micelles was strongly affected by the copolymer concentration, composition of mixture solvent, and block ratios.

  5. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties.

    Science.gov (United States)

    Gu, Haibin; Ciganda, Roberto; Hernandez, Ricardo; Castel, Patricia; Zhao, Pengxiang; Ruiz, Jaime; Astruc, Didier

    2016-04-01

    Diblock metallopolymer polyelectrolytes containing the two redox-robust cationic sandwich units [CoCp'Cp](+) and [FeCp'(η(6)-C6 Me6)](+) (Cp = η(5)-C5 H5; Cp' = η(5)-C5H4-) as hexafluorophosphate ([PF6](-)) salts are synthesized by ring-opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard-Anson's electrochemical method by cyclic voltammetry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures.

    Science.gov (United States)

    Roth, Stephan V; Santoro, Gonzalo; Risch, Johannes F H; Yu, Shun; Schwartzkopf, Matthias; Boese, Torsten; Döhrmann, Ralph; Zhang, Peng; Besner, Bastian; Bremer, Philipp; Rukser, Dieter; Rübhausen, Michael A; Terrill, Nick J; Staniec, Paul A; Yao, Yuan; Metwalli, Ezzeldin; Müller-Buschbaum, Peter

    2015-06-17

    We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystyrene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.

  7. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    Science.gov (United States)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  8. Small angle neutron scattering study of the micelle structure of amphiphilic block copolymers

    International Nuclear Information System (INIS)

    Yamaoka, H.; Matsuoka, H.; Sumaru, K.; Hanada, S.

    1994-01-01

    The amphiphilic block copolymers of vinyl ether were prepared by living cationic polymerization. The partially deuterated copolymers for SANS experiments were especially synthesized by introducing deuterated phenyl units in the hydrophobic chain. SANS measurements were performed for aqueous solutions of these copolymers by changing H 2 O/D 2 O ratios. The SANS profiles indicate that the micelles in the present system exhibit a core-shell structure and that the size and shape of micelles are largely dependent on the length of hydrophobic chain. The micelle of shorter hydrophobic chain was found to be nearly spherical, whereas the micelle of longer hydrophobic chain was confirmed to have an ellipsoidal shape

  9. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  10. Numerical investigation of the contraction of neutral-charged diblock copolymer brushes in electric fields

    International Nuclear Information System (INIS)

    Chen, Yuwei; Li, Haiming; Zhu, Yuejin; Tong, Chaohui

    2016-01-01

    Using self-consistent field theory (SCFT), the contraction of neutral-charged A-B diblock copolymer brushes in electric fields generated by opposite surface charges on two parallel electrodes has been numerically investigated. The diblock copolymer chains were grafted with the free end of the neutral block to one electrode and immersed in a salt-free solution sandwiched between the two electrodes. The numerical results reveal that the charged monomers, A-B joint segment and the tail exhibit bimodal distributions under external electric fields, which are absent for homopolymer polyelectrolyte brushes. The dependences of the relative populations and peak positions of the two modes on various parameters such as block ratio, grafting density, chain length and strength of the applied electric field were systematically examined and the underlining mechanisms were elucidated. It was found in this study that, if the total amount of surface charges on the grafting electrode is no more than that of the counter-ions in the system, overall charge neutrality is generally maintained inside the brushes when including the contribution of surface charges on the grafting electrode. In such a case, the counter-ions expelled from the brushes are highly enriched in the immediate vicinity of the second electrode and an approximate charge balance between these expelled counter-ions and the opposite surface charges on the second electrode is achieved. (paper)

  11. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    Science.gov (United States)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  12. Structure and phase behaviour of diblock copolymer monolayers investigated by means of Monte Carlo simulation

    International Nuclear Information System (INIS)

    Słyk, Edyta; Rżysko, Wojciech; Bryk, Paweł

    2015-01-01

    We use grand canonical Monte Carlo simulation paired with multiple histogram reweighting, hyperparallel tempering and finite size scaling to investigate the structure and phase behaviour of monolayers of diblock copolymers. The chain molecules are arranged on the square lattice and we consider both fully flexible and rod-coil polymer models. In contrast to the majority of previous studies we assume that the interactions between the segments belonging to one of the two subunits are weaker than the remaining segment–segment interactions. We find that when the diblock copolymer is fully flexible, this choice of the interactions leads to a suppression of the ordered phase, and the phase behaviour is analogous to that of the fully flexible homopolymer model. However, when one of the subunits is rigid, we observe the formation of a novel hairpin chessboard ordered structure with fully stretched chains bent in the middle. The topology of the phase diagram depends on the chain length. For shorter chains the global phase diagram features a critical point and a triple point. For longer chains the gas—disordered liquid phase transition is suppressed and only the order–disorder transition remains stable. The resulting phase diagram is of the swan neck type. (paper)

  13. Block copolymer micelles as switchable templates for nanofabrication.

    Science.gov (United States)

    Krishnamoorthy, Sivashankar; Pugin, Raphaël; Brugger, Juergen; Heinzelmann, Harry; Hoogerwerf, Arno C; Hinderling, Christian

    2006-04-11

    Block copolymer inverse micelles from polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) deposited as monolayer films onto surfaces show responsive behavior and are reversibly switchable between two states of different topography and surface chemistry. The as-coated films are in the form of arrays of nanoscale bumps, which can be transformed into arrays of nanoscale holes by switching through exposure to methanol. The use of these micellar films to act as switchable etch masks for the structuring of the underlying material to form either pillars or holes depending on the switching state is demonstrated.

  14. A pulsed field gradient NMR study of a ternary homopolymer/diblock copolymer blend in the bicontinuous microemulsion phase

    Czech Academy of Sciences Publication Activity Database

    Gröger, S.; Rittig, F.; Stallmach, F.; Almdal, K.; Štěpánek, Petr; Papadakis, C. M.

    2002-01-01

    Roč. 117, č. 1 (2002), s. 396-406 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1050902 Institutional research plan: CEZ:AV0Z4050913 Keywords : polymer blends * diblock copolymer * dynamic light scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.998, year: 2002

  15. Micellar Structures of Hydrophilic/Lipophilic and Hydrophilic/Fluorophilic Poly(2-oxazoline) Diblock Copolymers in Water

    DEFF Research Database (Denmark)

    Ivanova, Ruzha; Komenda, Thomas; Bonné, Tune B.

    2008-01-01

    Amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers of 2-methyl-2-oxazoline (MOx) building the hydrophilic block and either 2-nonyl-2-oxazoline (NOx) for the hydrophobic or 2-(1H,1H',2H,2H'-perfluorohexyl)-2-oxazoline (FOx) for the fluorophilic block were synthesized by sequential living...

  16. A theoretical and simulation study of the self-assembly of a binary blend of diblock copolymers

    KAUST Repository

    Padmanabhan, Poornima

    2012-01-01

    Pure diblock copolymer melts exhibit a narrow range of conditions at which bicontinuous and cocontinuous phases are stable; such conditions and the morphology of such phases can be tuned by the use of additives. In this work, we have studied a bidisperse system of diblock copolymers using theory and simulation. In particular, we elucidated how a short, lamellar-forming diblock copolymer modifies the phase behavior of a longer, cylinder-forming diblock copolymer. In a narrow range of intermediate compositions, self-consistent field theory predicts the formation of a gyroid phase although particle-based simulations show that three phases compete: the gyroid phase, a disordered cocontinuous phase, and the cylinder phase, all having free energies within error bars of each other. Former experimental studies of a similar system have yielded an unidentified, partially irregular bicontinuous phase, and our simulations suggest that at such conditions the formation of a partially transformed network phase is indeed plausible. Close examination of the spatial distribution of chains reveals that packing frustration (manifested by chain stretching and low density spots) occurs in the majority-block domains of the three competing phases simulated. In all cases, a double interface around the minority-block domains is also detected with the outer one formed by the short chains, and the inner one formed by the longer chains. © 2012 American Institute of Physics.

  17. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    Using self-consistent field theory, the Plumber's Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our

  18. Morphology in binary blends of poly(vinyl methyl ether) and epsilon-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, MC; Bogels, EJF; vanEkenstein, GORA; tenBrinke, G; Bras, W; Komanschek, BE; Ryan, AJ

    The morphology of symmetric diblock copolymer of epsilon-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  19. Morphology in binary blends of poly(vinyl methyl ether) and ε-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, M.C.; Bögels, E.J.F.; Alberda van Ekenstein, G.O.R.; Brinke, G. ten; Bras, W.; Komanschek, B.E.; Ryan, A.J.

    1997-01-01

    The morphology of symmetric diblock copolymer of ε-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  20. Complex Macrophase-Separated Nanostructure Induced by Microphase Separation in Binary Blends of Lamellar Diblock Copolymer Thin Films

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS)...

  1. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    Science.gov (United States)

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  2. Dual hydrophilic and salt responsive schizophrenic block copolymers – synthesis and study of self-assembly

    NARCIS (Netherlands)

    Vasantha, Vivek Arjunan; Jana, Satyasankar; Lee, Serina Siew Chen; Lim, Chin-Sing; Teo, Serena Lay Ming; Parthiban, Anbanandam; Vancso, Gyula J.

    2015-01-01

    A new class of dual hydrophilic diblock copolymers (BCPs) possessing poly(ethylene glycol) (PEG) and zwitterionic polysulfabetaine (PSB) was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. These BCPs formed schizophrenic micelles undergoing core–shell

  3. Effect of the hydrophilic block length on the surface-active and micellar thermodynamic properties of oxyethylene-oxybutylene diblock copolymers in aqueous solution

    International Nuclear Information System (INIS)

    Khan, A.; Usman, M.; Siddiq, M.; Fatima, G.; Harrison, W.

    2009-01-01

    The effect of hydrophilic block length on the surface and micellar thermodynamic properties of aqueous solution of E/sub 40/B/sub 8/, E/sub 80/B/sub 8/ and E/sub 120/B/sub 8/ diblock copolymers, were studied by surface tension measurements over a wide concentration and temperature range; where E stands for an oxyethylene unit and B for an oxybutylene unit. Like conventional surfactants, two breaks (change in the slope) were observed in the surface tension vs logarithm of concentration curve for all the three copolymers. Surface tension measurements were used to estimate surface excess concentrations (r m), area per molecule at air/water interface a and thermodynamic parameters for all adsorption of the pre-micellar region in the temperature range 20 to 50 degree C. Likewise the critical micelle concentration, CMC and thermodynamic parameters for micellization were also calculated for the post-micellar solutions at all temperatures. For comparison the thermodynamic parameters of adsorption and micellization are discussed in detail. The impact of varying E-block length and temperature on all calculated parameters are also discussed. This study shows the importance of hydrophobic-hydrophilic-balance (HHB) of copolymers on various surface and micellar properties. (author)

  4. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor.

    Science.gov (United States)

    Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko

    2017-06-07

    A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.

  5. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martinus Abraham

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  6. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417)

  7. Mode-coupling theory of self-diffusion in diblock copolymers. II. Model calculations and experimental comparisons

    International Nuclear Information System (INIS)

    Guenza, M.; Schweizer, K.S.

    1998-01-01

    The predictions of polymer-mode-coupling theory for self-diffusion in entangled structurally and interaction symmetric diblock copolymer fluids are illustrated by explicit numerical calculations. We find that retardation of translational motion emerges near and somewhat below the order endash disorder transition (ODT) in an approximately exponential and/or thermally activated manner. At fixed reduced temperature, suppression of diffusion is enhanced with increasing diblock molecular weight, compositional symmetry, and/or copolymer concentration. At very low temperatures, a new entropic-like regime of mobility suppression is predicted based on an isotropic supercooled liquid description of the copolymer structure. Preliminary generalization of the theory to treat diblock tracer diffusion is also presented. Quantitative applications to recent self and tracer diffusion measurements on compositionally symmetric polyolefin diblock materials have been carried out, and very good agreement between theory and experiment is found. Asymmetry in block local friction constants is predicted to significantly influence mobility suppression, with the largest effects occurring when the minority block is also the high friction species. New experiments to further test the predictions of the theory are suggested. copyright 1998 American Institute of Physics

  8. Fluctuations effects in diblock copolymer fluids: Comparison of theories and experiment

    International Nuclear Information System (INIS)

    Guenza, M.; Schweizer, K.S.

    1997-01-01

    The analytic Polymer Reference Interaction Site Model (PRISM) theory of structurally and interaction symmetric Gaussian diblock copolymer fluids is reformulated, extended, and applied to make predictions for experimentally observable equilibrium properties of the disordered state. These include the temperature, degree of polymerization, copolymer composition, and polymer density or concentration dependences of the peak scattering intensity, effective chi-parameter, and heat capacity. The location of the order-disorder transition is empirically estimated based on the disordered, strongly fluctuating state scattering function. Detailed numerical applications of PRISM theory demonstrates it provides an excellent description of the data. An in depth comparison of the mathematical structure and predictions of PRISM theory with the highly coarse-grained, incompressible Brazovski endash Leibler endash Fredrickson endash Helfand (BLFH) fluctuation corrected field theory is also carried out. Under some conditions (nearly symmetric composition, high melt densities, moderate temperatures) there are striking mathematical similarities between the predictions of the physically very different theories, although quantitative differences always persist. However, for strongly asymmetric copolymer compositions, short chains, compressible copolymer solutions, and low temperatures many qualitative differences emerge. The possibility of multiple, self-consistent fluctuation feedback mechanisms within the most general PRISM approach are identified, their qualitative features discussed, and contrasted with alternative versions of the fluctuation-corrected incompressible field theories due to BLFH and Stepanow. The predictions of PRISM and BLFH theory for the composition, copolymer density, temperature, and molecular weight dependence of the effective chi-parameter are presented and qualitatively compared with recent experiments. copyright 1997 American Institute of Physics

  9. Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving pH Responsiveness

    Directory of Open Access Journals (Sweden)

    Tian Xia

    2016-01-01

    Full Text Available Diblock copolymers (mPEG-b-PDPA, which were designed to possess pH-sensitivity as well as amphipathy, were used as an intelligent lock in the liposomal membrane. The so-called pH-sensitive liposomes were prepared by simple mixing of the synthesized mPEG-b-PDPA with phospholipids and cholesterol. Fluorescence polarization at pH 7.4 showed that the membrane stability of the hybrid liposome was significantly increased compared with the pure liposome. Therefore, in the neutral environment, the leakage of doxorubicin (DOX was inhibited. However, when pH decreased to 6.0, DOX release rate increased by 60% due to the escape of copolymer. The effects of the membrane composition and the PDPA segment length on bilayer membrane functions were investigated. These results revealed that the synthesized copolymers increased the difference in DOX cumulative release between pH 7.4 and 6.0, that is, improved the pH-controllability of the drug release from hybrid liposomes.

  10. Small angle neutron scattering study on star di-block copolymers

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2006-01-01

    Determining structural properties, phase transitions and stability of polymer mixtures is very important to produce new materials with desired and interesting properties. Small Angle Neutron Scattering Technique (SANS) has been one of the most powerful and intensely used methods for the characterization of polymers for last decades, m this study, we use a model based on Gaussian Random Phase Approximation (RPA) to describe Star Di-block Copolymers (SDC) mixtures with homo-polymers. We could able to predict the miscibility and phase transitions of the various mixtures along with their structure factors, producing a thermodynamic picture of the system. Also the results suggest that scattering intensity will be dictated by the structure factor of the core or shell parts of star polymer only, which depends on the homo-polymer type of the mixture

  11. Fabrication of poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer as a self-embrittling strippable coating for radioactive decontamination

    International Nuclear Information System (INIS)

    Liu Renlong; Zhang Huiyan; Li Yintao; Zhou Yuanlin; Zhang Quanping; Zheng Jian; Wang Shanqiang

    2016-01-01

    The poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer with different monomer compositions was synthesized via reversible addition-fragmentation chain transfer polymerization. Meanwhile, a novel self-embrittling strippable coating was prepared using the diblock copolymers, which is proposed to be used as radioactive decontamination agents without manual operation. Furthermore, the decontamination efficiencies of self-embrittling strippable coatings for radioactive contamination on glass, marble, and stainless steel surfaces were studied. (author)

  12. A Quantitative Study of Tethered Chains in Various Solution Conditions Using Langmuir Diblock Copolymer Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Michael S.

    1999-08-13

    This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.

  13. Trillions of quantum dots, fingerprints, nanolithography with diblock copolymers and annealing of striped phases

    International Nuclear Information System (INIS)

    Chaikin, Paul

    2003-01-01

    Full text: We have been using diblock copolymers as a new way to make ultradense patterns which cover wide areas on a variety of inorganic substrates. The feature sizes are determined by the length of the polymers and can range from ∼ 5 to 50 nm. The diblock copolymers form lamellar, cylindrical (hexagonal cross-section), and spherical (BCC) phases in bulk. We use monolayer films to make templates to transfer these patterns to metals, semiconductors etc. For example we cover a three inch wafer with ∼ 3 trillion posts, holes, etc. spaced by ∼ 25nm, to make quantum dots (for semiconductor lasers), metal particles and other structures. In trying to understand how the polymer patterns order we have used atomic force microscopy (AFM) to image the cylindrical phase which lies flat on a substrate. The patterns look like fingerprints and Benard rolls and the coarsening (annealing) law we observe is t (1/4) as in previous studies of these striped phases. This law remained unexplained for decades. However, we made time lapse AFM movies which show that the annealing dynamics is governed by the attraction of disclination PAIRS, quadrupoles, rather than simple +/- annihilation. This directly provides an explanation for the alignment of the striped patterns as a function of time. Thus these systems, while aimed at technological and fundamental electronic applications are also ideal materials for studying the dynamics of ordering. Recently we have also studied the thermodynamics and kinetics of the monolayer hexatic phase and used shear strain to macroscopically align the cylindrical and hexagonal patterns. (author)

  14. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  15. Interactions of poly(tert-butyl acrylate)-poly(styrene) diblock copolymers with lipids at the air-water interface.

    Science.gov (United States)

    Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J

    2006-08-29

    Diblock copolymers with hydrophilic poly(tert-butyl acrylate) (PtBA) and hydrophobic poly(styrene) (PS) blocks were synthesized with a view to use them as a surfactant in tear film for increasing the ocular comfort in dry eye syndrome. Interactions of six PtBA-PS copolymers with four important lipids found in the tear film, namely cholesterol, cholesteryl palmitate, dipalmitoyl phosphatidylcholine, and phosphatidylinositol, were studied at the air-water interface using a Langmuir trough. Thermodynamics of mixing of the copolymers and the lipids in the mixed monolayers was determined by calculating excess free energy of mixing. The diblock copolymers showed repulsive interactions with cholesteol and cholesteryl palmitate, near neutral interactions with dipalmitoyl phosphatidylcholine, and attractive interactions with phosphatidylinositol. The lipids interacted with the PS component of the copolymer. The results indicate that a copolymer with a small hydrophilic group and a big hydrophobic group can be a likely candidate for forming stable interactions with the lipids present in the tear film and hence increase the ocular comfort.

  16. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying; Donovan, Alexander J.; Zhang, Pin; Liu, Chang; Shang, Weifeng; Irving, Thomas; Herrera-Alonso, Margarita; Liu, Ying (JHU); (IIT); (UIC)

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  17. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena [Department; Kalkowski, Joseph [Department; Luo, Hanying [Department; Donovan, Alexander J. [Department; Zhang, Pin [Department; Liu, Chang [Department; Shang, Weifeng [Department; Irving, Thomas [Department; Herrera-Alonso, Margarita [Department; Liu, Ying [Department; Department

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  18. Renormalization of the one-loop theory of fluctuations in polymer blends and diblock copolymer melts.

    Science.gov (United States)

    Grzywacz, Piotr; Qin, Jian; Morse, David C

    2007-12-01

    Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.

  19. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.

    Science.gov (United States)

    Chang, Tongxin; Huang, Haiying; He, Tianbai

    2016-01-01

    The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    Science.gov (United States)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  1. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al2O3 and Diblock Copolymer Templates

    International Nuclear Information System (INIS)

    Erb, Denise

    2015-08-01

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al 2 O 3 substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al 2 O 3 - Magnetic nanostructures on nanofaceted α-Al 2 O 3 substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al 2 O 3 surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in-situ GISAXS and NRS, the magnetization

  2. A Molecular Simulation Approach to the Prediction of the Morphology of Self-Assembled Nanoparticles in Diblock Copolymers

    Czech Academy of Sciences Publication Activity Database

    Posocco, P.; Posel, Z.; Fermeglia, M.; Lísal, Martin; Pricl, S.

    2010-01-01

    Roč. 20, č. 46 (2010), s. 10511-10520 ISSN 0959-9428 R&D Projects: GA ČR GA203/08/0094; GA AV ČR KAN400720701 Grant - others:EC(XE) TD0802/OC10053 Institutional research plan: CEZ:AV0Z40720504 Keywords : diblock copolymers * nanoparticles * computer simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.101, year: 2010

  3. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  4. Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    KAUST Repository

    Misichronis, Konstantinos

    2016-03-31

    The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ∼90% 1,4 and ∼10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27≤ϕPS≤0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)-shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc.

  5. Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    KAUST Repository

    Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; Imel, Adam; Dadmun, Mark; Hong, Kunlun; Hadjichristidis, Nikolaos; Mays, Jimmy W.; Avgeropoulos, Apostolos

    2016-01-01

    The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ∼90% 1,4 and ∼10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27≤ϕPS≤0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)-shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc.

  6. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Lenny Voorhaar

    2017-07-01

    Full Text Available Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate as a first or middle block and poly(2-(dimethylaminoethyl acrylate, poly(1-ethoxyethyl acrylate and poly(1-ethoxyethyl-2-carboxyethyl acrylate as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylaminoethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.

  7. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    Science.gov (United States)

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  8. Chemical modifications to vesicle forming diblock copolymers: Development of smart functional polymersome membranes

    Science.gov (United States)

    Katz, Joshua S.

    2011-07-01

    A major limitation to current treatment regimens for diseases is the inability to adequately deliver therapeutics. Many routes to encapsulation of these materials have been explored to improve biodistribution and better protect encapsulants from harsh biological conditions. One vehicle particularly attractive for encapsulation of such materials is the polymersome. While promising for translation to clinical use, there are still limitations in polymer chemistry and resulting polymersome behavior that will slow their adaptation. This thesis addresses several of these limitations. The first major limitation to polymersomes is lack of control over their release rate. Release is generally by simple diffusion, leading to a burst. To address this burst, Aim 1 proposes a route to stabilizing polymersome membranes through their polymerization. PCL-PEG copolymers were terminally acrylated and the acrylates polymerized in the membrane following vesicle assembly. Polymerization enhanced mechanical robustness of the membranes and reduced diffusion of encapsulated contents. To ultimately trigger release, Aim 2 presents a novel route to synthesizing diblock copolymers, enabling insertion of a functional group at the blocks' junction. To facilitate triggering of release, we inserted UV-cleavable 2-nitrophenylalanine. Polymersomes assembled from this polymer collapse upon exposure to light and molecules release. Demonstrating further utility of this synthetic route, fluorescent vesicles were prepared using fluorescent lysine as the joining molecule. These vesicles labeled dendritic cells, providing a novel route to cell labeling and tracking. The second limitation to vesicles promising for biomedical applications (made of PCL-PEG) is their solid membranes. Aim 3 demonstrates partial (or full) replacement of the PCL block with a caprolactone analogue, TOSUO, which is non-crystalline and assembles into soft, deformable vesicles. Increasing TOSUO content in the copolymer leads to

  9. Morphological transformations of diblock copolymers in binary solvents: A simulation study

    Science.gov (United States)

    Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2017-12-01

    Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.

  10. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Zhang, Jianqi; Perlich, Jan

    2016-01-01

    Solvent vapor annealing (SVA) is frequently used to improve the ordering in diblock copolymer thin films. An important question is which SVA protocol should be chosen to ensure thermodynamic equilibrium. Here, we investigate two thin films from a low molar-mass, lamellae-forming polystyrene....... SVA cycles were carried out with cyclohexane, and the structural changes were followed in-situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Before and after SVA, Dlam,par is significantly lower than in the bulk, i.e. the equi-librium value of Dlam,par in thin film...... glassy again, affinely. During the second SVA cycle on the thin film, the scaling behavior of the lamellar thickness is identical to the one during the first drying and to the drying behavior of the thicker film. We conclude that one cycle of solvent vapor treatment with a degree of swelling of ca. 1...

  11. A new process for fabricating nanodot arrays on selective regions with diblock copolymer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae-Ho [Department of Materials Science and Engineering, Polymer Research Institute, Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2007-09-12

    A procedure for micropatterning a single layer of nanodot arrays in selective regions is demonstrated by using thin films of polystyrene-b-poly(t-butyl acrylate) (PS-b-PtBA) diblock copolymer. The thin-film self-assembled into hexagonally arranged PtBA nanodomains in a PS matrix on a substrate by solvent annealing with 1,4-dioxane. The PtBA nanodomains were converted into poly(acrylic acid) (PAA) having carboxylic-acid-functionalized nanodomains by exposure to hydrochloric acid vapor, or were removed by ultraviolet (UV) irradiation to generate vacant sites without any functional groups due to the elimination of PtBA domains. By sequential treatment with aqueous sodium bicarbonate and aqueous zinc acetate solution, zinc cations were selectively loaded only on the carboxylic-acid-functionalized nanodomains prepared via hydrolysis. Macroscopic patterning through a photomask via UV irradiation, hydrolysis, sequential zinc cation loading and calcination left a nanodot array of zinc oxide on a selectively UV-shaded region.

