WorldWideScience

Sample records for dibaryon resonances

  1. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  2. Summary of S = 0 dibaryon resonances and candidates

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1985-01-01

    Experimental data concerning S = O dibaryon resonances are reviewed, with an emphasis on the nucleon-nucelon system. Structures observed in the γd channel, the πd elastic scattering, pp → πd channel, and other channels are discussed. Experimental data are compared with various theories. The short-range forces can be represented by dibaryon resonances. Further measurements to clarify the understanding of dibaryons are also discussed. 53 refs., 24 figs

  3. Can doubly strange dibaryon resonances be discovered at RHIC?

    International Nuclear Information System (INIS)

    Paganis, S. D.; Hoffmann, G. W.; Ray, R. L.; Tang, J.-L.; Udagawa, T.; Longacre, R. S.

    2000-01-01

    The baryon-baryon continuum invariant mass spectrum generated from relativistic nucleus + nucleus collision data may reveal the existence of doubly strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly strange dibaryon states are considered for experimental search using the STAR detector (solenoidal tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to ΛΛ and/or pΞ - , depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensitivity are studied as a function of resonance production rate and width for one particular dibaryon which can directly strong decay to pΞ - , but not ΛΛ. Results indicate that such resonances may be discovered using STAR if the resonance production rates are comparable to coalescence model predictions for dibaryon bound states. (c) 2000 The American Physical Society

  4. Dibaryon resonances in photo- and electrodisintegration of the deuteron

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Gakh, G.I.; Kulish, Yu.V.; Rekalo, A.P.

    1989-01-01

    Special attention is given to the consideration of the polarization effects in e - d->e : -np which are most sensitive to the dibaryon constructions. The inclusion of the dibaryon resonances improves the agreement with experimental data on the reaction observables. 194 refs.; 26 figs.; 1 tab

  5. Dibaryon resonances in photon induced reactions

    International Nuclear Information System (INIS)

    Schwille, W.J.

    1981-11-01

    The author gives a review about the production of dibaryon resonances in photon reactions on deuterium targets. Especially he considers the reactions γ + d → p + n, γ + d → p + X, and γ + d → p + N + π. (HSI)

  6. Dibaryon resonances as rotational excitations of six-quark states

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Martem'yanov, B.V.; Shchepkin, M.G.

    1986-01-01

    Using the model of streched rotating (stringlike) bags with spin-orbit interaction of quarks the properties of nonstrange dibaryon spectrum are considered. The resonance d'(T=0, J P =2 - ) near the πNN threshold with the mass 1.95+2.05 GeV is predicted. Two other members of this family in spin-orbit are also predicted: d''(1 - ) and d'''(0 - ) (δE ls =30-40 MeV). Possible exostence of narrow dibaryon states with isospin T=1 and 2 is doscussed

  7. Survey of structures revealed in nucleon-nucleon scattering experiments and dibaryon resonances

    International Nuclear Information System (INIS)

    Hidaka, K.; Yokosawa, A.

    1979-01-01

    Structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems are reviewed. Evidence is presented for the existence of dibaryon resonances with an emphasis on a diproton resonance in 3 F 3 (J/sup P/ = 3 - ) state. 38 references

  8. Strange Dibaryon Systems

    CERN Multimedia

    2002-01-01

    With the exception of the deuteron, no bound state and only a few possible resonances have been reported in dibaryon systems. The best known of these is a $\\Lambda p$ enhancement which has been reported at several energies. In a recent experiment on the reaction $K^{-}d \\rightarrow \\Lambda p\\pi^{-}$ this shows up as a narrow peak (M=2129 MeV, $\\Gamma$=5.4 $\\pm$ 1.7 MeV) produced near minimum transfer of the dibaryon system. \\\\ \\\\ It is proposed to study S=-2 dibaryon systems such as ($\\Xi N$ and $\\Sigma\\Lambda$). The fast forward $K^{+}$ from the reaction \\\\ \\\\ $K^{-}d \\rightarrow K^{+}\\Sigma^{-}\\Lambda$ or $K^{+}\\Xi^{-}n$ \\\\ \\\\ will be investigated with Cerenkov counters and a magnetic spectrometer. The missing mass will be measured. Information from time-of-flight measurements will also be used to help select events and reduce background. A deuterium target will be exposed to a separated $K^{-}$ counter beam with a momentum of 1.4 GeV/c. This experiment will study the possible existence of the S=-2 dibaryon...

  9. Dibaryons

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1982-01-01

    The dibaryonic states are an important source of information for the understanding of the strong interactions. The structure of the 6 quark hadrons may reveal properties of these interactions which cannot be investigated in other systems. Our knowledge of the basic nucleon-nucleon interaction and of the nuclear forces in general has changed substantially as a result of the discovery of resonances with baryon number 2. The formation of dibaryons gives important contributions to pion-deuteron processes, and has become an essential ingredient of the description of this three body problem. The same will occur in the study of other systems. The progress of this field, both in experiment and in theory, has been substantial during the last few years. Here, some aspects of this progress are reviewed. (Author) [pt

  10. On statistical fluctuations in the dibaryon spectra

    International Nuclear Information System (INIS)

    Bazhanskij, I.I.; Luk'yanov, V.K.; Reznik, B.L.; Titov, A.I.

    1988-01-01

    The aim of this report is to show, that idea about statistical nature of dibaryon resonances corresponds to the present experimental data. Condition for cross section fluctuation occurrence is linked with value of decay width for isolated dibaryon in nucleon channel. Γ in terms of dibaryon potential quark model and q 6 → NN dibaryon decay for q 6 state with S 6 orbital symmetry and (S=I, I=0) deuteron quantum numbers are calculated as an example. np → ppπ - , dp → ppn and elastic pp-scattering are considered and distributions of cross sections and correlation functions obtained from these reactions are presented to investigate cross section fluctuations in spectra of effective masses of two-nucleon systems. Supposition about fluctuation pattern does not contradict the experiment. Curves, calculated with x l α < or approx. 0.05 partial amplitude parameter and full width of Γ < or approx. 20 MeV dibaryon resonances comply to the present experiment best. Fluctuation peculiarities -peaks in cross sections have approximately the same energy width (Γ ∼ 15-20 MeV) as the observed narrow peak in effective mass spectra of some reactions. 16 refs.; 3 figs

  11. Search for narrow dibaryon resonances in the ppπ0 channel

    International Nuclear Information System (INIS)

    Blanpied, G.S.; Didelez, J.P.; Reposeur, T.

    1987-10-01

    Experimental indications of dibaryon resonances (DBR) are discussed. A search for DBR using a specially built spectrometer in the elementary pion production channel: P + P→P + P +π 0 is described. A C12 target was bombarded by 800 MeV protons. The shape of the spectrum is consistent with corresponding charged π figures. Results show that the system, after modifications, can be used to hunt DBR

  12. Strange Dibaryons

    International Nuclear Information System (INIS)

    Franklin, G.B.; Athanas, M.; Barnes, P.D.

    1993-01-01

    Strange Dibaryons, six valence-quark hadrons constructed from one or more strange quarks, are predicted to have greater binding than dibaryons in the non-strange sector. The flavor-singlet dibaryon with quark structure ''uuddss'' is of particular theoretical and experimental interest. A brief review of the status of H dibaryon studies is presented with emphasis on experiment E813 currently taking data at the AGS

  13. Dibaryons and nuclear matter

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, L.; Popa, V.

    1992-01-01

    We discuss some recent ideas concerning the structure and the properties of the dibaryonic resonances, with special emphasis on their behaviour when produced in dense nuclear matter. Some features of their de-excitation mechanism and consequent experimentally identifiable signatures are predicted. (Author)

  14. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1992-08-01

    Some old characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5 A GeV/c momenta, which are explained as the manifestation of a few mechanism of strangeness production via dibaryonic de-excitations. A signature of formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analysed in the frame of the MIT-bag model and the Monte Carlo simulation. The role played by the dibaryonic resonances in the relativistic nuclear collisions could be a significant one. (author). 23 refs, 5 figs, 1 tab

  15. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1993-08-01

    Some odd characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di- pionic signals of the dibaryonic orbital de- excitations are analyzed in the frame of the MIT -bag Model and a Monte Carlo simulation. The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. (author). 29 refs, 7 figs

  16. Novel six-quark hidden-color dibaryon states in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bashkanov, M.; Brodsky, Stanley J.; Clement, H.

    2013-12-01

    The recent observation of a hadronic resonance d* in the proton–neutron system with isospin I=0 and spin-parity JP=3+ raises the possibility of producing other novel six-quark dibaryon configurations allowed by QCD.

  17. Three-channel K-matrix analysis of dibaryons in JP = 2± and 3- states

    International Nuclear Information System (INIS)

    Hiroshige, Noboru

    1986-01-01

    We have investigated the dibaryon resonances with the quamtum numbers J P = 2 + , 2 - and 3 - in terms of a three-channel K-matrix method using the pp-pp, pp-πd and πd-πd amplitudes obtained by the partial-wave analysis as the input data. We have found many good solutions in each case and all of the solutions have a nearby pole in the lower-half complex energy plane. The obtained resonance masses cluster in the region 2.15 - 2.16 GeV. A remarkable finding of our three-channel analysis is that the dibaryon resonances have very weak coupling to the pp channel. To get more difinite conclusion we need the pp-NΔ and πd-NΔ amplitude as well as a better πd-πd one. (author)

  18. Dibaryonic degrees of freedom in Hadronic and nuclear physics

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Shikhalev, M.A.

    2005-01-01

    The basic aim of the talk is to show that the dibaryons (independently upon the fact of existence or nonexistence of narrow dibaryons) may become one of the main ingredients and degrees of freedom in hadronic and nuclear physics. It follows straightforwardly from the new model for nuclear force, in which the intermediate-state dibaryons play the role of main carriers of strong interaction of nucleons at intermediate and short ranges in 2N, 3N and other nuclear systems. These intermediate-state dibaryons, or dressed six-quark bags in NN-scattering are strongly coupled to the initial and final NN-channels and thus they have large widths which prevent their direct experimental evidence. However the new model predicts a lot of new effects of dibaryons, which should be seen experimentally in hadronic and nuclear processes. Some of these new predictions have been already confirmed in numerous calculations made jointly in Moscow and Tuebingen university groups. We enumerate shortly here only the most interesting effects of dibaryons in hadronic and nuclear physics: (i) partial restoration of chiral symmetry in multiquark (i.e. 6q, 9q etc.) systems with the respective reduction of the scalar sigma-meson mass; (ii) enhancement of the near-threshold π 0 and π + π − , π 0 π 0 – production in pp, pd etc. collisions; explanation of the long-term ABC-puzzle; (iii) enhancement of the vector-meson and (e + e − ) production in the GeV region in pp, pd etc. collisions; (iv) large yield of cumulative mesons and other hadrons (studied experimentally by Baldin with coworkers) in p-A, d-A etc. high-energy collisions; (v) new electro-magnetic currents related intimately to the dibaryon degrees of freedom, which contribute to the all deuteron e.-m. observables, like deuteron magnetic and quadrupole moments, cross sections of photo-disintegration etc.; (vi) some novel contribution to the Coulomb energies of all nuclei (∼ 15%), which is able to explain the long-standing Nollen

  19. S = −1 dibaryon formation in the Sigma−D atom

    NARCIS (Netherlands)

    Aerts, A.T.M.

    1986-01-01

    An estimate of the formation rate of the strangeness S = -1 dibaryons Ds and Dt via "¿--capture" in a ¿-d atom is presented. Reasonable branching ratios are expected for formation from the atomic P orbitals. The ¿-d atom experiment is found to be sensitive to the formation of Ds dibaryons in a mass

  20. The H dibaryon on the lattice

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.

    2002-08-01

    We present our final results for the mass of the six quark flavor singlet state (J P =0 + , S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the ΛΛ threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)

  1. The H dibaryon on the lattice

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.

    2003-01-01

    We present our final results for the mass of the six quark flavor singlet state (J P = 0 + , S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation

  2. Hyperon-nucleon interaction and the 2.13 GeV strange dibaryonic system in the P-matrix approach

    International Nuclear Information System (INIS)

    Kerbikov, B.O.; Bakker, B.L.G.; Daling, R.

    1988-01-01

    A description is presented of the low-energy YN (Y = Λ, Σ) interactions within the Jaffe-Low P-matrix formalism. Analysing the enhancement of the Λp invariant mass near the Σ + n threshold we conclude that it should be identified as a P-matrix partner of the deuteron and not as a six-quark dibaryon resonance. (orig.)

  3. The H dibaryon on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Karsch, F. [Bielefeld Univ. (Germany). Fakultaet fuer Physik

    2002-08-01

    We present our final results for the mass of the six quark flavor singlet state (J{sup P}=0{sup +}, S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the {lambda}{lambda} threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)

  4. The H dibaryon on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F

    2003-05-01

    We present our final results for the mass of the six quark flavor singlet state (J{sup P} = 0{sup +}, S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation.

  5. Searching for the H-dibaryon at Brookhaven

    International Nuclear Information System (INIS)

    Bassalleck, B.; Athanas, M.; Berdoz, A.

    1996-01-01

    At the Brookhaven AGS several experiments are searching for the unique strangeness S = -2 H-dibaryon with the quark composition (uuddss). The E813/E836 collaboration, in particular, is using a high-intensity, separated 1.8 GeV/c K - beam and two different target configurations. In E836 the reaction K - + 3 He → K + + H + n is used to search for a relatively deeply-bound H. Complementary to E836 the reactions K - + p → Ξ + K + , followed by (Ξ - , d) atom → H + n are used to search near twice the Λ mass. The status of these two experiments is summarized, and other H-dibaryon searches are briefly reviewed. (author)

  6. Search for H-dibaryon at J-PARC with a Large Acceptance TPC

    Directory of Open Access Journals (Sweden)

    Sako H.

    2014-03-01

    Full Text Available H-dibaryon has been predicted as a stable 6-quark color-singlet state. It has been searched for by many experiments but has never been discovered. Recent lattice QCD calculations predict H-dibaryon as a weakly bound or a resonant state close to the LL threshold. E224 and E522 experiments at KEK observed peaks in LL invariant mass spectra near the threshold in (K-, K+ reactions, which were statistically not significant. Therefore, we proposed a new experiment E42 at J-PARC. It will measure decay products of ΛΛ and Λπ-p in a (K-, K+ reaction. We design a large acceptance spectrometer based on a Time Projection Chamber (TPC immersed in a dipole magnetic field. The TPC surrounds a target to cover nearly 4π acceptance, and accepts K- beams up to 106 counts per second. To suppress drift field distortion at high beam rates, we adopt Gas Electron Multipliers (GEMs for electron amplification and a gating grid. We show an overview of the experiment, the design of the spectrometer, and the R&D status of the TPC prototype.

  7. Present status of dibaryons

    International Nuclear Information System (INIS)

    Locher, M.P.

    1981-01-01

    In the present notes the author tries to assess the situation regarding dibaryons in the various channels with baryon number two, emphasizing the problems and discussing in greater detail the most recent developments since the Versailles Conference. One of the motivations for the present search of B=2 states is the possibility of colored subclusters for systems with six quarks which cannot occur for ordinary baryons or mesons. (Auth.)

  8. Possibility of new dibaryons containing heavy flavors

    International Nuclear Information System (INIS)

    Leandri, J.; Silvestre-Brac, B.

    1993-01-01

    In a recent paper we have shown that the possibility of including heavy flavor in the dibaryon sector can lead to some new favored configurations (relative to the baryon-baryon threshold). In this study we extend our previous work by a systematic study of all the physical Qq 5 systems in a simple chromomagnetic model. In the first part we assume that the q quarks belong to the fundamental irrep of SU(3) F and that the Q quark has infinite mass. These assumptions are subsequently relaxed by introducing two mass parameters δ and η. Once these symmetries are broken we gain access in our model to a large number of new dibaryons containing heavy flavor. Some of them could be stable against decay via strong interactions, and we indicate the most favorable cases

  9. Searches for the H-dibaryon at the AGS

    International Nuclear Information System (INIS)

    Quinn, B.; Berdoz, A.; Franklin, G.

    1994-01-01

    A review is made of those past, present, and planned experiments at the AGS whose primary purpose is to determine whether the H-dibaryon exists. Preliminary results are given for experiment E813, based on partially-completed analysis

  10. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  11. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  12. The observation of a stable dibaryon

    International Nuclear Information System (INIS)

    Shakhbazyan, B.A.; Sashin, V.A.; Kecheryan, A.O.; Martynov, A.S.

    1989-01-01

    V 0 -particle which is unambiguously interpreted as a weak decay of the stable dibaryon value of cross section H→p+Σ - ,Σ→n+π - is observed. Its mass is M H =(2218+-12) MeV c 2 with a standard deviation S=12 MeV/c 2 and the error of the mean σ=2.8 MeV/c 2 . The investigation has been performed at the Laboratory of High energies, JINR. 10 refs.; 1 fig.; 3 tabs

  13. Searching for the H dibaryon at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Princeton Univ., NJ (United States)

    1994-12-01

    This paper reviews the status of current experiments at Brookhaven, searching for the six-quark H dibaryon postulated by R. Jaffe in 1977. Two experiments, E813 and E888, have recently completed running and two new experiments, E836 and E885, are approved to run. The data recorded so far is under analysis and should have good sensitivity to both short-lived and long-lived Hs.

  14. Effects of 1D2 dibaryon formation in πd scattering

    International Nuclear Information System (INIS)

    Dosch, H.G.

    1984-01-01

    The authors analyse the contributions of dibaryon formation to πd observables taking into account the deuteron structure. They obtain that the main contribution comes from the Δ formation diagram. (Auth.)

  15. Dihadronic and dileptonic resonances

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Simple phenomenological rules are suggested for calculation of dihadron and dilepton resonance masses. A general interpretation is given for different exotic resonances in nuclear physics: Darmstadt-effect, dibaryon, dipion and other resonances. Information about the inner structure of e ± , proton, neutron, pions and so on can be obtained from the usual reactions of the type e + + e - =>γγ, e ± +γ=>e ± γ, e ± μ ± , e ± N... at low, intermediate and high energies using existing experimental devices

  16. Low-lying S-wave and P-wave dibaryons in a nodal structure analysis

    International Nuclear Information System (INIS)

    Liu Yuxin; Li Jingsheng; Bao Chengguang

    2003-01-01

    The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons

  17. Further Evidence for an unstable H-Dibaryon ?

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.