  12. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    Science.gov (United States)

    An, Hyosung; Mike, Jared; Smith, Kendall; Swank, Lisa; Lin, Yen-Hao; Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie

    Structural energy storage materials combining load-bearing mechanical properties and high energy storage performance are desired for applications in wearable devices or flexible displays. Vanadium pentoxide (V2O5) is a promising cathode material for possible use in flexible battery electrodes, but it remains limited by low Li+ diffusion coefficient and electronic conductivity, severe volumetric changes upon cycling, and limited mechanical flexibility. Here, we demonstrate a route to address these challenges by blending a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT- b-PEO), with V2O5 to form a mechanically flexible, electro-mechanically stable hybrid electrode. V2O5 layers were arranged parallel in brick-and-mortar-like fashion held together by the P3HT- b-PEO binder. This unique structure significantly enhances mechanical flexibility, toughness and cyclability without sacrificing capacity. Electrodes comprised of 10 wt% polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes.

  13. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  14. Block Copolymer Micelles for Photonic Fluids and Crystals.

    Science.gov (United States)

    Poutanen, Mikko; Guidetti, Giulia; Gröschel, Tina I; Borisov, Oleg V; Vignolini, Silvia; Ikkala, Olli; Gröschel, Andre H

    2018-03-15

    Block copolymer micelles (BCMs) are self-assembled nanoparticles in solution with a collapsed core and a brush-like stabilizing corona typically in the size range of tens of nanometers. Despite being widely studied in various fields of science and technology, their ability to form structural colors at visible wavelength has not received attention, mainly due to the stringent length requirements of photonic lattices. Here, we describe the precision assembly of BCMs with superstretched corona, yet with narrow size distribution to qualify as building blocks for tunable and reversible micellar photonic fluids (MPFs) and micellar photonic crystals (MPCs). The BCMs form free-flowing MPFs with an average interparticle distance of 150-300 nm as defined by electrosteric repulsion arising from the highly charged and stretched corona. Under quiescent conditions, millimeter-sized MPCs with classical FCC lattice grow within the photonic fluid-medium upon refinement of the positional order of the BCMs. We discuss the generic properties of MPCs with special emphasis on surprisingly narrow reflected wavelengths with full width at half-maximum (fwhm) as small as 1 nm. We expect this concept to open a generic and facile way for self-assembled tunable micellar photonic structures.

  15. Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, Matthew T.; Hickey, Robert J.; Xie, Shuyi; So, Soonyong; Bates, Frank S.; Lodge, Timothy P. (UMM)

    2016-11-21

    We examine the relationship between structure and ionic conductivity in salt-containing ternary polymer blends that exhibit various microstructured morphologies, including lamellae, a hexagonal phase, and a bicontinuous microemulsion, as well as the disordered phase. These blends consist of polystyrene (PS, Mn ≈ 600 g/mol) and poly(ethylene oxide) (PEO, Mn ≈ 400 g/mol) homopolymers, a nearly symmetric PS–PEO block copolymer (Mn ≈ 4700 g/mol), and lithium bis(trifluoromethane)sulfonamide (LiTFSI). These pseudoternary blends exhibit phase behavior that parallels that of well-studied ternary polymer blends consisting of A and B homopolymers compatibilized by an AB diblock copolymer. The utility of this framework is that all blends have nominally the same number of ethylene oxide, styrene, Li+, and TFSI– units, yet can exhibit a variety of microstructures depending on the relative ratio of the homopolymers to the block copolymer. For the systems studied, the ratio r = [Li+]/[EO] is maintained at 0.06, and the volume fraction of PS homopolymer is kept equal to that of PEO homopolymer plus salt. The total volume fraction of homopolymer is varied from 0 to 0.70. When heated through the order–disorder transition, all blends exhibit an abrupt increase in conductivity. However, analysis of small-angle X-ray scattering data indicates significant structure even in the disordered state for several blend compositions. By comparing the nature and structure of the disordered states with their corresponding ordered states, we find that this increase in conductivity through the order–disorder transition is most likely due to the elimination of grain boundaries. In either disordered or ordered states, the conductivity decreases as the total amount of homopolymer is increased, an unanticipated observation. This trend with increasing homopolymer loading is hypothesized to result from an increased density of

  16. Immunotheranostic Polymersomes Modularly Assembled from Tetrablock and Diblock Copolymers with Oxidation-Responsive Fluorescence.

    Science.gov (United States)

    Du, Fanfan; Liu, Yu-Gang; Scott, Evan Alexander

    2017-10-01

    Intracellular delivery is a key step for many applications in medicine and for investigations into cellular function. This is particularly true for immunotherapy, which often requires controlled delivery of antigen and adjuvants to the cytoplasm of immune cells. Due to the complex responses generated by the stimulation of diverse immune cell populations, it is critical to monitor which cells are targeted during treatment. To address this issue, we have engineered an immunotheranostic polymersome delivery system that fluorescently marks immune cells following intracellular delivery. N -(3-bromopropyl)phthalimide end-capped poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS-PI) was synthesized by anionic ring opening polymerization and linked with PEG-PPS-NH 2 via a perylene bisimide (PBI) bridge to form a tetrablock copolymer (PEG-PPS-PBI-PPS-PEG). Block copolymers were assembled into polymersomes by thin film hydration in phosphate buffered saline and characterized by dynamic light scattering, cryogenic electron microscopy and fluorescence spectroscopy. Polymersomes were injected subcutaneously into the backs of mice, and draining lymph nodes were extracted for flow cytometric analysis of cellular uptake and disassembly. Modular self-assembly of tetrablock / diblock copolymers in aqueous solutions induced π-π stacking of the PBI linker that both red-shifted and quenched the PBI fluorescence. Reactive oxygen species within the endosomes of phagocytic immune cell populations oxidized the PPS blocks, which disassembled the polymersomes for dequenching and shifting of the PBI fluorescence from 640 nm to 550 nm emission. Lymph node resident macrophages and dendritic cells were found to increase in 550 nm emission over the course of 3 days by flow cytometry. Immunotheranostic polymersomes present a versatile platform to probe the contributions of specific cell populations during the elicitation of controlled immune responses. Flanking PBI with two oxidation

  17. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers.

    Science.gov (United States)

    Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei

    2017-10-04

    Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442

    DEFF Research Database (Denmark)

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun

    2012-01-01

    ), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature...... (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. CONCLUSIONS: It is possible to produce PHA......BACKGROUND: Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB...

  20. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  1. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  2. Theory of the Flower Micelle Formation of Amphiphilic Random and Periodic Copolymers in Solution

    Directory of Open Access Journals (Sweden)

    Takahiro Sato

    2018-01-01

    Full Text Available The mixing Gibbs energy Δgm for the flower-micelle phase of amphiphilic random and periodic (including alternating copolymers was formulated on the basis of the lattice model. The formulated Δgm predicts (1 the inverse proportionality of the aggregation number to the degree of polymerization of the copolymer, (2 the increase of the critical micelle concentration with decreasing the hydrophobe content, and (3 the crossover from the micellization to the liquid–liquid phase separation as the hydrophobe content increases. The transition from the uni-core flower micelle to the multi-core flower necklace as the degree of polymerization increases was also implicitly indicated by the theory. These theoretical results were compared with experimental results for amphiphilic random and alternating copolymers reported so far.

  3. Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Rittig, F.; Almdal, K.

    2004-01-01

    The structure and dynamics of a strongly asymmetric poly(ethylene propylene)poly (dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range......: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode...

  4. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.

    2009-03-10

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.

  5. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures

    Science.gov (United States)

    Kalogirou, Andreas; Gergidis, Leonidas N.; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic A B copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  6. Drug-conjugated PLA-PEG-PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation.

    Science.gov (United States)

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2017-12-01

    A conjugate of the antihypertensive drug, lisinopril, with triblock poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) copolymer was synthesized by the reaction of PLA-PEG-PLA copolymer with lisinopril in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugated copolymer was characterized in vitro by hydrogen nuclear magnetic resonance (HNMR), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) techniques. Then, the lisinopril conjugated PLA-PEG-PLA were self-assembled into micelles in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the micelles formed by the lisinopril-conjugated PLA-PEG-PLA have spherical structure with the average size of 162 nm. The release behavior of conjugated copolymer, micelles and micelles physically loaded by lisinopril were compared in different media. In vitro release study showed that in contrast to physically loaded micelles, the release rate of micelles consisted of the conjugated copolymer was dependent on pH of media where it was higher at lower pH compared to the neutral medium. Another feature of the conjugated micelles was their more sustained release profile compared to the lisinopril-conjugated copolymer and physically loaded micelles.

  7. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer.

    Science.gov (United States)

    Yi, Fangping; Zheng, Sixun; Liu, Tianxi

    2009-02-19

    Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.

  8. Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing.

    Science.gov (United States)

    Chen, Zhiquan; He, Changcheng; Li, Fengbin; Tong, Ling; Liao, Xingzhi; Wang, Yong

    2010-06-01

    We reported the deliberate control on the micelle opening and closing of amphiphilic polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar films by exposing them to selective solvents. We first treated the micellar films with polar solvents including ethanol and water (pH = 4, 8, and 12) that have different affinities to P2VP. We observed opening of the micelles in all the cases. Both the size of opened pores and the opening rate are dependent on the solvency of different solvents for P2VP. We then explored the closing behavior of the opened micelles using solvents having different affinities to PS. We found that the opened micelles were recovered to their initial closed micelle forms. The recovery was accompanied by a slow micelle disassociation process which gradually reduced the micelle size. The rates of the micelle closing and disassociation are also dependent on the solvency of different solvents for PS.

  9. Reduction-responsive interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry for drug controlled release

    Science.gov (United States)

    Dai, Yu; Wang, Hongquan; Zhang, Xiaojin

    2017-12-01

    To improve the stability of polymeric micelles, here we describe interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry. The formation of interlayer-crosslinked micelles was investigated and confirmed by proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The morphology of un-crosslinked micelles and crosslinked micelles observed by transmission electron microscope is both uniform nano-sized spheres (approximately 20 nm). The crosslinking enhances the stability of polymeric micelles and improves the drug loading capacity of polymeric micelles. The interlayer-crosslinked micelles prepared from star-shaped copolymer and a crosslinker containing a disulfide bond are reduction-responsive and can release the drug quickly in the presence of the reducing agents such as glutathione (GSH).

  10. Solubilization of trace organics in block copolymer micelles for environmental separation using membrane extraction principles

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T.A.

    1992-12-01

    The solubilization of a range of polycyclic aromatic hydrocarbons in block copolymer micelles has been studied as a function of polymer composition, architecture, and temperature. Micelle formation is favored at high temperatures, leading to significant enhancements in solubilization capacity. At low temperatures, however, micelles do not form and the solubilization capacity of the block copolymer solution for the organics is low; this provides a convenient method for the regeneration of micellar solutions used as solvents'' in the treatment of contaminated feed streams using membrane extraction principles. It has also been shown (in collaboration with K.P. Johnston of University of Texas, Austin) that supercritical CO[sub 2] can be used effectively for micelle regeneration. Theoretical calculations of the structure of block copolymer micelles in the presence and absence of solutes using self-consistent mean-field lattice theories have successfully captured the trends observed with changing polymer composition and architecture, often quantitatively. The temperature and composition dependence of the micellar properties were determined by allowing the individual polymer segments to assume both polar and non-polar conformations.

  11. Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Štěpánek, Petr; Schmidt, V.; Jäger, Eliezer; Jäger, Alessandro; Giacomelli, C.

    2012-01-01

    Roč. 4, č. 15 (2012), s. 4504-4514 ISSN 2040-3364 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : copolymer micelles * protein fouling * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.233, year: 2012

  12. Self-diffusion investigations on a series of PEP-PDMS diblock copolymers with different morphologies by pulsed field gradient NMR

    DEFF Research Database (Denmark)

    Rittig, F.; Karger, J.; Papadakis, C.M.

    1999-01-01

    We report on temperature-dependent self-diffusion measurements of compositionally different and non-entangled poly(ethylene-co-propylene)-b-poly(dimethylsiloxane) PEP-PDMS diblock copolymers in the melt above and below the order-to-disorder transition temperature. Depending on the dimensionality...

  13. Temperature and pressure dependence of the order parameter fluctuations, conformational compressibility, and the phase diagram of the PEP-PDMS diblock copolymer

    DEFF Research Database (Denmark)

    Schwahn, D.; Frielinghaus, H.; Mortensen, K.

    1996-01-01

    The structure factor of a poly(ethylene-propylene)-poly(dimethylsiloxane) diblock copolymer has been measured by small-angle neutron scattering as a function of temperature and pressure. The conformational compressibility exhibits a pronounced maximum at the order-disorder phase transition. The p...

  14. The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

    International Nuclear Information System (INIS)

    Chang, Jeong Ho; Kim, Kyung Ja; Shin, Young Kook

    2004-01-01

    Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 A with the increase of hydrophobic chain lengths and up to 660 m 2 /g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state 13 C and 29 Si NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates

  15. Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method.

    Science.gov (United States)

    Nabar, Gauri M; Winter, Jessica O; Wyslouzil, Barbara E

    2018-05-02

    The interfacial instability method has emerged as a viable approach for encapsulating high concentrations of nanoparticles (NPs) within morphologically diverse micelles. In this method, transient interfacial instabilities at the surface of an emulsion droplet guide self-assembly of block co-polymers and NP encapsulants. Although used by many groups, there are no systematic investigations exploring the relationship between NP properties and micelle morphology. Here, the effect of quantum dot (QD) and superparamagnetic iron oxide NP (SPION) concentration on the shape, size, and surface deformation of initially spherical poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles was examined. Multi-NP encapsulation and uniform dispersion within micelles was obtained even at low NP concentrations. Increasing NP concentration initially resulted in larger numbers of elongated micelles and cylinders with tightly-controlled diameters smaller than those of spherical micelles. Beyond a critical NP concentration, micelle formation was suppressed; the dominant morphology became densely-loaded NP structures that were coated with polymer and exhibited increased polydispersity. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that NPs in densely-loaded structures can be well-ordered, with packing volume fractions of up to 24%. These effects were enhanced in magnetic composites, possibly by dipole interactions. Mechanisms governing phase transitions triggered by NP loading in the interfacial instability process were proposed. The current study helps establish and elucidate the active role played by NPs in directing block copolymer assembly in the interfacial instability process, and provides important guiding principles for the use of this approach in generating NP-loaded block copolymer composites.

  16. Polymeric microcapsules assembled from a cationic/zwitterionic pair of responsive block copolymer micelles.

    Science.gov (United States)

    Addison, Timothy; Cayre, Olivier J; Biggs, Simon; Armes, Steven P; York, David

    2010-05-04

    Using a layer-by-layer (LbL) approach, this work presents the preparation of hollow microcapsules with a membrane constructed entirely from a cationic/zwitterionic pair of pH-responsive block copolymer micelles. Our previous work with such systems highlighted that, in order to retain the responsive nature of the individual micelles contained within the multilayer membranes, it is important to optimize the conditions required for the selective dissolution of the sacrificial particulate templates. Consequently, here, calcium carbonate particles have been employed as colloidal templates as they can be easily dissolved in aqueous environments with the addition of chelating agents such as ethylenediaminetetraacetic acid (EDTA). Furthermore, the dissolution can be carried out in solutions buffered to a desirable pH so not to adversely affect the pH sensitive micelles forming the capsule membranes. First, we have deposited alternating layers of anionic poly[2-(dimethylamino)ethyl methacrylate-block-poly(2-(diethylamino)ethyl methacrylate)] (PDMA-PDEA) and cationic poly(2-(diethylamino)ethyl)methacrylate-block-poly(methacrylic acid) (PDEA-PMAA) copolymer micelles onto calcium carbonate colloidal templates. After deposition of five micelle bilayers, addition of dilute EDTA solution resulted in dissolution of the calcium carbonate and formation of hollow polymer capsules. The capsules were imaged using atomic force microscopy (AFM) and scanning electron microscopy (SEM), which shows that the micelle/micelle membrane is sufficiently robust to withstand dissolution of the supporting template. Quartz crystal microbalance studies were conducted and provide good evidence that the micelle multilayer structure is retained after EDTA treatment. In addition, a hydrophobic dye was incorporated into the micelle cores prior to adsorption. After dissolution of the particle template, the resulting hollow capsules retained a high concentration of dye, suggesting that the core

  17. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles.

    Directory of Open Access Journals (Sweden)

    Qingxiang Guan

    Full Text Available Bletilla striata polysaccharides (BSPs have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs. Docetaxel (DTX-loaded SA-BSPs (DTX-SA-BSPs copolymer micelles were prepared and characterized. The DTX release percentage in vitro and DTX concentration in vivo was carried out by using high performance liquid chromatography. HepG2 and HeLa cells were subjected to MTT (3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazonium bromide assay to evaluate the cell viability. In vitro evaluation of copolymer micelles showed higher drug encapsulation and loading capacity. The release percentage of DTX from DTX-SA-BSPs copolymer micelles and docetaxel injection was 66.93 ± 1.79% and 97.06 ± 1.56% in 2 days, respectively. The DTX-SA-BSPs copolymer micelles exhibited a sustained release of DTX. A 50% increase in growth inhibition was observed for HepG2 cells treated with DTX-SA-BSPs copolymer micelles as compared to those treated with docetaxel injection for 72 h. DTX-SA-BSPs copolymer micelles presented a similar growth inhibition effect on Hela cells. Furthermore, absolute bioavailability of DTX-SA-BSPs copolymer micelles was shown to be 1.39-fold higher than that of docetaxel injection. Therefore, SA-BSPs copolymer micelles may be used as potential biocompatible polymers for cancer chemotherapy.

  18. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.

    2009-11-24

    Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.

  19. Effect of solvent quality and chain density on normal and frictional forces between electrostatically anchored thermoresponsive diblock copolymer layers

    DEFF Research Database (Denmark)

    An, Junxue; Liu, Xiaoyan; Dedinaite, Andra

    2017-01-01

    and a thermoresponsive block of poly(2-isopropyl-2-oxazoline), PIPOZ. We find that at a given temperature different polymer chain densities at the silica surface are achieved depending on the previous temperature history. We explore how this affects surface and friction forces between such layers using the atomic force......Equilibration in adsorbing polymer systems can be very slow, leading to different physical properties at a given condition depending on the pathway that was used to reach this state. Here we explore this phenomenon using a diblock copolymer consisting of a cationic anchor block....... The friction forces decrease in the cooling stage due to rehydration of the PIPOZ chain. A consequence of the adsorption hysteresis is that the friction forces measured at 25 °C are significantly lower after exposure to a temperature of 40 °C than prior to heating, which is due to higher polymer chain density...

  20. Mechanical Properties of Weakly Segregated Block Copolymers. 3. Influence of Strain Rate and Temperature on Tensile Properties of Poly(styrene-b-butyl methacrylate) Diblock Copolymers with Different Morphologies

    NARCIS (Netherlands)

    Weidisch, R.; Stamm, M.; Michler, G.H.; Fischer, H.R.; Jérôme, R.

    1999-01-01

    Poly(styrene-b-butyl methacrylate) diblock copolymers, PS-6-PBMA, with different morphologies are investigated with respect to the influence of strain rate and temperature on tensile properties. In the first part the mechanical properties of bicontinuous and perforated lamellar structure are

  1. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) hydrophobic segments

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    -b-PDMAEMA while the betainisation of the latter provides zwitterionic diblock amphiphile PMEA-b-PDMAPS. Inspection of these macromolecular architectures by NMR spectroscopy and size exclusion chromatography (SEC) confirms a fairly high degree of control over the reactions emphasizing flexibility and precision...

  2. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    Science.gov (United States)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  3. Novel poly(ethylene oxide monomethyl ether)-b-poly(.epsilon.-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage

    Czech Academy of Sciences Publication Activity Database

    Petrova, Svetlana; Jäger, Eliezer; Konefal, Rafal; Jäger, Alessandro; Venturini, Cristina Garcia; Spěváček, Jiří; Pavlova, Ewa; Štěpánek, Petr

    2014-01-01

    Roč. 5, č. 12 (2014), s. 3884-3893 ISSN 1759-9954 R&D Projects: GA ČR GAP208/10/1600; GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : MPOE-b-PCL diblock copolymers * ring-opening polymerization * "click" chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.520, year: 2014

  4. Separation of parent homopolymers from diblock copolymers by liquid chromatography under limiting conditions of desorption 4. Role of eluent and temperature.

    Science.gov (United States)

    Berek, Dušan

    2010-11-01

    Liquid chromatography under limiting conditions of desorption (LC LCD) enables fast, base-line discrimination of both parent homopolymers from various diblock copolymers in one single step. The low molecular admixtures are fully separated, as well. General rules are discussed in detail for selection of mobile phases and temperature applied in LC LCD of block copolymers. Typical practical separation examples are presented. It is shown that both the composition of the well-selected LC LCD mobile phase and the temperature of experiment may vary in a broad range without affecting the basics of method. This implies that the method is robust and user friendly.

  5. Photo-Induced Micellization of Block Copolymers

    Directory of Open Access Journals (Sweden)

    Satoshi Kuwayama

    2010-11-01

    Full Text Available We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene-block-polystyrene diblock copolymer (PBSt-b-PSt. BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp in the presence of photo-acid generators, such as bis(alkylphenyliodonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, and triphenylsulfonium triflate. The 1H NMR analysis confirmed that PBSt-b-PSt was converted into poly(4-vinylphenol-block-PSt by the irradiation, resulting in self-assembly into micelles. The irradiation in the presence of the photo-acid generator also induced the micellization of poly(4-pyridinemethoxymethylstyrene-block-polystyrene diblock copolymer (PPySt-b-PSt. Micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states and provided monodispersed spherical micelles with cores of PPySt blocks. Further, the photo-Claisen rearrangement caused the micellization of poly(4-allyloxystyrene-block-polystyrene diblock copolymer (PASt-b-PSt. Micellization was promoted in cyclohexane at room temperature without a catalyst. During micellization, the elimination of the allyl groups competitively occurred along with the photorearrangement of the 4-allyloxystyrene units into the 3-allyl-4-hydroxystyrene units.

  6. Synthesis and Functionalization of Poly(ethylene oxide-b-ethyloxazoline) Diblock Copolymers with Phosphonate Ions

    OpenAIRE

    Chen, Alfred Yuen-Wei

    2013-01-01

    Poly(ethylene oxide) (PEO) and poly(2-ethyl-2-oxazoline) (PEOX) are biocompatible polymers that act as hydrophilic "stealth" drug carriers. As block copolymers, the PEOX group offers a wider variety of functionalization. The goal of this project was to synthesize a poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline) (PEO-b-PEOX) block copolymer and functionalize pendent groups of PEOX with phosphonic acid. This was achieved through cationic ring opening polymerization (CROP) of 2-...

  7. Cooperative catalysis with block copolymer micelles: A combinatorial approach

    KAUST Repository

    Bukhryakov, Konstantin V.

    2015-02-09

    A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.

  8. Cooperative catalysis with block copolymer micelles: A combinatorial approach

    KAUST Repository

    Bukhryakov, Konstantin V.; Desyatkin, Victor G.; O'Shea, John Paul; Almahdali, Sarah; Solovyeva, Vera; Rodionov, Valentin

    2015-01-01

    A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.

  9. Tetronic Star Block Copolymer Micelles: Photophysical Characterisation of Microenvironments and Applicability for Tuning Electron Transfer Reactions.

    Science.gov (United States)

    Samanta, Papu; Rane, Sonal; Bahadur, Pratap; Dutta Choudhury, Sharmistha; Pal, Haridas

    2018-05-10

    Detailed photophysical investigations have been carried out using a probe dye, Coumarin-153 (C153), to understand the microenvironments of micelles formed by the newly introduced Tetronic star block copolymers, T1304 and T1307, having the same polypropylene oxide (PPO) block size but different polyethylene oxide (PEO) block sizes. Ground state absorption, steady-state fluorescence and time-resolved fluorescence measurements have been used to estimate the micropolarity, microviscosity and solvation dynamics within the two micelles. To the best of our knowledge this is the first report on these important physicochemical parameters for this new class of the star block copolymer micelles. Our results indicate that T1307 micelle offers a relatively more polar and less viscous microenvironment in the corona region, compared to T1304. The effect of the two micellar systems has subsequently been investigated on the bimolecular photoinduced electron transfer (ET) reactions between coumarin dyes (electron acceptors) and aromatic amines (electron donors). On correlating the energetics and kinetics of the ET reactions, clear Marcus Inversion (MI) behavior is observed in both the micellar media. Interestingly, the ET rates for all the donor-acceptor pairs are much higher in T1307 than in T1304, and the onset of MI also appears at a relatively higher exergenocity (-Δ G 0 ) in the former micelle (~0.45 eV for T1307) than the latter (~0.37 eV for T1304). Effect of added NaCl salt studied selectively in T1307 micelle, shows that the ET rate decreases significantly along with a shift in the onset of MI toward lower exergenocity region, so that in the presence of 2 M NaCl the system becomes quite comparable to T1304. Based on the observed results, it is realized that the micropolarity and hence the dynamics of ET process can be tuned very effectively either by changing the constitution of the star block copolymer or by using a suitable additive as a modifier of the micellar

  10. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    Science.gov (United States)

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  11. Ultraporous films with uniform nanochannels by block copolymer micelles assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2010-10-12

    Films with high pore density and regularity that are easy to manufacture by conventional large-scale technology are key components aimed for fabrication of new generations of magnetic arrays for storage media, medical scaffolds, and artificial membranes. However, potential manufacture strategies like the self-assembly of block copolymers, which lead to amazing regular patterns, could be hardly reproduced up to now using commercially feasible methods. Here we report a unique production method of nanoporous films based on the self-assembly of copper(II) ion-polystyrene-b-poly(4-vinylpyridine) complexes and nonsolvent induced phase separation. Extremely high pore densities and uniformity were achieved. Water fluxes of 890 L m-2 h-1 bar-1 were obtained, which are at least 1 order of magnitude higher than those of commercially available membranes with comparable pore size. The pores are also stimuli (pH)-responsive. © 2010 American Chemical Society.

  12. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442.

    Science.gov (United States)

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang

    2012-04-05

    Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.

  13. Synthesis and conformational characterization of functional di-block copolymer brushes for microarray technology

    Energy Technology Data Exchange (ETDEWEB)

    Di Carlo, Gabriele; Damin, Francesco [Institute of Chemistry of Molecular Recognition, National Research Council of Italy, Via M. Bianco 9, 20131 Milano (Italy); Armelao, Lidia [ISTM-CNR and INSTM, Department of Chemistry, University of Padova, Via F. Marzolo 1, 35131 Padova (Italy); Maccato, Chiara [Department of Chemistry and INSTM, University of Padova, Via F. Marzolo 1, 35131 Padova (Italy); Unlu, Selim [Department of Electrical and Computer Engineering, Boston University, St. Mary Street 8, Boston, MA 02215 (United States); Department of Biomedical Engineering, Boston University, St. Mary Street 8, Boston, MA 02215 (United States); Spuhler, Philipp S. [Department of Biomedical Engineering, Boston University, St. Mary Street 8, Boston, MA 02215 (United States); Chiari, Marcella, E-mail: marcella.chiari@icrm.cnr.it [Institute of Chemistry of Molecular Recognition, National Research Council of Italy, Via M. Bianco 9, 20131 Milano (Italy)

    2012-02-01

    Surface initiated polymerization (SIP) coupled with reversible addition-fragmentation chain transfer polymerization (RAFT) was used to functionalize microarray glass slides with block polymer brushes. N,N-dimethylacrylamide (DMA) and N-acryloyloxysuccinimide (NAS) (graft-poly[DMA-b-(DMA-co-NAS)]) brushes, with di-block architecture, were prepared from a novel RAFT chain transfer agent bearing a silanating moiety (RAFT silane) directly anchored onto the glass surfaces. Conformational characterization of the coatings was performed by Self Spectral Interference Fluorescence Microscopy (SSFM), an innovative technique that describes the location of a fluorescent DNA molecule relative to a surface with sub-nanometer accuracy. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) were used to characterize the coatings composition and morphology.

  14. Synthesis and conformational characterization of functional di-block copolymer brushes for microarray technology

    International Nuclear Information System (INIS)

    Di Carlo, Gabriele; Damin, Francesco; Armelao, Lidia; Maccato, Chiara; Unlu, Selim; Spuhler, Philipp S.; Chiari, Marcella

    2012-01-01

    Surface initiated polymerization (SIP) coupled with reversible addition-fragmentation chain transfer polymerization (RAFT) was used to functionalize microarray glass slides with block polymer brushes. N,N-dimethylacrylamide (DMA) and N-acryloyloxysuccinimide (NAS) (graft-poly[DMA-b-(DMA-co-NAS)]) brushes, with di-block architecture, were prepared from a novel RAFT chain transfer agent bearing a silanating moiety (RAFT silane) directly anchored onto the glass surfaces. Conformational characterization of the coatings was performed by Self Spectral Interference Fluorescence Microscopy (SSFM), an innovative technique that describes the location of a fluorescent DNA molecule relative to a surface with sub-nanometer accuracy. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) were used to characterize the coatings composition and morphology.

  15. Thermoresponsive self-assembly of nanostructures from a collagen-like peptide-containing diblock copolymer.

    Science.gov (United States)

    Luo, Tianzhi; He, Lirong; Theato, Patrick; Kiick, Kristi L

    2015-01-01

    Temperature-triggered formation of nanostructures with distinct biological activity offers opportunities in selective modification of matrices and in drug delivery. Toward these ends, diblock polymers comprising poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to a triple helix-forming collagen-like peptide were produced. Triggered by the collapse of the thermoresponsive domain above its LCST, the conjugate undergoes a reversible transition in aqueous solution to form well-defined nanovesicles with diameters of approximately 100 nm, with a transition temperature of 37 °C. The incorporation of CLP domains in these nanostructures may offer opportunities for the selective targeting of collagen-containing matrices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    Science.gov (United States)

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (50 wt%).

  17. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.

    Science.gov (United States)

    Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A

    2014-03-03

    Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (Doxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Renewable poly(δ-decalactone based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Kuldeep K. Bansal

    2018-03-01

    Full Text Available Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone (PDL were evaluated for their drug delivery capabilities and compared with a fossil fuel based polymer i.e. methoxy-poly(ethylene glycol-b-poly(ε-caprolactone (mPEG-b-PCL. Using curcumin as a hydrophobic drug model, micelles of PDL block copolymers with different orientation i.e. AB (mPEG-b-PDL, ABA (PDL-b-PEG-b-PDL, ABC (mPEG-b-PDL-b-poly(pentadecalactone and (mPEG-b-PCL were prepared by nanoprecipitation method. The size, drug loading and curcumin stability studies results indicated that mPEG-b-PDL micelles was comparable to its counterpart mPEG-b-PCL micelles towards improved delivery of curcumin. Therefore, mixed micelles using these two copolymers were also evaluated to see any change in size, loading and drug release. Drug release studies proposed that sustained release can be obtained using poly(pentadecalactone as crystalline core whereas rapid release can be achieved using amorphous PDL core. Further, mPEG-b-PDL micelles were found to be non-haemolytic, up to the concentration of 40 mg/mL. In vivo toxicity studies on rats advised low-toxic behaviour of these micelles up to 400 mg/kg dose, as evident by histopathological and biochemical analysis. In summary, it is anticipated that mPEG-b-PDL block copolymer micelles could serve as a renewable alternative for mPEG-b-PCL copolymers in drug delivery applications.

  19. Biomimetic synthesis of calcium carbonate bilayers interfaced by a diblock copolymer template

    NARCIS (Netherlands)

    Goos, J.A.C.M.; Vo, C.D.; Dey, A.; Hoogen, van den C.J.; Lousberg, N.J.H.G.M.; Hendrix, M.M.R.M.; Tirelli, N.; With, de G.; Sommerdijk, N.A.J.M.

    2012-01-01

    The synthesis of a new class of hybrid materials with two differently oriented layers of calcite at adjacent sides of an organic template is demonstrated. A Langmuir monolayer of the amphiphilic block copolymer poly(butyl acrylate)-b-poly(hydroxypropyl acrylate) directs the formation of a first

  20. Aggregation behavior of doubly thermoresponsive polysulfobetaine-b-poly(N-isopropylacrylamide) diblock copolymers

    Czech Academy of Sciences Publication Activity Database

    Vishnevetskaya, N. S.; Hildebrand, V.; Niebuur, B.-J.; Grillo, I.; Filippov, Sergey K.; Laschewsky, A.; Müller-Buschbaum, P.; Papadakis, C. M.

    2016-01-01

    Roč. 49, č. 17 (2016), s. 6655-6668 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : polymer * thermoresponsive * block copolymer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.835, year: 2016

  1. Self-Assembly of Nanoparticle Mixtures in Diblock Copolymers: Multiscale Molecular Modeling

    Czech Academy of Sciences Publication Activity Database

    Malý, Marek; Posocco, P.; Pricl, S.; Fermeglia, M.

    2008-01-01

    Roč. 47, č. 15 (2008), s. 5023-5038 ISSN 0888-5885 Grant - others:NMP3(XE) CT/2006/033304 Institutional research plan: CEZ:AV0Z40720504 Keywords : copolymers * nanoparticles * dissipative particle dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.895, year: 2008

  2. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Ilčíková, M.; Mrlík, M.; Sedláček, T.; Šlouf, Miroslav; Zhigunov, Alexander; Koynov, K.; Mosnáček, J.

    2014-01-01

    Roč. 3, č. 10 (2014), s. 999-1003 ISSN 2161-1653 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : photoactuating nanocomposite * carbon nanotubes * copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.764, year: 2014

  3. One-step route to the fabrication of highly porous polyaniline nanofiber films by using PS-b-PVP diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Tian, Shengjun; Ping, Yang; Kim, Dong Ha; Knoll, Wolfgang

    2005-10-11

    We report a new method to control both the nucleation and growth of highly porous polyaniline (PANI) nanofiber films using porous poly(styrene-block-2-vinylpyridine) diblock copolymer (PS-b-P2VP) films as templates. A micellar thin film composed of P2VP spheres within a PS matrix is prepared by spin coating a PS-b-P2VP micellar solution onto substrates. The P2VP domains are swollen in a selective solvent of acetic acid, which results in the formation of pores in the block copolymer film. PANI is then deposited onto the substrates modified with such a porous film using electrochemical methods. During the deposition, the nucleation and growth of PANI occur only at the pores of the block copolymer film. After the continued growth of PANI by the electrochemical deposition, a porous PANI nanofiber film is obtained.

  4. Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations

    Science.gov (United States)

    Xia, Qiang-sheng; Ding, Hong-ming; Ma, Yu-qiang

    2018-03-01

    Efficient delivery of nanoparticles into specific cell interiors is of great importance in biomedicine. Recently, the pH-responsive micelle has emerged as one potential nanocarrier to realize such purpose since there exist obvious pH differences between normal tissues and tumors. Herein, by using dissipative particle dynamics simulation, we investigate the interaction of the pH-sensitive triblock copolymer micelles composed of ligand (L), hydrophobic block (C) and polyelectrolyte block (P) with cell membrane. It is found that the structure rearrangement of the micelle can facilitate its penetration into the lower leaflet of the bilayer. However, when the ligand-receptor specific interaction is weak, the micelles may just fuse with the upper leaflet of the bilayer. Moreover, the ionization degree of polyelectrolyte block and the length of hydrophobic block also play a vital role in the penetration efficiency. Further, when the sequence of the L, P, C beads in the copolymers is changed, the translocation pathways of the micelles may change from direct penetration to Janus engulfment. The present study reveals the relationship between the molecular structure of the copolymer and the uptake of the pH-sensitive micelles, which may give some significant insights into the experimental design of responsive micellar nanocarriers for highly efficient cellular delivery.

  5. Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties.

    Science.gov (United States)

    Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin

    2010-07-22

    Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.

  6. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    Science.gov (United States)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  7. Towards an easy access to Annexin-A5 protein binding block copolymer micelles

    International Nuclear Information System (INIS)

    Schmidt, Vanessa; Giacomelli, Cristiano; Brisson, Alain R.; Borsali, Redouane

    2008-01-01

    The formation of Annexin-A5 decorated (bio-functionalized) nanoparticles is of particular interest in micelle-mediated target drug delivery, in vivo magnetic resonance imaging, and controlled fabrication of biochips. This work describes an easy access to the synthesis and manipulation of block copolymer nano-objects exhibiting Annexin-A5 protein binding ability. Well-defined spherical micelles containing negatively charged phosphonic diacid groups - which are potential binding sites for Annexin-A5 proteins - at their hydrophilic periphery originate from the self-assembly of polystyrene-b-poly(2-phosphatethyl methacrylate-stat-2-hydroxyethyl methacrylate) (PS-b-P(PEMA-stat-HEMA)) amphiphilic macromolecules in aqueous media. PS-b-P(PEMA-stat-HEMA) can be prepared in a three-step phosphorylation/silylation/methanolysis procedure applied to PS-b-PHEMA precursors synthesized via Atom Transfer Radical Polymerization (ATRP). The herein discussed approach allows precise control over micellar dimensions and properties such as core radius (i.e., loading capacity), corona width, and density of phosphate groups at the micelle periphery

  8. Shear-induced Long Range Order in Diblock Copolymer Thin Films

    Science.gov (United States)

    Ding, Xuan; Russell, Thomas

    2007-03-01

    Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).

  9. In-situ visualization and order quantification of symmetric diblock copolymer directed self-assembly

    International Nuclear Information System (INIS)

    Salaün, M.; Le Gallic, M.; Picard, E.; Zelsmann, M.

    2013-01-01

    In this work, atomic force microscopy (AFM) investigations of lamellar PS-b-PMMA block copolymer layers are performed during the self-assembly process. These in-situ experiments are made on both un-patterned planar substrates and topographical substrates (graphoepitaxy experiments) at different temperatures and for different durations. Image processing software is used to produce AFM movies of the same location on the sample and to measure polymer micro-phase domain lengths versus annealing time. We observed that micro-domain formation starts after only a few minutes of heating. On planar substrates, the micro-domain length evolution with time (t) is in accordance with the literature, following a power law ∼ t 0.29 . On the other hand, in substrate channels and in conditions used, we show that the domain length dependence follows a two-step process. Initially, the system adopts a similar kinetic dependence as that of the planar substrate, but at longer times, drastically reduced time dependence is observed due to the topographical confinement of the domains. - Highlights: ► Live atomic force microscopy of block copolymer directed self-assembly is performed. ► Values of polymer self-assembly kinetic in topographical trenches are measured. ► Opens the way to a better understanding of graphoepitaxy order nucleation and growth

  10. Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Tsukigawa, K.; Nakamura, H.; Chytil, Petr; Fang, J.; Ulbrich, Karel; Otagiri, M.; Maeda, H.

    2017-01-01

    Roč. 106, 30 August (2017), s. 10-19 ISSN 0928-0987 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:AV ČR,Japan Society for the Promotion of Science(CZ) JSPS-16-05 Program:Bilaterální spolupráce Institutional support: RVO:61389013 Keywords : pirarubicin * PHPMA conjugate * tandem-diblock PHPMA conjugate Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.756, year: 2016

  11. Complexation of Polyelectrolyte Micelles with Oppositely Charged Linear Chains.

    Science.gov (United States)

    Kalogirou, Andreas; Gergidis, Leonidas N; Miliou, Kalliopi; Vlahos, Costas

    2017-03-02

    The formation of interpolyelectrolyte complexes (IPECs) from linear AB diblock copolymer precursor micelles and oppositely charged linear homopolymers is studied by means of molecular dynamics simulations. All beads of the linear polyelectrolyte (C) are charged with elementary quenched charge +1e, whereas in the diblock copolymer only the solvophilic (A) type beads have quenched charge -1e. For the same Bjerrum length, the ratio of positive to negative charges, Z +/- , of the mixture and the relative length of charged moieties r determine the size of IPECs. We found a nonmonotonic variation of the size of the IPECs with Z +/- . For small Z +/- values, the IPECs retain the size of the precursor micelle, whereas at larger Z +/- values the IPECs decrease in size due to the contraction of the corona and then increase as the aggregation number of the micelle increases. The minimum size of the IPECs is obtained at lower Z +/- values when the length of the hydrophilic block of the linear diblock copolymer decreases. The aforementioned findings are in agreement with experimental results. At a smaller Bjerrum length, we obtain the same trends but at even smaller Z +/- values. The linear homopolymer charged units are distributed throughout the corona.

  12. Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles

    Science.gov (United States)

    Zhong, Sheng

    There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles. Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)-block-poly(methyl acrylate)- block-polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H2O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share

  13. Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions.

    Science.gov (United States)

    Xu, Jiangping; Wang, Ke; Liang, Ruijing; Yang, Yi; Zhou, Huamin; Xie, Xiaolin; Zhu, Jintao

    2015-11-17

    In this study, we report the controllable structural transformation of block copolymer/homopolymer binary blends in cylindrical nanopores. Polystyrene-b-poly(4-vinylpyridine)/homopolystyrene (SVP/hPS) nanorods (NRs) can be fabricated by pouring the polymers into an anodic aluminum oxide (AAO) channel and isolated by selective removal of the AAO membrane. In this two-dimensional (2D) confinement, SVP self-assembles into NRs with concentric lamellar structure, and the internal structure can be tailored with the addition of hPS. We show that the weight fraction and molecular weight of hPS and the diameter of the channels can significantly affect the internal structure of the NRs. Moreover, mesoporous materials with tunable pore shape, size, and packing style can be prepared by selective solvent swelling of the structured NRs. In addition, these NRs can transform into spherical structures through solvent-absorption annealing, triggering the conversion from 2D to 3D confinement. More importantly, the transformation dynamics can be tuned by varying the preference property of surfactant to the polymers. It is proven that the shape and internal structure of the polymer particles are dominated by the interfacial interactions governed by the surfactants.

  14. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    Science.gov (United States)

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    Science.gov (United States)

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.

  16. Dissipative Particle Dynamics Study of the pH-Dependent Behavior of Poly(2-vinylpyridine)-block-poly(ethylene oxide) Diblock Copolymer in Aqueous Buffers

    Czech Academy of Sciences Publication Activity Database

    Posel, Zbyšek; Limpouchová, Z.; Šindelka, K.; Lísal, Martin; Procházka, K.

    2014-01-01

    Roč. 47, č. 7 (2014), s. 2503-2514 ISSN 0024-9297 R&D Projects: GA ČR GCP205/11/J043 Grant - others:GA ČR(CZ) GAP106/12/0143 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * union-type micelles * block-copolymer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.800, year: 2014

  17. Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions

    International Nuclear Information System (INIS)

    Kim, Minsoo P; Yi, Gi-Ra; Kim, Hyeong Jun; Kim, Bumjoon J

    2015-01-01

    We present a novel method for producing structured nanoporous thin films using block copolymer (BCP) micelles loaded with metallic ions. The BCP micellar thin films containing gold (Au) ions were prepared by spin-coating poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) micelle solutions in which Au precursors (AuCl 4 − ) were selectively loaded onto the P4VP core. When the micellar films were exposed to cetyltrimethylammonium bromide (CTAB) solutions, the Au precursors were selectively extracted from the P4VP domains due to their strong electrostatic interaction with CTAB, leading to the formation of pores in the micelles. Consequently, regularly patterned nanoporous surfaces were formed. By controlling the molecular weight (M n ) of PS-b-P4VP and the amount of Au precursors (λ) that were loaded in the P4VP domains, the pore size and depth could be tuned precisely. In particular, when a sufficient amount of Au precursors was loaded (λ  ≥ 0.3), the porous surface nanostructure was well developed. In addition, the pore size and depth of the nanostructure increased as the λ value increased. For instance, when the λ value increased from 0.3 to 1.0, the pore size increased from 22.8 nm to 28.8 nm, and the pore depth increased from 2.1 nm to 3.2 nm. Interestingly, the transition from the nonporous structures to the porous structures in the micellar film could be reversibly controlled by adding and removing the Au precursors in the film. Moreover, our method for the preparation of nanoporous films can be extended to micellar film by incorporating other metal ions such as silver (Ag) and iron (Fe). (paper)

  18. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10 14 pores per m2), reproducible in m2 scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments. © 2011 American Chemical Society.

  19. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    International Nuclear Information System (INIS)

    Tuyen Dao, Thi Phuong; Nguyen, To Hoai; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Dang, Mau Chien

    2014-01-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1 H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100–300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix. (paper)

  20. A Stepwise "Micellization-Crystallization" Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ligeng; Lodge, Timothy P; Hillmyer, Marc A [UMM

    2012-11-26

    Micellar polymorphism from block copolymers has been well documented, but most attention has focused on noncrystalline hydrophobic systems. We have investigated the micellization in water of model diblock copolymers with semicrystalline polyethylene (PE) as the core-forming component. Poly(N,N-dimethylacrylamide)–polyethylene (AE) diblock copolymers were synthesized by a combination of anionic and RAFT polymerizations. The bulk nanostructures were probed by small-angle X-ray scattering (SAXS) and AE diblock copolymers were found to be moderately segregated at 140 °C. Dispersions of AE amphiphiles in water were prepared by direct dissolution at 120 °C (i.e., above the melting transition of PE) followed by cooling to 25 °C. By manipulating the composition of AE diblock copolymers, discrete structures with oblate ellipsoidal, cylindrical, and bilayer morphologies were produced, as evidenced in cryogenic transmission electron microscopy (cryo-TEM). The self-assembled aggregates were also studied by small-angle neutron scattering (SANS) and dilute solution rheology. The semicrystalline nature of the nanostructures was further revealed by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). A stepwise “micellization–crystallization” process was proposed as the micelle formation mechanism, as supported by the existence of similar nanostructures at 120 °C using SANS. This strategy holds promise for a general protocol toward the production of giant wormlike micelles and vesicles with semicrystalline polymeric cores.

  1. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  2. The Self-Assembly of Copolymers with One Hydrophobic and One Polyelectrolyte Block in Aqueous Media: A Dissipative Particle Dynamics Study.

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Limpouchová, Z.; Procházka, K.

    2016-01-01

    Roč. 18, č. 24 (2016), s. 16127-16136 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA13-02938S Institutional support: RVO:67985858 Keywords : amphiphilic diblock copolymers * hybrid olymeric micelles * simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016

  3. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    Science.gov (United States)

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.

  4. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy.

    Science.gov (United States)

    Huang, Laiqiang; Chen, Hongbo; Zheng, Yi; Song, Xiaosong; Liu, Ranyi; Liu, Kexin; Zeng, Xiaowei; Mei, Lin

    2011-10-01

    The purpose of this research was to develop formulation of docetaxel-loaded biodegradable TPGS-b-(PCL-ran-PGA) nanoparticles for breast cancer chemotherapy. A novel diblock copolymer, d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) [TPGS-b-(PCL-ran-PGA)], was synthesized from ε-caprolactone, glycolide and d-α-tocopheryl polyethylene glycol 1000 succinate by ring-opening polymerization using stannous octoate as catalyst. The obtained copolymers were characterized by (1)H NMR, GPC and TGA. The docetaxel-loaded TPGS-b-(PCL-ran-PGA) nanoparticles were prepared and characterized. The data showed that the fluorescence TPGS-b-(PCL-ran-PGA) nanoparticles could be internalized by MCF-7 cells. The TPGS-b-(PCL-ran-PGA) nanoparticles achieved significantly higher level of cytotoxicity than commercial Taxotere®. MCF-7 xenograft tumor model on SCID mice showed that docetaxel formulated in the TPGS-b-(PCL-ran-PGA) nanoparticles could effectively inhibit the growth of tumor over a longer period of time than Taxotere® at the same dose. In conclusion, the TPGS-b-(PCL-ran-PGA) copolymer could be acted as a novel and potential biologically active polymeric material for nanoformulation in breast cancer chemotherapy. This journal is © The Royal Society of Chemistry 2011

  5. Structural and rectifying junction properties of self-assembled ZnO nanoparticles in polystyrene diblock copolymers on (1 0 0)Si substrates

    Science.gov (United States)

    Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.

    2006-06-01

    The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.

  6. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    Science.gov (United States)

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  7. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior.

    Science.gov (United States)

    Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao

    2014-02-01

    Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

  8. Enhancement of Radiotherapeutic Efficacy by Paclitaxel-Loaded ph-Sensitive Block Copolymer Micelles

    International Nuclear Information System (INIS)

    Jinhyang, C.; Jaesook, P.; Dong-Hoon, J.

    2012-01-01

    Radiotherapy (RT) is a major modality for cancer treatment, but its efficacy is often compromised by the resistance caused by tumor-specific microenvironment including acidosis and hypoxia. For an effective RT, concurrent administration of radiosensitizer with RT has been emphasized. However, most anticancer agents enhancing radiotherapeutic efficacy have obstacles such as poor solubility and severe toxicity. Paclitaxel (PTX), a well-known radiosensitizer, is insoluble in water and needs toxic solvent like Cremophor EL. Nano materials in drug delivery systems have been utilized for improving the drawbacks of anti-cancer drugs. Solubilization, tumor accumulation, and toxicity attenuation of drug by nano materials are suitable for enhancement of radiotherapeutic efficacy. In this study, PTX was incorporated into ph-sensitive block copolymer micelle (psm-PTX), polyethylene glycol-graft-poly(β-amino ester), and pre clinically evaluated for its effect on RT. The size of psm-PTX was 125. 4.4±nm at ph 7.4. psm-PTX released PTX rapidly in the acidic condition (ph 6.5), while it was reasonably stable in the physiologic condition (ph 7.4). The clonogenic assay showed that psm-PTX greatly sensitized human non-small-cell lung cancer A549 cells to radiation. In the xenograft tumor model, the combination of psm-PTX and radiation significantly delayed the tumor growth. These results demonstrated the feasibility of psm-PTX to enhance the chemo radiotherapeutic efficacy.

  9. Exploring Poly(ethylene glycol-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution

    Directory of Open Access Journals (Sweden)

    Noverra M. Nizardo

    2018-03-01

    Full Text Available Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol (PEG macroinitiator via atom transfer radical polymerization (ATRP of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and 1H NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30–50 °C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo- and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in “schizophrenic” thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model “cargos” failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.

  10. Amphiphilic Imbalance and Stabilization of Block Copolymer Micelles on-Demand through Combinational Photo-Cleavage and Photo-Crosslinking.

    Science.gov (United States)

    Zhang, Xuan; Wang, Youpeng; Li, Guo; Liu, Zhaotie; Liu, Zhongwen; Jiang, Jinqiang

    2017-01-01

    An amphiphilic block copolymer of poly(ethylene oxide)-b-poly((N-methacryloxy phthalimide)-co-(7-(4-vinyl-benzyloxyl)-4-methylcoumarin)) (PEO 45 -b-P(MAPI 36 -co-VBC 4 )) is designed to improve the micellar stability during the photo-triggered release of hydrophobic cargoes. Analysis of absorption and emission spectra, solution transmittance, dynamic light scattering, and transmission electron microscopy supports that polymer micelles of PEO 45 -b-P(MAPI 36 -co-VBC 4 ) upon the combinational irradiation of 365 and 254 nm light can be solubilized through the photolysis of phthalimide esters and simultaneously crosslinked via the partially reversible photo-dimerization of coumarins. The photo-triggered release experiment shows that the leakage of doxorubicin molecules from crosslinked micelles can be predictably regulated by controlling the irradiation time of 365 and 254 nm light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years

    KAUST Repository

    Nunes, Suzana Pereira; Car, Anja

    2013-01-01

    Different strategies for membrane preparation based on block copolymers are reviewed in this paper, starting from early papers on charge-mosaic membranes and following with dense membranes for gas separation for applications like CO2 separation, pervaporation of aqueous solutions containing organic pollutants, low-fouling surfaces and finally tailoring porous membranes with very sharp pore size distribution. The approaches for manufacture of nanoporous films are summarized, including etching and preferential dissolution. The advantages of a new process based on micelle assembly and phase inversion are emphasized, confirming its perspective of up-scale and application at large scale. © 2012 American Chemical Society.