    2000-01-01

    We present preliminary results for the mass of the 6q flavor-singlet state (J P = 0 + , S = -2) called H-dibaryon, calculated in quenched QCD on 16 3 x30 and 243x30 lattices with improved gauge and fermion actions (Symanzik improvement, Clover action). For both lattice sizes we applied the fuzzing technique to enhance the overlap with the ground state. We observe a H-mass above the ΛΛ-threshold for strong decay. The difference in mass, mH - 2 mλ , increases with increasing lattice size

  18. Further Evidence for an unstable H-Dibaryon ?

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E

    2000-03-01

    We present preliminary results for the mass of the 6q flavor-singlet state (J{sup P} = 0{sup +}, S = -2) called H-dibaryon, calculated in quenched QCD on 16{sup 3}x30 and 243x30 lattices with improved gauge and fermion actions (Symanzik improvement, Clover action). For both lattice sizes we applied the fuzzing technique to enhance the overlap with the ground state. We observe a H-mass above the {lambda}{lambda}-threshold for strong decay. The difference in mass, mH - 2{sub m{lambda}}, increases with increasing lattice size.

  19. Search for a strangeness -2 dibaryon

    International Nuclear Information System (INIS)

    Franklin, G.B.

    1985-01-01

    The existing data on the strangeness -2 two-baryon mass spectrum is reviewed and a new experiment is proposed to explore this spectrum from 100 MeV below the mass of the lightest known two-baryon strangeness -2 system, ΛΛ, to 20 MeV above the ΛΛ mass. The proposed experiment is motivated by Jaffe's 1977 prediction of a six-quark object with strangeness -2 and J/sup π/ = 0 + at a mass of 2150. This particle, called the ''H'', has been predicted by later bag models as well. Calculations indicate the proposed experiment will be a sensitive test of the dibaryon theories. 12 refs

  20. All strange and terrible events: A search for the H dibaryon

    International Nuclear Information System (INIS)

    Ware, B.

    1995-12-01

    No six-quark bound hadron, (other than the loosely bound deuteron) has been observed, despite several experimental searches. Some models of quark dynamics predict the existence of such a state, the doubly-strange six-quark H dibaryon (uuddss) being the most likely. The mass of the H would be between that of the deuteron and the 2m Λ strong interaction decay threshold. In 1992, Experiment E888 at Brookhaven National Lab's Alternating Gradient Synchrotron collected data to search for this particle. The detector consisted of a two-arm spectrometer with drift chamber tracking and two magnets for momentum analysis, scintillator hodoscope triggering, Cerenkov particle identification, an electromagnetic calorimeter, and a muon hodoscope and rangefinder. The experiment searched for the decay Λ → pπ - from the weak decays of H → Λn and H → Σ 0 n (followed by Σ 0 → Λγ). This search was sensitive to weakly decaying H dibaryons with lifetimes from 6-230 us with production cross-sections greater than ∼2 μb/steradian

  1. Equation of state of nuclear matter of nucleons and dibaryons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1985-01-01

    The nuclear matter is considered consisting of nucleons and dibaryons, i.e. elementary particles of double baryon charge. The equation of state of such matter at zero temperature is found. The ideal gas approximation is considered and then the role of interaction is discussed which is included by means of delta-like potential. The peculiarities and possible phisical consequences of the equation of state are considered

  2. Search for the H Dibaryon (S = -2) Using Diffraction Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Ecklund, K.

    2005-04-05

    The observed hadrons are understood as bound states of three quarks (baryons) or of quarks and antiquarks (mesons). To date no six quark bound state other than the loosely bound deuteron has been observed. Quantum Chromodynamics permits other color-singlet bound states of quarks, and a number of phenomenological models extended from the baryon (q{sup 3}) and meson (q{bar q}) sectors predict bound six quark states (q{sup 6}). The most probable candidate is the H dibaryon, composed of two each of the lightest three quarks (udsuds), with quantum numbers J{sup P} = 0{sup +}, I = 0 and S = -2. Its mass would likely be between the deuteron mass and twice the {Lambda} (uds) mass. This dissertation describes a search for the H dibaryon conducted in a neutral beam at the Brookhaven National Laboratory's Alternating Gradient Synchrotron. In the experiment a 24.1 GeV/c proton beam struck a 1.35 interaction length platinum target producing a collimated neutral beam (62 {mu}sr at 65 mrad from the incident proton direction) which propagated through a 18 m vacuum decay tank before entering a double arm spectrometer. Approximately 20 m from the production target a 10 cm (0.15 interaction length) long active scintillator dissociator was placed in the beam.

  3. Dibaryon states containing two different types of heavy quarks

    International Nuclear Information System (INIS)

    Leandri, J.; Silvestre-Brac, B.

    1995-01-01

    In a recent series of papers we have shown that including heavy quarks in the dibaryon sector can lead to configurations stable against decay into two baryons. In this study we extend our previous work by a study of all the physical Q 2 q 4 [Q denotes a heavy quark and q denotes a member of the SU(3) F triplet representation] systems in a solvable chromomagnetic model. We propose a number of new heavy states which could be stable under strong interactions

  4. Are narrow mesons, baryons and dibaryons evidence for multiquark states?

    International Nuclear Information System (INIS)

    Tatischeff, B.; Yonnet, J.

    2000-01-01

    Several narrow structures have been progressively observed since the last fifteen years, in di-baryonic invariant mass spectra or in missing mass spectra. More recently, narrow structures were observed in baryonic and now in mesonic mass spectra. Since these small peaks appear at fixed masses, independently of the experiment, they are associated with real states. There is no room to explain these states within classical nuclear physics taking into account baryonic and mesonic degrees of freedom. An interpretation is proposed, which associate these narrow structures with two coloured quark clusters. (authors)

  5. On the possible existence of a long-lived strange dibaryon

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Ral'chenko, Yu.V.; Vasilets, A.V.

    1988-01-01

    Using the QCD string model with spin-orbit coupling the masses of strange S=-1 dibaryons are calculated. Possible existence of a long-lived state DB S - (with the lifetime much larger than τ Σ ) with the mass 2.03 GeV ≤ M ≤ M Σ +M N and the isospin I=3/2 is predicted. The weak nonleptonic and semileptonic decay widths of DB S - and its production cross section in the reaction π - d → K + DB S - are calculated. The results are compared with the available experimental data

  6. Study of dibaryon states containing three different types of quarks

    International Nuclear Information System (INIS)

    Leandri, J.; Silvestre-Brac, B.

    1997-01-01

    Previously we have shown, in a simple chromomagnetic model, that including heavy quarks in the dibaryon sector can lead to favorable configurations for stability against decay into two baryons. In this study we investigate a reduced set of favorable candidates that have emerged from our previous works. We use a non-relativistic quark model with quarks interacting through a QCD-inspired potential, which has been tested previously in meson and baryon spectroscopy. A variational procedure is performed using a great number of Gaussian functions containing all the possibilities for colour, isospin, and spin components. (author)

  7. Effects of six-quark bags on the 1D2 NN partial wave and the question of dibaryon resonances

    International Nuclear Information System (INIS)

    Grach, I.L.; Kalashnikova, Yu.S.; Narodetskij, I.M.

    1986-01-01

    The coupled 1 D 2 (pp)- 5 S 0 (ΔN) channels are studied in a relativized version of the quark compound bag (QCB) model. The QCB model is a semiphenomenological model that incorporates the important role that the bag dynamics plays at small distances. In this model, the short-range hadron force is given by the energy-dependent and non-local potential and contains few parameters which are defined by the wave function of the six-quark primitive. It is suggested that this force is responsible for the appearance of the S-matrix pole of the dibaryon amplitude. The QCD short-range force is shown to reproduce an energy dependence of the 1 D 2 phase shift and inelasticity in the region T >or approx. 200 MeV. At small energy the effect of the long-range meson force is essential. The values of the QCD parameters found from the fit to the data are in good agreement with theoretical predictions for the MIT bag model

  8. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. coalescence

    International Nuclear Information System (INIS)

    Steinheimer, J.; Gudima, K.; Botvina, A.; Mishustin, I.; Bleicher, M.; Stöcker, H.

    2012-01-01

    We study the production of (hyper-)nuclei and dibaryons in most central heavy ion collisions at energies of E lab =1-160 A GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for dibaryons including Ξ's, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti- 4 He and even anti- 4 Λ He is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor R H when comparing the thermal production with the coalescence results.

  9. NNΔ resonance and pd → 3He πo reaction

    International Nuclear Information System (INIS)

    Ueda, T.

    1988-01-01

    On the basis of the I = 1, JP = 2+ resonant NΔ interaction (the pp 1D2 dibaryon), one argues that in NNΔ system a three-body resonance is generated. With a clustering binding energy of a few 10 MeV between the N and the Δ making the dibaryon and another binding energy of about 10 MeV between the NΔ cluster and the spectator N due to the attractive interaction of the Δ exchange between the cluster and spectator, the NNΔ system is bound about 40 - 60 MeV below the NNΔ threshold. Because of the Δ decay width the NNΔ bound state is actually a resonant state. The case where the spins of all the particles align in the same direction is most favorable to be bound, since the driving term is largest here. Assigning the zero orbital angular momenta, the spin-parity of the NNΔ resonance is JP = (5/2)+ . The resonance couples with NNN system through NN(1D2)-NΔ(5S2). Thus the total spin of the NNN system which couples easily with the NNΔ resonance is 1/2. Namely the spin doublet pd channel creates the NNΔ resonance. Similar argument applies to NΔΔ system. Then one summarize: NNΔ resonance : M = 3.07 GeV, JP = (5/2)+. NΔΔ resonance : M = 3.36 GeV, JP = (7/2)+. Both are easy to couple with the spin-doublet pd channel. Assuming the NNΔ and NΔΔ resonance terms, combined with the background ones which are mild in the energy dependence, one analyses the differential cross section and the deuteron tensor polarization of pd → 3 He π o at deuteron incident energy 410 ∼ 2200 MeV at θ = 0 and π. The remarkable energy-dependent structure of the tensor polarization is fairly explained by the existence of the NNΔ and NΔΔ resonances. (author)

  10. An extension to SUf3 and Dirac particle of the transformation between physical bases and symmetry bases for dibaryon states

    International Nuclear Information System (INIS)

    Ping Jialun

    1994-01-01

    The transformation between physical bases and symmetry bases is extended from SU f 2 to SU f 3 . Its application in dibaryon calculation for both nonrelativistic and relativistic quark model is discussed

  11. H-dibaryon search with a scintillating fiber live target

    International Nuclear Information System (INIS)

    Ahn, J.K.; Aoki, S.; Chung, K.S.; Chung, M.S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Itow, Y.; Lee, J.M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nakano, T.; Nagoshi, C.; Niwa, K.; Nomura, I.; Park, I.S.; Park, Y.M.; Saito, N.; Sekimoto, M.; Shin, Y.M.; Sim, K.S.

    1995-01-01

    An experiment (E224) searching for the H-dibaryon has been performed at the KEK-PS K2 beam line in 1991∼1992. A new type of visual live target using plastic scintillating fibers has been developed for this experiment. We have been searching for the H produced by the direct process, K - +C→K + +H+X, and also by an atomic capture of Ξ - in carbon atom in the target. More than 4500 (K - , K + ) events on 12 C target have been detected in the quasi-free region, where we expect about 150 Ξ - 's are captured in carbon atom. So far, no positive candidate has been found. The upper limits of the H production through these processes are reported. copyright 1995 American Institute of Physics

  12. Spin-2 NΩ dibaryon from lattice QCD

    International Nuclear Information System (INIS)

    Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji

    2014-01-01

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error

  13. Spin-2 NΩ dibaryon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)

    2014-08-15

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.

  14. The search for the H dibaryon with the BNL 2.0 GeV/c kaon beam

    International Nuclear Information System (INIS)

    Quinn, B.P.

    1991-01-01

    The status is given for two experiments being carried out to search for evidence of the H dibaryon. BNL experiments E813 and E836 will use the new 2 GeV/c kaon beam line. The former has recently begun data taking. They cover complementary regions of mass-sensitivity and promise to provide sensitive tests of the existence of the H. 12 refs

  15. The discovery of resonances in multibaryon systems. Pt. 3. Λ p-resonances

    International Nuclear Information System (INIS)

    Shahbazian, B.A.; Temnikov, P.P.; Timonina, A.A.; Rozhdestvenskij, A.M.

    1978-01-01

    Dibaryon Λ p resonance of 2256 MeV/c 2 mass, GITA 2 (depending on the spin Jsub(Λp)) width, and Jsup(p) > O + spin-parity assignments is discovered. The statistical significance of the corresponding peak in Λ p effective mass spectra is defined by more than five standard deviations. Its production effective cross section in n 12 C collisions at =7.0 GeV/c is estimated to be sigmasub(pr) (2256)=(85.3+-20.0)μb, whereas the formation effective cross section in Λ p → Λ p interactions is sigmasub(f) (2256) = 5.3(2Jsub(Λp)+1) mb. The Λp effective mass spectra which have been investigated in this experiment reveal, apart the well known approximately(Msub(Λ+Msub(p)) MeV/c 2 and 2128 MeV/c 2 peaks, enhancements including 2256 MeV/c 2 peak near the most of the resonance mass values predicted by MIT Bag Model. Possible mechanisms of multibaryon resonance formation are discussed. According to the hypercharge selection rule Y <= 1 multibaryon resonances are shown to be ultra-high density superstrange objects

  16. Search strange (S = -2) dibaryons in the reaction K-+d->K++MM at 1,4 GeV/c

    International Nuclear Information System (INIS)

    D'Agostini, G.; Auriemma, G.; Marini, G.; Martellotti, G.; Massa, F.; Nigro, A.; Rambaldi, A.; Sciubba, A.

    1982-01-01

    The reaction K - + d -> K + + MM has been studied at 1.4 GeV/c, to search for Q = -1, S = -2 dibaryonic states, in the mass range approx.= 2.1-2.5 GeV/c 2 . No evidence for the presence of structures has been found and upper limits for the backward production differential cross section for narrow states are established. (orig.)

  17. Observation of candidates for heavy positively charged S=-2 H+ dibaryon with a weak decay channel H+→Λ+p+π0

    International Nuclear Information System (INIS)

    Aslanyan, P.Zh.; Emel'yanenko, V.N.; Rikhvitskij, V.S.

    2001-01-01

    Two events were detected on the photographs from the JINR 2m propane bubble chamber exposed to a 10 GeV/c proton beam, which can be interpreted as heavy S=-2 H + stable dibaryon with a weak decay H + →Λ+p+π 0

  18. Dressed dibaryon production as a new mechanism for basic nuclear force and meson-exchange currents

    International Nuclear Information System (INIS)

    Kukulin, V.I.

    2003-01-01

    A novel concept for the nuclear force is introduced. The approach assumes that a specific dressed six-quark state (dressed dibaryon) is generated in NN collision at intermediate and short ranges. The new dressing mechanism providing π-, σ-, ρ- and ω-meson clouds around the six quark core is discussed. These novel components produce both strong intermediate-range attraction and short-range repulsion in the NN sector due to the s-channel exchange mechanism which is supplemented with conventional π- and 2π- Yukawa exchanges at intermediate and long ranges. The model developed is demonstrated to lead to numerous new effects and contributions in many fields of nuclear physics. (author)

  19. Experimental search for B=2, T=0 states in the d+d->d+X reaction

    International Nuclear Information System (INIS)

    Combes, M.P.; Berthet, P.; Frascaria, R.; Perdrisat, C.F.; Tatischeff, B.; Willis, N.; Aslanides, E.; Hibou, F.; Bing, O.; Beurtey, R.; Boivin, M.; Hutcheon, D.; Le Bornec, Y.; Fabbri, F.; Picozza, P.; Satta, L.; Yonnet, J.

    1984-01-01

    A search for isoscalar dibaryonic resonances by means of missing-mass spectra in the d + d -> d + X reaction has been attempted using deuteron beams of T = 2.29, 2.00 and 1.65 GeV. The results do not show any evidence for a narrow peak with a limit of 30 nb/GeV 2 for a 15 MeV width or a broad enhancement which could be unambiguously attributed to a dibaryonic resonance. (orig.)

  20. Novel baryon resonances in the Skyrme model

    International Nuclear Information System (INIS)

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  1. Possible physics program with a large acceptance hyperon spectrometer at J-PARC

    International Nuclear Information System (INIS)

    Imai, Kenichi

    2013-01-01

    We are going to construct a large acceptance hyperon spectrometer (HypTPC) at J-PARC primarily to search for H-dibaryon. The HypTPC consists of a superconducting Helmholtz magnet and a Time Projection Chamber (TPC). The short-life hyperons can be detected with high precision as well as any charged particles. Here, we discuss possible physics programs other than H-dibaryon which can be done with this spectrometer, such as a nucleon resonance spectroscopy experiment, systematic study of Λ(1405) and spectroscopy of Ξ and Ω - resonances. (author)

  2. Isoscalar single-pion production in the region of Roper and d⁎(2380 resonances

    Directory of Open Access Journals (Sweden)

    P. Adlarson

    2017-11-01

    Full Text Available Exclusive measurements of the quasi-free pn→ppπ− and pp→ppπ0 reactions have been performed by means of pd collisions at Tp=1.2 GeV using the WASA detector setup at COSY. Total and differential cross sections have been obtained covering the energy region Tp=0.95–1.3 GeV (s=2.3–2.46 GeV, which includes the regions of Δ(1232, N⁎(1440 and d⁎(2380 resonance excitations. From these measurements the isoscalar single-pion production has been extracted, for which data existed so far only below Tp=1 GeV. We observe a substantial increase of this cross section around 1 GeV, which can be related to the Roper resonance N⁎(1440, the strength of which shows up isolated from the Δ resonance in the isoscalar (NπI=0 invariant-mass spectrum. No evidence for a decay of the dibaryon resonance d⁎(2380 into the isoscalar (NNπI=0 channel is found. An upper limit of 180 μb (90% C.L. corresponding to a branching ratio of 9% has been deduced.

  3. Multiquark exotics (baryonium, dibaryons etc)

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.

    1987-01-01

    The multiquark exotic resonant states q 2 -(anti q) 2 , q 3 -(anti q) 3 , q 6 and q 9 are discussed as systems composed of the few colour clusters. Special attention is devoted to the problem of narrow resonances in channels anti NN, Δanti p+pions, πNN and NN. 42 refs.; 2 figs.; 5 tabs

  4. Lattice QCD study of the $H$ dibaryon using hexaquark and two-baryon interpolators arXiv

    CERN Document Server

    Francis, A.; Junnarkar, P.M.; Miao, Ch.; Rae, T.D.; Wittig, H.

    We present a lattice QCD spectroscopy study in the isospin singlet, strangeness $-2$ sectors relevant for the conjectured $H$ dibaryon. We employ both hexaquark and two-baryon interpolating operators to isolate the ground state in the rest frame and in moving frames. Calculations are performed using two flavors of O($a$)-improved Wilson fermions and a quenched strange quark. Our initial point-source method for constructing correlators does not allow for two-baryon operators at the source; nevertheless, results from using these operators at the sink indicate that they provide an improved overlap onto the ground state in comparison with the hexaquark operators. We also present results, in the rest frame, using a second method based on distillation to compute a hermitian matrix of correlators with two-baryon operators at both the source and the sink. This method yields a much more precise and reliable determination of the ground-state energy. In the flavor-SU(3) symmetric case, we apply L\\"uscher's finite-volume...