  12. From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years

    KAUST Repository

    Nunes, Suzana Pereira

    2013-01-23

    Different strategies for membrane preparation based on block copolymers are reviewed in this paper, starting from early papers on charge-mosaic membranes and following with dense membranes for gas separation for applications like CO2 separation, pervaporation of aqueous solutions containing organic pollutants, low-fouling surfaces and finally tailoring porous membranes with very sharp pore size distribution. The approaches for manufacture of nanoporous films are summarized, including etching and preferential dissolution. The advantages of a new process based on micelle assembly and phase inversion are emphasized, confirming its perspective of up-scale and application at large scale. © 2012 American Chemical Society.

  13. Neutral Polymeric Micelles for RNA Delivery

    Science.gov (United States)

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  14. Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles.

    Science.gov (United States)

    Koh, Haeng-Deog; Kang, Nam-Goo; Lee, Jae-Suk

    2007-12-18

    Water-in-oil (W/O) emulsion-induced micelles with narrow size distributions of approximately 140 nm were prepared by sonicating the polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer in the toluene/water (50:1 vol %). The ordered nanoporous block copolymer films with the hydrophilic P2VP interior and the PS matrix were distinctly fabricated by casting the resultant solution on substrates, followed by evaporating the organic solvent and water. The porous diameter was estimated to be about 70 nm. Here, we successfully prepared the open nanoporous nanocomposites, the P2VP domain decorated by Au (5+/-0.4 nm) nanoparticles based on the methodology mentioned. We anticipate that this novelty enhances the specific function of nanoporous films.

  15. Synthesis and quaternization of nitroxide-terminated poly(4-vinylpyridine-co-acrylonitrile) macroinitiators and related diblock copolymers

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Lokaj, Jan; Holler, Petr; Starovoytova, Larisa; Pekárek, Michal; Štěpánek, Petr

    -, 065 (2010), s. 1-10 ISSN 1618-7229 R&D Projects: GA ČR GESON/06/E005; GA ČR GA203/07/0659 Institutional research plan: CEZ:AV0Z40500505 Keywords : 4-vinylpyridine-acrylonitrile copolymers * block copolymers * nitroxide-mediated radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.574, year: 2010 http://www.e-polymers.org/journal/papers/lpolakova_240710.pdf

  16. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  17. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide Copolymer for Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Gyung Mo Son

    2014-09-01

    Full Text Available Graft copolymer composed hyaluronic acid (HA and poly(d,l-lactide-co-glycolide (PLGA (HAgLG was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA to have amine end group in the end of chain (PLGA-amine. PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting.

  18. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide) Copolymer for Tumor Targeting

    Science.gov (United States)

    Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL

    2014-01-01

    Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338

  19. Organisation and shape of micellar solutions of block copolymers

    Science.gov (United States)

    Gaspard, J. P.; Creutz, S.; Bouchat, Ph.; Jérôme, R.; Cohen Stuart, M.

    1997-02-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The micellar core size is in agreement with the theoretical evaluation for copolymers with a short hydrophobic sequence. In contrast, in case of larger hydrophobic blocks, the measured size is incompatible with a star-like model. Various hypotheses are presented for the latter.

  20. Nanopatterning via Self-Assembly of a Lamellar-Forming Polystyrene-block-Poly(dimethylsiloxane Diblock Copolymer on Topographical Substrates Fabricated by Nanoimprint Lithography

    Directory of Open Access Journals (Sweden)

    Dipu Borah

    2018-01-01

    Full Text Available The self-assembly of a lamellar-forming polystyrene-block-poly(dimethylsiloxane (PS-b-PDMS diblock copolymer (DBCP was studied herein for surface nanopatterning. The DBCP was synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane (D3. The number average molecular weight (Mn, polydispersity index (Mw/Mn and PS volume fraction (φps of the DBCP were MnPS = 23.0 kg mol−1, MnPDMS = 15.0 kg mol−1, Mw/Mn = 1.06 and φps = 0.6. Thin films of the DBCP were cast and solvent annealed on topographically patterned polyhedral oligomeric silsesquioxane (POSS substrates. The lamellae repeat distance or pitch (λL and the width of the PDMS features (dL are ~35 nm and ~17 nm, respectively, as determined by SEM. The chemistry of the POSS substrates was tuned, and the effects on the self-assembly of the DBCP noted. The PDMS nanopatterns were used as etching mask in order to transfer the DBCP pattern to underlying silicon substrate by a complex plasma etch process yielding sub-15 nm silicon features.

  1. Barriers to defect melting in chemo-epitaxial directed self-assembly of lamellar-forming diblock copolymer/homopolymer blends

    Science.gov (United States)

    Izumi, Kenichi; Kim, Bongkeun; Laachi, Nabil; Delaney, Kris T.; Carilli, Michael; Fredrickson, Glenn H.

    2015-03-01

    We investigate energy barriers and minimum energy paths (MEPs) for transitions from dislocation-pair defects to perfect lamellae in self-assembly of AB-diblock copolymer plus A- or B-homopolymer blends using self-consistent field theory (SCFT) and the numerical string method. For neutral substrates, all minimum energy paths discovered by the string method show two successive energy barriers. The two-barrier qualitative nature of the MEPs appears not to depend on the presence or absence of small amounts of homopolymer. For the first energy barrier, the barrier height shows pronounced increase with addition of A-homopolymer due to localization of A-homopolymer on the T-junction core of the dislocation. For chemo-epitaxially patterned substrates (stripes of A-attractive substrate alternating with neutral substrate), the presence of A-attractive stripes helps draw the system towards a perfect lamellar configuration, and energy barriers along the MEP are reduced, in some cases disappearing entirely. Our findings provide guidance on how the presence of homopolymer and chemo-epitaxial prepatterns affect the stability of defective morphologies.

  2. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Directory of Open Access Journals (Sweden)

    Li Xinru

    2011-01-01

    Full Text Available Abstract Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol-poly(lactide (mPEG-PLA and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15, were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12. Stability analysis of the mixed micelles in bovine serum albumin (BSA solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  3. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Science.gov (United States)

    Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang

    2011-12-01

    Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  4. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol.

    Science.gov (United States)

    Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang

    2011-03-31

    Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  5. Synthesis of diblock copolymers comprising poly(2-vinylpyridine-co-acrylonitrile) and polystyrene blocks by nitroxide-mediated radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Poláková, Lenka; Holler, Petr; Starovoytova, Larisa; Štěpánek, Petr; Diat, O.

    2007-01-01

    Roč. 105, č. 3 (2007), s. 1616-1622 ISSN 0021-8995 R&D Projects: GA ČR GESON/03/E001 Institutional research plan: CEZ:AV0Z40500505 Keywords : 2-vinylpyridine-acrylonitrile copolymers * nitroxide-mediated radical copolymerization * chain extension Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.008, year: 2007

  6. Synthesis of defined polyhedral oligosilsesquioxane-containing diblock and triblock methacrylate copolymers by atom transfer radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Janata, Miroslav; Sikora, Antonín; Látalová, Petra; Čadová, Eva; Raus, Vladimír; Matějka, Libor; Vlček, Petr

    2013-01-01

    Roč. 128, č. 6 (2013), s. 4294-4301 ISSN 0021-8995 R&D Projects: GA ČR GAP106/12/0844; GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : copolymers * nanostructured polymers * radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.640, year: 2013

  7. Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli

    DEFF Research Database (Denmark)

    Tripathi, Lakshmi; Wu, Linping; Meng, Dechuan

    2013-01-01

    Poly(4-hydroxybutyrate) (P4HB) is a highly elastic polymer, whereas poly(3-hydroxypropionate) (P3HP) is a polymer with enormous tensile strength. This study aimed to biosynthesize a block copolymer consisting of soft P4HB block with a strong P3HP block to gain unique and excellent material proper...

  8. Solubilization of trace organics in block copolymer micelles for environmental separation using membrane extraction principles. Progress report, May 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T.A.

    1992-12-01

    The solubilization of a range of polycyclic aromatic hydrocarbons in block copolymer micelles has been studied as a function of polymer composition, architecture, and temperature. Micelle formation is favored at high temperatures, leading to significant enhancements in solubilization capacity. At low temperatures, however, micelles do not form and the solubilization capacity of the block copolymer solution for the organics is low; this provides a convenient method for the regeneration of micellar solutions used as ``solvents`` in the treatment of contaminated feed streams using membrane extraction principles. It has also been shown (in collaboration with K.P. Johnston of University of Texas, Austin) that supercritical CO{sub 2} can be used effectively for micelle regeneration. Theoretical calculations of the structure of block copolymer micelles in the presence and absence of solutes using self-consistent mean-field lattice theories have successfully captured the trends observed with changing polymer composition and architecture, often quantitatively. The temperature and composition dependence of the micellar properties were determined by allowing the individual polymer segments to assume both polar and non-polar conformations.

  9. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    International Nuclear Information System (INIS)

    Zhang Qiyi; Yang Wenyan; Hu Kaiyan

    2016-01-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. (paper)

  10. Small angle X-ray scattering study of thermodynamic and conformational changes in ion-containing symmetric diblock copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gunkel, Ilja [Max Planck Institute of Microstructure Physics, Halle (Germany); Institute of Physics, Martin Luther University Halle Wittenberg, Halle (Germany); Thurn-Albrecht, Thomas [Institute of Physics, Martin Luther University Halle Wittenberg, Halle (Germany)

    2010-07-01

    We present temperature-dependent SAXS measurements on two different symmetric block copolymers with added salt (lithiumtriflate, LiCF{sub 3}SO{sub 3}). For both studied systems, polystyrene-b-poly-2-vinylpyridine (PS-b-P2VP) and Polystyrene-b-Polyethyleneoxide (PS-b-PEO), the salt selectively dissolved in one block leading to large increases of the order-disorder transition temperatures (T{sub ODT}). In addition, the lamellar thickness of these ion-containing block copolymers nontrivially changed above a certain salt concentration - in PS-b-P2VP the lamellae became thicker whereas their thickness decreased in PS-b-PEO. Using basic arguments of the thermodynamics of block copolymers we were able to separate the ion-induced increase of T{sub ODT} due to a higher incompatibility between the different blocks from changes in the thickness of the lamellae at T{sub ODT} resulting from changes in the conformation of the ion-containing blocks.

  11. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    Science.gov (United States)

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng

    2014-10-27

    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  13. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-22

    A series of well-defined amphiphilic polymethylene-b-poly(ethylene glycol) (PM-b-PEG) diblock copolymers, with different hydrophobic chain length, were synthesized by combining Diels-Alder reaction with polyhomologation. The successful synthetic procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined by fluorescence spectroscopy using pyrene as a probe. Measurements of the micelle hydrodynamic diameters, performed by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM), revealed a direct dependence of the micelle size from the polymethylene block length.

  14. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    Science.gov (United States)

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell

  15. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    Science.gov (United States)

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant

  16. Fluorescence ON–OFF switching using micelle of stimuli-responsive double hydrophilic block copolymers: Nile Red fluorescence in micelles of poly(acrylic acid-b-N-isopropylacrylamide)

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Min Min; Tsubone, Miyabi; Morita, Takuya [Department of Chemistry, Graduate School of Science & Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Yusa, Shin-ichi [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji 671-2280 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Graduate School of Science & Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2016-08-15

    The dual-mode fluorescence ON–OFF switching of Nile Red (NR) by using stimuli-responsive polymeric micelle of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNIPAM) has been studied. PAA-b-PNIPAM, one of double hydrophilic block copolymers, is known to form PNIPAM-core/PAA-corona micelles in aqueous solutions when the temperature of the solution is elevated up to the lower critical solution temperature (LCST) of PNIPAM block. It also forms PAA-core/PNIPAM-corona micelles when the anionic PAA block is charge-neutralized with cationic cetyltrimethylammonium ion. Fluorescence properties of NR in the micelles are elucidated by observing various fluorescence parameters such as intensity, polarization, and quantum yield. It is found that the fluorescence intensity is negligibly low (OFF-state) when PAA-b-PNIPAM exists as a form of unimer, whereas it is remarkably enhanced (ON-state) when the PNIPAM-core or PAA-core micelles are formed. These results demonstrate that a novel fluorescence ON–OFF switching system can be constructed by using PAA-b-PNIPAM micelles and NR.

  17. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    Science.gov (United States)

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  18. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang CY

    2014-10-01

    Full Text Available Can Yang Zhang, Di Xiong, Yao Sun, Bin Zhao, Wen Jing Lin, Li Juan Zhang School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China Abstract: A novel amphiphilic triblock pH-sensitive poly(ß-amino ester-g-poly(ethylene glycol methyl ether-cholesterol (PAE-g-MPEG-Chol was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. Keywords: micelle, pH-sensitive, cholesterol, poly(ß-amino ester, drug delivery

  19. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles

    Science.gov (United States)

    Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.

    2015-07-01

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well

  20. The structure of P85 pluronic block copolymer micelles determined by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Gerstenberg, M.C.

    2003-01-01

    a spherical core of poly(propylene oxide) (PPO) with some water surrounded by a corona of the poly(ethylene oxide) (PEO) block. The latter are non-interacting and obey Gaussian statistics, but are expelled from the core region. The analysis shows that the micelles are fairly concentration and temperature...

  1. Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO 2

    KAUST Repository

    Nedelcu, Mihaela; Guldin, Stefan; Orilall, M. Christopher; Lee, Jinwoo; Hü ttner, Sven; Crossland, Edward J. W.; Warren, Scott C.; Ducati, Caterina; Laity, Pete R.; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2010-01-01

    We present a material and device based study on the fabrication of mesoporous TiO2 and its integration into dye-sensitized solar cells. Poly(isoprene-block-ethyleneoxide) (PI-b-PEO) copolymers were used as structure directing agents for the sol-gel based synthesis of nanoporous monolithic TiO2 which was subsequently ground down to small particles and processed into a paste. The TiO2 synthesis and the formation of tens of micrometre thick films from the paste is a scalable approach for the manufacture of dye sensitised solar cells (DSCs). In this study, we followed the self-assembly of the material through the various processing stages of DSC manufacture. Since this approach enables high annealing temperatures while maintaining porosity, excellent crystallinity was achieved. Internal TiO 2 structures ranging from the nanometre to micrometre scale combine a high internal surface area with the strong scattering of light, which results in high light absorption and an excellent full-sun power conversion efficiency of up to 6.4% in a robust, 3 μm thick dye-sensitized solar cell. © 2010 The Royal Society of Chemistry.

  2. Stealth properties of poly(ethylene oxide)-based triblock copolymer micelles: a prerequisite for a pH-triggered targeting system.

    Science.gov (United States)

    Van Butsele, K; Morille, M; Passirani, C; Legras, P; Benoit, J P; Varshney, S K; Jérôme, R; Jérôme, C

    2011-10-01

    Evaluation of the biocompatibility of pH-triggered targeting micelles was performed with the goal of studying the effect of a poly(ethylene oxide) (PEO) coating on micelle stealth properties. Upon protonation under acidic conditions, pH-sensitive poly(2-vinylpyridine) (P2VP) blocks were stretched, exhibiting positive charges at the periphery of the micelles as well as being a model targeting unit. The polymer micelles were based on two different macromolecular architectures, an ABC miktoarm star terpolymer and an ABC linear triblock copolymer, which combined three different polymer blocks, i.e. hydrophobic poly(ε-caprolactone), PEO and P2VP. Neutral polymer micelles were formed at physiological pH. These systems were tested for their ability to avoid macrophage uptake, their complement activation and their pharmacological behavior after systemic injection in mice, as a function of their conformation (neutral or protonated). After protonation, complement activation and macrophage uptake were up to twofold higher than for neutral systems. By contrast, when P2VP blocks and the targeting unit were buried by the PEO shell at physiological pH, micelle stealth properties were improved, allowing their future systemic injection with an expected long circulation in blood. Smart systems responsive to pH were thus developed which therefore hold great promise for targeted drug delivery to an acidic tumoral environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Machová, Daniela; Pola, Robert; Janoušková, Olga; Chytil, Petr; Laga, Richard; Filippov, Sergey K.; Šubr, Vladimír; Etrych, Tomáš; Pechar, Michal

    2016-01-01

    Roč. 4, č. 47 (2016), s. 7620-7629 ISSN 2050-750X R&D Projects: GA MŠk(CZ) LO1507; GA ČR(CZ) GAP301/12/1254; GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S Institutional support: RVO:61389013 Keywords : HPMA copolymer * tumor * micelle Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.543, year: 2016

  4. Interstitial micelles in binary blends of A B A triblock copolymers and homopolymers

    Science.gov (United States)

    Wołoszczuk, S.; Banaszak, M.

    2018-01-01

    We investigate triblock-homopolymer blends of types A1BA2/A and A1BA2/B, using a lattice Monte Carlo method. While the simulated triblock chains are compositionally symmetric in terms of the A-to-B volume ratio, the A1 block is significantly shorter than the A2 block. For the pure A1BA2 melt and the A1BA2 solutions in selective solvent the phase behavior is relatively well known, including existence and stability of the interstitial micelles which were discovered in previous Monte Carlo simulations. In this paper we study the stability of the interstitial micelles as a function of triblock volume fraction in selective homopolymers of either type A or type B, using two significantly different homopolymer chain lengths. We found that adding selective homopolymer of type A shifts the stability of the interstitial micelles into significantly higher temperatures. We also obtained, via self-assembly, intriguing new nanostructures which can be identified as ordered truncated octahedra. Finally, we established that the phase behavior of the triblock-homopolymer blends depends relatively weakly on the chain length of the added homopolymer.

  5. Controlled release of 9-nitro-20(S)-camptothecin from methoxy poly(ethylene glycol)-poly(D,L-lactide) micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J M [College of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ming, J [Department of Medicament, The Second People' s Hospital of Sichuan, Chengdu 610041 (China); He, B; Gu, Z W; Zhang, X D [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)], E-mail: zwgu@scu.edu.cn

    2008-03-01

    9-nitro-20(S)-camptothecin (9-NC) is a potent topoisomerase-I inhibitor, and it was applied for clinical trials in cancer treatment. However, the applications of 9-NC were limited by its poor solubility and instability. In order to overcome these disadvantages, 9-NC was encapsulated in amphiphilic copolymer micelles composed of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-PDLLA, PELA). Three diblock copolymers with different PDLLA chain lengths were synthesized. The critical micelle concentration was varied from 10{sup -4} g L{sup -1} to 10{sup -2} g L{sup -1}. The 9-NC loaded micelles were nanospheres with diameters ranging from 30 nm to 60 nm. The relationship between the composition of copolymers and the drug loading content was discussed. The encapsulation of micelles improved the solubility of 9-NC greatly. The solubility of 9-NC in micelle M1 was about 250 times higher than that of 9-NC in a phosphate buffer solution (PBS). The stability of 9-NC in micelles was also promoted. After being incubated in PBS for 160 min, 80% of 9-NC in micelles existed as an active lactone form, while 85% of 9-NC in PBS were transferred to an inactive carboxylate salt form. The release experiments were carried out in PBS and the results showed that the release processes were controllable.

  6. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery.

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves

    2017-10-05

    Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Core-shell-corona micelles by PS-b-P2VP-b-PEO copolymers: focus on the water-induced micellization process.

    Science.gov (United States)

    Willet, Nicolas; Gohy, Jean-François; Auvray, Loïc; Varshney, Sunil; Jérôme, Robert; Leyh, Bernard

    2008-04-01

    It is now well established that amphiphilic PS-b-P2VP-b-PEO linear triblock copolymers can form multilayered assemblies, thus core-shell-corona (CSC) micelles, in water. Micellization is triggered by addition of a small amount of water into a dilute solution of the PS-b-P2VP-b-PEO copolymer in a non-selective organic solvent. However, the phenomena that take place at the very beginning of this process are poorly documented. How these copolymer chains are perturbed by addition of water was investigated in this work by light and neutron scattering techniques and transmission electron microscopy. It was accordingly possible to determine the critical water concentration (CWC), the compactness of the nano-objects in solution, their number of aggregation, and their hydrodynamic diameter at each step of the micellization process.

  8. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong, E-mail: pharmsong@henu.edu.cn [Henan University, Institute of Pharmacy (China)

    2016-11-15

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  9. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    International Nuclear Information System (INIS)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong

    2016-01-01

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  10. New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin

    International Nuclear Information System (INIS)

    Efthimiadou, E. K.; Tapeinos, C.; Bilalis, P.; Kordas, G.

    2011-01-01

    Amphiphilic block copolymers are well established as building blocks for the preparation of micellar drug carriers. The functional polymer micelles possess several advantages, such as high drug efficiency, targeted delivery, and minimized cytotoxicity. The synthesis of block copolymers using nano-structured templates has emerged as a useful and versatile approach for preparing drug carriers. Here, we report the synthesis of a smart polymeric compound of a diblock PLA-Lys-b-PEG copolymer containing doxorubicin. We have synthesized functionalized diblock copolymers, with lysinol, poly(lactide) and monomethoxy poly(ethylene glycol) via thermal ring-opening polymerization and a subsequent six-step substitution reaction. A variety of spectroscopic methods were employed here to verify the product of our synthesis. 1 H-Nuclear magnetic resonance and Fourier transform infrared studies validated the expected synthesis of copolymers. Doxorubicin is chemically loaded into micelles, and the ex vitro release can be evaluated either in weak acidic or in SBF solution by UV–vis spectroscopy. Dynamic light scattering, thermo gravimetric analysis, and size exclusion chromatography have also been used.

  11. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    Science.gov (United States)

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  12. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    Science.gov (United States)

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  13. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    International Nuclear Information System (INIS)

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-01-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH 4 within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles

  14. Structures of PEP–PEO Block Copolymer Micelles: Effects of Changing Solvent and PEO Length and Comparison to a Thermodynamic Model

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Deen, G. Roshan

    2012-01-01

    Structures of poly(ethylene propylene)–poly(ethylene oxide) (PEP–PEO) block copolymer micelles were determined from small-angle X-ray scattering and static light scattering and compared to predictions from a thermodynamic model. Both the corona block length and the solvent water–ethanol ratio were...... changed, leading to a thorough test of this model. With increasing ethanol fraction, the PEP core–solvent interfacial tension decreases, and the solvent quality for PEO changes. The weight-average block masses were 5.0 kDa for PEP and 2.8–49 kDa for PEO. For the lowest PEO molar mass and samples in pure...... water (except for the highest PEO molar mass), the micelles were cylindrical; for other conditions they were spherical. The structural parameters can be reasonably well described by the thermodynamic model by Zhulina et al. [Macromolecules2005, 38 (12), 5330–5351]; however, they have a stronger...

  15. Structural properties of self-assembled polymeric micelles

    DEFF Research Database (Denmark)

    Mortensen, K.

    1998-01-01

    At present, the thermodynamic understanding of complex copolymer systems is undergoing important developments. Block copolymers aggregate in selective solvents into micelles of various form and size depending on molecular architecture and interaction parameters. The micelles constitute the basis ...

  16. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  17. Loading and release mechanisms of a biocide in polystyrene-block-poly(acrylic acid) block copolymer micelles.

    Science.gov (United States)

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2008-07-24

    The kinetics of loading of polystyrene197-block-poly(acrylic acid)47 (PS197-b-PAA47) micelles, suspended in water, with thiocyanomethylthiobenzothiazole biocide and its subsequent release were investigated. Loading of the micelles was found to be a two-step process. First, the surface of the PS core of the micelles is saturated with biocide, with a rate determined by the transfer of solid biocide to micelles during transient micelle-biocide contacts. Next, the biocide penetrates as a front into the micelles, lowering the Tg in the process (non-Fickian case II diffusion). The slow rate of release is governed by the height of the energy barrier that a biocide molecule must overcome to pass from PS into water, resulting in a uniform biocide concentration within the micelle, until Tg is increased to the point that diffusion inside the micelles becomes very slow. Maximum loading of biocide into micelles is approximately 30% (w/w) and is achieved in 1 h. From partition experiments, it can be concluded that the biocide has a similar preference for polystyrene as for ethylbenzene over water, implying that the maximum loading is governed by thermodynamics.

  18. pH-triggered block copolymer micelles based on a pH-responsive PDPA (poly[2-(diisopropylamino)ethyl methacrylate]) inner core and a PEO (poly(ethylene oxide)) outer shell as a potential tool for the cancer therapy

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Štěpánek, Petr; Giacomelli, C.; Schmidt, V.; Jäger, Eliezer; Jäger, Alessandro; Ulbrich, Karel

    2011-01-01

    Roč. 7, č. 19 (2011), s. 9316-9325 ISSN 1744-683X R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : copolymer micelles * light scattering * cancer therapy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.390, year: 2011

  19. Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties

    Directory of Open Access Journals (Sweden)

    Pierre Boufflet

    2016-10-01

    Full Text Available The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophenes and poly(3-octylthiophene (F-P3OT-b-P3OT. Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems.

  20. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock

  1. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Filippo Palmieri

    2011-04-01

    Full Text Available Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

  2. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  3. Inner Stucture of Thin Films of Lamellar Poly(styrene-em>b>-butadiene) Diblock Copolymers as revealed by Grazing-Incidence Small-Angle Scattering

    DEFF Research Database (Denmark)

    Busch, Peter; Posselt, Dorthe; Smilgies, Detlef-Matthias

    2007-01-01

    The lamellar orientation in supported, thin films of poly(styrene-b-butadiene) (P(S-b-B)) depends on block copolymer molar mass. We have studied films from nine block copolymer samples with molar masses between 13.9 and 183 kg/mol using grazing-incidence small-angle X-ray scattering (GISAXS) and ...... quantitatively in the framework of our recently developed distorted-wave Born approximation model (Busch, P.; et al. J. Appl. Crystallogr. 2006, 39, 433). The results cannot be explained from enthalpic considerations alone but point to the importance of entropic factors....

  4. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles.

    Science.gov (United States)

    Kheiri Manjili, Hamidreza; Ghasemi, Parisa; Malvandi, Hojjat; Mousavi, Mir Sajjad; Attari, Elahe; Danafar, Hossein

    2017-07-01

    Curcumin (CUR) has been associated with anti-inflammatory, antimicrobial, antioxidant, anti-amyloid, and antitumor effects, but its application is limited because of its low aqueous solubility and poor oral bioavailability. To progress the bioavailability and water solubility of CUR, we synthesized five series of mono methoxy poly (ethylene glycol)-poly (ε-caprolactone) (mPEG-PCL) diblock copolymers. The structure of the copolymers was characterized by H NMR, FTIR, DSC and GPC techniques. In this study, CUR was encapsulated within micelles through a single-step nano-precipitation method, leading to formation of CUR-loaded mPEG-PCL (CUR/mPEG-PCL) micelles. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxicity of void CUR, mPEG-PCL and CUR/mPEG-PCL micelles was compared to each other by performing MTT assay of the treated MCF-7 and 4T1 cell line. Study of the in vivo pharmacokinetics of the CUR-loaded micelles was also carried out on selected copolymers in comparison with CUR solution formulations. The results showed that the zeta potential of CUR-loaded micelles was about -11.5mV and the average size was 81.0nm. CUR was encapsulated into mPEG-PCL micelles with loading capacity of 20.65±0.015% and entrapment efficiency of 89.32±0.34%. The plasma AUC (0-t), t 1/2 and C max of CUR micelles were increased by 52.8, 4.63 and 7.51-fold compared to the CUR solution, respectively. In vivo results showed that multiple injections of CUR-loaded micelles could prolong the circulation time and increase the therapeutic efficacy of CUR. These results suggested that mPEG-PCL micelles would be a potential carrier for CUR. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. First detection of lamella-gyroid-cylinder phase transition of neat polyethylene-poly(ethylene oxide) diblock copolymers on the basis of synchrotron WAXD/SAXS and infrared/Raman spectral measurements

    International Nuclear Information System (INIS)

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-01-01

    The phase transition behaviour of polyethylene-b-poly(ethylene oxide) (PE-b-PEO) diblock copolymer with relatively short chain lengths has been studied on the basis of temperature dependent infrared and Raman spectral measurements and synchrotron WAXD/SAXS simultaneous measurements, from which the concrete structural changes were deduced successfully from the various levels of molecular chain conformation, chain packing mode and higher-order structure. The higher-order structure has been found to transform between lamella, perforated lamella, gyroid, cylinder and sphere structures. The inner structural changes occurring in the polyethylene and poly(ethylene oxide) parts have been related with these morphological changes. The morphological transition from lamella to gyroid occurs with keeping the crystalline state of polyethylene parts. This apparently curious transition can be interpreted reasonably by assuming the thermally-activated chain motion in the crystal lattice, which may play an important role as a trigger to induce the morphological change from lamella to gyroid. This idea was supported by the measurement of half-width of Raman anti-symmetric CH 2 stretching band sensitive to the thermal mobility of alkyl chains.

  6. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Alibolandi, Mona [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of); Ramezani, Mohammad; Abnous, Khalil [Mashhad University of Medical Sciences, Pharmaceutical Research Center, School of Pharmacy (Iran, Islamic Republic of); Sadeghi, Fatemeh, E-mail: sadeghif@mums.ac.ir [Mashhad University of Medical Sciences, Targeted Drug Delivery Research Center, School of Pharmacy (Iran, Islamic Republic of); Hadizadeh, Farzin, E-mail: hadizadehf@mums.ac.ir [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of)

    2015-02-15

    Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(d,l-lactide), were synthesized by ring-opening polymerization for the preparation of doxorubicin-loaded self-assembled nanostructures, including polymeric vesicles (polymersomes) and micelles. The capability and stability of the nanostructures prepared for the controlled release of DOX are discussed in this paper. The in vitro drug release at 37 °C was evaluated up to 6 days at pH 7.4 and 5.5 and in the presence of 50 % FBS. The cellular uptake and cytotoxicity effect of both formulations were also evaluated in the MCF-7 cell line. The SEM and AFM images confirmed the hollow spherical structure of the polymersomes and the solid round structures of the micelles. The TEM results also revealed the uniformity in size and shape of the drug-loaded micelle and polymersome nanostructures. The DOX-loaded micelles and polymersomes presented efficient anticancer performance, as verified by flow cytometry and MTT assay tests. The most important finding of this study is that the prepared nanopolymersomes presented significant increases in the doxorubicin encapsulation efficiency and the stability of the formulation in comparison with the micelle formulation. In vitro studies revealed that polymersomes may be stable in the blood circulation and meet the requirements for an effective drug delivery system.

  7. Langmuir monolayers of non-ionic polymers: Equilibrium of metastability? Case study of PEO and its PPO-PEO diblock copolymers

    NARCIS (Netherlands)

    Deschenes, L.; Saint-Germain, F.; Lyklema, J.

    2015-01-01

    Stability and reorganization in Langmuir films of PEO in PEO homopolymers and PPO–PEO block copolymers were investigated using film balance measurements. The apparent fractional losses of EO segments transferred into the subphase resulting from successive compression–expansion cycles have been

  8. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    Science.gov (United States)

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  9. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    Science.gov (United States)

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  10. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Thi-Quynh-Mai Tran

    2016-08-01

    Full Text Available Acne is the over growth of the commensal bacteria Propionibacterium acnes (P. acnes on human skin. Lauric acid (LA has been investigated as an effective candidate to suppress the activity of P. acnes. Although LA is nearly insoluble in water, dimethyl sulfoxide (DMSO has been reported to effectively solubilize LA. However, the toxicity of DMSO can limit the use of LA on the skin. In this study, LA-loaded poly(ɛ-caprolactone-poly(ethylene glycol-poly(ɛ-caprolactone micelles (PCL-PEG-PCL were developed to improve the bactericidal effect of free LA on P. acnes. The block copolymers mPEG-PCL and PCL-PEG-PCL with different molecular weights were synthesized and characterized using 1H Nuclear Magnetic Resonance spectroscopy (1H NMR, Fourier-transform infrared spectroscopy (FT-IR, Gel Permeation Chromatography (GPC, and Differential Scanning Calorimetry (DSC. In the presence of LA, mPEG-PCL diblock copolymers did not self-assemble into nano-sized micelles. On the contrary, the average particle sizes of the PCL-PEG-PCL micelles ranged from 50–198 nm for blank micelles and 27–89 nm for LA-loaded micelles. The drug loading content increased as the molecular weight of PCL-PEG-PCL polymer increased. Additionally, the minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC of free LA were 20 and 80 μg/mL, respectively. The MICs and MBCs of the micelles decreased to 10 and 40 μg/mL, respectively. This study demonstrated that the LA-loaded micelles are a potential treatment for acne.

  11. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  12. Structural transition with thickness in films of poly-(styrene-b-2vinylpyridine) (PS-b-P2VP) diblock copolymer/homopolymer blends

    Science.gov (United States)

    Mishra, Vindhya; Kramer, Edward; Hur, Su-Mi; Fredrickson, Glenn; Sprung, Michael

    2009-03-01

    In multilayer thin films of spherical morphology block copolymers, the surface layers prefer hexagonal symmetry while the inner layers prefer BCC. Thin films with spherical morphology of PS-b-P2VP blends with short homopolymer polystyrene (hPS) chains have an HCP structure up to a thickness n* at which there is a transition to a face centered orthorhombic structure. Using grazing incidence small angle X-ray scattering and transmission electron microscopy we show that that n* increases from 5 to 9 with increase in hPS from 0 to 12 vol%. For thicknesses just below n* the HCP and FCO structures coexist, but on long annealing HCP prevails. We hypothesize that the PS segregates to the interstices in the HCP structure reducing the stretching of the PS blocks and the free energy penalty of HCP versus BCC inner layers. Self consistent field theoretic simulations are being carried out to see if this idea is correct.

  13. Morphological investigation of polydisperse asymmetric block copolymer systems of poly(styrene) and poly(methacrylic acid) in the strong segregation regime

    DEFF Research Database (Denmark)

    Asad Ayoubi, Mehran; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    Samples of compositionally (highly) asymmetric diblock copolymers and, also, mixtures of diblock and triblock copolymers (the latter obtained as end-coupling products of two diblock molecules of the mixture), composed of (a) monodisperse majority block(s) of poly(styrene) (PS) and a polydisperse...

  14. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  15. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    Science.gov (United States)

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  16. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  17. Associative, thermodynamic and thermo-kinetics behavior of di- and triblock copolymers of oxyethylene and oxybutylene in aqueous media

    International Nuclear Information System (INIS)

    Khan, Abbas; Siddiq, Mohammad

    2014-01-01

    Highlights: • Associative, thermodynamic and thermo-kinetics behavior was investigated. • Micellization of these copolymer is spontaneous, endothermic and entropy driven. • Micelles are spherical in shape and their nature depends on temperature. • Fusion/fission mechanism dominates over unimer entry/expulsion for micellar dynamics. • Micellar parameters depend on temperature and on the delicate hydrophobic–hydrophilic balance of the blocks. - Abstract: The associative, thermodynamic and thermo-kinetics properties of a diblock E 90 B 10 and three triblock copolymers based on polyoxyethylene and polyoxybutylene of the type E m B 10 E m water have been studied by surface tensiometry, light scattering and temperature-jump stopped-flow techniques. The data from surface tension was helpful to detect the critical micelle concentration (CMC) as well as to calculate the thermodynamic parameters of micellization. Dynamic light scattering (DLS) was employed to obtain the values of hydrodynamic radii (R h ), volume (υ h ) and hydrodynamic expansion parameter (δ h ) of the micelle at different temperatures. Similarly, static light scattering (SLS) measurements made us enable to find out various micellar parameters such as; weight-average molar (M w ), association number (N w ), thermodynamic radius (R t ), thermodynamic volume (υ t ), anhydrous volume (υ a ) and thermodynamic expansion parameter (δ t ) of the micelles. Likewise, the kinetics of micellar aggregation/dynamic was also investigated by using temperature-jump stopped-flow technique in the temperature range of 20–50 °C

  18. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    Science.gov (United States)

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  19. Nanopatterning of Co/Pt-multilayers via self-assembled block-copolymer micelles; Magnetische Nanostrukturen basierend auf Co/Pt-Multilagen, hergestellt mittels selbstorganisierter Masken aus Blockcopolymer-Micellen

    Energy Technology Data Exchange (ETDEWEB)

    Stillrich, H.

    2007-07-01

    The production and characterization of magnetic nanostructures based on Co/Ptmultilayers are described in this thesis. Nanostructure arrays of Co/Pt multilayer films are generated utilizing the self-assembly of block copolymer micelles with a few 10nm diameter. For an understanding of the magnetic properties of nanostructures the properties of Co/Pt-multilayer films are examined first. The films are grown via different sputter techniques. The structural and magnetic properties are investigated depending on the deposition technique. The sources of magnetic anisotropy are discussed based on these investigations. One major topic concerning Co/Pt-multilayers is the reorientation of the easy axis of magnetization from perpendicular to in-plane as a function of the cobalt and platinum layer thicknesses. Combining averaging magnetization measurements and high resolution magnetic imaging, the canting of magnetization within the reorientation transition and a canted domain structure were found. The basis for magnetic nanostructures are Co/Pt-multilayers that were optimized for strong magnetic anisotropy. Magnetic antidot and dot arrays are generated from Co/Pt-multilayers via novel methods utilizing block copolymer micelle masks and ion milling. The generation of nanostructure arrays is proven by the morphologic and topographic properties, combined with the evolution of magneto-optic signals. Two different approaches for the generation of antidot arrays are shown. The magnetic properties of antidot arrays with perpendicular and in-plane easy magnetization are investigated. Magnetic dot arrays are produced utilizing the cores of SiO{sub 2} filled block copolymer micelles. The dot arrays consist of single domain particles. The switching field distribution of the dot arrays is analysed and described using the size distribution of the magnetic particles. Magnetic nanostructures in the region of the superparamagnetic limit are investigated. (orig.)

  20. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  1. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liang; Wang, Meijing; Jia, Xiangmeng; Chen, Wei; Qian, Hujun; He, Feng

    2018-02-28

    Two-dimensional (2-D) micro- and nano- architectures are attractive because of their unique properties caused by their ultrathin and flat morphologies. However, the formation of 2-D supramolecular highly symmetrical structures with considerable control is still a major challenge. Here, we presented a simple approach for the preparation of regular and homogeneous 2-D fluorescent square noncrystallization micelles with conjugated diblock copolymers PPV12-b-P2VPn through a process of dissolving-cooling-aging. The scale of the formed micelles could be controlled by the ratio of PPV/P2VP blocks and the concentration of the solution. The forming process of the platelet square micelles was analyzed by UV-Vis, DLS and SLS, while the molecular arrangement was characterized by GIXD. The results revealed that the micelles of PPV12-b-P2VPn initially form 1-D structures and then grow into 2-D structures in solution, and the growth is driven by intermolecular π-π interactions with the PPV12 blocks. The formation of 2-D square micelles is induced by herringbone arrangement of the molecules, which is closely related to the presence of the branched alkyl chains attached to conjugated PPV12 cores.

  2. Vertical vs Lateral Macrophase Separation in Thin Films of Block Copolymer Mixtures

    DEFF Research Database (Denmark)

    Berezkin, Anatoly V.; Jung, Florian; Posselt, Dorthe

    2017-01-01

    Mixtures of two diblock copolymers of very different lengths may feature both macro- and microphase separation; however, not much is known about the mechanisms of separation in diblock copolymer thin films. In the present work, we study thin films of mixtures of two compositionally symmetric bloc...

  3. Synthesis of fluorescent diblock copolymer nanoparticle supported ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... and induction time (Ti) were determined from the UV–visible spectral data. ... The photo- degradation of rhodamine dye was carried out in the presence ... ence of hierarchical structured polystyrene/polyaniline@Au.

  4. Synthesis of star-branched PLA-b-PMPC copolymer micelles as long blood circulation vectors to enhance tumor-targeted delivery of hydrophobic drugs in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Long, Li-xia [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Zhao, Jin, E-mail: zhaojin@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Li, Ke; He, Li-gang; Qian, Xiao-ming; Liu, Chao-yong; Wang, Li-mei; Yang, Xin-qi [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Sun, Jinjin [Department of General Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211 (China); Ren, Yu [Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070 (China); Kang, Chun-sheng, E-mail: kang97061@yahoo.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Yuan, Xu-bo, E-mail: xbyuan@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-01

    Star-branched amphiphilic copolymer nanocarriers with high-density zwitterionic shell show great promise in drug delivery due to their controllable small size and excellent anti-biofouling properties. This gives the hydrophobic cargo with high stability and long blood circulation in vivo. In the present study, star-branched polylactic acid and poly(2-methacryloyloxyethyl phosphorylcholine) copolymers with (AB{sub 3}){sub 3}–type architecture (PLA-b-PMPC{sub 3}){sub 3} were conceived as drug vectors, and the copolymers were synthesized by an “arm-first” approach via the combination of ring opening polymerization (ROP), atom transfer radical polymerization (ATRP) and the click reaction. The self-assembled star-branched copolymer micelles (sCPM) had an average diameter of about 64.5 nm and exhibited an ultra-hydrophilic surface with an ultralow water contact angle of about 12.7°, which efficiently suppressed the adhesion of serum proteins. In vivo experiments showed that the sCPM loading strongly enhanced the blood circulation time of DiI and the plasma half-life of DiI in sCPM was 19.3 h. The relative accumulation concentration in tumor of DiI delivered by sCPM was 2.37-fold higher than that of PLA-PEG, at 4 h after intravenous injection. These results demonstrated that the star-branched copolymer (PLA-b-PMPC{sub 3}){sub 3} is a promising alternative carrier material for intravenous delivery versus classic PEG-modified strategies. - Highlights: • Star-branched amphiphilic copolymer micelles (sCPM) with zwitterionic shells were prepared. • sCPM possess an ultra-hydrophilic surface and thus inhibited the protein absorption. • sCPM can effectively prolong the cargo’s plasma circulation time. • sCPM can enhance the cargo’s passive tumor-targeted delivery.

  5. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  6. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    Science.gov (United States)

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  7. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  8. Fluctuations, conformational asymmetry and block copolymer phase behaviour

    DEFF Research Database (Denmark)

    Bates, F.S.; Schulz, M.F.; Khandpur, A.K.

    1994-01-01

    Phase behaviour near the order-disorder transition (ODT) of 58 model hydrocarbon diblock copolymers, representing four different systems, is summarized. Six distinct ordered-state microstructures are reported, including hexagonally modulated lamellae (HML), hexagonally perforated layers (HPL) and...

  9. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-01-01

    Synthetic subunit vaccines need to induce CD8+ cytotoxic T-cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8+ cytotoxic T-cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8+ T-cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendant pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25–30 nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5 h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4 h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8+ T cell responses (0.4 % IFN-γ+ of CD8+) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the

  10. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses.

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-10-10

    Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells

  11. Co-assembly towards Janus micelles

    NARCIS (Netherlands)

    Voets, I.K.; Leermakers, F.A.M.; Keizer, de A.; Charlaganov, M.; Cohen Stuart, M.A.

    2011-01-01

    In this paper, we report on our recent findings concerning the structure of complex coacervate core micelles composed of two types of (complementary) block copolymers. Both copolymers have a polyelectrolyte (one cationic and the other anionic) block combined with a neutral one. The opposite charges

  12. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  13. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend

    Science.gov (United States)

    Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo

    2018-04-01

    We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.

  14. Micellizationa and Gelation of Water Soluable Thermo-and Light-sensitive Block Copolymer Investigated by SANS

    Science.gov (United States)

    He, Lilin; Hu, Bin; Zhao, Bin

    2015-03-01

    Here we present an extensive small-angle neutron scattering (SANS) characterization of micellization and gelation of PEO-b-P(TEGEA-co-NBA) in deuterated water in a wide range of temperatures and concentrations before and after the removal of o-nitrobenzyl group by UV irradiation. Scattering data analysis indicated that unimers predominated in the solutions at low temperatures and concentrations. The polymer self-assembled into micelles with the P(TEGEA-co-NBA) block packed into the core and PEO forming the corona layer. A core-shell model was used to fit SANS data and obtain sizes and scattering length densities. Structural parameters such as the aggregation numbers, the radius of gyration of the chains in the shell region, the number of water molecules in the both regions were determined. The structural information combined with the rheological data were used to describe the phase behaviors of the diblock copolymer in aqueous solution.

  15. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  16. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  17. Associative, thermodynamic and thermo-kinetics behavior of di- and triblock copolymers of oxyethylene and oxybutylene in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abbas [Department of Chemistry, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Siddiq, Mohammad, E-mail: m_sidiq12@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan)

    2014-11-10

    Highlights: • Associative, thermodynamic and thermo-kinetics behavior was investigated. • Micellization of these copolymer is spontaneous, endothermic and entropy driven. • Micelles are spherical in shape and their nature depends on temperature. • Fusion/fission mechanism dominates over unimer entry/expulsion for micellar dynamics. • Micellar parameters depend on temperature and on the delicate hydrophobic–hydrophilic balance of the blocks. - Abstract: The associative, thermodynamic and thermo-kinetics properties of a diblock E{sub 90}B{sub 10} and three triblock copolymers based on polyoxyethylene and polyoxybutylene of the type E{sub m}B{sub 10}E{sub m} water have been studied by surface tensiometry, light scattering and temperature-jump stopped-flow techniques. The data from surface tension was helpful to detect the critical micelle concentration (CMC) as well as to calculate the thermodynamic parameters of micellization. Dynamic light scattering (DLS) was employed to obtain the values of hydrodynamic radii (R{sub h}), volume (υ{sub h}) and hydrodynamic expansion parameter (δ{sub h}) of the micelle at different temperatures. Similarly, static light scattering (SLS) measurements made us enable to find out various micellar parameters such as; weight-average molar (M{sub w}), association number (N{sub w}), thermodynamic radius (R{sub t}), thermodynamic volume (υ{sub t}), anhydrous volume (υ{sub a}) and thermodynamic expansion parameter (δ{sub t}) of the micelles. Likewise, the kinetics of micellar aggregation/dynamic was also investigated by using temperature-jump stopped-flow technique in the temperature range of 20–50 °C.

  18. Structure of PEP-PEO block copolymer micelles: Exploiting the complementarity of small-angle X-ray scattering and static light scattering

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Hernansanz, María J.

    2011-01-01

    )-b-poly(ethylene oxide) (PEP-PEO) in a 70% ethanol solution are investigated. The polymers have identical PEP blocks of 5.0 kDa and varying PEO blocks of 2.8-49 kDa. The SLS contrasts of PEP and PEO are similar, providing a homogeneous contrast, making SLS ideal for determining the overall micelle morphology. The SAXS...... contrasts of the two components are very different, allowing for resolution of the internal micelle structure. A core-shell model with a PEP core and PEO corona is fitted simultaneously to the SAXS and SLS data using the different contrasts of the two blocks for each technique. With increasing PEO molecular...

  19. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-01-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find

  20. Anomalous Behaviors of Block Copolymers at the Interface of an Immiscible Polymer Blend

    Science.gov (United States)

    Ryu, Ji Ho; Lee, Won Bo

    We investigate the effects of structure and stiffness of block copolymers on the interface of an immiscible polymer blend using coarse-grained molecular dynamics (CGMD) simulation. The diblock and grafted copolymers, which are described by Kremer and Grest bead spring model, are used to compare the compatibilization efficiency, that is, reduction of the interfacial tension. It is found that, overall, the grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, it is noted that an increase in the stiffness of one block of diblock copolymer causes inhomogeneous interfacial coverage due to bundle formation among the stiff blocks and orientational constraint on bundled structures near the interface, which makes copolymers poor compatibilizers. The dependence of anomalous orientational constraint on the chain length of homopolymers is also investigated. Theoretical and Computational Soft Matters Lab.

  1. Influence of copolymer architectures on adhesion and compatibilization of polymers at interfaces

    Science.gov (United States)

    Guo, Lantao

    Adhesion and compatibilization of immiscible homopolymers by a variety of copolymer architectures were studied. The work is arranged into 5 chapters: In Chapter 1, an introduction to recent studies on improvement of adhesion and compatibilization of polymer blends using copolymers was made including the advantages and shortcomings of interfacial reinforcement by a diblock copolymer architecture. Emphasis is on the novel ways to improve adhesion at polymer interfaces by a variety of copolymer architectures, including physical entanglement and chemical modification and chemical bonding. In Chapter 2, a series of Polystyrene-Poly(methyl methacrylate) (PS-PMMA) graft copolymers were introduced to modify the PS and PMMA homopolymer interface and was found to increase the interfacial fracture toughness to a large extent, depending on the detailed architectural variables such as the graft number per chain, the lengths of the backbone and the grafts, and the total molecular weights of the graft copolymers. It was also found that there was an optimal number of grafts per chain which can be interpreted based on the graft length and inter-branch length of the backbone of the copolymer. Effect of in-situ grafting via a chemical reaction between Polystyrene-Poly(vinyl phenol) (PS-PSOH) and oxazoline containing Styrene-Acrylonitril (SAN) was also discussed compared with the physical grafting of a graft copolymer of different structural parameters. In Chapter 3, hydrogen bonding was utilized to toughen the interface between PS and PAA poly(acrylic acid)) or PMMA using a random copolymer architecture of Polystyrene-Poly(vinyl pyridine) (PS-PVP). It was shown that random copolymer architecture is not only economically feasible due to its low cost of producing but also very effective on adhesion because it not only overcomes the issue of micelle formation which is an unavoidable situation in the diblock and graft cases but the enhancement of adhesion is much higher utilizing a H

  2. Study of Copolymer Composition on Drug Loading Efficiency of Enalapril in Polymersomes and Cytotoxicity of Drug Loaded Nanoparticles.

    Science.gov (United States)

    Danafar, H; Manjili, H K; Najafi, M

    2016-09-01

    Enalapril was used for hypertension and congestive heart failure. Di-block mPEG-PCL copolymers were synthesized and used to prepare of polymersomes for controlled release of enalapril as a hydrophilic drug. The various methods such as HNMR, FTIR, GPC, DSC, PCS and AFM performed for characterization of the polymersomes. The results of AFM showed that the polymersomes had spherical structure and the size of nanoparticles was 97 nm. Drug-loading efficiency of nanoparticles from copolymers with compositions of mPEG1-PCL1, mPEG2-PCL2, and mPEG3-PCL3 were 14.43%, 19.8%, and 12.33% respectively. The release profile of enalapril for drug loaded nanoparticles prepared from mPEG3-PCL3 was very fast and release profile for the nanoparticles prepared from mPEG1-PCL1 and mPEG2-PCL2 was sustained. The IC 50 value of enalapril was determined to be 8 μM while EPM/m-PEG-PCL nanoparticles did not show significant toxicity at equal concentrations in comparison with enalapril drug. Therapeutic preparations of mPEG-PCL micelle are calibrated by the mouse LD 50 assay. A dose-finding scheme of the polymeric micelle showed a safe dose of mPEG-PCL micelles was approximately 330 mg/kg in mice. The relationship between the numbers of animals, number of doses, duration of the assay used to estimate the LD 50 and the precision of the assay were investigated. Overall, the results was showed that m-PEG-PCL polymersomes can be considered as a promising carrier for hydrophilic drugs. © Georg Thieme Verlag KG Stuttgart · New York.

  3. An atomic force microscopy study on the transition from mushrooms to octopus surface ''micelles'' by changing the solvent quality

    NARCIS (Netherlands)

    Stamouli, A.; Pelletier, E.; Koutsos, V; van der Vegte, E.W.; Hadziioannou, G

    1996-01-01

    Atomic force microscopy (AFM) is used to study the behavior of a diblock copolymer onto a solid surface while the solvent quality is changed. In a first step, the copolymer poly(2-vinylpyridine)/polystyrene (P2VP/PS) is adsorbed onto mica from a selective solvent (the PS block is well solvated and

  4. Hydrolytic Degradation of Poly (ethylene oxide)-block-Polycaprolactone Worm Micelles

    OpenAIRE

    Geng, Yan; Discher, Dennis E.