  5. Polarized beam asymmetry for. gamma. d. -->. Peta in the energy range 0. 4-0. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, F.V.; Arustamyan, G.V.; Galumyan, P.I.; Grabsky, V.H.; Hakopyan, H.H.; Karapetyan, V.V.; Vartapetyan, H.A.

    1983-01-01

    Measurements of the polarized beam asymmetry for deuteron photodisintegration ..gamma..d ..-->.. Peta have been carried out in the energy range E/sub ..gamma../ = 0.4-0.8 GeV and at angles theta/sub p//sup cm/ = 45/sup 0/-75/sup 0/. The results obtained are in disagreement with theoretical predictions which take into account the dibaryon resonance contribution. The data qualitative analysis indicates the weakness of isoscalar dibaryon amplitudes near E/sub ..gamma../ = 400 MeV. 8 references, 1 figure.

  6. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Smruti J., E-mail: fizix.smriti@gmail.com; Vinodkumar, P. C. [P. G. Department of Physics, Sardar Patel University, VallabhVidyanagar - 388120, Gujarat (India)

    2016-05-06

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J{sup P} values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  7. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    International Nuclear Information System (INIS)

    Patel, Smruti J.; Vinodkumar, P. C.

    2016-01-01

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J"P values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  8. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC; Recherche de matiere etrange (exotique) dans les experiences STAR et ALICE aupres des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, R

    2006-02-15

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H{sup 0} in the {lambda}p{pi}{sup -} decay mode was calculated thanks to a dedicated simulation. The search for the H{sup 0}, and for the {xi}{sup -}p resonance as well, was performed in the STAR Au+Au data at {radical}(s{sub NN}) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons {lambda}, {xi} and {omega}, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H{sup 0} and ({xi}{sup 0}p){sub b} and to the {lambda}{lambda} resonance were calculated as well. (author)

  9. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC

    International Nuclear Information System (INIS)

    Vernet, R.

    2006-02-01

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H 0 in the Λpπ - decay mode was calculated thanks to a dedicated simulation. The search for the H 0 , and for the Ξ - p resonance as well, was performed in the STAR Au+Au data at √(s NN ) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons Λ, Ξ and Ω, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H 0 and (Ξ 0 p) b and to the ΛΛ resonance were calculated as well. (author)

  10. Theoretical aspects of the nucleon-nucleon workshop

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1984-01-01

    This report concentrates on the inelastic NN system from 300 to 1500 MeV. Topics covered include the visibility of quark signals, dibaryons, the model dependence of predicted NN inelasticities, and a review of how well present conventional models compare with a rapidly expanding database. The general conclusion is that there is so far no clear evidence in the NN system at intermediate energies for unconventional dibaryon resonances. Short remarks are also made concerning one theoretical contribution on elastic scattering and on new experimental results for deuteron photo-disintegration and pion-nucleon charge exchange. 11 references

  11. Search for T=2 dibaryons in the rvec p+p→π-+X reaction and study of highly inelastic NN scattering

    International Nuclear Information System (INIS)

    Combes-Comets, M.P.; Courtat, P.; Frascaria, R.; Le Bornec, Y.; Loireleux, E.; Reide, F.; Tatischeff, B.; Willis, N.; Aslanides, E.; Benabdelouahed, D.; Bergdolt, A.M.; Bergdolt, G.; Bing, O.; Fassnacht, P.; Hibou, F.; Boivin, M.; Chisholm, A.; Kerboul, C.; Moalem, A.

    1991-01-01

    In order to search for isospin-2 dibaryons and to study the inelastic nucleon-nucleon channels producing at least two pions, the differential cross sections and analyzing powers have been measured for the p(rvec p,π - )X reaction with polarized proton beams of 1.45, 2.1, and 2.7 GeV. The pions were detected at an angle of 13.8 degree by the SPESIII spectrometer located at Laboratoire National Saturne. No statistically significant evidence for structures corresponding to πNN bound states or six-quark states could be established. However, upper limits to the cross section for such processes are deduced. The data analysis in terms of phase space has shown that as the bombarding energy increases, N * N final states have to be taken into account besides the usual NΔ and ΔΔ processes in order to adequately describe our results

  12. Annual report 1979-1980

    International Nuclear Information System (INIS)

    Experiments have been performed at CERN in collaboration with scientists from other laboratories: search of new narrow resonant structures, baryonium, dibaryons, hadrons structure studied with the 'Lezard' spectrometer, flavour... The participation to the UA1 experiment continued and developed a very important technical cooperation [fr

  13. Isospin symmetry violation, meson production and η-nucleus ...

    Indian Academy of Sciences (India)

    The experiment was perfomed at the cooler synchrotron accelerator. COSY, Jülich at several beam energies close to the corresponding production threshold. We also have ongoing programmes on -nucleus final-state interaction studies via + 6Li → 7Be + reactions, high resolution search for dibaryonic resonances ...

  14. Double recharge of pions on a deuterium

    International Nuclear Information System (INIS)

    Nichitiu, F.; Falomkin, I.V.; Shcherbakov, Yu.A.

    1987-01-01

    Assumptions on the dibaryon nature of the existing narrow resonances below the threshold of the NΔ-state with masses 1935, 1965, 2015 MeV are considered. New proposals on construction of the particle systematics with a new particle (R-particle of mass 1025 MeV, J=1/2, T=3/2) are used to draw a conclusion that double charge exchange is possible on deuterium and helium-3 if dibaryons or new R-particles are born in the final state. Attention is paid to a possible decay of these particles through a weak channel. A search for double charge exchange of pions on hydrogen and deuterium using a laser-illuminated streamer chamber of high pressure is proposed

  15. Recent results on polarizations and the present status of the Fermilab polarized beams

    International Nuclear Information System (INIS)

    Yokosawa, Akihiko.

    1986-01-01

    Experimental results are reviewed on polarization phenomena in nucleon-nucleon scattering at intermediate energies. The present status of S = 0 dibaryon resonances is presented. The status of the Fermilab polarized beam program is presented, including the construction of polarized beam, two polarimeters being installed in the experimental hall, and the experimental program

  16. Is the electron an elementary particle?

    International Nuclear Information System (INIS)

    Gareev, F.A.

    1997-01-01

    Simple phenomenological rules are suggested for the calculation of dihadron and dilepton resonance masses. A general interpretation is given for the different exotic resonances in nuclear physics: ABC- and Darmstadt-effect, dibaryon and so on resonances. Information about the inner structure of e ± , proton, neutron, pions and so on can be obtained from the usual reactions of type e + + e - => γγ, e ± + γ => e ± γ, e ± μ ± , e ± N... from elastic scattering at low and intermediate energies using existing experimental devices. (author)

  17. Binding energies of two deltas bound states

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Saito, Koichi.

    1982-06-01

    Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)

  18. Experiments at INS electron synchrotron

    International Nuclear Information System (INIS)

    Kato, Sadayuki

    1982-01-01

    Photoproduction of pion and proton on nuclei in 1 GeV energies region are discussed in order to study the nuclear structure. We illustrate how those reactions can be used to obtain information on short range nature of the pion wave function and on nuclear wave functions. Also we discuss about the dibaryon resonances and the deutron wave function

  19. Intermediate-energy particle physics with real photons at the new direct-current accelerator ELSA

    International Nuclear Information System (INIS)

    Menze, D.

    1987-12-01

    The author reviews the physics of intermediate-energy photon interactions with nucleons and light nuclei. After a consideration of the photoproduction of mesons in the framework of the quark model and a description of the different polarization observables he discusses the photoproduction of pions, vector mesons, and kaons. In this connection the decay of baryon resonances of dibaryon resonances by photoexcitation of the deuteron are considered whereby also the polarization observables are described. Finally the photon reactions on three-nucleon systems are considered. (HSI)

  20. Nuclear structure studies at intermediate energies: Interim progress report, August 1987 through August 1988

    International Nuclear Information System (INIS)

    Hintz, N.M.

    1988-08-01

    This report contains papers on nuclear structure studies. The topics of some of the papers discussed in this report are: recoil free Δ production; low lying magnetic states; Coulomb-nuclear polarimeter; comparison of Dirac and non relativistic IA; measurements of A/sub LL/ in /rvec p//rvec p/ elastic; π + 208 Pb; /sup 206,207,208/Pb density differences; search for dibaryon resonances; and effective mass corrections to p + X

  1. Neutral pion photoproduction from deuteron at 900, 1200 and 1300 CM angles

    International Nuclear Information System (INIS)

    Imanishi, A.; Ishii, T.; Kato, S.

    1984-05-01

    Cross sections for γd → π 0 d are presented in the photon energy range from 500 to 1000 MeV. As the photon energy increases, the cross sections decrease monotonically with small structures. A significant discrepancy between experimental and theoretical cross sections is found over the range from 600 to 850 MeV. The difference is indicative of dibaryon resonances around 2.5 GeV. (author)

  2. Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.

    1988-02-01

    Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)

  3. The NN and NantiN interactions

    International Nuclear Information System (INIS)

    Vinh Mau, R.

    1981-01-01

    The present status of the low and medium energy NN interaction and of the low energy NantiN interaction is reviewed. Careful confrontation of theoretical predictions with the most recent results on experimental observables is emphasized. The question of the dibaryon resonances is discussed. For the NantiN interaction, in view of the problem of the existence of baryonium states as bound states or resonant states of the NantiN system and of their properties, tests of different types of annihilation potentials against the existing experimental data are examined. Implications for the future experimental program at LEAR are discussed

  4. Far from the intermediate nuclear field

    International Nuclear Information System (INIS)

    Dietrich, K.; Wagner, G.J.; Gregoire, C.; Campi, X.; Silvestre-Brac, B.; Platchkov, S.; Mayer, B.; Abgrall, Y.; Bohigas, O.; Grange, P.; Signarbieux, C.

    1988-01-01

    Pairing correlations in nuclear physics; the BCS state and quasi-particles; the layer model; collision effects on nuclear dynamics; the theory of cluster formation (application to nucleus fragmentation); short range correlations (few-particle systems); deuterium electron scattering; dibaryonic resonances; traditional and exotic hadron probes of nuclear structure; spectral fluctuations and chaotic motion; corrections to the intermediate nuclear field (nonrelativistic and other effects); and heavy nuclei splitting and nuclear superfluidity are introduced [fr

  5. Present and future of kaon physics

    International Nuclear Information System (INIS)

    Bertini, R.

    1983-07-01

    The aim of this talk is to present experimental results that could provide a clue to decide whether the relativistic mean field approach or the quark picture is more appropriate to describe the nuclear phenomena dependent on short range interactions. I discuss Λ and Σ hypernucleus experiments, dibaryon strange resonances and strange baryon radiative decays. All these experiments belong to be a powerful tool to explore this challenging field at nuclear physics

  6. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  7. Case for exotic baryon-baryon states

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1980-01-01

    Three main points are presented. (1) Current theoretical prejudices are presented for why dibaryon states are interesting, and why they should be expected. (2) A review is given of some of the unsettled experimental issues which have emerged during this conference concerning dibaryons. (3) Phenomenological issues are raised which are critical to understanding whether dibaryon states are observable in the medium energy NN system

  8. Case for exotic baryon-baryon states

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.H.

    1980-01-01

    Three main points are presented. (1) Current theoretical prejudices are presented for why dibaryon states are interesting, and why they should be expected. (2) A review is given of some of the unsettled experimental issues which have emerged during this conference concerning dibaryons. (3) Phenomenological issues are raised which are critical to understanding whether dibaryon states are observable in the medium energy NN system.

  9. Spin correlations in NN-NNπ reactions

    International Nuclear Information System (INIS)

    Davison, N.E.

    1990-01-01

    This paper reports that even after years of intensive work on the coupled NN-NNπ reactions, there are still some remarkable simple things that we do not know about the NN interactions at a few hundred MeV notably: Do dibaryon resonances exist, and if so, what are their masses and widths? How much isospin I = O interaction is there in the np channel? Why is the microscopic description of such a basic process as single pion production so elusive?

  10. Asymmetry of the cross section for the reaction. gamma. d. -->. pi. /sup 0/d with linearly polarized. gamma. rays at 500--700 MeV and at a c. m. angle theta(0 = 130/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, F.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.; Oktanyan, V.K.

    1984-06-25

    The asymmetry of the cross section (..sigma..) of the reaction ..gamma..d ..-->.. ..pi../sup 0/d induced by linearly polarized ..gamma.. rays has been measured at energies E..gamma.. = 500 MeV, E..gamma.. = 600, and E/sub ..gamma../ = 700 MeV at the c.m. angle theta(0 = 130/sup 0/. The results disagree with calculations in the impulse approximation. The results can be explained in a qualitative way by appealing to an /sup 3/F/sub 3/ (2.26-GeV) dibaryon resonance.

  11. Asymmetry of the cross section for the reaction. gamma. d. -->. pn induced by linearly polarized. gamma. rays in the energy region E/sub. gamma. / = 0. 4--0. 8 GeV and theta/sup c. m. //sub p/ = 45/sup 0/--95/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, F.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.

    1984-03-10

    The asymmetry (..sigma..) of the cross section for the reaction ..gamma..d..-->..pn has been measured for the energy range E/sub ..gamma../ = 0.4--0.8 GeV and for the angular interval theta/sup c.m.//sub p/ = 45/sup 0/--95/sup 0/. The results are at odds with the calculations by Ogawa et al. and by Huneke, both based on phenomenological models, and also with the predictions of the partial-wave analysis by Ideda et al., which incorporates dibaryon resonances.

  12. Study of deuteron photodisintegration with linearly polarized photons over the energy range E/sub el/ = 0. 4 to 0. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Agababyan, K.S.; Adamyan, F.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.; Kordonskii, M.S.

    1985-06-01

    We describe the experimental methods and the results of measurements of the asymmetry of the cross section of the eld pn reaction induced by linearly polarized photons over the energy range E/sub el/ = 0.4 to 0.8 GeV and proton angles in the c.m. system theta* = 45 to 95. Experiments were conducted on a two-arm spectrometer installation. The results obtained do not agree either with calculations within the framework of phenomenological models, or with predictions of a partial-wave analysis that includes the contribution of dibaryon resonances.

  13. Study of the proton-proton interaction involving a πO production

    International Nuclear Information System (INIS)

    Reposeur, T.

    1989-01-01

    The proton-proton inelastic interaction, giving a neutral single pion, is studied. The reaction with two protons and one pi-zero in the final state for incident kinetic energies ranging from 480-560 MeV in 20 MeV steps is studied. It is necessary to develop a neutral pion spectrometer to detect in coincidence the two gammas of the decaying pi-zero. The detector has a good selectivity for neutral pion detection, and quantitative measurements require an accurate simulation of its response. The experiment shows that it is possible to measure the non resonant partial cross section. The relative accuracy on the total cross sections allows to search for a few percent effect. An isovector narrow dibaryonic resonance in that energy range, is suggested [fr

  14. The 1989 annual report of the Institut de Physique Nucleaire-Orsay

    International Nuclear Information System (INIS)

    1989-01-01

    The activity report of the Institut de Physique Nucleaire (Orsay-France) from 1 Sep 1988 to 1 Aug 1989 is presented. Theoretical and experimental investigations were carried out in the following fields: light and medium exotic nuclei, on line spectroscopy, discrete high spin states, new radioactivities, thermal fission, detection systems, giant resonances, high excitation energy structure, reaction mechanisms at energies below 10 MeV/u and at 200 MeV/u and their evolution between 10 and 100 MeV/u, meson production, transfer reactions, spin modes in nuclei, dibaryonic resonances, inelastic scattering of polarized protons. Research programs in the field of radiochemistry and relating to inter-disciplinary fields are included. The activities involving teaching, the lists of publications conferences, seminars and theses are presented [fr

  15. Tensor polarization in pion-deuteron elastic scattering

    International Nuclear Information System (INIS)

    Holt, R.J.; Freeman, W.S.; Geesaman, D.F.

    1985-01-01

    During this year the analysis of measurements of t 20 in π-d elastic scattering was completed and a final summary manuscript was prepared for publication. The results consists of angular distributions of the deuteron tensor polarization in π-d elastic scattering at pion energies of 140, 180, 220 and 256 MeV. Theoretical calculations in which the effects of pion absorption on the elastic channel are small reproduce the data. No rapid angular or energy dependence was found near a pion energy of 134 MeV, where another experiment at SIN has suggested the existence of dibaryon resonances

  16. Nuclear structure studies at intermediate energies

    International Nuclear Information System (INIS)

    Hintz, N.M.

    1990-07-01

    This report discusses the following topics: Search for dibaryon resonances; analysis of 208 Pb(π ± ,π ± ) data; analysis of 206,207,208 Pb(p,p') data; study of transition nuclei by (p,p'); search for recoil free δ-production; search for low lying magnetic states; proton nucleus scattering and swelling of nucleons; measurement of spin observables in 28 Si(p,p'); strength of tensor force in nuclei; global analysis of (p,p') reactions to high spin states in 28 Si and 58 Ni and density dependent modifications; MRS Setup and development; and development of coincidence studies with the MRS

  17. Theoretical high energy physics research. Technical progress report

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1985-01-01

    The research activities summarized include: neutral heavy leptons, unusual DESY and CERN events, exotic fermions in superstring models, magnetic monopoles, nonleptonic hyperon decays, heavy quark spectroscopy, supersymmetric quantum mechanics and inverse scattering, SU(3) breaking and the H dibaryon, P-wave mesons with one heavy quark, CP violation, magnetic moments of baryons, dynamical mass generation, lattice gauge theories that include fermions, modification of quantum mechanics to include a fundamental length, speculation concerning physics near the Planck scale, novel physics possibilities of hadron colliders, inclusive structure functions in e + e - colliders especially at the Z 0 resonance, and global structure of supermanifolds. 103 refs

  18. Experiments at the Dubna synchrophasotron

    International Nuclear Information System (INIS)

    Kuznetsov, A.A.