    2005-01-01

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly (ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by poly...

  5. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  6. Surface induced ordering of micelles at the solid-liquid interface

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. copyright 1998 The American Physical Society

  7. Surface induced ordering of micelles at the solid-liquid interface

    DEFF Research Database (Denmark)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface....... The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  8. Block copolymer adsorption from a homopolymer melt to an amine-terminated surface

    Czech Academy of Sciences Publication Activity Database

    Costa, A. C.; Composto, R. J.; Vlček, Petr; Geoghegan, M.

    2005-01-01

    Roč. 18, č. 2 (2005), s. 159-166 ISSN 1292-8941 R&D Projects: GA ČR GA203/01/0513 Grant - others:Americal Chemical Society, The Petroleum Research Fund(US) 38027/34081 Keywords : copolymer adsorption * neutron reflectometry * diblock copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.503, year: 2005

  9. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  10. Pluronic®-bile salt mixed micelles.

    Science.gov (United States)

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  12. Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.; Morse, David C.; Lodge, Timothy P.; Bates, Frank S. (UMM)

    2016-10-13

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) results that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.

  13. Isotropic Lifshitz behavior in block copolymer-homopolymer blends

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.; Lodge, T.P.

    1995-01-01

    A series of mixtures composed of a symmetric A-B diblock copolymer and a symmetric blend of A and B homopolymers was investigated by small-angle neutron scattering. Mean-field theory predicts that a line of lamellar-disorder transitions with wave-vector instability q* > 0 will meet a line of crit...

  14. Multiple ordered phases in a block copolymer melt

    DEFF Research Database (Denmark)

    Almdal, K.; Koppi, K.A.; Bates, F.S.

    1992-01-01

    A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low...

  15. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    International Nuclear Information System (INIS)

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-01-01

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  16. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth

    NARCIS (Netherlands)

    Naksuriya, Ornchuma; Shi, Yang; Van Nostrum, Cornelus F.|info:eu-repo/dai/nl/134498690; Anuchapreeda, Songyot; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Okonogi, Siriporn

    2015-01-01

    Abstract Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of

  17. The melt rheological behavior of AB, ABA, BAB, and (AB)n block copolymers with monodisperse aramide segments

    NARCIS (Netherlands)

    Araichimani, A.; Dullaert, Konraad; Gaymans, R.J.

    2009-01-01

    The melt rheological behavior of segmented block copolymers with high melting diamide (A) hard segments (HS) and polyether (B) soft segments was studied. The block copolymers can be classified as B (monoblock), AB (diblock), ABA (triblock, diamide end segment), BAB (triblock, diamide mid-segment)

  18. Self-assembled structures of amphiphilic ionic block copolymers: Theory, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Muller, A.H.E.

    2011-01-01

    We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural

  19. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Directory of Open Access Journals (Sweden)

    Yunqi Li

    2016-04-01

    Full Text Available This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine-block-poly(ethylene oxide (abbreviated as PS-b-P2VP-b-PEO.

  20. Structural and Mechanical Hysteresis at the Order-Order Transition of Block Copolymer Micellar Crystals

    Directory of Open Access Journals (Sweden)

    Theresa A. LaFollette

    2011-01-01

    Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.

  1. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk, E-mail: gyjung@gist.ac.k, E-mail: jslee@gist.ac.k [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu Gwangju 500-712 (Korea, Republic of)

    2009-09-09

    We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.

  3. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    Science.gov (United States)

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  4. Controlled thermoreversible transfer of poly(oxazoline) micelles between an ionic liquid and water

    NARCIS (Netherlands)

    Guerrero Sanchez, C.A.; Gohy, J.M.W.; D'Haese, C.; Thijs, H.M.L.; Hoogenboom, R.; Schubert, U.S.

    2008-01-01

    Poly(2-nonyl-2-oxazoline-block-2-ethyl-2-oxazoline) block copolymer micelles were investigated as an alternative system to the approach proposed by He and Lodge (Y. He and T. P. Lodge, J. Am. Chem. Soc., 2006, 128, 12666) for the thermoreversible transfer of micelles between a hydrophobic ionic

  5. Optofluidic Applications of Diblock Copolymer Derived Nanoporous Polymers

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi

    To confine light in a liquid and thereby form a liquid core waveguide, the surrounding cladding materials must have a lower refractive index than the liquid core. In the context of biosensing, it is a challenge to obtain the right cladding material, as most of the relevant liquids are aqueous and...... waveguiding particle filters can be a promising platform for optofluidic and biosensing applications....

  6. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    OpenAIRE

    Cvetelina Gorinova; Denitsa Aluani; Yordan Yordanov; Magdalena Kondeva-Burdina; Virginia Tzankova; Cvetelina Popova; Krassimira Yoncheva

    2016-01-01

    Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer). Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepa...

  7. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  8. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  9. Poly(ester amide-Poly(ethylene oxide Graft Copolymers: Towards Micellar Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Gregory J. Zilinskas

    2012-01-01

    Full Text Available Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide-poly(ethylene oxide (PEA-PEO graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.

  10. Rapid Ordering in "Wet Brush" Block Copolymer/Homopolymer Ternary Blends.

    Science.gov (United States)

    Doerk, Gregory S; Yager, Kevin G

    2017-12-26

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the "wet brush" regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved within minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. These results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order-disorder transition through low molecular weight homopolymer blending.

  11. Analysis of the aggregation structure from amphiphilic block copolymers in solutions by small-angle x-ray scattering

    CERN Document Server

    Rong Li Xia; Wang Jun; Wei Liu He; Li Fu Mian; Li Zi Chen

    2002-01-01

    The aggregation structure of polystyrene-p vinyl benzoic amphiphilic block copolymers which were prepared in different conditions was investigated by synchrotron radiation small-angle x-ray scattering (SAXS). The micelle was self-assembled in selective solvents of the block copolymers. Authors' results demonstrate that the structure of the micelle depends on the factors, such as the composition of the copolymers, the nature of the solvent and the concentration of the solution

  12. New Strategies for Constructing Polymeric Micelles and Hollow Spheres Via Self-Assembly

    Institute of Scientific and Technical Information of China (English)

    Ming Jiang

    2005-01-01

    @@ 1Introduction In recent years, self-assembly of block copolymers leading to micelles in selective solvents, which dissolve only one of the blocks, has developed rapidly because the micelles are very strong candidates for potential applications in advanced technologies. The micelles usually have core-shell structure which are connected by covalent bonds. Based on our long-term research on interpolymer complexation due to hydrogen bonding, where we noticed that the complexation often led to the formation of irregular aggregates, we succeeded recently in developing a series of new approaches to polymeric micelles and hollow spheres via specific intermolecular interactions. As in these approaches, a variety of polymers with interacting groups i.e. homopolymers, random copolymers, graft copolymers as well as low mass compounds (LMC), can be used as building blocks, our research strategies have substantially extended the field of self-assembly.

  13. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    and copolymer mixtures, and evidence in favor of a multi-equilibria unimer-micelle model will be presented. Results obtained by liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect...... ratios and temperature. The micellization process with increasing temperature has been followed by a number of techniques including differential scanning calorimetry, liquid chromatography, and surface tension measurements. Different micellization models have been tested for purified copolymers...

  14. Freezing polystyrene-b-poly(2-vinylpyridine) micelle nanoparticles with different nanostructures and sizes.

    Science.gov (United States)

    Fan, Hailong; Jin, Zhaoxia

    2014-04-28

    Herein we report how to control the nanostructures and sizes of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) nanoparticles via manipulating freezing in solvent-exchange. By characterizing and analyzing the distinct structural features of the obtained nanoparticles, we recognized that micelle self-assembly happens in the precipitation of PS-b-P2VP when water is added into the block copolymer (BCP) solution. Solvent properties significantly influence micelle types that are vesicles in acetone/H2O and spherical micelles in tetrahydrofuran/H2O, respectively, thus further inducing different frozen nanostructures of the obtained nanoparticles, onion-like in acetone/H2O and large compound micelles in tetrahydrofuran/H2O. By changing the concentration of the block copolymers and the Vsolvent/VH2O ratio to modify the freezing stage at which block copolymer micelles are frozen, we can further control the size of the nanoparticles. Moreover, small molecules (phosphotungstic acid, pyrene, 1-pyrenebutyric acid) can be trapped into the block copolymer nanoparticles via the freezing process. Their distribution in the nanoparticles relies not only on the solvent property, but also on their interactions with block copolymers. The hybrid nanoparticles with ordered distribution of small molecules can be further changed to partially-void nanoparticles. Our study demonstrated that manipulating the freezing of block copolymers in the solvent exchange process is a simple and controllable fabrication method to generate BCP nanoparticles with different architectures.

  15. Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells.

    Science.gov (United States)

    Mebarek, Naila; Vicente, Rita; Aubert-Pouëssel, Anne; Quentin, Julie; Mausset-Bonnefont, Anne-Laure; Devoisselle, Jean-Marie; Jorgensen, Christian; Bégu, Sylvie; Louis-Plence, Pascale

    2015-05-01

    Dendritic cells (DCs) are professional antigen-presenting cells that play a critical role in maintaining the balance between immunity and tolerance and, as such are a promising immunotherapy tool to induce immunity or to restore tolerance. The main challenge to harness the tolerogenic properties of DCs is to preserve their immature phenotype. We recently developed polyion complex micelles, formulated with double hydrophilic block copolymers of poly(methacrylic acid) and poly(ethylene oxide) blocks and able to entrap therapeutic molecules, which did not induce DC maturation. In the current study, the intrinsic destabilizing membrane properties of the polymers were used to optimize endosomal escape property of the micelles in order to propose various strategies to restore tolerance. On the first hand, we showed that high molecular weight (Mw) copolymer-based micelles were efficient to favor the release of the micelle-entrapped peptide into the endosomes, and thus to improve peptide presentation by immature (i) DCs. On the second hand, we put in evidence that low Mw copolymer-based micelles were able to favor the cytosolic release of micelle-entrapped small interfering RNAs, dampening the DCs immunogenicity. Therefore, we demonstrate the versatile use of polyionic complex micelles to preserve tolerogenic properties of DCs. Altogether, our results underscored the potential of such micelle-loaded iDCs as a therapeutic tool to restore tolerance in autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli, E-mail: zwllz@163.com; Liu, Jianping, E-mail: liujianpingljp@hotmail.com [China Pharmaceutical University, Department of Pharmaceutics (China)

    2016-09-15

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10–100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer–polymer and polymer–cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.Graphical Abstract.

  17. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu [Jilin University, College of Life Science (China); Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang, E-mail: sunkx@ytu.edu.cn [Yantai University, School of Pharmacy (China); Li, Youxin, E-mail: liyouxin@jlu.edu.cn [Jilin University, College of Life Science (China)

    2013-10-15

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

  18. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle

    Science.gov (United States)

    Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu; Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang; Li, Youxin

    2013-10-01

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly( d, l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

  19. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles.

    Science.gov (United States)

    Geng, Yan; Discher, Dennis E

    2005-09-21

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation-induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly(ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by polycaprolactone hydrolysis, with distinct mechanism and kinetics from that which occurs in bulk material.

  20. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2017-07-01

    Full Text Available A porous barium titanate (BaTiO3 thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm−1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (∼130 °C. Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezoelectricity.

  1. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    Science.gov (United States)

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Atomic force microscopy and light scattering study of onion-type micelles formed by polystyrene-block-poly(2-vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide) copolymers in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Štěpánek, M.; Uchman, M.; Procházka, K.; Špírková, Milena

    2006-01-01

    Roč. 71, č. 5 (2006), s. 723-738 ISSN 0010-0765 R&D Projects: GA ČR GA203/04/0490; GA AV ČR IAA400500505 Grant - others:Marie Curie Research and Training Network(XE) 505 027 POLYAMPHI Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * light scattering * polymer micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.881, year: 2006

  3. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng; Song, Xiaowan; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Xia, Ru; Miao, Jibin

    2014-01-01

    . The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment

  4. Self-assembly of block copolymer-based ionic supramolecules based upon multi-tail amphiphiles

    DEFF Research Database (Denmark)

    Asad Ayoubi, M.; Almdal, Kristoffer; Zhu, K.

    2015-01-01

    Utilising simple acid-base titration chemistry, a new family of Linear-b-Amphiphilic Comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] featuring multi-tail side-chains have been synthesized and examined by synchrotron SAXS. To three different parent diblock copolymers of poly...

  5. Liquid-crystalline side chain block copolymers - synthesis, morphology and LC behavior

    NARCIS (Netherlands)

    Arnold, M.; Poser, S.; Fischer, H.R.; Frank, W.; Utschick, H.

    1994-01-01

    Side-chain liq.-cryst. 2-hydroxyethyl methacrylate-styrene diblock copolymer (I) was prepd. by polymn. of 2-(trimethylsiloxy)ethyl methacrylate with styrene with further treatment with cholesteryl chloroformate. Morphol. and phase behavior of I were investigated. [on SciFinder (R)

  6. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers

    NARCIS (Netherlands)

    Boer, Bert de; Stalmach, Ulf; Hutten, Paul F. van; Melzer, Christian; Krasnikov, Victor V.; Hadziioannou, Georges

    2001-01-01

    With continuous and nanometre-scale interpenetrating phases of electron donor and acceptor components, a novel diblock copolymer, in which one block is poly(p-phenylene vinylene) (PPV) and the other is a C60-functionalized polystyrene, is designed to be an efficient photovoltaic material. The

  7. Stability of monolayers and bilayers in a copolymer-homopolymer blend model

    NARCIS (Netherlands)

    Gennip, van Y.; Peletier, M.A.

    2007-01-01

    We study the stability of layered structures in a variational model for diblock copolymer- homopolymer blends. The main step consists of calculating the first and second derivative of a sharp-interface Ohta-Kawasaki energy for straight mono- and bilayers. By developing the interface perturbations in

  8. Dynamics of interacting edge defects in copolymer lamellae

    Science.gov (United States)

    Dalnoki-Veress, Kari; McGraw, Joshua D.; Rowe, Ian D. W.

    2011-03-01

    It is known that terraces at the interface of lamella forming diblock copolymers do not make discontinuous jumps in height. Rather, their profiles are smoothly varying. The width of the transition region between two lamellar heights is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions approach one another. In this study, we show that time dependent experimental data of interacting copolymer lamellar edges is consistent with a model that assumes a repulsion between adjacent edges. The range of the interaction between edge defects is consistent with the profile width of noninteracting diblock terraces. Financial support from NSERC of Canada is gratefully acknowledged.

  9. Mesoscopic multiphase structures and the interfaces of block and graft copolymers in bulk

    International Nuclear Information System (INIS)

    Matsushita, Yushu

    1996-01-01

    Microphase-separated structures of copolymers with various architectures and their polymer/polymer interfaces were studied. They are SP diblock, PSP triblock, and SPP graft copolymers, where S and P denote polystyrene and poly(2-vinylpyridine), respectively. Morphological observations were carried out by means of transmission electron microscopy and small-angle X-ray scattering. Chain dimensions of component polymers were measured by small-angle neutron scattering and microphase-separated interfaces were observed by neutron reflectivity measurements using deuterium-labeled samples. It was clarified that morphological phase transitions among thermodynamically equilibrium structures for SP diblock and PSP triblock copolymers occur at almost the same compositions; however, those of SPP graft copolymers tend to occur at higher volume fraction of polystyrene, φ s , than those for block copolymers. As for alternating lamellar structures it turned out to be clear that lamellar domain spacings, D's, were scaled as the 2/3 power of the molecular weight of polymers irrespective of their architectures. S block chains of SP diblock and PSP triblock copolymers in lamellar structures were both confirmed to be deformed toward the direction perpendicular to the lamellar interfaces, but it revealed that their volumes were preserved. Further, S/P interfacial thicknesses of SP and PSP were essentially the same to each other and the values defined as the FWHM of the error functions which express the segment density distributions of the interfaces were determined to be about 4 nm. (author)

  10. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs.

    Science.gov (United States)

    Tian, Ye; Mao, Shirui

    2012-06-01

    Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.

  11. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suo, Aili, E-mail: ailisuo@mail.xjtu.edu.cn [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China); Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Yaping; Liu, Rongrong; Xu, Weijun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Hejing [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-05-01

    A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by {sup 1}H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0 mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π–π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material. - Highlights: • Comb-like amphiphilic copolymer mPEG-g-PLL-b-Phe was successfully synthesized. • Polypeptide-based copolymer could self-assemble into

  12. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    Science.gov (United States)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  13. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  14. Rapid transitions between defect configurations in a block copolymer melt.

    Science.gov (United States)

    Tsarkova, Larisa; Knoll, Armin; Magerle, Robert

    2006-07-01

    With in situ scanning force microscopy, we image the ordering of cylindrical microdomains in a thin film of a diblock copolymer melt. Tracking the evolution of individual defects reveals elementary steps of defect motion via interfacial undulations and repetitive transitions between distinct defect configurations on a time scale of tens of seconds. The velocity of these transitions suggests a cooperative movement of clusters of chains. The activation energy for the opening/closing of a connection between two cylinders is estimated.

  15. Polymers and block copolymers of fluorostyrenes by ATRP

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Borkar, Sachin; Abildgaard, Lillian

    2002-01-01

    Fully or partly fluorinated polymers have many desirable and intriguing properties. In the framework of a larger program on design and control of new functional block copolymers we recently employed the Atom Transfer Radical Polymerization (ATRP) protocol on 2,3,4,5,6-pentafluorostyrene (FS). We...... materials based on 2,3,5,6-tetrafiuoro-4-methoxy-styrene (TFMS). TFMS homopolymers as well as diblock copolymers with FS are produced by ATRP. Both types of novel polymers were subsequently demethylated and different side chains introduced on the resulting hydroxy sites....

  16. The influence of polarity of additive molecules on micelle structures of polystyrene-block-poly(4-vinylpyridine) in the fabrication of nano-porous templates.

    Science.gov (United States)

    Chua, Kee Sze; Koh, Ai Peng; Lam, Yeng Ming

    2010-11-01

    Block copolymers are useful for in situ synthesis of nanoparticles as well as producing nanoporous templates. As such, the effects of precursors on the block copolymer micelle structure is important. In this study, we investigate the effects of polarity of molecules introduced into block copolymer micelle cores on the micelle structure. The molecular dipole moment of the additive molecules has been evaluated and their effects on the block copolymer micelles investigated using light scattering spectroscopy, small-angle X-ray scattering, transmission electron microscopy and atomic force microscopy. The molecule with the largest dipole moment resulted in spherical structures with a polydispersity of less than 0.06 in a fully translational diffusion system. Surprisingly, the less polar additive molecules produced elongated micelles and the aspect ratio increases with decreasing polarity. The change in structure from spherical to elongated structure was attributed to P4VP chain extension, where compounds with polarity most similar to P4VP induce the most chain extension. The second virial coefficients of the solutions with elongated micelles are lower than that for spherical micelle systems by up to one order in magnitude, indicating a strong tendency for micelles to coalesce. On rinsing the spin-cast films, pores were obtained from spherical micelles and ridges from elongated micelles, suggesting a viable alternative for morphology modification using mild conditions where external annealing treatments to the film are not preferred. The knowledge of polarity effects of additive molecules on micelle structure has wider implications for supramolecular block copolymer systems where, depending on the application requirements, changes to the shape of the micelle structure can be induced or avoided. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  18. Use of Magnetic Folate-Dextran-Retinoic Acid Micelles for Dual Targeting of Doxorubicin in Breast Cancer

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2013-01-01

    Full Text Available Amphiphilic copolymer of folate-conjugated dextran/retinoic acid (FA/DEX-RA was self-assembled into micelles by direct dissolution method. Magnetic iron oxide nanoparticles (MNPs coated with oleic acid (OA were prepared by hydrothermal method and encapsulated within the micelles. Doxorubicin HCl was loaded in the magnetic micelles. The characteristics of the magnetic micelles were determined by Fourier transform infrared (FT-IR spectroscopy, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and vibrating sample magnetometer (VSM. The crystalline state of OA-coated MNPs and their heat capacity were analyzed by X-ray diffraction (XRD and differential scanning calorimetry (DSC methods, respectively. The iron content of magnetic micelles was determined using inductively coupled plasma optical emission spectrometry (ICP-OES. Bovine serum albumin (BSA was used to test the protein binding of magnetic micelles. The cytotoxicity of doxorubicin loaded magnetic micelles was studied on MCF-7 and MDA-MB-468 cells using MTT assay and their quantitative cellular uptake by fluorimetry method. TEM results showed the MNPs in the hydrophobic core of the micelles. TGA results confirmed the presence of OA and FA/DEX-RA copolymer on the surface of MNPs and micelles, respectively. The magnetic micelles showed no significant protein bonding and reduced the IC50 of the drug to about 10 times lower than the free drug.

  19. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    Science.gov (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  20. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  1. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Fa Hsieh

    2010-12-01

    Full Text Available The triblock copolymer is composed of two identical hydrophilic segments: Monomethoxy poly(ethylene glycol (mPEG and one hydrophobic segment poly(ε‑caprolactone (PCL; which is synthesized by coupling of mPEG-PCL-OH and mPEG‑COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14 of DOX-loaded micelles as compared to multiple administrations of free DOX.

  2. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen-Van [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Department of Chemical Engineering, Ho Chi Minh City University of Industry, 12 Nguyen Van Bao St, Ho Chi Minh (Viet Nam); Jiang, Jian-Lin; Li, Yu-Lun [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Chen, Jim-Ray [Department of Pathology, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Jwo, Shyh-Chuan [Division of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Hsieh, Ming-Fa, E-mail: mfhsieh@cycu.edu.tw [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China)

    2010-12-28

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX.

  3. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    International Nuclear Information System (INIS)

    Cuong, Nguyen-Van; Jiang, Jian-Lin; Li, Yu-Lun; Chen, Jim-Ray; Jwo, Shyh-Chuan; Hsieh, Ming-Fa

    2010-01-01

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX

  4. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor; Calo, Victor M.

    2015-01-01

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  5. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  6. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinglei Zhai

    2017-12-01

    Full Text Available The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX prodrug micelles based on functionalized poly(ethylene glycol-poly(ε-caprolactone (mPEG-PCL diblock polymer with an acid-cleavable acetal (Ace linkage (mPEG-PCL-Ace-PTX. The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy.

  7. Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy

    NARCIS (Netherlands)

    Sowwan, Mukhles; Faroun, Maryam; Mentovich, Elad; Ibrahim, Imad; Haboush, Shayma; Alemdaroglu, Fikri Emrah; Kwak, Minseok; Richter, Shachar; Herrmann, Andreas

    2010-01-01

    In this study, DNA block copolymer (DBC) micelles with a polystyrene (PS) core and a single-stranded (ss) DNA shell were doped with ferrocene (Fc) molecules. Tapping mode atomic force microscopy (AFM) was used to study the morphology of the doped and undoped block copolymer aggregates. We show that

  8. Sulfonated amphiphilic block copolymers : synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization

    Science.gov (United States)

    Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson

    2009-01-01

    Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...

  9. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  10. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira; Karunakaran, Madhavan; Neelakanda, Pradeep; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; He, Haoze; Peinemann, Klaus-Viktor

    2011-01-01

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  11. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    Science.gov (United States)

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha; Zapsas, George; Bilalis, Panayiotis; Hadjichristidis, Nikolaos

    2016-01-01

    procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined

  13. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    Science.gov (United States)

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  14. Improvement of in vivo efficacy of recombinant human erythropoietin by encapsulation in PEG–PLA micelle

    Directory of Open Access Journals (Sweden)

    Shi YN

    2012-12-01

    Full Text Available Yanan Shi,1,2,* Wan Huang,1,* Rongcai Liang,1–3 Kaoxiang Sun,2,3 Fangxi Zhang,2,3 Wanhui Liu,2,3 Youxin Li1–31College of Life Science, Jilin University, Changchun, China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, China; 3School of Pharmacy, Yantai University, Yantai, China*These authors contributed equally to this workAbstract: To improve the pharmacokinetics and stability of recombinant human erythropoietin (rhEPO, rhEPO was successfully formulated into poly(ethylene glycol–poly(d,l-lactide (PEG–PLA di-block copolymeric micelles at diameters ranging from 60 to 200 nm with narrow polydispersity indices (PDIs; PDI < 0.3 and trace amount of protein aggregation. The zeta potential of the spherical micelles was in the range of −3.78 to 4.65 mV and the highest encapsulation efficiency of rhEPO in the PEG–PLA micelles was about 80%. In vitro release profiles indicated that the stability of rhEPO in the micelles was improved significantly and only a trace amount of aggregate was found. Pharmacokinetic studies in rats showed highly enhanced plasma retention time of the rhEPO-loaded PEG-PLA micelles in comparison with the native rhEPO group. Increased hemoglobin concentrations were also found in the rat study. Native polyacrylamide gel electrophoresis results demonstrated that rhEPO was successfully encapsulated into the micelles, which was stable in phosphate buffered saline with different pHs and concentrations of NaCl. Therefore, PEG–PLA micelles can be a potential protein drug delivery system.Keywords: rhEPO, PEG–PLA micelle, in vitro, pharmacokinetics, pharmacodynamics

  15. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  16. Ionization of amphiphilic acidic block copolymers.

    Science.gov (United States)

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  17. Core-cross-linked polymeric micelles: a versatile nanomedicine platform with broad applicability

    NARCIS (Netherlands)

    Hu, Q.

    2015-01-01

    This dissertation addresses the broad applicability of the nanomedicine platform core-cross-linked polymeric micelles (CCL-PMs) composed of thermosensitive mPEG-b-pHPMAmLacn block copolymers. In Chapter 1, a general introduction to nanomedicines is provided, with a particular focus on polymeric

  18. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  19. Thermoresponsive behavior of block copolymers of PEO and PNIPAm with different architecture in aqueous solutions: a study by NMR, FTIR, DSC and quantum-chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Dybal, Jiří; Čadová, Eva; Kovářová, Jana

    2017-01-01

    Roč. 94, September (2017), s. 471-483 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : thermoresponsive polymer * diblock copolymer PEO-b-PNIPAm * y-shape triblock copolymer PEO-b-(PNIPAm)2 Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  20. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Science.gov (United States)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  1. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery

    Science.gov (United States)

    Han, Xiaoxiong; Gong, Feirong; Sun, Jing; Li, Yueqi; Liu, XiaoFei; Chen, Dan; Liu, Jianwen; Shen, Yaling

    2018-02-01

    Stimulus-responsive polymeric micelles (PMs) have recently received attention due to the controlled delivery of drug or gene for application in cancer diagnosis and treatment. In this work, novel glutathione-responsive PMs were prepared to encapsulate hydrophobic antineoplastic drug, cabazitaxel (CTX), to improve its solubility and toxicity. These CTX-loaded micelles core cross-linked by disulfide bonds (DCL-CTX micelles) were prepared by a novel copolymer, lipoic acid grafted mPEG-PLA. These micelles had regular spherical shape, homogeneous diameter of 18.97 ± 0.23 nm, and a narrow size distribution. The DCL-CTX micelles showed high encapsulation efficiency of 98.65 ± 1.77%, and the aqueous solubility of CTX was improved by a factor of 1:1200. In vitro release investigation showed that DCL-CTX micelles were stable in the medium without glutathione (GSH), whereas the micelles had burst CTX release in the medium with 10 mM GSH. Cell uptake results implied that DCL-CTX micelles were internalized into MCF-7 cells through clathrin-mediated endocytosis and released cargo more effectively than Jevtana (commercially available CTX) owing to GSH-stimulated degradation. In MTT assay against MCF-7 cells, these micelles inhibited tumor cell proliferation more effectively than Jevtana due to their GSH-responsive CTX release. All results revealed the potency of GSH-responsive DCL-CTX micelles for stable delivery in blood circulation and for intracellular GSH-trigged release of CTX. Therefore, DCL-CTX micelles show potential as safe and effective CTX delivery carriers and as a cancer chemotherapy formulation.

  2. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.; Dorin, Rachel Mika; Wiesner, Ulrich B.; Smilgies, Detlef Matthias; Behzad, Ali Reza; Vainio, Ulla; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2014-01-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  3. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.

    2014-03-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  4. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  5. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ε-caprolactone) micelles and their antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Huan [State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Chemical modification of chitosan were conducted after phthaloyl protection of amino groups. • Silver nanoparticles were prepared in the presence of chitosan-based copolymer micelles. • The optimal time scale and weight ratios of silver to micelles were monitored by UV–vis spectrometer. - Abstract: Amphiphilic chitosan-graft-poly(ε-caprolactone) (CS-g-PCLs) copolymers were synthesized by a homogeneous coupling method and characterized by {sup 1}H NMR, FTIR and ninhydrin assay. The graft copolymers were subsequently self-assembled into micelles, which were measured by DLS and TEM. The particle size of the micelles decreased as the segment grafting fraction was increased. Thereafter, silver nanoparticles were prepared in the presence of chitosan-based micelles under UV irradiation. The molar ratio and radiation time of silver to micelles were optimized with process monitored via UV–vis spectrophotometer. DLS and TEM were used to illustrate the particle structure and size while XRD patterns were applied to characterize the crystal structures of polymer-assisted silver nanoparticles. Films impregnated with silver nanoparticles were conducted with results of strong antimicrobial activities against Escherichia coli and Staphylococcus aureus as model Gram-negative and positive bacteria.

  6. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ε-caprolactone) micelles and their antimicrobial application

    International Nuclear Information System (INIS)

    Gu, Chunhua; Zhang, Huan; Lang, Meidong

    2014-01-01

    Graphical abstract: - Highlights: • Chemical modification of chitosan were conducted after phthaloyl protection of amino groups. • Silver nanoparticles were prepared in the presence of chitosan-based copolymer micelles. • The optimal time scale and weight ratios of silver to micelles were monitored by UV–vis spectrometer. - Abstract: Amphiphilic chitosan-graft-poly(ε-caprolactone) (CS-g-PCLs) copolymers were synthesized by a homogeneous coupling method and characterized by 1 H NMR, FTIR and ninhydrin assay. The graft copolymers were subsequently self-assembled into micelles, which were measured by DLS and TEM. The particle size of the micelles decreased as the segment grafting fraction was increased. Thereafter, silver nanoparticles were prepared in the presence of chitosan-based micelles under UV irradiation. The molar ratio and radiation time of silver to micelles were optimized with process monitored via UV–vis spectrophotometer. DLS and TEM were used to illustrate the particle structure and size while XRD patterns were applied to characterize the crystal structures of polymer-assisted silver nanoparticles. Films impregnated with silver nanoparticles were conducted with results of strong antimicrobial activities against Escherichia coli and Staphylococcus aureus as model Gram-negative and positive bacteria

  7. Ion Correlation Effects in Salt-Doped Block Copolymers

    Science.gov (United States)

    Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.

    2018-03-01

    We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.

  8. Conjugation of Lectin to Poly(ε-caprolactone-block-glycopolymer Micelles for In Vitro Intravesical Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ning Ning Li

    2016-10-01

    Full Text Available Amphiphilic poly(ε-caprolactone-block-poly[2-(α-d-mannopyranosyloxy ethyl acrylamide] (PCL-b-PManEA block copolymers were synthesized via a combination of ring-opening polymerization (ROP, reversible addition-fragmentation chain transfer (RAFT polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug doxorubicin (DOX. To enhance mucoadhesive property of the resulting DOX-loaded PCL-b-PManEA micelles, Concanavalin A (ConA lectin was further conjugated with the micelles. Turbidimetric assay using mucin shows that the DOX-loaded PCL-b-PManEA@ConA micelles are mucoadhesive. DOX release from the DOX-loaded PCL-b-PManEA@ConA micelles in artificial urine at 37 °C exhibits an initial burst release, followed by a sustained and slow release over three days. Confocal laser scanning microscope (CLSM images indicate that the DOX-loaded PCL-b-PManEA@ConA micelles can be effectively internalized by UMUC3 human urothelial carcinoma cells. The DOX-loaded PCL-b-PManEA@ConA micelles exhibit significant cytotoxicity to these cells.

  9. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.

    Science.gov (United States)

    Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li

    2017-07-01

    Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.

  10. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    Science.gov (United States)

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-05

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.

  11. Distributions of chain ends and junction points in ordered block copolymers

    International Nuclear Information System (INIS)

    Mayes, A.M.; Johnson, R.D.; Russell, T.P.; Smith, S.D.; Satija, S.K.; Majkrzak, C.F.

    1993-01-01

    Chain configurations in ordered symmetric poly(styrene-b-methyl methacrylate) diblock copolymers were examined by neutron reflectively. In a thin-film geometry the copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers were synthesized with small fractions of deuterated segments at either the chain ends or centers. This selective labeling permitted characterization of the spatial distribution of chain ends and junction points normal to the plane of the film. From the reflectivity analysis, the junction points are found to be confined to the PS/PMMA interfacial regions. The chain ends, however, are well distributed through their respective domains, exhibiting only a weak maximum in concentration at the center of the domains

  12. Applications of polymeric micelles with tumor targeted in chemotherapy

    International Nuclear Information System (INIS)

    Ding Hui; Wang Xiaojun; Zhang Song; Liu Xinli

    2012-01-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core–shell structure (with diameters of 10 ∼ 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles’ surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  13. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    Directory of Open Access Journals (Sweden)

    Cvetelina Gorinova

    2016-09-01

    Full Text Available Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer. Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepared and loaded with curcumin by applying the dissolution method. Higher encapsulation efficiency was observed in the micelles formulated with Pluronic® P 123. These micelles were characterized with small size and narrow size distribution. The effects of micellar curcumin were investigated in two in vitro models. First, the capacity of micellar curcumin to inhibit iron/ascorbic acid-induced lipid peroxidation in rat liver microsomes was evaluated. Micellar curcumin and free drug showed similar inhibition of lipid peroxidation. Second, micellar curcumin and free curcumin showed protective potential in a model of 6-hydroxydopamine induced neurotoxicity in rat brain synaptosomes. The results from both methods indicated preservation of antioxidant and neuroprotective activity of curcumin in micelles. The small micellar size, high loading capacity and preservation of antioxidant activity of curcumin into Pluronic micelles, suggested their further evaluation as a curcumin delivery system.

  14. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  15. Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent.

    Science.gov (United States)

    Li, Yunqi; Tan, Haibo; Salunkhe, Rahul R; Tang, Jing; Shrestha, Lok Kumar; Bastakoti, Bishnu Prasad; Rong, Hongpan; Takei, Toshiaki; Henzie, Joel; Yamauchi, Yusuke; Ariga, Katsuhiko

    2016-12-20

    We introduce a simple method to prepare hollow carbon nanospheres (HCNs) by using triblock copolymer poly(styrene-b-2-vinylpyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) micelles as a new class of soft-templates. Simply by changing the solvent we can prepare ultra-small sized micelles of the triblock copolymer PS-b-P2VP-b-PEO soft template to obtain HCNs with ultra-small diameters (43 nm) and hollow cores (19 nm). Furthermore, we use these HCNs to make electric double-layer capacitors (EDLCs) that exhibit superior performance.

  16. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann

    as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent‐like copolymers......This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete......‐life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A glycerolipid and a cholesteryl ether were synthesized with free primary alcohols and a series of their sulphonates (Ms, Ts, Tf) were...

  17. Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration.

    Science.gov (United States)

    Tale, Swapnil; Purchel, Anatolii A; Dalsin, Molly C; Reineke, Theresa M

    2017-11-06

    Synthetic polymers offer tunable platforms to create new oral drug delivery vehicles (excipients) to increase solubility, supersaturation maintenance, and bioavailability of poorly aqueous soluble pharmaceutical candidates. Five well-defined diblock terpolymers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) and consist of a first block of either poly(ethylene-alt-propylene) (PEP), poly(N-isopropylacrylamide) (PNIPAm), or poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and a second hydrophilic block consisting of a gradient copolymer of N,N-dimethylacrylamide (DMA) and 2-methacrylamidotrehalose (MAT). This family of diblock terpolymers offers hydrophobic, hydrophilic, or H-bonding functionalities to serve as noncovalent sites of drug binding. Drug-polymer spray dried dispersions (SDDs) were created with a model drug, probucol, and characterized by differential scanning calorimetry (DSC). These studies revealed that probucol crystallinity decreased with increasing H-bonding sites available in the polymer. The PNIPAm-b-P(DMA-grad-MAT) systems revealed the best performance at pH 6.5, where immediate probucol release and effective maintenance of 100% supersaturation was found, which is important for facilitating drug solubility in more neutral conditions (intestinal environment). However, the PDEAEMA-b-P(DMA-grad-MAT) system revealed poor probucol dissolution at pH 6.5 and 5.1. Alternatively, at an acidic pH of 3.1, a rapid and high dissolution profile and effective supersaturation maintenance of up to 90% of the drug was found, which could be useful for triggering drug release in acidic environments (stomach). The PEP-b-P(DMA-grad-MAT) system showed poor performance (only ∼20% of drug solubility at pH 6.5), which was attributed to the low solubility of the polymers in the dissolution media. This work demonstrates the utility of diblock terpolymers as a potential new excipient platform to optimize design parameters for

  18. Reactivity in inverse micelles

    International Nuclear Information System (INIS)

    Brochette, Pascal

    1987-01-01

    This research thesis reports the study of the use of micro-emulsions of water in oil as reaction support. Only the 'inverse micelles' domain of the ternary mixing (water/AOT/isooctane) has been studied. The main addressed issues have been: the micro-emulsion disturbance in presence of reactants, the determination of reactant distribution and the resulting kinetic theory, the effect of the interface on electron transfer reactions, and finally protein solubilization [fr

  19. SANS and SAXS study of block copolymer/homopolymer mixtures

    International Nuclear Information System (INIS)

    Hasegawa, Hirokazu; Tanaka, Hideaki; Hashimoto, Takeji; Han, C.C.

    1991-01-01

    The lateral and vertical components of the radius of gyration for a single block copolymer chain and those of a single homopolymer chain in the lamellar microdomain space formed by a mixture of diblock copolymers and homopolymers were investigated by means of small-angle neutron scattering (SANS) and the microdomain structures by small-angle X-ray scattering (SAXS). The homopolymers whose molecular weights are much smaller than that of the corresponding chains of the block copolymers were used so that the homopolymers were uniformly solubilized in the corresponding microdomains. The SANS result suggests that the homopolymer chains in the microdomain space as well as the block copolymer chains are more compressed in the direction parallel to the interface and more stretched in the direction perpendicular to the interface than the corresponding unperturbed polymer chains with the same molecular weight. On increasing the volume fraction of the homopolymers the thickness of the lamellar microdomains increases. The block copolymer chains were found to undergo an isochoric affine deformation on addition of the homopolymers or with the change of the thickness of the lamellar microdomains. (orig.)

  20. Theoretical study of the self-assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers

    Science.gov (United States)

    Gadelrab, Karim; Alexander-Katz, Alfredo; LaboratoryTheoretical Soft Materials Team

    The self-assembly of block copolymers BCP has provided an impressive control over the nanoscale structure of soft matter. While the main focus of the research in the field has been directed towards simple linear diblocks, the development of advanced polymer architecture provided improved performance and access to new structures. In particular, bottlebrush BCPs (BBCPs) have interesting characteristics due to their dense functionality, high molecular weight, low levels of entanglement, and tendency to efficiently undergo rapid bulk phase separation. In this work, we are interested in theoretically studying the self-assembly of Janus-type ``A-branch-B'' BBCPs where A and B blocks can phase separate with the bottlebrush polymer backbone serving as the interface between the two blocks. Hence, the polymer backbone adds an extra constraint on the equilibrium spacing between neighboring linear diblock chains. In this regard, the segment length of the backbone separating the AB junctions has a direct effect of the observed domain spacing and effective segregation strength of the AB blocks. We employ self-consistent field theoretic SCFT simulations to capture the effect of volume fraction of different constituents and construct a phase diagram of the accessible morphologies of these BBCPs.

  1. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.

    Science.gov (United States)

    Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing

    2010-07-07

    The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.

  3. Synthesis and Self-Assembly of Block Copolymers Containing Temperature Sensitive and Degradable Chain Segments.

    Science.gov (United States)

    Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong

    2018-05-01

    In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.

  4. Synthesis of Diblock Codendrimer by Double Click Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Wook; Han, Seung Choul; Ji, Won Ho [Dong-A Univ., Busan (Korea, Republic of); Jin, Sungho [Pusan National Univ., Busan (Korea, Republic of); Kim, Ji Hyeon [Gachon Univ., Seongnam (Korea, Republic of)

    2012-12-15

    Efficient double click methods for the synthesis of diblock codendrimers were developed. The synthetic strategy involved the sequential click reactions between an alkyne and an azide. The short core building block, 1,4-diazidobutane, was chosen to serve as the azide functionalities for dendrimer growth via click reactions with the alkyne-functionalized PAMAM dendrons as hydrophilic dendron and alkyne-functionalized Frechet-type dendrons as hydrophobic dendron. The structure of diblock codendrimers was confirmed by {sup 1}H and {sup 13}C NMR spectroscopy, IR spectroscopy, mass spectrometry, and GPC analysis.

  5. Synthesis of Diblock Codendrimer by Double Click Chemistry

    International Nuclear Information System (INIS)

    Lee, Jae Wook; Han, Seung Choul; Ji, Won Ho; Jin, Sungho; Kim, Ji Hyeon

    2012-01-01

    Efficient double click methods for the synthesis of diblock codendrimers were developed. The synthetic strategy involved the sequential click reactions between an alkyne and an azide. The short core building block, 1,4-diazidobutane, was chosen to serve as the azide functionalities for dendrimer growth via click reactions with the alkyne-functionalized PAMAM dendrons as hydrophilic dendron and alkyne-functionalized Frechet-type dendrons as hydrophobic dendron. The structure of diblock codendrimers was confirmed by 1 H and 13 C NMR spectroscopy, IR spectroscopy, mass spectrometry, and GPC analysis

  6. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  7. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.

    Science.gov (United States)

    Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei

    2017-01-01

    Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Curcumin-Loaded Blood-Stable Polymeric Micelles for Enhancing Therapeutic Effect on Erythroleukemia.

    Science.gov (United States)

    Gong, Feirong; Chen, Dan; Teng, Xin; Ge, Junhua; Ning, Xianfeng; Shen, Ya-Ling; Li, Jian; Wang, Shanfeng

    2017-08-07

    Curcumin has high potential in suppressing many types of cancer and overcoming multidrug resistance in a multifaceted manner by targeting diverse molecular targets. However, the rather low systemic bioavailability resulted from its poor solubility in water and fast metabolism/excretion in vivo has hampered its applications in cancer therapy. To increase the aqueous solubility of curcumin while retaining the stability in blood circulation, here we report curcumin-loaded copolymer micelles with excellent in vitro and in vivo stability and antitumor efficacy. The two copolymers used for comparison were methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and N-(tert-butoxycarbonyl)-l-phenylalanine end-capped mPEG-PCL (mPEG-PCL-Phe(Boc)). In vitro cytotoxicity evaluation against human pancreatic SW1990 cell line showed that the delivery of curcumin in mPEG-PCL-Phe(Boc) micelles to cancer cells was efficient and dosage-dependent. The pharmacokinetics in ICR mice indicated that intravenous (i.v.) administration of curcumin/mPEG-PCL-Phe(Boc) micelles could retain curcumin in plasma much better than curcumin/mPEG-PCL micelles. Biodistribution results in Sprague-Dawley rats also showed higher uptake and slower elimination of curcumin into liver, lung, kidney, and brain, and lower uptake into heart and spleen of mPEG-PCL-Phe(Boc) micelles, as compared with mPEG-PCL micelles. Further in vivo efficacy evaluation in multidrug-resistant human erythroleukemia K562/ADR xenograft model revealed that i.v. administration of curcumin-loaded mPEG-PCL-Phe(Boc) micelles significantly delayed tumor growth, which was attributed to the improved stability of curcumin in the bloodstream and increased systemic bioavailability. The mPEG-PCL-Phe(Boc) micellar system is promising in overcoming the key challenge of curcumin's to promote its applications in cancer therapy.

  9. Enzymatic reactions in reversed micelles

    NARCIS (Netherlands)

    Hilhorst, M.H.

    1984-01-01

    It has been recognised that enzymes in reversed micelles have potential for application in chemical synthesis. Before these expectations will be realised many problems must be overcome. This thesis deals with some of them.
    In Chapter 1 the present knowledge about reversed micelles and

  10. Monte Carlo simulation of AB-copolymers with saturating bonds

    CERN Document Server

    Chertovich, A V; Khokhlov, A R; Bohr, J

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A-and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer to those of diblock sequences than to the properties of random sequences. The model (although quite rough) is expected to represent some basic features of real RNA molecules, i.e. the formation of secondary structure of RNA due to hydrogen bonding of corresponding bases and stacking interactions of the base pairs in helixes. We introduce the notation of RNA-like copolymers and discuss in what sense the sequences studie...

  11. The effect of film thickness and molecular structure on order and disorder in thin films of compositionally asymmetric block copolymers

    Science.gov (United States)

    Mishra, Vindhya

    Directed self-assembly of thin film block copolymers offer a high throughput-low cost route to produce next generation lithographic devices, if one can bring the defect densities in the self assembled patterns below tolerance limits. However, the ability to control the nanoscale structure or morphology in thin film block copolymers presents challenges due to confinement effects on equilibrium behavior. Using structure characterization techniques such as grazing incidence small angle X-ray scattering (GISAXS), transmission electron and atomic force microscopy as well as self-consistent field theory, we have investigated how film thickness, annealing temperature and block copolymer structure affects the equilibrium behavior of asymmetric block copolymer films. Our studies have revealed the complicated dependence of order-disorder transitions, order-order transitions and symmetry transitions on film thickness. We found that the thickness dependent transition in the packing symmetry of spherical morphology diblock copolymers can be suppressed by blending with a small amount of majority block homopolymer, which allowed us to resolve the driving force behind this transition. Defect densities in, and the order-disorder transition temperature of, thin films of graphoepitaxially aligned diblock copolymer cylinders showed surprising sensitivity to the microdomain spacing. Methods to mitigate defect formation in thin films have been identified. The challenge of quantification of structural order in these systems was overcome using GISAXS, which allowed us to study the phenomena of disordering in two and three dimensions. Through studies on block copolymers which exhibit an order-order transition in bulk, we found that that subtle differences in the packing frustration of the spherical and cylindrical phases as well as the higher configurational entropy of free chain ends at the surface can drive the equilibrium configuration in thin films away from the stable bulk structure

  12. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy.

    Science.gov (United States)

    Davaran, Soodabeh; Fazeli, Hamed; Ghamkhari, Aliyeh; Rahimi, Fariborz; Molavi, Ommoleila; Anzabi, Maryam; Salehi, Roya

    2018-08-01

    A Novel poly [2-hydroxyethyl methacrylate-Lactide-dimethylaminoethyl methacrylate quaternary ammonium alkyl halide] [P(HEMA-LA-MADQUAT)] copolymer was synthesized through combination of ring opening polymerization (ROP) and 'free' radical initiated polymerization methods. This newly developed copolymer was fully characterized by FT-IR, 1 HNMR and 13 CNMR spectroscopy. Micellization of the copolymer was performed by dialysis membrane method and obtained micelles were characterized by FESEM, dynamic light scattering (DLS), zeta potential (ξ), and critical micelle concentration (CMC) measurements. This copolymer was developed with the aim of co-delivering two different anticancer drugs: methotrexate (MTX) and chrysin. In vitro cytotoxicity effect of MTX@Chrysin-loaded P(HEMA-LA-MADQUAT) was also studied through assessing the survival rate of breast cancer cell line (MCF-7) and DAPI staining assays. Cationic micelle (and surface charge of + 7.6) with spherical morphology and an average diameter of 55 nm and CMC of 0.023 gL -1 was successfully obtained. Micelles showed the drug loaded capacity around 87.6 and 86.5% for MTX and Chrysin, respectively. The cytotoxicity assay of a drug-free nanocarrier on MCF-7 cell lines indicated that this developed micelles were suitable nanocarriers for anticancer drugs. Furthermore, the MTX@Chrysin-loaded micelle had more efficient anticancer performance than free dual anticancer drugs (MTX @ chrysin), confirmed by MTT assay and DAPI stainingmethods. Therefore, we envision that this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies. Therefore, this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies.

  13. Gold-Decorated Supraspheres of Block Copolymer Micelles

    Science.gov (United States)

    Kim, M. P.; Kang, D. J.; Kannon, A. G.; Jung, D.-W.; Yi, G. R.; Kim, B. J.

    2012-02-01

    Gold-decorated supraspheres displaying various surface morphologies were prepared by infiltration of gold precursor into polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) supraspheres under acidic condition. The supraspheres were fabricated by emulsifying PS-b-P2VP polymer solution into surfactant solution. Selective swelling of P2VP in the suprasphere by gold precursor under acidic condition resulted in the formation of gold-decorated supraspheres with various surface structures. As evidenced by TEM and SEM images, dot pattern was formed in the case of smaller supraspheres than 800 nm; whereas fingerprint-like pattern was observed in larger supraspheres than 800 nm. Gold nanoparticles were located inside P2VP domains near the surface of prepared supraspheres as confirmed by TEM. The optical property of the supraspheres was characterized using UV-vis absorption spectroscopy and the maximum absorption peak at around 580 nm was observed, which means that gold nanoparticles densely packed into P2VP domain on the suprasphere. Our approach to prepare gold-decorated supraspheres can be extended to other metallic particles such as iron oxide or platinum nanoparticles, and those precursors can be also selectively incorporated into the P2VP domain.

  14. Fluorescent, thermo-responsive biotin-P(NIPAAm-co-NDAPM)- b-PCL micelles for cell-tracking and drug delivery

    International Nuclear Information System (INIS)

    Li Yongyong; Zhang Xianzheng; Cheng Han; Zhu Jingling; Li Unnam; Cheng Sixue; Zhuo Renxi

    2007-01-01

    An amphiphilic, biotinylated poly(N-isopropylacrylamide-co-N-(3-dimethylamino propyl)methacrylamide)-block- poly(ε-caprolactone) (biotin-P(NIPAAm-co-NDAPM)- b-PCL) block copolymer was synthesized. The cytotoxicity study showed that the copolymer exhibited no apparent cytotoxicity. In aqueous solution, biotin-P(NIPAAm-co-NDAPM)- b-PCL copolymer was able to self-assemble into micelles of around 60 nm in diameter with a critical micellar concentration (CMC) of 36 mg l -1 . Biotin-P(NIPAAm- co-NDAPM)-b-PCL micelles were thermo-responsive and the cloud point temperature was at 36.5 deg. C. The fluorescent group, fluorescein isothiocyanate (FITC) was further introduced to label the biotin-P(NIPAAm-co-NDAPM)- b-PCL copolymer. A cell internalization experiment was conducted and it was found that the fluorescent micelles could be internalized into the cells. The drug release behavior of drug-loading micelles was also examined and the drug-loaded biotin-P(NIPAAm-co-NDAPM)- b-PCL micelles showed slow drug release at 27 deg. C and fast drug release at 37 deg. C

  15. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    Science.gov (United States)

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  16. Assessment of Palmitoyl and Sulphate Conjugated Glycol Chitosan for Development of Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Ikram Ullah Khan

    2013-06-01

    Full Text Available Introduction: Amphiphilic copolymers are capable of forming core shell-like structures at the critical micellar concentration (CMC; hence, they can serve as drug carriers. Thus, in the present work, polymeric micelles based on novel chitosan derivative were synthesized. Methods: Block copolymer of palmitoyl glycol chitosan sulfate (PGCS was prepared by grafting palmitoyl and sulfate groups serving as hydrophobic and hydrophilic fractions, respectively. Then, fourier transform infrared spectra (FTIR and spectral changes in iodine/iodide mixture were carried out. Results: FTIR studies confirmed the formation of palmitoyl glycol chitosan sulfate (PGCS and spectral changes in iodine/iodide mixture indicated CMC which lies in the range of 0.003-0.2 mg/ml. Conclusion: Therefore, our study indicated that polymeric micelles based on palmitoyl glycol chitosan sulphate could be used as a prospective carrier for water insoluble drugs.