    1982-01-01

    A brief review of the current state of the program of experimental research at the Dubna synchrophasotron in the field relativistic nuclear physics is given. Some attention is being given to unique possibilities which one has at the High Energy Laboratory, JINR to carry ecently by different groups of our t these studies and to the most significant physical results obtained physicists in the field of relativistic nuclear physics. Systematic investigations of multiple production processes of fragments and particles in interactions of relativistic nuclei allowed one to clarify a gene a general picture (dynamics) of these processes. The search for ''exotic'' states not described by conventional quark models enables to observe the existence of some of this type particles: dibaryon strange resonances, resonance state with isotopic spin 5/2 and so on

  19. Investigation of the exotic clusters production in Au-Au collisions at √sNN = 200 GeV

    International Nuclear Information System (INIS)

    Besliu, Calin

    2004-01-01

    Recently experimental signals on some exotic clusters (diquarks, pentaquarks and others) have been obtained. Taking into account the experimental results on some new phenomena observed in Au-Au collisions at RHIC-BNL energies, we propose here an analysis of the formation of the exotic clusters using the experimental data obtained in the BRAHMS Experiment from RHIC-BNL. The suppression of the hadronic resonances and the production of some exotic clusters or resonances (diquarks, dibaryons, pentaquarks) could be possible, taking into account the kaons and antiprotons abundances. The experimental results obtained in Au-Au collisions at √s NN = 200 GeV using the BRAHMS experimental setup indicate a very weak weight of the classical resonances (under 2% all). On the other hand, the analysis of the proton-proton, proton-antiproton, kaon-proton, proton-pion-pion combinations, in the final state, indicates the existence of some pentaquarks and meso-baryon states (I = 5/2). These very preliminary results are in agreement with the results mentioned previously. (author)

  20. Search for weakly decaying Λn‾ and ΛΛ exotic bound states in central Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-01-01

    Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  1. Search for weakly decaying $\\overline{\\Lambda\\mathrm{n}}$ and $\\Lambda\\Lambda $ exotic bound states in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-10

    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  2. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Annual progress report, 1988--1989

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs

  3. Polarization structure of reactions at theta/sub C.M./ = π/2

    International Nuclear Information System (INIS)

    Goldstein, G.R.; Moravcsik, M.J.

    1981-08-01

    The polarization structure of a reaction of particles with arbitrary spins is described at 90 0 for the case when one or several pairs of identical particles form the reaction. The simplification of the structure is described in the optimal formalism, and particularly in the helicity and transversity frames, and the reduction in the number of independent amplitudes is tabulated for arbitrary spins and for a large assortment of combinations of symmetries. The constraints due to only one pair of identical particles are particularly stressed since these have hardly been utilized in the past. The results are illustrated on elastic proton-proton scattering, and data for this reaction at 800 MeV are analyzed at 90 0 both phenomenologically and with a specific aim of testing suggestions for the existence of dibaryon resonances. It is shown that at 800 MeV and 90 0 the proton-proton scattering data are compatible with a resonance of the type that has been suggested, though the data do not demand such a resonance

  4. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    1994-01-01

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on quasi-classical description of one-nucleon transfer reactions with heavy ions, elastic and inelastic scattering in the high energy approximation, experimental study of fission and evaporation cross sections for 6 He + 209 Bi reaction, d ↑ + 12 C → p + X at Θ p = 0 o in the region of high internal momenta in the deuteron, the Nuclotron internal targets, actively screened superconducting magnets, using of polarized target in backward elastic dp scattering, application of transputers in the data acquisition system of the INESS-ALPHA spectrometer, narrow dibaryon resonances with isotopic spin I=2. 93 refs., 27 figs., 4 tabs

  5. Physics in a spin. CERN Courier, Jan-Feb 1985, v. 25(1)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    About two hundred physicists travelled to Marseille in September to attend the 6th International Symposium on High Energy Spin Physics, it gathered specialists in polarization physics from all over the world. The meeting reflected optimism about the future of spin physics, an optimism clearly driven by the successful start-up of many new polarized beam projects and by the discovery of several new spin effects. The topics covered included spin effects at large transverse momentum, hyperon polarization, analysing power in elastic processes, and experiments at intermediate energies including dibaryon resonances. There were reports on new polarized beam developments at many Laboratories and on perspectives, plans, and theoretical predictions for the spin physics in future machines

  6. 1 to 2 GeV/c beam line for hypernuclear and kaon research

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    A kaon beam line operating in the range from 1.0 to 2.0 GeV/c is proposed. The line is meant for kaon and pion research in a region hitherto inaccessible to experimenters. Topics in hypernuclear and kaon physics of high current interest include the investigation of doubly strange nuclear systems with the K - ,K + reaction, searching for dibaryon resonances, hyperon-nucleon interactions, hypernuclear γ rays, and associated production of excited hypernuclei. The beam line would provide separated beams of momentum analyzed kaons at intensities greater than 10 6 particles per spill with a momentum determined to one part in a thousand. This intensity is an order of magnitude greater than that currently available. 63 references

  7. 2 pi production in pp collisions close to threshold

    CERN Document Server

    Bilger, R; Calén, H; Clement, H; Dyring, J; Ekström, C; Fransson, K; Gustafsson, L; Häggström, S; Hoeistad, B; Johanson, J; Johansson, A; Johansson, T; Khoukaz, A; Kilian, K; Kullander, K; Kupsc, A; Marciniewski, P; Morosov, B; Moertsell, A; Oelert, W; Paetzold, J; Ruber, Roger J M Y; Schepkin, M G; Stepaniak, J; Sukhanov, A; Sundberg, P; Turowiecki, A; Wagner, G J; Wilhelmi, Z; Zabierowski, J; Zernov, A; Zlomanczuk, Yu

    2000-01-01

    The reaction pp -> NN pi pi has been measured close to threshold in the energy range from 650 to 775 MeV using the PROMICE/WASA setup at CELSIUS. These data constitute the first exclusive high-statistics measurements of this reaction on a pure hydrogen target, supplying both differential and integral cross sections. The obtained total cross sections are an order of magnitude below previously published bubble-chamber results. Differential spectra for pp -> pp pi sup -pi sup + are close to phase space predictions identifying the production via N*(1440) -> N(pi pi) sub I sub = sub L sub = sub 0 as the dominant process. Possible contributions from dibaryon resonances are discussed.

  8. Multiquark states

    International Nuclear Information System (INIS)

    Wang, F.; Ping, J.L.; Quing, D.; Goldman, T.

    2005-01-01

    The pentaquark state recently discovered has been discussed based on various quark model calculations. Odd parity for the state cannot be ruled out theoretically because the contributions related to nontrivial color structures have not been studied completely. Other multiquark states, especially dibaryons, have been discussed also. A strangeness -3 NΩ dibaryons, have been shown to have a width as small as 12-22 keV and should be detectable in Ω-high-productivity reactions such as at RHIC, COMPAS, and the planned JHF and FAIR projects [ru

  9. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2002-01-01

    Full text: Our research in 2001 can be characterized by a wide range of various subjects e.g. search for new physics in Au + Au collisions at the energy in the centre of mass per nucleon pair √ s NN = 200 GeV through hunting dibaryon formation in p + p → K + + D (dibaryon) reaction to the application of the random matrix theory taken from nuclear reaction studies in the analysis of fluctuations of the stock exchange time and space correlations. Heavy ion reactions have been studied in a broad range of energies. At low energy of the 12 C ions (E CM = 25.57 MeV), delivered by the Warsaw U200P cyclotron, the reactions induced on 11 B target were studied. Coupling effects between various reaction channels were found. At the energies corresponding to the liquid-to-gas phase transition, the onset of the flow phenomena was found in the multifragmentation of the 197 Au nuclei induced by a sequence of projectiles p, 4 He, 12 C of the energies from 1-3 GeV per nucleon. Finally, evidence of the melting of the baryonic structure of the colliding nuclei was found at the highest available energies of 200 GeV per nucleon pair, in the collision of gold nuclei studied at the Relativistic Heavy Ion Collider within the BRAHMS and PHOBOS collaboration. We entered a new collaboration HIRES with the aim to discover S = -1 dibaryonic state by studying the reaction p+p → K + +D. So far many attempts to prove experimentally the existence of a dibaryonic state failed. We hope to use the unique properties of the Big Karl spectrometer to prove the existence of a sharp peak in the energy spectra of kaons. To do so, we have to reduce strongly the background of pions. A diffusely reflective threshold Cherenkov detector made from silica aerogel was designed. Preliminary tests indicate that pionic signals can be reduced by a factor of 58. Extensive studies of the mechanism of generating collective levels and the energy gap by means of diagonalizing matrices with random elements ended up with

  10. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  11. Correlation measurements of the proton spectra in the backward hemisphere in the reaction pd→ppn at 1.2--1.7 GeV/c

    International Nuclear Information System (INIS)

    Andreev, V.P.; Dobyrn, V.V.; Kravtsov, A.V.

    1985-01-01

    The reaction pd→ppn with emission of one of the nucleons into the backward hemisphere has been studied in a deuterium bubble chamber at eight energies. In contrast to high energies, an energy dependence of the slope of the invariant cross section is observed, which may indicate a dying out of the isobaric mechanism which may be responsible for a constant contribution in the region above 1 GeV. On the other hand, at large backward angles this mechanism remains important also in the region studied. Investigation of angular correlations and momentum spectra made it possible to identify the regions of dominance of the various diagrams. In the spectrum of the effective masses M/sub p/n a peak is observed which can be interpreted as a candidate for a dibaryon resonance

  12. Polarisation parameter measurement in the proton-proton elastic scattering from 0.5 to 1.2 GeV

    International Nuclear Information System (INIS)

    Ducros, Yves

    1970-01-01

    The angular distribution of the polarisation parameter was measured in the proton-proton elastic - scattering at seven energies between 0.5 and 1.2 GeV. A polarized proton target was used. The results show a maximum of the polarisation parameter of 0.6, at 0.73 GeV. This maximum is due to the important increase of the total cross section between 0.6 and 0.73 GeV. At 1.2 GeV the angular distribution of the polarisation shows a minimum for a momentum transfer value of -1 (GeV/c) 2 . A phase shift analysis was done at 0.66 GeV, using all available experimental data at this energy. There is no evidence of a di-baryonic resonance in the 1 D 2 phase. (author) [fr

  13. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  14. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  15. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  16. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  17. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  18. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  19. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  20. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  1. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  2. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  3. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  4. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  5. Di-pion and di-electron production in quasi-free np reactions with HADES

    International Nuclear Information System (INIS)

    Kuc, Hubert

    2014-01-01

    In this thesis, the exclusive di-pion and di-electron production channels in quasi-free n + p interactions at about E k = 1.25 GeV/u were presented. First the exclusive dπ + π - channel and new deuteron selection method named coplanarity have been discussed. Next, applying this new procedure to the existing inclusive e + e - results, the exclusive de + e - channel has been investigated. In general, analysis of the channels with deuteron in final state with HADES spectrometer are technical challenge due to d angular distributions. Presented results are divided to the two scenarios: in the rst case, the deuteron is detected in HADES and in the second case, it is detected in the FW detector. The two cases correspond to two very different kinematical situations, corresponding respectively to deuteron angles larger than 15 and smaller than 7 deg. In case of the deuteron detected inside HADES tracking system, the reaction phase-space is very limited however the data quality is very good. On the other hand, in case of detecting deuteron in Forward Wall detector the count rates are much bigger but the event selection requires much bigger effort and acquired data have much worse quality. The main goal of the quasi-free np → dπ + π - exclusive channel studies was to complement the studies of the π + π - production processes (i.e. double Δ(1232), N(1440), N(1520) excitations) which are performed with np → npπ + π - and pp → ppπ + π - analysis within HADES collaboration. Furthermore, recent WASA collaboration results indicated a big enhancement in ππ yield due to new di-baryon resonance. The HADES results in details described in sec. 4, indeed shows that conventional sources fail to reproduce both the ππ yield and the shape of the spectra within HADES acceptance. Our results are consistent with the WASA observations. On the other hand, presented results are not sensitive enough to give a satisfying proof for the di-baryon resonance existence. However, the

  6. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  7. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    International Nuclear Information System (INIS)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.

  8. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    International Nuclear Information System (INIS)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators

  9. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M [NXP Research, Eindhoven (Netherlands); Van der Hout, R; Hulshof, J [Department of Mathematics, VU University—Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam (Netherlands); Fey, R H B, E-mail: cas.van.der.avoort@nxp.com [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)

    2010-10-15

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators.

  10. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.

    2018-01-12

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  11. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.; Alsaleem, F. M.; Jaber, Nizar; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2018-01-01

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  12. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  13. Quantum mechanical resonances

    International Nuclear Information System (INIS)

    Cisneros S, A.; McIntosh, H.V.

    1982-01-01

    A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)

  14. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    Science.gov (United States)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  15. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  16. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  17. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3}/paraffin composites at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan, E-mail: hujf@sdu.edu.cn

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO{sub 3}/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO{sub 3}. The observed magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3} is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO{sub 3}/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO{sub 3}/paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO{sub 3}/paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO{sub 3} is a sample-size resonance. • Nano-BiFeO{sub 3}/paraffin composite with large thickness shows a sample-size resonance.

  18. Depolarization due to the resonance tail during a fast resonance jump

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1980-01-01

    The mechanism of depolarization due to a fast resonance jump is studied. The dominant effect for cases of interest is not dependent on the rate of passage through resonance, but rather on the size of the resonance jump as compared to the width, epsilon, of the resonance. The results are applied to a calculation of depolarization in the AGS at Brookhaven National Laboratory

  19. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  20. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  1. Study of two photon production process in proton-proton collisions at 216 MeV

    International Nuclear Information System (INIS)

    Khrykin, A.S.

    2002-01-01

    The energy spectrum for high energy γ-rays (Eγ ≥ 10 MeV) from the process pp → γγX emitted at 90 deg. in the laboratory frame has been measured at 216 MeV. The resulting photon energy spectrum extracted from γ - γ coincidence events consists of a narrow peak (5.3σ) at a photon energy of about 24 MeV and a relatively broad peak (3.5σ) in the energy range of (50 - 70) MeV. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d 1 * with a mass of about 1956 MeV which is assumed to be formed in the radiative process pp → γd 1 * followed by its electromagnetic decay via the d 1 * → ppγ mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations

  2. Resonant snubber inverter

    Science.gov (United States)

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  3. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  4. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  5. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  6. Resonator quantum electrodynamics on a microtrap chip; Resonator-Quantenelektrodynamik auf einem Mikrofallenchip

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Tilo

    2008-04-29

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to {approx}37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g{sub 0}=2{pi}.300 MHz respectively C{sub 0}=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [German] In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hier fuer wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner Miniaturisierung mit der in unserer Arbeitsgruppe

  7. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  8. Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case

    International Nuclear Information System (INIS)

    Zerovnik, Gasper; Trkov, Andrej; Capote, Roberto; Rochman, Dimitri

    2011-01-01

    For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the 55 Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different 55 Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.

  9. Quasi-resonant converter with divided resonant capacitor on primary and secondary side

    OpenAIRE

    Shiroyama, Hironobu; Matsuo, Hirofumi; Ishizuka, Yoichi

    2009-01-01

    This paper presents a quasi-resonant converter with divided resonant capacitor on primary and secondary side of the isolation transformer. A conventional quasi-resonant converter using flyback topology can realize soft switching with simple circuit. However, relatively large surge voltage is generated in the switching device. To suppress such surge voltage, resonant capacitor is divided on primary side and secondary side in the proposed converter. In case of prototype 95W converter, the volta...

  10. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  11. One-loop renormalization of Resonance Chiral Theory: scalar and pseudoscalar resonances

    International Nuclear Information System (INIS)

    Rosell, Ignasi; Ruiz-FemenIa, Pedro; Portoles, Jorge

    2005-01-01

    We consider the Resonance Chiral Theory with one multiplet of scalar and pseudoscalar resonances, up to bilinear couplings in the resonance fields, and evaluate its β-function at one-loop with the use of the background field method. Thus we also provide the full set of operators that renormalize the theory at one loop and render it finite

  12. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Marrufo, O; Vasquez, F; Solis, S E; Rodriguez, A O, E-mail: arog@xanum.uam.mx [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico)

    2011-04-20

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  13. Collaborative resonant writing and musical improvisation to explore the concept of resonance

    DEFF Research Database (Denmark)

    Lindvang, Charlotte; Pedersen, Inge Nygaard; Jacobsen, Stine Lindahl

    2018-01-01

    phenomenon consisting of physical vibrations and acoustic sounding that offers a clear logic, and (2) a metaphorical conceptualization used to describe and understand complex psychological processes of human relationships. The process of collaborative writing led to the discovery or development of a ninestep......Resonance is often used to characterize relationships, but it is a complex concept that explains quite different physical, physiological and psychological processes. With the aim of gaining deeper insight into the concept of resonance, a group of ten music therapy researchers, all colleagues...... procedure including different collaborative resonant writing procedures and musical improvisation, as well as of a series of metaphors to explain therapeutic interaction, resonant learning and ways of resonant exploration....

  14. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  15. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  16. Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators

    KAUST Repository

    Ramini, Abdallah; Hajjaj, Amal Z.; Younis, Mohammad I.

    2016-01-01

    We demonstrate experimentally internal resonances in MEMS resonators. The investigation is conducted on in-plane MEMS arch resonators fabricated with a highly doped silicon. The resonators are actuated electrostatically and their stiffness are tuned by electrothermal loading by passing an electrical current though the microstructures. We show that through this tuning, the ratio of the various resonance frequencies can be varied and set at certain ratios. Particularly, we adjust the resonance frequencies of two different vibrational modes to 2:1 and 3:1. Finally, we validate the internal resonances at these ratios through frequency-response curves and FFTs.

  17. Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators

    KAUST Repository

    Ramini, Abdallah

    2016-12-05

    We demonstrate experimentally internal resonances in MEMS resonators. The investigation is conducted on in-plane MEMS arch resonators fabricated with a highly doped silicon. The resonators are actuated electrostatically and their stiffness are tuned by electrothermal loading by passing an electrical current though the microstructures. We show that through this tuning, the ratio of the various resonance frequencies can be varied and set at certain ratios. Particularly, we adjust the resonance frequencies of two different vibrational modes to 2:1 and 3:1. Finally, we validate the internal resonances at these ratios through frequency-response curves and FFTs.

  18. Resonant ultrasound spectrometer

    Science.gov (United States)

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  19. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  20. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  1. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.

    2017-01-30

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  2. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  3. Crossing simple resonances

    International Nuclear Information System (INIS)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances

  4. Crossing simple resonances

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  5. Uncertainty quantification in resonance absorption

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  6. Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calculations

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Kang-Seog

    2011-01-01

    This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.

  7. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  8. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  9. Giant first-forbidden resonances

    International Nuclear Information System (INIS)

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  10. Quantum Proximity Resonances

    International Nuclear Information System (INIS)

    Heller, E.J.

    1996-01-01

    It is well known that at long wavelengths λ an s-wave scatterer can have a scattering cross section σ on the order of λ 2 , much larger than its physical size, as measured by the range of its potential. Very interesting phenomena can arise when two or more identical scatterers are placed close together, well within one wavelength. We show that, for a pair of identical scatterers, an extremely narrow p-wave open-quote open-quote proximity close-quote close-quote resonance develops from a broader s-wave resonance of the individual scatterers. A new s-wave resonance of the pair also appears. The relation of these proximity resonances (so called because they appear when the scatterers are close together) to the Thomas and Efimov effects is discussed. copyright 1996 The American Physical Society

  11. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  12. Excitation of the Roper resonance and study of higher baryon resonances

    International Nuclear Information System (INIS)

    Morsch, H.P.; Forschungszentrum Juelich GmbH

    1992-01-01

    The region of the P 11 resonance N(1440) is investigated in inelastic α-scattering on hydrogen using alpha-particles from Saturne with a beam momentum of 7 GeV/c. In the missing mass spectra of the scattered α-particles two effects are observed, excitation of the projectile, preferentially excited to the Δ-resonance, and excitation of the Roper resonance. The large differential cross sections indicate a structure of a compression mode. From this the compressibility of the nucleon K N may be extracted. The Roper resonance excitation corresponds to a surface mode which may be related to an oscillation of the meson cloud. The other monopole mode which corresponds to a vibration of the valence quarks should lie at about 800 MeV of excitation or above. This is the region of the P 11 (1710 MeV) resonance. Therefore experiments are important to measure the monopole strength in this energy region. Another interesting aspect is the scalar polarizability which can be extracted from inelastic dipole excitations (squeezing modes) as excitation energies above 500 MeV

  13. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  14. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Faisal Iqbal

    2018-04-01

    Full Text Available Microelectromechanical systems (MEMS resonators require fast, accurate, and cost-effective testing for mass production. Among the different test methods, frequency domain analysis is one of the easiest and fastest. This paper presents the measurement uncertainties in electrostatically actuated MEMS resonators, using frequency domain analysis. The influence of the applied driving force was studied to evaluate the measurement variations in resonant characteristics, such as the natural frequency and the quality factor of the resonator. To quantify the measurement results, measurement system analysis (MSA was performed using the analysis of variance (ANOVA method. The results demonstrate that the resonant frequency ( f r is mostly affected by systematic error. However, the quality (Q factor strongly depends on the applied driving force. To reduce the measurement variations in Q factor, experiments were carried out to study the influence of DC and/or AC driving voltages on the resonator. The results reveal that measurement uncertainties in the quality factor were high for a small electrostatic force.

  15. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    Science.gov (United States)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  16. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  17. Microscopic nuclear structure with sub-nucleonic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1986-01-01

    The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)

  18. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  19. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  20. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  1. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  2. One-loop Renormalization of Resonance Chiral Theory with Scalar and Pseudoscalar Resonances

    International Nuclear Information System (INIS)

    Rosell, I.

    2007-01-01

    The divergent part of the generating functional of the Resonance Chiral Theory is evaluated up to one loop when one multiplet of scalar and pseudoscalar resonances are included and interaction terms which couple up to two resonances are considered. Hence we obtain the renormalization of the couplings of the initial Lagrangian and, moreover, the complete list of operators that make this theory finite, at this order

  3. Neutron resonance averaging

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  4. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  5. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  6. Microelectromechanical resonator and method for fabrication

    Science.gov (United States)

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  7. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  8. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  9. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  10. Writing with resonance

    DEFF Research Database (Denmark)

    Meier, Ninna; Wegener, Charlotte

    2017-01-01

    In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in two......, and thus bring forward the field of research in question. We propose that writing with resonance may be a way to further the impact of academic work by extending the modalities with which our readers can relate to and experience our work....

  11. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  12. Guided mode resonance in planar metamaterials consisting of two ring resonators with different sizes

    International Nuclear Information System (INIS)

    Yu Zhen; Che Hang; Liu Jianjun; Jing Xufeng; Li Xiangjun; Hong Zhi

    2017-01-01

    We proposed and experimentally investigated a two-ring-resonator composed planar hybrid metamaterial (MM), in which the spectra of guided mode resonance (GMR) and Fano resonance or EIT-like response induced by coherent interaction between MM resonance and GMR can be easily controlled by the size of the two rings in the terahertz regime. Furthermore, a four-ring-resonator composed MM for polarization-insensitive GMRs was demonstrated, where GMRs of both TE and TM modes are physically attributed to the diffraction coupling by two ±45° tilting gratings. Such kind of device has great potential in ultra-sensitive label-free sensors, filters, or slow light based devices. (paper)

  13. Reflection effect of localized absorptive potential on non-resonant and resonant tunneling

    International Nuclear Information System (INIS)

    Rubio, A.; Kumar, N.

    1992-06-01

    The reflection due to absorptive potential (-iV i ) for resonant and non-resonant tunneling has been considered. We show that the effect of reflection leads to a non-monotonic dependence of absorption on the strength V i with a maximum absorption of typically 0.5. This has implications for the operation of resonant tunneling devices. General conceptual aspects of absorptive potentials are discussed. (author). 9 refs, 2 figs

  14. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems.

    Science.gov (United States)

    Borgogno, Fabio; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2012-01-21

    Several studies have shown that non-linear deterministic dynamical systems forced by external random components can give rise to unexpectedly regular temporal behaviors. Stochastic resonance and coherence resonance, the two best known processes of this type, have been studied in a number of physical and chemical systems. Here, we explore their possible occurrence in the dynamics of groundwater-dependent plant ecosystems. To this end, we develop two eco-hydrological models, which allow us to demonstrate that stochastic and coherence resonance may emerge in the dynamics of phreatophyte vegetation, depending on their deterministic properties and the intensity of external stochastic drivers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A New Look at an Old Activity: Resonance Tubes Used to Teach Resonance

    Science.gov (United States)

    Nelson, Jim; Nelson, Jane

    2017-01-01

    There are several variations of resonance laboratory activities used to determine the speed of sound. This is "not" one of them. This activity uses the resonance tube idea to teach "resonance," not to verify the speed of sound. Prior to this activity, the speed of sound has already been measured using computer sound-sensors and…

  16. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  17. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  18. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  19. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  20. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  1. Resonant thermonuclear reaction rate

    International Nuclear Information System (INIS)

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  2. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  3. Nonlinear elasticity in resonance experiments

    Science.gov (United States)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  4. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  5. Nuclear physics studies with medium energy probes. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Seth, K.K.

    1986-01-01

    Research is concerned with nuclear reactions, nuclear structure, pion production in elementary collisions, symmetry tests, and searches for dibaryon structures. Increasing emphasis is being placed on fundamental problems relating to quantum chromodynamics. A list of publications is provided. 43 refs., 12 figs

  6. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng

    2016-01-11

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  7. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-01-01

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  8. Short-circuit protection of LLC resonant converter using voltages across resonant tank elements

    Directory of Open Access Journals (Sweden)

    Denys Igorovych Zaikin

    2015-06-01

    Full Text Available This paper describes two methods for the short-circuit protection of the LLC resonant converter. One of them uses the voltage across the capacitor and the other uses the voltage across the inductor of the resonant tank. These voltages can be processed (integrated or differentiated to recover the resonant tank current. The two circuits illustrated in the described methods make it possible to develop a robust LLC converter design and to avoid using lossy current measurement elements, such as a shunt resistor or current transformer. The methods also allow measuring resonant tank current without breaking high-current paths and connecting the measuring circuit in parallel with the inductor or capacitor of the resonant tank. Practical implementations of these indirect current measurements have been experimentally tested for the short-circuit protection of the 1600 W LLC converter.

  9. Multiquark resonant states

    International Nuclear Information System (INIS)

    Shahbazian, B.A.

    1982-01-01

    The invariant mass spectra of forty nine hadronic systems with hypercharge, strangeness and baryon number, varied in wide limits have been studied. Resonance peaks have been found in the invariant mass spectra of Y 2 and #betta#pπ 2495 MeV/c 2 resonant states. Three more candidates for anti qq 4 states were found #bettaπ# + π + : 1705, 2072, 2605 MeV/c 2 . The masses of all these candidates are in good agreement with Bag Model predictions. A hypercharge selection rule is suggested: ''The hypercharge of hadronic resonances in weak gravitational fields cannot exceed one Y <= 1

  10. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  11. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  12. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  14. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  15. Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators

    Science.gov (United States)

    Ruytenberg, Thomas; Webb, Andrew G.

    2017-11-01

    Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.

  16. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  20. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  1. Status of the dibaryon structure studies

    International Nuclear Information System (INIS)

    Willis, N.; Comets, M.P.; Le Bornec, Y.; Loireleux, E.; Tatischeff, B.

    1989-01-01

    The results of recently performed experiments on the B=2 structures concerning the 0,1 and 2 isospin different states are presented. Experimental data and theoretical models are considered. In the T=1 channel, the existence of narrow states, above the πNN threshold, is established. The results from T=0.2 channels are quite difficult to analyse. Present calculations do not allow the prediction of which of the observables are affected by such structures [fr

  2. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  3. Probabilistic interpretation of resonant states

    Indian Academy of Sciences (India)

    The present paper reviews the basic definition of the resonant state in quantum ... We show that particles leak from the central region in the resonant state. The ..... The basic idea is as follows (figure 4): Consider a resonant eigenstate. Φn(x ...

  4. Quantum Graphs And Their Resonance Properties

    International Nuclear Information System (INIS)

    Lipovsky, J.

    2016-01-01

    In the current review, we study the model of quantum graphs. We focus mainly on the resonance properties of quantum graphs. We define resolvent and scattering resonances and show their equivalence. We present various results on the asymptotics of the number of resolvent resonances in both non-magnetic and magnetic quantum graphs and find bounds on the coefficient by the leading term of the asymptotics. We explain methods how to find the spectral and resonance condition. Most of the notions and theorems are illustrated in examples. We show how to find resonances numerically and, in a simple example, we find trajectories of resonances in the complex plane. We discuss Fermi’s golden rule for quantum graphs and distribution of the mean intensity for the topological resonances. (author)

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  6. Observation of the M1 giant resonance by resonance averaging in 106Pd

    International Nuclear Information System (INIS)

    Kopecky, J.

    1987-01-01

    An investigation of capture of 2 keV and 24 keV neutrons in a 105 Pd target resulted in resonance-averaged intensities of primary gamma rays with energies between 5.2 and 9.5 MeV. From these intensities the gamma ray strength functions have been evaluated for E1, M1 and E2 radiation and compared with predictions of the giant resonance theory. The inclusion of an energy dependent spreading width for the E1 giant resonance is necessary. The energy distribution of M1 reduced strength is consistent with an interpretation of a broad resonance around 8.8 MeV. E2 data agrees satisfactorily with the giant extrapolation. (orig.)

  7. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Hammel, P.C.; Wigen, P.E.

    1996-01-01

    We report the observation of a ferromagnetic resonance signal arising from a microscopic (∼20μmx40μm) particle of thin (3μm) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. copyright 1996 American Institute of Physics

  8. Determination of space-energy distribution of resonance neutrons in reactor lattice cell and calculation of resonance integrals

    International Nuclear Information System (INIS)

    Zmijarevic, I.

    1980-01-01

    Space-energy distribution of resonance neutrons in reactor lattice cell was determined by solving the Boltzmann equation by spherical harmonics method applying P-3 approximation. Computer code SPLET used for these calculations is described. Resonance absorption and calculation of resonance integrals are described as well. Effective resonance integral values for U-238 resonance at 6.7 Ev are calculated for heavy water reactor cell with metal, oxide and carbide fuel elements

  9. Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors

    Directory of Open Access Journals (Sweden)

    Yongyao Chen

    2012-06-01

    Full Text Available We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.

  10. Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance

    Science.gov (United States)

    Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven

    2015-03-01

    We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.

  11. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    Story, J.S.

    1969-09-01

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si 2 8, at E n = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si 3 0 has not yet been located. The thermal neutron absorption cross-section of Si 2 8 appears to result mainly from a negative energy resonance, possibly the resonance at E n = - 59 ± 5 keV detected by the Si 2 8 (d,p) reaction. (author)

  12. Q-Boosted Optomechanical Resonators

    Science.gov (United States)

    2015-11-18

    type a knob for optical Qo, where the inability to smooth etched nitride sidewall surfaces relegates OMO’s using it to Qo’s on the order of...6: Operation of an RP-OMO. As the ring resonator coupled to tapered fiber in (a) displaces by ∂r, the optical path length change produces the shift...frequency 0, B input pump laser field, tot the total optical resonator damping, ext the coupling between optical resonator and the tapered fiber

  13. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  14. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2017-01-01

    the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature

  15. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  16. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    2000-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we

  17. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    1999-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we

  18. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  19. Resonant enhancement in leptogenesis

    Science.gov (United States)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  20. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  1. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  2. Spin with two snakes and overlapping resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.; Zhao, X.F.

    1987-01-01

    We study the effect of multiple spin depolarization resonances on the spin of the particles with two snakes. When two resonances are well separated, the polarization can be restored in passing through these resonances provided that the snake resonances are avoided. When two resonances are overlapping, the beam particles may be depolarized depending on the spacing between these two resonances. If the spacing between these two resonances is an odd number for two snakes, the beam particles may be depolarized depending on the strength of the resonance. When the spacing becomes an even number, the spin can tolerate a much larger resonance strength without depolarization. Numerical simulations can be shown to agree well with the analytic formula. However, the spin is susceptible to the combination of an intrinsic and an imperfection resonances even in the presence of the snakes. Numerical simulation indicates that the spin can be restored after the resonances provided that imperfection strength is less than 0.1 if intrinsic strength is fixed at 0.745

  3. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  4. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  5. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  6. Transit time for resonant tunneling

    International Nuclear Information System (INIS)

    Garcia Calderon, G.; Rubio, A.

    1990-09-01

    This work considers properties of the partial widths in one dimensional elastic resonant tunneling in order to propose a transit-time τ tr = (h/2π)/Γ n T res ) where Γ n is the elastic width and T res the transmission coefficient at resonance energy. This time is interpreted as an average over the resonance energy width. It is shown that the tunneling current density integrated across a sharp resonance is inversely proportional to τ tr . This transit time may be much larger than the values predicted by other definitions. (author). 20 refs

  7. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  8. Properties of resonance wave functions.

    Science.gov (United States)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  9. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  10. Far-wing light absorption induced by resonant or near-resonant collisions

    International Nuclear Information System (INIS)

    Cavalieri, S.; Celli, M.

    1996-01-01

    The authors have studied the absorption of light induced by a resonant or near-resonant collision between two atoms. The calculations have been performed by taking into account also the magnetic sublevels, which makes their theoretical predictions more applicable to realistic cases. Analytical expressions for the far-wing absorption cross-section have been obtained

  11. Accidental degeneracy of resonances

    International Nuclear Information System (INIS)

    Hernandez, E.; Mondragon, A.; Jauregui, A.

    2001-01-01

    Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)

  12. Review on resonance cone fields

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1980-02-01

    Resonance cone fields and lower hybrid heating are reviewed in this report. The resonance cone fields were reported by Fisher and Gould, and they proposed the use of the measurement of resonance cones and structure as a diagnostic tool to determine the plasma density and electron temperature in magnetoplasma. After the resonance cone, a wave-like disturbance persists. Ohnuma et al. have measured bending, reflection and ducting of resonance cones in detail. The thermal modes in inhomogeneous magnetoplasma were seen. The reflection of thermal mode near an electron plasma frequency layer and an insulating plate has been observed. The non-linear effects of resonance cones is reported. Monochromatic electron beam produces the noise of broad band whistler mode. Lower hybrid waves have been the subject of propagation from the edge of plasma to the lower hybrid layer. Linear lower hybrid waves were studied. The lower hybrid and ion acoustic waves radiated from a point source were observed. The parametric decay of finite-extent, cold electron plasma waves was studied. The lower hybrid cone radiated from a point source going along magnetic field lines was observed. Several experimental data on the lower hybrid heating in tokamak devices have been reported. The theories on resonance cones and lower hybrid waves are introduced in this report. (Kato, T.)

  13. Resonant dynamics of gravitationally bound pair of binaries: the case of 1:1 resonance

    Science.gov (United States)

    Breiter, Slawomir; Vokrouhlický, David

    2018-04-01

    The work presents a study of the 1:1 resonance case in a hierarchical quadruple stellar system of the 2+2 type. The resonance appears if orbital periods of both binaries are approximately equal. It is assumed that both periods are significantly shorter than the period of principal orbit of one binary with respect to the other. In these circumstances, the problem can be treated as three independent Kepler problems perturbed by mutual gravitational interactions. By means of canonical perturbation methods, the planar problem is reduced to a secular system with 1 degree of freedom involving a resonance angle (the difference of mean longitudes of the binaries) and its conjugate momentum (involving the ratio of orbital period in one binary to the period of principal orbit). The resonant model is supplemented with short periodic perturbations expressions, and verified by the comparison with numerical integration of the original equations of motion. Estimates of the binaries periods variations indicate that the effect is rather weak, but possibly detectible if it occurs in a moderately compact system. However, the analysis of resonance capture scenarios implies that the 1:1 resonance should be exceptional amongst the 2+2 quadruples.

  14. New hadron spectroscopies

    International Nuclear Information System (INIS)

    Olsen, S.L.

    2014-01-01

    QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex than the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetraquark and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have yet to be identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states –the so-called XYZ mesons– and compare them with expectations for conventional quark-antiquark mesons and the predicted QCD-exotic states. (author)

  15. Charged particle-like branes in ABJM

    CERN Document Server

    Gutierrez, Norberto; Rodriguez-Gomez, Diego

    2010-01-01

    We study the effect of adding lower dimensional brane charges to the 't Hooft monopole, di-baryon and baryon vertex configurations in $AdS_4 \\times \\mathbb{P}^3$. We show that these configurations capture the background fluxes in a way that depends on the induced charges, and therefore, require additional fundamental strings in order to cancel the worldvolume tadpoles. The study of the dynamics reveals that the charges must lie inside some interval in order to find well defined configurations, a situation familiar from the baryon vertex in $AdS_5 \\times S^5$ with charges. For the baryon vertex and the di-baryon the number of fundamental strings must also lie inside an allowed interval. Our configurations are sensitive to the flat $B$-field recently suggested in the literature. We make some comments on its possible role. We also discuss how these configurations are modified in the presence of a non-zero Romans mass.

  16. 多夸克态的研究进展%Progress in the Study of Multi-quark States

    Institute of Scientific and Technical Information of China (English)

    王凡; 平加伦; 黄虹霞

    2017-01-01

    对多夸克态特别是双重子态的半个世纪的研究进展进行了概述.利用动力学对称性,推导了能够合理地描述多夸克态质量的Gursey-Radicati公式,然后在MIT袋模型和可以很好描述重子-重子相互作用的夸克蜕定域色屏蔽模型中讨论了各种可能的双重子.%The progress in the study of multi-quark states for the last half century is reviewed schematically and the dibaryon sector is emphasized.By employing the dynamical symmetry,the Gursey-Radicatimass formula,which can give a reasonable description of the masses of multi-quark states,can be reproduced.The dibaryons in bag model and realistic quark model,quark delocalization color screening model,are discussed.