  17. Self-Assembly and Crystallization of Conjugated Block Copolymers

    Science.gov (United States)

    Davidson, Emily Catherine

    This dissertation demonstrates the utility of molecular design in conjugated polymers to create diblock copolymers that robustly self-assemble in the melt and confine crystallization upon cooling. This work leverages the model conjugated polymer poly(3-(2'-ethyl)hexylthiophene) (P3EHT), which features a branched side chain, resulting in a dramatically reduced melting temperature (Tm 80°C) relative to the widely-studied poly(3-hexylthiophene) (P3HT) (Tm 200°C). This reduced melting temperature permits an accessible melt phase, without requiring that the segregation strength (chiN) be dramatically increased. Thus, diblock copolymers containing P3EHT demonstrate robust diblock copolymer self-assembly in the melt over a range of compositions and morphologies. Furthermore, confined crystallization in the case of both glassy (polystyrene (PS) matrix block) and soft (polymethylacrylate (PMA) matrix block) confinement is studied, with the finding that even in soft confinement, crystallization is constrained within the diblock microdomains. This success demonstrates the strategy of leveraging molecular design to decrease the driving force for crystallization as a means to achieving robust self-assembly and confined crystallization in conjugated block copolymers. Importantly, despite the relatively flexible nature of P3EHT in the melt, the diblock copolymer phase behavior appears to be significantly impacted by the stiffness (persistence length of 3 nm) of the P3EHT chain compared to the coupled amorphous blocks (persistence length 0.7 nm). In particular, it is shown that the synthesized morphologies are dominated by a very large composition window for lamellar geometries (favored at high P3EHT volume fractions); cylindrical geometries are favored when P3EHT is the minority fraction. This asymmetry of the composition window is attributed to impact of conformational asymmetry (the difference in chain stiffness, as opposed to shape) between conjugated and amorphous blocks

  18. Block copolymer self-assembly and co-assembly : shape function and application

    NARCIS (Netherlands)

    Li, F.

    2009-01-01

    Amphiphilic block copolymers can, in selective solvents such as water, assemble into various shapes and architectures. Among those, polymer vesicles, polymer micelles and polymer fibers are very popular structures in current nanotechnology. These objects each have their own particular properties and

  19. PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Al Samad, A.; Bethry, A.; Koziolová, Eva; Netopilík, Miloš; Etrych, Tomáš; Bakkour, Y.; Coudane, J.; El Omar, F.; Nottelet, B.

    2016-01-01

    Roč. 4, č. 37 (2016), s. 6228-6239 ISSN 2050-750X R&D Projects: GA MŠk(CZ) LO1507; GA ČR(CZ) GA15-02986S Institutional support: RVO:61389013 Keywords : HPMA copolymer * tumor * micelle Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.543, year: 2016

  20. A cremophor-free formulation for tanespimycin (17-AAG) using PEO-b-PDLLA micelles: characterization and pharmacokinetics in rats.

    Science.gov (United States)

    Xiong, May P; Yáñez, Jaime A; Kwon, Glen S; Davies, Neal M; Forrest, M Laird

    2009-04-01

    Tanespimycin (17-allylamino-17-demethoxygeldanamycin or 17-AAG) is a promising heat shock protein 90 inhibitor currently undergoing clinical trials for the treatment of cancer. Despite its selective mechanism of action on cancer cells, 17-AAG faces challenging issues due to its poor aqueous solubility, requiring formulation with Cremophor EL (CrEL) or ethanol (EtOH). Therefore, a CrEL-free formulation of 17-AAG was prepared using amphiphilic diblock micelles of poly(ethylene oxide)-b-poly(D,L-lactide) (PEO-b-PDLLA). Dynamic light scattering revealed PEO-b-PDLLA (12:6 kDa) micelles with average sizes of 257 nm and critical micelle concentrations of 350 nM, solubilizing up to 1.5 mg/mL of 17-AAG. The area under the curve (AUC) of PEO-b-PDLLA micelles was 1.3-fold that of the standard formulation. The renal clearance (CL(renal)) increased and the hepatic clearance (CL(hepatic)) decreased with the micelle formulation, as compared to the standard vehicle. The micellar formulation showed a 1.3-fold increase in the half-life (t(1/2)) of the drug in serum and 1.2-fold increase in t(1/2) of urine. As expected, because it circulated longer in the blood, we also observed a 1.7-fold increase in the volume of distribution (V(d)) with this micelle formulation compared to the standard formulation. Overall, the new formulation of 17-AAG in PEO-b-PDLLA (12:6 kDa) micelles resulted in a favorable 150-fold increase in solubility over 17-AAG alone, while retaining similar properties to the standard formulation. Our data indicates that the nanocarrier system can retain the pharmacokinetic disposition of 17-AAG without the need for toxic agents such as CrEL and EtOH.

  1. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  2. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.; Hur, Kahyun; Wiesner, Ulrich B.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  3. Resonant soft x-ray GISAXS on block copolymer films

    Science.gov (United States)

    Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.

    2008-03-01

    Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.

  4. Anomalous Micellization of Pluronic Block Copolymers

    Science.gov (United States)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  5. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for crosslinking of polymeric micelles in nanomedicine

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2017-01-01

    crosslinking is necessary for efficient drug delivery. We used PET imaging with 64Cu to demonstrate general methodology for real-time in vivo investigations of micelle stability. Triblock copolymers with 4-methylcoumarin cores of ABC-type (PEG-PHEMA-PCMA) were functionalized in the handle region (PHEMA...... was quantified by ROI analysis on PET images and ex vivo counting. It was observed that CL and nonCL showed limited differences in biodistribution from each other, whereas both differed markedly from control (free 64Cu). This demonstrated that 4-methylcoumarin core micelles may form micelles that are stable...

  6. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  7. Cell membrane-inspired polymeric micelles as carriers for drug delivery.

    Science.gov (United States)

    Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian

    2015-03-01

    In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.

  8. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs.

    Science.gov (United States)

    Eliezar, Jeaniffer; Scarano, Wei; Boase, Nathan R B; Thurecht, Kristofer J; Stenzel, Martina H

    2015-02-09

    The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

  9. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  10. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    Science.gov (United States)

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  11. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  12. Toxicity evaluation of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats.

    Science.gov (United States)

    Binkhathlan, Ziyad; Qamar, Wajhul; Ali, Raisuddin; Kfoury, Hala; Alghonaim, Mohammed

    2017-09-01

    Methoxy poly(ethylene oxide)- block -poly(ɛ-caprolactone) (PEO- b -PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO- b -PCL block copolymers and assess the toxic effects of drug-free PEO- b -PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO- b -PCL micelles, sixty animals were divided into two major groups: The first group received PEO- b -PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  13. Toxicity evaluation of methoxy poly(ethylene oxide-block-poly(ε-caprolactone polymeric micelles following multiple oral and intraperitoneal administration to rats

    Directory of Open Access Journals (Sweden)

    Ziyad Binkhathlan

    2017-09-01

    Full Text Available Methoxy poly(ethylene oxide-block-poly(ɛ-caprolactone (PEO-b-PCL copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO-b-PCL block copolymers and assess the toxic effects of drug-free PEO-b-PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO-b-PCL micelles, sixty animals were divided into two major groups: The first group received PEO-b-PCL micelles (100 mg/kg by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  14. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  15. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  16. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    International Nuclear Information System (INIS)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo

    2014-01-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10 −4 mg/mL and 3.9 × 10 −5 mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability

  17. Endocytosis Pathways of the Folate Tethered Star-Shaped PEG-PCL Micelles in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yu-Lun Li

    2014-03-01

    Full Text Available This study reports on the cellular uptake of folate tethered micelles using a branched skeleton of poly(ethylene glycol and poly(ε-caprolactone. The chemical structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Doxorubicin (DOX was utilized as an anticancer drug. The highest drug loading efficiencies of DOX in the folate decorated micelle (DMCF and folate-free micelle (DMC were found to be 88.5% and 88.2%, respectively, depending on the segment length of the poly(ε-caprolactone in the copolymers. A comparison of fluorescent microscopic images of the endocytosis pathway in two cell lines, human breast cancer cells (MCF-7 and human oral cavity carcinoma cells (KB, revealed that the micelles were engulfed by KB and MCF-7 cells following in vitro incubation for one hour. Flow cytometric analysis revealed that free folic acid can inhibit the uptake of DOX by 48%–57% and 26%–39% in KB cells and MCF-7 cells, respectively. These results prove that KB cells are relatively sensitive to folate-tethered micelles. Upon administering methyl-β-cyclodextrin, an inhibitor of the caveolae-mediated endocytosis pathway, the uptake of DOX by KB cells was reduced by 69% and that by MCF-7 cells was reduced by 56%. This finding suggests that DMCF enters cells via multiple pathways, thus implying that the folate receptor is not the only target of tumor therapeutics.

  18. Influence of carbonate ions on the micellization behavior in triblock copolymer solution

    CERN Document Server

    Thiyagarajan, P

    2002-01-01

    SANS was used to investigate the micellization behavior of triblock copolymers (F68, F88 and F108) as functions of carbonate ion concentration and temperature. SANS data were fitted to determine the sizes of the core and corona, inter-micelle distance, association number and the volume fraction of the micelles. As the polymer molecular weight increases, the core radius and the radius of gyration (R sub g) of the corona and the inter-micelle distance increase. The carbonate ion concentration and polymer molecular weight have dramatic influence on the temperatures at which the micellization and spherical-to-cylindrical micelle transformation occur. The mechanism by which this phenomenon occurs in these solutions is through a gradual dehydration of polymers with increasing carbonate concentration and/or temperature. (orig.)

  19. Di-block co-polymer derived nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant

    2010-01-01

    pores. When the PDMS is etched, the hydrophobic PB is left with a porosity of 44%. The polymer is subsequently UV exposed through a shadow mask. This renders the exposed part hydrophilic, making it possible for water to infiltrate these areas. Water infiltration raises the refractive index, thus forming...

  20. Structure of self-organized diblock copolymer solutions in partially miscible solvents

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Tuzar, Zdeněk; Kadlec, Petr; Nallet, F.; da Silveira, N. P.

    2010-01-01

    Roč. 12, č. 12 (2010), s. 2944-2949 ISSN 1463-9076 R&D Projects: GA ČR GESON/06/E005 Institutional research plan: CEZ:AV0Z40500505 Keywords : small-angle neutron scattering * body-centered-cubic phase * shear Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.454, year: 2010

  1. Stability of the perforated layer (PL) phase in diblock copolymer melts

    DEFF Research Database (Denmark)

    Hajduk, Damian A; Takenouchi, Hiroshi; Hillmyer, Marc A

    1997-01-01

    are long-lived nonequilibrium states which convert to the bicontinuous gyroid (G) morphology upon isothermal annealing. Comparison of phase transition kinetics across chemically distinct systems spanning a wide range of molecular weights and monomeric friction coefficients reveals a composition dependence...

  2. Polyelectrolyte Complexes of a Cationic All Conjugated Fluorene Thiophene Diblock Copolymer with Aqueous DNA

    DEFF Research Database (Denmark)

    Knaapila, Matti; Costa, Telma; Garamus, Vasil M.

    2015-01-01

    TMAHT repeat units; x = 0.5 equals the nominal charge neutralization. PF2/6-P3TMAHT forms 20–40 nm sized particles with PF2/6 core and hydrated P3TMAHT exterior. The polymer particles form loose one-dimensional chains giving micrometer long branched chains (0.19 ≤ x ≤ 0.76) and subsequently randomly......We report on the structural and colorimetric effects of interaction of aqueous ∼0.06–1% poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-6-trimethylammoniumhexyl)thiophene] bromide (PF2/6-P3TMAHT) with double-stranded DNA to form PF2/6-P3TMAHT(DNA)x where x is the molar ratio of DNA base pairs to P3...

  3. Spatial Position Control of CdS Nanoclusters using a Self-Assembled Diblock Copolymer Template

    National Research Council Canada - National Science Library

    Yeh, Siao-Wei; Wu, Tsung-Lun; Wei, Kung-Hwa

    2004-01-01

    Core-shell structured quantum dots (QDs) such as CdSe/ZnS and Au/CdSe/ZnS nanoparticles are synthesized, and enhanced photoluminescent properties are observed in these nanoparticles as compared to that of bare core nanoparticle...

  4. Phase Behavior of Semiflexible-Flexible Diblock Copolymer Melt: Insight from Mesoscale Modeling.

    Czech Academy of Sciences Publication Activity Database

    Beránek, P.; Posel, Zbyšek

    2016-01-01

    Roč. 16, č. 8 (2016), s. 7832-7835 ISSN 1533-4880 R&D Projects: GA MŠk(CZ) LH12020 Institutional support: RVO:67985858 Keywords : conformational asymmetry * dissipative particle dynamics * mesoscale modeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.483, year: 2016

  5. Nanowire and Mesh Conformations of Diblock Copolymer Blends at the Air/Water Interface

    NARCIS (Netherlands)

    Seo, Young-Soo; Kim, K.S.; Galambos, Arielle; Lammertink, Rob G.H.; Vancso, Gyula J.; Sokolov, J.; Rafailovich, M.

    2004-01-01

    We investigated the structures formed when blends of poly(styrene-b-ferrocenyl silane) (PS-b-FS) and poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) were spread at the air/water interface. The results demonstrated that new structures were formed which were distinct from those formed when either of the

  6. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  7. The effect of copolymers on the interfaces in incompatible homopolymers blend: Molecular dynamics study

    Science.gov (United States)

    Ryu, Jiho; Lee, Won Bo

    2015-03-01

    Using molecular dynamics simulations the effect of copolymers as compatibilizer for reducing interfacial tension and enhancement of interfacial adhesion at the interface of thermodynamic unfavorable homopolymers blend is studied with block- and graft-copolymers. We have calculated local pressure tensor of system along the axis perpendicular to interface, varying bending potential energy of one part, which consist of just one kind of beads, of copolymer chain to examine the effect of stiffness of surfactin molecules. Here we consider symmetric diblock copolymer (f =1/2) having 1/2 N make of beads of type A and the other part made of beads of type B, and graft copolymer having backbone linear chain consist of 1/2 N beads of type of A and branched with two side-chain consist of 1/4 N beads of type B. All simulations were performed under the constant NPT ensemble at T* =1, ρ* ~0.85. Also we studied changes of effect of copolymers with increasing pairwise repulsive interaction potential between two beads of types A and B while homopolymers chain length are fixed, N =30. Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.

  8. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    Science.gov (United States)

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids.

    Science.gov (United States)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-02-07

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO(2)-expanded liquid (CXL), CO(2)-methanol. The phase behavior of the CO(2)-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO(2), forming homogeneous CXL under the experimental conditions. When treated with the CO(2)-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows "thermodynamically restricted" character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.

  10. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  11. Tamoxifen-loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies.

    Science.gov (United States)

    Cavallaro, Gennara; Maniscalco, Laura; Licciardi, Mariano; Giammona, Gaetano

    2004-11-20

    Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.

  12. Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film

    Science.gov (United States)

    Wei, Yuhan; Pan, Caiyuan; Li, Binyao; Han, Yanchun

    2007-03-01

    Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.

  13. Spectroscopic investigation of the aggregation state of amphotericin B during loading, freeze-drying, and reconstitution of polymeric micelles.

    Science.gov (United States)

    Adams, Monica; Kwon, Glen S

    2004-11-22

    To investigate the relative aggregation state of amphotericin B (AmB) during loading and reconstitution of polymeric micelles. Hexanoate and stearate derivatives of PEO-b-p (L-Asp) were prepared. The polymers and AmB were dissolved in methanol (MeOH). Milli-Q water was then added slowly, and the MeOH was removed via rotary evaporation. The solutions were freeze-dried in the presence of trehalose. During micelle preparation, the aggregation state of AmB was assessed using absorption spectroscopy. Upon reconstitution, the samples were analyzed using vapor-pressure osmometry, size-exclusion chromatography (SEC), and absorption spectroscopy. The absorption spectrum of AmB in the presence of the block copolymers was compared to that of AmB alone under the same conditions. AmB was loaded into micelles prepared from acyl derivatives of PEO-b-p (L-Asp). Absorption spectroscopy indicated that the aggregation state was preserved during the loading process. AmB exists in a self-aggregated state in polymeric micelles containing hexanoate ester cores and in a relatively monomeric state in polymeric micelles containing stearate ester cores. Vapor-pressure osmometry confirmed the isotonicity of the formulations, while SEC indicated that the micelles were approximately 10(6) g/mol. Depending on the polymer structure and assembly conditions, it is possible to encapsulate AmB in a relatively nonaggregated or aggregated state in micelles prepared from acyl derivatives of PEO-b-p (L-Asp). In polymeric micelles containing stearate side chains, AmB was loaded in a nearly monomeric state, possibly due to interaction with the stearate side chains. The final aggregation state of the drug is preserved during lyophilization and reconstitution of polymeric micelles prepared by a novel solvent evaporation procedure.

  14. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  15. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    KAUST Repository

    Misichronis, Konstantinos

    2017-03-15

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (TODT), for the first time for PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χeff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. These copolymers exhibit well-ordered structures even at high temperatures (∼260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.

  16. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    KAUST Repository

    Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; Kumar, Rajeev; Thostenson, James; Hong, Kunlun; Dadmun, Mark; Sumpter, Bobby G.; Kennemur, Justin G.; Hadjichristidis, Nikolaos; Mays, Jimmy W.; Avgeropoulos, Apostolos

    2017-01-01

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (TODT), for the first time for PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χeff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. These copolymers exhibit well-ordered structures even at high temperatures (∼260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.

  17. Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers

    Science.gov (United States)

    Zhang, Jingwen; Sides, Scott; Bates, Frank

    2013-03-01

    AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.

  18. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng; Yu, Shirong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Liu, Cheng; Deng, Yuanming; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China)

    2016-05-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL{sup −1}. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  19. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    International Nuclear Information System (INIS)

    Song, Cunfeng; Yu, Shirong; Liu, Cheng; Deng, Yuanming; Xu, Yiting; Chen, Xiaoling; Dai, Lizong

    2016-01-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by "1H nuclear magnetic resonance ("1H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL"−"1. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  20. Olefin–Styrene Copolymers

    OpenAIRE

    Nunzia Galdi; Antonio Buonerba; Leone Oliva

    2016-01-01

    In this review are reported some of the most relevant achievements in the chemistry of the ethylene–styrene copolymerization and in the characterization of the copolymer materials. Focus is put on the relationship between the structure of the catalyst and that of the obtained copolymer. On the other hand, the wide variety of copolymer architecture is related to the properties of the material and to the potential utility.

  1. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  2. Redox-responsive core cross-linked prodrug micelles prepared by click chemistry for pH-triggered doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    X. T. Cao

    2017-10-01

    Full Text Available A pH-triggered drug delivery system of degradable core cross-linked (CCL prodrug micelles was prepared by click chemistry. Doxorubicin conjugated block copolymers of azido functional poly(ethylene oxide-b-poly(glycidyl methacrylate were synthesized by the combination of RAFT polymerization, epoxide ring-opening reaction, and acid-cleavable hydrazone linkages. The CCL prodrug micelles were produced by the reaction of dipropargyl 3,3′-dithiodipropionate and dipropargyl adipate cross-linking agents with the azido groups of the micellar core via alkyne-azide click reaction, which were denoted as CCL/SS and CCL/noSS, respectively. The TEM images of CCL/SS prodrug micelles showed a spherical shape with the average diameter of 61.0 nm from water, and the shape was maintained with an increased diameter upon dilution with 5-fold DMF. The high DOX conjugation efficiency was 88.4%. In contrast to a very slow DOX release from CCL/SS prodrug micelles under the physiological condition (pH 7.4, the drug release is much faster (90% at pH 5.0 and 10 mM of GSH after 96 h. The cytotoxicity test and confocal laser scanning microscopy analysis revealed that CCL/SS prodrug micelles had much enhanced intracellular drug release capability in HepG2 cells than CCL/noSS prodrug micelles.

  3. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  4. Lamplighter model of a random copolymer adsorption on a line

    Directory of Open Access Journals (Sweden)

    L.I. Nazarov

    2014-09-01

    Full Text Available We present a model of an AB-diblock random copolymer sequential self-packaging with local quenched interactions on a one-dimensional infinite sticky substrate. It is assumed that the A-A and B-B contacts are favorable, while A-B are not. The position of a newly added monomer is selected in view of the local contact energy minimization. The model demonstrates a self-organization behavior with the nontrivial dependence of the total energy, E (the number of unfavorable contacts, on the number of chain monomers, N: E ~ N^3/4 for quenched random equally probable distribution of A- and B-monomers along the chain. The model is treated by mapping it onto the "lamplighter" random walk and the diffusion-controlled chemical reaction of X+X → 0 type with the subdiffusive motion of reagents.

  5. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Han Siyuan; Wang Huan; Liang Xingjie [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China); Hu Liming, E-mail: huliming@bjut.edu.cn [Beijing University of Technology, College of Life Science and Bioengineering (China); Li Min; Wu Yan, E-mail: wuy@nanoctr.cn [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China)

    2011-09-15

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ({sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  6. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    International Nuclear Information System (INIS)

    Han Siyuan; Wang Huan; Liang Xingjie; Hu Liming; Li Min; Wu Yan

    2011-01-01

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ( 1 H NMR, 13 C NMR, 31 P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  7. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    Science.gov (United States)

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  8. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ingemann Jensen, A.T.

    2013-06-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  9. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    International Nuclear Information System (INIS)

    Ingemann Jensen, A.T.

    2013-01-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  10. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    Science.gov (United States)

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  11. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    Science.gov (United States)

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  12. A Comparative Study on Micellar and Solubilizing Behavior of Three EO-PO Based Star Block Copolymers Varying in Hydrophobicity and Their Application for the In Vitro Release of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Bijal Vyas

    2018-01-01

    Full Text Available The temperature and pH dependent self-assembly of three star shaped ethylene oxide-propylene oxide (EO-PO block copolymers (Tetronics® 304, 904 and 908 with widely different hydrophobicity was examined in aqueous solutions. Physico-chemical methods viz. viscosity, cloud point, solubilization along with thermal, scattering and spectral techniques shows strongly temperature and salt dependent solution behavior. T304 possessing low molecular weight did not form micelles; moderately hydrophilic T904 remained as micelles at ambient temperature and showed micellar growth while very hydrophilic T908 formed micelles at elevated temperatures. The surface activity/micellization/solubilization power was favored in the presence of salt. The copolymers turn more hydrophilic in acidic pH due to protonation of central ethylene diamine moiety that hinders micelle formation. The solubilization of a model insoluble azo dye 1-(o-Tolylazo-2-naphthol (Orange OT and hydrophobic drugs (quercetin and curcumin for copolymer solutions in aqueous and salt solutions are also reported. Among the three copolymers, T904 showed maximum solubility of dye and drugs, hence the in vitro release of drugs from T904 micelles was estimated and the effect on cytotoxicity of loading the drugs in T904 micelles was compared with the cytotoxicity of free drugs on the CHO-K1 cells. The results from the present work provide a better insight in selection of Tetronics® for their application in different therapeutic applications.

  13. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    Science.gov (United States)

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug

  14. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zheng S

    2016-06-01

    Full Text Available Songping Zheng,1,* Xiang Gao,1,2,* Xiaoxiao Liu,1 Ting Yu,1 Tianying Zheng,1 Yi Wang,1 Chao You1 1Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China; 2Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA *These authors contributed equally to this work Abstract: Curcumin (Cur, a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol-poly(lactide copolymers (MPEG-PLAs. After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy. Keywords: curcumin, glioma, cell apoptosis, cell proliferation, angiogenesis 

  15. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  16. The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts

    International Nuclear Information System (INIS)

    Grason, Gregory M.

    2006-01-01

    Block copolymer systems are well known for their ability to self-assemble into a wide array of periodic structures. Due to the abundance and adaptability of physical theories describing polymers, this system is ideal for the development of robust and testible predictions about amphiphilic self-assembly phenomena at large. We review the results of field-theoretic treatments of block copolymer melts, with the aim of understanding how self-assembly in this system can be understood in terms of optimal lattice geometry. The self-consistent (mean) field theory of block copolymer melts as well as its low temperature limit, strong-segregation theory, are presented in detail, highlighting the special role played by asymmetry in the copolymer architecture. Special attention is paid to micellar configurations, where a well-defined and simple notion of optimal lattice geometry emerges from a particular asymptotic limit of the full self-consistent field theory. In this limit, the stability of competing arrangements of copolymer micelles can be assessed in terms of two discrete measures of the lattice geometry, emphasizing the non-trivial coupling between the internal configurations of the fundamentally soft micelles and the periodic symmetry of the lattice

  17. Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films

    International Nuclear Information System (INIS)

    Smith, Archie P.; Douglas, Jack F.; Meredith, J. Carson; Amis, Eric J.; Karim, Alamgir

    2001-01-01

    Surface pattern formation in diblock copolymer films is investigated as a function of film thickness h and molecular mass M . Smooth films are observed for certain h ranges centered about multiples of the lamellar thickness L 0 , and we attribute this effect to an increase in the surface chain density with h in the outer brushlike copolymer layer. We also observe apparently stable labyrinthine surface patterns for other h ranges, and the average size of these patterns is found to scale as λ∼L -2.5 0 . Hole and island patterns occur for h ranges between those of the labyrinthine patterns and the smooth regions, and their size similarly decreases with L 0 and M

  18. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  19. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  20. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    Science.gov (United States)

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.