  17. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  18. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  19. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  20. Extraordinary acoustic transmission mediated by Helmholtz resonators

    Directory of Open Access Journals (Sweden)

    Vijay Koju

    2014-07-01

    Full Text Available We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  1. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  2. Proton magnetic resonance spectroscopy and perfusion magnetic resonance imaging in the evaluation of musculoskeletal tumors

    International Nuclear Information System (INIS)

    Costa, Flavia Martins; Setti, Marcela; Vianna, Evandro Miguelote; Domingues, Romulo Cortes; Meohas, Walter; Rezende, Jose Francisco; Gasparetto, Emerson Leandro

    2009-01-01

    Objective: To assess the role of proton magnetic resonance spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign musculoskeletal tumors. Materials And Methods: Fifty-five patients with musculoskeletal tumors (27 malignant and 28 benign) were studied. The examinations were performed in a 1.5 T magnetic resonance scanner with standard protocol, and single voxel proton magnetic resonance spectroscopy with 135 msec echo time. The dynamic contrast study was performed using T1-weighted gradient-echo sequence after intravenous gadolinium injection. Time signal intensity curves and slope values were calculated. The statistical analysis was performed with the Levene's test, followed by a Student's t-test, besides the Pearson's chi-squared and Fischer's exact tests. Results: Proton magnetic resonance spectroscopy sensitivity, specificity and accuracy were, respectively, 87.5%, 92.3% and 90.9% (p < 0.0001). Statistically significant difference was observed in the slope (%/min) between benign (mean, 27.5%/min) and malignant (mean, 110.9%/min) lesions (p < 0.0001). Conclusion: The time-intensity curve and slope values using dynamic-enhanced perfusion magnetic resonance imaging in association with the presence of choline peak demonstrated by single voxel magnetic resonance spectroscopy study are useful in the differentiation between malignant and benign musculoskeletal tumors. (author)

  3. Effects of 6q bags in the 1D2 pp scattering amplitude and the problem of dibaryon resonances

    International Nuclear Information System (INIS)

    Grach, I.L.; Kalashnikova, Yu.S.; Narodetskij, I.M.

    1987-01-01

    It is shown that the short-range NN forces in the quark compound bag method reproduce the energy dependence of the 1 D 2 pp-scattering amplitude predicted by existing phaseshift analyses. The parameters of the six-quark bag wave function obtained by description of the experimental data are in agreement with the theoretical predictions of the MIT bag model

  4. Algorithm of resonance orders for the objects

    Science.gov (United States)

    Zhang, YongGang; Zhang, JianXue

    2018-03-01

    In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.

  5. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  6. Resonance phenomenon in classical cepheids

    International Nuclear Information System (INIS)

    Takeuti, Mine; Aikawa, Toshiki

    1981-01-01

    To investigate resonance phenomenon in classical cepheids, the non-linear radial oscillation of stars is studied based on the assumption that the non-adiabatic perturbation is expressed in terms of van der Pol's type damping. Two- and three-wave resonance in this system is applied to classical cepheids to describe their bump and double-mode behavior. The phase of bump and the depression of amplitude are explained for bump cepheids. The double-periodicity is shown by the enhancement of the third overtone in three-wave resonance. Non-linear effect on resonant period is also discussed briefly. (author)

  7. Resonance contribution to electromagnetic structure functions

    International Nuclear Information System (INIS)

    Bowling, A.L. Jr.

    1974-01-01

    The part of the pion and proton electromagnetic structure functions due to direct channel resonances in the virtual Compton amplitude is discussed. After a phenomenological discussion, based on the work of Bloom and Gilman, of resonance production in inelastic electroproduction, the single resonance contribution to the pion and proton structure functions is expressed in terms of transition form factors. Froissart-Gribov representations of the Compton amplitude partial waves are presented and are used to specify the spin dependence of the transition form factors. The dependence of the form factors on momentum transfer and resonance mass is assumed on the basis of the behavior of exclusive resonance electroproduction. The single resonance contributions are summed in the Bjorken limit, and the result exhibits Bjorken scaling. Transverse photons are found to dominate in the Bjorken limit, and the threshold behavior of the resonant part of the structure functions is related to the asymptotic behavior of exclusive form factors at large momentum transfer. The resonant parts of the annihilation structure functions are not in general given by simple analytic continuation in the scaling vari []ble ω' of the electroproduction structure functions. (Diss. Abstr. Int., B)

  8. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  9. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  11. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    International Nuclear Information System (INIS)

    Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio

    2012-01-01

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  12. Thermally actuated resonant silicon crystal nanobalances

    Science.gov (United States)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high

  13. Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators

    International Nuclear Information System (INIS)

    Xiao Yong; Mace, Brian R.; Wen Jihong; Wen Xisen

    2011-01-01

    A uniform string with periodically attached spring-mass resonators represents a simple locally resonant continuous elastic system whose band gap mechanisms are basic to more general and complicated problems. In this Letter, analytical models with explicit formulations are provided to understand the band gap mechanisms of such a system. Some interesting phenomena are demonstrated and discussed, such as asymmetric/symmetric attenuation behavior within a resonance gap, and the realization of a super-wide gap due to exact coupling between Bragg and resonance gaps. In addition, some approximate formulas for the evaluation of low frequency resonance gaps are derived using an approach different from existing investigations. - Research highlights: → We examine band gaps in a special one-dimensional locally resonant system. → Bragg and resonance gaps co-exist. → Explicit formulas for locating band edges are derived. → Exact physical models are used to clarify the band gap formation mechanisms. → Coupling between Bragg and resonance gaps leads to a super-wide gap.

  14. Strange matter and dihyperon physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1986-01-01

    A short review of the properties of Strange Matter is followed by a discussion of dihyperon physics. Calculations of the mass, lifetime and decay modes of the H particle are discussed, along with a review of experiments designed to search for the H Dibaryon. 32 refs., 15 figs

  15. The combined resonance tunneling and semi-resonance level in low energy D-D reaction

    International Nuclear Information System (INIS)

    Li Xingzhong; Jin Dezhe; Chang Lee

    1993-01-01

    When nuclear potential wells are connected by an atomic potential well, a new kind of tunneling may happen even if there is no virtual energy level in nuclear potential wells. The necessary condition for this combined resonance tunneling is the resonance in the atomic potential well. Thus, the nuclear reaction may be affected by the action in atomic scale in terms of combined resonance tunneling. The nuclear spectrum data support this idea. (author)

  16. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  17. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    Science.gov (United States)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-03-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  18. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  19. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  20. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  1. Double Fano resonances in plasmon coupling nanorods

    International Nuclear Information System (INIS)

    Liu, Fei; Jin, Jie

    2015-01-01

    Fano resonances are investigated in nanorods with symmetric lengths and side-by-side assembly. Single Fano resonance can be obtained by a nanorod dimer, and double Fano resonances are shown in nanorod trimers with side-by-side assembly. With transverse plasmon excitation, Fano resonances are caused by the destructive interference between a bright superradiant mode and dark subradiant modes. The bright mode originates from the electric plasmon resonance, and the dark modes originate from the magnetic resonances induced by near-field inter-rod coupling. Double Fano resonances result from double dark modes at different wavelengths, which are induced and tuned by the asymmetric gaps between the adjacent nanorods. Fano resonances show a high figure of merit and large light extinction in the periodic array of assembled nanorods, which can potentially be used in multiwavelength sensing in the visible and near-infrared regions. (paper)

  2. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  3. Resonant diphoton phenomenology simplified

    International Nuclear Information System (INIS)

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-01-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.

  4. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  5. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  6. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  7. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  8. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  9. Magnetic resonance for wireless power transfer

    OpenAIRE

    Hui, SYR

    2016-01-01

    Magnetic resonance has been a cornerstone of nonradiative wireless power transfer (WPT) since the late 19th century. However, some researchers have the misconception that magnetic resonance for WPT was developed recently. This article traces some early work of Tesla and other researchers related to the use of magnetic resonance in WPT. Included are some examples of magnetic resonance-based WPT projects conducted by researchers in the biomedical and power electronics communities over the last ...

  10. Low-profile wireless passive resonators for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  11. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily

    2012-11-10

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  12. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily; Roqan, Iman S.

    2012-01-01

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  13. Advances in mechanical detection of magnetic resonance

    International Nuclear Information System (INIS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  14. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  15. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  16. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  17. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  18. Jet-associated resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Christoph [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Ferretti, Gabriele [Chalmers University of Technology, Department of Physics, Goeteborg (Sweden); Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2017-12-15

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet-Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities. (orig.)

  19. Jet-associated resonance spectroscopy

    Science.gov (United States)

    Englert, Christoph; Ferretti, Gabriele; Spannowsky, Michael

    2017-12-01

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet- Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities.

  20. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  1. Orbital Resonances in the Vinti Solution

    Science.gov (United States)

    Zurita, L. D.

    As space becomes more congested, contested, and competitive, high-accuracy orbital predictions become critical for space operations. Current orbit propagators use the two-body solution with perturbations added, which have significant error growth when numerically integrated for long time periods. The Vinti Solution is a more accurate model than the two-body problem because it also accounts for the equatorial bulge of the Earth. Unfortunately, the Vinti solution contains small divisors near orbital resonances in the perturbative terms of the Hamiltonian, which lead to inaccurate orbital predictions. One approach to avoid the small divisors is to apply transformation theory, which is presented in this research. The methodology of this research is to identify the perturbative terms of the Vinti Solution, perform a coordinate transformation, and derive the new equations of motion for the Vinti system near orbital resonances. An analysis of these equations of motion offers insight into the dynamics found near orbital resonances. The analysis in this research focuses on the 2:1 resonance, which includes the Global Positioning System. The phase portrait of a nominal Global Positioning System satellite orbit is found to contain a libration region and a chaotic region. Further analysis shows that the dynamics of the 2:1 resonance affects orbits with semi-major axes ranging from -5.0 to +5.4 kilometers from an exactly 2:1 resonant orbit. Truth orbits of seven Global Positioning System satellites are produced for 10 years. Two of the satellites are found to be outside of the resonance region and three are found to be influenced by the libration dynamics of the resonance. The final satellite is found to be influenced by the chaotic dynamics of the resonance. This research provides a method of avoiding the small divisors found in the perturbative terms of the Vinti Solution near orbital resonances.

  2. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  3. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. The bare wave function is constructed as a product of two color-singlet three-quark clusters and then it is properly antisymmetrized by considering appropriate exchange operators for spin, ...

  5. Acoustic Resonance between Ground and Thermosphere

    Directory of Open Access Journals (Sweden)

    M Matsumura

    2009-04-01

    Full Text Available Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data. The frequencies of the peaks varied with the seasons. This is probably because the vertical temperature profile of the atmosphere varies with the seasons, as does the reflection height of infrasounds. These results indicate that acoustic resonance occurs frequently.

  6. Resonance phenomena at high level density

    International Nuclear Information System (INIS)

    Sobeslavsky, E.; Dittes, F.M.; Rotter, I.; Technische Univ. Dresden

    1994-11-01

    We investigate the behaviour of resonances as a function of the coupling strength between bound and unbound states on the basis of a simple S-matrix model. Resonance energies and widths are calculated for well isolated, overlapping and strongly overlapping resonance states. The formation of shorter and longer time scales (trapping effect) is traced. We illustrate that the cross section results from an interference of all resonance states in spite of the fact that their lifetimes may be very different. (orig.)

  7. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  8. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  9. Resonance probe; La sonde a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)

  10. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  11. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  12. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  13. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  14. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    Science.gov (United States)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  15. Resonance sensitivity of hydropower and pumping stations

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Halanay, A.

    1984-09-01

    Comparative analysis of resonance diagrams for several hydropower and pumping stations with surge tanks and air chambers shows large differences in the maximum resonance pressures. A strategy is advocated which consists of hydraulic resonance computations coupled with practical surveillance measures during the operation of resonance sensitive hydraulic systems. A fundamental hydraulic scheme is considered consisting of a reservoir, a pressure tunnel, a surge tank, a penstock and a turbine combined into a hydropower station. It is suggested that for each hydraulic surge system it is necessary to carry out special resonance analyses following the normal procedure to obtain the resonance sensitivity. For hydraulic systems which are resonance sensitive, mechanical electronic equipment should be used to measure non-stationary pressures of the water in the conduit as a way of continuous surveillance during functioning. 6 references, 6 figures.

  16. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  17. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    Science.gov (United States)

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  18. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  19. D-wave resonances in positronium hydride

    International Nuclear Information System (INIS)

    DiRienzi, Joseph; Drachman, Richard J.

    2002-01-01

    In a previous paper [Phys. Rev. A 65, 032721 (2002)] we reexamined a model describing the structure of the low-energy Ps-H resonances as being due to quasibound states of the positron in the perturbed Coulomb potential of the H - ion appearing in the closed, rearranged channel. In particular, we wished to understand why the lowest p-state resonance was so far away from the lowest quasibound (2p) state. We found that the lowest resonance actually corresponds to the first-excited [3p] state, while the lowest state is not recognizable as a resonance. In the present work we repeat our analysis, but this time for the lowest d state. We find that the lowest [3d] state does correspond to a resonance shifted moderately

  20. Slowing down with resonance absorption

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The presence of heavy nuclei in nuclear reactors, in significant concentrations, facilitates the appearance of absorption resonances. For the moderation in the presence of absorbers an exact solution of the integral equations is possible by numerical methods. Approximated solutions for separated resonances in function of the practical width, (NR and NRIM approximations) are discussed in this paper. The method is generalized, presenting the solution by an intermediate approximation, in the definition of the resonance integral. (Author) [pt

  1. Spectra of resonance surface photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  2. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  3. Coherent control through near-resonant Raman transitions

    International Nuclear Information System (INIS)

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-01-01

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li 2 by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li 2 . The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet

  4. Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics.

    Science.gov (United States)

    Rotstein, Horacio G

    2017-08-01

    Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between positive and negative feedback effects provided by relatively fast amplifying currents and slower resonant currents. In 2D neuronal systems, amplifying currents are required to be slave to voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems, additional currents operating at various effective time scales may modulate and annihilate existing resonances and generate antiresonance (minimum amplitude response) and antiphasonance (zero-phase response with phase monotonic properties opposite to phasonance). We use mathematical modeling, numerical simulations and dynamical systems tools to investigate the mechanisms underlying these phenomena in 3D linear models, which are obtained as the linearization of biophysical (conductance-based) models. We characterize the parameter regimes for which the system exhibits the various types of behavior mentioned above in the rather general case in which the underlying 2D system exhibits resonance. We consider two cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a response amplification if the amplifying current is faster than the resonant current, (ii) resonance and phasonance attenuation and annihilation if the amplifying and resonant currents have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current is slower than the resonant current. We investigate the underlying mechanisms by extending the envelope-plane diagram approach developed in previous work (for 2D systems) to three dimensions to include the additional gating variable, and constructing the corresponding envelope curves in these envelope-space diagrams. We find that antiresonance and

  5. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  6. Space charge in nanostructure resonances

    Science.gov (United States)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  7. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  8. High quality-factor optical resonators

    International Nuclear Information System (INIS)

    Henriet, Rémi; Salzenstein, Patrice; Coillet, Aurélien; Saleh, Khaldoun; Chembo, Yanne K; Ristic, Davor; Ferrari, Maurizio; Mortier, Michel; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice; Cibiel, Gilles; Llopis, Olivier

    2014-01-01

    Various resonators are investigated for microwave photonic applications. Micro-sphere, disk and fiber ring resonators were designed, realized and characterized. Obtained quality factors are as high as Q = 10 10 . (paper)

  9. Neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  10. Buffer-gas-induced absorption resonances in Rb vapor

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Novikova, Irina; Rostovtsev, Yuri V.; Welch, George R.

    2004-01-01

    We observe transformation of the electromagnetically induced transparency (EIT) resonance into an absorption resonance in a Λ interaction configuration in a cell filled with 87 Rb and a buffer gas. This transformation occurs as one-photon detuning of the coupling fields is varied from the atomic transition. No such absorption resonance is found in the absence of a buffer gas. The width of the absorption resonance is several times smaller than the width of the EIT resonance, and the changes of absorption near these resonances are about the same. Similar absorption resonances are detected in the Hanle configuration in a buffered cell

  11. Fano resonances in bilayer phosphorene nanoring

    Science.gov (United States)

    Zhang, Rui; Wu, Zhenhua; Li, X. J.; Li, L. L.; Chen, Qiao; Li, Yun-Mei; Peeters, F. M.

    2018-05-01

    Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov–Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.

  12. Modeling of supermodes in coupled unstable resonators

    International Nuclear Information System (INIS)

    Townsend, S.S.

    1986-01-01

    A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented

  13. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  14. Confinement, hidden color and multibaryon states

    International Nuclear Information System (INIS)

    Nicolescu, B.

    1979-01-01

    Ideas and theoretical results on multiquark states are reviewed. The measuring of concepts such as 'quarks', 'color' and 'confinement' is analysed first then the possible existence of multiquark states is discussed. the example of dibaryons is used to study their properties in the bag model and in the Dual Topological Unitarization theory [fr

  15. Experimental medium energy physics: Annual progress report June 1987--May 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report discusses progress in experimental medium energy physics at Carnegie Mellon University. Some of the topics covered are: search for the ξ(2230); hyperon-antihyperon production studies; relativistic proton-nucleus and heavy ion-nucleus collisions; H dibaryon physics; hypernuclear physics research; pion physics; H particle experiment design and development; and electron scattering

  16. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  17. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  18. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  19. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    International Nuclear Information System (INIS)

    Yu Haitao; Li Xinxin; Gan Xiaohua; Liu Yongjing; Liu Xiang; Xu Pengcheng; Li Jungang; Liu Min

    2009-01-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin–avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability

  20. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  1. Efimov resonances in atomic three-body systems

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Papp, Z.

    2006-01-01

    In a recent work [Phys. Rev. Lett. 94, 143201 (2005)], we reported an accumulation of three-body resonant states attached to n=2 and higher two-body thresholds. A more careful investigation revealed that there are resonances of the same kind above the n=1 threshold as well. This suggests that the resonances attached to the thresholds are Efimov resonances

  2. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  3. Optical resonator theory

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  4. Nanoelectromechanical resonator for logic operations

    KAUST Repository

    Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e

  5. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  6. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  7. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  8. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  9. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  10. Advances in magnetic resonance 1

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  11. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  12. Stimulated resonance Raman spectroscopy: An alternative to laser-rf double resonance for ion spectroscopy

    International Nuclear Information System (INIS)

    Young, L.; Dinneen, T.; Mansour, N.B.

    1988-01-01

    Stimulated resonance Raman spectroscopy is presented as an alternative to laser-rf double resonance for obtaining high-precision measurements in ion beams. By use of a single-phase modulated laser beam to derive the two required fields, the laser--ion-beam alignment is significantly simplified. In addition, this method is especially useful in the low-frequency regime where the laser-rf double-resonance method encounters difficulties due to modifications of the ion-beam velocity distribution. These modifications, which result from interaction with the traveling rf wave used to induce magnetic dipole transitions, are observed and quantitatively modeled

  13. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  14. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  16. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  17. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  18. Nonlinear Dynamics of Nanomechanical Resonators

    Science.gov (United States)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  19. Resonance detection of Moessbauer radiation

    International Nuclear Information System (INIS)

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  20. Nested trampoline resonators for optomechanics

    International Nuclear Information System (INIS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Perock, B.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si 3 N 4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators

  1. Nested trampoline resonators for optomechanics

    Science.gov (United States)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  2. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  3. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  4. Review of 241 Pu resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.

    1981-10-01

    The status of 241 Pu resonance parameters is reviewed. The most important recent results are compared in some energy ranges, both from single level and multilevel point of view. It appears that an accurate set of resonance parameters is not still obtained for a general description of the cross-sections in the resonance region. Some recommendations are given for further experiments or evaluations

  5. Observation of pulsed neutron Ramsey resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)

    2007-07-15

    A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.

  6. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  7. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  8. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  9. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  11. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  12. Experimental medium energy physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses the following topics: search for the ξ(2230) at LEAR; hyperon-antihyperon production studies at LEAR; relativistic proton-nucleus and heavy ion-nucleus collisions at the SPS; search for the H dibaryon at the AGS; hypernuclear physics research; CEBAF activities; pion physics at PSI; and H particle experiment design and development

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A new `hidden colour hypothesis' within the framework of QCD, as an extension of and in keeping with the spirit of the `colour singlet hypothesis' is hereby proposed. As such it should play a role in a consistent description of exotic hadrons, such as diquonia, pentaquarks, dibaryons etc. How these exotic hadrons are ...

  14. Experimental medium energy physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1990-01-01

    This report discusses the following topics: search for the H-dibaryon at the AGS; weak interaction studies with hypernuclear decays at the AGS; search for the ξ(2230) at LEAR; relativistic proton-nucleus and heavy ion-nucleus collisions at the SPS; hyperon-antihyperon production studies at LEAR; photoproduction of strange CEBAF; and experiment design development

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  17. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  18. Resonance treatment methodology in DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Joo, Han Gyu; Lee, Chung Chan; Chang, Moon Hee

    2003-12-01

    The typical nuclear design procedure consists of two steps which are the transport lattice calculation for the fuel assembly and the nodal diffusion calculation for the reactor core. DeCART (Deterministic Core Analysis based on Ray Tracing) code has been developed to perform the 3-dimensional whole-core transport calculation removing some of the approximations in the 2-step procedure. This code employs the synthesis of 1- and 2-dimensional characteristics methods in the framework of the 3-dimensional CMFD (Coarse Mesh Finite Difference) formulation. The subgroup method is used for the resonance treatment. HELIOS library is used for the multi-group neutron cross section and the resonance data without any modification. This report includes the methodology of the resonance treatment in DeCART. And this report also includes the Monte Carlo resonance treatment under development for the generation of the resonance integral table and the subgroup data. The interpolation method of the equivalence cross section is reviewed for the efficient resonance transport calculation with thermal-hydraulic feedback, and the new method to consider the temperature distribution explicitly in the subgroup method is also introduced.

  19. Resonances in odd-odd 182Ta

    Directory of Open Access Journals (Sweden)

    Brits C.P.

    2017-01-01

    Full Text Available Enhanced γ-decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl γ-ray detector array (CACTUS and silicon particle telescopes (SiRi at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p182Ta and 181Ta(d,d'181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy.

  20. New concept for nuclear force: implications for nuclear structure and hadronic processes

    International Nuclear Information System (INIS)

    Kukulin, V.I.

    2005-01-01

    Full text: A new concept for nuclear force is discussed. The concept is based on idea about production of the intermediate six-quark bag (dibaryon) dressed with meson fields main of which are π-, σ-, p-, and ω-fields. The whole approach has been strongly motivated by our previous detailed analysis of various inner contradictions and inconsistencies in the conventional meson-exchange (i.e. Yukawa like) mechanism of nuclear force. The new force model predicts inevitable strong attractive 3N-force of scalar nature originated from σ-exchange between the dressed dibaryon and third nucleon. This new 3N-force has been demonstrated earlier to result in, at least, a half the total binding energy in lightest nuclei and contribute strongly to all nuclear properties like r. m. s. charge radius, nucleon momentum distribution, new electromagnetic currents and leads, very likely, to new understanding of saturation properties in nuclear matter. In the talk many other implications of the suggested new force model in hadronic and nuclear physics will be discussed

  1. On meson resonances and chiral symmetry

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-07-01

    We study meson resonances with quantum numbers J P = 1 + in terms of the chiral SU(3) Lagrangian. At leading order a parameter-free prediction is obtained for the scattering of Goldstone bosons off vector mesons with J P = 1 - once we insist on approximate crossing symmetry of the unitarized scattering amplitude. A resonance spectrum arises that is remarkably close to the empirical pattern. In particular, we find that the strangeness-zero resonances h 1 (1380), f 1 (1285) and b 1 (1235) are formed due to strong K anti K μ and K K μ channels. This leads to large coupling constants of those resonances to the latter states. (orig.)

  2. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  3. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  4. A New Look at an Old Activity: Resonance Tubes Used to Teach Resonance

    Science.gov (United States)

    Nelson, Jim; Nelson, Jane

    2017-12-01

    There are several variations of resonance laboratory activities used to determine the speed of sound. This is not one of them. This activity uses the resonance tube idea to teach resonance, not to verify the speed of sound. Prior to this activity, the speed of sound has already been measured using computer sound-sensors and timing echoes produced in long tubes like carpet tubes. There are other methods to determine the speed of sound. Some methods are referenced at the end of this article. The students already know the speed of sound when they are confronted with data that contradict their prior knowledge. Here, the mystery is something the students solve with the help of a series of demonstrations by the instructor.

  5. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  6. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  7. An analytical approximation for resonance integral

    International Nuclear Information System (INIS)

    Magalhaes, C.G. de; Martinez, A.S.

    1985-01-01

    It is developed a method which allows to obtain an analytical solution for the resonance integral. The problem formulation is completely theoretical and based in concepts of physics of general character. The analytical expression for integral does not involve any empiric correlation or parameter. Results of approximation are compared with pattern values for each individual resonance and for sum of all resonances. (M.C.K.) [pt

  8. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    Science.gov (United States)

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Science.gov (United States)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  10. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  11. Chemical shift of neutron resonances and some ideas on neutron resonances and scattering theory

    International Nuclear Information System (INIS)

    Ignatovich, V.K.; )

    2002-01-01

    The dependence of positions of neutron resonances in nuclei in condensed matter on chemical environment is considered. A possibility of theoretical description of neutron resonances, different from R-matrix theory is investigated. Some contradictions of standard scattering theory are discussed and a new approach without these contradictions is formulated [ru

  12. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  13. Nested trampoline resonators for optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  14. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  15. Hidden Glashow resonance in neutrino–nucleus collisions

    Directory of Open Access Journals (Sweden)

    I. Alikhanov

    2016-05-01

    Full Text Available Today it is widely believed that s-channel excitation of an on-shell W boson, commonly known as the Glashow resonance, can be initiated in matter only by the electron antineutrino in the process ν¯ee−→W− at the laboratory energy around 6.3 PeV. In this Letter we argue that the Glashow resonance within the Standard Model also occurs in neutrino–nucleus collisions. The main conclusions are as follows. 1 The Glashow resonance can be excited by both neutrinos and antineutrinos of all the three flavors scattering in the Coulomb field of a nucleus. 2 The Glashow resonance in a neutrino–nucleus reaction does not manifest itself as a Breit–Wigner-like peak in the cross section but the latter exhibits instead a slow logarithmic-law growth with the neutrino energy. The resonance turns thus out to be hidden. 3 More than 98% of W bosons produced in the sub-PeV region in neutrino-initiated reactions in water/ice will be from the Glashow resonance. 4 The vast majority of the Glashow resonance events in a neutrino detector are expected at energies from a few TeV to a few tens of TeV, being mostly initiated by the conventional atmospheric neutrinos dominant in this energy range. Calculations of the cross sections for Glashow resonance excitation on the oxygen nucleus as well as on the proton are carried out in detail. The results of this Letter can be useful for studies of neutrino interactions at large volume water/ice neutrino detectors. For example, in the IceCube detector one can expect 0.3 Glashow resonance events with shower-like topologies and the deposited energies above 300 TeV per year. It is therefore likely already to have at least one Glashow resonance event in the IceCube data set.

  16. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1989-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε c as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε c is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε c is found to vary linearly with N S as left-angle ε c right-angle=(1/π)sin -1 (cos πν z | 1/2 )N S , where ν| z and N S are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization

  17. Resonance capture and dynamics of three-planet systems

    Science.gov (United States)

    Charalambous, C.; Martí, J. G.; Beaugé, C.; Ramos, X. S.

    2018-06-01

    We present a series of dynamical maps for fictitious three-planet systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure three-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper, we describe N-body simulations of type-I migration. Depending on the orbital decay time-scale, we show that three-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a two-planet and a first-order three-planet resonances, and (iii) simultaneous libration in two first-order three-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density discs. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most three-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure three-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure three-planet resonance and a two-planet commensurability between planets c and d.

  18. Resonant non-Gaussianity with equilateral properties

    International Nuclear Information System (INIS)

    Gwyn, Rhiannon; Rummel, Markus

    2012-11-01

    We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f NL ∝O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.

  19. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  20. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  1. Neutron cross sections in the unresolved resonance region

    International Nuclear Information System (INIS)

    Janeva, N.; Lukyanov, A.; Koyumdjieva, N.; Volev, K.

    2005-01-01

    In this work a development of the characteristic function model, created to reveal the resonance cross section structure in the unresolved resonance region is presented. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. To determine average values of the cross sections and their functionals the function of joint statistical distribution of the R-matrix real and imaginary parts should be used. The characteristic function of such distribution is determined and the resonance ladder for the unresolved region is optimized to calculate the group averaged functionals in the same way as it is in the resolved resonance region. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. The neutron width energy dependence leads to some deformation in the shape of resonances. This deformation is most apparent near the inelastic scattering threshold. For the case when the inelastic channel momentum is zero we present the formula for level shape bellow and over the inelastic threshold and the calculated resonance deformation in dependence of the position of the resonance in respect to the threshold. (authors)

  2. Electrical Characterization of Microelectromechanical Silicon Carbide Resonators

    Directory of Open Access Journals (Sweden)

    Christian Zorman

    2008-09-01

    Full Text Available This manuscript describes the findings of a study to investigate the performance of SiC MEMS resonators with respect to resonant frequency and quality factor under a variety of testing conditions, including various ambient pressures, AC drive voltages, bias potentials and temperatures. The sample set included both single-crystal and polycrystalline 3C-SiC lateral resonators. The experimental results show that operation at reduced pressures increases the resonant frequency as damping due to the gas-rarefaction effect becomes significant. Both DC bias and AC drive voltages result in nonlinearities, but the AC drive voltage is more sensitive to noise. The AC voltage has a voltage coefficient of 1~4ppm/V at a DC bias of 40V. The coefficient of DC bias is about -11ppm/V to - 21ppm/V for poly-SiC, which is more than a factor of two better than a similarly designed polysilicon resonator (-54 ppm/V. The effective stiffness of the resonator decreases (softens as the bias potential is increased, but increases (hardens as drive voltage increase when scan is from low to high frequency. The resonant frequency decreases slightly with increasing temperature, exhibiting a temperature coefficient of -22 ppm/oC, between 22oC and 60oC. The thermal expansion mismatch between the SiC device and the Si substrate could be a reason that thermal coefficient for these SiC resonators is about twofold higher than similar polysilicon resonators. However, the Qs appear to exhibit no temperature dependence in this range.

  3. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  4. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  5. A silicon micromachined resonant pressure sensor

    International Nuclear Information System (INIS)

    Tang Zhangyang; Fan Shangchun; Cai Chenguang

    2009-01-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  6. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  7. The LIPAR-5 resonance parameter library

    International Nuclear Information System (INIS)

    Abagyan, L.P.

    1997-08-01

    The LIPAR-5 neutron resolved resonance parameter library has been elaborated. It contains data for 94 isotopes. The author's evaluations are included in LIPAR. Other authors' results are also included after re-evaluation. The codes used for the evaluation are described briefly. Tables of results are included for every isotope: the boundaries of the resolved resonance region, the numbers of s- and p-resonances, the thermal neutron partial cross-sections and the resonance integrals. The parameters are presented in ENDF/B-6 format. LIPAR is part of the nuclear data library of the MCU Monte Carlo code for neutron transport calculations. LIPAR was verified by comparing the benchmark experiment and Monte Carlo calculation results. (author). 44 refs, 6 tabs

  8. Dynamics of the retrograde 1/1 mean motion resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-04-01

    Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.

  9. DESIGN OPTIMIZATION OF RESONANT DC-DC CONVERTERS

    OpenAIRE

    Belqasem Aljafari

    2016-01-01

    Resonant DC/DC converters are the class of converters, which have L-C resonant tank serving as a major part of the power conversion process. The fundamental concept of the resonant converter is that the circulating energy in an L-C resonant circuit is manageable by changing the operating frequency, and therefore the converter can condition the input power to the desired output voltage. The development in power conversion technology is steady demand for high power efficiency and high power den...

  10. Physics of optimal resonant tunneling

    NARCIS (Netherlands)

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  11. Strange experiments at the AGS

    International Nuclear Information System (INIS)

    Chrien, R.

    1990-01-01

    The purpose of this review is to report recent progress in nuclear experiments involving strangeness which have been carried out at the Brookhaven Alternating Gradient Synchrotron over the past three years. These recent developments are noted in three areas: few body systems and dibaryons; strange probes of the nucleus; and associated production of hypernuclei. 9 refs., 3 figs

  12. Resonances in odd-odd 182Ta

    Science.gov (United States)

    Brits, C. P.; Wiedeking, M.; Bello Garrote, F. L.; Bleuel, D. L.; Giacoppo, F.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Klintefjord, M.; Larsen, A. C.; Malatji, K. L.; Nyhus, H. T.; Papka, P.; Renstrøm, T.; Rose, S.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.

    2017-09-01

    Enhanced γ-decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ) reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl) γ-ray detector array (CACTUS) and silicon particle telescopes (SiRi) at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p)182Ta and 181Ta(d,d')181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy. Note to the reader: the title of this article has been corrected on September 19, 2017.

  13. Resonator memories and optical novelty filters

    Science.gov (United States)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  14. Synchro-betatron resonance excitation in LEP

    International Nuclear Information System (INIS)

    Myers, S.

    1987-01-01

    The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances

  15. A warning on fission resonance intergrals: Caveat utor

    International Nuclear Information System (INIS)

    Holden, N.E.

    1988-01-01

    A common error is made in defining the resonance integral in most tabulations and handbooks. Although it has a minor effect on the capture resonance integral and on the fission resonance integral for the fissile nuclides, it leads to gross errors in the fission resonance integral for the fertile nuclides. The errors in the fission resonance integral for fertile nuclides of the elements from thorium through curium in the ENDF/B-V library will be presented. Let the user beware

  16. Experiments on shear Alfven resonance in a tokamak

    International Nuclear Information System (INIS)

    Prager, S.C.; Witherspoon, F.D.; Kieras, C.E.; Kortbawi, D.; Sprott, J.C.; Tataronis, J.A.

    1983-02-01

    Detailed observations have been made of the spatial structure of the wave magnetic field. Measurements of the resonance properties such as radial location, wave polarization, resonance width and risetime are all consistent with shear Alfven resonance theory, although several measurements require improvement in resolution. The resonance location agrees with prediction of a fully two-dimensional ideal MHD theory for the Tokapole II device. To complete the identification a frequency scan and careful comparison of the observed resonance with antenna loading will be undertaken

  17. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  18. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  19. Continuous neutron slowing down theory applied to resonances

    International Nuclear Information System (INIS)

    Segev, M.

    1977-01-01

    Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient

  20. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  1. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  2. Compact Dual-Band Zeroth-Order Resonance Antenna

    International Nuclear Information System (INIS)

    Xu He-Xiu; Wang Guang-Ming; Gong Jian-Qiang

    2012-01-01

    A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances. It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap. The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna. For verification, a DNG ZOR antenna sample is fabricated and measured. Numerical and experimental results agree well with each other, indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model. The size of the antenna is 49% more compact than its previous counterpart. The superiority of W-ECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance. (fundamental areas of phenomenology(including applications))

  3. Electrothermally actuated tunable clamped-guided resonant microbeams

    Science.gov (United States)

    Alcheikh, N.; Hajjaj, A. Z.; Jaber, N.; Younis, M. I.

    2018-01-01

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide-range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  4. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  5. Electrothermally actuated tunable clamped-guided resonant microbeams

    KAUST Repository

    Alcheikh, Nouha

    2017-06-11

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide–range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  6. Miniaturised self-resonant split-ring resonator antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    at the resonance is governed by the arc length of the monopole. Numerical and experimental results are presented for an antenna configuration of 1/23.4 wavelength in diameter (ka~0.134). The antenna is tuned to 50 ohms without any matching network, and its efficiency is measured to be 17.5%....

  7. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  8. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2017-05-01

    Full Text Available Wireless Power Transfer (WPT has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  9. Resonance gamma-transducer with thin converter

    International Nuclear Information System (INIS)

    Mirzababaev, R.M.

    1993-01-01

    A resonance detector with stainless steel foil (∼3000 A) is more efficient than conventional detectors as regards the recording Rayleigh scattering of Moessbauer effect. If the scatterer contains resonance nuclei (iron), the detector simultaneously records in the same spectrum both Zeeman lines and the line resulted to Rayleigh quanta scattering on electrons. Zeeman lines are formed due to photoabsorption in the converter. The central line is associated with resonance absorption in the converter

  10. Screening Resonances In Plasmas

    International Nuclear Information System (INIS)

    Winkler, P.

    1998-01-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion

  11. Stark resonances in disordered systems

    International Nuclear Information System (INIS)

    Grecchi, V.; Maioli, M.; Modena Univ.; Sacchetti, A.

    1992-01-01

    By slightly restricting the conditions given by Herbst and Howland, we prove the existence of resonances in the Stark effect of disordered systems (and atomic crystals) for large atomic mean distance. In the crystal case the ladders of resonances have the Wannier behavior for small complex field. (orig.)

  12. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  13. Interactions among resonances in the unresolved region

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1982-11-01

    The theory on resonance absorption in the unresolved region is reviewed and a subroutine is presented, optional to UNRES in MC 2 code. Comparisons with the isolated resonance model suggest the necessity, in some cases, of considering interference and overlapping effects among resonances of the system. (Author) [pt

  14. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  15. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  16. Restrictions in the realisation of multipass unstable resonators

    International Nuclear Information System (INIS)

    Strakhov, S Yu

    2009-01-01

    Main restrictions in the realisation of multipass unstable resonators caused by intracavity losses and large-scale aberrations are considered. The influence of intracavity losses on the laser radiation power and divergence is analysed based on the numerical simulation of an unstable resonator. The efficiency criterion for the unstable multipass resonator is proposed, which is proportional to the radiation brightness and takes into account the influence of the misalignment, thermal deformation and the main parameters of the active medium and resonator on the parameters of laser radiation. (resonators)

  17. Resonator quantum electrodynamics on a microtrap chip

    International Nuclear Information System (INIS)

    Steinmetz, Tilo

    2008-01-01

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to ∼37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g 0 =2π.300 MHz respectively C 0 =210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [de

  18. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  19. Resonance phenomena near thresholds

    International Nuclear Information System (INIS)

    Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1995-12-01

    The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)

  20. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  1. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  2. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  3. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  4. Measurement of global and local resonance terms

    CERN Document Server

    Tomás, R; Calaga, R; Fischer, W; Franchi, A; Rumolo, Giovanni

    2005-01-01

    Recently, resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of beam position monitor (BPM) data. Based on these measurements a new analysis has been derived to extract truly local observables from BPM data. These local observables are called local resonance terms since they share some similarities with the global resonance terms. In this paper we derive these local terms analytically and present experimental measurements of sextupolar global and local resonance terms in RHIC. Nondestructive measurements of these terms using ac dipoles are also presented.

  5. Pattern formation in optical resonators

    International Nuclear Information System (INIS)

    Weiss, C O; Larionova, Ye

    2007-01-01

    We review pattern formation in optical resonators. The emphasis is on 'particle-like' structures such as vortices or spatial solitons. On the one hand, similarities impose themselves with other fields of physics (condensed matter, phase transitions, particle physics, fluds/super fluids). On the other hand the feedback is led by the resonator mirrors to bi- and multi-stability of the spatial field structure, which is the basic ingredient for optical information processing. The spatial dimension or the 'parallelism' is the strength of optics compared to electronics (and will have to be employed to fully use the advantages optics offers in information processing). But even in the 'serial' processing tasks of telecoms (e.g. information buffering) spatial resonator solitons can do better than the schemes proposed so far-including 'slow light'. Pattern formation in optical resonators will likely be the key to brain-like information processing like cognition, learning and association; to complement the precise but limited algorithmic capabilities of electronic processing. But even in the short term it will be useful for solving serial optical processing problems. The prospects for technical uses of pattern formation in resonators are one motivation for this research. The fundamental similarities with other fields of physics, on the other hand, inspire transfer of concepts between fields; something that has always proven fruitful for gaining deeper insights or for solving technical problems

  6. Strong reflection and periodic resonant transmission of helical edge states in topological-insulator stub-like resonators

    International Nuclear Information System (INIS)

    Takagaki, Y.

    2015-01-01

    The helical edge states of two-dimensional topological insulators (TIs) experience appreciable quantum mechanical scattering in narrow channels when the width changes abruptly. The interference of the geometry scattering in narrow-wide-narrow waveguide structures is shown to give rise to the strong suppression of transmission when the incident energy is barely above the propagation threshold. Periodic resonant transmission takes place in this high reflection regime while the length of the wide section is varied. The resonance condition is governed by the transverse confinement in the wide section, where the form of quantization is manifested to differ for the two orthogonal directions. The confined energy levels in TI quantum dots are derived based on this observation. In addition, the off-diagonal spin-orbit term is found to produce an anomalous resonance state, which merges with the bottom ordinary resonance state to annihilate

  7. Time dependent resonating Hartree-Bogoliubov theory

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Fukutome, Hideo.

    1989-01-01

    Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)

  8. Resonant non-Gaussianity with equilateral properties

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-11-15

    We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f{sub NL} {proportional_to}O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.

  9. Multiphotonic resonance processes in potassium vapor

    International Nuclear Information System (INIS)

    Bensoussan, Paul.

    1975-01-01

    Despite several theoretical and experimental investigations, the phenomena of resonance multiphotonic ionization are still not completely understood. The following lines of investigation were undertaken to try and elucidate certain aspects of the resonance processes. The first line of investigation aims at finding the processes which can compete with ionization. Resonance ionization processes can be considered as taking place in two stages: absorption induced excitation of a bound state, followed by photoionization from the excited level. The problem is now to determine what are the processes which compete with the ionization processes starting from a level selectively populated by the absorption of one or two photons. The second line aims at finding the influence of the polarization of the radiation on resonance multiphotonic ionization for the second photon and to check the validity of the selection rules on the magnetic quantic number of the resonance bound linked states. The last study therefore relates to the development of a method of multiphotonic spectrometry which could determine the energy levels in the alcaline f series [fr

  10. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  11. Nonlinear effects in varactor-tuned resonators.

    Science.gov (United States)

    Everard, Jeremy; Zhou, Liang

    2006-05-01

    This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.

  12. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  13. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  14. Study on Dynamic Alignment Technology of COIL Resonator

    International Nuclear Information System (INIS)

    Xiong, M D; Zou, X J; Guo, J H; Jia, S N; Zhang, Z B

    2006-01-01

    The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system

  15. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  16. Theoretical analysis of gold nano-strip gap plasmon resonators

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, T; Jung, J; Bozhevolnyi, S I; Della Valle, G [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Oest (Denmark)], E-mail: ts@nano.aau.dk

    2008-10-15

    Gold gap plasmon resonators consisting of two nm-thin and sub-micron-wide gold strips separated by a nm-thin air or quartz gap are considered. Scattering resonances and resonant fields are related to a model of resonances being due to counter-propagating gap plasmon polaritons forming standing waves. A small gap ({approx}10 nm) is found to result in small resonance peaks in scattering spectra but large electric field magnitude enhancement ({approx}20), whereas a large gap ({approx}100 nm) is found to result in more pronounced scattering peaks but smaller field enhancement. Design curves are presented that allow construction of gap plasmon resonators with any desired resonance wavelength in the range from the visible to the infrared, including telecom wavelengths. The relation between resonance wavelength and resonator width is close to being linear. The field magnitude enhancement mid between the gold strips is systematically investigated versus gap size and wavelength.

  17. An Overview of Resonant Circuits for Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Chaoqiang Jiang

    2017-06-01

    Full Text Available With ever-increasing concerns for the safety and convenience of the power supply, there is a fast growing interest in wireless power transfer (WPT for industrial devices, consumer electronics, and electric vehicles (EVs. As the resonant circuit is one of the cores of both the near-field and far-field WPT systems, it is a pressing need for researchers to develop a high-efficiency high-frequency resonant circuit, especially for the mid-range near-field WPT system. In this paper, an overview of resonant circuits for the near-field WPT system is presented, with emphasis on the non-resonant converters with a resonant tank and resonant inverters with a resonant tank as well as compensation networks and selective resonant circuits. Moreover, some key issues including the zero-voltage switching, zero-voltage derivative switching and total harmonic distortion are addressed. With the increasing usage of wireless charging for EVs, bidirectional resonant inverters for WPT based vehicle-to-grid systems are elaborated.

  18. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  19. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  20. Analytical approximations for wide and narrow resonances

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  1. Analytical approximations for wide and narrow resonances

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  2. Phase I ResonantSonic CRADA report

    International Nuclear Information System (INIS)

    Richterich, L.R.; Amos, L.O.; Fancher, J.D.; McLellan, G.W.; Setzer, W.V.; Tuttle, B.G.; Hockey, R.L.; Ferris, R.H.; Riechers, D.M.; Pitman, S.G.

    1994-01-01

    This test report describes the Phase 1 testing and results of the ResonantSonic drilling method. This effort was conducted as part of a Cooperative Research and Development Agreement (CRADA) between the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The purpose of this demonstration was to evaluate the Water Development Corporation's ResonantSonic drilling system, modify components as necessary and determine compatible drilling applications for the ResonantSonic drilling method for use at facilities in the DOE complex and private industry. Initially, the ResonantSonic drill was used to drill several test holes at the Drilling Technology Test Site to assess the feasibility of drilling vertical and angle holes. After this initial phase, a 45 degree angle vapor extraction well was drilled to a depth of 168 feet at the 200 West Carbon Tetrachloride Site. This well was drilled and completed in nine days. Extensive geologic and vapor sampling were conducted while drilling this well. In addition, testing was also conducted at the test site to evaluated drilling with larger diameter casing (8 5/8 inch). Evaluation of the Resonant Sonic drilling method will be continued during the Phase 2 portion of testing to determine if improvements to the ResonantSonic system will make it a more viable method for drilling and sampling

  3. Special resonances in two- and three-cluster systems

    International Nuclear Information System (INIS)

    Orlowski, M.

    1979-01-01

    In the framework of Schmid's N-cluster theory the resonance theory of Wildermuth-Benoehr is extended to three clusters. This three-cluster resonance model is solved in a mathematically exact formalism. The main topic of this formalism is the asymptotic behaviour of the full three-body-resolvent in the differential directions of the six-dimensional position space of the Jacobi coordinates. The scattering amplitudes and cross sections in all two-body channels and breakup are explicitly presented. Furthermore a very illustrative kinematical three-body model, the so called 'three-body-neb', is developed. Special regards in this connection are devoted to the analysis of possible interference possibilities of the main three-body-resonance with other resonance types of the three-body model. In a further section the Pauli-resonances are studied i) in the Wildermuth resonating group theory, ii) in Schmid's simulation models. It is shown under which circumstances Pauli-resonances may be positive energy bound states. (orig./HSI) [de

  4. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  5. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    International Nuclear Information System (INIS)

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-01-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield

  6. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah; Alcheikh, Nouha; Ilyas, Saad; Younis, Mohammad I.

    2016-01-01

    efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting

  7. Resonant magnetohydrodynamic waves in high-beta plasmas

    International Nuclear Information System (INIS)

    Ruderman, M. S.

    2009-01-01

    When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.

  8. Comment on resonant absorption

    International Nuclear Information System (INIS)

    Hammerling, P.

    1977-01-01

    An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)

  9. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  10. Resonant forcing of multidimensional chaotic map dynamics.

    Science.gov (United States)

    Foster, Glenn; Hübler, Alfred W; Dahmen, Karin

    2007-03-01

    We study resonances of chaotic map dynamics. We use the calculus of variations to determine the additive forcing function that induces the largest response. We find that resonant forcing functions complement the separation of nearby trajectories, in that the product of the displacement of nearby trajectories and the resonant forcing is a conserved quantity. As a consequence, the resonant function will have the same periodicity as the displacement dynamics, and if the displacement dynamics is irregular, then the resonant forcing function will be irregular as well. Furthermore, we show that resonant forcing functions of chaotic systems decrease exponentially, where the rate equals the negative of the largest Lyapunov exponent of the unperturbed system. We compare the response to optimal forcing with random forcing and find that the optimal forcing is particularly effective if the largest Lyapunov exponent is significantly larger than the other Lyapunov exponents. However, if the largest Lyapunov exponent is much larger than unity, then the optimal forcing decreases rapidly and is only as effective as a single-push forcing.

  11. Quantum resonances and regularity islands in quantum maps

    Science.gov (United States)

    Sokolov; Zhirov; Alonso; Casati

    2000-05-01

    We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of an order q. The map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transformation described by the unitary unimodular group SU(q). The resonant energy growth is attributed to the zero Liouville eigenmodes of the generator in the adjoint representation of the group while the nonzero modes yield saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the form of power expansion with respect to the detuning from the resonance. The problem is related in this way to the motion along a circle in a (q2 - 1)-component inhomogeneous "magnetic" field of a quantum particle with q intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical phase oscillations near a nonlinear resonance. The most important role is played by the resonances with the orders much smaller than the typical localization length q < l. Such resonances master for exponentially long though finite times the motion in some domains around them. Explicit analytical solution is possible for a few lowest and strongest resonances.

  12. Atomic resonances in nuclear fusion plasmas

    International Nuclear Information System (INIS)

    Clauser, C. F.; Barrachina, R. O.

    2013-01-01

    We present a study of zero energy resonances of photoionization and radiative recombination cross section for the different species in a fusion reactor. In this context, the interaction potential is screened and its typical length depends on the plasma density and temperature. Due to the nature of these resonances, we propose other atomic processes in which they can take place. Finally, we show the density and temperature conditions where these resonances occur and their probable consequence on the reactor performance. (author)

  13. Versatile resonance-tracking circuit for acoustic levitation experiments.

    Science.gov (United States)

    Baxter, K; Apfel, R E; Marston, P L

    1978-02-01

    Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.

  14. Spectral approach to optical resonator theory

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1981-01-01

    A new computational method for unloaded optical resonators is developed based on the discrete Fourier analysis of informaton generated by repated iterations of the optical field corresponding to transits between reflectors. The method is a straightforward extension of the propagating beam method developed earlier for optical fibers for extracting modal properties from numerical solutions to the paraxial scalar wave equation. The method requires computation of a field correlation function, whose Fourier transform reveals the eigenmodes as resonant peaks. Analysis of the location and breadth of these peaks determines the resonator eigenvalues When the eigenvalues are known, additional discrete Fourier transforms of the field are used to generate the mode eigenfunctions. This new method makes possible the unambiguous identification and accurate characterization of the entire spectrum of transverse resonator modes

  15. Isolated resonator gyroscope with a drive and sense plate

    Science.gov (United States)

    Challoner, A. Dorian (Inventor); Shcheglov, Kirill V. (Inventor)

    2006-01-01

    The present invention discloses a resonator gyroscope comprising a vibrationally isolated resonator including a proof mass, a counterbalancing plate having an extensive planar region, and one or more flexures interconnecting the proof mass and counterbalancing plate. A baseplate is affixed to the resonator by the one or more flexures and sense and drive electrodes are affixed to the baseplate proximate to the extensive planar region of the counterbalancing plate for exciting the resonator and sensing movement of the gyroscope. The isolated resonator transfers substantially no net momentum to the baseplate when the resonator is excited.

  16. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  17. Biosensing by WGM Microspherical Resonators

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2016-06-01

    Full Text Available Whispering gallery mode (WGM microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.

  18. Odd-parity light baryon resonances

    International Nuclear Information System (INIS)

    Gamermann, D.; Garcia-Recio, C.; Salcedo, L. L.; Nieves, J.

    2011-01-01

    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the π and N octets, the ρ nonet and the Δ decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S=0, -1, -2, -3 and spin J=(1/2), (3/2) and (5/2). Many of the poles generated can be associated with known N, Δ, Σ, Λ, Ξ and Ω resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin (1/2) and (3/2) can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Ξ(1620), Ξ(1690), Ξ(1950), Ξ(2250), Ω(2250) and Ω(2380) resonances, which have not been determined experimentally yet.

  19. The new classification of elementary particle resonance mass spectra

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Elementary particle resonances have been systematically analyzed from the first principles: the conservation laws of energy-momentum and Ehrenfest adiabatic invariant. As a result, resonance decay product momenta and masses of resonances were established to be quantized. Radial excited states of resonances were revealed. These observations give us a possibility to formulate the strategy of experimental searches for new resonances and to systematize already known ones. (author)

  20. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  1. Optical resonators and neural networks

    Science.gov (United States)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  2. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  3. Space charge effects: tune shifts and resonances

    International Nuclear Information System (INIS)

    Weng, W.T.

    1986-08-01

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs

  4. Integral data analysis for resonance parameters determination

    International Nuclear Information System (INIS)

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications

  5. Atomic and molecular resonance ionization

    International Nuclear Information System (INIS)

    Botter, R.; Petit, A.

    1990-01-01

    Published in summary form only the paper recalls the principle of resonance photoionization, transition probability, selectivity and critical parameters. Examples of applications are briefly treated: Trace analysis by resonance ionization mass spectroscopy for detection of Fe in Zr F 4 for fabrication of optical fibers and laser isotopic separation of U 235 and Gd 157 [fr

  6. Theoretical foundations of electron spin resonance

    CERN Document Server

    Harriman, John E

    2013-01-01

    Theoretical Foundations of Electron Spin Resonance deals with the theoretical approach to electron paramagnetic resonance. The book discusses electron spin resonance in applications related to polyatomic, probably organic, free radicals in condensed phases. The book also focuses on essentially static phenomena, that is, the description and determination of stationary-state energy levels. The author reviews the Dirac theory of the electron in which a four-component wave function is responsible for the behavior of the electron. The author then connects this theory with the nonrelativistic wave f

  7. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  8. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  9. High quality factor gigahertz frequencies in nanomechanical diamond resonators

    OpenAIRE

    Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.

    2007-01-01

    We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...

  10. Resonance formation in photon-photon collisions

    International Nuclear Information System (INIS)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the γγ* production of spin-one resonances. 37 refs., 17 figs., 5 tabs

  11. Using Whispering-Gallery-Mode Resonators for Refractometry

    Science.gov (United States)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of

  12. Magnetic resonance and porous materials

    International Nuclear Information System (INIS)

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  13. Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography.

    Science.gov (United States)

    Bourke, Levi; Blaikie, Richard J

    2017-12-01

    Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.

  14. Resonant oscillations in open axisymmetric tubes

    Science.gov (United States)

    Amundsen, D. E.; Mortell, M. P.; Seymour, B. R.

    2017-12-01

    We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to k=0. The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. k→ 0. Detailed analysis for both the tube and cone in the limit of small forcing (O(ɛ 3)) is carried out, where ɛ 3 is the Mach number of the forcing function and the resulting flow has Mach number O(ɛ ). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of O(ɛ ). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of O(ɛ 2) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.

  15. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  16. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  17. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  18. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  19. Overcoming weak intrinsic depolarizing resonances with energy-jump

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alessi, J.G.

    1997-01-01

    In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Polarized proton beam was accelerated up to the required RHIC injection energy of 25 GeV. However, significant amount of polarization was lost at 0+ν y , 12+ν y and 36+ν y , which is believed to be partially due to the coupling resonances. To overcome the coupling resonance, an energy-jump was generated by rapidly changing the beam circumference using the powerful AGS rf system. It clearly demonstrates that the novel energy-jump method can successfully overcome coupling resonances and weak intrinsic resonances

  20. Wideband MEMS Resonator Using Multifrequency Excitation

    KAUST Repository

    Jaber, Nizar; Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.

    2016-01-01

    We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.